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1 Introdution

Query ontainment under onstraints is the problem of determining whether the result

of one query is ontained in the result of another query for every database satisfying

a given set of onstraints (derived, for example, from a shema). This problem is

of partiular importane in information integration (see [7℄) and data warehousing

where, in addition to the onstraints derived from the soure shemas and the global

shema, inter-shema onstraints an be used to speify relationships between objets

in di�erent shemas (see [4℄).

Query ontainment have, e.g., been studied in [9, 19, 8, 20, 10℄. Calvanese et al.

[2℄ have established a theoretial framework using the logi DLR,

1

presented several

(un)deidability results, and desribed a method for solving the deidable ases using

an embedding in the propositional dynami logi CPDL

g

[13, 12℄. The importane of

this framework is due to the high expressive power of DLR, whih allows Extended

Entity-Relationship (EER) shemas and inter-shema onstraints to be aptured. For

example, Figure 1 shows a part of an EER-shema from a ase study undertaken as

part of the Esprit DWQ projet [5, 4℄. Besides ardinality restritions and disjointness

assertions (no entity is both a person and a ompany), we an use DLR axioms to

expliitly axiomatise properties of entities and relations that annot be expressed in

a standard ER shema.

However, the embedding tehnique does not lead diretly to a pratial deision

proedure as there is no (known) implementation of a CPDL

g

reasoner. Moreover,

even if suh an implementation were to exist, similar embedding tehniques [11℄ have

resulted in severe tratability problems when used, for example, to embed the SHIF

desription logi in SHF by eliminating inverse roles [14℄.

1

Set semantis is assumed in this framework.
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Figure 1: A fragment of the DWQ enterprise shema

In this paper we present a pratial deision proedure for the ase where nei-

ther the queries nor the onstraints ontain regular expressions. This represents a

restrition with respet to the framework desribed in [2℄, where it was shown that

the problem is still deidable if regular expressions are allowed in the shema and the

(possibly) ontaining query, but this seems to be aeptable when modelling lassi-

al relational information systems, where regular expressions are seldom used [5, 4℄.

When exluding regular expressions, onstraints imposed by EER shemas an still

be aptured, so the restrition (to ontain no regular expressions) is only relevant to

inter-shema onstraints. Hene, the use of DLR in both shema and queries still

allows for relatively expressive queries, and by staying within a stritly �rst order

setting we are able to use a deision proedure that has demonstrated good empirial

tratability.

The proedure is based on the method desribed in [2℄, but extends DLR by

de�ning an ABox, i.e., a set of axioms that assert fats about named individuals and

tuples of named individuals (see [3℄). This leads to a muh more natural enoding

of queries (there is a diret orrespondene between variables and individuals), and

allows the problem to be redued to that of determining the satis�ability of a DLR

knowledge base (KB), i.e., a ombined shema and ABox. This problem an in turn

be redued to a KB satis�ability problem in the SHIQ desription logi, with n-ary

relations redued to binary ones by rei�ation. In [20℄, a similar approah is presented.

However, the underlying desription logi (ALCNR) is less expressive than DLR and

SHIQ (for example, it is not able to apture Entity-Relationship shemas).

We have good reasons to believe that our approah represents a pratial solution.

In the FaCT system [14℄, we already have an (optimised) implementation of the dei-

sion proedure for SHIQ shema satis�ability desribed in [17℄, and using FaCT we

60



have been able to reason very eÆiently with a realisti shema derived from the in-

tegration of several EER-shemas using DLR inter-shema onstraints. The shemas

and onstraints were taken from a ase study undertaken as part of the Esprit DWQ

projet [5, 4℄. We have already shown (in [18℄) how the SHIQ algorithm implemented

in the FaCT system an be extended to deal with ABox axioms, and in Setion 4 we

use FaCT to demonstrate the empirial tratability of a simple query ontainment

problem with respet to the integrated DWQ shema. As the number of individuals

generated by the enoding of realisti query ontainment problems will be relatively

small (i.e., equal to the number of variables in the queries), the extension to deal with

arbitrary ABox axioms (and thus arbitrary query ontainment problems) should not

ompromise this empirial tratability.

Due to spae limitations, most details and proofs are either omitted or given only

as outlines in this paper. For full details, please refer to [16℄ .

2 Preliminaries

The Logi DLR: We will begin with DLR as it is used in the de�nition of both

shemas and queries. DLR is a desription logi (DL) extended with the ability to

desribe relations of any arity. It was �rst introdued in [6℄.

De�nition 2.1 Given a set of atomi onepts NC and a set of atomi relations NR,

every C 2 NC is a onept and every R 2 NR is a relation, with every R having an

assoiated arity. If C;D are onepts, R;S are relations of arity n, i is an integer

1 6 i 6 n, and k is a non-negative integer, then

>, :C, C uD, 9[$i℄R, (� k[$i℄R) are DLR onepts, and

>

n

, :R, R u S, ($i=n : C) are DLR relations with arity n.

Relation expressions must be well-typed in the sense that only relations with the same

arity an be onjoined, and in onstruts like 9[$i℄R the value of i must be less than

or equal to R's arity.

A DLR shema S is a set of axioms of the form C vD and R v S, where C;D

are DLR onepts and R;S are DLR relations of the same arity.

Given a set of individuals NI, a DLR ABox A is a set of axioms of the form w:C

and ~w:R, where C is a onept, R is a relation of arity n, w is an individual and ~w is

an n-tuple hw

1

; : : : ; w

n

i suh that w

1

; : : : ; w

n

are individuals.

The semantis of DLR is given in terms of interpretations I = (�

I

; �

I

), where

�

I

is the domain (a non-empty set), and �

I

is an interpretation funtion that maps

every onept to a subset of �

I

, every n-ary relation to a subset of (�

I

)

n

, and every

individual to an element in �

I

suh that the following equations are satis�ed (\℄"

denotes set ardinality).
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j d
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g

Note that >

n

does not need to be interpreted as the set of all tuples of arity n,

but only as a subset of them, and that the negation of a relation R with arity n is

relative to >

n

.

An interpretation I satis�es an axiom C vD (R v S, w:C, or ~w:R) i� C

I

� D

I

(R

I

� S

I

, w

I

2 C

I

, or ~w

I

2 R

I

). An interpretation I satis�es a shema S (an

ABox A) i� I satis�es every axiom in S (in A).

A knowledge base (KB) K is a pair hS;Ai, where S is a shema and A is an ABox.

An interpretation I satis�es a KB K i� it satis�es both S and A.

If an interpretation I satis�es a onept, axiom, shema, or ABox X, then we say

that I is a model of X, all X satis�able, and write I j= X.

De�nition 2.2 If K is a KB, I is a model of K, and A is an ABox, then I

0

is alled

an extension of I to A i� I

0

satis�es A, �

I

= �

I

0

, and all onepts, relations, and

individuals ouring in K are interpreted identially by I and I

0

.

Given two ABoxes A;A

0

and a shema S, A is inluded in A

0

w.r.t. S (written

hS;Aij�A

0

) i� every model I of hS;Ai an be extended to A

0

.

For example, translating the EER-shema from Figure 1 to DLR axioms yields,

besides others, the following axioms (where we use C _=D as an abbreviation for C v D

and D v C):

Customer _= Company t Person

Company _= Customer u :Person

Teleom-ompany v Company u 9[$1℄ontrat-ompany

ontrat-ompany _= 9[$1℄Contrat u 9[$2℄Teleom-ompany

.

.

.

Moreover, one of the DLR axioms de�ning the relationship between the enterprise

shema and the entity \Business-Customer" in a ertain soure shema desribing

business ontrats is

Business-Customer v (Company u 9[$1℄(agreement u

($2=3 : (Contrat u 9[$1℄(ontrat-ompany u

($2=2 : Teleom-ompany)))))):

(A1)

This axiom states, roughly speaking, that a Business-Customer is a kind of Company

that has an agreement where the ontrat is with a Teleom-ompany.
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Queries: In this paper we will fous on onjuntive queries (see [1, hap. 4℄). A

onjuntive query q is an expression

q(~x) term

1

(~x; ~y;~) ^ : : : ^ term

n

(~x; ~y;~)

where ~x, ~y, and ~ are tuples of distinguished variables, variables, and onstants, re-

spetively (distinguished variables appear in the answer, \ordinary" variables are used

only in the query expression, and onstants are �xed values). Eah term term

i

(~x; ~y;~)

is alled an atom in q and is in one of the forms C(w) or R(~w), where w (resp. ~w) is a

variable or onstant (resp. tuple of variables and onstants) in ~x, ~y or ~, C is a DLR

onept, and R is a DLR relation.

2

Continuing the teleom example, a query designed to return those ompanies that

have an agreement on an sms servie that they provide themselves is:

q(x) agreement(x; y; sms) ^ ontrat-ompany(y; x)

This query ontains a distinguished variable x, one undistinguished variable y, and

the onstant sms.

In this framework, the evaluation q(I) of a query q with n distinguished variables

w.r.t. a DLR interpretation I (here pereived as standard FO interpretation) is the

set of n-tuples

~

d 2 (�

I

)

n

suh that the �rst order formula 9~y:term

1

(

~

d; ~y;~) ^ : : : ^

term

n

(

~

d; ~y;~) is true in I.

As usual, we require unique interpretation of onstants, i.e., in the following we

will only onsider those interpretations I with 

I

6= d

I

for any two onstants  6= d.

A query q(~x) is alled satis�able w.r.t a shema S i� there is an interpretation I with

I j= S and q(I) 6= ;. A query q

1

(~x) is ontained in a query q

2

(~x) w.r.t. a shema S

(written S j= q

1

v q

2

), i�, for every model I of S, q

1

(I) � q

2

(I). Two queries q

1

; q

2

are alled equivalent w.r.t. S i� S j= q

1

v q

2

and S j= q

2

v q

1

.

Again, in our running example with the shema from Figure 1 and axiom A1, it

is relatively easy to see that the query

q

1

(x) Business-Customer(x) (Q1)

is ontained in the query

q

2

(x)  agreement(x; y

1

; y

2

) ^Contrat(y

1

) ^ Servie(y

2

) ^

ontrat-ompany(y

1

; y

3

) ^ Teleom-ompany(y

3

)

(Q2)

with respet to the DWQ shema S, written S j= q

1

v q

2

.

The Logi SHIQ: SHIQ is a standard DL, in the sense that it deals with onepts

and (only) binary relations (alled roles), but it is unusually expressive in that it sup-

ports reasoning with inverse roles, qualifying number restritions on roles, transitive

roles, and role inlusion axioms.

2

The fat that these onepts and relations an also appear in the shema is one of the distinguish-

ing features of this approah.
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De�nition 2.3 Given a set of atomi onepts NC and a set of atomi roles NR with

transitive role names NR

+

� NR, every C 2 NC is a SHIQ onept, every R 2 NR is

a role, and every R 2 NR

+

is a transitive role. If R is a role, then R

�

is also a role

(and if R 2 NR

+

then R

�

is also a transitive role). If S is a (possibly inverse) role,

C;D are onepts, and k is a non-negative integer, then

>, :C, C uD, 9S:C, 6kS:C are also SHIQ onepts.

The semantis of SHIQ is given in terms of interpretations I = (�

I

; �

I

), where �

I

is the domain (a non-empty set), and �

I

is an interpretation funtion that maps every

onept to a subset of �

I

and every role to a subset of (�

I

)

2

suh that the following

equations are satis�ed.

>

I

= �

I

(9S:C)

I

= fd j 9d

0

:(d; d

0

) 2 S

I

and d

0

2 C

I

g

:C

I

= �

I

n C

I

(6kS:C)

I

= fd j ℄fd

0

:(d; d

0

) 2 S

I

and d

0

2 C

I

g 6 kg

(C uD)

I

= C

I

\D

I

R

I

= (R

I

)

+

for all R 2 NR

+

(R

�

)

I

= f(d

0

; d) j (d; d

0

) 2 R

I

g

SHIQ shemas, ABoxes, and KBs are de�ned similarly to those for DLR: if C;D

are onepts, R;S are roles, and v; w are individuals, then a shema S onsists of

axioms of the form C v D and R v S, and an ABox A onsists of axioms of the form

w:C and hv; wi:R. Again, a KB K is a pair hS;Ai, where S is a shema and A is an

ABox.

The de�nitions of interpretations, satis�ability, and models also parallel those for

DLR, and there is again no unique name assumption.

Note that, in order to maintain deidability, the roles that an appear in number

restritions are restrited [17℄: if a role S ours in a number restrition 6kS:C, then

neither S nor any of its subroles may be transitive (i.e., if the shema ontains a

v-path from S

0

to S, then S

0

is not transitive).

3 Determining Query Containment

In this setion we will desribe how the problem of deiding whether one query is

ontained in another one w.r.t. a DLR shema an be redued to the problem of

deiding KB satis�ability in the SHIQ desription logi. There are three steps to

this redution. Firstly, the queries are transformed into DLR ABoxes A

1

and A

2

suh that S j= q

1

v q

2

i� hS;A

1

ij�A

2

(see De�nition 2.2). Seondly, the ABox

inlusion problem is transformed into one or more KB satis�ability problems. The

last step of this redution is given in [16℄, where we show how a DLR KB an be

polynomially transformed into an equisatis�able SHIQ KB.

3.1 Transforming Query Containment into ABox Inlusion

We will �rst show how a query an be transformed into a anonial DLR ABox.

Suh an ABox represents a generi pattern that must be mathed by all tuples in the

evaluation of the query, similar to the tableau queries one enounters in the treatment

of simple query ontainment for onjuntive queries [1℄.
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De�nition 3.1 Let q be a onjuntive query. The anonial ABox for q is de�ned by

A

q

= f~w:R j R(~w) is an atom in qg [ fw:C j C(w) is an atom in qg:

We introdue a new atomi onept P

w

for every individual w in A and de�ne the

ompleted anonial ABox for q by

b

A

q

= A

q

[ fw:P

w

j w ours in A

q

g [ fw

i

::P

w

j

j w

i

; w

j

are onstants in q and i 6= jg:

The axioms w:P

w

in

b

A

q

introdue representative onepts for eah individual w in

A

q

. They are used (in the axioms w

i

::P

w

j

) to ensure that individuals orresponding

to di�erent onstants in q annot have the same interpretation, and will also be useful

in the transformation to KB satis�ability.

By abuse of notation, we will say that an interpretation I and an assignment � of

distinguished variables, non-distinguished variables and onstants to elements in the

domain of I suh that I j= �(q) de�ne a model for A

q

with the interpretation of the

individuals orresponding with � and the interpretation P

I

w

= fw

I

g.

We an use this de�nition to transform the query ontainment problem into a

(very similar) problem involving DLR ABoxes. We an assume that the names of the

non-distinguished variables in q

2

di�er from those in q

1

(arbitrary names an be hosen

without a�eting the evaluation of the query), and that the names of distinguished

variables and onstants appear in both queries (if a name is missing in one of the

queries, it an be simply added using a term like >(v)).

The following Theorem shows that a anonial ABox really aptures the struture

of a query, allowing the query ontainment problem to be restated as an ABox inlusion

problem.

Theorem 1 Given a shema S and queries q

1

and q

2

, S j= q

1

v q

2

i� hS;

b

A

q

1

ij�A

q

2

.

Before we prove Theorem 1, note that, in general, this theorem no longer holds if

we replae A

q

2

by

b

A

q

2

. Let S be a shema and q

1

; q

2

be two queries suh that q

1

is

satis�able w.r.t. S and q

2

ontains at least one non-distinguished variable z. Then the

ompletion

b

A

q

2

ontains the assertion z:P

z

where P

z

is a new atomi onept. Sine

q

1

is satis�able w.r.t. S and P

z

does not our in S or q

1

, hS;

b

A

q

1

i has a model I with

P

I

z

= ;. Suh a model I annot be extended to a model I

0

of

b

A

q

2

beause there is

no possible interpretation for z that would satisfy z

I

0

2 P

I

0

z

. Hene, hS;

b

A

q

1

ij6�

b

A

q

2

regardless of whether S j= q

1

v q

2

holds or not. In the next setion we will see how to

deal with the individuals in A

q

2

orresponding to non-distinguished variables without

the introdution of new representative onepts.

Proof of Theorem 1: For the if diretion, assume S 6j= q

1

v q

2

. Then there

exists a model I of S and a tuple (d

1

; : : : ; d

n

) 2 (�

I

)

n

suh that (d

1

; : : : ; d

n

) 2 q

1

(I)

and (d

1

; : : : ; d

n

) 62 q

2

(I). I and the assignment of variables leading to (d

1

; : : : ; d

n

)

de�ne a model for

b

A

q

1

. If �

I

ould be extended to satisfy A

q

2

, then the extension

would orrespond to an assignment of the non-distinguished variables in q

2

suh that

(d

1

; : : : ; d

n

) 2 q

2

(I), thus ontraditing the assumption.

For the only if diretion, assume there is a model I of both S and

b

A

q

1

that annot

be extended to a model of A

q

2

. Hene there is a tuple (d

1

; : : : ; d

n

) 2 q

1

(I) and a
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orresponding assignment of variables that de�ne I. If there is an assignment of the

non-distinguished variables in q

2

suh that (d

1

; : : : ; d

n

) 2 q

2

(I), then this assignment

would de�ne the extension of I suh that A

q

2

is also satis�ed.

3.2 Transforming ABox Inlusion into ABox Satis�ability

Next, we will show how to transform the ABox inlusion problem into one or more

KB satis�ability problems. In order to do this, there are two main diÆulties that

must be overome. The �rst is that, in order to transform inlusion into satis�ability,

we would like to be able to \negate" axioms. This is easy for axioms of the form

w:C, beause an interpretation satis�es w::C i� it does not satisfy w:C. However, we

annot deal with axioms of the form ~w:R in this way, beause DLR only has a weak

form of negation for relations relative to >

n

. Our solution is to transform all axioms

in A

q

2

into the form w:C.

The seond diÆulty is that A

q

2

may ontain individuals orresponding to non-

distinguished variables in q

2

(given the symmetry between queries and ABoxes, we

will refer to them from now on as non-distinguished individuals). These individuals

introdue an extra level of quanti�ation that we annot deal with using our standard

reasoning proedures: hS;

b

A

q

1

ij�A

q

2

i� for all models I of hS;

b

A

q

1

i there exists some

extension of I to A

q

2

. We deal with this problem by eliminating the non-distinguished

individuals from A

q

2

.

We will begin by exploiting some general properties of ABoxes that allow us to

ompat A

q

2

so that it ontains only one axiom ~w:R for eah tuple ~w, and one axiom

w:C for eah individual w that is not an element in any tuple. It is obvious from the

semantis that we an ombine all ABox axioms relating to the same individual or

tuple: I j= fw:C;w:Dg (resp. f~w:R; ~w:Sg) i� I j= fw:(C uD)g (resp. f~w:(R u S)g).

The following lemma shows that we an also absorb w

i

:C into ~w:R when w

i

is an

element of ~w.

Lemma 1 Let A be a DLR ABox with fw

i

:C; ~w:Rg � A, where w

i

is the ith element

in ~w. Then I j= A i� I j= f~w:(R u $i : C)g [ A n fw

i

:C; ~w:Rg.

Proof: From the semantis, if ~w

I

2 (R u $i : C)

I

, then ~w

I

2 R

I

and w

I

i

2 C

I

, and

if w

I

i

2 C

I

and ~w

I

2 R

I

, then ~w

I

2 (R u $i : C)

I

.

The ABox resulting from exhaustive appliation of Lemma 1 an be represented as

a graph, with a node for eah tuple, a node for eah individual, and edges onneting

tuples with the individuals that ompose them. The graph will onsist of one or more

onneted omponents, where eah omponent is either a single individual (represent-

ing an axiom w:C, where w is not an element in any tuple) or a set of tuples linked

by ommon elements (representing axioms of the form ~w:R). Two distint onneted

omponents do not have any individuals in ommon, hene we an deal independently

with the inlusion problem for eah onneted set of axioms: hS;Aij�A

0

i� hS;Aij�G

for every maximal onneted set of axioms G � A

0

.

Returning to our original problem, we will now show how we an ollapse a on-

neted omponent G by a graph traversal into a single axiom of the form w:C, where

w is an element of a tuple ourring in G (an arbitrarily hosen \root" individual),
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and C is a onept that desribes G from the point of view of w. An example for this

proess will be given later in this setion.

This ollapsing would be easy if we were able to refer to individuals in C (i.e.,

if our logi inluded nominals [21℄), whih is not the ase. As we will see, it is

suÆient to refer to the distinguished individuals w

i

in G (whih also our in

b

A

q

1

) by

their representative onepts P

w

i

. For non-distinguished individuals, things are more

ompliated.

� For those non-distinguished individuals z

i

that are enountered only one during

the traversal and hene only have to be referred to one in the ollapsed axiom

w:C, we will use > as their representative onept P

z

i

.

� Those non-distinguished individuals z

i

that are enountered more than one

during the traversal will have to be referred to at least twie. For them we use

the representative onept P

w

j

for some individual w

j

ouring in

b

A

q

1

.

The use of > and the representative onepts P

w

j

to refer to the non-distinguished

individuals z

i

in G an be informally justi�ed as follows.

3

When an interpretation I

is extended to G, z

i

an be interpreted as any element in �

I

(= >

I

), and when z

i

is

referred to only one in w:C there is no other onstraint on its interpretation. When

z

i

is referred to more than one in w:C, we annot use > as, although the extension

of I an still interpret z

i

as any element, we must be sure that we are referring to the

same element in every ase. However, due to the way we will onstrut w:C, z

i

will

only be referred to more than one if it ours in a yle, and z

I

0

i

must then be in a

orresponding yle in any model I

0

of G. If hS;Aij�G, then every model I of hS;Ai

must ontain suh a yle (extending I to G annot introdue a yle) and, due to

the properties of DLR, this an only be guaranteed if the yle is expliitly asserted

in the axioms of

b

A

q

1

. We an therefore assume that z

i

has the same interpretation as

one of the w

j

in

b

A

q

1

, and we an use P

w

i

to refer to it. Unfortunately, at this time

of the redution, it is impossible to determine whih P

w

j

is the appropriate hoie for

any suh z

i

, and we have to rely on non-deterministi guessing.

Note that guessing a P

w

i

for eah suh z

i

adds non-determinism to the proe-

dure, whih has to be dealt with in a deterministi implementation. This should be

manageable as the number of suh z

i

will typially be very small.

4

On the other

hand, the apparent requirement for advaned knowledge of how many times the z

i

will be referred to in the ollapsed axiom w:C is not a problem: in pratie we will

use \plae-holder" onepts, and make the appropriate substitutions after ompleting

the ollapsing proedure.

Interestingly, also in [10℄, yles in queries are identi�ed as a main ause for om-

plexity. There it is shown that query ontainment without onstraints is deidable in

polynomial time for ayli queries whereas the problem for possibly yli queries is

NP-omplete [9℄.

3

For full details, the reader is again referred to [16℄.

4

This represents a useful re�nement over the proedure desribed in [2℄, where all z

i

that our

in yles are non-deterministially replaed with one of the w

i

, regardless of whether or not they are

used to enfore a o-referene.
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The following lemma shows how we an use the representative onepts to trans-

form an axiom of the form ~w:R into an axiom of the form w

i

:C.

Lemma 2 If S is a shema,

b

A is a ompleted anonial ABox and A

0

is an ABox with

~w:R 2 A

0

, then hS;

b

Aij�A

0

i� hS;

b

Aij�(fw

i

:Cg [ A

0

n f~w:Rg), where ~w = hw

1

; : : : ; w

n

i,

w

i

is the ith element in ~w, C is the onept

9[$i℄(R u

l

16j6n:j 6=i

($j=n : P

w

j

));

and P

w

j

is the appropriate onept for referring to w

j

.

Proof (sketh): For the only if diretion, it is easy to see that, if I j= hS;

b

A

q

1

i, and

I

0

is an extension of I that satis�es ~w:R, then I

0

also satis�es w

i

:C.

The onverse diretion is more ompliated, and exploits the fat that, for every

model I of hS;

b

A

q

1

i, there is a similar model I

0

in whih every representative onept

P

w

i

is interpreted as fw

I

0

i

g. If I annot be extended to satisfy ~w:R, then neither an

I

0

, and, given the interpretations of the P

w

i

, it is possible to show that I

0

annot be

extended to satisfy w

i

:C either.

All that now remains is to hoose the order in whih we apply the transformations

from Lemma 1 and 2 to the axioms in G, so that, whenever we use Lemma 2 to

transform ~w:R into w

i

:C, we an then use Lemma 1 to absorb w

i

:C into another

axiom ~v:R, where w

i

is an element of ~v. We an do this using a reursive traversal

of the graphial representation of G (a similar tehnique is used in [2℄ to transform

queries into onepts). A traversal starts at an individual node w (the \root") and

proeeds as follows.

� At an individual node w

i

, the node is �rst marked as visited. Then, while there

remains an unmarked tuple node onneted to w

i

, one of these, ~w, is seleted,

visited, and the axiom ~w:R transformed into an axiom w

i

:C. Finally, any axioms

w

i

:C

1

; : : : ; w

i

:C

n

resulting from these transformations are merged into a single

axiom w

i

:(C

1

u : : : uC

n

).

� At a tuple node ~w, the node is �rst marked as visited. Then, while there remains

an unmarked individual node onneted to ~w, one of these, w

i

, is seleted,

visited, and any axiom w

i

:C that results from the visit is merged into the axiom

~w:R using Lemma 1.

Note that the orretness of the ollapsing proedure does not depend on the

traversal (whose purpose is simply to hoose a suitable ordering), but only on the

individual transformations.

Having ollapsed G, we �nally have a problem that we an deide using KB satis-

�ability:

Lemma 3 If S is a shema and

b

A is a ompleted anonial ABox, then hS;

b

Aij�fw:Cg

i� w is an individual in

b

A and hS; (

b

A [ fw::Cg)i is not satis�able, or w is not an

individual in

b

A and h(S [ f> v :Cg);

b

Ai is not satis�able.
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Proof (sketh): If w is an individual in

b

A, hS;

b

Aij�fw:Cg implies that every model

I of hS;

b

Ai must also satisfy w:C, and this is true i� I does not satisfy w::C. In the

ase where w is not an individual in

b

A, a model I of hS;

b

Ai an be extended to fw:Cg

i� C

I

6= ;, whih is true i� �

I

* (:C)

I

.

In our running example, Query Q1 and Query Q2 are transformed into the follow-

ing DLR ABoxes

b

A

q

1

= fx:Business-Customer; x:P

x

g

A

q

2

= fhx; y

1

; y

2

i:agreement; y

1

:Contrat; y

2

:Servie;

hy

1

; y

3

i:ontrat-ompany; y

3

:Teleom-ompanyg;

In the next step, A

q

2

is ollapsed to fx:C

0

q

2

g, where

C

0

q

2

= 9[$1℄(agreement u ($2=3 : Contrat) u ($3=3 : Servie) u

($2=3 : (9[$1℄ontrat-ompany u ($2=2 : Teleom-ompany)))):

Now we an then determine if the query ontainment S j= q

1

v q

2

holds by testing the

satis�ability of the KB hS;Ai, where A = fx:Business-Customer; x:P

x

; x::C

0

q

2

g. This

is equivalent to testing the satis�ability of the onept Business-CustomeruP

x

u:C

0

q

2

w.r.t. S.

Summing up, in this setion we have shown:

Theorem 2 For a DLR KB K = hS;Ai and a DLR ABox A

0

, the problem of de-

iding whether A is inluded in A

0

w.r.t. S an be redued to (possibly several) DLR

ABox satis�ability problems.

Conerning the pratiability of this redution, it is easy to see that, for any �xed

hoie of substitutions for the non-distinguished individuals in G, the redution from

Theorem 2 an be omputed in polynomial time. More problematially, it is neessary

to onsider all possible mappings from the set Z of non-distinguished individuals that

our more than one in the ollapsed G to the set W of individuals that our in

b

A

1

,

of whih there are jW j

jZj

many. However, both these sets will typially be quite small,

espeially Z whih will onsist only of those non-distinguished individuals that our

in a yle in G and are atually used to enfore a o-referene (i.e., to \lose" the yle).

Therefore, we do not believe that this additional non-determinism ompromises the

feasibility of our approah.

Together with the redution of satis�ability of DLR-ABoxes to satis�ability of

SHIQ-knowledge bases given in [16℄, we now have the mahinery to transform a

query ontainment problem into one or more SHIQ shema and ABox satis�ability

problems. In the FaCT system we already have a deision proedure for SHIQ shema

satis�ability, and this is urrently being extended to deal with ABox axioms [18℄.

We have already argued why we believe our approah to be feasible. It should

also be mentioned that our approah mathes the known worst-ase omplexity of

the problem, whih was determined as ExpTime-omplete in [2℄. Satis�ability of a

SHIQ-KB an be determined in ExpTime.

5

All redution steps an be omputed in

5

This does not follow from the algorithm presented in [18℄, whih fouses on feasibility rather than

worst-ase omplexity. It an be shown using a preompletion strategy similar to the one used in [22℄

with a ut-rule to take are of inverese roles together with the ExpTime-ompleteness of CIN [12℄.
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deterministi polynomial time, with the exeption of the redution used in Theorem 2,

whih requires the onsideration of exponentially many mappings. Yet, for every �xed

mapping, the redution is polynomial, whih yields that our approah deides query

ontainment in ExpTime. A feasible algorithm to deide satis�ability of SHIQ-KBs

is given in [18℄.

4 The FaCT System

It is laimed in Setion 1 that one of the main bene�ts of our approah is that it

leads to a pratial solution to the query ontainment problem. In this setion we will

substantiate this laim by presenting the results of a simple experiment in whih the

FaCT system is used to deide the query ontainment problem with respet to the

DWQ shema mentioned in Setion 3.

The FaCT system inludes an optimised implementation of a shema satis�ability

testing algorithm for the DL SHIQ. As the extension of FaCT to inlude the ABox

satis�ability testing algorithm has not yet been ompleted, FaCT is urrently only

able to test the satis�ability of a KB hS;Ai in the ase where the A ontains a single

axiom of the form w:C (this is equivalent to testing the satis�ability of the onept C

w.r.t. the shema S). We have therefore hosen a query ontainment problem that an

be redued to a SHIQ KB satis�ability problem of this form using the methodology

desribed in Setion 3.

The DWQ shema is derived from the integration of several Extended Entity-

Relationship (EER) shemas using DLR axioms to de�ne inter-shema onstraints [5℄.

A part of the enterprise shema whih represents the global onepts and relation-

ships that are of interest in the Data Warehouse is shown in Figure 1. A total of 5

soure shemas representing (portions of) atual data soures are integrated with the

enterprise shema using DLR axioms to establish the relationship between entities

and relations in the soure and enterprise shemas (the resulting integrated shema

ontains 48 entities, 29 relations and 49 DLR axioms). For example, one of the DLR

axioms is given in Equation A1.

The FaCT system is implemented in Common Lisp, and the tests were performed

using Allegro CL Enterprise Edition 5.0 running under Red Hat Linux on a 450MHz

Pentium III with 128Mb of RAM. Exluding the time taken to load the shema from

disk (60ms), FaCT takes only 60ms to determine that C is not satis�able w.r.t. S.

Moreover, if S is �rst lassi�ed (i.e., the subsumption partial ordering of all named

onepts in S is omputed and ahed), the time taken to determine the unsatis�ability

is redued to only 20ms. The lassi�ation proedure itself takes 3.5s (312 satis�ability

tests are performed at an average of �11ms per satis�ability test), but this only needs

to be done one for a given shema.

Although the above example is relatively trivial, it still requires FaCT to perform

quite omplex reasoning, the result of whih depends on the presene of DLR inter-

shema onstraint axioms; in the absene of suh axioms (e.g., in the ase of a single

EER shema), reasoning should be even more eÆient. Of ourse deiding arbitrary

query ontainment problems would, in general, require full ABox reasoning. However,
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the above tests still give a useful indiation of the kind of performane that ould

be expeted: the algorithm for deiding SHIQ ABox satis�ability is similar to the

algorithm implemented in FaCT, and as the number of individuals generated by the

enoding of realisti query ontainment problems will be relatively small, extending

FaCT to deal with suh problems should not ompromise the demonstrated empirial

tratability. Moreover, given the kind of performane exhibited by FaCT, the limited

amount of additional non-determinism that might be introdued as a result of yles

in the ontaining query would easily be manageable.

The results presented here are also substantiate our laim that transforming DLR

satis�ability problems into SHIQ leads to greatly improved empirial tratability

with respet to the embedding tehnique desribed in Calvanese et al. [2℄. During

the DWQ projet, attempts were made to lassify the DWQ shema using a similar

embedding in the less expressive SHIF logi [15℄ implemented in an earlier version of

the FaCT system. These attempts were abandoned after several days of CPU time had

been spent in an unsuessful e�ort to solve a single satis�ability problem. This is in

ontrast to the 3.5s taken by the new SHIQ reasoner to perform the 312 satis�ability

tests required to lassify the whole shema.

5 Disussion

In this paper we have skethed how the problem of query ontainment under on-

straints an be deided using a KB (shema plus ABox) satis�ability tester for the

SHIQ desription logi, and we have indiated how a SHIQ shema satis�ability

testing algorithm an be extended to deal with an ABox. We have only talked about

onjuntive queries, but extending the proedure to deal with disjuntions of onjun-

tive queries is straightforward. The main di�erene is that, although eah onjuntive

part beomes an ABox, the objet representing the whole disjuntive query is a set

of ABoxes. This results in one more non-deterministi step, whose omplexity is de-

termined by the number of disjunts appearing in both queries. Full details an be

found in [16℄.

Although there is some loss of expressive power with respet to the framework

presented in [2℄ this seems to be aeptable when modelling lassial relational infor-

mation systems, where regular expressions are seldom used.

As we have shown in Setion 4, the FaCT implementation of the SHIQ shema

satis�ability algorithm works well with realisti problems, and given that the number

of individuals generated by query ontainment problems will be relatively small, there

is good reason to believe that a ombination of the ABox enoding and the extended

algorithm will lead to a pratial deision proedure for query ontainment problems.

Work is underway to test this hypothesis by extending the FaCT system to deal with

SHIQ ABoxes.
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