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1 Introdu
tion

Query 
ontainment under 
onstraints is the problem of determining whether the result

of one query is 
ontained in the result of another query for every database satisfying

a given set of 
onstraints (derived, for example, from a s
hema). This problem is

of parti
ular importan
e in information integration (see [7℄) and data warehousing

where, in addition to the 
onstraints derived from the sour
e s
hemas and the global

s
hema, inter-s
hema 
onstraints 
an be used to spe
ify relationships between obje
ts

in di�erent s
hemas (see [4℄).

Query 
ontainment have, e.g., been studied in [9, 19, 8, 20, 10℄. Calvanese et al.

[2℄ have established a theoreti
al framework using the logi
 DLR,

1

presented several

(un)de
idability results, and des
ribed a method for solving the de
idable 
ases using

an embedding in the propositional dynami
 logi
 CPDL

g

[13, 12℄. The importan
e of

this framework is due to the high expressive power of DLR, whi
h allows Extended

Entity-Relationship (EER) s
hemas and inter-s
hema 
onstraints to be 
aptured. For

example, Figure 1 shows a part of an EER-s
hema from a 
ase study undertaken as

part of the Esprit DWQ proje
t [5, 4℄. Besides 
ardinality restri
tions and disjointness

assertions (no entity is both a person and a 
ompany), we 
an use DLR axioms to

expli
itly axiomatise properties of entities and relations that 
annot be expressed in

a standard ER s
hema.

However, the embedding te
hnique does not lead dire
tly to a pra
ti
al de
ision

pro
edure as there is no (known) implementation of a CPDL

g

reasoner. Moreover,

even if su
h an implementation were to exist, similar embedding te
hniques [11℄ have

resulted in severe tra
tability problems when used, for example, to embed the SHIF

des
ription logi
 in SHF by eliminating inverse roles [14℄.

1

Set semanti
s is assumed in this framework.
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Figure 1: A fragment of the DWQ enterprise s
hema

In this paper we present a pra
ti
al de
ision pro
edure for the 
ase where nei-

ther the queries nor the 
onstraints 
ontain regular expressions. This represents a

restri
tion with respe
t to the framework des
ribed in [2℄, where it was shown that

the problem is still de
idable if regular expressions are allowed in the s
hema and the

(possibly) 
ontaining query, but this seems to be a

eptable when modelling 
lassi-


al relational information systems, where regular expressions are seldom used [5, 4℄.

When ex
luding regular expressions, 
onstraints imposed by EER s
hemas 
an still

be 
aptured, so the restri
tion (to 
ontain no regular expressions) is only relevant to

inter-s
hema 
onstraints. Hen
e, the use of DLR in both s
hema and queries still

allows for relatively expressive queries, and by staying within a stri
tly �rst order

setting we are able to use a de
ision pro
edure that has demonstrated good empiri
al

tra
tability.

The pro
edure is based on the method des
ribed in [2℄, but extends DLR by

de�ning an ABox, i.e., a set of axioms that assert fa
ts about named individuals and

tuples of named individuals (see [3℄). This leads to a mu
h more natural en
oding

of queries (there is a dire
t 
orresponden
e between variables and individuals), and

allows the problem to be redu
ed to that of determining the satis�ability of a DLR

knowledge base (KB), i.e., a 
ombined s
hema and ABox. This problem 
an in turn

be redu
ed to a KB satis�ability problem in the SHIQ des
ription logi
, with n-ary

relations redu
ed to binary ones by rei�
ation. In [20℄, a similar approa
h is presented.

However, the underlying des
ription logi
 (ALCNR) is less expressive than DLR and

SHIQ (for example, it is not able to 
apture Entity-Relationship s
hemas).

We have good reasons to believe that our approa
h represents a pra
ti
al solution.

In the FaCT system [14℄, we already have an (optimised) implementation of the de
i-

sion pro
edure for SHIQ s
hema satis�ability des
ribed in [17℄, and using FaCT we
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have been able to reason very eÆ
iently with a realisti
 s
hema derived from the in-

tegration of several EER-s
hemas using DLR inter-s
hema 
onstraints. The s
hemas

and 
onstraints were taken from a 
ase study undertaken as part of the Esprit DWQ

proje
t [5, 4℄. We have already shown (in [18℄) how the SHIQ algorithm implemented

in the FaCT system 
an be extended to deal with ABox axioms, and in Se
tion 4 we

use FaCT to demonstrate the empiri
al tra
tability of a simple query 
ontainment

problem with respe
t to the integrated DWQ s
hema. As the number of individuals

generated by the en
oding of realisti
 query 
ontainment problems will be relatively

small (i.e., equal to the number of variables in the queries), the extension to deal with

arbitrary ABox axioms (and thus arbitrary query 
ontainment problems) should not


ompromise this empiri
al tra
tability.

Due to spa
e limitations, most details and proofs are either omitted or given only

as outlines in this paper. For full details, please refer to [16℄ .

2 Preliminaries

The Logi
 DLR: We will begin with DLR as it is used in the de�nition of both

s
hemas and queries. DLR is a des
ription logi
 (DL) extended with the ability to

des
ribe relations of any arity. It was �rst introdu
ed in [6℄.

De�nition 2.1 Given a set of atomi
 
on
epts NC and a set of atomi
 relations NR,

every C 2 NC is a 
on
ept and every R 2 NR is a relation, with every R having an

asso
iated arity. If C;D are 
on
epts, R;S are relations of arity n, i is an integer

1 6 i 6 n, and k is a non-negative integer, then

>, :C, C uD, 9[$i℄R, (� k[$i℄R) are DLR 
on
epts, and

>

n

, :R, R u S, ($i=n : C) are DLR relations with arity n.

Relation expressions must be well-typed in the sense that only relations with the same

arity 
an be 
onjoined, and in 
onstru
ts like 9[$i℄R the value of i must be less than

or equal to R's arity.

A DLR s
hema S is a set of axioms of the form C vD and R v S, where C;D

are DLR 
on
epts and R;S are DLR relations of the same arity.

Given a set of individuals NI, a DLR ABox A is a set of axioms of the form w:C

and ~w:R, where C is a 
on
ept, R is a relation of arity n, w is an individual and ~w is

an n-tuple hw

1

; : : : ; w

n

i su
h that w

1

; : : : ; w

n

are individuals.

The semanti
s of DLR is given in terms of interpretations I = (�

I

; �

I

), where

�

I

is the domain (a non-empty set), and �

I

is an interpretation fun
tion that maps

every 
on
ept to a subset of �

I

, every n-ary relation to a subset of (�

I

)

n

, and every

individual to an element in �

I

su
h that the following equations are satis�ed (\℄"

denotes set 
ardinality).
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= d
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I

= f(d

1

; : : : ; d

n
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n

I

j d

i

2 C

I

g

Note that >

n

does not need to be interpreted as the set of all tuples of arity n,

but only as a subset of them, and that the negation of a relation R with arity n is

relative to >

n

.

An interpretation I satis�es an axiom C vD (R v S, w:C, or ~w:R) i� C

I

� D

I

(R

I

� S

I

, w

I

2 C

I

, or ~w

I

2 R

I

). An interpretation I satis�es a s
hema S (an

ABox A) i� I satis�es every axiom in S (in A).

A knowledge base (KB) K is a pair hS;Ai, where S is a s
hema and A is an ABox.

An interpretation I satis�es a KB K i� it satis�es both S and A.

If an interpretation I satis�es a 
on
ept, axiom, s
hema, or ABox X, then we say

that I is a model of X, 
all X satis�able, and write I j= X.

De�nition 2.2 If K is a KB, I is a model of K, and A is an ABox, then I

0

is 
alled

an extension of I to A i� I

0

satis�es A, �

I

= �

I

0

, and all 
on
epts, relations, and

individuals o

uring in K are interpreted identi
ally by I and I

0

.

Given two ABoxes A;A

0

and a s
hema S, A is in
luded in A

0

w.r.t. S (written

hS;Aij�A

0

) i� every model I of hS;Ai 
an be extended to A

0

.

For example, translating the EER-s
hema from Figure 1 to DLR axioms yields,

besides others, the following axioms (where we use C _=D as an abbreviation for C v D

and D v C):

Customer _= Company t Person

Company _= Customer u :Person

Tele
om-
ompany v Company u 9[$1℄
ontra
t-
ompany


ontra
t-
ompany _= 9[$1℄Contra
t u 9[$2℄Tele
om-
ompany

.

.

.

Moreover, one of the DLR axioms de�ning the relationship between the enterprise

s
hema and the entity \Business-Customer" in a 
ertain sour
e s
hema des
ribing

business 
ontra
ts is

Business-Customer v (Company u 9[$1℄(agreement u

($2=3 : (Contra
t u 9[$1℄(
ontra
t-
ompany u

($2=2 : Tele
om-
ompany)))))):

(A1)

This axiom states, roughly speaking, that a Business-Customer is a kind of Company

that has an agreement where the 
ontra
t is with a Tele
om-
ompany.
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Queries: In this paper we will fo
us on 
onjun
tive queries (see [1, 
hap. 4℄). A


onjun
tive query q is an expression

q(~x) term

1

(~x; ~y;~
) ^ : : : ^ term

n

(~x; ~y;~
)

where ~x, ~y, and ~
 are tuples of distinguished variables, variables, and 
onstants, re-

spe
tively (distinguished variables appear in the answer, \ordinary" variables are used

only in the query expression, and 
onstants are �xed values). Ea
h term term

i

(~x; ~y;~
)

is 
alled an atom in q and is in one of the forms C(w) or R(~w), where w (resp. ~w) is a

variable or 
onstant (resp. tuple of variables and 
onstants) in ~x, ~y or ~
, C is a DLR


on
ept, and R is a DLR relation.

2

Continuing the tele
om example, a query designed to return those 
ompanies that

have an agreement on an sms servi
e that they provide themselves is:

q(x) agreement(x; y; sms) ^ 
ontra
t-
ompany(y; x)

This query 
ontains a distinguished variable x, one undistinguished variable y, and

the 
onstant sms.

In this framework, the evaluation q(I) of a query q with n distinguished variables

w.r.t. a DLR interpretation I (here per
eived as standard FO interpretation) is the

set of n-tuples

~

d 2 (�

I

)

n

su
h that the �rst order formula 9~y:term

1

(

~

d; ~y;~
) ^ : : : ^

term

n

(

~

d; ~y;~
) is true in I.

As usual, we require unique interpretation of 
onstants, i.e., in the following we

will only 
onsider those interpretations I with 


I

6= d

I

for any two 
onstants 
 6= d.

A query q(~x) is 
alled satis�able w.r.t a s
hema S i� there is an interpretation I with

I j= S and q(I) 6= ;. A query q

1

(~x) is 
ontained in a query q

2

(~x) w.r.t. a s
hema S

(written S j= q

1

v q

2

), i�, for every model I of S, q

1

(I) � q

2

(I). Two queries q

1

; q

2

are 
alled equivalent w.r.t. S i� S j= q

1

v q

2

and S j= q

2

v q

1

.

Again, in our running example with the s
hema from Figure 1 and axiom A1, it

is relatively easy to see that the query

q

1

(x) Business-Customer(x) (Q1)

is 
ontained in the query

q

2

(x)  agreement(x; y

1

; y

2

) ^Contra
t(y

1

) ^ Servi
e(y

2

) ^


ontra
t-
ompany(y

1

; y

3

) ^ Tele
om-
ompany(y

3

)

(Q2)

with respe
t to the DWQ s
hema S, written S j= q

1

v q

2

.

The Logi
 SHIQ: SHIQ is a standard DL, in the sense that it deals with 
on
epts

and (only) binary relations (
alled roles), but it is unusually expressive in that it sup-

ports reasoning with inverse roles, qualifying number restri
tions on roles, transitive

roles, and role in
lusion axioms.

2

The fa
t that these 
on
epts and relations 
an also appear in the s
hema is one of the distinguish-

ing features of this approa
h.
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De�nition 2.3 Given a set of atomi
 
on
epts NC and a set of atomi
 roles NR with

transitive role names NR

+

� NR, every C 2 NC is a SHIQ 
on
ept, every R 2 NR is

a role, and every R 2 NR

+

is a transitive role. If R is a role, then R

�

is also a role

(and if R 2 NR

+

then R

�

is also a transitive role). If S is a (possibly inverse) role,

C;D are 
on
epts, and k is a non-negative integer, then

>, :C, C uD, 9S:C, 6kS:C are also SHIQ 
on
epts.

The semanti
s of SHIQ is given in terms of interpretations I = (�

I

; �

I

), where �

I

is the domain (a non-empty set), and �

I

is an interpretation fun
tion that maps every


on
ept to a subset of �

I

and every role to a subset of (�

I

)

2

su
h that the following

equations are satis�ed.

>

I

= �

I

(9S:C)

I

= fd j 9d

0

:(d; d

0

) 2 S

I

and d

0

2 C

I

g

:C

I

= �

I

n C

I

(6kS:C)

I

= fd j ℄fd

0

:(d; d

0

) 2 S

I

and d

0

2 C

I

g 6 kg

(C uD)

I

= C

I

\D

I

R

I

= (R

I

)

+

for all R 2 NR

+

(R

�

)

I

= f(d

0

; d) j (d; d

0

) 2 R

I

g

SHIQ s
hemas, ABoxes, and KBs are de�ned similarly to those for DLR: if C;D

are 
on
epts, R;S are roles, and v; w are individuals, then a s
hema S 
onsists of

axioms of the form C v D and R v S, and an ABox A 
onsists of axioms of the form

w:C and hv; wi:R. Again, a KB K is a pair hS;Ai, where S is a s
hema and A is an

ABox.

The de�nitions of interpretations, satis�ability, and models also parallel those for

DLR, and there is again no unique name assumption.

Note that, in order to maintain de
idability, the roles that 
an appear in number

restri
tions are restri
ted [17℄: if a role S o

urs in a number restri
tion 6kS:C, then

neither S nor any of its subroles may be transitive (i.e., if the s
hema 
ontains a

v-path from S

0

to S, then S

0

is not transitive).

3 Determining Query Containment

In this se
tion we will des
ribe how the problem of de
iding whether one query is


ontained in another one w.r.t. a DLR s
hema 
an be redu
ed to the problem of

de
iding KB satis�ability in the SHIQ des
ription logi
. There are three steps to

this redu
tion. Firstly, the queries are transformed into DLR ABoxes A

1

and A

2

su
h that S j= q

1

v q

2

i� hS;A

1

ij�A

2

(see De�nition 2.2). Se
ondly, the ABox

in
lusion problem is transformed into one or more KB satis�ability problems. The

last step of this redu
tion is given in [16℄, where we show how a DLR KB 
an be

polynomially transformed into an equisatis�able SHIQ KB.

3.1 Transforming Query Containment into ABox In
lusion

We will �rst show how a query 
an be transformed into a 
anoni
al DLR ABox.

Su
h an ABox represents a generi
 pattern that must be mat
hed by all tuples in the

evaluation of the query, similar to the tableau queries one en
ounters in the treatment

of simple query 
ontainment for 
onjun
tive queries [1℄.
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De�nition 3.1 Let q be a 
onjun
tive query. The 
anoni
al ABox for q is de�ned by

A

q

= f~w:R j R(~w) is an atom in qg [ fw:C j C(w) is an atom in qg:

We introdu
e a new atomi
 
on
ept P

w

for every individual w in A and de�ne the


ompleted 
anoni
al ABox for q by

b

A

q

= A

q

[ fw:P

w

j w o

urs in A

q

g [ fw

i

::P

w

j

j w

i

; w

j

are 
onstants in q and i 6= jg:

The axioms w:P

w

in

b

A

q

introdu
e representative 
on
epts for ea
h individual w in

A

q

. They are used (in the axioms w

i

::P

w

j

) to ensure that individuals 
orresponding

to di�erent 
onstants in q 
annot have the same interpretation, and will also be useful

in the transformation to KB satis�ability.

By abuse of notation, we will say that an interpretation I and an assignment � of

distinguished variables, non-distinguished variables and 
onstants to elements in the

domain of I su
h that I j= �(q) de�ne a model for A

q

with the interpretation of the

individuals 
orresponding with � and the interpretation P

I

w

= fw

I

g.

We 
an use this de�nition to transform the query 
ontainment problem into a

(very similar) problem involving DLR ABoxes. We 
an assume that the names of the

non-distinguished variables in q

2

di�er from those in q

1

(arbitrary names 
an be 
hosen

without a�e
ting the evaluation of the query), and that the names of distinguished

variables and 
onstants appear in both queries (if a name is missing in one of the

queries, it 
an be simply added using a term like >(v)).

The following Theorem shows that a 
anoni
al ABox really 
aptures the stru
ture

of a query, allowing the query 
ontainment problem to be restated as an ABox in
lusion

problem.

Theorem 1 Given a s
hema S and queries q

1

and q

2

, S j= q

1

v q

2

i� hS;

b

A

q

1

ij�A

q

2

.

Before we prove Theorem 1, note that, in general, this theorem no longer holds if

we repla
e A

q

2

by

b

A

q

2

. Let S be a s
hema and q

1

; q

2

be two queries su
h that q

1

is

satis�able w.r.t. S and q

2


ontains at least one non-distinguished variable z. Then the


ompletion

b

A

q

2


ontains the assertion z:P

z

where P

z

is a new atomi
 
on
ept. Sin
e

q

1

is satis�able w.r.t. S and P

z

does not o

ur in S or q

1

, hS;

b

A

q

1

i has a model I with

P

I

z

= ;. Su
h a model I 
annot be extended to a model I

0

of

b

A

q

2

be
ause there is

no possible interpretation for z that would satisfy z

I

0

2 P

I

0

z

. Hen
e, hS;

b

A

q

1

ij6�

b

A

q

2

regardless of whether S j= q

1

v q

2

holds or not. In the next se
tion we will see how to

deal with the individuals in A

q

2


orresponding to non-distinguished variables without

the introdu
tion of new representative 
on
epts.

Proof of Theorem 1: For the if dire
tion, assume S 6j= q

1

v q

2

. Then there

exists a model I of S and a tuple (d

1

; : : : ; d

n

) 2 (�

I

)

n

su
h that (d

1

; : : : ; d

n

) 2 q

1

(I)

and (d

1

; : : : ; d

n

) 62 q

2

(I). I and the assignment of variables leading to (d

1

; : : : ; d

n

)

de�ne a model for

b

A

q

1

. If �

I


ould be extended to satisfy A

q

2

, then the extension

would 
orrespond to an assignment of the non-distinguished variables in q

2

su
h that

(d

1

; : : : ; d

n

) 2 q

2

(I), thus 
ontradi
ting the assumption.

For the only if dire
tion, assume there is a model I of both S and

b

A

q

1

that 
annot

be extended to a model of A

q

2

. Hen
e there is a tuple (d

1

; : : : ; d

n

) 2 q

1

(I) and a
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orresponding assignment of variables that de�ne I. If there is an assignment of the

non-distinguished variables in q

2

su
h that (d

1

; : : : ; d

n

) 2 q

2

(I), then this assignment

would de�ne the extension of I su
h that A

q

2

is also satis�ed.

3.2 Transforming ABox In
lusion into ABox Satis�ability

Next, we will show how to transform the ABox in
lusion problem into one or more

KB satis�ability problems. In order to do this, there are two main diÆ
ulties that

must be over
ome. The �rst is that, in order to transform in
lusion into satis�ability,

we would like to be able to \negate" axioms. This is easy for axioms of the form

w:C, be
ause an interpretation satis�es w::C i� it does not satisfy w:C. However, we


annot deal with axioms of the form ~w:R in this way, be
ause DLR only has a weak

form of negation for relations relative to >

n

. Our solution is to transform all axioms

in A

q

2

into the form w:C.

The se
ond diÆ
ulty is that A

q

2

may 
ontain individuals 
orresponding to non-

distinguished variables in q

2

(given the symmetry between queries and ABoxes, we

will refer to them from now on as non-distinguished individuals). These individuals

introdu
e an extra level of quanti�
ation that we 
annot deal with using our standard

reasoning pro
edures: hS;

b

A

q

1

ij�A

q

2

i� for all models I of hS;

b

A

q

1

i there exists some

extension of I to A

q

2

. We deal with this problem by eliminating the non-distinguished

individuals from A

q

2

.

We will begin by exploiting some general properties of ABoxes that allow us to


ompa
t A

q

2

so that it 
ontains only one axiom ~w:R for ea
h tuple ~w, and one axiom

w:C for ea
h individual w that is not an element in any tuple. It is obvious from the

semanti
s that we 
an 
ombine all ABox axioms relating to the same individual or

tuple: I j= fw:C;w:Dg (resp. f~w:R; ~w:Sg) i� I j= fw:(C uD)g (resp. f~w:(R u S)g).

The following lemma shows that we 
an also absorb w

i

:C into ~w:R when w

i

is an

element of ~w.

Lemma 1 Let A be a DLR ABox with fw

i

:C; ~w:Rg � A, where w

i

is the ith element

in ~w. Then I j= A i� I j= f~w:(R u $i : C)g [ A n fw

i

:C; ~w:Rg.

Proof: From the semanti
s, if ~w

I

2 (R u $i : C)

I

, then ~w

I

2 R

I

and w

I

i

2 C

I

, and

if w

I

i

2 C

I

and ~w

I

2 R

I

, then ~w

I

2 (R u $i : C)

I

.

The ABox resulting from exhaustive appli
ation of Lemma 1 
an be represented as

a graph, with a node for ea
h tuple, a node for ea
h individual, and edges 
onne
ting

tuples with the individuals that 
ompose them. The graph will 
onsist of one or more


onne
ted 
omponents, where ea
h 
omponent is either a single individual (represent-

ing an axiom w:C, where w is not an element in any tuple) or a set of tuples linked

by 
ommon elements (representing axioms of the form ~w:R). Two distin
t 
onne
ted


omponents do not have any individuals in 
ommon, hen
e we 
an deal independently

with the in
lusion problem for ea
h 
onne
ted set of axioms: hS;Aij�A

0

i� hS;Aij�G

for every maximal 
onne
ted set of axioms G � A

0

.

Returning to our original problem, we will now show how we 
an 
ollapse a 
on-

ne
ted 
omponent G by a graph traversal into a single axiom of the form w:C, where

w is an element of a tuple o

urring in G (an arbitrarily 
hosen \root" individual),
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and C is a 
on
ept that des
ribes G from the point of view of w. An example for this

pro
ess will be given later in this se
tion.

This 
ollapsing would be easy if we were able to refer to individuals in C (i.e.,

if our logi
 in
luded nominals [21℄), whi
h is not the 
ase. As we will see, it is

suÆ
ient to refer to the distinguished individuals w

i

in G (whi
h also o

ur in

b

A

q

1

) by

their representative 
on
epts P

w

i

. For non-distinguished individuals, things are more


ompli
ated.

� For those non-distinguished individuals z

i

that are en
ountered only on
e during

the traversal and hen
e only have to be referred to on
e in the 
ollapsed axiom

w:C, we will use > as their representative 
on
ept P

z

i

.

� Those non-distinguished individuals z

i

that are en
ountered more than on
e

during the traversal will have to be referred to at least twi
e. For them we use

the representative 
on
ept P

w

j

for some individual w

j

o

uring in

b

A

q

1

.

The use of > and the representative 
on
epts P

w

j

to refer to the non-distinguished

individuals z

i

in G 
an be informally justi�ed as follows.

3

When an interpretation I

is extended to G, z

i


an be interpreted as any element in �

I

(= >

I

), and when z

i

is

referred to only on
e in w:C there is no other 
onstraint on its interpretation. When

z

i

is referred to more than on
e in w:C, we 
annot use > as, although the extension

of I 
an still interpret z

i

as any element, we must be sure that we are referring to the

same element in every 
ase. However, due to the way we will 
onstru
t w:C, z

i

will

only be referred to more than on
e if it o

urs in a 
y
le, and z

I

0

i

must then be in a


orresponding 
y
le in any model I

0

of G. If hS;Aij�G, then every model I of hS;Ai

must 
ontain su
h a 
y
le (extending I to G 
annot introdu
e a 
y
le) and, due to

the properties of DLR, this 
an only be guaranteed if the 
y
le is expli
itly asserted

in the axioms of

b

A

q

1

. We 
an therefore assume that z

i

has the same interpretation as

one of the w

j

in

b

A

q

1

, and we 
an use P

w

i

to refer to it. Unfortunately, at this time

of the redu
tion, it is impossible to determine whi
h P

w

j

is the appropriate 
hoi
e for

any su
h z

i

, and we have to rely on non-deterministi
 guessing.

Note that guessing a P

w

i

for ea
h su
h z

i

adds non-determinism to the pro
e-

dure, whi
h has to be dealt with in a deterministi
 implementation. This should be

manageable as the number of su
h z

i

will typi
ally be very small.

4

On the other

hand, the apparent requirement for advan
ed knowledge of how many times the z

i

will be referred to in the 
ollapsed axiom w:C is not a problem: in pra
ti
e we will

use \pla
e-holder" 
on
epts, and make the appropriate substitutions after 
ompleting

the 
ollapsing pro
edure.

Interestingly, also in [10℄, 
y
les in queries are identi�ed as a main 
ause for 
om-

plexity. There it is shown that query 
ontainment without 
onstraints is de
idable in

polynomial time for a
y
li
 queries whereas the problem for possibly 
y
li
 queries is

NP-
omplete [9℄.

3

For full details, the reader is again referred to [16℄.

4

This represents a useful re�nement over the pro
edure des
ribed in [2℄, where all z

i

that o

ur

in 
y
les are non-deterministi
ally repla
ed with one of the w

i

, regardless of whether or not they are

used to enfor
e a 
o-referen
e.
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The following lemma shows how we 
an use the representative 
on
epts to trans-

form an axiom of the form ~w:R into an axiom of the form w

i

:C.

Lemma 2 If S is a s
hema,

b

A is a 
ompleted 
anoni
al ABox and A

0

is an ABox with

~w:R 2 A

0

, then hS;

b

Aij�A

0

i� hS;

b

Aij�(fw

i

:Cg [ A

0

n f~w:Rg), where ~w = hw

1

; : : : ; w

n

i,

w

i

is the ith element in ~w, C is the 
on
ept

9[$i℄(R u

l

16j6n:j 6=i

($j=n : P

w

j

));

and P

w

j

is the appropriate 
on
ept for referring to w

j

.

Proof (sket
h): For the only if dire
tion, it is easy to see that, if I j= hS;

b

A

q

1

i, and

I

0

is an extension of I that satis�es ~w:R, then I

0

also satis�es w

i

:C.

The 
onverse dire
tion is more 
ompli
ated, and exploits the fa
t that, for every

model I of hS;

b

A

q

1

i, there is a similar model I

0

in whi
h every representative 
on
ept

P

w

i

is interpreted as fw

I

0

i

g. If I 
annot be extended to satisfy ~w:R, then neither 
an

I

0

, and, given the interpretations of the P

w

i

, it is possible to show that I

0


annot be

extended to satisfy w

i

:C either.

All that now remains is to 
hoose the order in whi
h we apply the transformations

from Lemma 1 and 2 to the axioms in G, so that, whenever we use Lemma 2 to

transform ~w:R into w

i

:C, we 
an then use Lemma 1 to absorb w

i

:C into another

axiom ~v:R, where w

i

is an element of ~v. We 
an do this using a re
ursive traversal

of the graphi
al representation of G (a similar te
hnique is used in [2℄ to transform

queries into 
on
epts). A traversal starts at an individual node w (the \root") and

pro
eeds as follows.

� At an individual node w

i

, the node is �rst marked as visited. Then, while there

remains an unmarked tuple node 
onne
ted to w

i

, one of these, ~w, is sele
ted,

visited, and the axiom ~w:R transformed into an axiom w

i

:C. Finally, any axioms

w

i

:C

1

; : : : ; w

i

:C

n

resulting from these transformations are merged into a single

axiom w

i

:(C

1

u : : : uC

n

).

� At a tuple node ~w, the node is �rst marked as visited. Then, while there remains

an unmarked individual node 
onne
ted to ~w, one of these, w

i

, is sele
ted,

visited, and any axiom w

i

:C that results from the visit is merged into the axiom

~w:R using Lemma 1.

Note that the 
orre
tness of the 
ollapsing pro
edure does not depend on the

traversal (whose purpose is simply to 
hoose a suitable ordering), but only on the

individual transformations.

Having 
ollapsed G, we �nally have a problem that we 
an de
ide using KB satis-

�ability:

Lemma 3 If S is a s
hema and

b

A is a 
ompleted 
anoni
al ABox, then hS;

b

Aij�fw:Cg

i� w is an individual in

b

A and hS; (

b

A [ fw::Cg)i is not satis�able, or w is not an

individual in

b

A and h(S [ f> v :Cg);

b

Ai is not satis�able.
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Proof (sket
h): If w is an individual in

b

A, hS;

b

Aij�fw:Cg implies that every model

I of hS;

b

Ai must also satisfy w:C, and this is true i� I does not satisfy w::C. In the


ase where w is not an individual in

b

A, a model I of hS;

b

Ai 
an be extended to fw:Cg

i� C

I

6= ;, whi
h is true i� �

I

* (:C)

I

.

In our running example, Query Q1 and Query Q2 are transformed into the follow-

ing DLR ABoxes

b

A

q

1

= fx:Business-Customer; x:P

x

g

A

q

2

= fhx; y

1

; y

2

i:agreement; y

1

:Contra
t; y

2

:Servi
e;

hy

1

; y

3

i:
ontra
t-
ompany; y

3

:Tele
om-
ompanyg;

In the next step, A

q

2

is 
ollapsed to fx:C

0

q

2

g, where

C

0

q

2

= 9[$1℄(agreement u ($2=3 : Contra
t) u ($3=3 : Servi
e) u

($2=3 : (9[$1℄
ontra
t-
ompany u ($2=2 : Tele
om-
ompany)))):

Now we 
an then determine if the query 
ontainment S j= q

1

v q

2

holds by testing the

satis�ability of the KB hS;Ai, where A = fx:Business-Customer; x:P

x

; x::C

0

q

2

g. This

is equivalent to testing the satis�ability of the 
on
ept Business-CustomeruP

x

u:C

0

q

2

w.r.t. S.

Summing up, in this se
tion we have shown:

Theorem 2 For a DLR KB K = hS;Ai and a DLR ABox A

0

, the problem of de-


iding whether A is in
luded in A

0

w.r.t. S 
an be redu
ed to (possibly several) DLR

ABox satis�ability problems.

Con
erning the pra
ti
ability of this redu
tion, it is easy to see that, for any �xed


hoi
e of substitutions for the non-distinguished individuals in G, the redu
tion from

Theorem 2 
an be 
omputed in polynomial time. More problemati
ally, it is ne
essary

to 
onsider all possible mappings from the set Z of non-distinguished individuals that

o

ur more than on
e in the 
ollapsed G to the set W of individuals that o

ur in

b

A

1

,

of whi
h there are jW j

jZj

many. However, both these sets will typi
ally be quite small,

espe
ially Z whi
h will 
onsist only of those non-distinguished individuals that o

ur

in a 
y
le in G and are a
tually used to enfor
e a 
o-referen
e (i.e., to \
lose" the 
y
le).

Therefore, we do not believe that this additional non-determinism 
ompromises the

feasibility of our approa
h.

Together with the redu
tion of satis�ability of DLR-ABoxes to satis�ability of

SHIQ-knowledge bases given in [16℄, we now have the ma
hinery to transform a

query 
ontainment problem into one or more SHIQ s
hema and ABox satis�ability

problems. In the FaCT system we already have a de
ision pro
edure for SHIQ s
hema

satis�ability, and this is 
urrently being extended to deal with ABox axioms [18℄.

We have already argued why we believe our approa
h to be feasible. It should

also be mentioned that our approa
h mat
hes the known worst-
ase 
omplexity of

the problem, whi
h was determined as ExpTime-
omplete in [2℄. Satis�ability of a

SHIQ-KB 
an be determined in ExpTime.

5

All redu
tion steps 
an be 
omputed in

5

This does not follow from the algorithm presented in [18℄, whi
h fo
uses on feasibility rather than

worst-
ase 
omplexity. It 
an be shown using a pre
ompletion strategy similar to the one used in [22℄

with a 
ut-rule to take 
are of inverese roles together with the ExpTime-
ompleteness of CIN [12℄.
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deterministi
 polynomial time, with the ex
eption of the redu
tion used in Theorem 2,

whi
h requires the 
onsideration of exponentially many mappings. Yet, for every �xed

mapping, the redu
tion is polynomial, whi
h yields that our approa
h de
ides query


ontainment in ExpTime. A feasible algorithm to de
ide satis�ability of SHIQ-KBs

is given in [18℄.

4 The FaCT System

It is 
laimed in Se
tion 1 that one of the main bene�ts of our approa
h is that it

leads to a pra
ti
al solution to the query 
ontainment problem. In this se
tion we will

substantiate this 
laim by presenting the results of a simple experiment in whi
h the

FaCT system is used to de
ide the query 
ontainment problem with respe
t to the

DWQ s
hema mentioned in Se
tion 3.

The FaCT system in
ludes an optimised implementation of a s
hema satis�ability

testing algorithm for the DL SHIQ. As the extension of FaCT to in
lude the ABox

satis�ability testing algorithm has not yet been 
ompleted, FaCT is 
urrently only

able to test the satis�ability of a KB hS;Ai in the 
ase where the A 
ontains a single

axiom of the form w:C (this is equivalent to testing the satis�ability of the 
on
ept C

w.r.t. the s
hema S). We have therefore 
hosen a query 
ontainment problem that 
an

be redu
ed to a SHIQ KB satis�ability problem of this form using the methodology

des
ribed in Se
tion 3.

The DWQ s
hema is derived from the integration of several Extended Entity-

Relationship (EER) s
hemas using DLR axioms to de�ne inter-s
hema 
onstraints [5℄.

A part of the enterprise s
hema whi
h represents the global 
on
epts and relation-

ships that are of interest in the Data Warehouse is shown in Figure 1. A total of 5

sour
e s
hemas representing (portions of) a
tual data sour
es are integrated with the

enterprise s
hema using DLR axioms to establish the relationship between entities

and relations in the sour
e and enterprise s
hemas (the resulting integrated s
hema


ontains 48 entities, 29 relations and 49 DLR axioms). For example, one of the DLR

axioms is given in Equation A1.

The FaCT system is implemented in Common Lisp, and the tests were performed

using Allegro CL Enterprise Edition 5.0 running under Red Hat Linux on a 450MHz

Pentium III with 128Mb of RAM. Ex
luding the time taken to load the s
hema from

disk (60ms), FaCT takes only 60ms to determine that C is not satis�able w.r.t. S.

Moreover, if S is �rst 
lassi�ed (i.e., the subsumption partial ordering of all named


on
epts in S is 
omputed and 
a
hed), the time taken to determine the unsatis�ability

is redu
ed to only 20ms. The 
lassi�
ation pro
edure itself takes 3.5s (312 satis�ability

tests are performed at an average of �11ms per satis�ability test), but this only needs

to be done on
e for a given s
hema.

Although the above example is relatively trivial, it still requires FaCT to perform

quite 
omplex reasoning, the result of whi
h depends on the presen
e of DLR inter-

s
hema 
onstraint axioms; in the absen
e of su
h axioms (e.g., in the 
ase of a single

EER s
hema), reasoning should be even more eÆ
ient. Of 
ourse de
iding arbitrary

query 
ontainment problems would, in general, require full ABox reasoning. However,
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the above tests still give a useful indi
ation of the kind of performan
e that 
ould

be expe
ted: the algorithm for de
iding SHIQ ABox satis�ability is similar to the

algorithm implemented in FaCT, and as the number of individuals generated by the

en
oding of realisti
 query 
ontainment problems will be relatively small, extending

FaCT to deal with su
h problems should not 
ompromise the demonstrated empiri
al

tra
tability. Moreover, given the kind of performan
e exhibited by FaCT, the limited

amount of additional non-determinism that might be introdu
ed as a result of 
y
les

in the 
ontaining query would easily be manageable.

The results presented here are also substantiate our 
laim that transforming DLR

satis�ability problems into SHIQ leads to greatly improved empiri
al tra
tability

with respe
t to the embedding te
hnique des
ribed in Calvanese et al. [2℄. During

the DWQ proje
t, attempts were made to 
lassify the DWQ s
hema using a similar

embedding in the less expressive SHIF logi
 [15℄ implemented in an earlier version of

the FaCT system. These attempts were abandoned after several days of CPU time had

been spent in an unsu

essful e�ort to solve a single satis�ability problem. This is in


ontrast to the 3.5s taken by the new SHIQ reasoner to perform the 312 satis�ability

tests required to 
lassify the whole s
hema.

5 Dis
ussion

In this paper we have sket
hed how the problem of query 
ontainment under 
on-

straints 
an be de
ided using a KB (s
hema plus ABox) satis�ability tester for the

SHIQ des
ription logi
, and we have indi
ated how a SHIQ s
hema satis�ability

testing algorithm 
an be extended to deal with an ABox. We have only talked about


onjun
tive queries, but extending the pro
edure to deal with disjun
tions of 
onjun
-

tive queries is straightforward. The main di�eren
e is that, although ea
h 
onjun
tive

part be
omes an ABox, the obje
t representing the whole disjun
tive query is a set

of ABoxes. This results in one more non-deterministi
 step, whose 
omplexity is de-

termined by the number of disjun
ts appearing in both queries. Full details 
an be

found in [16℄.

Although there is some loss of expressive power with respe
t to the framework

presented in [2℄ this seems to be a

eptable when modelling 
lassi
al relational infor-

mation systems, where regular expressions are seldom used.

As we have shown in Se
tion 4, the FaCT implementation of the SHIQ s
hema

satis�ability algorithm works well with realisti
 problems, and given that the number

of individuals generated by query 
ontainment problems will be relatively small, there

is good reason to believe that a 
ombination of the ABox en
oding and the extended

algorithm will lead to a pra
ti
al de
ision pro
edure for query 
ontainment problems.

Work is underway to test this hypothesis by extending the FaCT system to deal with

SHIQ ABoxes.

Referen
es

[1℄ S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.

71



[2℄ D. Calvanese, G. De Gia
omo, and M. Lenzerini. On the de
idability of query 
ontainment

under 
onstraints. In Pro
. PODS-98, 1998.

[3℄ D. Calvanese, G. De Gia
omo, and M. Lenzerini. Answering queries using views in des
ription

logi
s. In E. Fran
oni and M. Kifer, editors, Pro
. of KRDB'96.

[4℄ D. Calvanese, G. De Gia
omo, M. Lenzerini, D. Nardi, and R. Rosati. Sour
e integration in

data warehousing. In Pro
. of DEXA-98. IEEE Computer So
iety Press, 1998.

[5℄ D. Calvanese, G. De Gia
omo, M. Lenzerini, D. Nardi, and R. Rosati. Use of the data re
on
il-

iation tool at tele
om italia. DWQ deliverable D.4.3, Foundations of Data Warehouse Quality

(DWQ), 1999.

[6℄ D. Calvanese, G. De Gia
omo, M. Lenzerini, D. Nardi, and R. Rosati. Des
ription logi
 frame-

work for information integration. In A. G. Cohn, L. S
hubert, and S. C. Shapiro, editors, Pro
.

of KR-98, 1998. Morgan Kaufmann Publishers.

[7℄ T. Catar
i and M. Lenzerini. Representing and using inters
hema knowledge in 
ooperative

information systems. Journal for Intelligent and Cooperative Information Systems, 2(4):, 1993.

[8℄ Edward P. F. Chan. Containment and minimization of positive 
onjun
tive queries in OODB's.

In ACM, editor, Pro
. of PODS'92, 1992. ACM Press.

[9℄ A. K. Chandra and P. M. Merlin. Optimal implementation of 
onjun
tive queries in relational

databases. In Pro
. of STOC'77, 1977. ACM Press.

[10℄ C. Chekuri and A. Rajaraman. Conjun
tive query 
ontainment revisited. In Pro
. of ICDT-97,

LNCS 1186. Springer-Verlag, 1997.

[11℄ G. De Gia
omo. De
idability of Class-Based Knowledge Representation Formalisms. PhD thesis,

Dipartimento di Informati
a e Sistemisti
a, Universit�a di Roma \La Sapienza", 1995.

[12℄ G. De Gia
omo and M. Lenzerini. TBox and ABox reasoning in expressive des
ription logi
s. In

L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Pro
. of KR'96. Morgan Kaufmann Publishers,

1996.

[13℄ M. J. Fis
her and R. E. Ladner. Propositional dynami
 logi
 of regular programs. Journal of

Computer and System S
ien
es, 18:, 1979.

[14℄ I. Horro
ks. FaCT and iFaCT. In P. Lambrix, A. Borgida, M. Lenzerini, R. M�oller, and

P. Patel-S
hneider, editors, Pro
. of DL'99, 1999.

[15℄ I. Horro
ks and U. Sattler. A des
ription logi
 with transitive and inverse roles and role hierar-


hies. Journal of Logi
 and Computation, 9(3):, 1999.

[16℄ I. Horro
ks, U. Sattler, S. Tessaris, and S. Tobies. Query 
ontainment using a DLR ABox.

LTCS-Report 99-15, LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen, Germany, 1999. See

http://www-lti.informatik.rwth-aa
hen.de/Fors
hung/Reports.html.

[17℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for expressive des
ription logi
s. In

Pro
. of LPAR'99, LNAI 1705. Springer-Verlag, 1999.

[18℄ I. Horro
ks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Des
ription Logi


SHIQ. In Pro
. of the 17th Int. Conf. on Automated Dedu
tion (CADE-17), 2000. To appear.

[19℄ D. S. Johnson and A. Klug. Testing 
ontainment of 
onjun
tive queries under fun
tional and

in
lusion dependen
ies. Journal of Computer and System S
ien
es, 28(1):, 1984.

[20℄ A. Y. Levy and M.-C. Rousset. CARIN: A representation language 
ombining horn rules and

des
ription logi
s. In W. Wahlster, editor, Pro
. of ECAI'96. John Wiley & Sons Ltd., 1996.

[21℄ A. S
haerf. Reasoning with individuals in 
on
ept languages. Data and Knowledge Engineering,

13(2):141{176, 1994.

[22℄ S. Tessaris and G. Gough. Abox reasoning with transitive roles and axioms. In Pro
. of

DL'99. Available from http://SunSITE.Informatik.RWTH-Aa
hen.DE/Publi
ations/CEUR-

WS/Vol-22/.

72


