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Abstract. We present a procedure for deciding (database) query containment
under constraints. The technique is to extend the logicDLR with an ABox, and
to transform query subsumption problems intoDLR ABox satisfiability prob-
lems. Such problems can then be decided, via a reification transformation, using
a highly optimised reasoner for theSHIQ description logic. We use a simple ex-
ample to support our hypothesis that this procedure will work well with realistic
problems.

1 Introduction

Query containment under constraints is the problem of determining whether the result
of one query is contained in the result of another query for every database satisfying a
given set of constraints (derived, for example, from a schema). This problem is of par-
ticular importance in information integration (see [10]) and data warehousing where,
in addition to the constraints derived from the source schemas and the global schema,
inter-schema constraints can be used to specify relationships between objects in differ-
ent schemas (see [6]).

In [12], query containment without constraints was shown tobe NP-complete, and a
subsequent analysis identified cycles in queries as the mainsource of complexity [13].
Query containment under different forms of constraints have, e.g., been studied in [23]
(containment w.r.t. functional and inclusion dependencies) and [11, 24] (containment
w.r.t. is-ahierarchies).

Calvanese et al. [4] have established a theoretical framework using the logicDLR,1

presented several (un)decidability results, and described a method for solving the de-
cidable cases using an embedding in the propositional dynamic logic CPDL

g

[17, 15].
The importance of this framework is due to the high expressive power ofDLR, which
allows Extended Entity-Relationship (EER) schemas and inter-schema constraints to be
captured. However, the embedding technique does not lead directly to a practical deci-
sion procedure as there is no (known) implementation of a CPDL

g

reasoner. Moreover,
even if such an implementation were to exist, similar embedding techniques [14] have
resulted in severe tractability problems when used, for example, to embed theSHIF
description logic inSHF by eliminating inverse roles [18].

1 Set semantics is assumed in this framework.



In this paper we present a practical decision procedure for the case where neither
the queries nor the constraints contain regular expressions. This represents a restric-
tion with respect to the framework described in Calvanese etal., where it was shown
that the problem is still decidable if regular expressions are allowed in the schema and
the (possibly) containing query, but this seems to be acceptable when modelling clas-
sical relational information systems, where regular expressions are seldom used [7, 6].
When excluding regular expressions, constraints imposed by EER schemas can still be
captured, so the restriction (to contain no regular expressions) is only relevant to inter-
schema constraints. Hence, the use ofDLR in both schema and queries still allows for
relatively expressive queries, and by staying within a strictly first order setting we are
able to use a decision procedure that has demonstrated good empirical tractability.

The procedure is based on the method described by Calvanese et al., but extends
DLR by defining anABox, a set of axioms that assert facts about namedindividuals
and tuples of named individuals (see [5]). This leads to a much more natural encoding
of queries (there is a direct correspondence between variables and individuals), and
allows the problem to be reduced to that of determining the satisfiability of a DLR
knowledge base(KB), i.e., a combined schema and ABox. This problem can in turn
be reduced to a KB satisfiability problem in theSHIQ description logic, withn-ary
relations reduced to binary ones by reification. In [24], a similar approach is presented.
However, the underlying description logic (ALCNR) is less expressive thanDLR and
SHIQ (for example, it is not able to capture Entity-Relationshipschemas).

We have good reasons to believe that this approach represents a practical solution.
In the FaCT system [18], we already have an (optimised) implementation of the de-
cision procedure forSHIQ schema satisfiability described in [21], and using FaCT
we have been able to reason very efficiently with a realistic schema derived from the
integration of several Extended Entity-Relationship schemas usingDLR inter-schema
constraints (the schemas and constraints were taken from a case study undertaken as
part of the Esprit DWQ project [7, 6]). In Section 4, we use theFaCT system to demon-
strate the empirical tractability of a simple query containment problem with respect to
the integrated DWQ schema. FaCT’s schema satisfiability algorithm can be straight-
forwardly extended to deal with ABox axioms (and thus arbitrary query containment
problems) [22], and as the number of individuals generated by the encoding of realistic
query containment problems will be relatively small, this extension should not compro-
mise empirical tractability.

Most proofs are either omitted or given only as outlines in this paper. For full details,
please refer to [20] .

2 Preliminaries

In this section we will (briefly) define the key components of our framework, namely
the logicDLR, (conjunctive) queries, and the logicSHIQ.



2.1 The LogicDLR

We will begin withDLR as it is used in the definition of both schemas and queries.
DLR is a description logic (DL) extended with the ability to describe relations of any
arity. It was first introduced in [9].

Definition 1. Given a set of atomic concept namesNC and a set of atomic relation
namesNR, everyC 2 NC is a concept and everyR 2 NR is a relation, with everyR
having an associated arity. IfC;D are concepts,R; S are relations of arityn, i is an
integer1 6 i 6 n, andk is a non-negative integer, then

>, :C, C uD, 9[$i℄R, (� k[$i℄R) areDLR concepts, and
>

n

, :R, R u S, ($i=n : C) areDLR relationswith arity n.

Relation expressions must be well-typed in the sense that only relations with the same
arity can be conjoined, and in constructs like9[$i℄R the value ofi must be less than or
equal to the arity ofR.

The semantics ofDLR is given in terms ofinterpretationsI = (�
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Note that>
n

does not need to be interpreted as the set of all tuples of arity n, but
only as a subset of them, and that the negation of a relationR with arity n is relative to
>

n

.
In our framework, a schema consists of a set of logical inclusion axioms expressed

in DLR. These axioms could be derived from the translation intoDLR of schemas
expressed in some other data modelling formalism (such as Entity-Relationship mod-
elling [3, 8]), or could directly stem from the use ofDLR to express, for example,
inter-schema constraints to be used in data warehousing, (see [6]).

Definition 2. A DLR schemaS is a set ofaxiomsof the formC v D and R v S,
whereC;D are DLR concepts andR; S are DLR relations of the same arity; an
interpretationI satisfiesC v D iff CI

� D

I , and it satisfiesR v S iff RI

� SI . An
interpretationI satisfiesa schemaS iff I satisfies every axiom inS.

Crucially, we extendDLR to assert properties ofindividuals, names representing
single elements of the domain. AnABoxis a set of axioms asserting facts about indi-
viduals and tuples of individuals.



Definition 3. Given a set of individualsNI, aDLR ABox A is a set ofaxiomsof the
formw:C andw:R, whereC is a concept,R is a relation of arityn, w is an individual
andw is ann-tuplehw

1

; : : : ; w

n

i such thatw
1

; : : : ; w

n

are individuals. We will often
writew

i

to refer to theith element of ann-tuplew, where1 6 i 6 n.
Additionally, the interpretation function�I maps every individual to an element of

�

I and thus also tuples of individuals to tuples of elements of�

I . An interpretationI
satisfiesan axiomw:C iff wI

2 C

I , and it satisfiesan axiomw:R iff wI

2 RI . An
interpretationI satisfiesan ABoxA iff I satisfies every axiom inA.

A knowledge base(KB)K is a pairhS;Ai, whereS is a schema andA is an ABox.
An interpretationI satisfiesa KBK iff it satisfies bothS andA.

If an interpretationI satisfies a concept, axiom, schema, or ABoxX , then we say
thatI is amodelofX , callX satisfiable, and writeI j= X .

Note that it is not assumed that individuals with different names are mapped to
different elements in the domain (the so-called unique nameassumption).

Definition 4. If K is a KB, I is a model ofK, andA is an ABox, thenI 0 is called
an extensionof I to A iff I 0 satisfiesA, �I

= �

I

0

, and all concepts, relations, and
individuals occuring inK are interpreted identically byI andI 0.

Given two ABoxesA;A0 and a schemaS, A is included in A0 w.r.t. S (written
hS;Aij�A

0) iff every modelI of hS;Ai can be extended toA0.

2.2 Queries

In this paper we will focus on conjunctive queries (see [1, chap. 4]), and describe only
briefly (in Section 5) how the technique can be extended to deal with disjunctions of
conjunctive queries (for full details please refer to [20]). A conjunctive queryq is an
expression

q(x) term

1

(x;y; ) ^ : : : ^ term

n

(x;y; )

wherex, y, and are tuples ofdistinguishedvariables, variables, and constants, re-
spectively (distinguished variables appear in the answer,“ordinary” variables are used
only in the query expression, and constants are fixed values). Each termterm

i

(x;y; )

is called an atom inq and is in one of the formsC(w) or R(w), wherew (resp.w) is
a variable or constant (resp. tuple of variables and constants) inx, y or , C is aDLR
concept, andR is aDLR relation.2

For example, a query designed to return the bus number of the city buses travelling
in both directions between two stops is:

BUS(nr) bus route(nr ; stop
1

; stop

2

) ^ bus route(nr ; stop
2

; stop

1

) ^ city bus(nr)

wherenr is a distinguished variable (it appears in the answer),stop

1

andstop
2

are non-
distinguished variables, citybus is aDLR concept and busroute is aDLR relation.

2 The fact that these concepts and relations can also appear inthe schema is one of the distin-
guishing features of this approach.



In this framework, theevaluationq(I) of a queryq with n distinguished variables
w.r.t. aDLR interpretationI (here perceived as standard FO interpretation) is the set
of n-tuplesd 2 (�

I

)

n such that

I j= 9y:term

1

(d;y; ) ^ : : : ^ term

n

(d;y; ):

As usual, we require unique interpretation of constants, i.e., in the following we will
only consider those intepretationsI with I 6= d

I for any two constants 6= d. A query
q(x) is calledsatisfiablew.r.t a schemaS iff there is an interpretationI with I j= S
andq(I) 6= ;. A queryq

1

(x) is containedin a queryq
2

(x) w.r.t. a schemaS (written
S j= q

1

v q

2

), iff, for every modelI of S, q
1

(I) � q

2

(I). Two queriesq
1

; q

2

are called
equivalentw.r.t.S iff S j= q

1

v q

2

andS j= q

2

v q

1

.
For example, the schema containing the axioms

(bus routeu ($1=3 : city bus))v city busroute

city busroutev (bus routeu ($1=3 : city bus));

states that the relation citybus route contains exactly the busroute information that
concerns city buses. It is easy to see that the following CITYBUS query

CITY BUS(nr) city bus route(nr ; stop
1

; stop

2

) ^ city busroute(nr ; stop
2

; stop

1

)

is equivalent to the previous BUS query w.r.t. the given schema. In an information inte-
gration scenario, for example, this could be exploited by reformulating the BUS query
as a CITYBUS query ranging over a smaller database without any loss ofinformation.

2.3 The LogicSHIQ

SHIQ is a standard DL, in the sense that it deals with concepts and (only) binary
relations (calledroles), but it is unusually expressive in that it supports reasoning with
inverse roles, qualifying number restrictions on roles, transitive roles, and role inclusion
axioms.

Definition 5. Given a set of atomic concept namesNC and a set of atomic role names
NR with transitive role namesNR

+

� NR, everyC 2 NC is a concept, everyR 2 NR

is a role, and everyR 2 NR

+

is a transitive role. IfR is a role, thenR� is also a role
(and ifR 2 NR

+

thenR� is also a transitive role). IfS is a (possibly inverse) role,
C;D are concepts, andk is a non-negative integer, then

>, :C, C uD, 9S:C,6kS:C are alsoSHIQ concepts.

The semantics ofSHIQ is given in terms ofinterpretationsI = (�

I

; �

I

), where�I

is the domain (a non-empty set), and�I is an interpretation function that maps every
concept to a subset of�I and every role to a subset of(�I

)

2 such that the following
equations are satisfied.
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SHIQ schemas, ABoxes, and KBs are defined similarly to those forDLR: if C;D
are concepts,R;S are roles, andv; w are individuals, then a schemaS consists of
axioms of the formC v D andR v S, and an ABoxA consists of axioms of the form
w:C andhv; wi:R. Again, a KBK is a pair hS;Ai, whereS is a schema andA is an
ABox.

The definitions of interpretations, satisfiability, and models also parallel those for
DLR, and there is again no unique name assumption.

Note that, in order to maintain decidability, the roles thatcan appear in number
restrictions are restricted [21]: if a roleS occurs in a number restriction6kS:C, then
neitherS nor any of its sub roles may be transitive (i.e., if the schemacontains av-path
fromS

0 to S, thenS0 is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of deciding whether one query is
contained in another one w.r.t. aDLR schema can be reduced to the problem of de-
ciding KB satisfiability in theSHIQ description logic. There are three steps to this
reduction. Firstly, the queries are transformed intoDLR ABoxesA

1

andA
2

such that
S j= q

1

v q

2

iff hS;A
1

ij�A

2

(see Definition 4). Secondly, the ABox inclusion prob-
lem is transformed into one or more KB satisfiability problems. Finally, we show how
aDLR KB can be transformed into an equisatisfiableSHIQ KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed into acanonicalDLR ABox. Such
an ABox represents a generic pattern that must be matched by all tuples in the evaluation
of the query, similar to the tableau queries one encounters in the treatment of simple
query containment for conjunctive queries [1].

Definition 6. Let q be a conjunctive query. Thecanonical ABoxfor q is defined by

A

q

= fw:R j R(w) is an atom inqg [ fw:C j C(w) is an atom inqg:

We introduce a new atomic conceptP
w

for every individualw in A and define the
completedcanonical ABox forq by

b

A
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g [ fw
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j

j w

i

; w

j

constants inq andi 6= jg:

The axiomsw:P

w

in b

A

q

introducerepresentative conceptsfor each individualw in
A

q

. They are used (in the axiomsw
i

::P

w

j

) to ensure that individuals corresponding to
different constants inq cannot have the same interpretation, and will also be usefulin
the transformation to KB satisfiability.

By abuse of notation, we will say that an interpretationI and an assignment� of
distinguished variables, non-distinguished variables and constants to elements in the
domain ofI such thatI j= �(q) define a model forA

q

with the interpretation of the
individuals corresponding with� and the interpretationP I

w

= fw

I

g.



We can use this definition to transform the query containmentproblem into a (very
similar) problem involvingDLR ABoxes. We can assume that the names of the non-
distinguished variables inq

2

differ from those inq
1

(arbitrary names can be chosen
without affecting the evaluation of the query), and that thenames of distinguished vari-
ables and constants appear in both queries (if a name is missing in one of the queries, it
can be simply added using a term like>(v)).

The following Theorem shows that a canonical ABox really captures the structure
of a query, allowing the query containment problem to be restated as an ABox inclusion
problem.

Theorem 1 Given a schemaS and queriesq
1

andq
2

, S j= q

1

v q

2

iff hS; bA
q

1

ij�A

q

2

.

Before we prove Theorem 1, note that, in general, this theorem no longer holds if
we replaceA

q

2

by b

A

q

2

. Let S be a schema andq
1

; q

2

be two queries such thatq
1

is
satisfiable w.r.t.S andq

2

contains at least one non-distinguished variablez. Then the
completion bA

q

2

contains the assertionz:P
z

whereP
z

is a new atomic concept. Since
q

1

is satisfiable w.r.t.S andP
z

does not occur inS or q
1

, hS; bA
q

1

i has a modelI with
P

I

z

= ;. Such a modelI cannot be extended to a modelI 0 of bA
q

2

because there is
no possible interpretation forz that would satisfyzI

0

2 P

I

0

z

. Hence,hS; bA
q

1

ij6�

b

A

q

2

regardless of whetherS j= q

1

v q

2

holds or not. In the next section we will see how
to deal with the non-distinguished individuals inA

q

2

without the introduction of new
representative concepts.

PROOF OFTHEOREM 1: For the if direction, assumeS 6j= q
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a modelI of S and a tuple(d
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)
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. If �I could be extended to satisfyA
q

2

, then the extension
would correspond to an assignment of the non-distinguishedvariables inq

2

such that
(d
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) 2 q

2

(I), thus contradicting the assumption.
For the only if direction, assume there is a modelI of bothS and bA

q

1

that cannot
be extended to a model ofA

q

2

. Hence there is a tuple(d
1

; : : : ; d
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) 2 q

1

(I) and a
corresponding assignment of variables that defineI. If there is an assignment of the
non-distinguished variables inq

2

such that(d
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n

) 2 q

2

(I), then this assignment
would define the extension ofI such thatA

q

2

is also satisfied. ut

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion problem into one or more KB
satisfiability problems. In order to do this, there are two main difficulties that must be
overcome. The first is that, in order to transform inclusion into satisfiability, we would
like to be able to “negate” axioms. This is easy for axioms of the formw:C, because an
interpretation satisfiesw::C iff it does not satisfyw:C. However, we cannot deal with
axioms of the formw:R in this way, becauseDLR only has a weak form of negation
for relations relative to>

n

. Our solution is to transform all axioms inA
q

2

into the form
w:C.



The second difficulty is thatA
q

2

may contain individuals corresponding to non-
distinguished variables inq

2

(given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished individuals). These individuals
introduce an extra level of quantification that we cannot deal with using our standard
reasoning procedures:hS; bA

q

1

ij�A

q

2

iff for all modelsI of hS; bA
q

1

i there existssome
extension ofI toA

q

2

. We deal with this problem by eliminating the non-distinguished
individuals fromA

q

2

.

We will begin by exploiting some general properties of ABoxes that allow us to
compactA

q

2

so that it contains only one axiomw:R for each tuplew, and one axiom
w:C for each individualw that is not an element in any tuple. It is obvious from the
semantics that we can combine all ABox axioms relating to thesame individual or tuple:
I j= fw:C;w:Dg (resp.fw:R;w:Sg) iff I j= fw:(C uD)g (resp.fw:(R u S)g). The
following lemma shows that we can also absorbw

i

:C intow:R whenw
i

is an element
of w.

Lemma 1 LetA be aDLR ABox withfw
i

:C;w:Rg � A, wherew
i

is theith element
in w. ThenI j= A iff I j= fw:(R u $i : C)g [ A n fw

i

:C;w:Rg.

PROOF: From the semantics, ifwI

2 (Ru $i : C)

I , thenwI

2 RI andwI

i

2 C

I , and
if wI

i

2 C

I andwI

2 RI , thenwI

2 (R u $i : C)

I . ut

The ABox resulting from exhaustive application of Lemma 1 can be represented as
a graph, with a node for each tuple, a node for each individual, and edges connecting
tuples with the individuals that compose them. The graph will consist of one or more
connected components, where each component is either a single individual (represent-
ing an axiomw:C, wherew is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the formw:R). As the connected com-
ponents do not have any individuals in common, we can deal independently with the
inclusion problem for each connected set of axioms:hS;Aij�A

0 iff hS;Aij�G for ev-
ery connected set of axiomsG � A0. As an example, Figure 1 shows the graph that
corresponds to the ABoxA

q

2

from Example 1.

Returning to our original problem, we will now show how we cancollapsea con-
nected componentG by a graph traversal into a single axiom of the formw:C, wherew
is an element of a tuple occurring inG (an arbitrarily chosen “root” individual), andC
is a concept that describesG from the point of view ofw. An example for this process
will be given later in this section.

This would be easy if we were able to refer to individuals inC (i.e., if our logic
includednominals[25]), which is not the case. However, as we will see, it is sufficient
to refer to the distinguished individualsw

i

in G (which also occur inbA
q

1

) by their rep-
resentative conceptsP

w

i

. Moreover, we can refer to non-distinguished individualsz

i

by using> as their representative concept (this is only valid forz

i

that are encountered
only once during the traversal ofG, but we will see later that we can, without loss of
generality, restrict our attention to this case). Informally, the use of> as the represen-
tative concept for suchz

i

can be justified by the fact that when an interpretationI is
extended toG, z

i

can be interpreted as any element in�

I (= >I).3

3 For full details, the reader is again referred to [20].



The following lemma shows how we can use the representative concepts to trans-
form an axiom of the formw:R into an axiom of the formw

i

:C.

Lemma 2 If S is a schema,bA is a completed canonical ABox andA0 is an ABox
with w:R 2 A0, thenhS; bAij�A0 iff hS; bAij�(fw

i

:Cg [ A

0

n fw:Rg), wherew =

hw

1

; : : : ; w

n

i, w
i

is theith element inw, C is the concept

9[$i℄(R u
l

16j6n:j 6=i

($j=n : P

j

));

andP
j

is the appropriate representative concept forw

j

(> if w
j

is a non-distinguished
individual,P

w

j

otherwise).

PROOF (sketch): For the only if direction, it is easy to see that, ifI j= hS; bA
q

1

i, andI 0

is an extension ofI that satisfiesw:R, thenI 0 also satisfiesw
i

:C.
The converse direction is more complicated, and exploits the fact that, for every

modelI of hS; bA
q

1

i, there is a similar modelI 0 in which every representative concept
P

w

i

is interpreted asfwI

0

i

g. If I cannot be extended to satisfyw:R, then neither can
I

0, and, given the interpretations of theP
w

i

, it is possible to show thatI 0 cannot be
extended to satisfyw

i

:C either. ut

All that now remains is to choose the order in which we apply the transformations
from Lemma 1 and 2 to the axioms inG, so that, whenever we use Lemma 2 to trans-
form w:R into w

i

:C, we can then use Lemma 1 to absorbw
i

:C into another axiom
v:R, wherew

i

is an element ofv. We can do this using a recursive traversal of the
graphical representation ofG (a similar technique is used in [4] to transform queries
into concepts). A traversal starts at an individual nodew (the “root”) and proceeds as
follows.

– At an individual nodew
i

, the node is first marked as visited. Then, while there
remains an unmarked tuple node connected tow

i

, one of these,w, is selected,
visited, and the axiomw:R transformed into an axiomw

i

:C. Finally, any axioms
w

i

:C

1

; : : : ; w

i

:C

n

resulting from these transformations are merged into a single
axiomw

i

:(C

1

u : : : u C

n

).
– At a tuple nodew, the node is first marked as visited. Then, while there remains

an unmarked individual node connected tow, one of these,w
i

, is selected, visited,
and any axiomw

i

:C that results from the visit is merged into the axiomw:R using
Lemma 1.

Note that the correctness of the collapsing procedure does not depend on the traver-
sal (whose purpose is simply to choose a suitable ordering),but only on the individual
transformations.

Having collapsed a componentG, we finally have a problem that we can decide
using KB satisfiability:

Lemma 3 If S is a schema andbA is a completed canonical ABox, thenhS; bAij�fw:Cg

iff w is an individual in bA and hS; ( bA [ fw::Cg)i is not satisfiable, orw is not an
individual in b

A andh(S [ f> v :Cg); bAi is not satisfiable.



PROOF (sketch): Ifw is an individual in bA, hS; bAij�fw:Cg implies that every model
I of hS; bAi must also satisfyw:C, and this is true iffI does not satisfyw::C. In the
case wherew is not an individual inbA, a modelI of hS; bAi can be extended tofw:Cg

iff CI

6= ;, which is true iff�I

* (:C)

I . ut

If a non-distinguished individualz
i

is encountered more than once during a traver-
sal, then it is enforcing a co-reference that closes a cycle in the query. In this case we
cannot simply use> to refer to it, as this would fail to capture the fact thatz

i

must be
interpreted as the same element of�

I on each occasion.
In [4] this problem is dealt with by replacing the non-distinguished variables oc-

curring in a cycle inq
2

with variables or constants fromq
1

, and forming a disjunction
of the concepts resulting from each possible replacement. This is justified by the fact
that cycles cannot be expressed in theDLR schema and so must be present inq

1

.
However, this fails to take into account the fact that identifying two or more of the
non-distinguished variables inq

2

could eliminate the cycle.
We overcome this problem by introducing an additional layerof disjunction in

which non-distinguished individuals occurring in cycles are identified (in every pos-
sible way) with other individuals occurring in the same cycle. We then continue as
in [4], but only replacing those individuals that actually enforce a co-reference, i.e., that
would be encountered more than once during the graph traversal.4

Example 1 To illustrate the inclusion to satisfiability transformation, we will refer to
the example given in Section 2.2. The containment of BUS in CITY BUS w.r.t. the
schema is demonstrated by the inclusionhS; bA

1

ij�A

2

, whereS, bA
1

andA
2

are the
schema and two canonical ABoxes (completed in the case ofb

A

1

) corresponding to the
given queries:

S =

�

(bus routeu ($1=3 : city bus))v city busroute;
city bus routev (bus routeu ($1=3 : city bus))

�

b

A

1

=

�

hn; y

1

; y

2

i:bus route; hn; y
2

; y

1

i:bus route; n:city bus; n:P
n

; y

1

:P

y

1

; y

2

:P

y

2

	

A

2

=

�

hn; z

1

; z

2

i:city bus route; hn; z
2

; z

1

i:city busroute
	

The two axioms inA
2

are connected, and can be collapsed into a single axiom using
the described procedure. Figure 1 shows a traversal of the graphG corresponding toA

q

2

that starts atz
1

and traverses the edges in the indicated sequence.5 The resulting axiom
(describingA

2

from the point of view ofz
1

) is z
1

:C, whereC is the concept

9[$2℄(city busrouteu ( $3 : (P

z

2

u9[$2℄(city bus routeu $1 : P

n

u $3 : P

z

1

)))u $1 : P

n

)

1 2 3 4 5 6

P

z

1

; P

z

2

are “place-holders” forz
1

; z

2

6 and the numbers below theDLR operators
denote the edges which correspond to the respective subconcept ofC. As z

2

is encoun-
tered only once in the traversal,P

z

2

can be replaced with>, but asz
1

is encountered

4 Note that the graph traversal must always start from the sameroot.
5 We will ignore the first non-deterministic step as no individual identifications are required in

order to prove the containment.
6 In practice, we use such “place-holders” during the collapsing procedure and then make ap-

propriate (possibly non-deterministic) substitutions.
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2
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1

i : ity bus routehn; z

1

; z

2

i : ity bus route

6
2

5

Fig. 1. A traversal of the graph corresponding toA
q

2

twice (as the root and asP
z

1

), it must be replaced (non-deterministically) with an in-
dividual i occurring in bA

1

(we will refer to the resulting concepts asC
[z

1

=i℄

), and thus

hS;

b

A

1

ij�A

2

iff hS; bA
1

ij�fi:C

[z

1

=i℄

g. Takingi = y

1

we havehS; bA
1

ij�fy

1

:C

[z

1

=y

1

℄

g

becausehS; ( bA
1

[ fy

1

::C

[z

1

=y

1

℄

g)i is not satisfiable.

Summing up, we thus have:

Theorem 2 For aDLR KBK = hS;Ai and aDLR ABoxA0, the problem of deciding
whetherA is included inA0 w.r.t. S can be reduced to (possibly several)DLR ABox
satisfiability problems.

Concerning the practicability of this reduction, it is easyto see that, for any fixed
choice of substitutions for the non-distinguished individuals inG, the reduction from
Theorem 2 can be computed in polynomial time. More problematically, it is neces-
sary to consider each possible identification of non-distinguished individuals occuring
in cycles inG, and for each of theseall possible mappings from the setZ of non-
distinguished individuals that occur more than once in the collapsedG to to the set
W of individuals that occur inbA

1

(of which there arejW jjZj many). However, both
Z andW will typically be quite small, especiallyZ which will consist only of those
non-distinguished individuals that occur in a cycle inG and are actually used to enforce
a co-reference (i.e., to “close” the cycle). This represents a useful refinement over the
procedure described in [4], where allz

i

that occur in cycles are non-deterministically
replaced with somew

i

, regardless of whether or not they are used to enforce a co-
reference. Moreover, it is easy to show that most individualidentifications cannot con-
tribute to the solution, and can thus be ignored. Therefore,we do not believe that this
additional non-determinism compromises the feasibility of our approach.

Interestingly, also in [13], cycles in queries are identified as a main cause for com-
plexity. There it is shown that query containment without constraints is decidable in
polynomial time for acyclic queries whereas the problem forpossibly cyclic queries is
NP-complete [12].



3.3 TransformingDLR satisfiability into SHIQ satisfiability

We decide satisfiability ofDLR knowledge bases by means of a satisfiability-preserving
translation�(�) from DLR KBs to SHIQ KBs. This translation must deal with the
fact thatDLR allows for arbitraryn-ary relations whileSHIQ only allows for unary
predicates and binary relations; this is achieved by a process calledreification (see,
for example [16]). The main idea behind this is easily described: eachn-ary tuple in
aDLR-interpretation is represented by an individual in aSHIQ-interpretation that is
linked via the dedicated functional relationsf

1

; : : : ; f

n

to the elements of the tuple.
ForDLR without regular expressions, the mapping�(�) (given by [4])

�(>

n

) = >

n

�(P) = P
�($i=n : C) = >

n

u 9f

i

:�(C)

�(:R) = >

n

u :�(R)

�(R
1

u R
2

) = �(R
1

) u �(R
2

)

�(>) = >

1

�(A) = A

�(:C) = :�(C)

�(C

1

u C

2

) = �(C

1

) u �(C

2

)

�(9[$i℄R) = 9f

�

i

:�(R)

�(� k[$i℄R) = (� k f

�

i

�(R))

reifiesDLR expressions intoSHIQ-concepts. This mapping can be extended to a
knowledge base (KB) as follows.

Definition 7. LetK = (S;A) be aDLR KB. The reification ofS is given by

f(�(R
1

)v �(R
2

)) j (R
1

v R
2

) 2 Sg [ f(�(C

1

)v �(C

2

)) j (C

1

v C

2

) 2 Sg:

To reify the ABoxA, we have to reify all tuples appearing in the axioms. For each
distinct tuplew = hw

1

; : : : ; w

n

i occurring inA, we chose a distinct individualt
w

(called the “reification ofw”) and define:

�(w:R) = ft

w

:�(R)g [ fht

w

; w

i

i:f

i

j 1 � i � ng and

�(A) =

[

f�(w:R) j w:R 2 Ag [ fw:�(C) j w:C 2 Ag:

We need a few additional inclusion and ABox axioms to guarantee that any model of
(�(S); �(A)) can be “un-reified” into a model of(S;A). Letnmaxdenote the maximum
arity of theDLR relations appearing inK. We definef(S) to consist of the following
axioms (wherex � y is an abbreviation forx v y andy v x):

> � >

1

t � � � t >

nmax

> v (� 1 f

1

) u � � � u (� 1 f

nmax)

8f

i

:? v 8f

i+1

:? for 2 � i < nmax

>

i

� 9f

1

:>

1

u � � � u 9f

i

:>

1

u 8f

i+1

:? for 2 � i � nmax

P v >
n

for each atomic relationP of arity n
A v >

1

for each atomic conceptA

These are standard reification axioms, and can already be found in [4].
We introduce a new atomic conceptQ

w

for every individualw inA and definef(A)
to consist of the following axioms:

f(A) = fw:Q

w

j w occurs inAg [

fw

1

:6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

) j hw

1

; : : : ; w

n

i occurs inAg



These axioms are crucial when dealing with the problem of tuple-admissibility (see
below) in the presence of ABoxes.

Finally, we define�(K) = h(�(S) [ f(S)); (�(A) [ f(A))i.

Theorem 3 LetK = hS;Ai be aDLR knowledge-base.K is satisfiable iff theSHIQ-
KB �(K) is satisfiable.

PROOF (sketch): The same techniques that were used in [2] can be adapted to the DL
SHIQ, and extended to deal with ABox axioms. The only-if direction is straightfor-
ward. A modelI of K can be transformed into a model of�(K) by introducing, for
every arityn with 2 � n � nmax and everyn-tuple of elementsd 2 (�

I

)

n, a new
elementt

d

that is linked to the elements ofd by the functional relationsf
1

; : : : ; f

n

. If
we interpret>

1

by �I , >
n

by the reifications of all elements in>I

n

, and, for everyw
that occurs inA, Q

w

by wI , then it is easy to show that we have constructed a model
of �(K).

The converse direction is more complicated since a model of�(K) is not necessarily
tuple-admissible, i.e., in general there may be distinct elementst; t

0 that are reifications
of the same tupled. In the “un-reification” of such a model,d would only appear once
which may conflict with assertions in theDLR KB about the number of tuples in certain
relations. However, it can be shown that every satisfiable KB�(K) also has a tuple-
admissible model. It is easy to show that such a model, by “un-reification”, induces a
model for the original KBK. ut

We now have the machinery to transform a query containment problem into one or
moreSHIQ schema and ABox satisfiability problems. In the FaCT system we already
have a decision procedure forSHIQ schema satisfiability, and this can be straightfor-
wardly extended to deal with ABox axioms [22].

We have already argued why we believe our approach to be feasible. It should also
be mentioned, that our approach matches the known worst-case complexity of the prob-
lem, which was determined as EXPTIME-complete in [4]. Satisfiability of aSHIQ-KB
can be determined in EXPTIME.7 All reduction steps can be computed in determinis-
tic polynomial time, with the exception of the reduction used in Theorem 2, which
requires consideration of exponentially many mappings. Yet, for every fixed mapping,
the reduction is polynomial, which yields that our approachdecides query containment
in EXPTIME.

4 The FaCT System

It is claimed in Section 1 that one of the main benefits of our approach is that it leads
to a practical solution to the query containment problem. Inthis section we will sub-
stantiate this claim by presenting the results of a simple experiment in which the FaCT
system is used to decide a query containment problem with respect to the DWQ schema
mentioned in Section 1.

7 This does not follow from the algorithm presented in [22], which focuses on feasibility rather
than worst-case complexity. It can be shown using a precompletion strategy similar to the one
used in [26] together with the EXPTIME-completeness ofCIQ [15].



The FaCT system includes an optimised implementation of a schema satisfiability
testing algorithm for the DLSHIQ. As the extension of FaCT to include the ABox
satisfiability testing algorithm described in [22] has not yet been completed, FaCT is
currently only able to test the satisfiability of a KBhS;Ai in the case where theA
contains a single axiom of the formw:C (this is equivalent to testing the satisfiability
of the conceptC w.r.t. the schemaS). We have therefore chosen a query containment
problem that can be reduced to aSHIQ KB satisfiability problem of this form using
the methodology described in Section 3.

The DWQ schema is derived from the integration of several Extended Entity-Re-
lationship (EER) schemas usingDLR axioms to define inter-schema constraints [7].
One of the schemas, called theenterpriseschema, represents the global concepts and
relationships that are of interest in the Data Warehouse; a fragment of the enterprise
schema that will be relevant to the query containment example is shown in Figure 2. A
total of 5 source schemas representing (portions of) actualdata sources are integrated
with the enterprise schema usingDLR axioms to establish the relationship between
entities and relations in the source and enterprise schemas(the resulting integrated
schema contains 48 entities, 29 relations and 49DLR axioms). For example, one of
theDLR axioms defining the relationship between the enterprise schema and the en-
tity “Business-Customer” in the source schema describing business contracts is

Business-Customerv (Companyu 9[$1℄(agreementu
($2=3 : (Contractu 9[$1℄(contract-companyu

($2=2 : Telecom-company)))))):

This axiom states, roughly speaking, that a Business-Customer is a kind of Company
that has an agreement where the contract is with a Telecom-company.

As a result of this axiom, it is relatively easy to see that thequery

q

1

(x) Business-Customer(x)

is contained in the query

q

2

(x) agreement(x; y
1

; y

2

) ^ Contract(y
1

) ^ Service(y
2

) ^

contract-company(y
1

; y

3

) ^ Telecom-company(y
3

)

with respect to the DWQ schemaS, writtenS j= q

1

v q

2

.
The two queries can be transformed into the following (completed) canonicalDLR

ABoxes

b

A

q

1

= fx:Business-Customer; x:P
x

g

A

q

2

= fhx; y

1

; y

2

i:agreement; y
1

:Contract; y
2

:Service;
hy

1

; y

3

i:contract-company; y
3

:Telecom-companyg;

whereP
x

is the representative concept forx. We can now compact and collapseA
q

2

to
give an ABoxfx:C

q

2

g, where

C

q

2

=9[$1℄(agreementu ($2=3 : P

y

1

) u ($3=3 : P

y

2

) u ($2=3 : Contract) u
($3=3 : Service) u ($2=3 : (9[$1℄ contract-companyu ($2=2 : P

y

3

) u

($2=2 : Telecom-company)))):
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company

contract-company

Service

(0,n) (1,1)
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(1,n)

(0,1)

$2

$3

$1

$1

$2

Fig. 2. A fragment of the DWQ enterprise schema

As each of the place-holdersP
y

1

, P
y

2

andP
y

3

occurs only once in the ABox, they can
be replaced with>, andC

q

2

can be simplified to give

C

0

q

2

=9[$1℄(agreementu ($2=3 : Contract) u ($3=3 : Service) u
($2=3 : (9[$1℄contract-companyu ($2=2 : Telecom-company)))):

We can now determine if the query containmentS j= q

1

v q

2

holds by testing
the satisfiability of the KBhS;Ai, whereA = fx:Business-Customer; x:P

x

; x::C

0

q

2

g.
Moreover,A can be compacted to givefx:Cg, whereC = Business-Customeru P

x

u

:C

0

q

2

, and the KB satisfiability problem can be decided by using FaCT to test the sat-
isfiability of the concept�(C) w.r.t. the schema�(S). Thus we haveS j= q

1

v q

2

iff
�(C) is not satisfiable w.r.t.�(S).

The FaCT system is implemented in Common Lisp, and the tests were performed
using Allegro CL Enterprise Edition 5.0 running under Red Hat Linux on a 450MHz
Pentium III with 128Mb of RAM. Excluding the time taken to load the schema from
disk (60ms), FaCT takes only 60ms to determine that�(C) is not satisfiable w.r.t.�(S).
Moreover, if�(S) is first classified(i.e., the subsumption partial ordering of all named
concepts in�(S) is computed and cached), the time taken to determine the unsatis-
fiability is reduced to only 20ms. The classification procedure itself takes 3.5s (312
satisfiability tests are performed at an average of�11ms per satisfiability test), but this
only needs to be done once for a given schema.

Although the above example is relatively trivial, it still requires FaCT to perform
quite complex reasoning, the result of which depends on the presence ofDLR inter-
schema constraint axioms; in the absence of such axioms (e.g., in the case of a single



EER schema), reasoning should be even more efficient. Of course deciding arbitrary
query containment problems would, in general, require fullABox reasoning. However,
the above tests still give a useful indication of the kind of performance that could be ex-
pected: the algorithm for decidingSHIQ ABox satisfiability presented [22] is similar
to the algorithm implemented in FaCT, and as the number of individuals generated by
the encoding of realistic query containment problems will be relatively small, extending
FaCT to deal with such problems should not compromise the demonstrated empirical
tractability. Moreover, given the kind of performance exhibited by FaCT, the limited
amount of additional non-determinism that might be introduced as a result of cycles in
the containing query would easily be manageable.

The results presented here are also substantiate our claim that transformingDLR
satisfiability problems intoSHIQ leads to greatly improved empirical tractability with
respect to the embedding technique described in Calvanese et al. [4]. During the DWQ
project, attempts were made to classify the DWQ schema usinga similar embedding
in the less expressiveSHIF logic [19] implemented in an earlier version of the FaCT
system. These attempts were abandoned after several days ofCPU time had been spent
in an unsuccessful effort to solve a single satisfiability problem. This is in contrast to the
3.5s taken by the newSHIQ reasoner to perform the 312 satisfiability tests required to
classify the whole schema.

5 Discussion

In this paper we have shown how the problem of query containment under constraints
can be decided using a KB (schema plus ABox) satisfiability tester for theSHIQ
description logic, and we have indicated how aSHIQ schema satisfiability testing
algorithm can be extended to deal with an ABox. We have only talked about conjunctive
queries, but extending the procedure to deal with disjunctions of conjunctive queries
is straightforward. The procedure for verifying containment between disjunctions of
conjunctive queries is not very different from the one described for simple conjunctive
queries. The main difference is that, although each conjunctive part becomes an ABox
(as described in Section 3.1), the object representing the whole disjunctive query is
a set of alternative ABoxes. This results in one more non-deterministic step, whose
complexity is determined by the number of disjuncts appearing in both queries. Full
details can be found in [20].

Although there is some loss of expressive power with respectto the framework
presented in [4] this seems to be acceptable when modelling classical relational infor-
mation systems, where regular expressions are seldom used.

As we have shown in Section 4, the FaCT implementation of theSHIQ schema
satisfiability algorithm works well with realistic problems, and given that the number
of individuals generated by query containment problems will be relatively small, there
is good reason to believe that a combination of the ABox encoding and the extended
algorithm will lead to a practical decision procedure for query containment problems.
Work is underway to test this hypothesis by extending the FaCT system to deal with
SHIQ ABoxes.
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