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Abstract. We present a procedure for deciding (database) query oomézit
under constraints. The technique is to extend the IagfdR with an ABox, and
to transform query subsumption problems i@ R ABox satisfiability prob-
lems. Such problems can then be decided, via a reificatiosfsemation, using
a highly optimised reasoner for tiH7Z Q description logic. We use a simple ex-
ample to support our hypothesis that this procedure willkweell with realistic
problems.

1 Introduction

Query containment under constraints is the problem of deténg whether the result
of one query is contained in the result of another query fergdatabase satisfying a
given set of constraints (derived, for example, from a sa@jefthis problem is of par-
ticular importance in information integration (see [10hdadata warehousing where,
in addition to the constraints derived from the source saseand the global schema,
inter-schema constraints can be used to specify relatipndetween objects in differ-
ent schemas (see [6]).

In [12], query containment without constraints was showlbeddNP-complete, and a
subsequent analysis identified cycles in queries as the soairte of complexity [13].
Query containment under different forms of constraintshavg., been studied in [23]
(containment w.r.t. functional and inclusion dependesicéand [11, 24] (containment
w.r.t. is-a hierarchies).

Calvanese et al. [4] have established a theoretical frameuging the logicdD LR,
presented several (un)decidability results, and destr@bmethod for solving the de-
cidable cases using an embedding in the propositional dinlagic CPDL, [17, 15].
The importance of this framework is due to the high expresgawer ofDLR, which
allows Extended Entity-Relationship (EER) schemas arat-isthema constraints to be
captured. However, the embedding technique does not leactigito a practical deci-
sion procedure as there is no (known) implementation of alGRBasoner. Moreover,
even if such an implementation were to exist, similar embegltechniques [14] have
resulted in severe tractability problems when used, forgpta, to embed th&HZF
description logic inSH.F by eliminating inverse roles [18].

1 Set semantics is assumed in this framework.



In this paper we present a practical decision procedurehfoicase where neither
the queries nor the constraints contain regular expressiams represents a restric-
tion with respect to the framework described in Calvanesd.etvhere it was shown
that the problem is still decidable if regular expressiomsalowed in the schema and
the (possibly) containing query, but this seems to be aabépivhen modelling clas-
sical relational information systems, where regular eggians are seldom used [7, 6].
When excluding regular expressions, constraints impogdeHiR schemas can still be
captured, so the restriction (to contain no regular exjpas}is only relevant to inter-
schema constraints. Hence, the us®dfR in both schema and queries still allows for
relatively expressive queries, and by staying within actyrifirst order setting we are
able to use a decision procedure that has demonstrated ggmdaal tractability.

The procedure is based on the method described by Calvahakel®mit extends
DLR by defining anABox a set of axioms that assert facts about name/iduals
and tuples of named individuals (see [5]). This leads to ahmmore natural encoding
of queries (there is a direct correspondence between Vesiand individuals), and
allows the problem to be reduced to that of determining thisfebility of a DLR
knowledge baséKB), i.e., a combined schema and ABox. This problem can in tu
be reduced to a KB satisfiability problem in t8¢{ZQ description logic, withn-ary
relations reduced to binary ones by reification. In [24],raiksir approach is presented.
However, the underlying description logid CCAR) is less expressive thanLR and
SHZQ (for example, it is not able to capture Entity-Relationséthemas).

We have good reasons to believe that this approach repses@nactical solution.
In the FaCT system [18], we already have an (optimised) implgation of the de-
cision procedure foSHZQ schema satisfiability described in [21], and using FaCT
we have been able to reason very efficiently with a realigtieema derived from the
integration of several Extended Entity-Relationship schg usingDLR inter-schema
constraints (the schemas and constraints were taken freemeastudy undertaken as
part of the Esprit DWQ project [7, 6]). In Section 4, we useBaE€T system to demon-
strate the empirical tractability of a simple query conmaémt problem with respect to
the integrated DWQ schema. FaCT’s schema satisfiabilitgréilgn can be straight-
forwardly extended to deal with ABox axioms (and thus admitrquery containment
problems) [22], and as the number of individuals generayettié encoding of realistic
query containment problems will be relatively small, thisemsion should not compro-
mise empirical tractability.

Most proofs are either omitted or given only as outlines ia gfaper. For full details,
please refer to [20] .

2 Preliminaries

In this section we will (briefly) define the key components af ramework, namely
the logicDLR, (conjunctive) queries, and the loghHZ Q.



2.1 The LogicDLR

We will begin withDLR as it is used in the definition of both schemas and queries.
DLTR is a description logic (DL) extended with the ability to deke relations of any
arity. It was first introduced in [9].

Definition 1. Given a set of atomic concept namé€ and a set of atomic relation
namesNR, everyC € NC is a concept and evefi € NR is a relation, with evenR
having an associated arity. {f, D are conceptsR, S are relations of arityn, 7 is an
integerl < 7 < n, andk is a non-negative integer, then

T,-C,CnN D, 3[R, (< k[$i]R) are DLR conceptsand
Tp,"R,ROS, ($i/n:C) are DLR relationswith arity n.

Relation expressions must be well-typed in the sense thatelations with the same
arity can be conjoined, and in constructs ligi|R the value of must be less than or
equal to the arity oR.

The semantics dPLR is given in terms ofnterpretationg = (AZ, .7), whereA?
is the domain (a non-empty set), arfdis an interpretation function that maps every
concept to a subset af? and everyn-ary relation to a subset afA”?)” such that the
following equations are satisfied " denotes set cardinality).

= AT cn D)I—CIHDI
ﬁcf AT\c* (38 z]R) ={de AT |3(dy,... ,dn) €R*.d; =d}
(< k[$IR)" ={d € AT | 4{(d1,... ,dn) €RT : di=d} <k}
Tnlg (AI)n RIngI
(=R =T,"\R* (RN =R NS’
($i/n: C) = {(d1,... ,dn) € T,T | di € CT}

Note thatT,, does not need to be interpreted as the set of all tuples gfraribut
only as a subset of them, and that the negation of a rel&iwith arity n is relative to
Th.

In our framework, a schema consists of a set of logical incluaxioms expressed
in DLR. These axioms could be derived from the translation ISR of schemas
expressed in some other data modelling formalism (such &g/Helationship mod-
elling [3, 8]), or could directly stem from the use BfLR to express, for example,
inter-schema constraints to be used in data warehousig) [¢}).

Definition 2. A DLR schemasS is a set ofaxiomsof the formC C D andRC S,
where C, D are DLR concepts anR, S are DLR relations of the same arity; an
interpretationZ satisfiesC' C D iff CZ C D7, and it satisfieR C Siff R” C S’. An
interpretationZ satisfiesa schemas iff Z satisfies every axiom ifi.

Crucially, we extend LR to assert properties afidividuals names representing
single elements of the domain. AkBoxis a set of axioms asserting facts about indi-
viduals and tuples of individuals.



Definition 3. Given a set of individualbll, a DLR ABox A is a set ofaxiomsof the
formw:C andw:R, whereC is a conceptR is a relation of arityn, w is an individual
andw is ann-tuple(ws, . .. ,wy,) such thatw, ... ,w, are individuals. We will often
write w; to refer to theith element of am-tuplew, wherel < i < n.

Additionally, the interpretation functiof maps every individual to an element of
AT and thus also tuples of individuals to tuples of element&’afAn interpretatioriZ
satisfiesan axiomw:C iff w? € CZ, and it satisfiesan axiomw:R iff w? € RZ. An
interpretationZ satisfiesan ABoxA iff Z satisfies every axiom id.

Aknowledge basé&B) K is a pair (S, A), whereS is a schema andl is an ABox.
An interpretationZ satisfiesa KB K iff it satisfies bothS andA.

If an interpretationZ satisfies a concept, axiom, schema, or ABgxhen we say
thatZ is amodelof X, call X satisfiableand writeZ |= X.

Note that it is not assumed that individuals with differeatmes are mapped to
different elements in the domain (the so-called unique nassemption).

Definition 4. If K is a KB, Z is a model ofiC, and A is an ABox, ther?’ is called
an extensionof Z to A iff 7' satisfies4, AT = AT, and all concepts, relations, and
individuals occuring inC are interpreted identically bf and7’.

Given two ABoxesd, A’ and a schema, A is includedin A’ w.r.t. S (written
(S, Ay A") iff every modeX of (S, A) can be extended td'.

2.2 Queries

In this paper we will focus on conjunctive queries (see [Bht]), and describe only
briefly (in Section 5) how the technique can be extended tdwli#a disjunctions of
conjunctive queries (for full details please refer to [2@)conjunctive query; is an
expression

q(x) < termy(xz,y,c) A ... ANterm,(x,y,c)

wherez, y, andc are tuples ofdistinguishedvariables, variables, and constants, re-
spectively (distinguished variables appear in the anstwedjnary” variables are used
only in the query expression, and constants are fixed valgash termerm;(x,y, c)
is called an atom iy and is in one of the form&'(w) or R(w), wherew (resp.w) is
a variable or constant (resp. tuple of variables and cotstane, y ore¢, C is aDLR
concept, andR is aDLR relation?

For example, a query designed to return the bus number oftihbuses travelling
in both directions between two stops is:

BUS(nr) < busroutenr, stop,, stop,) A busroutgnr, stop,, stop,) A city_bugnr)

wherenr is a distinguished variable (it appears in the answes), andstop., are non-
distinguished variables, citlgus is @DLR concept and busoute is aDLR relation.

2 The fact that these concepts and relations can also app#s sthema is one of the distin-
guishing features of this approach.



In this framework, theevaluationg(Z) of a queryq with n distinguished variables
w.r.t. aDLR interpretationiZ (here perceived as standard FO interpretation) is the set
of n-tuplesd € (AZ)™ such that

7 = Jy.termy(d,y,c) A ... Aterm,(d,y,c).

As usual, we require unique interpretation of constargs,in the following we will
only consider those intepretatiofisvith ¢Z # d” for any two constants # d. A query
q(x) is calledsatisfiablew.r.t a schema iff there is an interpretatiof with Z |= S
andq(Z) # 0. A queryq, (x) is containedin a querygs (x) w.r.t. a schema (written
S E q1 C @), iff, for every modelZ of S, ¢1 (Z) C ¢»(Z). Two queriesy; , g» are called
equivalenw.rt. Siff S=q E g andS E ¢2 C ¢1.

For example, the schema containing the axioms

(busrouter ($1/3 : city_bug)) C city_busroute
city_busrouteC (busrouter (§1/3 : city_bug),

states that the relation cityusroute contains exactly the hweute information that
concerns city buses. It is easy to see that the following CBUS query

CITY_BUS(nr) « city_busroutgnr, stop,, stop,) A city_busroutgnr, stop,, stop,)

is equivalent to the previous BUS query w.r.t. the given sthdn an information inte-
gration scenario, for example, this could be exploited Bgrraulating the BUS query
as a CITYBUS query ranging over a smaller database without any losgaimnation.

2.3 The LogicSHIQ

SHZQ is a standard DL, in the sense that it deals with concepts anlg)(binary
relations (calledoles), but it is unusually expressive in that it supports reasgniith
inverse roles, qualifying number restrictions on rolesnsitive roles, and role inclusion
axioms.

Definition 5. Given a set of atomic concept nani¢€ and a set of atomic role names
NR with transitive role nameBR; C NR, everyC € NC is a concept, ever € NR

is arole, and evenR € NR; is a transitive role. IfR is a role, thenR ™ is also a role
(and if R € NRy then R~ is also a transitive role). IS is a (possibly inverse) role,
C, D are concepts, andl is a non-negative integer, then

T,-C,CnND,35.C, <kS.C are alsoSHZQ concepts.

The semantics §HZQ is given in terms ofnterpretationd = (AZ,-1), whereA?

is the domain (a non-empty set), arfdis an interpretation function that maps every
concept to a subset at” and every role to a subset GA\7)? such that the following
equations are satisfied.

= AT (3s.C)F
O = AT\ CT (<KkS. O)
(cnD)* =cTn DT

{d|3d'.(d,d') € ST andd’ € CT}
{d|#{d : (d,d') e ST andd' € CT} < k}
= (

{(d

RI)Jr forall R € NR,

(R ) ,d) | (d,d') € R"}



SHIQ schemas, ABoxes, and KBs are defined similarly to thosefoe: if C, D
are conceptsR, S are roles, andv, w are individuals, then a schem& consists of
axioms of the forn®’ C D andR C S, and an ABoxA consists of axioms of the form
w:C and (v, w):R. Again, a KBK is a pair (S, A), whereS is a schema andl is an
ABox.

The definitions of interpretations, satisfiability, and ratsdalso parallel those for
DLR, and there is again no unigue name assumption.

Note that, in order to maintain decidability, the roles thah appear in number
restrictions are restricted [21]: if a roke occurs in a number restrictiogkS.C, then
neitherS nor any of its sub roles may be transitive (i.e., if the scheordains a_-path
from S’ to S, thenS' is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of decidingether one query is
contained in another one w.r.t. 2R schema can be reduced to the problem of de-
ciding KB satisfiability in theSHZQ description logic. There are three steps to this
reduction. Firstly, the queries are transformed iBt6R ABoxes.A; and. A, such that

S E q1 C g iff (S, A1)As (see Definition 4). Secondly, the ABox inclusion prob-
lem is transformed into one or more KB satisfiability probterinally, we show how
aDLR KB can be transformed into an equisatisfiaBi#7Z Q KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed intwamonicalD LR ABox. Such
an ABox represents a generic pattern that must be matchddtbglas in the evaluation
of the query, similar to the tableau queries one encountetisd treatment of simple
query containment for conjunctive queries [1].

Definition 6. Letq be a conjunctive query. Theanonical ABoxfor ¢ is defined by
Ay = {w:R | R(w) is an atom ing} U {w:C' | C(w) is an atom ing}.

We introduce a new atomic concepy, for every individualw in A and define the
completedcanonical ABox fogy by

~

Ay = AU {w:P, | woccursinA,} U {w;:— Py, | w;,w; constants iy andi # j}.

The axiomsv: P, in ﬁq introducerepresentative concefdtsr each individuake in
Aj,. They are used (in the axioms:—P,,;) to ensure that individuals corresponding to
different constants iy cannot have the same interpretation, and will also be ugaful
the transformation to KB satisfiability.

By abuse of notation, we will say that an interpretatibmnd an assignment of
distinguished variables, non-distinguished variabled aonstants to elements in the
domain ofZ such thatZ |= p(q) define a model ford, with the interpretation of the
individuals corresponding witp and the interpretatio?Z = {w’}.



We can use this definition to transform the query containrpesttlem into a (very
similar) problem involvingDLR ABoxes. We can assume that the names of the non-
distinguished variables in, differ from those ing; (arbitrary names can be chosen
without affecting the evaluation of the query), and thatriaees of distinguished vari-
ables and constants appear in both queries (if a name isygissone of the queries, it
can be simply added using a term lik&v)).

The following Theorem shows that a canonical ABox reallytoegs the structure
of a query, allowing the query containment problem to beatestas an ABox inclusion
problem.

Theorem 1 Given a schem& and queries;; andge, S = ¢1 C g2 iff (S, /qu>|z,4q2.

Before we prove Theorem 1, note that, in general, this timeare longer holds if
we replace4,, by A,,. LetS be a schema angl, ¢» be two queries such that is
satisfiable v&r.tS andg, contains at least one non-distinguished variabl&€hen the
completionA,, contains the assertionP, whereP, is a new atomic concept. Since
q1 is satisfiable w.r.tS and P, does not occur it or ¢, (S, /qu> has a model with
PZ = (). Such a model cannot be extended to a modgl of ﬁQZ because there is
no possible interpretation far that would satisfyz” € PZ'. Hence,(é‘,ﬁql)béﬁq2
regardless of whethe® = ¢; C ¢» holds or not. In the next section we will see how
to deal with the non-distinguished individuals.iy,, without the introduction of new
representative concepts.

PROOF OFTHEOREM 1: For the if direction, assumg £ ¢q; C ¢». Then there exists
a modelZ of S and a tuple(dy, ... ,d,) € (AT)" such that(dy, ... ,d,) € ¢ (T)
and(dy,... ,d,) € ¢=(Z). Z and the assignment of variables leadinddp, . .. ,d,,)
define a model forﬁql. If -Z could be extended to satisfy,,, then the extension
would correspond to an assignment of the non-distinguishedbles ing> such that
(di,-..,dn) € q2(Z), thus contradicting the assumption.

For the only if direction, assume there is a modeif bothS and,ATq1 that cannot
be extended to a model of,,. Hence there is a tuplél:,... ,d,) € ¢:(Z) and a
corresponding assignment of variables that definé there is an assignment of the
non-distinguished variables ia such thatdy, ... ,d,) € ¢2(Z), then this assignment
would define the extension @fsuch that4,, is also satisfied. o

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion proiménto one or more KB
satisfiability problems. In order to do this, there are twdmdifficulties that must be
overcome. The first is that, in order to transform inclusioto isatisfiability, we would
like to be able to “negate” axioms. This is easy for axiomsefformw:C, because an
interpretation satisfies:—C' iff it does not satisfyw:C'. However, we cannot deal with
axioms of the formw:R in this way, becaus®LR only has a weak form of negation
for relations relative tar ,,. Our solution is to transform all axioms i, into the form
w:C.



The second difficulty is thatl,, may contain individuals corresponding to non-
distinguished variables ips (given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished indivédis). These individuals
introduce an extra level of quantification that we cannot deth using our standard
reasoning procedure&s, A,, YA, iff for all modelsZ of (S, A,, ) there existsome
extension off to A,,. We deal with this problem by eliminating the non-distirgjwed
individuals fromA,,.

We will begin by exploiting some general properties of ABsxhat allow us to
compact4,, so that it contains only one axiom:R for each tuplaw, and one axiom
w:C for each individuaky that is not an element in any tuple. It is obvious from the
semantics that we can combine all ABox axioms relating te#me individual or tuple:

T = {w:C,w:D} (resp{w:R,w:S}) iff Z | {w:(C N D)} (resp{w:(RMS)}). The
following lemma shows that we can also abserbC into w:R whenw; is an element
of w.

Lemmal LetA be aDLR ABox with{w;:C, w:R} C A, wherew; is theith element
inw.ThenZ E AiffZ = {w:(RMN%i:C)} UA\ {w;:C,w:R}.

PROOF. From the semantics, ib” € (RM$i : C)%, thenw? € RT andw! € CZ, and
if wZ € CT andw? € RZ, thenw? € (RN $i: C)L. 0
The ABox resulting from exhaustive application of Lemma f ba represented as
a graph, with a node for each tuple, a node for each indivjchral edges connecting
tuples with the individuals that compose them. The graphaeihsist of one or more
connected components, where each component is eitherla Bidiidual (represent-
ing an axiomw:C', wherew is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the farm). As the connected com-
ponents do not have any individuals in common, we can deajpieddently with the
inclusion problem for each connected set of axiof®s:A) A’ iff (S, A)G for ev-
ery connected set of axiongs C A’. As an example, Figure 1 shows the graph that
corresponds to the ABox,, from Example 1.

Returning to our original problem, we will now show how we aailapsea con-
nected componeid by a graph traversal into a single axiom of the farn®’, wherew
is an element of a tuple occurring ¢h(an arbitrarily chosen “root” individual), and
is a concept that describgsfrom the point of view ofw. An example for this process
will be given later in this section.

This would be easy if we were able to refer to individualgin(i.e., if our logic
includednominals[25]), which is not the case. However, as we will see, it idisight
to refer to the distinguished individuals in G (which also occur in4,, ) by their rep-
resentative concept8,,. Moreover, we can refer to non-distinguished individugls
by usingT as their representative concept (this is only validZfothat are encountered
only once during the traversal ¢f, but we will see later that we can, without loss of
generality, restrict our attention to this case). Infolyydahe use ofT as the represen-
tative concept for such; can be justified by the fact that when an interpretafiois
extended t@, z; can be interpreted as any elementif (= T7).2

3 For full details, the reader is again referred to [20].



The following lemma shows how we can use the representabineapts to trans-
form an axiom of the formw:R into an axiom of the formw;:C.

Lemma?z2 If S is a schemAaﬁ is a Com[lleted canonical ABox andl is an ABox
with w:R € A, then(S, A)rA’ iff (S, A)r({w;:C} U A"\ {w:R}), wherew =
(wr,...,w,), w; is theith element inw, C' is the concept

iR []  (Si/m: ),

INVAN £

and P; is the appropriate representative conceptdor (T if w; is a non-distinguished
individual, P,,; otherwise).

PrROOF (sketch): For the only if direction, it is easy to see thaf, i (S, ﬁql), andZ’
is an extension df that satisfiesv:R, thenZ' also satisfiew;:C.

The converse direction is more complicated, and exploisféict that, for every
modelZ of (S, Ay, ), there is a similar modél’ in which every representative concept
P,, is interpreted agw? }. If 7 cannot be extended to satisfy:R, then neither can
7', and, given the interpretations of tl®,,, it is possible to show that’ cannot be
extended to satisfy,;:C either. a

All that now remains is to choose the order in which we appéytitansformations
from Lemma 1 and 2 to the axioms ¢h so that, whenever we use Lemma 2 to trans-
form w:R into w;:C, we can then use Lemma 1 to absarpC into another axiom
v:R, wherew; is an element oby. We can do this using a recursive traversal of the
graphical representation of (a similar technique is used in [4] to transform queries
into concepts). A traversal starts at an individual nad@he “root”) and proceeds as
follows.

— At an individual nodew;, the node is first marked as visited. Then, while there
remains an unmarked tuple node connectedrfoone of thesew, is selected,
visited, and the axionw:R transformed into an axionw;:C'. Finally, any axioms
w;:Ch, ... ,w;:Cy resulting from these transformations are merged into alesing
axiomw;:(Cy M...MNCY).

— At a tuple nodew, the node is first marked as visited. Then, while there remain
an unmarked individual node connectedioone of thesey;, is selected, visited,
and any axiomw;:C' that results from the visit is merged into the axiarR using
Lemma 1.

Note that the correctness of the collapsing procedure duegepend on the traver-
sal (whose purpose is simply to choose a suitable ordetingpnly on the individual
transformations.

Having collapsed a compone@t we finally have a problem that we can decide
using KB satisfiability:

Lemma 3 If S is a schema andl is a completed canonical ABox, thé, A) ke {w:C}
iff w is an individual inA and (S, (A U {w:~C})) is not satisfiable, otw is not an
individual in A and{(SU {T C =~C}), A) is not satisfiable.



PROOF (sketch): Ifw is an individual inA, (S, A){w:C} implies that every model
T of (S, ﬁ) must also satisfyv:C, and this is true iffZ does not satisfyv:—C. In the
case wherev is not an individual in4, a modelZ of (S, .4) can be extended thw:C'}
iff CT # 0, which is true iff A7 ¢ (=C)”. O

If a non-distinguished individual; is encountered more than once during a traver-
sal, then it is enforcing a co-reference that closes a cyctea query. In this case we
cannot simply usé@ to refer to it, as this would fail to capture the fact thamust be
interpreted as the same element/5f on each occasion.

In [4] this problem is dealt with by replacing the non-digfirished variables oc-
curring in a cycle ing; with variables or constants from, and forming a disjunction
of the concepts resulting from each possible replacemdnis. i$ justified by the fact
that cycles cannot be expressed in MR schema and so must be presentin
However, this fails to take into account the fact that idfgimg two or more of the
non-distinguished variables i could eliminate the cycle.

We overcome this problem by introducing an additional lagedisjunction in
which non-distinguished individuals occurring in cycles @entified (in every pos-
sible way) with other individuals occurring in the same eydlVe then continue as
in [4], but only replacing those individuals that actualiyf@rce a co-reference, i.e., that
would be encountered more than once during the graph teahers

Example 1 To illustrate the inclusion to satisfiability transfornaati we will refer to
the example given in Section 2.2. The containment of BUS iiYCBUS w.r.t. the
schema is demonstrated by the inclusioh A4, }|x.A2, whereS, A; and A, are the
schema and two canonical ABoxes (completed in the cas?&))t‘,orresponding to the
given queries:

S— { (busroutert ($1/3 : city_bug)) C city_busroute }
~ | city_busrouteCC (busrouter ($1/3 : city_bug)
A = {(n,y1,y2):busroute (n,ys,y: ):busroute n:city_bus n:P,, y1: Py, , y2: Py, }
As = {(n, 21, z5):city_busroute (n, z,, 2 ):city_busroute}

The two axioms ind, are connected, and can be collapsed into a single axiom using
the described procedure. Figure 1 shows a traversal of #phgrcorresponding tod,,
that starts at; and traverses the edges in the indicated sequefibe.resulting axiom
(describingA, from the point of view of,) is z;:C, whereC'is the concept

3[$2](city_busrouter ($3 : (P,, N 3[$2](city_busrouter $1: P, M$3: P,,)))N$1: P,)
1 2 3 4 ) 6

P.,, P., are “place-holders” for, 2,° and the numbers below tHRLR operators
denote the edges which correspond to the respective sulygiooic’. As 2 iS encoun-
tered only once in the traversat,, can be replaced witfr, but asz, is encountered

4 Note that the graph traversal must always start from the saote

5 We will ignore the first non-deterministic step as no indiiatlidentifications are required in
order to prove the containment.

% In practice, we use such “place-holders” during the collepgrocedure and then make ap-
propriate (possibly non-deterministic) substitutions.



(n, 21,22 : city_bus_route (n,z2,21) : city-bus_route
4

Fig. 1. A traversal of the graph correspondingAq,

twice (as the root and aB.,), it must be replaced (non-deterministically) with an in-
dividuali occurring inA; (we will refer to the resulting concepts 8., /;7), and thus

(S, AiYReAs iff (S, A1) R{i:CL, /iy }. Takingi = y1 we have(S, A1) {y1:Cp., /41 }
becausés, (A1 U {y1:=Cl, /y,1})) is not satisfiable.

Summing up, we thus have:

Theorem 2 ForaDLR KB K = (S, A) and aDLR ABoxA’, the problem of deciding
whetherA is included inA4’ w.r.t. S can be reduced to (possibly sever@L’R ABox
satisfiability problems.

Concerning the practicability of this reduction, it is edsysee that, for any fixed
choice of substitutions for the non-distinguished indidts inG, the reduction from
Theorem 2 can be computed in polynomial time. More probléerabyy, it is neces-
sary to consider each possible identification of non-digtished individuals occuring
in cycles inG, and for each of thesall possible mappings from the s&t of non-
distinguished individuals that occur more than once in théapsedg to to the set
W of individuals that occur ind; (of which there argW|'“l many). However, both
Z andW will typically be quite small, especially which will consist only of those
non-distinguished individuals that occur in a cycl&jiand are actually used to enforce
a co-reference (i.e., to “close” the cycle). This representiseful refinement over the
procedure described in [4], where a}lthat occur in cycles are non-deterministically
replaced with somev;, regardless of whether or not they are used to enforce a co-
reference. Moreover, it is easy to show that most individdetifications cannot con-
tribute to the solution, and can thus be ignored. Therefoesgo not believe that this
additional non-determinism compromises the feasibilftgur approach.

Interestingly, also in [13], cycles in queries are idendifées a main cause for com-
plexity. There it is shown that query containment withouhstoaints is decidable in
polynomial time for acyclic queries whereas the problemplossibly cyclic queries is
NP-complete [12].



3.3 Transforming DLR satisfiability into SHZ Q satisfiability

We decide satisfiability cP LR knowledge bases by means of a satisfiability-preserving
translationo(-) from DLR KBs to SHZQ KBs. This translation must deal with the
fact thatDLR allows for arbitraryn-ary relations whileSHZQ only allows for unary
predicates and binary relations; this is achieved by a ocalledreification (see,
for example [16]). The main idea behind this is easily ddsmati each-ary tuple in
aDLR-interpretation is represented by an individual ifHZ Q-interpretation that is
linked via the dedicated functional relatiofis . . ., f,, to the elements of the tuple.
ForDLR without regular expressions, the mappir@) (given by [4])

o(Tn)=Th UET? T
($/U(g§=P o) 00 )—W( )
o(di/n: =T,MN3df;.0
" ’ (Cl|—102)—0'(01)|_|0'(02)
U("R) =T,0MN —|0'(R)
U(R1 1 Rg) = U(Rl) n 0(R2) (3[$1]R) = Elf 0’( )

o(<k[$iIR) = (< k fi o(R))

reifies DLR expressions int&H7ZQ-concepts. This mapping can be extended to a
knowledge base (KB) as follows.

Definition 7. LetK = (S,.A) be aDLR KB. The reification of is given by
{(e(RI) E0(Rs)) | (Ri ERy) € S}U{(a(Cr) Ea(Ch)) | (Ci ECy) € S}

To reify the ABox4, we have to reify all tuples appearing in the axioms. For each
distinct tuplew = (w,...,w,) occurring in A, we chose a distinct individual,
(called the “reification ofw") and define:

o(w:R) = {ty:0(R)} U {(tw,wi):fi | 1 <i<n} and
=J {o(wR) |wR e A}U {w:o(C) | w:C € A}.
We need a few additional inclusion and ABox axioms to guartitat any model of
(0(S), o(A)) can be “un-reified” into a model ofS, A). Letnmaxdenote the maximum

arity of theDLR relations appearing iriC. We defingf (S) to consist of the following
axioms (where: = y is an abbreviation for: C y andy C z):

T=TiU--UT
TE(Slfl)l_ll—l(Slfnmax)

Vfi.J_ C Vfi+1.J_ for 2 < i < Nmax
T;=3f1. T 0---03f;. T N Vfi+1.J_ for 2 < i < nmax
PC T, for each atomic relatior® of arity n
AC T, for each atomic concept

These are standard reification axioms, and can already bedauw [4].
We introduce a new atomic concépy, for every individualw in A and definef (A)
to consist of the following axioms:

f(A) = {w:Qy | woccurs inAd} U
{w: <1 f7 (T 3f2.Qu, M...MN3fn.Qu,) | (w1,...,wy,) occursind}



These axioms are crucial when dealing with the problem offetapimissibility (see
below) in the presence of ABoxes.
Finally, we definer (K) = ((a(S) U f(S)), (c(A) U f(A))).

Theorem 3 LetK = (S, A) be aDLR knowledge-basé is satisfiable iff th&SHZ O-
KB ¢ (K) is satisfiable.

PROOF (sketch): The same techniques that were used in [2] can h@etito the DL
SHZQ, and extended to deal with ABox axioms. The only-if direatie straightfor-
ward. A modelZ of K can be transformed into a model fX) by introducing, for
every arityn with 2 < n < nmax and everyn-tuple of elementgl € (AZ)", a new
elementty that is linked to the elements @fby the functional relationg , .. ., f,. If
we interpretT; by A%, T,, by the reifications of all elements ifiZ, and, for everyw
that occurs in4, Q.,, by w”, then it is easy to show that we have constructed a model
of o(K).

The converse direction is more complicated since a mode(/6§ is not necessarily
tuple-admissiblgi.e., in general there may be distinct elementSthat are reifications
of the same tupld. In the “un-reification” of such a modat, would only appear once
which may conflict with assertions in tH2LR KB about the number of tuples in certain
relations. However, it can be shown that every satisfiabledKB) also has a tuple-
admissible model. It is easy to show that such a model, byr&ification”, induces a
model for the original KBC. O

We now have the machinery to transform a query containmexriti@m into one or
moreSHZQ schema and ABox satisfiability problems. In the FaCT systenaieady
have a decision procedure f8{ZQ schema satisfiability, and this can be straightfor-
wardly extended to deal with ABox axioms [22].

We have already argued why we believe our approach to bébfealtishould also
be mentioned, that our approach matches the known worstecasplexity of the prob-
lem, which was determined axBTIME-complete in [4]. Satisfiability of 847 O-KB
can be determined in@TIME.” All reduction steps can be computed in determinis-
tic polynomial time, with the exception of the reduction dsa Theorem 2, which
requires consideration of exponentially many mappings. fée every fixed mapping,
the reduction is polynomial, which yields that our approdehides query containment
in EXPTIME.

4 The FaCT System

It is claimed in Section 1 that one of the main benefits of oyragach is that it leads
to a practical solution to the query containment problenthia section we will sub-

stantiate this claim by presenting the results of a simppearent in which the FaCT
system is used to decide a query containment problem wiffeot$o the DWQ schema
mentioned in Section 1.

" This does not follow from the algorithm presented in [22]jettfocuses on feasibility rather
than worst-case complexity. It can be shown using a precatiopl strategy similar to the one
used in [26] together with the>@TIME-completeness afZ Q [15].



The FaCT system includes an optimised implementation oharsa satisfiability
testing algorithm for the DLSHZ Q. As the extension of FaCT to include the ABox
satisfiability testing algorithm described in [22] has net been completed, FaCT is
currently only able to test the satisfiability of a K&, .4) in the case where thd
contains a single axiom of the form:C (this is equivalent to testing the satisfiability
of the concept” w.r.t. the schem&). We have therefore chosen a query containment
problem that can be reduced taS&/Z QO KB satisfiability problem of this form using
the methodology described in Section 3.

The DWQ schema is derived from the integration of severaéioéed Entity-Re-
lationship (EER) schemas usifgLR axioms to define inter-schema constraints [7].
One of the schemas, called thaterpriseschema, represents the global concepts and
relationships that are of interest in the Data Warehouseagnfent of the enterprise
schema that will be relevant to the query containment exaisghown in Figure 2. A
total of 5 source schemas representing (portions of) adktal sources are integrated
with the enterprise schema usifi_R axioms to establish the relationship between
entities and relations in the source and enterprise schétimagesulting integrated
schema contains 48 entities, 29 relations and4®R axioms). For example, one of
the DLR axioms defining the relationship between the enterpriseraaehand the en-
tity “Business-Customer” in the source schema describirgjiess contracts is

Business-Customer (Company 3[$1](agreement
($2/3 : (Contract 3[$1](contract-companyl
($2/2 : Telecom-company)))).

This axiom states, roughly speaking, that a Business-Gestis a kind of Company
that has an agreement where the contract is with a Teleconpaoy.
As a result of this axiom, it is relatively easy to see thatghery

q1(x) + Business-Customer)
is contained in the query

g2(z) < agreemerttr, y1,y2) A Contracty;) A Servicdy,) A
contract-compar(y, ys) A Telecom-compariys)

with respect to the DWQ schentg writtenS |= ¢; C ¢».
The two queries can be transformed into the following (catga) canonicaD LR
ABoxes

~

Aq = {x:Business-Customet: P, }

Aqs = {{z, y1,y2):agreementy; :Contracty»:Service
(y1, y3):contract-company;: Telecom-company

whereP, is the representative concept farWe can now compact and collapdg, to
give an ABox{xz:Cy, }, where

Cy, =3[$1](agreemenu ($2/3 : P,,) 1M ($3/3 : P,,) M ($2/3 : Contracy N
($3/3 : Servicg M ($2/3 : (3[$1] contract-companyl ($2/2 : P,,) M
($2/2 : Telecom-company)).



Service

(0,n) (1.1)

Customer $1 agreement $2 Contract

Person Company

contract-compan

Telecom- (1.n)

company

Fig. 2. A fragment of the DWQ enterprise schema

As each of the place-holdefy, , P,, andP,, occurs only once in the ABox, they can
be replaced withr, andC,, can be simplified to give

C,, =3[$1](agreemen ($2/3 : Contracj 1 ($3/3 : Servicg M
($2/3 : (J[$1]contract-company ($2/2 : Telecom-company)).

We can now determine if the query containmént= ¢; C ¢-» holds by testing
the satisfiability of the KBS, A), whereA = {z:Business-Customer:P,, z:=C;, }.
Moreover,A can be compacted to gie::C'}, whereC' = Business-Customet P, M
-C,,, and the KB satisfiability problem can be decided by usingTFaitest the sat-
isfiability of the conceptr(C') w.r.t. the schema(S). Thus we haveS | ¢ C ¢ iff
o(C) is not satisfiable w.r.z(S).

The FaCT system is implemented in Common Lisp, and the tests performed
using Allegro CL Enterprise Edition 5.0 running under Red Haux on a 450MHz
Pentium 11l with 128Mb of RAM. Excluding the time taken to kb&he schema from
disk (60ms), FaCT takes only 60ms to determine #{&t) is not satisfiable w.r.tr(S).
Moreover, ifo(S) is first classified(i.e., the subsumption partial ordering of all named
concepts ino(S) is computed and cached), the time taken to determine thdismsa
fiability is reduced to only 20ms. The classification proaediiself takes 3.5s (312
satisfiability tests are performed at an averagedims per satisfiability test), but this
only needs to be done once for a given schema.

Although the above example is relatively trivial, it stidquires FaCT to perform
quite complex reasoning, the result of which depends on tesepce ofDLR inter-
schema constraint axioms; in the absence of such axioms ifethe case of a single



EER schema), reasoning should be even more efficient. Otealeciding arbitrary
query containment problems would, in general, requireA@bx reasoning. However,
the above tests still give a useful indication of the kind effprmance that could be ex-
pected: the algorithm for deciding{Z Q ABox satisfiability presented [22] is similar
to the algorithm implemented in FaCT, and as the number a¥iohaals generated by
the encoding of realistic query containment problems véltélatively small, extending
FaCT to deal with such problems should not compromise theodstrated empirical
tractability. Moreover, given the kind of performance eiteéd by FaCT, the limited
amount of additional non-determinism that might be introetlias a result of cycles in
the containing query would easily be manageable.

The results presented here are also substantiate our dlaintransformind® LR
satisfiability problems int&+7Z Q leads to greatly improved empirical tractability with
respect to the embedding technique described in Calvanetg4]. During the DWQ
project, attempts were made to classify the DWQ schema wsgigilar embedding
in the less expressiv®€HZF logic [19] implemented in an earlier version of the FaCT
system. These attempts were abandoned after several d@iofime had been spent
in an unsuccessful effort to solve a single satisfiabiliglppem. This is in contrast to the
3.5s taken by the ne&WHZ Q reasoner to perform the 312 satisfiability tests required to
classify the whole schema.

5 Discussion

In this paper we have shown how the problem of query contaimneder constraints
can be decided using a KB (schema plus ABox) satisfiabilitgetefor theSHZ QO
description logic, and we have indicated howS&ZQ schema satisfiability testing
algorithm can be extended to deal with an ABox. We have otitgtbabout conjunctive
queries, but extending the procedure to deal with disjonstiof conjunctive queries
is straightforward. The procedure for verifying containthbetween disjunctions of
conjunctive queries is not very different from the one diesat for simple conjunctive
queries. The main difference is that, although each cotigepart becomes an ABox
(as described in Section 3.1), the object representing tih@endisjunctive query is
a set of alternative ABoxes. This results in one more noe+danhistic step, whose
complexity is determined by the number of disjuncts appegin both queries. Full
details can be found in [20].

Although there is some loss of expressive power with resfethe framework
presented in [4] this seems to be acceptable when modeltsgical relational infor-
mation systems, where regular expressions are seldom used.

As we have shown in Section 4, the FaCT implementation ofYh& Q schema
satisfiability algorithm works well with realistic problesnand given that the number
of individuals generated by query containment problemkhlrelatively small, there
is good reason to believe that a combination of the ABox eimgpdnd the extended
algorithm will lead to a practical decision procedure foegucontainment problems.
Work is underway to test this hypothesis by extending theTFagstem to deal with
SHIQ ABoxes.



Bibliography

[1] S. Abiteboul, R. Hull, and V. VianuFoundations of databasesddison-Wesley,
1995.

[2] D. Calvanese.Unrestricted and Finite Model Reasoning in Class-Basedr&®ep
sentation Formalisms PhD thesis, Dipartimento di Informatica e Sistemistica,
Universita di Roma “La Sapienza”, 1996.

[3] D. Calvanese, G. De Giacomo, and M. Lenzerini. Struatwibjects: modeling
and reasoning. Ifroc. of DOOD’95 number 1013 in LNCS, pages 229-246.
Springer-Verlag, 1995.

[4] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the didaility of query
containment under constraints. Pnoc. of PODS’981998.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answegjugries using views
in description logics. IfProc. of KRDB'96 pages 6—10. CEUR, 1999.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, andR®sati. Source
integration in data warehousing. Rroc. of DEXA-98 pages 192-197. IEEE
Computer Society Press, 1998.

[7] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, andRBsati. Use of the
data reconciliation tool at telecom italia. DWQ deliveiabl.4.3, Foundations of
Data Warehouse Quality (DWQ), 1999.

[8] D. Calvanese, M. Lenzerini, and D. Nardi. Descriptiogitss for conceptual data
modeling. In Jan Chomicki and Gunter Saake, editoogjics for Databases and
Information Systempages 229-263. Kluwer Academic Publisher, 1998.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzddianiele Nardi, and
Riccardo Rosati. Description logic framework for inforioat integration. In
Proc. of KR-98 pages 2—-13, San Francisco, 1998. Morgan Kaufmann.

[10] T. Catarci and M. Lenzerini. Representing and usingrsthema knowledge in
cooperative information systemsournal for Intelligent and Cooperative Infor-
mation System®(4):375-399, 1993.

[11] Edward P. F. Chan. Containment and minimization of fiesconjunctive queries
in OODB's. InProc. of PODS’92pages 202-211. ACM Press, 1992.

[12] A. K. Chandra and P. M. Merlin. Optimal implementatiohconjunctive queries
in relational databases. Rroc. of 9th Annual ACM Symposium on the Theory of
Computing pages 77-90. Assoc. for Computing Machinery, 1977.

[13] C. Chekuri and A. Rajaraman. Conjunctive query content revisited. IrProc.
of ICDT-97, number 1186 in LNCS, pages 56—70. Springer-Verlag, 1997.

[14] G. De Giacomo. Decidability of Class-Based Knowledge Representation For
malisms PhD thesis, Dipartimento di Informatica e Sistemisticajvdrsita di
Roma “La Sapienza”, 1995.

[15] G. De Giacomo and M. Lenzerini. TBox and ABox reasoningipressive de-
scription logics. InProc. of KR'96 pages 316—327. Morgan Kaufmann, 1996.

[16] Giuseppe De Giacomo and Maurizio Lenzerini. What's inaggregate: foun-
dations for description logics with tuples and sets.Phoc. of IJCAI'95 pages
801-807. Morgan Kaufmann, 1995.



[17] M. J. Fischer and R. E. Ladner. Propositional dynamigdaf regular programs.
Journal of Computer and System Sciend&s194—-211, 1979.

[18] I. Horrocks. FaCT and iFaCT. IRroc. of DL'99 pages 133-135. CEUR, 1999.
[19] I. Horrocks and U. Sattler. A description logic with migitive and inverse roles
and role hierarchieslournal of Logic and Computatio®(3):385-410, 1999.

[20] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. r@Qumntainment us-
ing a DLR ABox. LTCS-Report 99-15, LUFG Theoretical Compugci-
ence, RWTH Aachen, Germany, 1999. See http://www-Itisimfatik.rwth-
aachen.de/Forschung/Reports.html.

[21] 1. Horrocks, U. Sattler, and S. Tobies. Practical re@sg for expressive descrip-
tion logics. InProc. of LPAR'99pages 161-180, 1999.

[22] I. Horrocks, U. Sattler, and S. Tobies. Reasoning witfividuals for the descrip-
tion logic shig. InProc. of CADE-17 number 1831 in LNCS, pages 482-496.
Springer-Verlag, 2000.

[23] D. S. Johnson and A. Klug. Testing containment of conjiwe queries under
functional and inclusion dependencidsurnal of Computer and System Sciences
28(1):167-189, 1984.

[24] A. Y. Levy and M.-C. Rousset. CARIN: A representatiomgaiage combining
horn rules and description logics. Proc. of ECAI'96 pages 323-327. John
Wiley, 1996.

[25] A. Schaerf. Reasoning with individuals in concept laages.Data and Knowl-
edge Engineeringl3(2):141-176, 1994.

[26] S. Tessaris and G. Gough. Abox reasoning with traresitbles and axioms. In
Proc. of DL'99 CEUR, 1999.



