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Abstract. While there has been a great deal of work on the developmestef
soning algorithms for expressive description logics, irstaases only Thox rea-
soning is considered. In this paper we present an algoritiredmbined Thox
and Abox reasoning in th8HZ Q description logic. This algorithm is of particu-
lar interest as it can be used to decide the problem of (ds¢dlsanjunctive query
containment w.r.t. a schema. Moreover, the realisatiomadfficient implemen-
tation should be relatively straightforward as it can beeblasn an existing highly
optimised implementation of the Thox algorithm in the Fa@3tem.

1 Motivation

A description logic (DL) knowledge base (KB) is made up of tparts, a termino-
logical part (the terminology or Thox) and an assertionat fthe Abox), each part
consisting of a set of axioms. The Thox asserts facts abmuteptysets of objects)
androles (binary relations), usually in the form of inclusion axiomehile the Abox
asserts facts aboirdividuals(single objects), usually in the form of instantiation ax-
ioms. For example, a Tbox might contain an axiom assertiagMian is subsumed by
Animal, while an Abox might contain axioms asserting that batkstotle andPlato
are instances of the concdgan and that the paifAristotle, Plato) is an instance of
the rolePupil-of.

For logics that include full negation, all common DL reasaiasks are reducible to
deciding KB consistency, i.e., determining if a given KB dtda non-empty interpreta-
tion[6]. There has been a great deal of work on the development afitigasalgorithms
for expressive DL$2; 12; 16; 11, but in most cases these consider only Tbox reasoning
(i.e., the Abox is assumed to be empty). With expressive detgrmining consistency
of a Thox can often be reduced to determining the satisfigluifia single concedi?;
23; 3, and—as most DLs enjoy the tree model property (i.e., if &ephhas a model,
then it has a tree model)—this problem can be decided usiableau-based decision
procedure.

The relative lack of interest in Abox reasoning can also aéred by the fact that
many applications only require Thox reasoning, e.g., agichl engineering15; 24
and schema integratidt0]. Of particular interest in this regard is the AHZ Q [18],
which is powerful enough to encode the lo@€R [10], and which can thus be used



for reasoning about conceptual data models, e.g., EntitgtRnship (ER) schem&g].
Moreover, if we think of the Thox as schemaand the Abox as (possibly incomplete)
data then it seems reasonable to assume that realistic ThoXdsenof limited size,
whereas realistic Aboxes could be of almost unlimited S&igen the high complexity

of reasoning in most DLE23; 7], this suggests that Abox reasoning could lead to severe
tractability problems in realistic applicatiofs.

However SHZQ Abox reasoning is of particular interest as it allol?§ R schema
reasoning to be extended to reasoning about conjunctivey quomtainment w.r.t. a
schemds8]. This is achieved by using Abox individuals to representaldes and con-
stants in the queries, and to enforce co-referefitds In this context, the size of the
Abox would be quite small (it is bounded by the number of Malga occurring in the
queries), and should not lead to severe tractability prable

Moreover, an alternative view of the Abox is that it provigesestricted form of
reasoning witmominals i.e., allowing individual names to appear in concdp®; 5;
1]. Unrestricted nominals are very powerful, allowing arduiyr co-references to be en-
forced and thus leading to the loss of the tree model propenig makes it much harder
to prove decidability and to devise decision proceduresdttidability ofSHZ QO with
unrestricted nominals is still an open problem). An Abox,tba other hand, can be
modelled by aforest a set of trees whose root nodes form an arbitrarily condecte
graph, where number of trees is limited by the number of iidldial names occurring
in the Abox. Even the restricted form of co-referencing jded by an Abox is quite
powerful, and can extend the range of applications for the f&lasoning services.

In this paper we present a tableaux based algorithm for oheritie satisfiability
of unrestrictedSHZQ KBs (i.e., ones where the Abox may be non-empty) that ex-
tends the existing consistency algorithm for Tboke® by making use of the forest
model property. This should make the realisation of an efficimplementation rela-
tively straightforward as it can be based on an existingligightimised implementation
of the Thox algorithm (e.g., in the FaCT systéh#]). A notable feature of the algo-
rithm is that, instead of making a unique name assumption. \&lf individuals (an
assumption commonly made in D[4]), increased flexibility is provided by allowing
the Abox to contain axioms explicitly asserting inequabtbetween pairs of individual
names (adding such an axiom for every pair of individual reimebviously equivalent
to making a unigue name assumption).

2 Preliminaries

In this section, we introduce the DEHZ Q. This includes the definition of syntax, se-
mantics, inference problems (concept subsumption ansfisdiiity, Abox consistency,
and all of these problems with respect to terminolog)ieand their relationships.
SHTQ is based on an extension of the well known RILC [24] to include tran-
sitively closed primitive roleg21]; we call this logicS due to its relationship with

! Although suitably optimised algorithms may make reasonmmgcticable for quite large
Aboxes[13].

2 We useterminologiesnstead of Thoxes to underline the fact that we allow for gaheoncept
inclusions axioms and do not disallow cycles.



the proposition (multi) modal logiB4 ) [23].2 This basic DL is then extended with
inverse rolesT), role hierarchies¥), and qualifying number restrictiong)j.

Definition 1. LetC be a set ofconcept nameandR . a set ofrole namesvith a subset
R, C R of transitive role namesThe set ofolesis R U {R~ | R € R}. To avoid
considering roles such aB~~, we define a functiolnv on roles such thalnv(R) =

~ if Ris arole name, anthv(R) = S'if R = S~. We also define a functiofrans
which returnstrue iff R is a transitive role. More preciselffrans(R) = true iff R €
R+ or |nv(R) € R+.

A role inclusion axiomis an expression of the forl®R C S, whereR and S are
roles, each of which can be inverserdle hierarchyis a set of role inclusion axioms.
For a role hierarchyR, we define the relatiorz to be the transitive-reflexive closure
of CoverR U {Inv(R) C Inv(S) | RC S € R}. Arole R is called asub-role(resp.
super-role) of aroleS' if R =S (resp.S £ R). Arole issimpleif it is neither transitive
nor has any transitive sub-roles.

The set oSHZ Q-conceptss the smallest set such that

— every concept name is a concept, and,
— if C, D are conceptsR is arole,S is a simple role, and is a nonnegative integer,
thenC 1 D,CuUD,-C,VYR.C,3R.C, >nS.C, and<nS.C are also concepts.

A general concept inclusion axiof@Cl) is an expression of the forai C D for two
SHIQ-concepts and D. Aterminologyis a set of GCls.

LetI = {a,b,c...} be a set ofindividual namesAnassertioris of the forma: C,
(a,b): R, ora # bfora,b € 1, a (possibly inverse) rol&, and aSHZ Q-conceptC.
An Abox is a finite set of assertions.

Next, we define semantics 6fH7Z Q and the corresponding inference problems.

Definition 2. AninterpretationZ = (AZ,-%) consists of a set\”, called thedomain
of Z, and avaluation-Z which maps every concept to a subset\dfand every role to
a subset ofA” x AT such that, for all concept€', D, roles R, S, and non-negative
integersn, the following equations are satisfied, whefd denotes the cardinality of a
setM and (R%)™ the transitive closure oR”:

RT = (RT)* foreachroleR € R,

(R = {{z,y) | ( r) € RT} (inverse roles)
(cnbD)Y =cTnD? (conjunction)
(CubD)t =ctubp? (disjunction)
(=C)t = AT\ C? (negation)
(3R.C)T = {z | y.(z,y) € RT andy € C*} (exists restriction)
(VR.C)t = {z | Vy.{x,y) € RT impliesy € C*} (value restriction)
(>nR. C’)I ={z|t{y.(z,y) € RT andy € CT} >n}  (>-number restriction)

(<nR.C)T = {z | t{y.(z,y) € RT andy € CT} <n}  (<-number restriction)
An interpretationZ satisfiesa role hierarchyR iff RZ C S” foreachR C S in R.
Such an interpretation is calledmodelof R (writtenZ = R).

% The logic S has previously been called £C -+, but this becomes too cumbersome when
adding letters to represent additional features.



An interpretation satisfiesa terminology7 iff C* C D for each GCIC C D in
T. Such an interpretation is calledrmodelof 7 (writtenZ = T).

A conceptC' is calledsatisfiablewith respect to a role hierarch® and a termi-
nology 7 iff there is a model of R and 7 with CZ # (). A conceptD subsumes
conceptC' w.rt. R and 7 iff CZ C D? holds for each model of R and 7. For an
interpretationZ, an element € A7 is called aninstanceof a concept’ iff z € C7.

For Aboxes, an interpretation maps, additionally, eachividal « € I to some
elemenu’ € A”. Aninterpretatiori satisfies an assertion

a:C iff o € CZ,
(a,b):R iff (a®,bT) € R, and
a#b iff ol £ b

An AboxA is consistentv.r.t. R and 7 iff there is a mode¥ of R and7 that satisfies
each assertion .

For DLs that are closed under negation, subsumption anddtisfiability can be mutu-
ally reducedC C D iff C1—D is unsatisfiable, an@' is unsatisfiable ifC C An-A
for some concept namé. Moreover, a concepf is satisfiable iff the AboXa:C} is
consistent. Itis straightforward to extend these redustto role hierarchies, but termi-
nologies deserve special care:[l 23; 3, theinternalisationof GCls is introduced,
a technigue that reduces reasoning w.r.t. a (possibly@ytiminology to reasoning
w.r.t. the empty terminology. F&HZ Q, this reduction must be slightly modified. The
following Lemma shows how general concept inclusion axicarsbeinternalisedus-
ing a “universal” roleU, that is, a transitive super-role of all roles occurring/irand
their respective inverses.

Lemma 1. LetC, D be conceptsd an Abox,7 a terminology, andk a role hierarchy.
We define

Cr: -C; U D;.

T CiCDseT

LetU be a transitive role that does not occurmn C, D, A, or R. We set
Ry :=RU{RCU,Inv(R) CU | RoccursinT,C, D, A, orR}.

— C is satisfiable w.r.t7 andR iff C M C+ N YU.Cr is satisfiable w.r.tRy.

— D subsumes§’ with respect to/ andR iff C 1 —D 1 C+NYU.C'r is unsatisfiable
W.Lt. Ry.

— Alis consistent with respect ® and 7 iff AU {a:C7 NVU.C'r | a occurs inA}
is consistent W.rtRy.

The proof of Lemma 1 is similar to the ones that can be fount28y 2. Most
importantly, it must be shown that, (a) if8HZ Q-conceptC is satisfiable with respect
to a terminology/ and a role hierarchR, thenC, 7 have aconnectednodel, i. e., a
model where any two elements are connect by a role path ocvse tioles occuring i’
and7, and (b) ify is reachable from via a role path (possibly involving inverse roles),
then(z,y) € UZ. These are easy consequences of the semantics and theatefifit
U.



Theorem 1. Satisfiability and subsumption 8447 Q-concepts w.r.t. terminologies and
role hierarchies are polynomially reducible to (un)satgfility of SHZQ-concepts
w.r.t. role hierarchies, and therefore to consistencyS8i{7Z Q-Aboxes w.r.t. role hier-
archies.

Consistency o6 HZ Q-Aboxes w.r.t. terminologies and role hierarchies is polyn
mially reducible to consistency 6fHZ Q-Aboxes w.r.t. role hierarchies.

3 A SHIQ-Abox Tableau Algorithm

With Theorem 1, all standard inference problemsS§@tZ Q-concepts and Aboxes can
be reduced to Abox-consistency w.r.t. a role hierarchyhinfollowing, we present a
tableau-based algorithm that decides consistency?¢f O-Aboxes w.r.t. role hierar-
chies, and therefore all oth8#HZ Q inference problems presented.

The algorithm tries to construct, for&HZ Q-Abox A, a tableau fot4, that is, an
abstraction of a model ofl. Given the notion of a tableau, it is then quite straightfor-
ward to prove that the algorithm is a decision procedure fomAconsistency.

3.1 A Tableau for Aboxes

In the following, if not stated otherwis€;, D denotaSHZ Q-conceptsR arole hierar-
chy, A an Abox,R 4 the set of roles occurring il andR together with their inverses,
andI 4 is the set of individuals occurring 4.

Without loss of generality, we assume all concepisccurring in assertions: C' €
A to be in NNF, that is, negation occurs in front of concept nauwm@y. AnySHZ Q-
concept can easily be transformed into an equivalent onéNif by pushing negations
inwards using a combination of DeMorgan'’s laws and the falhg equivalences:

-(<nR.C) = 2(n+1)R.C =(2nR.C) = <(n—-1)R.C where
<(-1)R.C:= An-A forsomed e C

For a concepf’ we will denote the NNF of=C' by ~C'. Next, for a concepf, clos(C)
is the smallest set that contaiGsand is closed under sub-concepts andWe use
clos(A) := J,ce4 clos(C) for the closureclos(C') of each concept’ occurring inA.
It is not hard to show that the size dbs(.4) is polynomial in the size ofd.

Definition 3. T = (S, 4, &,7) is atableaufor A w.r.t. R iff

— S is a non-empty set,

— L :S — 29s(4) maps each element Bito a set of concepts,

— &: R4 — 2575 maps each role to a set of pairs of elementS jrand
— J:14 — S maps individuals occurring i to elements ir$.

Furthermore, for alls, ¢t € S, C, Cy,C> € clos(A), andR, S € R4, T satisfies:

(P1) if C € L(s), then-C ¢ L(s),
(P2) if O, M Oy € L(s), thenCy € L(s) andCs € L(s),



(P3) ifCiUCy € L(S), thenC; € L(S) orCsy € L(S),

(P4) ifVS.C € L(s) and(s,t) € E(S), thenC € L(¢),

(P5) if 3S.C € L(s), then there is someec S such that(s,t) € £(S) andC € L(t),

(P6) if VS.C € L(s) and(s,t) € E(R) for someR E S with Trans(R), thenVR.C €

L),

(P7) (z,y) € E(R) iff (y,z) € E(Inv(R)),

(P8) if (s,t) € E(R) andR = S, then(s,t) € £(S),

(P9) if <nS.C € L(s), theniST(s,C) < n,
(P10) if >nS.C € L(s), thentST(s,C) > n,
(P11) if (> n S C) € L(s) and(s, t) € E(S) thenC € L(t) or ~C € L(t),
(P12) ifa:C € A, thenC € L(J(a)),
(P13) if (a,b):R € A, then(J(a),J(b)) € E(R),
(P14) ifa # b € A, thenI(a) # I(b),

where is a place-holder for both< and >, and ST (s,C) == {t € S | (s,t) €
&(S)andC € L(t)}.

Lemma 2. ASHZO-AboxA is consistent w.r.tR iff there exists a tableau fod w.r.t.
R.

Proof: For theif direction, if T = (S,4L, &,7) is a tableau fotd w.r.t. R, a model
T = (A%, 1) of A andR can be defined as follows:

AT =8
for concept names Ainlos(A) : AT := {s| A € L(s)}
forindividual names: € I:  a” := J(a)
E(R)™ if Trans(R)

. z .
forrolenameR €e R: R* := {S(R) U PL otherwise
P ER,P#R

where€(R)T denotes the transitive closure&(fR). The interpretation of non-transitive
roles is recursive in order to correctly interpret those-transitive roles that have a
transitive sub-role. From the definition & and @8), it follows that, if (s, ) € S,
then either(s, t) € £(S) or there exists a patts, s1), (s1, $2), - .. , {(sn,t) € E(R) for
someR with Trans(R) andR ES.

Due to P8) and by definition ofZ, we have thaf is a model ofR.

To prove thatZ is a model of4, we show that” € L(s) impliess € C7 for any

s € S. Together with P12), (P13), and the interpretation of individuals and roles, this
implies thatZ satisfies each assertion.ihy This proof can be given by induction on the
length||C|| of a conceptC' in NNF, where we count neither negation nor integers in
number restrictions. The only interesting cas€'is VS.E: lett € S with (s, t) € S7.
There are two possibilities:

— (s,ty € E(S). Then P4) impliesE € L(t).

— (s,t) & &(S). Then there exists a patB, s1), (s1,2),..., (sn,ty € E(R) for
someR with Trans(R) andR = S. Then @6) impliesVR.E € L(s;) forall 1 <
i < n, and P4) impliesE € L(t).



In both cased, € E” by induction and hencee C7.

For the converse, fof = (AZ,.T) a model of A w.rt. R, we define a tableau
T =(S,L,¢&,7) for AandR as follows:

S:=AT &(R):=R', L(s):={Ceclos(A)|secC?}, and I(a)=a’.

It is easy to demonstrate thatis a tableau foD. O

3.2 The Tableau Algorithm

In this section, we present a completion algorithm thastt@construct, for an input
Abox A and a role hierarchR, a tableau fotd w.r.t. R. We prove that this algorithm
constructs a tableau fot andR iff there exists a tableau fo4 andRR, and thus decides
consistency o6'HZ Q Aboxes w.r.t. role hierarchies.

Since Aboxes might involve several individuals with aréitr role relationships be-
tween them, the completion algorithm works ofogestrather than on &ee, which is
the basic data structure for those completion algorithno&litey satisfiability of a con-
cept. Such aforestis a collection of trees whose root nagkesspond to the individuals
present in the input Abox. In the presence of transitivesidéockingis employed to
ensure termination of the algorithm. In the additional pre of inverse roles, blocking
is dynamigi.e., blocked nodes (and their sub-branches) can be wikdidicand blocked
again later. In the additional presence of number restristpairs of nodes are blocked
rather than single nodes.

Definition 4. Acompletion fores# for a SHZQ AboxA is a collection of trees whose
distinguished root nodes are possibly connected by edgasanbitrary way. Moreover,
each node: is labelled with a sef () C clos(.A) and each edgér, y) is labelled with
a setl((z,y)) C R4 of (possibly inverse) roles occurring id. Finally, completion
forests come with an explicit inequality relatigh on nodes and an explicit equality
relation = which are implicitly assumed to be symmetric.

If nodesz andy are connected by an edde, y) with R € L({(z,y)) andR ES,
theny is called anS-successoof z andz is called anlnv(S)-predecessauf y. If y is
an S-successor or ainv(S)-predecessor of, theny is called anS-neighbour ofr. A
nodey is a successor (resp. predecessor or neighbouy)ibit is an S-successor (resp.
S-predecessor of-neighbour) ofy for some roleS. Finally, ancestois the transitive
closure ofpredecessor

For arole S, a concept and a node: in F we defineS” (z, C) by

S%(x,C) := {y | y is S-neighbour ofr andC' € L(y)}.

A node isblockediff it is not a root node and it is either directly or indiregtl
blocked. A node: is directly blockediff none of its ancestors are blocked, and it has
ancestors’, y andy’ such that

1. y is not a root nodexind
2. xis a successor af’ andy is a successor gf and



3. L(z) = L(y) andL(z') = L(y') and
4. L({z', ) = LY, ).

In this case we will say that blocks:z.

A nodey is indirectly blockedff one of its ancestors is blocked, or it is a successor
of a noder and L ((z,y)) = 0; the latter condition avoids wasted expansions after an
application of theg<-rule.

Given aSHZ Q-Abox.A and a role hierarchyR, the algorithm initialises a comple-
tion forest¥ 4 consisting only of root nodes. More precisefy, contains a root node
z{ for each individuak; € I4 occurring in A, and an edgéz}, =) if A contains an
assertion(a;, a;) : R for someR. The labels of these nodes and edges and the relations
# and= are initialised as follows:

L(ah) = {C | a;:C € A),
L((eh o)) = {R] (ar,0)) : R € A},

zf # ) iff a; #a; € A and

the =-relation is initialised to be emptyF 4 is then expanded by repeatedly applying
the rules from Figure 1.

For a nodez, L(z) is said to contain alashif, for some concept namé € C,
{A,-~A} C L(z), or if there is some conceptnS.C' € L(z) andz hasn + 1 S-
neighboursyg, . .., y, WithC' € L(y;) andy; # y; forall 0 < i < j < n.Acompletion
forest isclash-fredf none of its nodes contains a clash, and ic@mpleteif no rule
from Figure 1 can be applied to it.

For a SHZ Q-AboxA, the algorithm starts with the completion foresj;. It applies
the expansion rules in Figure 1, stopping when a clash occamsl answers A4 is
consistent w.r.tR” iff the completion rules can be applied in such a way thatythe
yield a complete and clash-free completion forest, ardddhd is inconsistent w.r.R”
otherwise.

Since both the<-rule and theg,.-rule are rather complicated, they deserve some
more explanation. Both rules deal with the situation wheceracept<nR.C' € L(z)
requires the identification of tw&-neighboursg,, z of z that containC' in their labels.
Of coursey andz may only be identified ify # z is not asserted. If these conditions
are met, then one of the two rules can be applied. Jrele deals with the case where
at least one of the nodes to be identified, namelg not a root node, and this can lead
to one of two possible situations, both shown in Figure 2. Tipper situation occurs
when bothy andz are successors af. In this case, we add the label pfto that of
z, and the label of the edde, y) to the label of the edgér, z). Finally, z inherits all
inequalities fromy, andL((z, y)) is set to), thus blockingy and all its successors.

The second situation occurs when bgtland z are neighbours of;, but z is the
predecessor af. Again,L(y) is added tdl(z), but in this case the inverse 6{ (x, y))
is added tol({z, z)), because the edde, y) was pointing away fronx: while (z, z)
points towards it. Againz inherits the inequalities from andL({z, y)) is set tof).

The <, rule handles the identification of two root nodes. An exangblihe whole
procedure is given in the lower part of Figure 2. In this capegial care has to be taken
to preserve the relations introduced into the completioasbdue to role assertions in



M-rule:

if 1. C1 N C> € L(z), z is not indirectly blocked, and
2. {01, Cz} g L(I)
thenL(z) — L(z) U {C1, C>}

U-rule:

if 1. C1 U C> € L(x), z is not indirectly blocked, and
2.{C,C}NL(z)=10
thenL(z) — L(x) U {E} for someE € {C1, C>}

J-rule:

if 1. 35.C € L(z), z is not blocked, and
2. z has noS-neighboury with C € L(y)
then create a new nodewith L((z,y)) := {S} andL(y) := {C}

V-rule:

if 1.VS.C € L(z), z is not indirectly blocked, and
2. there is arf-neighboury of z with C' ¢ L(y)
thenL(y) — L(y) U {C}

V-rule:

if 1. VS.C' € L(z), z is not indirectly blocked, and
2. there is somé with Trans(R) andR & S,
3. there is ark-neighboury of z with VR.C ¢ L(y)
thenL(y) — L(y) U {VR.C}

chooserule:

if 1. < n S C) € L(z), z is not indirectly blocked, and
2. there is arb-neighboury of z with {C, ~C} N L(y) =0
thenL(y) — L(y) U {E} for someE € {C,~C}

if 1. >nS.C € L(z), z is not blocked, and
2. there are n@ S-neighbourgyy, . .., y, such thalC € L(y;)
andy; #y;forl1<i<j<n
then create: new nodegyy, . .., y» With L({(z, y;)) = {S},
L(yi) ={C}, andy; # y;forl <i <j<n.

if 1. <nS.C € L(zx), z is not indirectly blocked, and
2.48% (z,C) > n, there areS-neighboursy, z of z with noty # z,
y is neither a root node nor an ancestoepandC € L(y) N L(z),
then 1.L(z) — L(z) U L(y) and
2. if z is an ancestor of
then L((z, z)) — L((z,2)) U Inv(L((z,1)))
else L((z,z)) — L((z,z)) UL((z,y))
3.L((z,y)) — 0
4. Setu, # z for all uw with u # y

<r-rule:

if 1. <nS.C € L(z), and
2.48% (x,C) > n and there are tw§-neighboursy, = of =
which are both root nodes§; € L(y) N L(z), and noty # z
then 1.L(z) — L(z) U L(y) and
2. For all edgesy, w):
i. if the edge(z, w) does not exist, create it with({z, w)) := 0
ii. L((z,w)) — L((z,w}) UL((y, w))
3. For all edgesw, y):
i. if the edge({w, z) does not exist, create it with ((w, z)) := 0
ii. L((w, 2)) — L((w, 2)) UL((w, y))

4. Setl(y) := P and remove all edges to/fropn
5. Setu # z for all u with u # y.
6. Sety = z.

Fig. 1. The Expansion Rules f&8HZ Q-Aboxes.




<-rule
z @ — = z @
L((z,z) X((%W) il((%Z))UL((yK X
oLz ,eLw @ L(2) U L(y),® L(y)
s j N [N e i '\ R
z @ L(2) z/.L(Z) U L(y)
<-rule
S L=, 2)) v jﬂ((z,@)Uan(L((r,y)))
’ 14
z @ z @
L((z,v)) 0
v O LW 4y O L(y)
4 X ¥ X
'u)1.
St £(Gwn,2)) U L((wi, )
z @
L((z,2)) ULz, y))
LOL(:UL(y) @0
£((y, wa)) Ly, w2))
’LU2. 'UJZ.

Fig. 2. Effect of the<- and the<,-rule

the Abox, and to memorise the identification of root nodeis {thll be needed in order
to construct a tableau from a complete and clash-free cdioplforest). Theg,. rule
includes some additional steps that deal with these isEirstly, as well as adding (y)
to L(z), the edges (and their respective labels) betweand its neighbours are also
added toz. Secondly£(y) and all edges going from/tpare removed from the forest.
This will not lead to dangling trees, because all neighbofigsbecame neighbours of
z in the previous step. Finally, the identificatiomypfndz is recorded in the- relation.

Lemma 3. Let.A be aSHZ Q-Abox andR a role hierarchy. The completion algorithm
terminates when started fot and R.

Proof: Letm = ficlos(A), n = |R4|, andnpnax := max{n | >nR.C' € clos(A)}.
Termination is a consequence of the following propertiethefexpansion rules:



1. The expansionrules never remove nodes from the foreswoiily rules that remove
elements from the labels of edges or nodes arecthend<.-rule, which sets them
to (). If an edge label is set t by the<-rule, the node below this edge is blocked
and will remain blocked forever. Th€,.-rule only sets the label of a root node
to (), and after thisg’s label is never changed again since all edges to/froane
removed. Since no root nodes are generated, this removabmapappen a finite
number of times, and the new edges generated by thaile guarantees that the
resulting structure is still a completion forest.

2. Nodes are labelled with subsetsctifs(.4) and edges with subsets Bf4, so there
are at mosR2™" different possible labellings for a pair of nodes and an edge
Therefore, if a pathp is of length at leas2?>™", the pair-wise blocking condition
implies the existence of two nodesy on p such thaty directly blocksy. Since a
path on which nodes are blocked cannot become longer, pagle ngth at most
22mn.

3. Only the3- or the >-rule generate new nodes, and each generation is triggered
by a concept of the formR.C or >nR.C in clos(A). Each of these concepts
triggers the generation of at most,., successorg;: note that if the<- or the <,.-
rule subsequently causég(z, y;)) to be changed t@, thenz will have somek-
neighbour with £(z) D L(y). This, together with the definition of a clash, implies
that the rule application which led to the generation,ofill not be repeated. Since
clos(A) contains a total of at most 3R.C', the out-degree of the forest is bounded
by mnmaxn. m|

Lemma 4. Let A be aSHZ Q-Abox andR a role hierarchy. If the expansion rules can
be applied ta4d andR such that they yield a complete and clash-free completiastp
thenA has a tableau w.r.tR.

Proof: Let F be a complete and clash-free completion forest. The definit a tableau
T = (S,L,&,9) from F works as follows. Intuitively, an individual i§ corresponds
to apathin F from some root node to some node that is not blocked, and vguels
only via non-root nodes.

More precisely, gpath is a sequence of pairs of nodes Bfof the formp =
[%,...,ﬁ—,:]. For such a path we defin&il(p) := z, andTail'(p) := z!,. With

0
Tn n ZTn . - B
[p|Tj:], we denote the path;—,z, e, i—,ﬂ, z,ﬂ:i]. The setPaths(F) is defined induc-

tively as follows:

— For root nodes:{ of F, [%] € Paths(F), and
— For a patlp € Paths(F) and a node in F:
e if 2 is a successor ofail(p) andz is neither blocked nor a root node, then
[p|%] € Paths(F), or
e if, for some nodey in F, y is a successor ofail(p) and z blocksy, then
[p|Z] € Paths(F).

Please note that, since root nodes are never blocked, ntivearélocking other nodes,
the only place where they occur in a path is in the first placarddver, by construction



of Paths(F), if p € Paths(F), thenTail(p) is not blocked,Tail(p) = Tail'(p) iff
Tail'(p) is not blocked, and.(Tail(p)) = L(Tail'(p)).
We define atableall = (S, L, &,7) as follows:

S = Paths(F)
L(p) = L(Tail(p))
E(R)={(p,[p|F]) € S x S |2’ is anR-successor oTail(p) } U
{(lal37],9) € S x S | 2’ is anlnv(R)-successor oTail(q) } U
{{[$].[£]) € S x S | =,y are root nodes, anglis ank-neighbour ofr }
(@) [2—?] if 2! is a root node i with L (zf) # 0
j a;) = 9 . . . . .
[z—g] if L(z}) =0,z arootnode inF with L(z}) # 0 andz} =

Please note that(z) = ) implies thatz is a root node and that there is another root
nodey with L(y) # § andz = y. We show thaf is a tableau foD.

— T satisfieqP1) becauseF is clash-free.

— (P2) and(P3) are satisfied by{" becauseF is complete.

— For(P4), letp,q € SwithVR.C € L(p), (p,q) € E(R). If ¢ = [p| 7], thenz' is an
R-successor ofail(p) and, due to completenessBfC € L(z') = L(z) = L(q).

If p = [¢|=7], thenz' is anlnv(R)-successor ofail(g) and, due to completeness of
F,C € L(Tail(q)) = L(g). If p=[2] andq = [%] for two root nodesg, z, theny

is anR-neighbour ofz, and completeness ¢t yieldsC € L(y) = L(q). (P6)and
(P11) hold for similar reasons.

— For (P5), let3R.C € L(p) andTail(p) = z. Sincez is not blocked andF com-
plete,z has some&z-neighboury with C' € L(y).

e If y is a successor af, theny can either be a root node or not.

x If y is not a root node: if is not blocked, thery := [p|%] € S;ifyis
blocked by some nods, theng := [p|Z] € S.

x If y is a root node: sincg is a successor af, z is also a root node. This
impliesp =[] andg = [£] € S.

e z is anlnv(R)-successoof y, then either

* p = [q];7] with Tail(g) = y.

* p = [q]27] with Tail(g) = u # y. Sincez only has one predecessar,
is not the predecessor af This impliesz # z', z blocksz’, andu is
the predecessor af due to the construction d¥aths. Together with the
definition of the blocking condition, this implie&((u, z')) = L((y, z))
as well asC(u) = L(y) due to the blocking condition.

* p = [2] with 2 being a root node. Henggis also a root node ang= [%].

In any of these case&, q) € E(R) andC € L(q).

— (P7) holds because of the symmetric definition of the mapiing

— (P8)is due to the definition oRR-neighbours and-successor.

— SupposgP9) were not satisfied. Hence there is somes S with (<nS.C) €
L(p) andtST(p,C) > n. We will show that this implie$S” (Tail(p),C) > n,
contradicting either clash-freeness or completenesg.dfet z := Tail(p) and
P := ST(p,C). We distinguish two cases:



¢ P contains only paths of the for{mﬁ] and[ﬂg-é]. ThengP > n is impossible
Zo

since the functioail’ is injective onP: if we assume that there are two distinct

pathsg;,q2 € P andTail'(¢;) = Tail'(¢2) = ¥/, then this implies that eacf

is of the formg; = [p| %] org; = [g—:]. Fromq, # gz, we have thay; = [p| ;]
holds for some € {1,2}. Since root nodes occur only in the beginning of
paths andy; # g2, we havey; = [p|(y1,y')] andgz = [pl(y2,y')]. If y' is not
blocked, theny; = 3’ = y», contradictingy; # ¢». If ¥’ is blocked inF, then
bothy, andy. blocky’, which impliesy; = ¥», again a contradiction. Hence
Tail' is injective onP and thusfP = £ Tail'(P). Moreover, for each’ €
Tail'(P), y' is anS-successor af andC € L(y'). This impliestS* (z,C) >
n.

¢ P contains a patly wherep = [q¢|-7]. Obviously, P may only contain one
such path. As in the previous caskil’ is an injective function on the set
P':= P\ {q}, eachy’ € Tail'(P’) is anS-successor of, andC € L(y') for
eachy’ € Tail'(P'). Letz := Tail(¢q). We distinguish two cases:

x x = x'. Hencez is not blocked, and thus is anInv(S)-successor of.
SinceTail'(P') contains only successors ofwe have that ¢ Tail' (P')
and, by constructior, is an.S-neighbour ofr with C' € L(z).

x x # z'. This implies thatz’ is blocked byz and thatz’ is anlnv(S)-
successor of. Due to the definition of pairwise-blocking this implies tha
x is anlnv(S)-successor of some nodewith L(u) = L(z). Again,u ¢
Tail'(P') and, by constructiony is anS-neighbour ofr andC' € L(u).

— For (P10), let (=nS.C) € L(p). Hence there are S-neighboursy,...,y, of
x = Tail(p) in F with C' € L(y;). For eachy; there are three possibilities:

e y; is anS-successor af andy; is not blocked inF. Theng; := [p 5—] ory; is
arootnode ang; := [%]isinS.

e y; is anS-successor of andy; is blocked inF by some node. Theng; =
[p|;]is in S. Since the same may block several of thg;s, it is indeed nec-
essary to includg; explicitly into the path to make them distinct.

e 1 is anlnv(S)-successor of;. There may be at most one sughif z is not
a root node. Hence either = [g;| 7] with Tail(g;) = y;, orp = [Z] and
4 = [%]-

Hence for eachy; there is a different path; in S with S € L({p,q;}) andC €
L(q;), and thugST (p,C) > n.

— (P12)is due to the fact that, when the completion algorithm iststhfor an Abox
A, the initial completion foresE 4 contains, for each individual nanag occurring
in A, a root noder) with L(z{) = {C € clos(A) | a;: C € A}. The algorithm
never blocks root individuals, and, for each root nagewvhose label and edges
are removed by the,-rule, there is another root nodg with z§ = 2 and{C €
clos(A) | a;:C € A} C L(x)). Together with the definition o, this yields P12).
(P13)is satisfied for similar reasons.

— (P14)is satisfied because tkg.-rule does not identify two root node$, y2 when
x} # yi holds. O




Lemma5. Let A be aSHZQ-Abox andR a role hierarchy. IfA has a tableau w.r..
R, then the expansion rules can be applieddt@nd R such that they yield a complete
and clash-free completion forest.

Proof: LetT = (S,L,&,J) be a tableau ford andR. We useT to trigger the ap-
plication of the expansion rules such that they yield a cetiquh forestF that is both
complete and clash-free. To this purpose, a functismused which maps the nodes of
F to elements 08. The mappingr is defined as follows:

— For individualsa; in A, we definer(z}) := I(a;).

— If #(z) = s is already defined, and a succesgaf = was generated fatR.C' €
L(xz), thenm(y) = ¢ for somet € S with C' € L(t) and(s,t) € E(R).

— If m(z) = sis already defined, and successgrsf » were generated fognR.C' €
L(z), thenm(y;) = t; for n distinctt; € Swith C € L(t;) and(s, t;) € E(R).

Obviously, the mapping for the initial completion forest fd andR satisfies the fol-
lowing conditions:

L(z) € L(r(x)), }
if y is anS-neighbour of, then(r(z), 7(y)) € £(S), and
x # yimpliesn(z) # 7 (y).

(+)

It can be shown that the following claim holds:

CLAIM : Let F be generated by the completion algorithm foandR and letr satisfy
(x). If an expansion rule is applicable 1B, then this rule can be applied such that it
yields a completion forest’ and a (possibly extended)that satisfy(x).

As a consequence of this clainRX), and P9), if A andR have a tableau, then the
expansion rules can be appliedfoandR such that they yield a complete and clash-
free completion forest. O

From Theorem 1, Lemma 2, 3 4, and 5, we thus have the folloviiegrem:

Theorem 2. The completion algorithm is a decision procedure for thesistency of
SHZQ-Aboxes and the satisfiability and subumption of concepts rspect to role
hierarchies and terminologies.

4 Conclusion

We have presented an algorithm for deciding the satisfigloifiSH7 Q KBs where the
Abox may be non-empty and where the uniqueness of individarales is not assumed
but can be asserted in the Abox. This algorithm is of pardicimterest as it can be used
to decide the problem of conjunctive query containmentvarschem#17].

An implementation of the&HZ Q Tbox satisfiability algorithm is already available
in the FaCT systeriil4], and is able to reason efficiently with Thoxes derived froel-re
istic ER schemas. This suggests that the algorithm preséete could form the basis
of a practical decision procedure for the query containrpeaiblem. Work is already
underway to test this conjecture by extending the FaCT systith an implementation
of the new algorithm.
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