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Abstract. While there has been a great deal of work on the development ofrea-
soning algorithms for expressive description logics, in most cases only Tbox rea-
soning is considered. In this paper we present an algorithm for combined Tbox
and Abox reasoning in theSHIQ description logic. This algorithm is of particu-
lar interest as it can be used to decide the problem of (database) conjunctive query
containment w.r.t. a schema. Moreover, the realisation of an efficient implemen-
tation should be relatively straightforward as it can be based on an existing highly
optimised implementation of the Tbox algorithm in the FaCT system.
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1 Motivation

A description logic (DL) knowledge base (KB) is made up of twoparts, a termino-
logical part (the terminology or Tbox) and an assertional part (the Abox), each part
consisting of a set of axioms. The Tbox asserts facts aboutconcepts(sets of objects)
androles (binary relations), usually in the form of inclusion axioms, while the Abox
asserts facts aboutindividuals(single objects), usually in the form of instantiation ax-
ioms. For example, a Tbox might contain an axiom asserting thatMan is subsumed by
Animal, while an Abox might contain axioms asserting that bothAristotle andPlato
are instances of the conceptMan and that the pairhAristotle;Platoi is an instance of
the rolePupil-of.

For logics that include full negation, all common DL reasoning tasks are reducible to
deciding KB consistency, i.e., determining if a given KB admits a non-empty interpreta-
tion [6]. There has been a great deal of work on the development of reasoning algorithms
for expressive DLs[2; 12; 16; 11], but in most cases these consider only Tbox reasoning
(i.e., the Abox is assumed to be empty). With expressive DLs,determining consistency
of a Tbox can often be reduced to determining the satisfiability of a single concept[2;
23; 3], and—as most DLs enjoy the tree model property (i.e., if a concept has a model,
then it has a tree model)—this problem can be decided using a tableau-based decision
procedure.

The relative lack of interest in Abox reasoning can also be explained by the fact that
many applications only require Tbox reasoning, e.g., ontological engineering[15; 20]
and schema integration[10]. Of particular interest in this regard is the DLSHIQ [18],
which is powerful enough to encode the logicDLR [10], and which can thus be used



for reasoning about conceptual data models, e.g., Entity-Relationship (ER) schemas[9].
Moreover, if we think of the Tbox as aschemaand the Abox as (possibly incomplete)
data, then it seems reasonable to assume that realistic Tboxes will be of limited size,
whereas realistic Aboxes could be of almost unlimited size.Given the high complexity
of reasoning in most DLs[23; 7], this suggests that Abox reasoning could lead to severe
tractability problems in realistic applications.1

However,SHIQ Abox reasoning is of particular interest as it allowsDLR schema
reasoning to be extended to reasoning about conjunctive query containment w.r.t. a
schema[8]. This is achieved by using Abox individuals to represent variables and con-
stants in the queries, and to enforce co-references[17]. In this context, the size of the
Abox would be quite small (it is bounded by the number of variables occurring in the
queries), and should not lead to severe tractability problems.

Moreover, an alternative view of the Abox is that it providesa restricted form of
reasoning withnominals, i.e., allowing individual names to appear in concepts[22; 5;
1]. Unrestricted nominals are very powerful, allowing arbitrary co-references to be en-
forced and thus leading to the loss of the tree model property. This makes it much harder
to prove decidability and to devise decision procedures (the decidability ofSHIQ with
unrestricted nominals is still an open problem). An Abox, onthe other hand, can be
modelled by aforest, a set of trees whose root nodes form an arbitrarily connected
graph, where number of trees is limited by the number of individual names occurring
in the Abox. Even the restricted form of co-referencing provided by an Abox is quite
powerful, and can extend the range of applications for the DLs reasoning services.

In this paper we present a tableaux based algorithm for deciding the satisfiability
of unrestrictedSHIQ KBs (i.e., ones where the Abox may be non-empty) that ex-
tends the existing consistency algorithm for Tboxes[18] by making use of the forest
model property. This should make the realisation of an efficient implementation rela-
tively straightforward as it can be based on an existing highly optimised implementation
of the Tbox algorithm (e.g., in the FaCT system[14]). A notable feature of the algo-
rithm is that, instead of making a unique name assumption w.r.t. all individuals (an
assumption commonly made in DLs[4]), increased flexibility is provided by allowing
the Abox to contain axioms explicitly asserting inequalities between pairs of individual
names (adding such an axiom for every pair of individual names is obviously equivalent
to making a unique name assumption).

2 Preliminaries

In this section, we introduce the DLSHIQ. This includes the definition of syntax, se-
mantics, inference problems (concept subsumption and satisfiability, Abox consistency,
and all of these problems with respect to terminologies2), and their relationships.

SHIQ is based on an extension of the well known DLALC [24] to include tran-
sitively closed primitive roles[21]; we call this logicS due to its relationship with

1 Although suitably optimised algorithms may make reasoningpracticable for quite large
Aboxes[13].

2 We useterminologiesinstead of Tboxes to underline the fact that we allow for general concept
inclusions axioms and do not disallow cycles.



the proposition (multi) modal logicS4
(m)

[23].3 This basic DL is then extended with
inverse roles (I), role hierarchies (H), and qualifying number restrictions (Q).

Definition 1. LetC be a set ofconcept namesandR a set ofrole nameswith a subset
R

+

� R of transitive role names. The set ofroles is R [ fR

�

j R 2 Rg. To avoid
considering roles such asR��, we define a functionInv on roles such thatInv(R) =

R

� if R is a role name, andInv(R) = S if R = S

�. We also define a functionTrans
which returnstrue iff R is a transitive role. More precisely,Trans(R) = true iff R 2

R

+

or Inv(R) 2 R

+

.
A role inclusion axiomis an expression of the formR v S, whereR andS are

roles, each of which can be inverse. Arole hierarchyis a set of role inclusion axioms.
For a role hierarchyR, we define the relationv* to be the transitive-reflexive closure
ofv overR [ fInv(R) v Inv(S) j R v S 2 Rg. A roleR is called asub-role(resp.
super-role) of a roleS if R v* S (resp.S v* R). A role issimpleif it is neither transitive
nor has any transitive sub-roles.

The set ofSHIQ-conceptsis the smallest set such that

– every concept name is a concept, and,
– if C, D are concepts,R is a role,S is a simple role, andn is a nonnegative integer,

thenC uD, C tD, :C, 8R:C, 9R:C,>nS:C, and6nS:C are also concepts.

A general concept inclusion axiom(GCI) is an expression of the formC v D for two
SHIQ-conceptsC andD. A terminologyis a set of GCIs.

Let I = fa; b; 
 : : :g be a set ofindividual names. Anassertionis of the forma :C,
(a; b) :R, or a 6

:

= b for a; b 2 I, a (possibly inverse) roleR, and aSHIQ-conceptC.
AnAbox is a finite set of assertions.

Next, we define semantics ofSHIQ and the corresponding inference problems.

Definition 2. An interpretationI = (�

I

; �

I

) consists of a set�I , called thedomain
of I, and avaluation�I which maps every concept to a subset of�

I and every role to
a subset of�I

� �

I such that, for all conceptsC, D, rolesR, S, and non-negative
integersn, the following equations are satisfied, where℄M denotes the cardinality of a
setM and(RI

)

+ the transitive closure ofRI :
R

I

= (R

I

)

+ for each roleR 2 R

+

(R

�

)

I

= fhx; yi j hy; xi 2 R

I

g (inverse roles)
(C uD)

I

= C

I

\D

I (conjunction)
(C tD)

I

= C

I

[D

I (disjunction)
(:C)

I

= �

I

n C

I (negation)
(9R:C)

I

= fx j 9y:hx; yi 2 R

I andy 2 C

I

g (exists restriction)
(8R:C)

I

= fx j 8y:hx; yi 2 R

I impliesy 2 C

I

g (value restriction)
(>nR:C)

I

= fx j ℄fy:hx; yi 2 R

I andy 2 C

I

g > ng (>-number restriction)
(6nR:C)

I

= fx j ℄fy:hx; yi 2 R

I andy 2 C

I

g 6 ng (6-number restriction)
An interpretationI satisfiesa role hierarchyR iff RI

� S

I for eachR v S in R.
Such an interpretation is called amodelofR (writtenI j= R).

3 The logicS has previously been calledALC
R

+

, but this becomes too cumbersome when
adding letters to represent additional features.



An interpretationI satisfiesa terminologyT iff CI

� D

I for each GCIC v D in
T . Such an interpretation is called amodelof T (writtenI j= T ).

A conceptC is calledsatisfiablewith respect to a role hierarchyR and a termi-
nologyT iff there is a modelI of R andT with C

I

6= ;. A conceptD subsumesa
conceptC w.r.t. R andT iff CI

� D

I holds for each modelI of R andT . For an
interpretationI, an elementx 2 �

I is called aninstanceof a conceptC iff x 2 C

I .
For Aboxes, an interpretation maps, additionally, each individual a 2 I to some

elementaI 2 �

I . An interpretationI satisfies an assertion

a :C iff a

I

2 C

I

;

(a; b) :R iff haI ; bIi 2 R

I

; and
a 6

:

= b iff a

I

6= b

I

An AboxA is consistentw.r.t.R andT iff there is a modelI ofR andT that satisfies
each assertion inA.

For DLs that are closed under negation, subsumption and (un)satisfiability can be mutu-
ally reduced:C v D iff C u:D is unsatisfiable, andC is unsatisfiable iffC v Au:A

for some concept nameA. Moreover, a conceptC is satisfiable iff the Aboxfa :Cg is
consistent. It is straightforward to extend these reductions to role hierarchies, but termi-
nologies deserve special care: In[2; 23; 3], the internalisationof GCIs is introduced,
a technique that reduces reasoning w.r.t. a (possibly cyclic) terminology to reasoning
w.r.t. the empty terminology. ForSHIQ, this reduction must be slightly modified. The
following Lemma shows how general concept inclusion axiomscan beinternalisedus-
ing a “universal” roleU , that is, a transitive super-role of all roles occurring inT and
their respective inverses.

Lemma 1. LetC;D be concepts,A an Abox,T a terminology, andR a role hierarchy.
We define

C

T

:= u

C

i

vD

i

2T

:C

i

tD

i

:

LetU be a transitive role that does not occur inT , C, D,A, orR. We set

R

U

:= R[ fR v U; Inv(R) v U j R occurs inT , C, D,A, orRg:

– C is satisfiable w.r.t.T andR iff C u C

T

u 8U:C

T

is satisfiable w.r.t.R
U

.
– D subsumesC with respect toT andR iff C u:DuC

T

u8U:C

T

is unsatisfiable
w.r.t.R

U

.
– A is consistent with respect toR andT iff A[ fa :C

T

u 8U:C

T

j a occurs inAg
is consistent w.r.t.R

U

.

The proof of Lemma 1 is similar to the ones that can be found in[23; 2]. Most
importantly, it must be shown that, (a) if aSHIQ-conceptC is satisfiable with respect
to a terminologyT and a role hierarchyR, thenC; T have aconnectedmodel, i. e., a
model where any two elements are connect by a role path over those roles occuring inC
andT , and (b) ify is reachable fromx via a role path (possibly involving inverse roles),
thenhx; yi 2 U

I . These are easy consequences of the semantics and the definition of
U .



Theorem 1. Satisfiability and subsumption ofSHIQ-concepts w.r.t. terminologies and
role hierarchies are polynomially reducible to (un)satisfiability of SHIQ-concepts
w.r.t. role hierarchies, and therefore to consistency ofSHIQ-Aboxes w.r.t. role hier-
archies.

Consistency ofSHIQ-Aboxes w.r.t. terminologies and role hierarchies is polyno-
mially reducible to consistency ofSHIQ-Aboxes w.r.t. role hierarchies.

3 A SHIQ-Abox Tableau Algorithm

With Theorem 1, all standard inference problems forSHIQ-concepts and Aboxes can
be reduced to Abox-consistency w.r.t. a role hierarchy. In the following, we present a
tableau-based algorithm that decides consistency ofSHIQ-Aboxes w.r.t. role hierar-
chies, and therefore all otherSHIQ inference problems presented.

The algorithm tries to construct, for aSHIQ-AboxA, a tableau forA, that is, an
abstraction of a model ofA. Given the notion of a tableau, it is then quite straightfor-
ward to prove that the algorithm is a decision procedure for Abox consistency.

3.1 A Tableau for Aboxes

In the following, if not stated otherwise,C;D denoteSHIQ-concepts,R a role hierar-
chy,A an Abox,R

A

the set of roles occurring inA andR together with their inverses,
andI

A

is the set of individuals occurring inA.
Without loss of generality, we assume all conceptsC occurring in assertionsa :C 2

A to be in NNF, that is, negation occurs in front of concept names only. AnySHIQ-
concept can easily be transformed into an equivalent one in NNF by pushing negations
inwards using a combination of DeMorgan’s laws and the following equivalences:

:(9R:C) � (8R::C) :(8R:C) � (9R::C)

:(6nR:C) � >(n+ 1)R:C :(>nR:C) � 6(n� 1)R:C where
6(�1)R:C := A u :A for someA 2 C

For a conceptC we will denote the NNF of:C by�C. Next, for a conceptC, 
los(C)

is the smallest set that containsC and is closed under sub-concepts and�. We use

los(A) :=

S

a:C2A


los(C) for the closure
los(C) of each conceptC occurring inA.
It is not hard to show that the size of
los(A) is polynomial in the size ofA.

Definition 3. T = (S;L;E; I) is a tableaufor A w.r.t.R iff

– S is a non-empty set,
– L : S! 2


los(A) maps each element inS to a set of concepts,
– E : R

A

! 2

S�S maps each role to a set of pairs of elements inS, and
– I : I

A

! S maps individuals occurring inA to elements inS.

Furthermore, for alls; t 2 S, C;C
1

; C

2

2 
los(A), andR;S 2 R

A

, T satisfies:

(P1) if C 2 L(s), then:C =2 L(s),
(P2) if C

1

u C

2

2 L(s), thenC
1

2 L(s) andC
2

2 L(s),



(P3) if C
1

t C

2

2 L(s), thenC
1

2 L(s) or C
2

2 L(s),
(P4) if 8S:C 2 L(s) andhs; ti 2 E(S), thenC 2 L(t),
(P5) if 9S:C 2 L(s), then there is somet 2 S such thaths; ti 2 E(S) andC 2 L(t),
(P6) if 8S:C 2 L(s) andhs; ti 2 E(R) for someR v* S with Trans(R), then8R:C 2

L(t),
(P7) hx; yi 2 E(R) iff hy; xi 2 E(Inv(R)),
(P8) if hs; ti 2 E(R) andR v* S, thenhs; ti 2 E(S),
(P9) if 6nS:C 2 L(s), then℄ST (s; C) 6 n,

(P10) if>nS:C 2 L(s), then℄ST (s; C) > n,
(P11) if (./ n S C) 2 L(s) andhs; ti 2 E(S) thenC 2 L(t) or �C 2 L(t),
(P12) if a :C 2 A, thenC 2 L(I(a)),
(P13) if (a; b) :R 2 A, thenhI(a); I(b)i 2 E(R),
(P14) if a 6

:

= b 2 A, thenI(a) 6= I(b),

where./ is a place-holder for both6 and>, andST (s; C) := ft 2 S j hs; ti 2

E(S) andC 2 L(t)g.

Lemma 2. ASHIQ-AboxA is consistent w.r.t.R iff there exists a tableau forA w.r.t.
R.

Proof: For theif direction, if T = (S;L;E; I) is a tableau forA w.r.t. R, a model
I = (�

I

; �

I

) of A andR can be defined as follows:

�

I

:= S

for concept names A in
los(A) : A

I

:= fs j A 2 L(s)g

for individual namesa 2 I : a

I

:= I(a)

for role namesR 2 R : R

I

:=

8

<

:

E(R)

+ if Trans(R)

E(R) [

S

P v* R;P 6=R
P

I otherwise

whereE(R)

+ denotes the transitive closure ofE(R). The interpretation of non-transitive
roles is recursive in order to correctly interpret those non-transitive roles that have a
transitive sub-role. From the definition ofRI and (P8), it follows that, if hs; ti 2 S

I ,
then eitherhs; ti 2 E(S) or there exists a pathhs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for
someR with Trans(R) andR v* S.

Due to (P8) and by definition ofI, we have thatI is a model ofR.
To prove thatI is a model ofA, we show thatC 2 L(s) impliess 2 C

I for any
s 2 S. Together with (P12), (P13), and the interpretation of individuals and roles, this
implies thatI satisfies each assertion inA. This proof can be given by induction on the
lengthkCk of a conceptC in NNF, where we count neither negation nor integers in
number restrictions. The only interesting case isC = 8S:E: let t 2 S with hs; ti 2 S

I .
There are two possibilities:

– hs; ti 2 E(S). Then (P4) impliesE 2 L(t).
– hs; ti 62 E(S). Then there exists a pathhs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for
someR with Trans(R) andR v* S. Then (P6) implies8R:E 2 L(s

i

) for all 1 �
i � n, and (P4) impliesE 2 L(t).



In both cases,t 2 E

I by induction and hences 2 C

I .

For the converse, forI = (�

I

; �

I

) a model ofA w.r.t. R, we define a tableau
T = (S;L;E; I) for A andR as follows:

S := �

I

; E(R) := R

I

; L(s) := fC 2 
los(A) j s 2 C

I

g; and I(a) = a

I

:

It is easy to demonstrate thatT is a tableau forD. ut

3.2 The Tableau Algorithm

In this section, we present a completion algorithm that tries to construct, for an input
AboxA and a role hierarchyR, a tableau forA w.r.t.R. We prove that this algorithm
constructs a tableau forA andR iff there exists a tableau forA andR, and thus decides
consistency ofSHIQ Aboxes w.r.t. role hierarchies.

Since Aboxes might involve several individuals with arbitrary role relationships be-
tween them, the completion algorithm works on aforestrather than on atree, which is
the basic data structure for those completion algorithms deciding satisfiability of a con-
cept. Such a forest is a collection of trees whose root nodes correspond to the individuals
present in the input Abox. In the presence of transitive roles, blockingis employed to
ensure termination of the algorithm. In the additional presence of inverse roles, blocking
is dynamic, i.e., blocked nodes (and their sub-branches) can be un-blocked and blocked
again later. In the additional presence of number restrictions,pairsof nodes are blocked
rather than single nodes.

Definition 4. A completion forestF for aSHIQ AboxA is a collection of trees whose
distinguished root nodes are possibly connected by edges inan arbitrary way. Moreover,
each nodex is labelled with a setL(x) � 
los(A) and each edgehx; yi is labelled with
a setL(hx; yi) � R

A

of (possibly inverse) roles occurring inA. Finally, completion
forests come with an explicit inequality relation6

:

= on nodes and an explicit equality
relation

:

= which are implicitly assumed to be symmetric.
If nodesx andy are connected by an edgehx; yi with R 2 L(hx; yi) andR v* S,

theny is called anS-successorof x andx is called anInv(S)-predecessorof y. If y is
anS-successor or anInv(S)-predecessor ofx, theny is called anS-neighbour ofx. A
nodey is a successor (resp. predecessor or neighbour) ofy if it is anS-successor (resp.
S-predecessor orS-neighbour) ofy for some roleS. Finally, ancestoris the transitive
closure ofpredecessor.

For a roleS, a conceptC and a nodex in F we defineSF(x;C) by

S

F

(x;C) := fy j y is S-neighbour ofx andC 2 L(y)g:

A node isblocked iff it is not a root node and it is either directly or indirectly
blocked. A nodex is directly blockediff none of its ancestors are blocked, and it has
ancestorsx0, y andy0 such that

1. y is not a root nodeand
2. x is a successor ofx0 andy is a successor ofy0 and



3. L(x) = L(y) andL(x0) = L(y

0

) and
4. L(hx0; xi) = L(hy

0

; yi).

In this case we will say thaty blocksx.
A nodey is indirectly blockediff one of its ancestors is blocked, or it is a successor

of a nodex andL(hx; yi) = ;; the latter condition avoids wasted expansions after an
application of the6-rule.

Given aSHIQ-AboxA and a role hierarchyR, the algorithm initialises a comple-
tion forestF

A

consisting only of root nodes. More precisely,F

A

contains a root node
x

i

0

for each individuala
i

2 I

A

occurring inA, and an edgehxi
0

; x

j

0

i if A contains an
assertion(a

i

; a

j

) :R for someR. The labels of these nodes and edges and the relations
6

:

= and
:

= are initialised as follows:

L(x

i

0

) := fC j a

i

:C 2 Ag;

L(hx

i

0

; x

j

0

i) := fR j (a

i

; a

j

) : R 2 Ag;

x

i

0

6

:

= x

j

0

iff a

i

6

:

= a

j

2 A, and

the
:

=-relation is initialised to be empty.F
A

is then expanded by repeatedly applying
the rules from Figure 1.

For a nodex, L(x) is said to contain aclashif, for some concept nameA 2 C,
fA;:Ag � L(x), or if there is some concept6nS:C 2 L(x) and x hasn + 1 S-
neighboursy

0

; : : : ; y

n

withC 2 L(y

i

) andy
i

6

:

= y

j

for all 0 � i < j � n. A completion
forest isclash-freeif none of its nodes contains a clash, and it iscompleteif no rule
from Figure 1 can be applied to it.

For aSHIQ-AboxA, the algorithm starts with the completion forestF

A

. It applies
the expansion rules in Figure 1, stopping when a clash occurs, and answers “A is
consistent w.r.t.R” iff the completion rules can be applied in such a way that they
yield a complete and clash-free completion forest, and “A and is inconsistent w.r.t.R”
otherwise.

Since both the6-rule and the6
r

-rule are rather complicated, they deserve some
more explanation. Both rules deal with the situation where aconcept6nR:C 2 L(x)

requires the identification of twoR-neighboursy; z of x that containC in their labels.
Of course,y andz may only be identified ify 6

:

= z is not asserted. If these conditions
are met, then one of the two rules can be applied. The6-rule deals with the case where
at least one of the nodes to be identified, namelyy, is not a root node, and this can lead
to one of two possible situations, both shown in Figure 2. Theupper situation occurs
when bothy andz are successors ofx. In this case, we add the label ofy to that of
z, and the label of the edgehx; yi to the label of the edgehx; zi. Finally, z inherits all
inequalities fromy, andL(hx; yi) is set to;, thus blockingy and all its successors.

The second situation occurs when bothy andz are neighbours ofx, but z is the
predecessor ofx. Again,L(y) is added toL(z), but in this case the inverse ofL(hx; yi)
is added toL(hz; xi), because the edgehx; yi was pointing away fromx while hz; xi
points towards it. Again,z inherits the inequalities fromy andL(hx; yi) is set to;.

The6
r

rule handles the identification of two root nodes. An exampleof the whole
procedure is given in the lower part of Figure 2. In this case,special care has to be taken
to preserve the relations introduced into the completion forest due to role assertions in



u-rule: if 1. C
1

u C

2

2 L(x), x is not indirectly blocked, and
2. fC

1

; C

2

g 6� L(x)

thenL(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C
1

t C

2

2 L(x), x is not indirectly blocked, and
2. fC

1

; C

2

g \ L(x) = ;

thenL(x) �! L(x) [ fEg for someE 2 fC

1

; C

2

g

9-rule: if 1. 9S:C 2 L(x), x is not blocked, and
2. x has noS-neighboury with C 2 L(y)

then create a new nodey with L(hx; yi) := fSg andL(y) := fCg

8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is anS-neighboury of x with C =2 L(y)

thenL(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is someR with Trans(R) andR v* S,
3. there is anR-neighboury of x with 8R:C =2 L(y)

thenL(y) �! L(y) [ f8R:Cg

choose-rule: if 1. (./ n S C) 2 L(x), x is not indirectly blocked, and
2. there is anS-neighboury of x with fC;�Cg \ L(y) = ;

thenL(y) �! L(y) [ fEg for someE 2 fC;�Cg

>-rule: if 1.>nS:C 2 L(x), x is not blocked, and
2. there are non S-neighboursy

1

; : : : ; y

n

such thatC 2 L(y

i

)

andy
i

6

:

= y

j

for 1 � i < j � n

then createn new nodesy
1

; : : : ; y

n

with L(hx; y
i

i) = fSg,
L(y

i

) = fCg, andy
i

6

:

= y

j

for 1 � i < j � n.
6-rule: if 1.6nS:C 2 L(x), x is not indirectly blocked, and

2. ℄SF(x;C) > n, there areS-neighboursy; z of x with not y 6
:

= z,
y is neither a root node nor an ancestor ofz, andC 2 L(y) \ L(z),

then 1.L(z) �! L(z) [ L(y) and
2. if z is an ancestor ofx

then L(hz; xi) �! L(hz; xi) [ Inv(L(hx; yi))

else L(hx; zi) �! L(hx; zi) [ L(hx; yi)

3.L(hx; yi) �! ;

4. Setu 6
:

= z for all u with u 6

:

= y

6

r

-rule: if 1.6nS:C 2 L(x), and
2. ℄SF(x;C) > n and there are twoS-neighboursy; z of x

which are both root nodes,C 2 L(y) \ L(z), and noty 6
:

= z

then 1.L(z) �! L(z) [ L(y) and
2. For all edgeshy; wi:

i. if the edgehz; wi does not exist, create it withL(hz;wi) := ;

ii. L(hz;wi) �! L(hz;wi) [ L(hy;wi)

3. For all edgeshw; yi:
i. if the edgehw; zi does not exist, create it withL(hw; zi) := ;

ii. L(hw; zi) �! L(hw; zi) [ L(hw; yi)

4. SetL(y) := ; and remove all edges to/fromy.
5. Setu 6

:

= z for all u with u 6

:

= y.
6. Sety

:

= z.

Fig. 1. The Expansion Rules forSHIQ-Aboxes.
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L(hy;w

2
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L(hx; zi) [L(hx; yi)

L(hw

1

; zi) [L(hw

1

; yi)

;

y

6

r

-rule

6-rule

L(z) [L(y)

z y

L(y)

x

L(hx; zi) L(hx; yi)

L(z)

z y

L(y)

x

L(hx; zi) [L(hx; yi) ;

L(y)

x

z

L(hx; zi) [ Inv(L(hx; yi))

L(z) [L(y)

;

y

6-rule
L(z)

y

L(y)

x

L(hx; zi)

z

L(hx; yi)

z y

L(y)

x

L(hx; zi) L(hx; yi)

L(z)

L(hy;w

2

i)

w

2

w

1

L(hw

1

; zi)

L(hw

1

; yi)

Fig. 2.Effect of the6- and the6
r

-rule

the Abox, and to memorise the identification of root nodes (this will be needed in order
to construct a tableau from a complete and clash-free completion forest). The6

r

rule
includes some additional steps that deal with these issues.Firstly, as well as addingL(y)
to L(z), the edges (and their respective labels) betweeny and its neighbours are also
added toz. Secondly,L(y) and all edges going from/toy are removed from the forest.
This will not lead to dangling trees, because all neighboursof y became neighbours of
z in the previous step. Finally, the identification ofy andz is recorded in the

:

= relation.

Lemma 3. LetA be aSHIQ-Abox andR a role hierarchy. The completion algorithm
terminates when started forA andR.

Proof: Let m = ℄
los(A), n = jR

A

j, andn
max

:= maxfn j >nR:C 2 
los(A)g.
Termination is a consequence of the following properties ofthe expansion rules:



1. The expansion rules never remove nodes from the forest. The only rules that remove
elements from the labels of edges or nodes are the6- and6

r

-rule, which sets them
to ;. If an edge label is set to; by the6-rule, the node below this edge is blocked
and will remain blocked forever. The6

r

-rule only sets the label of a root nodex
to ;, and after this,x’s label is never changed again since all edges to/fromx are
removed. Since no root nodes are generated, this removal mayonly happen a finite
number of times, and the new edges generated by the6

r

-rule guarantees that the
resulting structure is still a completion forest.

2. Nodes are labelled with subsets of
los(A) and edges with subsets ofR
A

, so there
are at most22mn different possible labellings for a pair of nodes and an edge.
Therefore, if a pathp is of length at least22mn, the pair-wise blocking condition
implies the existence of two nodesx; y on p such thaty directly blocksy. Since a
path on which nodes are blocked cannot become longer, paths are of length at most
2

2mn.
3. Only the9- or the>-rule generate new nodes, and each generation is triggered

by a concept of the form9R:C or >nR:C in 
los(A). Each of these concepts
triggers the generation of at mostn

max

successorsy
i

: note that if the6- or the6
r

-
rule subsequently causesL(hx; y

i

i) to be changed to;, thenx will have someR-
neighbourz withL(z) � L(y). This, together with the definition of a clash, implies
that the rule application which led to the generation ofy

i

will not be repeated. Since

los(A) contains a total of at mostm 9R:C, the out-degree of the forest is bounded
bymn

max

n. ut

Lemma 4. LetA be aSHIQ-Abox andR a role hierarchy. If the expansion rules can
be applied toA andR such that they yield a complete and clash-free completion forest,
thenA has a tableau w.r.t.R.

Proof: LetF be a complete and clash-free completion forest. The definition of a tableau
T = (S;L;E; I) fromF works as follows. Intuitively, an individual inS corresponds
to apath in F from some root node to some node that is not blocked, and whichgoes
only via non-root nodes.

More precisely, apath is a sequence of pairs of nodes ofF of the form p =

[

x

0

x

0

0

; : : : ;

x

n

x

0

n

℄. For such a path we defineTail(p) := x

n

and Tail

0

(p) := x

0

n

. With

[pj

x

n+1

x

0

n+1

℄, we denote the path[x0
x

0

0

; : : : ;

x

n

x

0

n

;

x

n+1

x

0

n+1

℄. The setPaths(F) is defined induc-

tively as follows:

– For root nodesxi
0

of F , [x
i

0

x

i

0

℄ 2 Paths(F), and

– For a pathp 2 Paths(F) and a nodez in F :
� if z is a successor ofTail(p) andz is neither blocked nor a root node, then

[pj

z

z

℄ 2 Paths(F), or
� if, for some nodey in F , y is a successor ofTail(p) and z blocksy, then

[pj

z

y

℄ 2 Paths(F).

Please note that, since root nodes are never blocked, nor arethey blocking other nodes,
the only place where they occur in a path is in the first place. Moreover, by construction



of Paths(F), if p 2 Paths(F), thenTail(p) is not blocked,Tail(p) = Tail

0

(p) iff
Tail

0

(p) is not blocked, andL(Tail(p)) = L(Tail

0

(p)).
We define a tableauT = (S;L;E; I) as follows:

S=Paths(F)

L(p) =L(Tail(p))

E(R) = fhp; [pj

x

x

0

℄i 2 S� S j x

0 is anR-successor ofTail(p)g [
fh[qj

x

x

0

℄; qi 2 S� S j x

0 is anInv(R)-successor ofTail(q)g [
fh[

x

x

℄; [

y

y

℄i 2 S� S j x; y are root nodes, andy is anR-neighbour ofxg

I(a

i

)=

8

<

:

[

x

i

0

x

i

0

℄ if xi
0

is a root node inF with L(x

i

0

) 6= ;

[

x

j

0

x

j

0

℄ if L(xi
0

) = ;; x

j

0

a root node inF with L(x

j

0

) 6= ; andxi
0

:

= x

j

0

Please note thatL(x) = ; implies thatx is a root node and that there is another root
nodey with L(y) 6= ; andx

:

= y. We show thatT is a tableau forD.

– T satisfies(P1) becauseF is clash-free.
– (P2) and(P3) are satisfied byT becauseF is complete.
– For(P4), letp; q 2 S with 8R:C 2 L(p), hp; qi 2 E(R). If q = [pj

x

x

0

℄, thenx0 is an
R-successor ofTail(p) and, due to completeness ofF ,C 2 L(x

0

) = L(x) = L(q).
If p = [qj

x

x

0

℄, thenx0 is anInv(R)-successor ofTail(q) and, due to completeness of
F , C 2 L(Tail(q)) = L(q). If p = [

x

x

℄ andq = [

y

y

℄ for two root nodesx, x, theny
is anR-neighbour ofx, and completeness ofF yieldsC 2 L(y) = L(q). (P6) and
(P11)hold for similar reasons.

– For (P5), let 9R:C 2 L(p) andTail(p) = x. Sincex is not blocked andF com-
plete,x has someR-neighboury with C 2 L(y).
� If y is a successor ofx, theny can either be a root node or not.

� If y is not a root node: ify is not blocked, thenq := [pj

y

y

℄ 2 S; if y is
blocked by some nodez, thenq := [pj

z

y

℄ 2 S.
� If y is a root node: sincey is a successor ofx, x is also a root node. This

impliesp = [

x

x

℄ andq = [

y

y

℄ 2 S.
� x is anInv(R)-successorof y, then either

� p = [qj

x

x

0

℄ with Tail(q) = y.
� p = [qj

x

x

0

℄ with Tail(q) = u 6= y. Sincex only has one predecessor,u
is not the predecessor ofx. This impliesx 6= x

0, x blocksx0, andu is
the predecessor ofx0 due to the construction ofPaths. Together with the
definition of the blocking condition, this impliesL(hu; x0i) = L(hy; xi)

as well asL(u) = L(y) due to the blocking condition.
� p = [

x

x

℄ with x being a root node. Hencey is also a root node andq = [

y

y

℄.
In any of these cases,hp; qi 2 E(R) andC 2 L(q).

– (P7) holds because of the symmetric definition of the mappingE.
– (P8) is due to the definition ofR-neighbours andR-successor.
– Suppose(P9) were not satisfied. Hence there is somep 2 S with (6nS:C) 2

L(p) and℄ST (p; C) > n. We will show that this implies℄SF (Tail(p); C) > n,
contradicting either clash-freeness or completeness ofF . Let x := Tail(p) and
P := S

T

(p; C). We distinguish two cases:



� P contains only paths of the form[pj y
y

0

℄ and[x
i

`

0

x

i

`

0

℄. Then℄P > n is impossible

since the functionTail0 is injective onP : if we assume that there are two distinct
pathsq

1

; q

2

2 P andTail0(q
1

) = Tail

0

(q

2

) = y

0, then this implies that eachq
i

is of the formq

i

= [pj

y

i

y

0

℄ or q
i

= [

y

0

y

0

℄. Fromq

1

6= q

2

, we have thatq
i

= [pj

y

i

y

0

℄

holds for somei 2 f1; 2g. Since root nodes occur only in the beginning of
paths andq

1

6= q

2

, we haveq
1

= [pj(y

1

; y

0

)℄ andq
2

= [pj(y

2

; y

0

)℄. If y0 is not
blocked, theny

1

= y

0

= y

2

, contradictingq
1

6= q

2

. If y0 is blocked inF , then
bothy

1

andy
2

blocky0, which impliesy
1

= y

2

, again a contradiction. Hence
Tail

0 is injective onP and thus℄P = ℄Tail

0

(P ). Moreover, for eachy0 2
Tail

0

(P ), y0 is anS-successor ofx andC 2 L(y

0

). This implies℄SF (x;C) >

n.
� P contains a pathq wherep = [qj

x

x

0

℄. Obviously,P may only contain one
such path. As in the previous case,Tail

0 is an injective function on the set
P

0

:= P n fqg, eachy0 2 Tail

0

(P

0

) is anS-successor ofx, andC 2 L(y

0

) for
eachy0 2 Tail

0

(P

0

). Let z := Tail(q). We distinguish two cases:
� x = x

0. Hencex is not blocked, and thusx is an Inv(S)-successor ofz.
SinceTail0(P 0

) contains only successors ofx we have thatz 62 Tail

0

(P

0

)

and, by construction,z is anS-neighbour ofx with C 2 L(z).
� x 6= x

0. This implies thatx0 is blocked byx and thatx0 is an Inv(S)-
successor ofz. Due to the definition of pairwise-blocking this implies that
x is anInv(S)-successor of some nodeu with L(u) = L(z). Again,u 62
Tail

0

(P

0

) and, by construction,u is anS-neighbour ofx andC 2 L(u).
– For (P10), let (>nS:C) 2 L(p). Hence there aren S-neighboursy

1

; : : : ; y

n

of
x = Tail(p) in F with C 2 L(y

i

). For eachy
i

there are three possibilities:
� y

i

is anS-successor ofx andy
i

is not blocked inF . Thenq
i

:= [pj

y

i

y

i

℄ or y
i

is
a root node andq

i

:= [

y

i

y

i

℄ is inS.
� y

i

is anS-successor ofx andy
i

is blocked inF by some nodez. Thenq
i

=

[pj

z

y

i

℄ is in S. Since the samez may block several of they
j

s, it is indeed nec-
essary to includey

i

explicitly into the path to make them distinct.
� x is an Inv(S)-successor ofy

i

. There may be at most one suchy
i

if x is not
a root node. Hence eitherp = [q

i

j

x

x

0

℄ with Tail(q

i

) = y

i

, or p = [

x

x

℄ and
q

i

= [

y

i

y

i

℄.

Hence for eachy
i

there is a different pathq
i

in S with S 2 L(hp; q

i

i) andC 2

L(q

i

), and thus℄ST (p; C) > n.
– (P12) is due to the fact that, when the completion algorithm is started for an Abox
A, the initial completion forestF

A

contains, for each individual namea
i

occurring
in A, a root nodexi

0

with L(x

i

0

) = fC 2 
los(A) j a

i

:C 2 Ag: The algorithm
never blocks root individuals, and, for each root nodex

i

0

whose label and edges
are removed by the6

r

-rule, there is another root nodexj
0

with x

i

0

:

= x

j

0

andfC 2


los(A) j a

i

:C 2 Ag � L(x

j

0

). Together with the definition ofI, this yields (P12).
(P13) is satisfied for similar reasons.

– (P14) is satisfied because the6
r

-rule does not identify two root nodesxi
0

; y

i

0

when
x

i

0

6

:

= y

i

0

holds. ut



Lemma 5. LetA be aSHIQ-Abox andR a role hierarchy. IfA has a tableau w.r.t.
R, then the expansion rules can be applied toA andR such that they yield a complete
and clash-free completion forest.

Proof: Let T = (S;L;E; I) be a tableau forA andR. We useT to trigger the ap-
plication of the expansion rules such that they yield a completion forestF that is both
complete and clash-free. To this purpose, a function� is used which maps the nodes of
F to elements ofS. The mapping� is defined as follows:

– For individualsa
i

in A, we define�(xi
0

) := I(a

i

).
– If �(x) = s is already defined, and a successory of x was generated for9R:C 2

L(x), then�(y) = t for somet 2 S with C 2 L(t) andhs; ti 2 E(R).
– If �(x) = s is already defined, and successorsy

i

of x were generated for>nR:C 2

L(x), then�(y
i

) = t

i

for n distinctt
i

2 S with C 2 L(t

i

) andhs; t
i

i 2 E(R).

Obviously, the mapping for the initial completion forest for A andR satisfies the fol-
lowing conditions:

L(x) � L(�(x));

if y is anS-neighbour ofx, thenh�(x); �(y)i 2 E(S), and
x 6

:

= y implies�(x) 6= �(y).

9

=

;

(�)

It can be shown that the following claim holds:
CLAIM : LetF be generated by the completion algorithm forA andR and let� satisfy
(�). If an expansion rule is applicable toF , then this rule can be applied such that it
yields a completion forestF 0 and a (possibly extended)� that satisfy(�).

As a consequence of this claim, (P1), and (P9), if A andR have a tableau, then the
expansion rules can be applied toA andR such that they yield a complete and clash-
free completion forest. ut

From Theorem 1, Lemma 2, 3 4, and 5, we thus have the following theorem:

Theorem 2. The completion algorithm is a decision procedure for the consistency of
SHIQ-Aboxes and the satisfiability and subumption of concepts with respect to role
hierarchies and terminologies.

4 Conclusion

We have presented an algorithm for deciding the satisfiability of SHIQ KBs where the
Abox may be non-empty and where the uniqueness of individualnames is not assumed
but can be asserted in the Abox. This algorithm is of particular interest as it can be used
to decide the problem of conjunctive query containment w.r.t. a schema[17].

An implementation of theSHIQ Tbox satisfiability algorithm is already available
in the FaCT system[14], and is able to reason efficiently with Tboxes derived from real-
istic ER schemas. This suggests that the algorithm presented here could form the basis
of a practical decision procedure for the query containmentproblem. Work is already
underway to test this conjecture by extending the FaCT system with an implementation
of the new algorithm.
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