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Abstra
t

Des
ription Logi
s (DLs) are a family of knowledge representation formalisms mainly 
hara
terised

by 
onstru
tors to build 
omplex 
on
epts and roles from atomi
 ones. Expressive role 
onstru
tors

are important in many appli
ations, but 
an be 
omputationally problemati
al.

We present an algorithm that de
ides satis�ability of the DL ALC extended with transitive and

inverse roles and fun
tional restri
tions with respe
t to general 
on
ept in
lusion axioms and role

hierar
hies; early experiments indi
ate that this algorithm is well-suited for implementation. Addi-

tionally, we show that ALC extended with just transitive and inverse roles is still in PSpa
e. We

investigate the limits of de
idability for this family of DLs, showing that relaxing the 
onstraints

pla
ed on the kinds of roles used in number restri
tions leads to the unde
idability of all inferen
e

problems. Finally, we des
ribe a number of optimisation te
hniques that are 
ru
ial in obtaining

implementations of the de
ision pro
edures, whi
h, despite the hight worst-
ase 
omplexity of the

problem, exhibit good performan
e with real-life problems.

Keywords: des
ription logi
, modal logi
, automated reasoning, tableaux algorithm

1 Motivation

Des
ription Logi
s (DLs) are a well-known family of knowledge representation for-

malisms

[

17

℄

. They are based on the notion of 
on
epts (unary predi
ates, 
lasses)

and roles (binary relations), and are mainly 
hara
terised by 
onstru
tors that allow


omplex 
on
epts and roles to be built from atomi
 ones. Sound and 
omplete algo-

rithms for the interesting inferen
e problems su
h as subsumption and satis�ability

of 
on
epts are known for a wide variety of DLs.

Transitive and inverse roles play an important role not only in the adequate repre-

sentation of 
omplex, aggregated obje
ts

[

35

℄

, but also for reasoning with 
on
eptual

data models

[

9

℄

. Moreover, de�ning 
on
epts using general 
on
ept in
lusion axioms

seems natural and is 
ru
ial for representing 
on
eptual data models.

The relevant inferen
e problems for (an extension of) ALC augmented in the de-

s
ribed manner are known to be de
idable

[

15

℄

, and worst-
ase optimal inferen
e

algorithms have been des
ribed

[

16

℄

. However, to the best of our knowledge, nobody

has found eÆ
ient means to deal with their high degree of non-determinism, whi
h

so far prohibits their use in realisti
 appli
ations. This is mainly due to the fa
t that
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these algorithms 
an handle not only transitive roles but also the transitive 
losure

of roles. It has been shown

[

43

℄

that restri
ting the DL to transitive roles 
an lead

to a lower 
omplexity, and that transitive roles, even when 
ombined with role hi-

erar
hies, allow for algorithms that behave quite well in realisti
 appli
ations

[

31

℄

.

However, until now it has been un
lear if this is still true when inverse roles are also

present.

In this paper we present various aspe
ts of our resear
h in this dire
tion. Firstly,

we motivate our use of logi
s with transitive roles instead of transitive 
losure by 
on-

trasting algorithms for several pairs of logi
s that di�er only in the kind of transitivity

supported.

Se
ondly, we present an algorithm that de
ides satis�ability of ALC extended with

transitive and inverse roles, role hierar
hies, and fun
tional restri
tions. This al-

gorithm 
an also be used for 
he
king satis�ability and subsumption with respe
t to

general 
on
ept in
lusion axioms (and thus 
y
li
 terminologies) be
ause these axioms


an be \internalised". The fa
t that our algorithm needs to deal only with transitive

roles, instead of transitive 
losure, leads to a lower degree of non-determinism, and

experiments indi
ate that the algorithm is well-suited for implementation.

Thirdly, we show that ALC extended with both transitive and inverse roles is still

in Pspa
e. The algorithm used to prove this result introdu
es an enhan
ed blo
king

te
hnique that should also provide useful eÆ
ien
y gains in implementations of more

expressive DLs.

Fourthly, we investigate the limits of de
idability for this family of DLs, showing

that relaxing the 
onstraints we will impose on the kind of roles allowed in number

restri
tions leads to the unde
idability of all inferen
e problems.

Finally, we des
ribe a range of optimisation te
hniques that 
an be used to produ
e

implementations of our algorithms that exhibit good typi
al 
ase performan
e.

2 Preliminaries

In this se
tion, we present the syntax and semanti
s of the various DLs that are

investigated in subsequent se
tions. This in
ludes the de�nition of inferen
e problems

(
on
ept subsumption and satis�ability, and both of these problems with respe
t to

terminologies) and how they are interrelated.

The logi
s we will dis
uss are all based on an extension of the well known DL

ALC

[

45

℄

to in
lude transitively 
losed primitive roles

[

43

℄

; we will 
all this logi
 S

due to its relationship with the propositional (multi) modal logi
 S4

(m)

[

44

℄

.

1

This

basi
 DL is then extended in a variety of ways|see Figure 1 for an overview.

De�nition 2.1 Let N

C

be a set of 
on
ept names and R a set of role names with

transitive role names R

+

� R. The set of SI-roles is R [ fR

�

j R 2 Rg. To

avoid 
onsidering roles su
h as R

��

, we de�ne a fun
tion Inv on roles su
h that

Inv(R) = R

�

if R is a role name, and Inv(R) = S if R = S

�

. In the following, when

speaking of roles, we refer to SI-roles, as our approa
h is 
apable of dealing uniformly

with both role names and inverse roles.

Obviously, a role R is transitive i� Inv(R) is transitive. We therefore de�ne Trans

1

This logi
 has previously been 
alled ALC

R

+

, but this be
omes too 
umbersome when adding letters to represent

additional features.
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to return true i� R is a transitive role. More pre
isely, Trans(R) = true (and we say

that R is transitive) i� R 2 R

+

or Inv(R) 2 R

+

.

The set of SI-
on
epts is the smallest set su
h that

1. every 
on
ept name is a 
on
ept, and,

2. if C and D are 
on
epts and R is an SI-role, then (C u D), (C t D), (:C),

(8R:C), and (9R:C) are also 
on
epts.

A role in
lusion axiom is of the form R v S, where R and S are two roles, ea
h of

whi
h 
an be inverse. A role hierar
hy is a �nite set of role in
lusion axioms, and

SHI is obtained from SI by allowing, additionally, for a role hierar
hy R. The sub-

role relation v* is the transitive-re
exive 
losure of v over R [ fInv(R) v Inv(S) j

R v S 2 Rg.

SHIQ is obtained from SHI by allowing, additionally, for quali�ed number re-

stri
tions

[

26

℄

, i.e., for 
on
epts of the form 6nR:C and >nR:C, where R is a simple

role, C is a 
on
ept, and n 2 N. A role is 
alled simple i� it is neither transitive

nor has transitive sub-roles. SHIN is the restri
tion of SHIQ allowing only unqual-

i�ed number restri
tions (i.e., 
on
epts of the form 6nR and >nR), while SHIF

represents a further restri
tion where, instead of arbitrary number restri
tions, only

fun
tional restri
tions of the form 61R and their negation >2R may o

ur.

An interpretation I = (�

I

; �

I

) 
onsists of a set �

I

, 
alled the domain of I, and a

fun
tion �

I

whi
h maps every 
on
ept to a subset of �

I

and every role to a subset of

�

I

��

I

su
h that, for all 
on
epts C, D, roles R, S, and non-negative integers n,

the properties in Figure 1 are satis�ed, where ℄M denotes the 
ardinality of a set M .

An interpretation satis�es a role hierar
hy R i� R

I

� S

I

for ea
h R v S 2 R; we

denote this fa
t by I j= R and say that I is a model of R.

A 
on
ept C is 
alled satis�able with respe
t to a role hierar
hy R i� there is some

interpretation I su
h that I j= R and C

I

6= ;. Su
h an interpretation is 
alled a

model of C w.r.t. R. A 
on
ept D subsumes a 
on
ept C w.r.t. R (written C v

R

D)

i� C

I

� D

I

holds for ea
h model I of R. For an interpretation I, an individual

x 2 �

I

is 
alled an instan
e of a 
on
ept C i� x 2 C

I

.

All DLs 
onsidered here are 
losed under negation, hen
e subsumption and (un)satis�-

ability w.r.t. role hierar
hies 
an be redu
ed to ea
h other: C v

R

D i� C u :D is

unsatis�able w.r.t. R, and C is unsatis�able w.r.t. R i� C v

R

A u :A for some


on
ept name A.

In

[

37; 3; 44; 1

℄

, the internalisation of terminologi
al axioms is introdu
ed, a te
h-

nique that redu
es reasoning with respe
t to a (possibly 
y
li
) terminology to satis�-

ability of 
on
epts. In

[

31

℄

, we saw how role hierar
hies 
an be used for this redu
tion.

In the presen
e of inverse roles, this redu
tion must be slightly modi�ed.

De�nition 2.2 A terminology T is a �nite set of general 
on
ept in
lusion axioms,

T = fC

1

v D

1

; : : : ; C

n

v D

n

g, where C

i

; D

i

are arbitrary SHIF -
on
epts. An

interpretation I is said to be a model of T i� C

I

i

� D

I

i

holds for all C

i

v D

i

2 T .

A 
on
ept C is satis�able with respe
t to T i� there is a model I of T with C

I

6= ;.

Finally, D subsumes C with respe
t to T i�, for ea
h model I of T , we have C

I

� D

I

.

The following lemma shows how general 
on
ept in
lusion axioms 
an be inter-

nalised using a \universal" role U , a transitive super-role of all roles o

urring in T

and their respe
tive inverses.
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Constru
t Name Syntax Semanti
s

atomi
 
on
ept A A

I

� �

I

atomi
 role R R

I

� �

I

��

I

transitive role R 2 R

+

R

I

= (R

I

)

+


onjun
tion C uD C

I

\D

I

disjun
tion C tD C

I

[D

I

S

negation :C �

I

n C

I

exists restri
tion 9R:C fx j 9y:hx; yi 2 R

I

and y 2 C

I

g

value restri
tion 8R:C fx j 8y:hx; yi 2 R

I

implies y 2 C

I

g

role hierar
hy R v S R

I

� S

I

H

inverse role R

�

fhx; yi j hy; xi 2 R

I

g I

number

restri
tions

>nR

6nR

fx j ℄fy:hx; yi 2 R

I

g > ng

fx j ℄fy:hx; yi 2 R

I

g 6 ng

N

qualifying number

restri
tions

>nR:C

6nR:C

fx j ℄fy:hx; yi 2 R

I

and y 2 C

I

g > ng

fx j ℄fy:hx; yi 2 R

I

and y 2 C

I

g 6 ng

Q

Fig. 1. Syntax and semanti
s of the SI family of DLs

Lemma 2.3 Let T be a terminology, R a role hierar
hy, and C;D SHIF -
on
epts,

and let

C

T

:= u

C

i

vD

i

2T

:C

i

tD

i

:

Let U be a transitive role that does not o

ur in T ; C;D, or R. We set

R

U

:= R [ fR v U; Inv(R) v U j R o

urs in T ; C;D, or Rg:

Then C is satis�able w.r.t. T and R i� C u C

T

u 8U:C

T

is satis�able w.r.t. R

U

.

Moreover, D subsumes C w.r.t. T and R i� C u :D u C

T

u 8U:C

T

is unsatis�able

w.r.t. R

U

.

The proof of Lemma 2.3 is similar to the ones that 
an be found in

[

44; 3

℄

. Most

importantly, it must be shown that, (a) if a SHIF-
on
ept C is satis�able with respe
t

to a terminology T and a role hierar
hyR, then C, T , and R have a 
onne
ted model,

and (b) if y is rea
hable from x via a role path (possibly involving inverse roles) in a

model of T and R

U

, then hx; yi 2 U

I

. These are easy 
onsequen
es of the semanti
s

and the de�nition of U .

Theorem 2.4 Satis�ability and subsumption of SHIF -
on
epts (resp. SHI-
on
epts)

w.r.t. terminologies and role hierar
hies are polynomially redu
ible to (un)satis�ability

of SHIF -
on
epts (resp. SHI-
on
epts) w.r.t. role hierar
hies.

3 Blo
king

The algorithms we are going to present for de
iding satis�ability of SI- and SHIF -


on
epts use the tableaux method

[

25

℄

, in whi
h the satis�ability of a 
on
ept D is
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tested by trying to 
onstru
t a model of D. The model is represented by a tree in

whi
h nodes 
orrespond to individuals and edges 
orrespond to roles. Ea
h node x is

labelled with a set of 
on
epts L(x) that the individual x must satisfy, and edges are

labelled with (sets of) role names.

An algorithm starts with a single node labelled fDg, and pro
eeds by repeatedly

applying a set of expansion rules that re
ursively de
ompose the 
on
epts in node

labels, new edges and nodes being added as required in order to satisfy 9R:C or

(> 2 F ) 
on
epts. The 
onstru
tion terminates either when none of the rules 
an be

applied in a way that extends the tree, or when the dis
overy of obvious 
ontradi
tions

demonstrates that D has no model.

In order to prove that su
h an algorithm is a sound and 
omplete de
ision pro
edure

for 
on
ept satis�ability in a given logi
, it is ne
essary to demonstrate that the

models it 
onstru
ts are 
orre
t with respe
t to the semanti
s, that it will always �nd

a model if one exists, and that it always terminates. The �rst two points 
an usually

be dealt with by proving that the expansion rules preserve satis�ability, and that

in the 
ase of non-deterministi
 expansion (e.g., of disjun
tions) all possibilities are

exhaustively sear
hed. For logi
s su
h as ALC, termination is mainly due to the fa
t

that the expansion rules 
an only add new 
on
epts that are stri
tly smaller than the

de
omposed 
on
ept, so the model must stabilise when all 
on
epts have been fully

de
omposed. As we will see, this is no longer true in the presen
e of transitive roles.

3.1 Transitive Roles vs. Transitive Closure

We have argued that reasoning for logi
s with transitive roles is empiri
ally more

tra
table than for logi
s that allow for transitive 
losure of roles

[

43; 31

℄

. In this

se
tion we will give some justi�
ation for that 
laim. The starting point for our

investigations are the logi
s SH

[

31

℄

and ALC

+

[

3

℄

, whi
h extend ALC by transitive

roles and role hierar
hies or transitive 
losure of roles respe
tively. Synta
ti
ally,

ALC

+

is similar to S, where, in addition to transitive and non-transitive roles, the

transitive 
losure R

+

of a role R may appear in existential and universal restri
tions.

Formally, R

+

is interpreted by

(R

+

)

I

=

[

i2N

(R

I

)

i

; where (R

I

)

i

=

(

R

I

; if i = 1

R

I

Æ (R

I

)

i�1

; otherwise

For both SH and ALC

+

, 
on
ept satis�ability is an Exptime-
omplete problem.

This result is easily derived from the Exptime-hardness proof for PDL in

[

18

℄

and from

the proof that PDL is in Exptime in

[

41

℄

. Nevertheless, implementations of algorithms

for SH exhibit good performan
e in realisti
 appli
ations

[

34

℄

whereas, at the moment,

this seems to be more problemati
al for ALC

+

. We believe that the main reason for

this dis
repan
y, at least in the 
ase of tableau algorithm implementations, lies in

the di�erent 
omplexity of the blo
king 
onditions that are needed to guarantee the

termination of the respe
tive algorithms. In the following we are going to survey the

blo
king te
hniques needed to deal with SH and its subsequent extensions to SHI and

SHIF . To underpin our 
laim that reasoning with transitive roles empiri
ally leads

to more eÆ
ient implementations than for transitive 
losure, we will also present the

blo
king te
hniques used to deal with transitive 
losure. These are more 
ompli
ated
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and introdu
e a larger degree of non-determinism into the tableaux algorithms, leading

to inferior performan
e of implementations.

3.2 Blo
king for S and SH

Termination of the expansion pro
ess of a tableaux algorithm is not guaranteed for

logi
s that in
lude transitive roles, as the expansion rules 
an introdu
e new 
on
epts

that are the same size as the de
omposed 
on
ept. In parti
ular, 8R:C 
on
epts,

where R is a transitive role, are dealt with by propagating the whole 
on
ept a
ross

R-labelled edges

[

43

℄

. For example, given a node x labelled fC; 9R:C;8R:(9R:C)g,

where R is a transitive role, the 
ombination of the 9R:C and 8R:(9R:C) 
on
epts

would 
ause a new node y to be added to the tree with a label identi
al to that of x.

The expansion pro
ess 
ould then be repeated inde�nitely.

This problem 
an be dealt with by blo
king : halting the expansion pro
ess when

a 
y
le is dete
ted

[

3; 8

℄

. For logi
s without inverse roles, the general pro
edure is

to 
he
k the label of ea
h new node y, and if it is a subset

[

2

℄

of the label of an

an
estor node x, then no further expansion of y is performed: x is said to blo
k y.

The resulting tree 
orresponds to a 
y
li
al model in whi
h y is identi�ed with x.

To deal with the transitive 
losure of roles, tableaux algorithms pro
eed by non-

deterministi
ally expanding a 
on
ept 9R

+

:C to either 9R:C or 9R:9R

+

:C. Again,

sin
e the size of 
on
epts along a path in the tree may not de
rease, blo
king te
h-

niques are ne
essary to guarantee termination. An adequate blo
king 
ondition for

ALC

+

is identi
al as for SH, but one has to distinguish between good and bad 
y
les.

Consider the following 
on
ept:

D = 9R

+

:A u 8R

+

::A u :A

While D is obviously not satis�able, a run of a tableaux algorithm might generate

the following tableau in whi
h node y is blo
ked by node x without generating any

obvious 
ontradi
tions.

�

x

9R

+

:A; 8R

+

::A; 9R:9R

+

:A; :A

R

�

y

9R

+

:A; 8R

+

::A; 9R:9R

+

:A; :A

The problem is that 9R

+

:A has always been expanded to 9R:9R

+

:A, postponing the

satisfa
tion of A a further step. To obtain a 
orre
t tableaux algorithm for ALC

+

, the

blo
king 
ondition must in
lude a 
he
k to ensure that ea
h 
on
ept 9R

+

:C appearing

in su
h a 
y
le is expanded to 9R:C somewhere in the 
y
le. Su
h 
y
les are 
alled

good 
y
les, whereas 
y
les in whi
h 9R

+

:C has always been expanded to 9R:9R

+

:C

are 
alled bad 
y
les. A valid model may only 
ontain good 
y
les.

Summing up, using transitive 
losure instead of transitive roles has a twofold im-

pa
t on the empiri
al tra
tability: (a) in blo
king situations, good 
y
les have to be

distinguished from bad ones, and (b) the non-deterministi
 expansion of 
on
epts of

the form 9R

+

:C in
reases the size of the sear
h spa
e.
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�

x

:A; 9R:9R

+

:C

R

�

y

9R

+

:C; 9R:C

R

�

z

C

�

x

:A; 9R:9R

+

:C

R

�

y

9R

+

:C; 9R:9R

+

:C

R

�

z

9R

+

:C; 9R:9R

+

:C

R

Fig. 2. Dynami
 blo
king fails in the presen
e of transitive 
losure.

3.3 Adding Inverse Roles

Blo
king is more problemati
al when inverse roles are added to the logi
, and a

key feature of the algorithms presented in

[

35

℄

was the introdu
tion of a dynami


blo
king strategy. Besides using label equality instead of subset, this strategy allowed

blo
ks to be established, broken, and re-established. With inverse roles the blo
king


ondition has to be 
onsidered more 
arefully be
ause roles are now bi-dire
tional,

and additional 
on
epts in x's label 
ould invalidate the model with respe
t to y's

prede
essor. This problem 
an be over
ome by allowing a node x to be blo
ked by

one of its an
estors y if and only if they were labelled with the same sets of 
on
epts.

Dealing with inverse roles is even more 
ompli
ated in the presen
e of transitive


losure. As an example 
onsider the following 
on
ept:

D = :A u 9R:9R

+

:C

C = 8R

�

:(8R

�

:A)

Fig. 2 shows two possible tableau expansions of the 
on
ept D. Continuing the

expansion of the left hand tree will ne
essarily lead to a 
lash when 
on
ept C 2 L(z)

is expanded as this will lead to both A and :A appearing in L(x). The right hand

tree is also invalid as it 
ontains a bad 
y
le: L(y) = L(z) but 9R

+

:D has always

been expanded to 9R:9R

+

:D. Nevertheless, D is satis�able, as it would be shown by


ontinuing the expansion of the right hand path for one more step.

In

[

16

℄

, a solution to this problem for CPDL, a stri
t superset of ALCI

+

(ALC

+

plus

inverse roles) is presented. The solution 
onsists of an additional expansion rule 
alled

the look behind analyti
al 
ut. This rule employs exhaustive non-deterministi
 guess-

ing to make the past of ea
h node in the tree expli
it in the labelling of that node: if y

is an R-su

essor of a node x, then 9R

�

:C or 8R

�

::C is added non-deterministi
ally

to the label of y for ea
h 
on
ept C that may appear during the expansion pro
ess.

Obviously, this leads to a further large in
rease in the size of the sear
h spa
e, with a


orrespondingly large adverse impa
t on empiri
al tra
tability. Experien
e with this

kind of exhaustive guessing leads us to believe that an implementation of su
h an

algorithm would be disastrously ineÆ
ient. The non-existen
e of implementations for

ALCI

+

or CPDL might be taken to support this view.
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3.4 Pair-wise Blo
king

Further extending the logi
 SHI to SHIF by adding fun
tional restri
tions (
on
epts

of the form (6 1 R), meaning that an individual 
an be related to at most one other

individual by the role R) introdu
es new problems asso
iated with the fa
t that the

logi
 no longer has the �nite model property. This means that there are 
on
epts

that are satis�able but for whi
h there exists no �nite model. An example of su
h a


on
ept is

:C u 9F

�

:(C u (6 1 F )) u 8R

�

:(9F

�

:(C u (6 1 F )));

where R is a transitive role and F v R. Any model of this 
on
ept must 
ontain an

in�nite sequen
e of individuals, ea
h related to a single su

essors by an F

�

role, and

ea
h satisfying C u9F

�

:C, the 9F

�

:C term being propagated along the sequen
e by

the transitive super-role R. Attempting to terminate the sequen
e in a 
y
le 
auses

the whole sequen
e to 
ollapse into a single node due to the fun
tional restri
tions

(6 1 F ), and this results in a 
ontradi
tion as both C and :C will be in that node's

label.

In order to deal with in�nite models|namely to have an algorithm that terminates


orre
tly even if the input 
on
ept has only in�nite models|a more sophisti
ated

pair-wise blo
king strategy was introdu
ed in

[

35

℄

, and soundness was proved by

demonstrating that a blo
ked tree always has a 
orresponding in�nite model.

2

The only known algorithm that is able to deal with the 
ombination of transitive


losure, inverse roles, and fun
tional restri
tions on roles relies on an elaborate polyno-

mial redu
tion to a CPDL terminology

[

13

℄

, and the 
apability of CPDL to internalise

the resulting general terminologi
al axioms. The large number and the nature of the

axioms generated by this redu
tion make it very unlikely that an implementation with

tolerable runtime behaviour will ever emerge.

4 Reasoning for SI Logi
s

In this se
tion, we present two tableaux algorithms: the �rst de
ides satis�ability of

SHIF-
on
epts, and 
an be used for all SHIF reasoning problems (see Theorem 2.4);

the se
ond de
ides satis�ability (and hen
e subsumption) of SI-
on
epts in Pspa
e.

In this paper we only sket
h most of the proofs. For details on the SHIF -algorithm,

please refer to

[

35

℄

, for details on the SI- and SIN -algorithm, please refer to

[

27

℄

.

The 
orre
tness of the algorithms 
an be proved by showing that they 
reate a

tableau for a 
on
ept i� it is satis�able.

For ease of 
onstru
tion, we assume all 
on
epts to be in negation normal form

(NNF), that is, negation o

urs only in front of 
on
ept names. Any SHIF -
on
ept


an easily be transformed to an equivalent one in NNF by pushing negations in-

wards

[

25

℄

.

De�nition 4.1 Let D be a SHIF -
on
ept in NNF, R a role hierar
hy, and R

D

the

set of roles o

urring in D together with their inverses, and sub(D) the sub
on
epts

of D. Then T = (S;L;E) is a tableau for D w.r.t. R i� S is a set of individuals,

L : S ! 2

sub(D)

maps ea
h individual to a set of 
on
epts, E : R

D

! 2

S�S

maps

ea
h role to a set of pairs of individuals, and there is some individual s 2 S su
h that

2

This is not to say that it may not also have a �nite model.
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D 2 L(s). Furthermore, for all s; t 2 S, C;E 2 sub(D), and R;S 2 R

D

, it holds

that:

1. if C 2 L(s), then :C =2 L(s),

2. if C u E 2 L(s), then C 2 L(s) and E 2 L(s),

3. if C t E 2 L(s), then C 2 L(s) or E 2 L(s),

4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),

5. if 9R:C 2 L(s), then there is some t 2 S su
h that hs; ti 2 E(R) and C 2 L(t),

6. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then 8R:C 2 L(t),

7. hs; ti 2 E(R) i� ht; si 2 E(Inv(R)).

8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),

9. if 61R 2 L(s), then ℄ft j hs; ti 2 E(R)g � 1, and

10. if >2R 2 L(s), then ℄ft j hs; ti 2 E(R)g � 2.

Tableaux for SI-
on
epts are de�ned analogously and must satisfy Properties 1-7,

where, due to the absen
e of a role hierar
hy, v* is the identity.

Due to the 
lose relationship between models and tableaux, the following lemma


an be easily proved by indu
tion on the stru
ture of 
on
epts. As a 
onsequen
e,

an algorithm that 
onstru
ts (if possible) a tableau for an input 
on
ept is a de
ision

pro
edure for satis�ability of 
on
epts.

Lemma 4.2 A SHIF-
on
ept (resp. SI-
on
ept) D is satis�able w.r.t. a role hier-

ar
hy R i� D has a tableau w.r.t. R.

4.1 Reasoning in SHIF

In the following, we give an algorithm that, given a SHIF -
on
ept D, de
ides the

existen
e of a tableaux for D. We impli
itly assume an arbitrary but �xed role

hierar
hy R.

De�nition 4.3 A 
ompletion tree for a SHIF -
on
ept D is a tree where ea
h node

x of the tree is labelled with a set L(x) � sub(D) and ea
h edge hx; yi is labelled with

a set L(hx; yi) of (possibly inverse) roles o

urring in sub(D).

Given a 
ompletion tree, a node y is 
alled an R-su

essor of a node x i� y is

a su

essor of x and S 2 L(hx; yi) for some S with S v* R. A node y is 
alled an

R-neighbour of x i� y is an R-su

essor of x, or if x is an Inv(R)-su

essor of y.

Prede
essors and an
estors are de�ned as usual.

A node is blo
ked i� it is dire
tly or indire
tly blo
ked. A node x is dire
tly blo
ked

i� none of its an
estors are blo
ked, and it has an
estors x

0

, y and y

0

su
h that

1. x is a su

essor of x

0

and y is a su

essor of y

0

and

2. L(x) = L(y) and L(x

0

) = L(y

0

) and

3. L(hx

0

; xi) = L(hy

0

; yi).

In this 
ase we will say that y blo
ks x.

A node y is indire
tly blo
ked i� one of its an
estors is blo
ked, or|in order to

avoid wasted expansion after an appli
ation of the 6-rule|it is a su

essor of a node

x and L(hx; yi) = ;.
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indire
tly blo
ked, and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indire
tly blo
ked, and

2. fC

1

; C

2

g \ L(x) = ;

then, for some C 2 fC

1

; C

2

g, L(x) �! L(x) [ fCg

9-rule: if 1. 9S:C 2 L(x), x is not blo
ked, and

2. x has no S-neighbour y with C 2 L(y)

then 
reate a new node y with

L(hx; yi) = fSg and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indire
tly blo
ked, and

2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), x is not indire
tly blo
ked,

2. there is some R with Trans(R) and R v* S, and

3. x has an R-neighbour y with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg

>-rule: if 1. (> 2 R) 2 L(x), x is not blo
ked, and

2. there is no R-neighbour y of x with A 2 L(y)

then 
reate two new nodes y

1

, y

2

with

L(hx; y

1

i) = L(hx; y

2

i) = fRg,

L(y

1

) = fAg and L(y

2

) = f:Ag

6-rule: if 1. (6 1 R) 2 L(x), x is not indire
tly blo
ked,

2. x has two R-neighbours y and z s.t. y is not an an
estor of z,

then 1. L(z) �! L(z) [ L(y) and

2. if z is an an
estor of y

then L(hz; xi) �! L(hz; xi) [ Inv(L(hx; yi))

else L(hx; zi) �! L(hx; zi) [ L(hx; yi)

3. L(hx; yi) �! ;

Fig. 3. The tableaux expansion rules for SHIF

For a node x, L(x) is said to 
ontain a 
lash i� fA;:Ag � L(x) or f>2R;61Sg �

L(x) for roles R v* S. A 
ompletion tree is 
alled 
lash-free i� none of its nodes


ontains a 
lash; it is 
alled 
omplete i� none of the expansion rules in Figure 3 is

appli
able.

For a SHIF -
on
ept D in NNF, the algorithm starts with a 
ompletion tree 
on-

sisting of a single node x with L(x) = fDg. It applies the expansion rules, stopping

when a 
lash o

urs, and answers \D is satis�able" i� the 
ompletion rules 
an be

applied in su
h a way that they yield a 
omplete and 
lash-free 
ompletion tree.

The soundness and 
ompleteness of the tableaux algorithm is an immediate 
onse-

quen
e of Lemmas 4.2 and 4.4.

Lemma 4.4 Let D be an SHIF-
on
ept.

1. The tableaux algorithm terminates when started with D.

2. If the expansion rules 
an be applied to D su
h that they yield a 
omplete and
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lash-free 
ompletion tree, then D has a tableau.

3. If D has a tableau, then the expansion rules 
an be applied to D su
h that they

yield a 
omplete and 
lash-free 
ompletion tree.

Before we sket
h the ideas of the proof, we will dis
uss the di�erent expansion rules

and their 
orresponden
e to the language 
onstru
tors.

The u-, t-, 9- and 8-rules are the standard ALC tableaux rules

[

45

℄

. The 8

+

-rule

is used to handle transitive roles, where the v* -
lause deals with the role hierar
hy.

See

[

35

℄

for details.

The fun
tional restri
tion rules merit 
loser 
onsideration. In order to guarantee

the satisfa
tion of a >2R-
onstraint, the >-rule 
reates two su

essors and uses a

fresh atomi
 
on
ept A to prohibit identi�
ation of these su

essors by the 6-rule. If

a node x has two or more R-neighbours and 
ontains a fun
tional restri
tion 61R,

then the 6-rule merges two of the neighbours and also merges the edges 
onne
ting

them with x. Labelling edges with sets of roles allows a single node to be both an R

and S-su

essor of x even if R and S are not 
omparable by v* . Finally, 
ontradi
ting

fun
tional restri
tions are taken 
are of by the de�nition of a 
lash.

We now sket
h the main ideas behind the proof of Lemma 4.4:

1. Termination: Let m = jsub(D)j and n = jR

D

j. Termination is a 
onsequen
e

of the following properties of the expansion rules:

(a) The expansion rules never remove nodes from the tree or 
on
epts from node

labels. Edge labels 
an only be 
hanged by the 6-rule whi
h either expands them or

sets them to ;; in the latter 
ase the node below the ;-labelled edge is blo
ked. (b)

Su

essors are only generated for 
on
epts of the form 9R:C and >2R. For a node x,

ea
h of these 
on
epts triggers the generation of at most two su

essors. If for one of

these su

essors y the 6-rule subsequently 
auses L(hx; yi) to be 
hanged to ;, then

x will have some R-neighbour z with L(z) � L(y). This, together with the de�nition

of a 
lash, implies that the 
on
ept that led to the generation of y will not trigger

another rule appli
ation. Obviously, the out-degree of the tree is bounded by 2m. (
)

Nodes are labelled with non-empty subsets of sub(D) and edges with subsets of R

D

,

so there are at most 2

2mn

di�erent possible labellings for a pair of nodes and an edge.

Therefore, on a path of length at least 2

2mn

there must be 2 nodes x; y su
h that

x is dire
tly blo
ked by y. Sin
e a path on whi
h nodes are blo
ked 
annot be
ome

longer, paths are of length at most 2

2mn

.

2. Soundness: A 
omplete and 
lash-free tree T for D indu
es the existen
e of a

tableaux T = (S;L;E) forD as follows. Individuals in S 
orrespond to paths in T from

the root node to some node that is not blo
ked. Instead of going to a dire
tly blo
ked

node, these paths jump ba
k to the blo
king node, whi
h yields paths of arbitrary

length. Thus, if blo
king o

urs, this 
onstru
tion yields an in�nite tableau. This

rather 
ompli
ated tableau 
onstru
tion is ne
essary due to the presen
e of fun
tional

restri
tions; its validity is ensured by the blo
king 
ondition, whi
h 
onsiders both

the blo
ked node and its prede
essor.

3. Completeness: A tableau T = (S;L;E) for D 
an be used to \steer" the

appli
ation of the non-deterministi
 t- and 6-rules in a way that yields a 
omplete

and 
lash-free tree.

The following theorem is an immediate 
onsequen
e of Lemma 4.4, Lemma 4.2, and

Lemma 2.3.
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Theorem 4.5 The tableaux algorithm is a de
ision pro
edure for the satis�ability and

subsumption of SHIF-
on
epts with respe
t to terminologies and role hiera
hies.

4.2 A PSpa
e-algorithm for SI

To obtain a PSpa
e-algorithm for SI , the SHIF algorithm is modi�ed as follows:

(a) As SI does not allow for fun
tional restri
tions, the >- and the 6-rule 
an be

omitted; blo
king no longer involves two pairs of nodes with identi
al labels but only

two nodes with \similar" labels. (b) Due to the absen
e of role hierar
hies, edge

labels 
an be restri
ted to roles (instead of sets of roles). (
) To obtain a PSpa
e

algorithm, we employ a re�ned blo
king strategy whi
h ne
essitates a se
ond label B

for ea
h node. This blo
king te
hnique, while dis
overed independently, is based on

ideas similar to those used in

[

46

℄

to show that satis�ability for K4

t


an be de
ided

in PSpa
e.

3

In the following, we will des
ribe and motivate this blo
king te
hnique;

detailed proofs as well as a similar result for SIN 
an be found in

[

27

℄

.

Please note that naively using a 
ut rule does not yield a PSpa
e algorithm: a 
ut

rule similar to the look behind analyti
al 
ut presented in

[

16

℄

(non-deterministi
ally)

guesses whi
h 
onstraints will be propagated \up" the 
ompletion tree by universal

restri
tions on inverted roles. For SI , this te
hnique may lead to paths of exponential

length due to equality blo
king. A way to avoid these long paths would be to stop the

investigation of a path at some polynomial bound. However, to prove the 
orre
tness

of this approa
h, it would be ne
essary to establish a \short-path-model" property

similar to Lemma 4.8. Furthermore, we believe that our algorithm is better suited

for an implementation sin
e it makes less use of \don't-know" non-determinism. This

also distinguishes our approa
h from the algorithm presented in

[

46

℄

, whi
h is not

intended to form the basis for an eÆ
ient implementation.

De�nition 4.6 A 
ompletion tree for a SI 
on
ept D is a tree where ea
h node x of

the tree is labelled with two sets B(x) � L(x) � sub(D) and ea
h edge hx; yi is labelled

with a (possibly inverse) role L(hx; yi) o

urring in sub(D).

R-neighbours, -su

essors, and -prede
essors are de�ned as in De�nition 4.3. Due

to the absen
e of role hierar
hies, v* is the identity on R

D

.

A node x is blo
ked i�, for an an
estor y, y is blo
ked or

B(x) � L(y) and L(x)= Inv(S) = L(y)= Inv(S);

where x

0

is the prede
essor of x, L(hx

0

; xi) = S, and L(x)= Inv(S) = f8 Inv(S):C 2

L(x)g.

For a node x, L(x) is said to 
ontain a 
lash i� fA;:Ag � L(x). A 
ompletion tree

to whi
h none of the expansion rules given in Figure 4 is appli
able is 
alled 
omplete.

For an SI-
on
ept D, the algorithm starts with a 
ompletion tree 
onsisting of a

single node x with B(x) = L(x) = fDg. It applies the expansion rules in Figure 4,

stopping when a 
lash o

urs, and answers \D is satis�able" i� the 
ompletion rules


an be applied in su
h a way that they yield a 
omplete and 
lash-free 
ompletion tree.

As for SHIF , 
orre
tness of the algorithm is proved by �rst showing that a

SI-
on
ept is satis�able i� it has a tableau, and next proving the SI-analogue of

Lemma 4.4.

3

The modal logi
 K4

t

is a synta
ti
 variant of SI with only a single transitive role name.
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u-rule: if 1. C

1

u C

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g

8-rule: if 1. 8S:C 2 L(x) and

2. there is an S-su

essor y of x with C =2 B(y)

then L(y) �! L(y) [ fCg and

B(y) �! B(y) [ fCg or

2'. there is an S-prede
essor y of x with C =2 L(y)

then L(y) �! L(y) [ fCg.

8

+

-rule: if 1. 8S:C 2 L(x) and Trans(S) and

2. there is an S-su

essor y of x with 8S:C =2 B(y)

then L(y) �! L(y) [ f8S:Cg and

B(y) �! B(y) [ f8S:Cg or

2'. there is an S-prede
essor y of x with 8S:C =2 L(y)

then L(y) �! L(y) [ f8S:Cg.

9-rule: if 1. 9S:C 2 L(x), x is not blo
ked and no other rule

is appli
able to any of its an
estors, and

2. x has no S-neighbour y with C 2 L(y)

then 
reate a new node y with

L(hx; yi) = S and L(y) = B(y) = fCg

Fig. 4. Tableaux expansion rules for SI

Theorem 4.7 The tableaux algorithm is a de
ision pro
edure for satis�ability and

subsumption of SI-
on
epts.

The dynami
 blo
king te
hnique for SI and SHI des
ribed in Se
tion 3, whi
h is

based on label equality, may lead to 
ompletion trees with exponentially long paths

be
ause there are exponentially many possibilities to label sets on su
h a path. Due

to the non-deterministi
 t-rule, these exponentially many sets may a
tually o

ur.

This non-determinism is not problemati
al for S be
ause disjun
tions need not be


ompletely de
omposed to yield a subset-blo
king situation. For an optimal SI al-

gorithm, the additional label B was introdu
ed to enable a sort of subset-blo
king

whi
h is independent of the t-non-determinism. Intuitively, B(x) is the restri
tion of

L(x) to those non-de
omposed 
on
epts that x must satisfy, whereas L(x) 
ontains

boolean de
ompositions of these 
on
epts as well as those that are imposed by value

restri
tions in des
endants. If x is blo
ked by y, then all 
on
epts in B(x) are even-

tually de
omposed in L(y) (if no 
lash o

urs). However, in order to substitute x by

y, x's 
onstraints on prede
essors must be at least as strong as y's; this is taken 
are

of by the se
ond blo
king 
ondition.

Let us 
onsider a path x

1

; : : : ; x

n

where all edges are labelled R with Trans(R), the

only kind of paths along whi
h the length of the longest 
on
ept in the labels might

not de
rease. If no rules 
an be applied, we have L(x

i+1

)= Inv(R) � L(x

i

)= Inv(R) and

B(x

i

) � B(x

i+1

) [ fC

i

g (where 9R:C

i

triggered the generation of x

i+1

). This limits

the number of labels and guarantees blo
king after a polynomial number of steps.
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Lemma 4.8 The paths of a 
ompletion tree for a 
on
ept D have a length of at most

m

4

where m = jsub(D)j.

Finally, a slight modi�
ation of the expansion rules given in Figure 4 yields a

PSpa
e algorithm. This modi�
ation is ne
essary be
ause the original algorithm

must keep the whole 
ompletion tree in its memory|whi
h needs exponential spa
e

even though the length of its paths is polynomially bounded. The original algorithm

may not forget about bran
hes be
ause restri
tions whi
h are pushed upwards in the

tree might make it ne
essary to revisit paths whi
h have been 
onsidered before. We

solve this problem as follows:

Whenever the 8- or the 8

+

-rule is applied to a node x and its prede
essor y (Case

2' of these rules), we delete all su

essors of y from the 
ompletion tree. While this

makes it ne
essary to restart the generation of su

essors for y, it makes it possible to

implement the algorithm in a depth-�rst manner whi
h fa
ilitates the re-use of spa
e.

This modi�
ation does not a�e
t the proof of soundness and 
ompleteness for the

algorithm, but we have to re-prove termination

[

27

℄

as it relied on the fa
t that we

never removed any nodes from the 
ompletion tree. Summing up we get:

Theorem 4.9 The modi�ed algorithm is a PSpa
e de
ision pro
edure for satis�abil-

ity and subsumption of SI-
on
epts.

5 The Unde
idability of Unrestri
ted SHN

In

[

28

℄

we des
ribe an algorithm for SHIQ based on the SHIF -algorithm already

presented. Like earlier DLs that 
ombine a hierar
hy of (transitive and non-transitive)

roles with some form of number restri
tions

[

35; 27

℄

and SHIF , the DL SHIQ allows

only simple roles in number restri
tions. The justi�
ation for this limitation has

been partly on the grounds of a doubtful semanti
s (of transitive fun
tional roles)

and partly to simplify de
ision pro
edures. In this se
tion we will show that, even

for the simpler SHN logi
, allowing arbitrary roles in number restri
tions leads to

unde
idability, while de
idability for the 
orresponding variant of SHIF is still an

open problem. For 
onvenien
e, we will refer to SHN with arbitrary roles in number

restri
tions as SHN

+

.

The unde
idability proof uses a redu
tion of the domino problem

[

7

℄

adapted

from

[

4

℄

. This problem asks if, for a set of domino types, there exists a tiling of

an N

2

grid su
h that ea
h point of the grid is 
overed with one of the domino types,

and adja
ent dominoes are \
ompatible" with respe
t to some prede�ned 
riteria.

De�nition 5.1 A domino system D = (D;H; V ) 
onsists of a non-empty set of

domino types D = fD

1

; : : : ; D

n

g, and of sets of horizontally and verti
ally mat
hing

pairs H � D �D and V � D �D. The problem is to determine if, for a given D,

there exists a tiling of an N � N grid su
h that ea
h point of the grid is 
overed with

a domino type in D and all horizontally and verti
ally adja
ent pairs of domino types

are in H and V respe
tively, i.e., a mapping t : N�N ! D su
h that for all m;n 2 N,

ht(m;n); t(m+ 1; n)i 2 H and ht(m;n); t(m;n+ 1)i 2 V .

This problem 
an be redu
ed to the satis�ability of SHN

+

-
on
epts, and the un-

de
idability of the domino problem implies unde
idability of satis�ability of SHN

+

-


on
epts.
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Fig. 5. Visualisation of the grid and role hierar
hy.

Ensuring that a given point satis�es the 
ompatibility 
onditions is simple for most

logi
s (using value restri
tions and boolean 
onne
tives), and applying su
h 
onditions

throughout the grid is also simple in a logi
 su
h as SHN

+

whi
h 
an deal with arbi-

trary axioms. The 
ru
ial diÆ
ulty is representing the N � N grid using \horizontal"

and \verti
al" roles X and Y , and in parti
ular for
ing the 
oin
iden
e of X Æ Y and

Y ÆX su

essors. This 
an be a

omplished in SHN

+

using an alternating pattern

of two horizontal roles X

1

and X

2

, and two verti
al roles Y

1

and Y

2

, with disjoint

primitive 
on
epts A, B, C, and D being used to identify points in the grid with

di�erent 
ombinations of su

essors. The 
oin
iden
e of X Æ Y and Y ÆX su

essors


an then be enfor
ed using number restri
tions on transitive super-roles of ea
h of

the four possible 
ombinations of X and Y roles. A visualisation of the resulting grid

and a suitable role hierar
hy is shown in Figure 5, where S

�

ij

are transitive roles.

The alternation of X and Y roles in the grid means that one of the transitive super-

roles S

�

ij


onne
ts ea
h point (x; y) to the points (x+1; y), (x; y+1) and (x+1; y+1),

and to no other points. A number restri
tion of the form 63S

�

ij


an thus be used

to enfor
e the ne
essary 
oin
iden
e of X Æ Y and Y Æ X su

essors. A 
omplete

spe
i�
ation of the grid is given by the following axioms:

A v :B u :C u :D u 9X

1

:B u 9Y

1

:C u63S

�

11

,

B v :A u :C u :D u 9X

2

:A u 9Y

1

:D u63S

�

21

,

C v :A u :B u :D u 9X

1

:D u 9Y

2

:A u63S

�

12

,

D v :A u :B u :C u 9X

2

:C u 9Y

2

:B u63S

�

22

.

It only remains to add axioms whi
h en
ode the lo
al 
ompatibility 
onditions (as

des
ribed in

[

4

℄

) and to assert that A is subsumed by the disjun
tion of all domino

types. The SHN

+

-
on
ept A is now satis�able w.r.t. the various axioms (whi
h 
an

be internalised as des
ribed in Lemma 2.3) i� there is a 
ompatible tiling of the grid.

6 Implementation and Optimisation

The development of the SI family of DLs has been motivated by the desire to imple-

ment systems with good typi
al 
ase performan
e. As dis
ussed in Se
tion 3, this is

a
hieved in part through the design of the logi
s and algorithms themselves, in parti
u-

lar by using transitive roles and by reasoning with number restri
tions dire
tly, rather
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than via en
odings. Another important feature of these algorithms is that their rela-

tive simpli
ity fa
ilitates the appli
ation of a range of optimisation te
hniques. Several

systems based on S logi
s have now been implemented (e.g., FaCT

[

30

℄

, DLP

[

40

℄

and

RACE

[

23

℄

), and have demonstrated that suitable optimisation te
hniques 
an lead

to a dramati
 improvement in the performan
e of the algorithms when used in re-

alisti
 appli
ations. A system based on the SHIF logi
 has also been implemented

(iFaCT

[

32

℄

) and has been shown to be similarly amenable to optimisation.

DL systems are typi
ally used to 
lassify a KB, and the optimisation te
hniques

used in su
h systems 
an be divided into four 
ategories based on the stage of the


lassi�
ation pro
ess at whi
h they are applied.

1. Prepro
essing optimisations that try to modify the KB so that 
lassi�
ation and

subsumption testing are easier.

2. Partial ordering optimisations that try to minimise the number of subsumption

tests required in order to 
lassify the KB.

3. Subsumption optimisations that try to avoid performing a potentially expensive

satis�ability test, usually by substituting a 
heaper test.

4. Satis�ability optimisations that try to improve the typi
al 
ase performan
e of the

underlying satis�ability testing algorithm.

Many optimisations in the �rst three 
ategories are relatively independent of the

underlying subsumption (satis�ability) testing algorithm and 
ould be applied to any

DL system. As we are mostly 
on
erned with algorithms for the SI family of DLs

we will 
on
entrate on the fourth kind of optimisation, those that try to improve the

performan
e of the algorithm itself. Most of these are aimed at redu
ing the size of

the sear
h spa
e explored by the algorithm as a result of applying non-deterministi


tableaux expansion rules.

6.1 Semanti
 Bran
hing Sear
h

Implementations of the algorithms des
ribed in the previous se
tions typi
ally use a

sear
h te
hnique 
alled synta
ti
 bran
hing. When expanding the label of a node x,

synta
ti
 bran
hing works by 
hoosing an unexpanded disjun
tion (C

1

t : : : t C

n

)

in L(x) and sear
hing the di�erent models obtained by adding ea
h of the disjun
ts

C

1

, : : : , C

n

to L(x)

[

22

℄

. As the alternative bran
hes of the sear
h tree are not

disjoint, there is nothing to prevent the re
urren
e of an unsatis�able disjun
t in

di�erent bran
hes. The resulting wasted expansion 
ould be 
ostly if dis
overing

the unsatis�ability requires the solution of a 
omplex sub-problem. For example,

tableaux expansion of a node x, where f(A t B); (A t C)g � L(x) and A is an

unsatis�able 
on
ept, 
ould lead to the sear
h pattern shown in Figure 6, in whi
h

the unsatis�ability of L(x) [ fAg must be demonstrated twi
e.

This problem 
an be dealt with by using a semanti
 bran
hing te
hnique adapted

from the Davis-Putnam-Logemann-Loveland pro
edure (DPL) 
ommonly used to

solve propositional satis�ability (SAT) problems

[

12; 21

℄

. Instead of 
hoosing an

unexpanded disjun
tion in L(x), a single disjun
t D is 
hosen from one of the unex-

panded disjun
tions in L(x). The two possible sub-trees obtained by adding either

D or :D to L(x) are then sear
hed. Be
ause the two sub-trees are stri
tly disjoint,

there is no possibility of wasted sear
h as in synta
ti
 bran
hing. Note that the order
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t t

t t

L(x) = f(A t B); (A t C)g

L(x) [ fBgL(x) [ fAg ) 
lash

x

L(x) [ fAg ) 
lash

xx

x

x

L(x) [ fCg

Fig. 6. Synta
ti
 bran
hing sear
h

in whi
h the two bran
hes are explored is irrelevant from a theoreti
al viewpoint, but

may o�er further optimisation possibilities (see Se
tion 6.4).

Semanti
 bran
hing sear
h has the additional advantage that a great deal is known

about the implementation and optimisation of the DPL algorithm. In parti
ular, both

lo
al simpli�
ation (see Se
tion 6.2) and heuristi
 guided sear
h (see Se
tion 6.4) 
an

be used to try to minimise the size of the sear
h tree (although it should be noted that

both these te
hniques 
an also be adapted for use with synta
ti
 bran
hing sear
h).

There are also some disadvantages to semanti
 bran
hing sear
h. Firstly, it is possi-

ble that performan
e 
ould be degraded by adding the negated disjun
t in the se
ond

bran
h of the sear
h tree, for example if the disjun
t is a very large or 
omplex 
on-


ept. However this does not seem to be a serious problem in pra
ti
e, with semanti


bran
hing rarely exhibiting signi�
antly worse performan
e than synta
ti
 bran
hing.

Se
ondly, its e�e
tiveness is problem dependent. It is most e�e
tive with randomly

generated problems, parti
ularly those that are over-
onstrained (likely to be unsat-

is�able)

[

34

℄

. It is also e�e
tive with some of the hand 
rafted problems from the

Tableaux'98 ben
hmark suite

[

24; 6

℄

. However it is of little bene�t when 
lassifying

realisti
 KBs

[

33

℄

.

6.2 Lo
al Simpli�
ation

Lo
al simpli�
ation is another te
hnique used to redu
e the size of the sear
h spa
e

resulting from the appli
ation of non-deterministi
 expansion rules. Before any non-

deterministi
 expansion of a node label L(x) is performed, disjun
tions in L(x) are

examined, and if possible simpli�ed. The simpli�
ation most 
ommonly used is to

deterministi
ally expand disjun
tions in L(x) that present only one expansion possi-

bility and to dete
t a 
lash when a disjun
tion in L(x) has no expansion possibilities.

This simpli�
ation has been 
alled boolean 
onstraint propagation (BCP)

[

20

℄

. In

e�e
t, the inferen
e rule

:C

1

; : : : ;:C

n

; C

1

t : : : t C

n

tD

D

is being used to simplify the 
onjun
tive 
on
ept represented by L(x). For example,

given a node x su
h that

f(C t (D

1

uD

2

)); (:D

1

t :D

2

t C);:Cg � L(x);
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t t

L(x) = f(A t B); (A t C)g

L(x) [ fAg ) 
lash L(x) [ f:A;B;Cg

x x

x

Fig. 7. Semanti
 bran
hing sear
h

BCP deterministi
ally expands the disjun
tion (C t (D

1

uD

2

)), adding (D

1

uD

2

) to

L(x), be
ause :C 2 L(x). The deterministi
 expansion of (D

1

uD

2

) adds both D

1

and D

2

to L(x), allowing BCP to identify (:D

1

t :D

2

t C) as a 
lash (without any

bran
hing having o

urred), be
ause fD

1

; D

2

;:Cg � L(x).

BCP simpli�
ation is usually des
ribed as an integral part of SAT based algo-

rithms

[

22

℄

, but it 
an also be used with synta
ti
 bran
hing. However, it is more ef-

fe
tive with semanti
 bran
hing as the negated 
on
epts introdu
ed by failed bran
hes


an result in additional simpli�
ations. Taking the above example of f(A t B); (A t

C)g � L(x), adding :A to L(x) allows BCP to deterministi
ally expand both of the

disjun
tions using the simpli�
ations (AtB) and:A! B and (AtC) and:A! C.

The redu
ed sear
h spa
e resulting from the 
ombination of semanti
 bran
hing and

BCP is shown in Figure 7.

Lo
al simpli�
ation has the advantage that it 
an never in
rease the size of the

sear
h spa
e and 
an thus only degrade performan
e to the extent of the overhead re-

quired to perform the simpli�
ation. Minimising this overhead does, however, require


omplex data stru
tures

[

20

℄

, parti
ularly in a modal/des
ription logi
 setting.

As with semanti
 bran
hing, e�e
tiveness is problem dependent, the optimisation

being most e�e
tive with over-
onstrained randomly generated problems

[

33

℄

.

6.3 Dependen
y Dire
ted Ba
ktra
king

Inherent unsatis�ability 
on
ealed in sub-problems 
an lead to large amounts of un-

produ
tive ba
ktra
king sear
h, sometimes 
alled thrashing. For example, expanding

a node x (using semanti
 bran
hing), where

L(x) = f(C

1

tD

1

); : : : ; (C

n

tD

n

); 9R:(A u B);8R::Ag;


ould lead to the fruitless exploration of 2

n

possible R-su

essors of x before the

inherent unsatis�ability is dis
overed. The sear
h tree resulting from the tableaux

expansion is illustrated in Figure 8.

This problem 
an be addressed by adapting a form of dependen
y dire
ted ba
k-

tra
king 
alled ba
kjumping, whi
h has been used in solving 
onstraint satis�ability

problems

[

5

℄

(a similar te
hnique was also used in the HARP theorem prover

[

39

℄

).

Ba
kjumping works by labelling ea
h 
on
ept in a node label with a dependen
y set

indi
ating the bran
hing points on whi
h it depends. A 
on
ept C 2 L(x) depends

on a bran
hing point if C was added to L(x) at the bran
hing point or if C 2 L(x)

was generated by an expansion rule (in
luding simpli�
ation) that depends on an-

other 
on
ept D 2 L(y), and D 2 L(y) depends on the bran
hing point. A 
on
ept

C 2 L(x) depends on a 
on
ept D 2 L(y) when C was added to L(x) by a determin-

isti
 expansion that used D 2 L(y). For example, if A 2 L(x) was derived from the
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lash
lash

t

t

t

t

t

t

R

: : :

L(x) [ fC

1

g

L(x) [ fC

2

g

L(x) [ f:C

1

; D

1

g

L(x) [ f:C

2

; D

2

g

L(x) [ fC

n

g

L(x) [ f:C

3

; D

3

g

L(y) = f(A u B);:A;A;Bg L(y) = f(A u B);:A;A;Bg

x

x

x

y y

x

Fig. 8. Thrashing in ba
ktra
king sear
h

expansion of (A u B) 2 L(x), then A 2 L(x) depends on (A u B) 2 L(x).

When a 
lash is dis
overed, the dependen
y sets of the 
lashing 
on
epts 
an be used

to identify the most re
ent bran
hing point where exploring the other bran
h might

alleviate the 
ause of the 
lash. It is then possible to jump ba
k over intervening

bran
hing points without exploring any alternative bran
hes. Let us 
onsider the

earlier example and suppose that 9R:(A u B) has a dependen
y set D

i

and 8R::A

has a dependen
y set D

j

. The sear
h pro
eeds until C

1

: : : C

n

have been added to

L(x), when 9R:(AuB) and 8R::A are deterministi
ally expanded and a 
lash o

urs

in L(y) between the A derived from 9R:(A u B) and the :A derived from 8R::A.

As these derivations were both deterministi
, the dependen
y sets will be D

i

and

D

j

respe
tively, and so D

i

[D

j

is returned. This set 
annot in
lude the bran
hing

points where C

1

: : : C

n

were added to L(x) as D

i

and D

j

were de�ned before these

bran
hing points were rea
hed. The algorithm 
an therefore ba
ktra
k through ea
h

of the pre
eding n bran
hing points without exploring the se
ond bran
hes, and will


ontinue to ba
ktra
k until it rea
hes the bran
hing point equal to the maximum value

in D

i

[D

j

(if D

i

= D

j

= ;, then the algorithm will ba
ktra
k through all bran
hing

points and return \unsatis�able"). Figure 9 illustrates the pruned sear
h tree, with

the number of R-su

essors explored being redu
ed by an exponential number.

Ba
kjumping 
an also be used with synta
ti
 bran
hing, but the pro
edure is

slightly more 
omplex as there may be more than two possible 
hoi
es at a given

bran
hing point, and the dependen
y set of the disjun
tion being expanded must also

be taken into a

ount.

Like lo
al simpli�
ation, ba
kjumping 
an never in
rease the size of the sear
h

spa
e. Moreover, it 
an lead to a dramati
 redu
tion in the size of the sear
h tree and

thus a huge performan
e improvement. For example, when using either FaCT or DLP

with ba
kjumping disabled in order to 
lassify a large (�3,000 
on
ept) KB derived

from the European Galen proje
t

[

42

℄

, single satis�ability tests were en
ountered

that 
ould not be solved even after several weeks of CPU time. Classifying the same

KB with ba
kjumping enabled takes less than 100s of CPU time for either FaCT or
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lash

t

t

t

t

t

x

t

R

Ba
kjump Pruning

y

x

x

x

f:A;Ag � L(y)

Fig. 9. Pruning the sear
h using ba
kjumping

DLP

[

34

℄

.

Ba
kjumping's only disadvantage is the overhead of propagating and storing the

dependen
y sets. This 
an be alleviated to some extent by using a pointer based

implementation so that propagating a dependen
y set only requires the 
opying of a

pointer.

6.4 Heuristi
 Guided Sear
h

Heuristi
 te
hniques 
an be used to guide the sear
h in a way that tries to minimise

the size of the sear
h tree. A method that is widely used in DPL SAT algorithms is to

bran
h on the disjun
t that has the Maximum number of O

urren
es in disjun
tions

of Minimum Size|the well known MOMS heuristi


[

20

℄

. By 
hoosing a disjun
t

that o

urs frequently in small disjun
tions, the MOMS heuristi
 tries to maximise

the e�e
t of BCP. For example, if the label of a node x 
ontains the unexpanded

disjun
tions C t D

1

; : : : ; C t D

n

, then bran
hing on C leads to their deterministi


expansion in a single step: when C is added to L(x), all of the disjun
tions are fully

expanded and when :C is added to L(x), BCP will expand all of the disjun
tions,


ausing D

1

; : : : ; D

n

to be added to L(x). Bran
hing �rst on any of D

1

; : : : ; D

n

, on

the other hand, would only 
ause a single disjun
tion to be expanded.

The MOMS value for a 
andidate 
on
ept C is 
omputed simply by 
ounting the

number of times C or its negation o

ur in minimally sized disjun
tions. There are

several variants of this heuristi
, in
luding the heuristi
 from Jeroslow and Wang

[

36

℄

.

The Jeroslow and Wang heuristi
 
onsiders all o

urren
es of a disjun
t, weighting

them a

ording to the size of the disjun
tion in whi
h they o

ur. The heuristi
 then

sele
ts the disjun
t with the highest overall weighting, again with the obje
tive of

maximising the e�e
t of BCP and redu
ing the size of the sear
h tree.

When a disjun
t C has been sele
ted from the disjun
tions in L(x), a BCP max-

imising heuristi
 
an also be used to determine the order in whi
h the two possible
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bran
hes, L(x) [ fCg and L(x) [ f:Cg, are explored. This is done by separating the

two 
omponents of the heuristi
 weighting 
ontributed by o

urren
es of C and :C,

trying L(x) [ fCg �rst if C made the smallest 
ontribution, and trying L(x) [ f:Cg

�rst otherwise. The intention is to prune the sear
h tree by maximising BCP in the

�rst bran
h.

Unfortunately MOMS-style heuristi
s 
an intera
t adversely with the ba
kjumping

optimisation be
ause they do not take dependen
y information into a

ount. This

was �rst dis
overed in the FaCT system, when it was noti
ed that using MOMS

heuristi
 often led to mu
h worse performan
e. The 
ause of this phenomenon turned

out to be the fa
t that, without the heuristi
, the data stru
tures used in the imple-

mentation naturally led to \older" disjun
tions (those dependent on earlier bran
hing

points) being expanded before \newer" ones, and this led to more e�e
tive pruning if

a 
lash was dis
overed. Using the heuristi
 disturbed this ordering and redu
ed the

e�e
tiveness of ba
kjumping

[

29

℄

.

Moreover, MOMS-style heuristi
s are of little value themselves in des
ription logi


systems be
ause they rely for their e�e
tiveness on �nding the same disjun
ts re
ur-

ring in multiple unexpanded disjun
tions: this is likely in hard propositional problems,

where the disjun
ts are propositional variables, and where the number of di�erent

variables is usually small 
ompared to the number of disjun
tive 
lauses (otherwise

problems would, in general, be trivially satis�able); it is unlikely in 
on
ept satis�abil-

ity problems, where the disjun
ts are (possibly non-atomi
) 
on
epts, and where the

number of di�erent 
on
epts is usually large 
ompared to the number of disjun
tive


lauses. As a result, these heuristi
s will often dis
over that all disjun
ts have similar

or equal priorities, and the guidan
e they provide is not parti
ularly useful.

An alternative strategy is to employ an oldest-�rst heuristi
 that tries to maximise

the e�e
tiveness of ba
kjumping by using dependen
y sets to guide the expansion

[

34

℄

.

When 
hoosing a disjun
t on whi
h to bran
h, the heuristi
 �rst sele
ts those dis-

jun
tions that depend on the least re
ent bran
hing points (i.e., those with minimal

maximum values in their dependen
y sets), and then sele
ts a disjun
t from one of

these disjun
tions. This 
an be 
ombined with the use of a BCP maximising heuris-

ti
, su
h as the Jeroslow and Wang heuristi
, to sele
t the disjun
t from amongst the

sele
ted disjun
tions.

The oldest-�rst heuristi
 
an also be used to advantage when sele
ting the order

in whi
h existential role restri
tions, and the labels of the R-su

essors whi
h they

generate, are expanded. One possible te
hnique is to use the heuristi
 to sele
t an

unexpanded existential role restri
tion 9R:C from the label of a node x, apply the

9-rule and the 8-rule as ne
essary, and expand the label of the resulting R-su

essor.

If the expansion results in a 
lash, then the algorithm will ba
ktra
k; if it does not,

then 
ontinue sele
ting and expanding existential role restri
tions from L(x) until

it is fully expanded. A better te
hnique is to �rst apply the 9-rule and the 8-rule

exhaustively, 
reating a set of su

essor nodes. The order in whi
h to expand these

su

essors 
an then be based on the minimal maximum values in the dependen
y

sets of all the 
on
epts in their label, some of whi
h may be due to universal role

restri
tions in L(x).

The main advantage of heuristi
s is that they 
an be used to 
omplement other

optimisations. The MOMS and Jeroslow and Wang heuristi
s, for example, are de-

signed to in
rease the e�e
tiveness of BCP while the oldest-�rst heuristi
 is designed



260 Pra
ti
al Reasoning for Very Expressive Des
ription Logi
s

to in
rease the e�e
tiveness of ba
kjumping. They 
an also be sele
ted and tuned to

take advantage of the kinds of problem that are to be solved (if this is known). The

BCP maximisation heuristi
s, for example, are generally quite e�e
tive with large

randomly generated and hand 
rafted problems, whereas the oldest-�rst heuristi
 is

more e�e
tive when 
lassifying realisti
 KBs.

Unfortunately heuristi
s also have several disadvantages. They 
an add a signi�
ant

overhead as the heuristi
 fun
tion may be expensive to evaluate and may need to be

reevaluated at ea
h bran
hing point. Moreover, they may not improve performan
e,

and may signi�
antly degrade it, for example by intera
ting adversely with other

optimisations, by in
reasing the frequen
y with whi
h pathologi
al worst 
ases 
an

be expe
ted to o

ur in generally easy problem sets.

6.5 Ca
hing Satis�ability Status

During a satis�ability 
he
k there may be many su

essor nodes 
reated. Some of

these nodes 
an be very similar, parti
ularly as the labels of the R-su

essors for a node

x ea
h 
ontain the same 
on
epts derived from the universal role restri
tions in L(x).

Systems su
h as DLP take advantage of this similarity by 
a
hing the satis�ability

status of the sets of 
on
epts with whi
h node labels are initialised when they are


reated. The tableaux expansion of a node 
an then be avoided if the satis�ability

status of its initial set of 
on
epts is found in the 
a
he.

However, this te
hnique depends on the logi
 having the property that the satis�-

ability of a node is 
ompletely determined by its initial label set, and, due to the

possible presen
e of inverse roles, SI logi
s do not have this property. For example,

if the expansion of a node x generates an R-su

essor node y, with L(y) = f8R

�

:Cg,

then the satis�ability of y 
learly also depends on the set of 
on
epts in L(x). Similar

problems 
ould arise in the 
ase where L(y) 
ontains number restri
tion 
on
epts.

If it is possible to solve these problems, then 
a
hing may be a very e�e
tive te
h-

nique for SI logi
s, as it has been shown to be in the DLP system with a logi
 that

does not support inverse roles. Ca
hing is parti
ularly useful in KB 
lassi�
ation as


a
hed values 
an be retained a
ross multiple satis�ability tests. It 
an also be e�e
-

tive with both satis�able and unsatis�able problems, unlike many other optimisation

te
hniques that are primarily aimed at speeding up the dete
tion of unsatis�ability.

The main disadvantage with 
a
hing is the storage overhead in
urred by retaining

node labels (and perhaps additional information in the 
ase of SI logi
s) and their

satis�ability status throughout a satis�ability test (or longer, if the results are to be

used in later satis�ability tests). An additional problem is that it intera
ts adversely

with the ba
kjumping optimisation as the dependen
y information required for ba
k-

jumping 
annot be e�e
tively 
al
ulated for nodes that are found to be unsatis�able

as a result of a 
a
he lookup. Although the set of 
on
epts in the initial label of su
h

a node is the same as that of the expanded node whose (un)satis�ability status has

been 
a
hed, the dependen
y sets atta
hed to the 
on
epts that made up the two

labels may not be the same. However, a weaker form of ba
kjumping 
an still be

performed by taking the dependen
y set of the unsatis�able node to be the union of

the dependen
y sets from the 
on
epts in its label.
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7 Dis
ussion

A new DL system is being implemented based on the SHIQ algorithm we have devel-

oped from the SHIF-algorithm des
ribed in Se
tion 4.1

[

28

℄

. Pending the 
ompletion

of this proje
t, the existing FaCT system

[

31

℄

has been modi�ed to deal with inverse

roles using the SHIF blo
king strategy, the resulting system being referred to as

iFaCT.

iFaCT has been used to 
ondu
t some initial experiments with a terminology rep-

resenting (fragments of) database s
hemata and inter s
hema assertions from a data

warehousing appli
ation

[

10

℄

(a slightly simpli�ed version of the proposed en
oding

was used to generate SHIF terminologies). iFaCT is able to 
lassify this terminology,

whi
h 
ontains 19 
on
epts and 42 axioms, in less than 0.1s of (266MHz Pentium)

CPU time. In 
ontrast, eliminating inverse roles using an embedding te
hnique

[

11

℄

gives an equisatis�able FaCT terminology with an additional 84 axioms, but one

whi
h FaCT is unable to 
lassify in 12 hours of CPU time. As dis
ussed in Se
tion 3,

an extension of the embedding te
hnique 
an be used to eliminate number restri
-

tions

[

14

℄

, but requires a target logi
 whi
h supports the transitive 
losure of roles,

i.e., 
onverse-PDL. The even larger number of axioms that this embedding would

introdu
e makes it unlikely that tra
table reasoning 
ould be performed on the re-

sulting terminology. Moreover, we are not aware of any algorithm for 
onverse-PDL

whi
h does not employ a so-
alled look behind analyti
al 
ut

[

16

℄

, the appli
ation of

whi
h introdu
es 
onsiderable additional non-determinism. It seems inevitable that

this would lead to a further degradation in empiri
al tra
tability.

The DL SHIQ will allow the above mentioned en
oding of database s
hemata to be

fully 
aptured using quali�ed number restri
tions. Future work will in
lude 
omplet-

ing the implementation of the SHIQ algorithm, testing its behaviour in this kind of

appli
ation and investigating new te
hniques for improving its empiri
al tra
tability.
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