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Abstrat

Desription Logis (DLs) are a family of knowledge representation formalisms mainly haraterised

by onstrutors to build omplex onepts and roles from atomi ones. Expressive role onstrutors

are important in many appliations, but an be omputationally problematial.

We present an algorithm that deides satis�ability of the DL ALC extended with transitive and

inverse roles and funtional restritions with respet to general onept inlusion axioms and role

hierarhies; early experiments indiate that this algorithm is well-suited for implementation. Addi-

tionally, we show that ALC extended with just transitive and inverse roles is still in PSpae. We

investigate the limits of deidability for this family of DLs, showing that relaxing the onstraints

plaed on the kinds of roles used in number restritions leads to the undeidability of all inferene

problems. Finally, we desribe a number of optimisation tehniques that are ruial in obtaining

implementations of the deision proedures, whih, despite the hight worst-ase omplexity of the

problem, exhibit good performane with real-life problems.
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1 Motivation

Desription Logis (DLs) are a well-known family of knowledge representation for-

malisms

[

17

℄

. They are based on the notion of onepts (unary prediates, lasses)

and roles (binary relations), and are mainly haraterised by onstrutors that allow

omplex onepts and roles to be built from atomi ones. Sound and omplete algo-

rithms for the interesting inferene problems suh as subsumption and satis�ability

of onepts are known for a wide variety of DLs.

Transitive and inverse roles play an important role not only in the adequate repre-

sentation of omplex, aggregated objets

[

35

℄

, but also for reasoning with oneptual

data models

[

9

℄

. Moreover, de�ning onepts using general onept inlusion axioms

seems natural and is ruial for representing oneptual data models.

The relevant inferene problems for (an extension of) ALC augmented in the de-

sribed manner are known to be deidable

[

15

℄

, and worst-ase optimal inferene

algorithms have been desribed

[

16

℄

. However, to the best of our knowledge, nobody

has found eÆient means to deal with their high degree of non-determinism, whih

so far prohibits their use in realisti appliations. This is mainly due to the fat that
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240 Pratial Reasoning for Very Expressive Desription Logis

these algorithms an handle not only transitive roles but also the transitive losure

of roles. It has been shown

[

43

℄

that restriting the DL to transitive roles an lead

to a lower omplexity, and that transitive roles, even when ombined with role hi-

erarhies, allow for algorithms that behave quite well in realisti appliations

[

31

℄

.

However, until now it has been unlear if this is still true when inverse roles are also

present.

In this paper we present various aspets of our researh in this diretion. Firstly,

we motivate our use of logis with transitive roles instead of transitive losure by on-

trasting algorithms for several pairs of logis that di�er only in the kind of transitivity

supported.

Seondly, we present an algorithm that deides satis�ability of ALC extended with

transitive and inverse roles, role hierarhies, and funtional restritions. This al-

gorithm an also be used for heking satis�ability and subsumption with respet to

general onept inlusion axioms (and thus yli terminologies) beause these axioms

an be \internalised". The fat that our algorithm needs to deal only with transitive

roles, instead of transitive losure, leads to a lower degree of non-determinism, and

experiments indiate that the algorithm is well-suited for implementation.

Thirdly, we show that ALC extended with both transitive and inverse roles is still

in Pspae. The algorithm used to prove this result introdues an enhaned bloking

tehnique that should also provide useful eÆieny gains in implementations of more

expressive DLs.

Fourthly, we investigate the limits of deidability for this family of DLs, showing

that relaxing the onstraints we will impose on the kind of roles allowed in number

restritions leads to the undeidability of all inferene problems.

Finally, we desribe a range of optimisation tehniques that an be used to produe

implementations of our algorithms that exhibit good typial ase performane.

2 Preliminaries

In this setion, we present the syntax and semantis of the various DLs that are

investigated in subsequent setions. This inludes the de�nition of inferene problems

(onept subsumption and satis�ability, and both of these problems with respet to

terminologies) and how they are interrelated.

The logis we will disuss are all based on an extension of the well known DL

ALC

[

45

℄

to inlude transitively losed primitive roles

[

43

℄

; we will all this logi S

due to its relationship with the propositional (multi) modal logi S4

(m)

[

44

℄

.

1

This

basi DL is then extended in a variety of ways|see Figure 1 for an overview.

De�nition 2.1 Let N

C

be a set of onept names and R a set of role names with

transitive role names R

+

� R. The set of SI-roles is R [ fR

�

j R 2 Rg. To

avoid onsidering roles suh as R

��

, we de�ne a funtion Inv on roles suh that

Inv(R) = R

�

if R is a role name, and Inv(R) = S if R = S

�

. In the following, when

speaking of roles, we refer to SI-roles, as our approah is apable of dealing uniformly

with both role names and inverse roles.

Obviously, a role R is transitive i� Inv(R) is transitive. We therefore de�ne Trans

1

This logi has previously been alled ALC

R

+

, but this beomes too umbersome when adding letters to represent

additional features.
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to return true i� R is a transitive role. More preisely, Trans(R) = true (and we say

that R is transitive) i� R 2 R

+

or Inv(R) 2 R

+

.

The set of SI-onepts is the smallest set suh that

1. every onept name is a onept, and,

2. if C and D are onepts and R is an SI-role, then (C u D), (C t D), (:C),

(8R:C), and (9R:C) are also onepts.

A role inlusion axiom is of the form R v S, where R and S are two roles, eah of

whih an be inverse. A role hierarhy is a �nite set of role inlusion axioms, and

SHI is obtained from SI by allowing, additionally, for a role hierarhy R. The sub-

role relation v* is the transitive-reexive losure of v over R [ fInv(R) v Inv(S) j

R v S 2 Rg.

SHIQ is obtained from SHI by allowing, additionally, for quali�ed number re-

stritions

[

26

℄

, i.e., for onepts of the form 6nR:C and >nR:C, where R is a simple

role, C is a onept, and n 2 N. A role is alled simple i� it is neither transitive

nor has transitive sub-roles. SHIN is the restrition of SHIQ allowing only unqual-

i�ed number restritions (i.e., onepts of the form 6nR and >nR), while SHIF

represents a further restrition where, instead of arbitrary number restritions, only

funtional restritions of the form 61R and their negation >2R may our.

An interpretation I = (�

I

; �

I

) onsists of a set �

I

, alled the domain of I, and a

funtion �

I

whih maps every onept to a subset of �

I

and every role to a subset of

�

I

��

I

suh that, for all onepts C, D, roles R, S, and non-negative integers n,

the properties in Figure 1 are satis�ed, where ℄M denotes the ardinality of a set M .

An interpretation satis�es a role hierarhy R i� R

I

� S

I

for eah R v S 2 R; we

denote this fat by I j= R and say that I is a model of R.

A onept C is alled satis�able with respet to a role hierarhy R i� there is some

interpretation I suh that I j= R and C

I

6= ;. Suh an interpretation is alled a

model of C w.r.t. R. A onept D subsumes a onept C w.r.t. R (written C v

R

D)

i� C

I

� D

I

holds for eah model I of R. For an interpretation I, an individual

x 2 �

I

is alled an instane of a onept C i� x 2 C

I

.

All DLs onsidered here are losed under negation, hene subsumption and (un)satis�-

ability w.r.t. role hierarhies an be redued to eah other: C v

R

D i� C u :D is

unsatis�able w.r.t. R, and C is unsatis�able w.r.t. R i� C v

R

A u :A for some

onept name A.

In

[

37; 3; 44; 1

℄

, the internalisation of terminologial axioms is introdued, a teh-

nique that redues reasoning with respet to a (possibly yli) terminology to satis�-

ability of onepts. In

[

31

℄

, we saw how role hierarhies an be used for this redution.

In the presene of inverse roles, this redution must be slightly modi�ed.

De�nition 2.2 A terminology T is a �nite set of general onept inlusion axioms,

T = fC

1

v D

1

; : : : ; C

n

v D

n

g, where C

i

; D

i

are arbitrary SHIF -onepts. An

interpretation I is said to be a model of T i� C

I

i

� D

I

i

holds for all C

i

v D

i

2 T .

A onept C is satis�able with respet to T i� there is a model I of T with C

I

6= ;.

Finally, D subsumes C with respet to T i�, for eah model I of T , we have C

I

� D

I

.

The following lemma shows how general onept inlusion axioms an be inter-

nalised using a \universal" role U , a transitive super-role of all roles ourring in T

and their respetive inverses.



242 Pratial Reasoning for Very Expressive Desription Logis

Construt Name Syntax Semantis

atomi onept A A

I

� �

I

atomi role R R

I

� �

I

��

I

transitive role R 2 R

+

R

I

= (R

I

)

+

onjuntion C uD C

I

\D

I

disjuntion C tD C

I

[D

I

S

negation :C �

I

n C

I

exists restrition 9R:C fx j 9y:hx; yi 2 R

I

and y 2 C

I

g

value restrition 8R:C fx j 8y:hx; yi 2 R

I

implies y 2 C

I

g

role hierarhy R v S R

I

� S

I

H

inverse role R

�

fhx; yi j hy; xi 2 R

I

g I

number

restritions

>nR

6nR

fx j ℄fy:hx; yi 2 R

I

g > ng

fx j ℄fy:hx; yi 2 R

I

g 6 ng

N

qualifying number

restritions

>nR:C

6nR:C

fx j ℄fy:hx; yi 2 R

I

and y 2 C

I

g > ng

fx j ℄fy:hx; yi 2 R

I

and y 2 C

I

g 6 ng

Q

Fig. 1. Syntax and semantis of the SI family of DLs

Lemma 2.3 Let T be a terminology, R a role hierarhy, and C;D SHIF -onepts,

and let

C

T

:= u

C

i

vD

i

2T

:C

i

tD

i

:

Let U be a transitive role that does not our in T ; C;D, or R. We set

R

U

:= R [ fR v U; Inv(R) v U j R ours in T ; C;D, or Rg:

Then C is satis�able w.r.t. T and R i� C u C

T

u 8U:C

T

is satis�able w.r.t. R

U

.

Moreover, D subsumes C w.r.t. T and R i� C u :D u C

T

u 8U:C

T

is unsatis�able

w.r.t. R

U

.

The proof of Lemma 2.3 is similar to the ones that an be found in

[

44; 3

℄

. Most

importantly, it must be shown that, (a) if a SHIF-onept C is satis�able with respet

to a terminology T and a role hierarhyR, then C, T , and R have a onneted model,

and (b) if y is reahable from x via a role path (possibly involving inverse roles) in a

model of T and R

U

, then hx; yi 2 U

I

. These are easy onsequenes of the semantis

and the de�nition of U .

Theorem 2.4 Satis�ability and subsumption of SHIF -onepts (resp. SHI-onepts)

w.r.t. terminologies and role hierarhies are polynomially reduible to (un)satis�ability

of SHIF -onepts (resp. SHI-onepts) w.r.t. role hierarhies.

3 Bloking

The algorithms we are going to present for deiding satis�ability of SI- and SHIF -

onepts use the tableaux method

[

25

℄

, in whih the satis�ability of a onept D is
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tested by trying to onstrut a model of D. The model is represented by a tree in

whih nodes orrespond to individuals and edges orrespond to roles. Eah node x is

labelled with a set of onepts L(x) that the individual x must satisfy, and edges are

labelled with (sets of) role names.

An algorithm starts with a single node labelled fDg, and proeeds by repeatedly

applying a set of expansion rules that reursively deompose the onepts in node

labels, new edges and nodes being added as required in order to satisfy 9R:C or

(> 2 F ) onepts. The onstrution terminates either when none of the rules an be

applied in a way that extends the tree, or when the disovery of obvious ontraditions

demonstrates that D has no model.

In order to prove that suh an algorithm is a sound and omplete deision proedure

for onept satis�ability in a given logi, it is neessary to demonstrate that the

models it onstruts are orret with respet to the semantis, that it will always �nd

a model if one exists, and that it always terminates. The �rst two points an usually

be dealt with by proving that the expansion rules preserve satis�ability, and that

in the ase of non-deterministi expansion (e.g., of disjuntions) all possibilities are

exhaustively searhed. For logis suh as ALC, termination is mainly due to the fat

that the expansion rules an only add new onepts that are stritly smaller than the

deomposed onept, so the model must stabilise when all onepts have been fully

deomposed. As we will see, this is no longer true in the presene of transitive roles.

3.1 Transitive Roles vs. Transitive Closure

We have argued that reasoning for logis with transitive roles is empirially more

tratable than for logis that allow for transitive losure of roles

[

43; 31

℄

. In this

setion we will give some justi�ation for that laim. The starting point for our

investigations are the logis SH

[

31

℄

and ALC

+

[

3

℄

, whih extend ALC by transitive

roles and role hierarhies or transitive losure of roles respetively. Syntatially,

ALC

+

is similar to S, where, in addition to transitive and non-transitive roles, the

transitive losure R

+

of a role R may appear in existential and universal restritions.

Formally, R

+

is interpreted by

(R

+

)

I

=

[

i2N

(R

I

)

i

; where (R

I

)

i

=

(

R

I

; if i = 1

R

I

Æ (R

I

)

i�1

; otherwise

For both SH and ALC

+

, onept satis�ability is an Exptime-omplete problem.

This result is easily derived from the Exptime-hardness proof for PDL in

[

18

℄

and from

the proof that PDL is in Exptime in

[

41

℄

. Nevertheless, implementations of algorithms

for SH exhibit good performane in realisti appliations

[

34

℄

whereas, at the moment,

this seems to be more problematial for ALC

+

. We believe that the main reason for

this disrepany, at least in the ase of tableau algorithm implementations, lies in

the di�erent omplexity of the bloking onditions that are needed to guarantee the

termination of the respetive algorithms. In the following we are going to survey the

bloking tehniques needed to deal with SH and its subsequent extensions to SHI and

SHIF . To underpin our laim that reasoning with transitive roles empirially leads

to more eÆient implementations than for transitive losure, we will also present the

bloking tehniques used to deal with transitive losure. These are more ompliated



244 Pratial Reasoning for Very Expressive Desription Logis

and introdue a larger degree of non-determinism into the tableaux algorithms, leading

to inferior performane of implementations.

3.2 Bloking for S and SH

Termination of the expansion proess of a tableaux algorithm is not guaranteed for

logis that inlude transitive roles, as the expansion rules an introdue new onepts

that are the same size as the deomposed onept. In partiular, 8R:C onepts,

where R is a transitive role, are dealt with by propagating the whole onept aross

R-labelled edges

[

43

℄

. For example, given a node x labelled fC; 9R:C;8R:(9R:C)g,

where R is a transitive role, the ombination of the 9R:C and 8R:(9R:C) onepts

would ause a new node y to be added to the tree with a label idential to that of x.

The expansion proess ould then be repeated inde�nitely.

This problem an be dealt with by bloking : halting the expansion proess when

a yle is deteted

[

3; 8

℄

. For logis without inverse roles, the general proedure is

to hek the label of eah new node y, and if it is a subset

[

2

℄

of the label of an

anestor node x, then no further expansion of y is performed: x is said to blok y.

The resulting tree orresponds to a ylial model in whih y is identi�ed with x.

To deal with the transitive losure of roles, tableaux algorithms proeed by non-

deterministially expanding a onept 9R

+

:C to either 9R:C or 9R:9R

+

:C. Again,

sine the size of onepts along a path in the tree may not derease, bloking teh-

niques are neessary to guarantee termination. An adequate bloking ondition for

ALC

+

is idential as for SH, but one has to distinguish between good and bad yles.

Consider the following onept:

D = 9R

+

:A u 8R

+

::A u :A

While D is obviously not satis�able, a run of a tableaux algorithm might generate

the following tableau in whih node y is bloked by node x without generating any

obvious ontraditions.

�

x

9R

+

:A; 8R

+

::A; 9R:9R

+

:A; :A

R

�

y

9R

+

:A; 8R

+

::A; 9R:9R

+

:A; :A

The problem is that 9R

+

:A has always been expanded to 9R:9R

+

:A, postponing the

satisfation of A a further step. To obtain a orret tableaux algorithm for ALC

+

, the

bloking ondition must inlude a hek to ensure that eah onept 9R

+

:C appearing

in suh a yle is expanded to 9R:C somewhere in the yle. Suh yles are alled

good yles, whereas yles in whih 9R

+

:C has always been expanded to 9R:9R

+

:C

are alled bad yles. A valid model may only ontain good yles.

Summing up, using transitive losure instead of transitive roles has a twofold im-

pat on the empirial tratability: (a) in bloking situations, good yles have to be

distinguished from bad ones, and (b) the non-deterministi expansion of onepts of

the form 9R

+

:C inreases the size of the searh spae.
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�

x

:A; 9R:9R

+

:C

R

�

y

9R

+

:C; 9R:C

R

�

z

C

�

x

:A; 9R:9R

+

:C

R

�

y

9R

+

:C; 9R:9R

+

:C

R

�

z

9R

+

:C; 9R:9R

+

:C

R

Fig. 2. Dynami bloking fails in the presene of transitive losure.

3.3 Adding Inverse Roles

Bloking is more problematial when inverse roles are added to the logi, and a

key feature of the algorithms presented in

[

35

℄

was the introdution of a dynami

bloking strategy. Besides using label equality instead of subset, this strategy allowed

bloks to be established, broken, and re-established. With inverse roles the bloking

ondition has to be onsidered more arefully beause roles are now bi-diretional,

and additional onepts in x's label ould invalidate the model with respet to y's

predeessor. This problem an be overome by allowing a node x to be bloked by

one of its anestors y if and only if they were labelled with the same sets of onepts.

Dealing with inverse roles is even more ompliated in the presene of transitive

losure. As an example onsider the following onept:

D = :A u 9R:9R

+

:C

C = 8R

�

:(8R

�

:A)

Fig. 2 shows two possible tableau expansions of the onept D. Continuing the

expansion of the left hand tree will neessarily lead to a lash when onept C 2 L(z)

is expanded as this will lead to both A and :A appearing in L(x). The right hand

tree is also invalid as it ontains a bad yle: L(y) = L(z) but 9R

+

:D has always

been expanded to 9R:9R

+

:D. Nevertheless, D is satis�able, as it would be shown by

ontinuing the expansion of the right hand path for one more step.

In

[

16

℄

, a solution to this problem for CPDL, a strit superset of ALCI

+

(ALC

+

plus

inverse roles) is presented. The solution onsists of an additional expansion rule alled

the look behind analytial ut. This rule employs exhaustive non-deterministi guess-

ing to make the past of eah node in the tree expliit in the labelling of that node: if y

is an R-suessor of a node x, then 9R

�

:C or 8R

�

::C is added non-deterministially

to the label of y for eah onept C that may appear during the expansion proess.

Obviously, this leads to a further large inrease in the size of the searh spae, with a

orrespondingly large adverse impat on empirial tratability. Experiene with this

kind of exhaustive guessing leads us to believe that an implementation of suh an

algorithm would be disastrously ineÆient. The non-existene of implementations for

ALCI

+

or CPDL might be taken to support this view.
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3.4 Pair-wise Bloking

Further extending the logi SHI to SHIF by adding funtional restritions (onepts

of the form (6 1 R), meaning that an individual an be related to at most one other

individual by the role R) introdues new problems assoiated with the fat that the

logi no longer has the �nite model property. This means that there are onepts

that are satis�able but for whih there exists no �nite model. An example of suh a

onept is

:C u 9F

�

:(C u (6 1 F )) u 8R

�

:(9F

�

:(C u (6 1 F )));

where R is a transitive role and F v R. Any model of this onept must ontain an

in�nite sequene of individuals, eah related to a single suessors by an F

�

role, and

eah satisfying C u9F

�

:C, the 9F

�

:C term being propagated along the sequene by

the transitive super-role R. Attempting to terminate the sequene in a yle auses

the whole sequene to ollapse into a single node due to the funtional restritions

(6 1 F ), and this results in a ontradition as both C and :C will be in that node's

label.

In order to deal with in�nite models|namely to have an algorithm that terminates

orretly even if the input onept has only in�nite models|a more sophistiated

pair-wise bloking strategy was introdued in

[

35

℄

, and soundness was proved by

demonstrating that a bloked tree always has a orresponding in�nite model.

2

The only known algorithm that is able to deal with the ombination of transitive

losure, inverse roles, and funtional restritions on roles relies on an elaborate polyno-

mial redution to a CPDL terminology

[

13

℄

, and the apability of CPDL to internalise

the resulting general terminologial axioms. The large number and the nature of the

axioms generated by this redution make it very unlikely that an implementation with

tolerable runtime behaviour will ever emerge.

4 Reasoning for SI Logis

In this setion, we present two tableaux algorithms: the �rst deides satis�ability of

SHIF-onepts, and an be used for all SHIF reasoning problems (see Theorem 2.4);

the seond deides satis�ability (and hene subsumption) of SI-onepts in Pspae.

In this paper we only sketh most of the proofs. For details on the SHIF -algorithm,

please refer to

[

35

℄

, for details on the SI- and SIN -algorithm, please refer to

[

27

℄

.

The orretness of the algorithms an be proved by showing that they reate a

tableau for a onept i� it is satis�able.

For ease of onstrution, we assume all onepts to be in negation normal form

(NNF), that is, negation ours only in front of onept names. Any SHIF -onept

an easily be transformed to an equivalent one in NNF by pushing negations in-

wards

[

25

℄

.

De�nition 4.1 Let D be a SHIF -onept in NNF, R a role hierarhy, and R

D

the

set of roles ourring in D together with their inverses, and sub(D) the subonepts

of D. Then T = (S;L;E) is a tableau for D w.r.t. R i� S is a set of individuals,

L : S ! 2

sub(D)

maps eah individual to a set of onepts, E : R

D

! 2

S�S

maps

eah role to a set of pairs of individuals, and there is some individual s 2 S suh that

2

This is not to say that it may not also have a �nite model.
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D 2 L(s). Furthermore, for all s; t 2 S, C;E 2 sub(D), and R;S 2 R

D

, it holds

that:

1. if C 2 L(s), then :C =2 L(s),

2. if C u E 2 L(s), then C 2 L(s) and E 2 L(s),

3. if C t E 2 L(s), then C 2 L(s) or E 2 L(s),

4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),

5. if 9R:C 2 L(s), then there is some t 2 S suh that hs; ti 2 E(R) and C 2 L(t),

6. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then 8R:C 2 L(t),

7. hs; ti 2 E(R) i� ht; si 2 E(Inv(R)).

8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),

9. if 61R 2 L(s), then ℄ft j hs; ti 2 E(R)g � 1, and

10. if >2R 2 L(s), then ℄ft j hs; ti 2 E(R)g � 2.

Tableaux for SI-onepts are de�ned analogously and must satisfy Properties 1-7,

where, due to the absene of a role hierarhy, v* is the identity.

Due to the lose relationship between models and tableaux, the following lemma

an be easily proved by indution on the struture of onepts. As a onsequene,

an algorithm that onstruts (if possible) a tableau for an input onept is a deision

proedure for satis�ability of onepts.

Lemma 4.2 A SHIF-onept (resp. SI-onept) D is satis�able w.r.t. a role hier-

arhy R i� D has a tableau w.r.t. R.

4.1 Reasoning in SHIF

In the following, we give an algorithm that, given a SHIF -onept D, deides the

existene of a tableaux for D. We impliitly assume an arbitrary but �xed role

hierarhy R.

De�nition 4.3 A ompletion tree for a SHIF -onept D is a tree where eah node

x of the tree is labelled with a set L(x) � sub(D) and eah edge hx; yi is labelled with

a set L(hx; yi) of (possibly inverse) roles ourring in sub(D).

Given a ompletion tree, a node y is alled an R-suessor of a node x i� y is

a suessor of x and S 2 L(hx; yi) for some S with S v* R. A node y is alled an

R-neighbour of x i� y is an R-suessor of x, or if x is an Inv(R)-suessor of y.

Predeessors and anestors are de�ned as usual.

A node is bloked i� it is diretly or indiretly bloked. A node x is diretly bloked

i� none of its anestors are bloked, and it has anestors x

0

, y and y

0

suh that

1. x is a suessor of x

0

and y is a suessor of y

0

and

2. L(x) = L(y) and L(x

0

) = L(y

0

) and

3. L(hx

0

; xi) = L(hy

0

; yi).

In this ase we will say that y bloks x.

A node y is indiretly bloked i� one of its anestors is bloked, or|in order to

avoid wasted expansion after an appliation of the 6-rule|it is a suessor of a node

x and L(hx; yi) = ;.
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indiretly bloked, and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indiretly bloked, and

2. fC

1

; C

2

g \ L(x) = ;

then, for some C 2 fC

1

; C

2

g, L(x) �! L(x) [ fCg

9-rule: if 1. 9S:C 2 L(x), x is not bloked, and

2. x has no S-neighbour y with C 2 L(y)

then reate a new node y with

L(hx; yi) = fSg and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indiretly bloked, and

2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), x is not indiretly bloked,

2. there is some R with Trans(R) and R v* S, and

3. x has an R-neighbour y with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg

>-rule: if 1. (> 2 R) 2 L(x), x is not bloked, and

2. there is no R-neighbour y of x with A 2 L(y)

then reate two new nodes y

1

, y

2

with

L(hx; y

1

i) = L(hx; y

2

i) = fRg,

L(y

1

) = fAg and L(y

2

) = f:Ag

6-rule: if 1. (6 1 R) 2 L(x), x is not indiretly bloked,

2. x has two R-neighbours y and z s.t. y is not an anestor of z,

then 1. L(z) �! L(z) [ L(y) and

2. if z is an anestor of y

then L(hz; xi) �! L(hz; xi) [ Inv(L(hx; yi))

else L(hx; zi) �! L(hx; zi) [ L(hx; yi)

3. L(hx; yi) �! ;

Fig. 3. The tableaux expansion rules for SHIF

For a node x, L(x) is said to ontain a lash i� fA;:Ag � L(x) or f>2R;61Sg �

L(x) for roles R v* S. A ompletion tree is alled lash-free i� none of its nodes

ontains a lash; it is alled omplete i� none of the expansion rules in Figure 3 is

appliable.

For a SHIF -onept D in NNF, the algorithm starts with a ompletion tree on-

sisting of a single node x with L(x) = fDg. It applies the expansion rules, stopping

when a lash ours, and answers \D is satis�able" i� the ompletion rules an be

applied in suh a way that they yield a omplete and lash-free ompletion tree.

The soundness and ompleteness of the tableaux algorithm is an immediate onse-

quene of Lemmas 4.2 and 4.4.

Lemma 4.4 Let D be an SHIF-onept.

1. The tableaux algorithm terminates when started with D.

2. If the expansion rules an be applied to D suh that they yield a omplete and
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lash-free ompletion tree, then D has a tableau.

3. If D has a tableau, then the expansion rules an be applied to D suh that they

yield a omplete and lash-free ompletion tree.

Before we sketh the ideas of the proof, we will disuss the di�erent expansion rules

and their orrespondene to the language onstrutors.

The u-, t-, 9- and 8-rules are the standard ALC tableaux rules

[

45

℄

. The 8

+

-rule

is used to handle transitive roles, where the v* -lause deals with the role hierarhy.

See

[

35

℄

for details.

The funtional restrition rules merit loser onsideration. In order to guarantee

the satisfation of a >2R-onstraint, the >-rule reates two suessors and uses a

fresh atomi onept A to prohibit identi�ation of these suessors by the 6-rule. If

a node x has two or more R-neighbours and ontains a funtional restrition 61R,

then the 6-rule merges two of the neighbours and also merges the edges onneting

them with x. Labelling edges with sets of roles allows a single node to be both an R

and S-suessor of x even if R and S are not omparable by v* . Finally, ontraditing

funtional restritions are taken are of by the de�nition of a lash.

We now sketh the main ideas behind the proof of Lemma 4.4:

1. Termination: Let m = jsub(D)j and n = jR

D

j. Termination is a onsequene

of the following properties of the expansion rules:

(a) The expansion rules never remove nodes from the tree or onepts from node

labels. Edge labels an only be hanged by the 6-rule whih either expands them or

sets them to ;; in the latter ase the node below the ;-labelled edge is bloked. (b)

Suessors are only generated for onepts of the form 9R:C and >2R. For a node x,

eah of these onepts triggers the generation of at most two suessors. If for one of

these suessors y the 6-rule subsequently auses L(hx; yi) to be hanged to ;, then

x will have some R-neighbour z with L(z) � L(y). This, together with the de�nition

of a lash, implies that the onept that led to the generation of y will not trigger

another rule appliation. Obviously, the out-degree of the tree is bounded by 2m. ()

Nodes are labelled with non-empty subsets of sub(D) and edges with subsets of R

D

,

so there are at most 2

2mn

di�erent possible labellings for a pair of nodes and an edge.

Therefore, on a path of length at least 2

2mn

there must be 2 nodes x; y suh that

x is diretly bloked by y. Sine a path on whih nodes are bloked annot beome

longer, paths are of length at most 2

2mn

.

2. Soundness: A omplete and lash-free tree T for D indues the existene of a

tableaux T = (S;L;E) forD as follows. Individuals in S orrespond to paths in T from

the root node to some node that is not bloked. Instead of going to a diretly bloked

node, these paths jump bak to the bloking node, whih yields paths of arbitrary

length. Thus, if bloking ours, this onstrution yields an in�nite tableau. This

rather ompliated tableau onstrution is neessary due to the presene of funtional

restritions; its validity is ensured by the bloking ondition, whih onsiders both

the bloked node and its predeessor.

3. Completeness: A tableau T = (S;L;E) for D an be used to \steer" the

appliation of the non-deterministi t- and 6-rules in a way that yields a omplete

and lash-free tree.

The following theorem is an immediate onsequene of Lemma 4.4, Lemma 4.2, and

Lemma 2.3.
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Theorem 4.5 The tableaux algorithm is a deision proedure for the satis�ability and

subsumption of SHIF-onepts with respet to terminologies and role hierahies.

4.2 A PSpae-algorithm for SI

To obtain a PSpae-algorithm for SI , the SHIF algorithm is modi�ed as follows:

(a) As SI does not allow for funtional restritions, the >- and the 6-rule an be

omitted; bloking no longer involves two pairs of nodes with idential labels but only

two nodes with \similar" labels. (b) Due to the absene of role hierarhies, edge

labels an be restrited to roles (instead of sets of roles). () To obtain a PSpae

algorithm, we employ a re�ned bloking strategy whih neessitates a seond label B

for eah node. This bloking tehnique, while disovered independently, is based on

ideas similar to those used in

[

46

℄

to show that satis�ability for K4

t

an be deided

in PSpae.

3

In the following, we will desribe and motivate this bloking tehnique;

detailed proofs as well as a similar result for SIN an be found in

[

27

℄

.

Please note that naively using a ut rule does not yield a PSpae algorithm: a ut

rule similar to the look behind analytial ut presented in

[

16

℄

(non-deterministially)

guesses whih onstraints will be propagated \up" the ompletion tree by universal

restritions on inverted roles. For SI , this tehnique may lead to paths of exponential

length due to equality bloking. A way to avoid these long paths would be to stop the

investigation of a path at some polynomial bound. However, to prove the orretness

of this approah, it would be neessary to establish a \short-path-model" property

similar to Lemma 4.8. Furthermore, we believe that our algorithm is better suited

for an implementation sine it makes less use of \don't-know" non-determinism. This

also distinguishes our approah from the algorithm presented in

[

46

℄

, whih is not

intended to form the basis for an eÆient implementation.

De�nition 4.6 A ompletion tree for a SI onept D is a tree where eah node x of

the tree is labelled with two sets B(x) � L(x) � sub(D) and eah edge hx; yi is labelled

with a (possibly inverse) role L(hx; yi) ourring in sub(D).

R-neighbours, -suessors, and -predeessors are de�ned as in De�nition 4.3. Due

to the absene of role hierarhies, v* is the identity on R

D

.

A node x is bloked i�, for an anestor y, y is bloked or

B(x) � L(y) and L(x)= Inv(S) = L(y)= Inv(S);

where x

0

is the predeessor of x, L(hx

0

; xi) = S, and L(x)= Inv(S) = f8 Inv(S):C 2

L(x)g.

For a node x, L(x) is said to ontain a lash i� fA;:Ag � L(x). A ompletion tree

to whih none of the expansion rules given in Figure 4 is appliable is alled omplete.

For an SI-onept D, the algorithm starts with a ompletion tree onsisting of a

single node x with B(x) = L(x) = fDg. It applies the expansion rules in Figure 4,

stopping when a lash ours, and answers \D is satis�able" i� the ompletion rules

an be applied in suh a way that they yield a omplete and lash-free ompletion tree.

As for SHIF , orretness of the algorithm is proved by �rst showing that a

SI-onept is satis�able i� it has a tableau, and next proving the SI-analogue of

Lemma 4.4.

3

The modal logi K4

t

is a syntati variant of SI with only a single transitive role name.
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u-rule: if 1. C

1

u C

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g

8-rule: if 1. 8S:C 2 L(x) and

2. there is an S-suessor y of x with C =2 B(y)

then L(y) �! L(y) [ fCg and

B(y) �! B(y) [ fCg or

2'. there is an S-predeessor y of x with C =2 L(y)

then L(y) �! L(y) [ fCg.

8

+

-rule: if 1. 8S:C 2 L(x) and Trans(S) and

2. there is an S-suessor y of x with 8S:C =2 B(y)

then L(y) �! L(y) [ f8S:Cg and

B(y) �! B(y) [ f8S:Cg or

2'. there is an S-predeessor y of x with 8S:C =2 L(y)

then L(y) �! L(y) [ f8S:Cg.

9-rule: if 1. 9S:C 2 L(x), x is not bloked and no other rule

is appliable to any of its anestors, and

2. x has no S-neighbour y with C 2 L(y)

then reate a new node y with

L(hx; yi) = S and L(y) = B(y) = fCg

Fig. 4. Tableaux expansion rules for SI

Theorem 4.7 The tableaux algorithm is a deision proedure for satis�ability and

subsumption of SI-onepts.

The dynami bloking tehnique for SI and SHI desribed in Setion 3, whih is

based on label equality, may lead to ompletion trees with exponentially long paths

beause there are exponentially many possibilities to label sets on suh a path. Due

to the non-deterministi t-rule, these exponentially many sets may atually our.

This non-determinism is not problematial for S beause disjuntions need not be

ompletely deomposed to yield a subset-bloking situation. For an optimal SI al-

gorithm, the additional label B was introdued to enable a sort of subset-bloking

whih is independent of the t-non-determinism. Intuitively, B(x) is the restrition of

L(x) to those non-deomposed onepts that x must satisfy, whereas L(x) ontains

boolean deompositions of these onepts as well as those that are imposed by value

restritions in desendants. If x is bloked by y, then all onepts in B(x) are even-

tually deomposed in L(y) (if no lash ours). However, in order to substitute x by

y, x's onstraints on predeessors must be at least as strong as y's; this is taken are

of by the seond bloking ondition.

Let us onsider a path x

1

; : : : ; x

n

where all edges are labelled R with Trans(R), the

only kind of paths along whih the length of the longest onept in the labels might

not derease. If no rules an be applied, we have L(x

i+1

)= Inv(R) � L(x

i

)= Inv(R) and

B(x

i

) � B(x

i+1

) [ fC

i

g (where 9R:C

i

triggered the generation of x

i+1

). This limits

the number of labels and guarantees bloking after a polynomial number of steps.
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Lemma 4.8 The paths of a ompletion tree for a onept D have a length of at most

m

4

where m = jsub(D)j.

Finally, a slight modi�ation of the expansion rules given in Figure 4 yields a

PSpae algorithm. This modi�ation is neessary beause the original algorithm

must keep the whole ompletion tree in its memory|whih needs exponential spae

even though the length of its paths is polynomially bounded. The original algorithm

may not forget about branhes beause restritions whih are pushed upwards in the

tree might make it neessary to revisit paths whih have been onsidered before. We

solve this problem as follows:

Whenever the 8- or the 8

+

-rule is applied to a node x and its predeessor y (Case

2' of these rules), we delete all suessors of y from the ompletion tree. While this

makes it neessary to restart the generation of suessors for y, it makes it possible to

implement the algorithm in a depth-�rst manner whih failitates the re-use of spae.

This modi�ation does not a�et the proof of soundness and ompleteness for the

algorithm, but we have to re-prove termination

[

27

℄

as it relied on the fat that we

never removed any nodes from the ompletion tree. Summing up we get:

Theorem 4.9 The modi�ed algorithm is a PSpae deision proedure for satis�abil-

ity and subsumption of SI-onepts.

5 The Undeidability of Unrestrited SHN

In

[

28

℄

we desribe an algorithm for SHIQ based on the SHIF -algorithm already

presented. Like earlier DLs that ombine a hierarhy of (transitive and non-transitive)

roles with some form of number restritions

[

35; 27

℄

and SHIF , the DL SHIQ allows

only simple roles in number restritions. The justi�ation for this limitation has

been partly on the grounds of a doubtful semantis (of transitive funtional roles)

and partly to simplify deision proedures. In this setion we will show that, even

for the simpler SHN logi, allowing arbitrary roles in number restritions leads to

undeidability, while deidability for the orresponding variant of SHIF is still an

open problem. For onveniene, we will refer to SHN with arbitrary roles in number

restritions as SHN

+

.

The undeidability proof uses a redution of the domino problem

[

7

℄

adapted

from

[

4

℄

. This problem asks if, for a set of domino types, there exists a tiling of

an N

2

grid suh that eah point of the grid is overed with one of the domino types,

and adjaent dominoes are \ompatible" with respet to some prede�ned riteria.

De�nition 5.1 A domino system D = (D;H; V ) onsists of a non-empty set of

domino types D = fD

1

; : : : ; D

n

g, and of sets of horizontally and vertially mathing

pairs H � D �D and V � D �D. The problem is to determine if, for a given D,

there exists a tiling of an N � N grid suh that eah point of the grid is overed with

a domino type in D and all horizontally and vertially adjaent pairs of domino types

are in H and V respetively, i.e., a mapping t : N�N ! D suh that for all m;n 2 N,

ht(m;n); t(m+ 1; n)i 2 H and ht(m;n); t(m;n+ 1)i 2 V .

This problem an be redued to the satis�ability of SHN

+

-onepts, and the un-

deidability of the domino problem implies undeidability of satis�ability of SHN

+

-

onepts.
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Fig. 5. Visualisation of the grid and role hierarhy.

Ensuring that a given point satis�es the ompatibility onditions is simple for most

logis (using value restritions and boolean onnetives), and applying suh onditions

throughout the grid is also simple in a logi suh as SHN

+

whih an deal with arbi-

trary axioms. The ruial diÆulty is representing the N � N grid using \horizontal"

and \vertial" roles X and Y , and in partiular foring the oinidene of X Æ Y and

Y ÆX suessors. This an be aomplished in SHN

+

using an alternating pattern

of two horizontal roles X

1

and X

2

, and two vertial roles Y

1

and Y

2

, with disjoint

primitive onepts A, B, C, and D being used to identify points in the grid with

di�erent ombinations of suessors. The oinidene of X Æ Y and Y ÆX suessors

an then be enfored using number restritions on transitive super-roles of eah of

the four possible ombinations of X and Y roles. A visualisation of the resulting grid

and a suitable role hierarhy is shown in Figure 5, where S

�

ij

are transitive roles.

The alternation of X and Y roles in the grid means that one of the transitive super-

roles S

�

ij

onnets eah point (x; y) to the points (x+1; y), (x; y+1) and (x+1; y+1),

and to no other points. A number restrition of the form 63S

�

ij

an thus be used

to enfore the neessary oinidene of X Æ Y and Y Æ X suessors. A omplete

spei�ation of the grid is given by the following axioms:

A v :B u :C u :D u 9X

1

:B u 9Y

1

:C u63S

�

11

,

B v :A u :C u :D u 9X

2

:A u 9Y

1

:D u63S

�

21

,

C v :A u :B u :D u 9X

1

:D u 9Y

2

:A u63S

�

12

,

D v :A u :B u :C u 9X

2

:C u 9Y

2

:B u63S

�

22

.

It only remains to add axioms whih enode the loal ompatibility onditions (as

desribed in

[

4

℄

) and to assert that A is subsumed by the disjuntion of all domino

types. The SHN

+

-onept A is now satis�able w.r.t. the various axioms (whih an

be internalised as desribed in Lemma 2.3) i� there is a ompatible tiling of the grid.

6 Implementation and Optimisation

The development of the SI family of DLs has been motivated by the desire to imple-

ment systems with good typial ase performane. As disussed in Setion 3, this is

ahieved in part through the design of the logis and algorithms themselves, in partiu-

lar by using transitive roles and by reasoning with number restritions diretly, rather
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than via enodings. Another important feature of these algorithms is that their rela-

tive simpliity failitates the appliation of a range of optimisation tehniques. Several

systems based on S logis have now been implemented (e.g., FaCT

[

30

℄

, DLP

[

40

℄

and

RACE

[

23

℄

), and have demonstrated that suitable optimisation tehniques an lead

to a dramati improvement in the performane of the algorithms when used in re-

alisti appliations. A system based on the SHIF logi has also been implemented

(iFaCT

[

32

℄

) and has been shown to be similarly amenable to optimisation.

DL systems are typially used to lassify a KB, and the optimisation tehniques

used in suh systems an be divided into four ategories based on the stage of the

lassi�ation proess at whih they are applied.

1. Preproessing optimisations that try to modify the KB so that lassi�ation and

subsumption testing are easier.

2. Partial ordering optimisations that try to minimise the number of subsumption

tests required in order to lassify the KB.

3. Subsumption optimisations that try to avoid performing a potentially expensive

satis�ability test, usually by substituting a heaper test.

4. Satis�ability optimisations that try to improve the typial ase performane of the

underlying satis�ability testing algorithm.

Many optimisations in the �rst three ategories are relatively independent of the

underlying subsumption (satis�ability) testing algorithm and ould be applied to any

DL system. As we are mostly onerned with algorithms for the SI family of DLs

we will onentrate on the fourth kind of optimisation, those that try to improve the

performane of the algorithm itself. Most of these are aimed at reduing the size of

the searh spae explored by the algorithm as a result of applying non-deterministi

tableaux expansion rules.

6.1 Semanti Branhing Searh

Implementations of the algorithms desribed in the previous setions typially use a

searh tehnique alled syntati branhing. When expanding the label of a node x,

syntati branhing works by hoosing an unexpanded disjuntion (C

1

t : : : t C

n

)

in L(x) and searhing the di�erent models obtained by adding eah of the disjunts

C

1

, : : : , C

n

to L(x)

[

22

℄

. As the alternative branhes of the searh tree are not

disjoint, there is nothing to prevent the reurrene of an unsatis�able disjunt in

di�erent branhes. The resulting wasted expansion ould be ostly if disovering

the unsatis�ability requires the solution of a omplex sub-problem. For example,

tableaux expansion of a node x, where f(A t B); (A t C)g � L(x) and A is an

unsatis�able onept, ould lead to the searh pattern shown in Figure 6, in whih

the unsatis�ability of L(x) [ fAg must be demonstrated twie.

This problem an be dealt with by using a semanti branhing tehnique adapted

from the Davis-Putnam-Logemann-Loveland proedure (DPL) ommonly used to

solve propositional satis�ability (SAT) problems

[

12; 21

℄

. Instead of hoosing an

unexpanded disjuntion in L(x), a single disjunt D is hosen from one of the unex-

panded disjuntions in L(x). The two possible sub-trees obtained by adding either

D or :D to L(x) are then searhed. Beause the two sub-trees are stritly disjoint,

there is no possibility of wasted searh as in syntati branhing. Note that the order
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t t

t t

L(x) = f(A t B); (A t C)g

L(x) [ fBgL(x) [ fAg ) lash

x

L(x) [ fAg ) lash

xx

x

x

L(x) [ fCg

Fig. 6. Syntati branhing searh

in whih the two branhes are explored is irrelevant from a theoretial viewpoint, but

may o�er further optimisation possibilities (see Setion 6.4).

Semanti branhing searh has the additional advantage that a great deal is known

about the implementation and optimisation of the DPL algorithm. In partiular, both

loal simpli�ation (see Setion 6.2) and heuristi guided searh (see Setion 6.4) an

be used to try to minimise the size of the searh tree (although it should be noted that

both these tehniques an also be adapted for use with syntati branhing searh).

There are also some disadvantages to semanti branhing searh. Firstly, it is possi-

ble that performane ould be degraded by adding the negated disjunt in the seond

branh of the searh tree, for example if the disjunt is a very large or omplex on-

ept. However this does not seem to be a serious problem in pratie, with semanti

branhing rarely exhibiting signi�antly worse performane than syntati branhing.

Seondly, its e�etiveness is problem dependent. It is most e�etive with randomly

generated problems, partiularly those that are over-onstrained (likely to be unsat-

is�able)

[

34

℄

. It is also e�etive with some of the hand rafted problems from the

Tableaux'98 benhmark suite

[

24; 6

℄

. However it is of little bene�t when lassifying

realisti KBs

[

33

℄

.

6.2 Loal Simpli�ation

Loal simpli�ation is another tehnique used to redue the size of the searh spae

resulting from the appliation of non-deterministi expansion rules. Before any non-

deterministi expansion of a node label L(x) is performed, disjuntions in L(x) are

examined, and if possible simpli�ed. The simpli�ation most ommonly used is to

deterministially expand disjuntions in L(x) that present only one expansion possi-

bility and to detet a lash when a disjuntion in L(x) has no expansion possibilities.

This simpli�ation has been alled boolean onstraint propagation (BCP)

[

20

℄

. In

e�et, the inferene rule

:C

1

; : : : ;:C

n

; C

1

t : : : t C

n

tD

D

is being used to simplify the onjuntive onept represented by L(x). For example,

given a node x suh that

f(C t (D

1

uD

2

)); (:D

1

t :D

2

t C);:Cg � L(x);
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t t

L(x) = f(A t B); (A t C)g

L(x) [ fAg ) lash L(x) [ f:A;B;Cg

x x

x

Fig. 7. Semanti branhing searh

BCP deterministially expands the disjuntion (C t (D

1

uD

2

)), adding (D

1

uD

2

) to

L(x), beause :C 2 L(x). The deterministi expansion of (D

1

uD

2

) adds both D

1

and D

2

to L(x), allowing BCP to identify (:D

1

t :D

2

t C) as a lash (without any

branhing having ourred), beause fD

1

; D

2

;:Cg � L(x).

BCP simpli�ation is usually desribed as an integral part of SAT based algo-

rithms

[

22

℄

, but it an also be used with syntati branhing. However, it is more ef-

fetive with semanti branhing as the negated onepts introdued by failed branhes

an result in additional simpli�ations. Taking the above example of f(A t B); (A t

C)g � L(x), adding :A to L(x) allows BCP to deterministially expand both of the

disjuntions using the simpli�ations (AtB) and:A! B and (AtC) and:A! C.

The redued searh spae resulting from the ombination of semanti branhing and

BCP is shown in Figure 7.

Loal simpli�ation has the advantage that it an never inrease the size of the

searh spae and an thus only degrade performane to the extent of the overhead re-

quired to perform the simpli�ation. Minimising this overhead does, however, require

omplex data strutures

[

20

℄

, partiularly in a modal/desription logi setting.

As with semanti branhing, e�etiveness is problem dependent, the optimisation

being most e�etive with over-onstrained randomly generated problems

[

33

℄

.

6.3 Dependeny Direted Baktraking

Inherent unsatis�ability onealed in sub-problems an lead to large amounts of un-

produtive baktraking searh, sometimes alled thrashing. For example, expanding

a node x (using semanti branhing), where

L(x) = f(C

1

tD

1

); : : : ; (C

n

tD

n

); 9R:(A u B);8R::Ag;

ould lead to the fruitless exploration of 2

n

possible R-suessors of x before the

inherent unsatis�ability is disovered. The searh tree resulting from the tableaux

expansion is illustrated in Figure 8.

This problem an be addressed by adapting a form of dependeny direted bak-

traking alled bakjumping, whih has been used in solving onstraint satis�ability

problems

[

5

℄

(a similar tehnique was also used in the HARP theorem prover

[

39

℄

).

Bakjumping works by labelling eah onept in a node label with a dependeny set

indiating the branhing points on whih it depends. A onept C 2 L(x) depends

on a branhing point if C was added to L(x) at the branhing point or if C 2 L(x)

was generated by an expansion rule (inluding simpli�ation) that depends on an-

other onept D 2 L(y), and D 2 L(y) depends on the branhing point. A onept

C 2 L(x) depends on a onept D 2 L(y) when C was added to L(x) by a determin-

isti expansion that used D 2 L(y). For example, if A 2 L(x) was derived from the
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x

x

x

y y

x

Fig. 8. Thrashing in baktraking searh

expansion of (A u B) 2 L(x), then A 2 L(x) depends on (A u B) 2 L(x).

When a lash is disovered, the dependeny sets of the lashing onepts an be used

to identify the most reent branhing point where exploring the other branh might

alleviate the ause of the lash. It is then possible to jump bak over intervening

branhing points without exploring any alternative branhes. Let us onsider the

earlier example and suppose that 9R:(A u B) has a dependeny set D

i

and 8R::A

has a dependeny set D

j

. The searh proeeds until C

1

: : : C

n

have been added to

L(x), when 9R:(AuB) and 8R::A are deterministially expanded and a lash ours

in L(y) between the A derived from 9R:(A u B) and the :A derived from 8R::A.

As these derivations were both deterministi, the dependeny sets will be D

i

and

D

j

respetively, and so D

i

[D

j

is returned. This set annot inlude the branhing

points where C

1

: : : C

n

were added to L(x) as D

i

and D

j

were de�ned before these

branhing points were reahed. The algorithm an therefore baktrak through eah

of the preeding n branhing points without exploring the seond branhes, and will

ontinue to baktrak until it reahes the branhing point equal to the maximum value

in D

i

[D

j

(if D

i

= D

j

= ;, then the algorithm will baktrak through all branhing

points and return \unsatis�able"). Figure 9 illustrates the pruned searh tree, with

the number of R-suessors explored being redued by an exponential number.

Bakjumping an also be used with syntati branhing, but the proedure is

slightly more omplex as there may be more than two possible hoies at a given

branhing point, and the dependeny set of the disjuntion being expanded must also

be taken into aount.

Like loal simpli�ation, bakjumping an never inrease the size of the searh

spae. Moreover, it an lead to a dramati redution in the size of the searh tree and

thus a huge performane improvement. For example, when using either FaCT or DLP

with bakjumping disabled in order to lassify a large (�3,000 onept) KB derived

from the European Galen projet

[

42

℄

, single satis�ability tests were enountered

that ould not be solved even after several weeks of CPU time. Classifying the same

KB with bakjumping enabled takes less than 100s of CPU time for either FaCT or
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Fig. 9. Pruning the searh using bakjumping

DLP

[

34

℄

.

Bakjumping's only disadvantage is the overhead of propagating and storing the

dependeny sets. This an be alleviated to some extent by using a pointer based

implementation so that propagating a dependeny set only requires the opying of a

pointer.

6.4 Heuristi Guided Searh

Heuristi tehniques an be used to guide the searh in a way that tries to minimise

the size of the searh tree. A method that is widely used in DPL SAT algorithms is to

branh on the disjunt that has the Maximum number of Ourrenes in disjuntions

of Minimum Size|the well known MOMS heuristi

[

20

℄

. By hoosing a disjunt

that ours frequently in small disjuntions, the MOMS heuristi tries to maximise

the e�et of BCP. For example, if the label of a node x ontains the unexpanded

disjuntions C t D

1

; : : : ; C t D

n

, then branhing on C leads to their deterministi

expansion in a single step: when C is added to L(x), all of the disjuntions are fully

expanded and when :C is added to L(x), BCP will expand all of the disjuntions,

ausing D

1

; : : : ; D

n

to be added to L(x). Branhing �rst on any of D

1

; : : : ; D

n

, on

the other hand, would only ause a single disjuntion to be expanded.

The MOMS value for a andidate onept C is omputed simply by ounting the

number of times C or its negation our in minimally sized disjuntions. There are

several variants of this heuristi, inluding the heuristi from Jeroslow and Wang

[

36

℄

.

The Jeroslow and Wang heuristi onsiders all ourrenes of a disjunt, weighting

them aording to the size of the disjuntion in whih they our. The heuristi then

selets the disjunt with the highest overall weighting, again with the objetive of

maximising the e�et of BCP and reduing the size of the searh tree.

When a disjunt C has been seleted from the disjuntions in L(x), a BCP max-

imising heuristi an also be used to determine the order in whih the two possible
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branhes, L(x) [ fCg and L(x) [ f:Cg, are explored. This is done by separating the

two omponents of the heuristi weighting ontributed by ourrenes of C and :C,

trying L(x) [ fCg �rst if C made the smallest ontribution, and trying L(x) [ f:Cg

�rst otherwise. The intention is to prune the searh tree by maximising BCP in the

�rst branh.

Unfortunately MOMS-style heuristis an interat adversely with the bakjumping

optimisation beause they do not take dependeny information into aount. This

was �rst disovered in the FaCT system, when it was notied that using MOMS

heuristi often led to muh worse performane. The ause of this phenomenon turned

out to be the fat that, without the heuristi, the data strutures used in the imple-

mentation naturally led to \older" disjuntions (those dependent on earlier branhing

points) being expanded before \newer" ones, and this led to more e�etive pruning if

a lash was disovered. Using the heuristi disturbed this ordering and redued the

e�etiveness of bakjumping

[

29

℄

.

Moreover, MOMS-style heuristis are of little value themselves in desription logi

systems beause they rely for their e�etiveness on �nding the same disjunts reur-

ring in multiple unexpanded disjuntions: this is likely in hard propositional problems,

where the disjunts are propositional variables, and where the number of di�erent

variables is usually small ompared to the number of disjuntive lauses (otherwise

problems would, in general, be trivially satis�able); it is unlikely in onept satis�abil-

ity problems, where the disjunts are (possibly non-atomi) onepts, and where the

number of di�erent onepts is usually large ompared to the number of disjuntive

lauses. As a result, these heuristis will often disover that all disjunts have similar

or equal priorities, and the guidane they provide is not partiularly useful.

An alternative strategy is to employ an oldest-�rst heuristi that tries to maximise

the e�etiveness of bakjumping by using dependeny sets to guide the expansion

[

34

℄

.

When hoosing a disjunt on whih to branh, the heuristi �rst selets those dis-

juntions that depend on the least reent branhing points (i.e., those with minimal

maximum values in their dependeny sets), and then selets a disjunt from one of

these disjuntions. This an be ombined with the use of a BCP maximising heuris-

ti, suh as the Jeroslow and Wang heuristi, to selet the disjunt from amongst the

seleted disjuntions.

The oldest-�rst heuristi an also be used to advantage when seleting the order

in whih existential role restritions, and the labels of the R-suessors whih they

generate, are expanded. One possible tehnique is to use the heuristi to selet an

unexpanded existential role restrition 9R:C from the label of a node x, apply the

9-rule and the 8-rule as neessary, and expand the label of the resulting R-suessor.

If the expansion results in a lash, then the algorithm will baktrak; if it does not,

then ontinue seleting and expanding existential role restritions from L(x) until

it is fully expanded. A better tehnique is to �rst apply the 9-rule and the 8-rule

exhaustively, reating a set of suessor nodes. The order in whih to expand these

suessors an then be based on the minimal maximum values in the dependeny

sets of all the onepts in their label, some of whih may be due to universal role

restritions in L(x).

The main advantage of heuristis is that they an be used to omplement other

optimisations. The MOMS and Jeroslow and Wang heuristis, for example, are de-

signed to inrease the e�etiveness of BCP while the oldest-�rst heuristi is designed
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to inrease the e�etiveness of bakjumping. They an also be seleted and tuned to

take advantage of the kinds of problem that are to be solved (if this is known). The

BCP maximisation heuristis, for example, are generally quite e�etive with large

randomly generated and hand rafted problems, whereas the oldest-�rst heuristi is

more e�etive when lassifying realisti KBs.

Unfortunately heuristis also have several disadvantages. They an add a signi�ant

overhead as the heuristi funtion may be expensive to evaluate and may need to be

reevaluated at eah branhing point. Moreover, they may not improve performane,

and may signi�antly degrade it, for example by interating adversely with other

optimisations, by inreasing the frequeny with whih pathologial worst ases an

be expeted to our in generally easy problem sets.

6.5 Cahing Satis�ability Status

During a satis�ability hek there may be many suessor nodes reated. Some of

these nodes an be very similar, partiularly as the labels of the R-suessors for a node

x eah ontain the same onepts derived from the universal role restritions in L(x).

Systems suh as DLP take advantage of this similarity by ahing the satis�ability

status of the sets of onepts with whih node labels are initialised when they are

reated. The tableaux expansion of a node an then be avoided if the satis�ability

status of its initial set of onepts is found in the ahe.

However, this tehnique depends on the logi having the property that the satis�-

ability of a node is ompletely determined by its initial label set, and, due to the

possible presene of inverse roles, SI logis do not have this property. For example,

if the expansion of a node x generates an R-suessor node y, with L(y) = f8R

�

:Cg,

then the satis�ability of y learly also depends on the set of onepts in L(x). Similar

problems ould arise in the ase where L(y) ontains number restrition onepts.

If it is possible to solve these problems, then ahing may be a very e�etive teh-

nique for SI logis, as it has been shown to be in the DLP system with a logi that

does not support inverse roles. Cahing is partiularly useful in KB lassi�ation as

ahed values an be retained aross multiple satis�ability tests. It an also be e�e-

tive with both satis�able and unsatis�able problems, unlike many other optimisation

tehniques that are primarily aimed at speeding up the detetion of unsatis�ability.

The main disadvantage with ahing is the storage overhead inurred by retaining

node labels (and perhaps additional information in the ase of SI logis) and their

satis�ability status throughout a satis�ability test (or longer, if the results are to be

used in later satis�ability tests). An additional problem is that it interats adversely

with the bakjumping optimisation as the dependeny information required for bak-

jumping annot be e�etively alulated for nodes that are found to be unsatis�able

as a result of a ahe lookup. Although the set of onepts in the initial label of suh

a node is the same as that of the expanded node whose (un)satis�ability status has

been ahed, the dependeny sets attahed to the onepts that made up the two

labels may not be the same. However, a weaker form of bakjumping an still be

performed by taking the dependeny set of the unsatis�able node to be the union of

the dependeny sets from the onepts in its label.
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7 Disussion

A new DL system is being implemented based on the SHIQ algorithm we have devel-

oped from the SHIF-algorithm desribed in Setion 4.1

[

28

℄

. Pending the ompletion

of this projet, the existing FaCT system

[

31

℄

has been modi�ed to deal with inverse

roles using the SHIF bloking strategy, the resulting system being referred to as

iFaCT.

iFaCT has been used to ondut some initial experiments with a terminology rep-

resenting (fragments of) database shemata and inter shema assertions from a data

warehousing appliation

[

10

℄

(a slightly simpli�ed version of the proposed enoding

was used to generate SHIF terminologies). iFaCT is able to lassify this terminology,

whih ontains 19 onepts and 42 axioms, in less than 0.1s of (266MHz Pentium)

CPU time. In ontrast, eliminating inverse roles using an embedding tehnique

[

11

℄

gives an equisatis�able FaCT terminology with an additional 84 axioms, but one

whih FaCT is unable to lassify in 12 hours of CPU time. As disussed in Setion 3,

an extension of the embedding tehnique an be used to eliminate number restri-

tions

[

14

℄

, but requires a target logi whih supports the transitive losure of roles,

i.e., onverse-PDL. The even larger number of axioms that this embedding would

introdue makes it unlikely that tratable reasoning ould be performed on the re-

sulting terminology. Moreover, we are not aware of any algorithm for onverse-PDL

whih does not employ a so-alled look behind analytial ut

[

16

℄

, the appliation of

whih introdues onsiderable additional non-determinism. It seems inevitable that

this would lead to a further degradation in empirial tratability.

The DL SHIQ will allow the above mentioned enoding of database shemata to be

fully aptured using quali�ed number restritions. Future work will inlude omplet-

ing the implementation of the SHIQ algorithm, testing its behaviour in this kind of

appliation and investigating new tehniques for improving its empirial tratability.
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