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1 Motivation

The problem of omputing onept subsumption relationships has been the

subjet of muh researh, and sound and omplete algorithms are now known

for a wide range of DLs (for example [10, 3, 1, 8, 12℄). However, in spite of

the fundamental importane of terminologies in DLs, most of these algorithms

deal only with the problem of deiding subsumption between two onepts (or,

equivalently, onept satis�ability), without referene to a terminology (but

see [5, 6, 9, 12℄). By restriting the kinds of assertion that an appear in a

terminology, onepts an be syntatially expanded so as to expliitly inlude

all relevant terminologial information. This proedure, alled unfolding, has

mostly been applied to less expressive DLs. With more expressive DLs, in par-

tiular those supporting universal roles, it is often possible to enapsulate an

arbitrary terminology in a single onept. This tehnique an be used with sat-

is�ability testing to ensure that the result is valid with respet to the assertions

in the terminology, a proedure alled internalisation.

Although the above mentioned tehniques suÆe to demonstrate the theoret-

ial adequay of satis�ability deision proedures for terminologial reasoning,

experiments with implementations have shown that, for reasons of (lak of)

eÆieny, they are highly unsatisfatory as a pratial methodology for reason-

ing with DL terminologies. Firstly, experiments with the Kris system have

shown that integrating unfolding with the (tableaux) satis�ability algorithm

(lazy unfolding) leads to a signi�ant improvement in performane [2℄. More re-

ently, experiments with the FaCT system have shown that reasoning beomes

hopelessly intratable when internalisation is used to deal with larger terminolo-

gies [11℄. However, the FaCT system has also demonstrated that this problem

an be dealt with (at least for realisti terminologies) by using a ombination of

lazy unfolding and internalisation, having �rst manipulated the terminology in

order to minimise the number of assertions that must be dealt with by internal-

isation (a tehnique alled absorption). It should be noted that, although these

tehniques were disovered while developing DL systems, they are appliable to



a whole range of reasoning systems, independent of the onrete logi and type

of algorithm.

In this paper we seek to improve our theoretial understanding of these

important tehniques whih has, until now, been very limited. In partiular we

would like to know exatly when and how they an be applied, and be sure

that the answers we get from the algorithm are still orret. This is ahieved by

de�ning a formal framework that allows the tehniques to be preisely desribed,

establishing onditions under whih they an be safely applied, and proving

that, provided these onditions are respeted, satis�ability algorithms will still

funtion orretly. Finally, we identify several interesting diretions for future

researh, in partiular the problem of �nding the \best" absorption possible.

Due to spae limitations, we have omitted most proofs. Please refer to [13℄ for

full details.

2 Preliminaries

Firstly, we will establish some basi de�nitions that larify what we mean by a

DL, a terminology (subsequently alled a TBox), and subsumption and satis�-

ability with respet to a terminology. The results in this paper are uniformly

appliable to a whole range of DLs, as long as some basi riteria are met:

De�nition 2.1 (Desription Logi) Let L be a DL based on in�nite sets of

atomi onepts NC and atomi roles NR. We will identify L with the sets of

its well-formed onepts and require L to be losed under boolean operations and

sub-onepts.

An interpretation I is a pair I = (�

I

; �

I

), where �

I

is a non-empty set and

�

I

is a funtion mapping NC to 2

�

I

and NR to 2

�

I

��

I

. With eah DL L we

assoiate a set Int(L) of admissible interpretations for L. Int(L) must be losed

under isomorphisms, and, for any two interpretations I and I

0

that agree on

NR, it must satisfy I 2 Int(L), I

0

2 Int(L). Additionally, we assume that eah

DL L omes with a semantis that allows any interpretation I 2 Int(L) to be

extended to eah onept C 2 L suh that it satis�es the following onditions:

(I1) it maps the boolean ombination of onepts to the orresponding boolean

ombination of their interpretations, and

(I2) the interpretation C

I

of a ompound onept C 2 L depends only on the

interpretation of those atomi onepts and roles that appear syntatially

in C.

This de�nition aptures a whole range of DLs, namely, the important DL

ALC [17℄ and its many extensions. Int(L) hides restritions on the interpre-

tation of ertain roles like transitivity, funtionality, or role hierarhies, whih

are imposed by more expressive DLs (e.g., [12℄), as these are irrelevant for our

purposes. We will use C ! D as an abbreviation for :C t D, C $ D as an



abbreviation for (C ! D) u (D ! C), and > as a tautologial onept, e.g.,

A t :A for an arbitrary A 2 NC.

A TBox onsists of a set of axioms asserting subsumption or equality relations

between (possibly omplex) onepts.

De�nition 2.2 (TBox, Satis�ability) A TBox T for L is a �nite set of ax-

ioms of the form C

1

v C

2

or C

1

:

= C

2

, where C

i

2 L. If, for some A 2 NC, T

ontains an axiom of the form A v C or A

:

= C, then we say that A is de�ned

in T .

Let L be a DL and T a TBox. An interpretation I 2 Int(L) is a model of

T i�, for eah C

1

v C

2

2 T , C

I

1

� C

I

2

holds, and, for eah C

1

:

= C

2

2 T ,

C

I

1

= C

I

2

holds. In this ase we write I j= T . A onept C 2 L is satis�able

with respet to a TBox T i� there is an I 2 Int(L) with I j= T and C

I

6= ;. A

onept C 2 L subsumes a onept D 2 L w.r.t. T i�, for all I 2 Int(L) with

I j= T , C

I

� D

I

holds. Two TBoxes T ; T

0

are alled equivalent (T � T

0

), i�,

for all I 2 Int(L), I j= T i� I j= T

0

.

We will only deal with onept satis�ability as onept subsumption an be

redued to it for DLs that are losed under boolean operations: C subsumes D

w.r.t. T i� (D u :C) is not satis�able w.r.t. T .

For temporal or modal logis, satis�ability with respet to a set of formulae

fC

1

; : : : ; C

k

g asserted to be universally true orresponds to satis�ability w.r.t.

the TBox f>

:

= C

1

; : : : ;>

:

= C

n

g.

Many deision proedures for DLs base their judgement on the existene of

models or pseudo-models for onepts. A entral rôle in these algorithms is

played by a struture that we will all a witness. It generalises the notions of

tableaux that appear in DL tableau-algorithms [10, 12℄.

De�nition 2.3 (Witness) Let L be a DL and C 2 L a onept. A witness

W = (�

W

; �

W

;L

W

) for C onsists of a non-empty set �

W

, a funtion �

W

that

maps NR to 2

�

W

��

W

, and a funtion L

W

that maps �

W

to 2

L

suh that:

(W1) there is some x 2 �

W

with C 2 L

W

(x),

(W2) there is an interpretation I 2 Int(L) that stems from W, and

(W3) for eah interpretation I 2 Int(L) that stems from W, it holds that D 2

L

W

(x) implies x 2 D

I

.

An interpretation I = (�

I

; �

I

) is said to stem from W if �

I

= �

W

,�

I

j

NR

= �

W

,

and for eah A 2 NC, A 2 L

W

(x) implies x 2 A

I

and :A 2 L

W

(x) implies x 62

A

I

.

A witness W is alled admissible with respet to a TBox T if there is an

interpretation I 2 Int(L) that stems from W with I j= T .

Please note that, for any witness W, (W2) together with Condition 3 of

\stemming" implies that, there exists no x 2 �

W

and A 2 NC, suh that



fA;:Ag � L

W

(x). Also note that, in general, more than one interpretation

may stem from a witness. This is the ase if, for an atomi onept A 2 NC and

an element x 2 �

W

, L

W

(x) \ fA;:Ag = ; holds. The existene of admissible

witnesses is losely related to the satis�ability of onepts w.r.t. TBoxes:

Lemma 2.4 Let L be a DL. A onept C 2 L is satis�able w.r.t. a TBox T i�

it has a witness that is admissible w.r.t. T .

From this it follows that one an test the satis�ability of a onept w.r.t. to a

TBox by heking for the existene of an admissible witness. We all algorithms

that utilise this approah model-building algorithms.

This notion aptures tableau-based deision proedures [10, 12℄ and, due to

their diret orrespondene with tableaux algorithms [14, 4℄, even resolution

based and sequent alulus algorithms. This work develops a tehnique appli-

able to all these algorithm types.

Many deision proedures for DLs deal with TBoxes by exploiting the fol-

lowing lemma.

Lemma 2.5 Let L be a DL, C 2 L a onept, and T a TBox. Let W be a

witness for C. W is admissible w.r.t. T if, for eah x 2 �

W

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x):

Examples of algorithms that exploit this lemma to deal with axioms an

be found in [9, 7, 12℄, where, for eah axiom C

1

v C

2

(C

1

:

= C

2

) the onept

C

1

! C

2

(C

1

$ C

2

) is added to every node of the generated tableau.

Dealing with general axioms in this manner is ostly due to the high degree of

nondeterminism introdued. This an best be understood by looking at tableaux

algorithms, whih try to build witnesses in an inremental fashion. For a onept

C to be tested for satis�ability, they start with �

W

= fx

0

g, L

W

(x

0

) = fCg and

�

W

(R) = ; for eah R 2 NR. Subsequently, the onepts in L

W

are deomposed

and, if neessary, new nodes are added to �

W

, until either W is a witness for

C, or an obvious ontradition of the form fA;:Ag � L

W

(x), whih violates

(W2), is generated. In the latter ase, baktraking searh is used to explore

alternative non-deterministi deompositions (e.g., of disjuntions), one of whih

ould lead to the disovery of a witness.

When applying Lemma 2.5, disjuntions are added to the label of eah node

of the tableau for eah general axiom in the TBox (one disjuntion for axioms

of the form C

1

v C

2

, two for axioms of the form C

1

:

= C

2

). This leads to an

exponential inrease in the searh spae as the number of nodes and axioms

inreases. For example, with 10 nodes and a TBox ontaining 10 general axioms

(of the form C

1

v C

2

) there are already 100 disjuntions, and they an be non-

deterministially deomposed in 2

100

di�erent ways. For a TBox ontaining large



numbers of general axioms (there are 1,214 in the Galen medial terminology

KB [15℄) this an degrade performane to the extent that subsumption testing

is e�etively non-terminating. To reason with this kind of TBox we must �nd a

more eÆient way to deal with axioms.

3 Absorptions

We start our onsiderations with an analysis of a tehnique that an be used to

deal more eÆiently with so-alled primitive or ayli TBoxes.

De�nition 3.1 (Absorption) Let L be a DL and T a TBox. An absorption

of T is a pair of TBoxes (T

u

; T

g

) suh that T � T

u

[ T

g

and T

u

ontains only

axioms of the form A v D and :A v D where A 2 NC.

An absorption (T

u

; T

g

) of T is alled orret if it satis�es the following on-

dition. For eah eah witness W and x 2 �

W

, if

A v D 2 T

u

and A 2 L

W

(x) implies D 2 L

W

(x)

:A v D 2 T

u

and :A 2 L

W

(x) implies D 2 L

W

(x)

C

1

v C

2

2 T

g

implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T

g

implies C

1

$ C

2

2 L

W

(x)

9

>

>

=

>

>

;

(�)

thenW is admissible w.r.t. T . A witness that satis�es (�) will be alled unfolded.

How does a orret absorption enable an algorithm to deal with axioms

more eÆiently? This is best desribed by returning to tableaux algorithms.

Instead of dealing with axioms as previously desribed, whih may lead to an

exponential inrease in the searh spae, axioms in T

u

an now be dealt with in

a deterministi manner. Assume, for example, that we have to handle the axiom

A

:

= C. If the label of a node already ontains A (resp. :A), then C (resp. :C) is

added to the label; if the label ontains neither A nor :A, then nothing has to be

done. Dealing with the axioms in T

u

this way avoids the neessity for additional

non-deterministi hoies and leads to a gain in eÆieny. A witness produed

in this manner will be unfolded and is a erti�ate for satis�ability w.r.t. T .

This tehnique is generally known as lazy unfolding of primitive TBoxes [11℄;

formally, it is justi�ed by the following lemma:

Lemma 3.2 Let (T

u

; T

g

) be a orret absorption of T . For any C 2 L, C has a

witness that is admissible w.r.t. T i� C has an unfolded witness.

A family of TBoxes where absorption an suessfully be applied are primitive

TBoxes, the most simple form of TBox usually studied in the literature.

De�nition 3.3 (Primitive TBox) A TBox T is alled primitive i� it onsists

entirely of axioms of the form A

:

= D with A 2 NC, eah A 2 NC appears as at

most one left-hand side of an axiom, and T is ayli. Ayliity is de�ned as



follows: A 2 NC is said to diretly use B 2 NC if A

:

= D 2 T and B ours in

D; uses is the transitive losure of \diretly uses". We say that T is ayli if

there is no A 2 NC that uses itself.

For primitive TBoxes a orret absorption an easily be given.

Theorem 3.4 Let T be a primitive TBox, T

g

= ;, and T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a orret absorption of T .

Lazy unfolding is a well-known and widely used tehnique for optimising

reasoning w.r.t. primitive TBoxes [2℄. It is a relatively simple approah, although

one that is independent of a spei� DL or reasoning algorithm. With the next

lemma we show how we an extend orret absorptions and hene how lazy

unfolding an be applied to a broader lass of TBoxes.

Lemma 3.5 Let (T

u

; T

g

) be a orret absorption of a TBox T .

1. If T

0

is an arbitrary TBox, then (T

u

; T

g

[ T

0

) is a orret absorption of

T [ T

0

.

2. If T

0

is a TBox that onsists entirely of axioms of the form A v D, where

A 2 NC and A does not our on the left-hand side of any axiom in T

u

,

then (T

u

[ T

0

; T

g

) is a orret absorption of T [ T

0

.

4 Appliation to FaCT

In the preeding setion we have de�ned orret absorptions and disussed how

they an be exploited in order to optimise satis�ability proedures. However,

we have said nothing about the problem of how to �nd an absorption given an

arbitrary terminology. In this setion we will desribe the absorption algorithm

used by FaCT and prove that it generates orret absorptions.

Given a TBox T ontaining arbitrary axioms, the absorption algorithm used

by FaCT onstruts a triple of TBoxes (T

g

; T

prim

; T

in

) suh that

� T � T

g

[ T

prim

[ T

in

,

� T

prim

is primitive, and

� T

in

onsists only of axioms of the form A v D where A 2 NC and A is

not de�ned in T

prim

.

We refer to these properties by (�). From Theorem 3.4 together with Lemma 3.5

it follows that, for

T

u

:= fA v D;:A v :D j A

:

= D 2 T

prim

g [ T

in

(T

u

,T

g

) is a orret absorption of T ; hene satis�ability for a onept C w.r.t. T

an be deided by heking for an unfolded witness for C.



In a �rst step, FaCT distributes axioms from T amongst T

in

, T

prim

, and T

g

,

trying to minimise the number of axioms in T

g

while still maintaining (�). To

do this, it initialises T

prim

; T

in

, and T

g

with ;, and then proesses eah axiom

X 2 T as follows.

1. If X is of the form A v C, then

(a) if A 2 NC and A is not de�ned in T

prim

then X is added to T

in

,

(b) otherwise X is added to T

g

2. If X is of the form A

:

= C, then

(a) if A 2 NC, A is not de�ned in T

prim

or T

in

and T

prim

[fXg is primitive,

then X is added to T

prim

,

(b) otherwise, the axioms A v C and C v A are added to T

g

3. If X is of the form C v D, then add C v D to T

g

.

4. If X is of the form C

:

= D, then add C v D and D v C to T

g

.

It is easy to see that the resulting TBoxes T

g

; T

prim

; T

in

satisfy (�). In a

seond step, FaCT proesses the axioms in T

g

one at a time, trying to absorb

them into axioms in T

in

. Those axioms that are not absorbed remain in T

g

.

To give a simpler formulation of the algorithm, eah axiom (C v D) 2 T

g

is

viewed as a lause G = fD;:Cg, orresponding to the axiom > v C ! D,

whih is equivalent to C v D. For eah suh axiom FaCT applies the following

absorption proedure.

1. Try to absorb G. If there is a onept :A 2 G suh that A 2 NC and A

is not de�ned in T

prim

, then add A v B to T

in

, where B is the disjuntion

of all the onepts in G n f:Ag, remove G from T

g

, and exit.

2. Try to simplify G.

(a) If there is some :C 2 G suh that C is of the form C

1

u : : : u C

n

,

then substitute :C with :C

1

t : : :t:C

n

, and ontinue with step 2b.

(b) If there is some C 2 G suh that C is of the form (C

1

t : : :tC

n

), then

apply assoiativity by settingG = G[fC

1

; : : : ; C

n

gnf(C

1

t: : :tC

n

)g,

and return to step 1.

3. Try to unfold G. If, for some A 2 G (resp. :A 2 G), there is an axiom

A

:

= C in T

prim

, then substitute A 2 G (resp. :A 2 G) with C (resp. :C)

and return to step 1.

4. If none of the above were possible, then absorption of G has failed. Leave

G in T

g

, and exit.

We have to show that eah step maintains (�). Dealing with lauses instead

of axioms auses no problems. In the �rst step, axioms are moved from T

g

to

T

in

as long as this does not violate (�). The seond and the third step replae a

lause by an equivalent one and hene do not violate (�). Termination is obvious:

eah axiom is onsidered only one and, for a given axiom, simpli�ation and

unfolding an only be applied �nitely often before the proedure is exited, either

by absorbing the axiom into T

in

or leaving it in T

g

. For simpli�ation, this is

obvious; for unfolding, this holds beause T

prim

is ayli.
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Figure 1: Classi�ation times with(out) absorption (left) and enhaned absorption

Theorem 4.1 For any TBox T , FaCT omputes a orret absorption of T .

The absorption algorithm employed by FaCT already leads to a dramati

improvement in performane. This is illustrated by Figure 1 (left), whih shows

the times taken by FaCT to lassify versions of the Galen KB with some or all

of the general axioms removed. Without absorption, lassi�ation time inreased

rapidly with the number of general axioms, and exeeded 10,000s with only 25

general axioms in the KB; with absorption, only 160s was taken to lassify the

KB with all 1,214 general axioms.

However, there is still onsiderable sope for further gains. In partiular,

the following de�nition for a strati�ed TBox allows lazy unfolding to be more

generally applied, while still allowing for orret absorptions.

De�nition 4.2 (Strati�ed TBox) A TBox T is alled strati�ed i� it onsists

entirely of axioms of the form A

:

= D with A 2 NC, eah A 2 NC appears at most

one on the left-hand side of an axiom, and T an be arranged monotonously,

i.e., there is a disjoint partition T

1

_

[ T

2

_

[ : : :

_

[ T

k

of T , suh that:

� for all 1 � j < i � k, if A 2 NC is de�ned in T

i

, then it does not our in

T

j

,

� for all 1 � i � k, all onepts whih appear on the right-hand side of

axioms in T

i

are monotone in all atomi onepts de�ned in T

i

.

A onept C is monotone in an atomi onept A if, for any interpretation I 2

Int(L) and any two sets X

1

; X

2

� �

I

, X

1

� X

2

implies C

I[A 7!X

1

℄

� C

I[A 7!X

2

℄

,

where, for some interpretation I, I[A 7! X℄ denotes the interpretation that

maps A to X and agrees with I on all other atomi onepts and roles.

For many DLs, a suÆient ondition for monotoniity is syntati mono-

toniity, i.e., a onept C is syntatially monotone in some atomi onept A

if A appears in C only in the sope of an even number of negations. This holds,

e.g., for SHIQ [12℄, if at-most qualifying number restritions (� n R C) are

ounted as one negation.



Theorem 4.3 Let T be a strati�ed TBox, T

g

= ; and T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a orret absorption of T .

Please note, that the partition of T into strata is neessary only to guarantee

the orretness of the absorption and does not need to be taken into aount

for the lazy unfolding itself. Lazy unfolding generally appliable to all orret

absorptions without any modi�ations. Also note that it is possible that a

TBox is strati�ed with only a single stratum, in whih ase the �rst ondition

of De�nition 4.2 is trivially satis�ed.

The e�etiveness of this enhaned absorption an be demonstrated by a

simple experiment with the new FaCT system, whih implements the SHIQ

logi [12℄ and is thus able to deal with inverse roles. Figure 1 (right) shows

the lassi�ation time in seonds using the normal and enhaned absorption

algorithms for terminologies onsisting of between 5 and 50 pairs of ylial

de�nitions. With only 10 pairs the gain in performane is already a fator of

30, while for 45 and 50 pairs it has reahed several orders of magnitude: with

the enhaned lazy unfolding the terminology is lassi�ed in 2{3 seonds whereas

with the original algorithm the time required exeeded the 10,000 seond limit

imposed in the experiment.

It is worth pointing out that it is by no means trivially true that ylial de�-

nitions an be dealt with by lazy unfolding. Even without inverse roles it is lear

that de�nitions suh as A

:

= :A (or more subtle variants) fore the domain to be

empty and would lead to an inorret absorption if dealt with by lazy unfolding.

With onverse roles it is, for example, possible to fore the interpretation of a

role R to be empty with a de�nition suh as A

:

= 8R:(8R

�

::A), again leading

to an inorret absorption if dealt with by lazy unfolding.

5 Optimal Absorptions

Our results show that absorption is a highly e�etive and widely appliable

tehnique, and by formally de�ning orretness riteria for absorptions we an

prove that the proedure used by FaCT �nds orret absorptions. Moreover,

by establishing more preise orretness riteria we have demonstrated how the

e�etiveness of this proedure ould be further enhaned.

However, the absorption algorithm used by FaCT is learly sub-optimal, in

the sense that hanges ould be made that would, in general, allow more axioms

to be absorbed (e.g., by also giving speial onsideration to axioms of the form

:A v C with A 2 NC). Moreover, the proedure is non-deterministi, and, while

it is guaranteed to produe a orret absorption, its spei� result depends on

the order of the axioms in the original TBox T . Sine the semantis of a TBox

T does not depend on the order of its axioms, there is no reason to suppose



that they will be arranged in a way that yields a \good" absorption. Given

the e�etiveness of absorption, it would be desirable to have an algorithm that

was guaranteed to �nd the \best" absorption possible for any set of axioms,

irrespetive of their ordering in the TBox.

Unfortunately, it is not even lear how to de�ne a sensible optimality ri-

terion for absorptions. It is obvious that simplisti approahes based on the

number or size of axioms remaining in T

g

will not lead to a useful solution for

this problem. Consider, for example, the ylial TBox experiment from the pre-

vious setion. Both the original FaCT absorption algorithm and the enhaned

algorithm, whih performs the absorption of ylial TBoxes, are able to om-

pute a omplete absorption of the axioms used in the experiment (i.e., a orret

absorption with T

g

= ;), but the enhaned algorithm leads to muh better per-

formane, as shown in Figure 1 (right). An important issue for future work is,

therefore, the identi�ation of a suitable optimality riterion for absorptions,

and the development of an algorithm that is able to ompute absorptions that

are optimal with respet to this riterion.
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