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1 Motivation

The problem of 
omputing 
on
ept subsumption relationships has been the

subje
t of mu
h resear
h, and sound and 
omplete algorithms are now known

for a wide range of DLs (for example [10, 3, 1, 8, 12℄). However, in spite of

the fundamental importan
e of terminologies in DLs, most of these algorithms

deal only with the problem of de
iding subsumption between two 
on
epts (or,

equivalently, 
on
ept satis�ability), without referen
e to a terminology (but

see [5, 6, 9, 12℄). By restri
ting the kinds of assertion that 
an appear in a

terminology, 
on
epts 
an be synta
ti
ally expanded so as to expli
itly in
lude

all relevant terminologi
al information. This pro
edure, 
alled unfolding, has

mostly been applied to less expressive DLs. With more expressive DLs, in par-

ti
ular those supporting universal roles, it is often possible to en
apsulate an

arbitrary terminology in a single 
on
ept. This te
hnique 
an be used with sat-

is�ability testing to ensure that the result is valid with respe
t to the assertions

in the terminology, a pro
edure 
alled internalisation.

Although the above mentioned te
hniques suÆ
e to demonstrate the theoret-

i
al adequa
y of satis�ability de
ision pro
edures for terminologi
al reasoning,

experiments with implementations have shown that, for reasons of (la
k of)

eÆ
ien
y, they are highly unsatisfa
tory as a pra
ti
al methodology for reason-

ing with DL terminologies. Firstly, experiments with the Kris system have

shown that integrating unfolding with the (tableaux) satis�ability algorithm

(lazy unfolding) leads to a signi�
ant improvement in performan
e [2℄. More re-


ently, experiments with the FaCT system have shown that reasoning be
omes

hopelessly intra
table when internalisation is used to deal with larger terminolo-

gies [11℄. However, the FaCT system has also demonstrated that this problem


an be dealt with (at least for realisti
 terminologies) by using a 
ombination of

lazy unfolding and internalisation, having �rst manipulated the terminology in

order to minimise the number of assertions that must be dealt with by internal-

isation (a te
hnique 
alled absorption). It should be noted that, although these

te
hniques were dis
overed while developing DL systems, they are appli
able to



a whole range of reasoning systems, independent of the 
on
rete logi
 and type

of algorithm.

In this paper we seek to improve our theoreti
al understanding of these

important te
hniques whi
h has, until now, been very limited. In parti
ular we

would like to know exa
tly when and how they 
an be applied, and be sure

that the answers we get from the algorithm are still 
orre
t. This is a
hieved by

de�ning a formal framework that allows the te
hniques to be pre
isely des
ribed,

establishing 
onditions under whi
h they 
an be safely applied, and proving

that, provided these 
onditions are respe
ted, satis�ability algorithms will still

fun
tion 
orre
tly. Finally, we identify several interesting dire
tions for future

resear
h, in parti
ular the problem of �nding the \best" absorption possible.

Due to spa
e limitations, we have omitted most proofs. Please refer to [13℄ for

full details.

2 Preliminaries

Firstly, we will establish some basi
 de�nitions that 
larify what we mean by a

DL, a terminology (subsequently 
alled a TBox), and subsumption and satis�-

ability with respe
t to a terminology. The results in this paper are uniformly

appli
able to a whole range of DLs, as long as some basi
 
riteria are met:

De�nition 2.1 (Des
ription Logi
) Let L be a DL based on in�nite sets of

atomi
 
on
epts NC and atomi
 roles NR. We will identify L with the sets of

its well-formed 
on
epts and require L to be 
losed under boolean operations and

sub-
on
epts.

An interpretation I is a pair I = (�

I

; �

I

), where �

I

is a non-empty set and

�

I

is a fun
tion mapping NC to 2

�

I

and NR to 2

�

I

��

I

. With ea
h DL L we

asso
iate a set Int(L) of admissible interpretations for L. Int(L) must be 
losed

under isomorphisms, and, for any two interpretations I and I

0

that agree on

NR, it must satisfy I 2 Int(L), I

0

2 Int(L). Additionally, we assume that ea
h

DL L 
omes with a semanti
s that allows any interpretation I 2 Int(L) to be

extended to ea
h 
on
ept C 2 L su
h that it satis�es the following 
onditions:

(I1) it maps the boolean 
ombination of 
on
epts to the 
orresponding boolean


ombination of their interpretations, and

(I2) the interpretation C

I

of a 
ompound 
on
ept C 2 L depends only on the

interpretation of those atomi
 
on
epts and roles that appear synta
ti
ally

in C.

This de�nition 
aptures a whole range of DLs, namely, the important DL

ALC [17℄ and its many extensions. Int(L) hides restri
tions on the interpre-

tation of 
ertain roles like transitivity, fun
tionality, or role hierar
hies, whi
h

are imposed by more expressive DLs (e.g., [12℄), as these are irrelevant for our

purposes. We will use C ! D as an abbreviation for :C t D, C $ D as an



abbreviation for (C ! D) u (D ! C), and > as a tautologi
al 
on
ept, e.g.,

A t :A for an arbitrary A 2 NC.

A TBox 
onsists of a set of axioms asserting subsumption or equality relations

between (possibly 
omplex) 
on
epts.

De�nition 2.2 (TBox, Satis�ability) A TBox T for L is a �nite set of ax-

ioms of the form C

1

v C

2

or C

1

:

= C

2

, where C

i

2 L. If, for some A 2 NC, T


ontains an axiom of the form A v C or A

:

= C, then we say that A is de�ned

in T .

Let L be a DL and T a TBox. An interpretation I 2 Int(L) is a model of

T i�, for ea
h C

1

v C

2

2 T , C

I

1

� C

I

2

holds, and, for ea
h C

1

:

= C

2

2 T ,

C

I

1

= C

I

2

holds. In this 
ase we write I j= T . A 
on
ept C 2 L is satis�able

with respe
t to a TBox T i� there is an I 2 Int(L) with I j= T and C

I

6= ;. A


on
ept C 2 L subsumes a 
on
ept D 2 L w.r.t. T i�, for all I 2 Int(L) with

I j= T , C

I

� D

I

holds. Two TBoxes T ; T

0

are 
alled equivalent (T � T

0

), i�,

for all I 2 Int(L), I j= T i� I j= T

0

.

We will only deal with 
on
ept satis�ability as 
on
ept subsumption 
an be

redu
ed to it for DLs that are 
losed under boolean operations: C subsumes D

w.r.t. T i� (D u :C) is not satis�able w.r.t. T .

For temporal or modal logi
s, satis�ability with respe
t to a set of formulae

fC

1

; : : : ; C

k

g asserted to be universally true 
orresponds to satis�ability w.r.t.

the TBox f>

:

= C

1

; : : : ;>

:

= C

n

g.

Many de
ision pro
edures for DLs base their judgement on the existen
e of

models or pseudo-models for 
on
epts. A 
entral rôle in these algorithms is

played by a stru
ture that we will 
all a witness. It generalises the notions of

tableaux that appear in DL tableau-algorithms [10, 12℄.

De�nition 2.3 (Witness) Let L be a DL and C 2 L a 
on
ept. A witness

W = (�

W

; �

W

;L

W

) for C 
onsists of a non-empty set �

W

, a fun
tion �

W

that

maps NR to 2

�

W

��

W

, and a fun
tion L

W

that maps �

W

to 2

L

su
h that:

(W1) there is some x 2 �

W

with C 2 L

W

(x),

(W2) there is an interpretation I 2 Int(L) that stems from W, and

(W3) for ea
h interpretation I 2 Int(L) that stems from W, it holds that D 2

L

W

(x) implies x 2 D

I

.

An interpretation I = (�

I

; �

I

) is said to stem from W if �

I

= �

W

,�

I

j

NR

= �

W

,

and for ea
h A 2 NC, A 2 L

W

(x) implies x 2 A

I

and :A 2 L

W

(x) implies x 62

A

I

.

A witness W is 
alled admissible with respe
t to a TBox T if there is an

interpretation I 2 Int(L) that stems from W with I j= T .

Please note that, for any witness W, (W2) together with Condition 3 of

\stemming" implies that, there exists no x 2 �

W

and A 2 NC, su
h that



fA;:Ag � L

W

(x). Also note that, in general, more than one interpretation

may stem from a witness. This is the 
ase if, for an atomi
 
on
ept A 2 NC and

an element x 2 �

W

, L

W

(x) \ fA;:Ag = ; holds. The existen
e of admissible

witnesses is 
losely related to the satis�ability of 
on
epts w.r.t. TBoxes:

Lemma 2.4 Let L be a DL. A 
on
ept C 2 L is satis�able w.r.t. a TBox T i�

it has a witness that is admissible w.r.t. T .

From this it follows that one 
an test the satis�ability of a 
on
ept w.r.t. to a

TBox by 
he
king for the existen
e of an admissible witness. We 
all algorithms

that utilise this approa
h model-building algorithms.

This notion 
aptures tableau-based de
ision pro
edures [10, 12℄ and, due to

their dire
t 
orresponden
e with tableaux algorithms [14, 4℄, even resolution

based and sequent 
al
ulus algorithms. This work develops a te
hnique appli-


able to all these algorithm types.

Many de
ision pro
edures for DLs deal with TBoxes by exploiting the fol-

lowing lemma.

Lemma 2.5 Let L be a DL, C 2 L a 
on
ept, and T a TBox. Let W be a

witness for C. W is admissible w.r.t. T if, for ea
h x 2 �

W

,

C

1

v C

2

2 T implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T implies C

1

$ C

2

2 L

W

(x):

Examples of algorithms that exploit this lemma to deal with axioms 
an

be found in [9, 7, 12℄, where, for ea
h axiom C

1

v C

2

(C

1

:

= C

2

) the 
on
ept

C

1

! C

2

(C

1

$ C

2

) is added to every node of the generated tableau.

Dealing with general axioms in this manner is 
ostly due to the high degree of

nondeterminism introdu
ed. This 
an best be understood by looking at tableaux

algorithms, whi
h try to build witnesses in an in
remental fashion. For a 
on
ept

C to be tested for satis�ability, they start with �

W

= fx

0

g, L

W

(x

0

) = fCg and

�

W

(R) = ; for ea
h R 2 NR. Subsequently, the 
on
epts in L

W

are de
omposed

and, if ne
essary, new nodes are added to �

W

, until either W is a witness for

C, or an obvious 
ontradi
tion of the form fA;:Ag � L

W

(x), whi
h violates

(W2), is generated. In the latter 
ase, ba
ktra
king sear
h is used to explore

alternative non-deterministi
 de
ompositions (e.g., of disjun
tions), one of whi
h


ould lead to the dis
overy of a witness.

When applying Lemma 2.5, disjun
tions are added to the label of ea
h node

of the tableau for ea
h general axiom in the TBox (one disjun
tion for axioms

of the form C

1

v C

2

, two for axioms of the form C

1

:

= C

2

). This leads to an

exponential in
rease in the sear
h spa
e as the number of nodes and axioms

in
reases. For example, with 10 nodes and a TBox 
ontaining 10 general axioms

(of the form C

1

v C

2

) there are already 100 disjun
tions, and they 
an be non-

deterministi
ally de
omposed in 2

100

di�erent ways. For a TBox 
ontaining large



numbers of general axioms (there are 1,214 in the Galen medi
al terminology

KB [15℄) this 
an degrade performan
e to the extent that subsumption testing

is e�e
tively non-terminating. To reason with this kind of TBox we must �nd a

more eÆ
ient way to deal with axioms.

3 Absorptions

We start our 
onsiderations with an analysis of a te
hnique that 
an be used to

deal more eÆ
iently with so-
alled primitive or a
y
li
 TBoxes.

De�nition 3.1 (Absorption) Let L be a DL and T a TBox. An absorption

of T is a pair of TBoxes (T

u

; T

g

) su
h that T � T

u

[ T

g

and T

u


ontains only

axioms of the form A v D and :A v D where A 2 NC.

An absorption (T

u

; T

g

) of T is 
alled 
orre
t if it satis�es the following 
on-

dition. For ea
h ea
h witness W and x 2 �

W

, if

A v D 2 T

u

and A 2 L

W

(x) implies D 2 L

W

(x)

:A v D 2 T

u

and :A 2 L

W

(x) implies D 2 L

W

(x)

C

1

v C

2

2 T

g

implies C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T

g

implies C

1

$ C

2

2 L

W

(x)

9

>

>

=

>

>

;

(�)

thenW is admissible w.r.t. T . A witness that satis�es (�) will be 
alled unfolded.

How does a 
orre
t absorption enable an algorithm to deal with axioms

more eÆ
iently? This is best des
ribed by returning to tableaux algorithms.

Instead of dealing with axioms as previously des
ribed, whi
h may lead to an

exponential in
rease in the sear
h spa
e, axioms in T

u


an now be dealt with in

a deterministi
 manner. Assume, for example, that we have to handle the axiom

A

:

= C. If the label of a node already 
ontains A (resp. :A), then C (resp. :C) is

added to the label; if the label 
ontains neither A nor :A, then nothing has to be

done. Dealing with the axioms in T

u

this way avoids the ne
essity for additional

non-deterministi
 
hoi
es and leads to a gain in eÆ
ien
y. A witness produ
ed

in this manner will be unfolded and is a 
erti�
ate for satis�ability w.r.t. T .

This te
hnique is generally known as lazy unfolding of primitive TBoxes [11℄;

formally, it is justi�ed by the following lemma:

Lemma 3.2 Let (T

u

; T

g

) be a 
orre
t absorption of T . For any C 2 L, C has a

witness that is admissible w.r.t. T i� C has an unfolded witness.

A family of TBoxes where absorption 
an su

essfully be applied are primitive

TBoxes, the most simple form of TBox usually studied in the literature.

De�nition 3.3 (Primitive TBox) A TBox T is 
alled primitive i� it 
onsists

entirely of axioms of the form A

:

= D with A 2 NC, ea
h A 2 NC appears as at

most one left-hand side of an axiom, and T is a
y
li
. A
y
li
ity is de�ned as



follows: A 2 NC is said to dire
tly use B 2 NC if A

:

= D 2 T and B o

urs in

D; uses is the transitive 
losure of \dire
tly uses". We say that T is a
y
li
 if

there is no A 2 NC that uses itself.

For primitive TBoxes a 
orre
t absorption 
an easily be given.

Theorem 3.4 Let T be a primitive TBox, T

g

= ;, and T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a 
orre
t absorption of T .

Lazy unfolding is a well-known and widely used te
hnique for optimising

reasoning w.r.t. primitive TBoxes [2℄. It is a relatively simple approa
h, although

one that is independent of a spe
i�
 DL or reasoning algorithm. With the next

lemma we show how we 
an extend 
orre
t absorptions and hen
e how lazy

unfolding 
an be applied to a broader 
lass of TBoxes.

Lemma 3.5 Let (T

u

; T

g

) be a 
orre
t absorption of a TBox T .

1. If T

0

is an arbitrary TBox, then (T

u

; T

g

[ T

0

) is a 
orre
t absorption of

T [ T

0

.

2. If T

0

is a TBox that 
onsists entirely of axioms of the form A v D, where

A 2 NC and A does not o

ur on the left-hand side of any axiom in T

u

,

then (T

u

[ T

0

; T

g

) is a 
orre
t absorption of T [ T

0

.

4 Appli
ation to FaCT

In the pre
eding se
tion we have de�ned 
orre
t absorptions and dis
ussed how

they 
an be exploited in order to optimise satis�ability pro
edures. However,

we have said nothing about the problem of how to �nd an absorption given an

arbitrary terminology. In this se
tion we will des
ribe the absorption algorithm

used by FaCT and prove that it generates 
orre
t absorptions.

Given a TBox T 
ontaining arbitrary axioms, the absorption algorithm used

by FaCT 
onstru
ts a triple of TBoxes (T

g

; T

prim

; T

in


) su
h that

� T � T

g

[ T

prim

[ T

in


,

� T

prim

is primitive, and

� T

in



onsists only of axioms of the form A v D where A 2 NC and A is

not de�ned in T

prim

.

We refer to these properties by (�). From Theorem 3.4 together with Lemma 3.5

it follows that, for

T

u

:= fA v D;:A v :D j A

:

= D 2 T

prim

g [ T

in


(T

u

,T

g

) is a 
orre
t absorption of T ; hen
e satis�ability for a 
on
ept C w.r.t. T


an be de
ided by 
he
king for an unfolded witness for C.



In a �rst step, FaCT distributes axioms from T amongst T

in


, T

prim

, and T

g

,

trying to minimise the number of axioms in T

g

while still maintaining (�). To

do this, it initialises T

prim

; T

in


, and T

g

with ;, and then pro
esses ea
h axiom

X 2 T as follows.

1. If X is of the form A v C, then

(a) if A 2 NC and A is not de�ned in T

prim

then X is added to T

in


,

(b) otherwise X is added to T

g

2. If X is of the form A

:

= C, then

(a) if A 2 NC, A is not de�ned in T

prim

or T

in


and T

prim

[fXg is primitive,

then X is added to T

prim

,

(b) otherwise, the axioms A v C and C v A are added to T

g

3. If X is of the form C v D, then add C v D to T

g

.

4. If X is of the form C

:

= D, then add C v D and D v C to T

g

.

It is easy to see that the resulting TBoxes T

g

; T

prim

; T

in


satisfy (�). In a

se
ond step, FaCT pro
esses the axioms in T

g

one at a time, trying to absorb

them into axioms in T

in


. Those axioms that are not absorbed remain in T

g

.

To give a simpler formulation of the algorithm, ea
h axiom (C v D) 2 T

g

is

viewed as a 
lause G = fD;:Cg, 
orresponding to the axiom > v C ! D,

whi
h is equivalent to C v D. For ea
h su
h axiom FaCT applies the following

absorption pro
edure.

1. Try to absorb G. If there is a 
on
ept :A 2 G su
h that A 2 NC and A

is not de�ned in T

prim

, then add A v B to T

in


, where B is the disjun
tion

of all the 
on
epts in G n f:Ag, remove G from T

g

, and exit.

2. Try to simplify G.

(a) If there is some :C 2 G su
h that C is of the form C

1

u : : : u C

n

,

then substitute :C with :C

1

t : : :t:C

n

, and 
ontinue with step 2b.

(b) If there is some C 2 G su
h that C is of the form (C

1

t : : :tC

n

), then

apply asso
iativity by settingG = G[fC

1

; : : : ; C

n

gnf(C

1

t: : :tC

n

)g,

and return to step 1.

3. Try to unfold G. If, for some A 2 G (resp. :A 2 G), there is an axiom

A

:

= C in T

prim

, then substitute A 2 G (resp. :A 2 G) with C (resp. :C)

and return to step 1.

4. If none of the above were possible, then absorption of G has failed. Leave

G in T

g

, and exit.

We have to show that ea
h step maintains (�). Dealing with 
lauses instead

of axioms 
auses no problems. In the �rst step, axioms are moved from T

g

to

T

in


as long as this does not violate (�). The se
ond and the third step repla
e a


lause by an equivalent one and hen
e do not violate (�). Termination is obvious:

ea
h axiom is 
onsidered only on
e and, for a given axiom, simpli�
ation and

unfolding 
an only be applied �nitely often before the pro
edure is exited, either

by absorbing the axiom into T

in


or leaving it in T

g

. For simpli�
ation, this is

obvious; for unfolding, this holds be
ause T

prim

is a
y
li
.
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Figure 1: Classi�
ation times with(out) absorption (left) and enhan
ed absorption

Theorem 4.1 For any TBox T , FaCT 
omputes a 
orre
t absorption of T .

The absorption algorithm employed by FaCT already leads to a dramati


improvement in performan
e. This is illustrated by Figure 1 (left), whi
h shows

the times taken by FaCT to 
lassify versions of the Galen KB with some or all

of the general axioms removed. Without absorption, 
lassi�
ation time in
reased

rapidly with the number of general axioms, and ex
eeded 10,000s with only 25

general axioms in the KB; with absorption, only 160s was taken to 
lassify the

KB with all 1,214 general axioms.

However, there is still 
onsiderable s
ope for further gains. In parti
ular,

the following de�nition for a strati�ed TBox allows lazy unfolding to be more

generally applied, while still allowing for 
orre
t absorptions.

De�nition 4.2 (Strati�ed TBox) A TBox T is 
alled strati�ed i� it 
onsists

entirely of axioms of the form A

:

= D with A 2 NC, ea
h A 2 NC appears at most

on
e on the left-hand side of an axiom, and T 
an be arranged monotonously,

i.e., there is a disjoint partition T

1

_

[ T

2

_

[ : : :

_

[ T

k

of T , su
h that:

� for all 1 � j < i � k, if A 2 NC is de�ned in T

i

, then it does not o

ur in

T

j

,

� for all 1 � i � k, all 
on
epts whi
h appear on the right-hand side of

axioms in T

i

are monotone in all atomi
 
on
epts de�ned in T

i

.

A 
on
ept C is monotone in an atomi
 
on
ept A if, for any interpretation I 2

Int(L) and any two sets X

1

; X

2

� �

I

, X

1

� X

2

implies C

I[A 7!X

1

℄

� C

I[A 7!X

2

℄

,

where, for some interpretation I, I[A 7! X℄ denotes the interpretation that

maps A to X and agrees with I on all other atomi
 
on
epts and roles.

For many DLs, a suÆ
ient 
ondition for monotoni
ity is synta
ti
 mono-

toni
ity, i.e., a 
on
ept C is synta
ti
ally monotone in some atomi
 
on
ept A

if A appears in C only in the s
ope of an even number of negations. This holds,

e.g., for SHIQ [12℄, if at-most qualifying number restri
tions (� n R C) are


ounted as one negation.



Theorem 4.3 Let T be a strati�ed TBox, T

g

= ; and T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a 
orre
t absorption of T .

Please note, that the partition of T into strata is ne
essary only to guarantee

the 
orre
tness of the absorption and does not need to be taken into a

ount

for the lazy unfolding itself. Lazy unfolding generally appli
able to all 
orre
t

absorptions without any modi�
ations. Also note that it is possible that a

TBox is strati�ed with only a single stratum, in whi
h 
ase the �rst 
ondition

of De�nition 4.2 is trivially satis�ed.

The e�e
tiveness of this enhan
ed absorption 
an be demonstrated by a

simple experiment with the new FaCT system, whi
h implements the SHIQ

logi
 [12℄ and is thus able to deal with inverse roles. Figure 1 (right) shows

the 
lassi�
ation time in se
onds using the normal and enhan
ed absorption

algorithms for terminologies 
onsisting of between 5 and 50 pairs of 
y
li
al

de�nitions. With only 10 pairs the gain in performan
e is already a fa
tor of

30, while for 45 and 50 pairs it has rea
hed several orders of magnitude: with

the enhan
ed lazy unfolding the terminology is 
lassi�ed in 2{3 se
onds whereas

with the original algorithm the time required ex
eeded the 10,000 se
ond limit

imposed in the experiment.

It is worth pointing out that it is by no means trivially true that 
y
li
al de�-

nitions 
an be dealt with by lazy unfolding. Even without inverse roles it is 
lear

that de�nitions su
h as A

:

= :A (or more subtle variants) for
e the domain to be

empty and would lead to an in
orre
t absorption if dealt with by lazy unfolding.

With 
onverse roles it is, for example, possible to for
e the interpretation of a

role R to be empty with a de�nition su
h as A

:

= 8R:(8R

�

::A), again leading

to an in
orre
t absorption if dealt with by lazy unfolding.

5 Optimal Absorptions

Our results show that absorption is a highly e�e
tive and widely appli
able

te
hnique, and by formally de�ning 
orre
tness 
riteria for absorptions we 
an

prove that the pro
edure used by FaCT �nds 
orre
t absorptions. Moreover,

by establishing more pre
ise 
orre
tness 
riteria we have demonstrated how the

e�e
tiveness of this pro
edure 
ould be further enhan
ed.

However, the absorption algorithm used by FaCT is 
learly sub-optimal, in

the sense that 
hanges 
ould be made that would, in general, allow more axioms

to be absorbed (e.g., by also giving spe
ial 
onsideration to axioms of the form

:A v C with A 2 NC). Moreover, the pro
edure is non-deterministi
, and, while

it is guaranteed to produ
e a 
orre
t absorption, its spe
i�
 result depends on

the order of the axioms in the original TBox T . Sin
e the semanti
s of a TBox

T does not depend on the order of its axioms, there is no reason to suppose



that they will be arranged in a way that yields a \good" absorption. Given

the e�e
tiveness of absorption, it would be desirable to have an algorithm that

was guaranteed to �nd the \best" absorption possible for any set of axioms,

irrespe
tive of their ordering in the TBox.

Unfortunately, it is not even 
lear how to de�ne a sensible optimality 
ri-

terion for absorptions. It is obvious that simplisti
 approa
hes based on the

number or size of axioms remaining in T

g

will not lead to a useful solution for

this problem. Consider, for example, the 
y
li
al TBox experiment from the pre-

vious se
tion. Both the original FaCT absorption algorithm and the enhan
ed

algorithm, whi
h performs the absorption of 
y
li
al TBoxes, are able to 
om-

pute a 
omplete absorption of the axioms used in the experiment (i.e., a 
orre
t

absorption with T

g

= ;), but the enhan
ed algorithm leads to mu
h better per-

forman
e, as shown in Figure 1 (right). An important issue for future work is,

therefore, the identi�
ation of a suitable optimality 
riterion for absorptions,

and the development of an algorithm that is able to 
ompute absorptions that

are optimal with respe
t to this 
riterion.
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