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Abstra
t

When reasoning in des
ription, modal or

temporal logi
s it is often useful to 
onsider

axioms representing universal truths in the

domain of dis
ourse. Reasoning with respe
t

to an arbitrary set of axioms is hard, even for

relatively inexpressive logi
s, and it is essen-

tial to deal with su
h axioms in an eÆ
ient

manner if implemented systems are to be ef-

fe
tive in real appli
ations. This is parti
-

ularly relevant to Des
ription Logi
s, where

subsumption reasoning with respe
t to a ter-

minology is a fundamental problem. Two

optimisation te
hniques that have proved to

be parti
ularly e�e
tive in dealing with ter-

minologies are lazy unfolding and absorp-

tion. In this paper we seek to improve our

theoreti
al understanding of these important

te
hniques. We de�ne a formal framework

that allows the te
hniques to be pre
isely

des
ribed, establish 
onditions under whi
h

they 
an be safely applied, and prove that,

provided these 
onditions are respe
ted, sub-

sumption testing algorithms will still fun
-

tion 
orre
tly. These results are used to show

that the pro
edures used in the FaCT system

are 
orre
t and, moreover, to show how ef-

�
ien
y 
an be signi�
antly improved, while

still retaining the guarantee of 
orre
tness, by

relaxing the safety 
onditions for absorption.

1 MOTIVATION

Des
ription Logi
s (DLs) form a family of formalisms

whi
h have grown out of knowledge representation

te
hniques using frames and semanti
 networks. DLs

use a 
lass based paradigm, des
ribing the domain of

interest in terms of 
on
epts (
lasses) and roles (bi-

nary relations) whi
h 
an be 
ombined using a range

of operators to form more 
omplex stru
tured 
on-


epts [BHH

+

91℄. A DL terminology typi
ally 
onsists

of a set of asserted fa
ts, in parti
ular asserted sub-

sumption (is-a-kind-of) relationships between (possi-

bly 
omplex) 
on
epts.
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.

One of the distinguishing 
hara
teristi
s of DLs is a

formally de�ned semanti
s whi
h allows the stru
tured

obje
ts they des
ribe to be reasoned with. Of parti
-

ular interest is the 
omputation of implied subsump-

tion relationships between 
on
epts, based on the as-

sertions in the terminology, and the maintenan
e of a


on
ept hierar
hy (partial ordering) based on the sub-

sumption relationship [WS92℄.

The problem of 
omputing 
on
ept subsumption rela-

tionships has been the subje
t of mu
h resear
h, and

sound and 
omplete algorithms are now known for a

wide range of DLs (for example [HN90, BH91, Baa91,

DM98, HST99℄). However, in spite of the fundamen-

tal importan
e of terminologies in DLs, most of these

algorithms deal only with the problem of de
iding sub-

sumption between two 
on
epts (or, equivalently, 
on-


ept satis�ability), without referen
e to a terminology

(but see [BDS93, Cal96, DDM96, HST99℄). By re-

stri
ting the kinds of assertion that 
an appear in a ter-

minology, 
on
epts 
an be synta
ti
ally expanded so as

to expli
itly in
lude all relevant terminologi
al infor-

mation. This pro
edure, 
alled unfolding, has mostly

been applied to less expressive DLs. With more ex-

pressive DLs, in parti
ular those supporting universal

roles, it is often possible to en
apsulate an arbitrary

terminology in a single 
on
ept. This te
hnique 
an

be used with satis�ability testing to ensure that the

result is valid with respe
t to the assertions in the ter-
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DLs 
an also deal with assertions about individuals,

but in this paper we will only be 
on
erned with termino-

logi
al (
on
ept based) reasoning



minology, a pro
edure 
alled internalisation.

Although the above mentioned te
hniques suÆ
e to

demonstrate the theoreti
al adequa
y of satis�abil-

ity de
ision pro
edures for terminologi
al reasoning,

experiments with implementations have shown that,

for reasons of (la
k of) eÆ
ien
y, they are highly un-

satisfa
tory as a pra
ti
al methodology for reasoning

with DL terminologies. Firstly, experiments with the

Kris system have shown that integrating unfolding

with the (tableaux) satis�ability algorithm (lazy un-

folding) leads to a signi�
ant improvement in perfor-

man
e [BFH

+

94℄. More re
ently, experiments with

the FaCT system have shown that reasoning be
omes

hopelessly intra
table when internalisation is used to

deal with larger terminologies [Hor98℄. However, the

FaCT system has also demonstrated that this problem


an be dealt with (at least for realisti
 terminologies)

by using a 
ombination of lazy unfolding and internal-

isation, having �rst manipulated the terminology in

order to minimise the number of assertions that must

be dealt with by internalisation (a te
hnique 
alled ab-

sorption).

It should be noted that, although these te
hniques

were dis
overed while developing DL systems, they are

appli
able to a whole range of reasoning systems, in-

dependent of the 
on
rete logi
 and type of algorithm.

As well as tableaux based de
ision pro
edures, this

in
ludes resolution based algorithms, where the im-

portan
e of minimising the number of terminologi
al

senten
es has already been noted [HS99℄, and sequent


al
ulus algorithms, where there is a dire
t 
orrespon-

den
e with tableaux algorithms [BFH

+

99℄.

In this paper we seek to improve our theoreti
al un-

derstanding of these important te
hniques whi
h has,

until now, been very limited. In parti
ular we would

like to know exa
tly when and how they 
an be ap-

plied, and be sure that the answers we get from the

algorithm are still 
orre
t. This is a
hieved by de�n-

ing a formal framework that allows the te
hniques to

be pre
isely des
ribed, establishing 
onditions under

whi
h they 
an be safely applied, and proving that,

provided these 
onditions are respe
ted, satis�ability

algorithms will still fun
tion 
orre
tly. These results

are then used to show that the pro
edures used in the

FaCT system are 
orre
t
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and, moreover, to show how

eÆ
ien
y 
an be signi�
antly improved, while still re-

taining the guarantee of 
orre
tness, by relaxing the

safety 
onditions for absorption. Finally, we identify

several interesting dire
tions for future resear
h, in

2

Previously, the 
orre
tness of these pro
edures had

only been demonstrated by a relatively ad-ho
 argu-

ment [Hor97℄.

parti
ular the problem of �nding the \best" absorp-

tion possible.

2 PRELIMINARIES

Firstly, we will establish some basi
 de�nitions that


larify what we mean by a DL, a terminology (subse-

quently 
alled a TBox), and subsumption and satis�-

ability with respe
t to a terminology, . The results in

this paper are uniformly appli
able to a whole range

of DLs, as long as some basi
 
riteria are met:

De�nition 2.1 (Des
ription Logi
) Let L be a DL

based on in�nite sets of atomi
 
on
epts NC and

atomi
 roles NR. We will identify L with the sets of its

well-formed 
on
epts and require L to be 
losed under

boolean operations and sub-
on
epts.

An interpretation is a pair I = (�

I

; �

I

), where �

I

is a non-empty set, 
alled the domain of I, and �

I

is

a fun
tion mapping NC to 2

�

I

and NR to 2

�

I

��

I

.

With ea
h DL L we asso
iate a set Int(L) of admissi-

ble interpretations for L. Int(L) must be 
losed under

isomorphisms, and, for any two interpretations I and

I

0

that agree on NR, it must satisfy I 2 Int(L) ,

I

0

2 Int(L). Additionally, we assume that ea
h DL L


omes with a semanti
s that allows any interpretation

I 2 Int(L) to be extended to ea
h 
on
ept C 2 L su
h

that it satis�es the following 
onditions:

(I1) it maps the boolean 
ombination of 
on
epts to the


orresponding boolean 
ombination of their inter-

pretations, and

(I2) the interpretation C

I

of a 
ompound 
on
ept C 2

L depends only on the interpretation of those

atomi
 
on
epts and roles that appear synta
ti-


ally in C.

This de�nition 
aptures a whole range of DLs, namely,

the important DL ALC [SS91℄ and its many exten-

sions. Int(L) hides restri
tions on the interpretation of


ertain roles like transitivity, fun
tionality, or role hi-

erar
hies, whi
h are imposed by more expressive DLs

(e.g., [HST99℄), as these are irrelevant for our pur-

poses. In these 
ases, Int(L) will only 
ontain those

interpretations whi
h interpret the roles as required

by the semanti
s of the logi
, e.g., features by partial

fun
tions or transitively 
losed roles by transitive re-

lations. Please note that various modal logi
s [S
h91℄,

propositional dynami
 logi
s [DL94℄ and temporal log-

i
s [EH85℄ also �t into this framework. We will use

C ! D as an abbreviation for :C t D, C $ D as

an abbreviation for (C ! D) u (D ! C), and > as



a tautologi
al 
on
ept, e.g., A t :A for an arbitrary

A 2 NC.

A TBox 
onsists of a set of axioms asserting subsump-

tion or equality relations between (possibly 
omplex)


on
epts.

De�nition 2.2 (TBox, Satis�ability) A TBox T

for L is a �nite set of axioms of the form C

1

v C

2

or C

1

:

= C

2

, where C

i

2 L. If, for some A 2 NC, T


ontains one or more axioms of the form A v C or

A

:

= C, then we say that A is de�ned in T .

Let L be a DL and T a TBox. An interpretation I 2

Int(L) is a model of T i�, for ea
h C

1

v C

2

2 T ,

C

I

1

� C

I

2

holds, and, for ea
h C

1

:

= C

2

2 T , C

I

1

=

C

I

2

holds. In this 
ase we write I j= T . A 
on
ept

C 2 L is satis�able with respe
t to a TBox T i� there

is an I 2 Int(L) with I j= T and C

I

6= ;. A 
on
ept

C 2 L subsumes a 
on
ept D 2 L w.r.t. T i�, for all

I 2 Int(L) with I j= T , C

I

� D

I

holds.

Two TBoxes T ; T

0

are 
alled equivalent (T � T

0

), i�,

for all I 2 Int(L), I j= T i� I j= T

0

.

We will only deal with 
on
ept satis�ability as 
on
ept

subsumption 
an be redu
ed to it for DLs that are


losed under boolean operations: C subsumes D w.r.t.

T i� (D u :C) is not satis�able w.r.t. T .

For temporal or modal logi
s, satis�ability with re-

spe
t to a set of formulae fC

1

; : : : ; C

k

g asserted to be

universally true 
orresponds to satis�ability w.r.t. the

TBox f>

:

= C

1

; : : : ;>

:

= C

n

g.

Many de
ision pro
edures for DLs base their judge-

ment on the existen
e of models or pseudo-models for


on
epts. A 
entral rôle in these algorithms is played

by a stru
ture that we will 
all a witness in this pa-

per. It generalises the notions of tableaux that appear

in DL tableau-algorithms [HNS90, BBH96, HST99℄ as

well as the Hintikka-stru
tures that are used in tableau

and automata-based de
ision pro
edures for temporal

logi
 [EH85℄ and propositional dynami
 logi
 [VW86℄.

De�nition 2.3 (Witness) Let L be a DL and C 2 L

a 
on
ept. A witness W = (�

W

; �

W

;L

W

) for C 
on-

sists of a non-empty set �

W

, a fun
tion �

W

that maps

NR to 2

�

W

��

W

, and a fun
tion L

W

that maps �

W

to

2

L

su
h that the following properties are satis�ed:

(W1) there is some x 2 �

W

with C 2 L

W

(x),

(W2) there is an interpretation I 2 Int(L) that stems

from W, and

(W3) for ea
h interpretation I 2 Int(L) that stems from

W, it holds that D 2 L

W

(x) implies x 2 D

I

.

An interpretation I = (�

I

; �

I

) is said to stem from W

if it satis�es:

1. �

I

= �

W

,

2. �

I

j

NR

= �

W

, and

3. for ea
h A 2 NC, A 2 L

W

(x) ) x 2 A

I

and

:A 2 L

W

(x) ) x 62 A

I

.

A witness W is 
alled admissible with respe
t to a

TBox T if there is an interpretation I 2 Int(L) that

stems from W with I j= T .

Please note that, for any witness W , (W2) together

with Condition 3 of \stemming" implies that, there

exists no x 2 �

W

and A 2 NC, su
h that fA;:Ag �

L

W

(x). Also note that, in general, more than one

interpretation may stem from a witness. This is the


ase if, for an atomi
 
on
ept A 2 NC and an element

x 2 �

W

, L

W

(x) \ fA;:Ag = ; holds (be
ause two

interpretations I and I

0

, with x 2 A

I

and x 2 :A

I

0

,


ould both stem from W).

Obviously, ea
h interpretation I gives rise to a spe
ial

witness, 
alled the 
anoni
al witness :

De�nition 2.4 (Canoni
al Witness) Let L be a

DL. For any interpretation I 2 Int(L) we de�ne the


anoni
al witness W

I

= (�

W

I

; �

W

I

;L

W

I

) as follows:

�

W

I

= �

I

�

W

I

= �

I

j

NR

L

W

I

= �x:fD 2 L j x 2 D

I

g

The following elementary properties of a 
anoni
al wit-

ness will be useful in our 
onsiderations.

Lemma 2.5 Let L be a DL, C 2 L, and T a TBox.

For ea
h I 2 Int(L) with C

I

6= ;,

1. ea
h interpretation I

0

stemming from W

I

is iso-

morphi
 to I

2. W

I

is a witness for C,

3. W

I

is admissible w.r.t. T i� I j= T

Proof.

1. Let I

0

stem from W

I

. This implies �

I

0

= �

I

and �

I

0

j

NR

= �

I

j

NR

. For ea
h x 2 �

I

and A 2 NC,

fA;:Ag\L

W

I

(x) 6= ;, this implies �

I

0

j

NC

= �

I

j

NC

and hen
e I and I

0

are isomorphi
.



2. Properties (W1) and (W2) hold by 
onstru
tion.

Obviously, I stems from W

I

and from (1) it fol-

lows that ea
h interpretation I

0

stemming from

W

I

is isomorphi
 to I, hen
e (W3) holds.

3. Sin
e I stems fromW

I

, I j= T implies thatW

I

is

admissible w.r.t. T . If W

I

is admissible w.r.t. T ,

then there is an interpretation I

0

stemming from

W

I

with I

0

j= T . Sin
e I is isomorphi
 to I

0

, this

implies I j= T .

As a 
orollary we get that the existen
e of admissi-

ble witnesses is 
losely related to the satis�ability of


on
epts w.r.t. TBoxes:

Lemma 2.6 Let L be a DL. A 
on
ept C 2 L is sat-

is�able w.r.t. a TBox T i� it has a witness that is

admissible w.r.t. T .

Proof. For the only if -dire
tion let I 2 Int(L) be

an interpretation with I j= T and C

I

6= ;. From

Lemma 2.5 it follows that the 
anoni
al witness W

I

is

a witness for C that is admissible w.r.t. T .

For the if -dire
tion let W be an witness for C that

is admissible w.r.t. T . This implies that there is an

interpretation I 2 Int(L) stemming from W with I j=

T . For ea
h interpretation I that stems from W , it

holds that C

I

6= ; due to (W1) and (W3).

From this it follows that one 
an test the satis�abil-

ity of a 
on
ept w.r.t. to a TBox by 
he
king for the

existen
e of an admissible witness. We 
all algorithms

that utilise this approa
h model-building algorithms.

This notion 
aptures tableau-based de
ision pro-


edures, [HNS90, BBH96, HST99℄, those using

automata-theoreti
 approa
hes [VW86, CDL99℄ and,

due to their dire
t 
orresponden
e with tableaux al-

gorithms [HS99, BFH

+

99℄, even resolution based and

sequent 
al
ulus algorithms.

The way many de
ision pro
edures for DLs deal with

TBoxes exploits the following simple lemma.

Lemma 2.7 Let L be a DL, C 2 L a 
on
ept, and T

a TBox. Let W be a witness for C. If

C

1

v C

2

2 T ) 8x 2 �

W

:(C

1

! C

2

2 L

W

(x))

C

1

:

= C

2

2 T ) 8x 2 �

W

:(C

1

$ C

2

2 L

W

(x))

then W is admissible w.r.t. T .

Proof. W is a witness, hen
e there is an interpretation

I 2 Int(L) stemming fromW . From (W3) and the fa
t

that W satis�es the properties stated in 2.7 it follows

that, for ea
h x 2 �

I

,

C

1

v C

2

2 T ) C

1

! C

2

2 L

W

(x)

) x 2 (C

1

! C

2

)

I

C

1

:

= C

2

2 T ) C

1

$ C

2

2 L

W

(x)

) x 2 (C

1

$ C

2

)

I

Hen
e, I j= T and W is admissible w.r.t. T .

Examples of algorithms that exploit this lemma to deal

with axioms 
an be found in [DDM96, DL96, HST99℄,

where, for ea
h axiom C

1

v C

2

(C

1

:

= C

2

) the 
on
ept

C

1

! C

2

(C

1

$ C

2

) is added to every node of the

generated tableau.

Dealing with general axioms in this manner is 
ostly

due to the high degree of nondeterminism introdu
ed.

This 
an best be understood by looking at tableaux

algorithms, whi
h try to build witnesses in an in
re-

mental fashion. For a 
on
ept C to be tested for sat-

is�ability, they start with �

W

= fx

0

g, L

W

(x

0

) = fCg

and �

W

(R) = ; for ea
h R 2 NR. Subsequently,

the 
on
epts in L

W

are de
omposed and, if ne
es-

sary, new nodes are added to �

W

, until either W is

a witness for C, or an obvious 
ontradi
tion of the

form fA;:Ag � L

W

(x), whi
h violates (W2), is gener-

ated. In the latter 
ase, ba
ktra
king sear
h is used to

explore alternative non-deterministi
 de
ompositions

(e.g., of disjun
tions), one of whi
h 
ould lead to the

dis
overy of a witness.

When applying Lemma 2.7, disjun
tions are added to

the label of ea
h node of the tableau for ea
h gen-

eral axiom in the TBox (one disjun
tion for axioms

of the form C

1

v C

2

, two for axioms of the form

C

1

:

= C

2

). This leads to an exponential in
rease in

the sear
h spa
e as the number of nodes and axioms

in
reases. For example, with 10 nodes and a TBox 
on-

taining 10 general axioms (of the form C

1

v C

2

) there

are already 100 disjun
tions, and they 
an be non-

deterministi
ally de
omposed in 2

100

di�erent ways.

For a TBox 
ontaining large numbers of general ax-

ioms (there are 1,214 in the Galen medi
al termi-

nology KB [RNG93℄), this 
an degrade performan
e

to the extent that subsumption testing is e�e
tively

non-terminating. To reason with this kind of TBox we

must �nd a more eÆ
ient way to deal with axioms.

3 ABSORPTIONS

We start our 
onsiderations with an analysis of a te
h-

nique that 
an be used to deal more eÆ
iently with

so-
alled primitive or a
y
li
 TBoxes.

De�nition 3.1 (Absorption) Let L be a DL and T

a TBox. An absorption of T is a pair of TBoxes



(T

u

; T

g

) su
h that T � T

u

[ T

g

and T

u


ontains only

axioms of the form A v D and :A v D where A 2 NC.

An absorption (T

u

; T

g

) of T is 
alled 
orre
t if it sat-

is�es the following 
ondition. For ea
h witness W, if,

for ea
h x 2 �

W

,

A v D 2 T

u

^ A 2 L

W

(x)) D 2 L

W

(x)

:A v D 2 T

u

^ :A 2 L

W

(x)) D 2 L

W

(x)

C

1

v C

2

2 T

g

) C

1

! C

2

2 L

W

(x)

C

1

:

= C

2

2 T

g

) C

1

$ C

2

2 L

W

(x)

then W is admissible w.r.t. T . We refer to this prop-

erties by (�). A witness that satis�es (�) will be 
alled

unfolded w.r.t. T .

If the referen
e to a spe
i�
 TBox is 
lear from the


ontext, we will often leave the TBox impli
it and say

that a witness is unfolded.

How does a 
orre
t absorption enable an algorithm to

deal with axioms more eÆ
iently? This is best de-

s
ribed by returning to tableaux algorithms. Instead

of dealing with axioms as previously des
ribed, whi
h

may lead to an exponential in
rease in the sear
h

spa
e, axioms in T

u


an now be dealt with in a deter-

ministi
 manner. Assume, for example, that we have

to handle the axiom A

:

= C. If the label of a node

already 
ontains A (resp. :A), then C (resp. :C) is

added to the label; if the label 
ontains neither A nor

:A, then nothing has to be done. Dealing with the

axioms in T

u

this way avoids the ne
essity for addi-

tional non-deterministi
 
hoi
es and leads to a gain in

eÆ
ien
y. A witness produ
ed in this manner will be

unfolded and is a 
erti�
ate for satis�ability w.r.t. T .

This te
hnique is generally known as lazy unfolding of

primitive TBoxes [Hor98℄; formally, it is justi�ed by

the following lemma:

Lemma 3.2 Let (T

u

; T

g

) be a 
orre
t absorption of T .

For any C 2 L, C has a witness that is admissible

w.r.t. T i� C has an unfolded witness.

Proof. The if -dire
tion follows from the de�nition of

\
orre
t absorption". For the only if -dire
tion, let

C 2 L be a 
on
ept and W a witness for C that is

admissible w.r.t. T . This implies the existen
e of an

interpretation I 2 Int(L) stemming from W su
h that

I j= T and C

I

6= ;. Sin
e T � T

u

[ T

g

we have

I j= T

u

[T

g

and hen
e the 
anoni
al witness W

I

is an

unfolded witness for C.

A family of TBoxes where absorption 
an su

essfully

be applied are primitive TBoxes, the most simple form

of TBox usually studied in the literature.

De�nition 3.3 (Primitive TBox) A TBox T is


alled primitive i� it 
onsists entirely of axioms of the

form A

:

= D with A 2 NC, ea
h A 2 NC appears as at

most one left-hand side of an axiom, and T is a
y
li
.

A
y
li
ity is de�ned as follows: A 2 NC is said to di-

re
tly use B 2 NC if A

:

= D 2 T and B o

urs in D;

uses is the transitive 
losure of \dire
tly uses". We

say that T is a
y
li
 if there is no A 2 NC that uses

itself.

For primitive TBoxes a 
orre
t absorption 
an easily

be given.

Theorem 3.4 Let T be a primitive TBox, T

g

= ;,

and T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a 
orre
t absorption of T .

Proof. Trivially, T � T

u

[ T

g

holds. Given an un-

folded witness W , we have to show that there is an

interpretation I stemming from W with I j= T .

We �x an arbitrary linearisation A

1

; : : : ; A

k

of the

\uses" partial order on the atomi
 
on
ept names ap-

pearing on the left-hand sides of axioms in T su
h that,

if A

i

uses A

j

, then j < i and the de�ning 
on
ept for

A

i

is D

i

.

For some interpretation I, atomi
 
on
ept A, and set

X � �

I

, we denote the interpretation that maps A

to X and agrees with I on all other atomi
 
on
epts

and roles by I[A 7! X ℄. For 0 � i � k, we de�ne

I

i

in an iterative pro
ess starting from an arbitrary

interpretation I

0

stemming from W and setting

I

i

:= I

i�1

[A

i

7! fx 2 �

W

j x 2 D

I

i�1

i

g℄

Sin
e, for ea
h A

i

there is exa
tly one axiom in T ,

ea
h step in this pro
ess is well-de�ned. Also, sin
e

Int(L) may only restri
t the interpretation of atomi


roles, I

i

2 Int(L) for ea
h 0 � i � k. For I = I

k

it 
an

be shown that I is an interpretation stemming from

W with I j= T .

First we prove indu
tively that, for 0 � i � k, I

i

stems

from W . We have already required I

0

to stem from

W .

Assume the 
laim was proved for I

i�1

and I

i

does not

stem from W . Then there must be some x 2 �

W

su
h that either (i) A

i

2 L

W

(x) but x 62 A

I

i

i

or (ii)

:A

i

2 L

W

(x) but x 2 A

I

i

i

(sin
e we assume I

i�1

to

stem fromW and A

i

is the only atomi
 
on
ept whose

interpretation 
hanges from I

i�1

to I

i

). The two 
ases


an be handled dually:



(i) From A

i

2 L

W

(x) it follows that D

i

2 L

W

(x),

be
ause W is unfolded. Sin
e I

i�1

stems from

W and W is a witness, Property (W3) implies

x 2 D

I

i�1

i

. But this implies x 2 A

I

i

i

, whi
h is a


ontradi
tion.

(ii) From :A

i

2 L

W

(x) it follows that :D

i

2 L

W

(x)

be
ause W is unfolded. Sin
e I

i�1

stems from

W and W is an witness, Property (W3) implies

x 2 (:D

i

)

I

i�1

. Sin
e (:D

i

)

I

i�1

= �

W

n D

I

i�1

i

this implies x 62 A

I

i

i

, whi
h is a 
ontradi
tion.

Together this implies that I

i

also stems from W .

To show that I j= T we show indu
tively that I

i

j=

A

j

:

= D

j

for ea
h 1 � j � i. This is obviously true for

i = 0.

The interpretation of D

i

may not depend on the in-

terpretation of A

i

be
ause otherwise (I2) would imply

that A

i

uses itself. Hen
e D

I

i

i

= D

I

i�1

i

and, by 
on-

stru
tion, I

i

j= A

i

:

= D

i

. Assume there is some j < i

su
h that I

i

6j= A

j

:

= D

j

. Sin
e I

i�1

j= A

j

:

= D

j

and

only the interpretation of A

i

has 
hanged from I

i�1

to

I

i

, D

I

i

j

6= D

I

i�1

j

must hold be
ause of (I2). But this

implies that A

i

o

urs in D

j

and hen
e A

j

uses A

i

whi
h 
ontradi
ts j < i. Thus, we have I j= A

j

= D

j

for ea
h 1 � j � k and hen
e I j= T .

Lazy unfolding is a well-known and widely used

te
hnique for optimising reasoning w.r.t. primitive

TBoxes [BFH

+

94℄. So far, we have only given a 
or-

re
tness proof for this relatively simple approa
h, al-

though one that is independent of a spe
i�
 DL or rea-

soning algorithm. With the next lemma we show how

we 
an extend 
orre
t absorptions and hen
e how lazy

unfolding 
an be applied to a broader 
lass of TBoxes.

A further enhan
ement of the te
hnique is presented

in Se
tion 5.

Lemma 3.5 Let (T

u

; T

g

) be a 
orre
t absorption of a

TBox T .

1. If T

0

is an arbitrary TBox, then (T

u

; T

g

[T

0

) is a


orre
t absorption of T [ T

0

.

2. If T

0

is a TBox that 
onsists entirely of axioms

of the form A v D, where A 2 NC and A is

not de�ned in T

u

, then (T

u

[ T

0

; T

g

) is a 
orre
t

absorption of T [ T

0

.

Proof. In both 
ases, T

u

[ T

g

[ T

0

� T [ T

0

holds

trivially.

1. Let C 2 L be a 
on
ept andW be an unfolded wit-

ness for C w.r.t. the absorption (T

u

; T

g

[T

0

). This

implies that W is unfolded w.r.t. the (smaller)

absorption (T

u

; T

g

). Sin
e (T

u

; T

g

) is a 
orre
t

absorption, there is an interpretation I stem-

ming from W with I j= T . Assume I 6j= T

0

.

Then, without loss of generality,

3

there is an ax-

iom D v E 2 T

0

su
h that there exists an

x 2 D

I

n E

I

. Sin
e W is unfolded, we have

D ! E 2 L

W

(x) and hen
e (W3) implies x 2

(:D t E)

I

= �

I

n (D

I

n E

I

), a 
ontradi
tion.

Hen
e I j= T [ T

0

and W is admissible w.r.t.

T [ T

0

.

2. Let C 2 L be a 
on
ept and W be an unfolded

witness for C w.r.t. the absorption (T

u

[ T

0

; T

g

).

From W we de�ne a new witness W

0

for C by

setting �

W

0

:= �

W

, �

W

0

:= �

W

, and de�nig L

W

0

to be the fun
tion that, for every x 2 �

W

0

, maps

x to the set

L

W

(x) [ f:A j A v D 2 T

0

; A 62 L

W

(x)g

It is easy to see that W

0

is indeed a witness for

C and that W

0

is also unfolded w.r.t. the absorp-

tion (T

u

[ T

0

; T

g

). This implies that W

0

is also

unfolded w.r.t. the (smaller) absorption (T

u

; T

g

).

Sin
e (T

u

; T

g

) is a 
orre
t absorption of T , there

exists an interpretation I stemming fromW

0

su
h

that I j= T . We will show that I j= T

0

also

holds. Assume I 6j= T

0

, then there is an axiom

A v D 2 T

0

and an x 2 �

I

su
h that x 2 A

I

but x 62 D

I

. By 
onstru
tion of W

0

, x 2 A

I

im-

plies A 2 L

W

0

(x) be
ause otherwise :A 2 L

W

0

(x)

would hold in 
ontradi
tion to (W3). Then, sin
e

W

0

is unfolded, D 2 L

W

0

(x), whi
h, again by

(W3), implies x 2 D

I

, a 
ontradi
tion.

Hen
e, we have shown that there exists an inter-

pretation I stemming from W

0

su
h that I j=

T

u

[ T

0

[ T

g

. By 
onstru
tion of W

0

, any inter-

pretation stemming from W

0

also stems from W ,

hen
e W is admissible w.r.t. T [ T

0

.

4 APPLICATION TO FaCT

In the pre
eeding se
tion we have de�ned 
orre
t ab-

sorptions and dis
ussed how they 
an be exploited in

order to optimise satis�ability pro
edures. However,

we have said nothing about the problem of how to

�nd an absorption given an arbitrary terminology. In

this se
tion we will des
ribe the absorption algorithm

used by FaCT and prove that it generates 
orre
t ab-

sorptions.

3

Arbitrary TBoxes 
an be expressed using only axioms

of the form C v D.



Given a TBox T 
ontaining arbitrary axioms, the ab-

sorption algorithm used by FaCT 
onstru
ts a triple

of TBoxes (T

g

; T

prim

; T

in


) su
h that

� T � T

g

[ T

prim

[ T

in


,

� T

prim

is primitive, and

� T

in



onsists only of axioms of the form A v D

where A 2 NC and A is not de�ned in T

prim

.

We refer to these properties by (�). From Theorem 3.4

together with Lemma 3.5 it follows that, for

T

u

:= fA v D;:A v :D j A

:

= D 2 T

prim

g [ T

in


(T

u

,T

g

) is a 
orre
t absorption of T ; hen
e satis�ability

for a 
on
ept C w.r.t. T 
an be de
ided by 
he
king

for an unfolded witness for C.

In a �rst step, FaCT distributes axioms from T

amongst T

in


, T

prim

, and T

g

, trying to minimise the

number of axioms in T

g

while still maintaining (�). To

do this, it initialises T

prim

; T

in


, and T

g

with ;, and

then pro
esses ea
h axiom X 2 T as follows.

1. If X is of the form A v C, then

(a) if A 2 NC and A is not de�ned in T

prim

then

X is added to T

in


,

(b) otherwise X is added to T

g

2. If X is of the form A

:

= C, then

(a) if A 2 NC, A is not de�ned in T

prim

or T

in


and T

prim

[fXg is primitive, then X is added

to T

prim

,

(b) otherwise, the axioms A v C and C v A are

added to T

g

It is easy to see that the resulting TBoxes

T

g

; T

prim

; T

in


satisfy (�). In a se
ond step, FaCT pro-


esses the axioms in T

g

one at a time, trying to absorb

them into axioms in T

in


. Those axioms that are not

absorbed remain in T

g

. To give a simpler formulation

of the algorithm, ea
h axiom (C v D) 2 T

g

is viewed

as a 
lause G = fD;:Cg, 
orresponding to the axiom

> v C ! D, whi
h is equivalent to C v D. For ea
h

su
h axiom FaCT applies the following absorption pro-


edure.

1. Try to absorb G. If there is a 
on
ept :A 2 G

su
h that A 2 NC and A is not de�ned in T

prim

,

then add A v B to T

in


, where B is the disjun
-

tion of all the 
on
epts in G n f:Ag, remove G

from T

g

, and exit.

2. Try to simplify G.

(a) If there is some :C 2 G su
h that C is of the

form C

1

u : : : u C

n

, then substitute :C with

:C

1

t : : : t :C

n

, and 
ontinue with step 2b.

(b) If there is some C 2 G su
h that C is of the

form (C

1

t : : :tC

n

), then apply asso
iativity

by setting G = G [ fC

1

; : : : ; C

n

g n f(C

1

t

: : : t C

n

)g, and return to step 1.

3. Try to unfold G. If, for some A 2 G (resp.

:A 2 G), there is an axiom A

:

= C in T

prim

,

then substitute A 2 G (resp. :A 2 G) with C

(resp. :C) and return to step 1.

4. If none of the above were possible, then absorption

of G has failed. Leave G in T

g

, and exit.

For ea
h step, we have to show that (�) is maintained.

Dealing with 
lauses instead of axioms 
auses no prob-

lems. In the �rst step, axioms are moved from T

g

to

T

in


as long as this does not violate (�). The se
ond

and the third step repla
e a 
lause by an equivalent

one and hen
e do not violate (�).

Termination of the pro
edure is obvious. Ea
h axiom

is 
onsidered only on
e and, for a given axiom, simpli�-


ation and unfolding 
an only be applied �nitely often

before the pro
edure is exited, either by absorbing the

axiom into T

in


or leaving it in T

g

. For simpli�
ation,

this is obvious; for unfolding, this holds be
ause T

prim

is a
y
li
. Hen
e, we get the following:

Theorem 4.1 For any TBox T , FaCT 
omputes a


orre
t absorption of T .

5 IMPROVING PERFORMANCE

The absorption algorithm employed by FaCT already

leads to a dramati
 improvement in performan
e. This

is illustrated by Figure 1, whi
h shows the times taken

by FaCT to 
lassify versions of the Galen KB with

some or all of the general axioms removed. Without

absorption, 
lassi�
ation time in
reased rapidly with

the number of general axioms, and ex
eeded 10,000s

with only 25 general axioms in the KB; with absorp-

tion, only 160s was taken to 
lassify the KB with all

1,214 general axioms.

However, there is still 
onsiderable s
ope for further

gains. In parti
ular, the following de�nition for a strat-

i�ed TBox allows lazy unfolding to be more generally

applied, while still allowing for 
orre
t absorptions.

De�nition 5.1 (Strati�ed TBox) A TBox T is


alled strati�ed i� it 
onsists entirely of axioms of the
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form A

:

= D with A 2 NC, ea
h A 2 NC appears at

most on
e on the left-hand side of an axiom, and T


an be arranged monotonously, i.e., there is a disjoint

partition T

1

_

[ T

2

_

[ : : :

_

[ T

k

of T , su
h that

� for all 1 � j < i � k, if A 2 NC is de�ned in T

i

,

then it does not o

ur in T

j

, and

� for all 1 � i � k, all 
on
epts whi
h appear on the

right-hand side of axioms in T

i

are monotone in

all atomi
 
on
epts de�ned in T

i

.

A 
on
ept C is monotone in an atomi
 
on
ept A if,

for any interpretation I 2 Int(L) and any two sets

X

1

; X

2

� �

I

,

X

1

� X

2

) C

I[A7!X

1

℄

� C

I[A7!X

2

℄

:

For many DLs, a suÆ
ient 
ondition for monotoni
ity

is synta
ti
 monotoni
ity, i.e., a 
on
ept C is synta
-

ti
ally monotone in some atomi
 
on
ept A if A does

no appear in C in the s
ope of an odd number of nega-

tions.

Obviously, due to its a
y
li
ity, every primitive TBox

is also strati�ed and hen
e the following theorem is a

stri
t generalisation of Theorem 3.4.

Theorem 5.2 Let T be a strati�ed TBox, T

g

= ; and

T

u

de�ned by

T

u

= fA v D;:A v :D j A

:

= D 2 T g:

Then (T

u

; T

g

) is a 
orre
t absorption of T .

The proof of this theorem follows the same line as the

proof of Theorem 3.4. Starting from an arbitrary in-

terpretation I

0

stemming from the unfolded witness,

we in
rementally 
onstru
t interpretations I

1

; : : : ; I

k

,

using a �xed point 
onstru
tion in ea
h step. We show

that ea
h I

i

stems fromW and that, for 1 � j < i � k,

I

i

j= T

j

, hen
e I

k

j= T and stems from W .

Before we prove this theorem, we re
all some basi
s

of latti
e theory. For any set S, the powerset of S,

denoted by 2

S

forms a 
omplete latti
e, where the or-

dering, join and meet operations are set-in
lusion �,

union [, and interse
tion \, respe
tively. For any 
om-

plete latti
e L, its n-fold 
artesian produ
t L

n

is also a


omplete latti
e, with ordering, join, and meet de�ned

in a pointwise manner.

For a latti
e L, a fun
tion � : L ! L is 
alled mono-

tone, i�, for x

1

; x

2

2 L, x

1

v x

2

implies �(x

1

) v

�(x

2

).

By Tarski's �xed point theorem [Tar55℄, every mono-

tone fun
tion � on a 
omplete latti
e, has uniquely

de�ned least and greatest �xed points, i.e., there are

elements x; x 2 L su
h that

x = �(x) and x = �(x)



and, for all x 2 L with x = �(x),

x v x and x v x:

Proof of Theorem 5.2. T

u

[ T

g

� T is obvious. Let

W = (�

W

; �

W

;L

W

) be an unfolded witness. We have

to show that there is an interpretation I stemming

from W with I j= T . Let T

1

; : : : ; T

k

be the required

partition of T . We will de�ne I indu
tively, starting

with an arbitrary interpretation I

0

stemming fromW .

Assume I

i�1

was already de�ned. We de�ne I

i

from

I

i�1

as follows: let fA

i

1

:

= D

i

1

; : : : ; A

i

m

:

= D

i

m

g be

an enumeration of T

i

. First we need some auxiliary

notation: for any 
on
ept C 2 L we de�ne

C

W

:= fx 2 �

W

j C 2 L

W

(x)g:

Using this notation we de�ne the fun
tion � mapping

subsets X

1

; : : : ; X

m

of �

W

to

( ((A

i

1

)

W

[ (D

i

1

)

I

i�1

(X

1

;:::;X

m

)

) n (:A

i

1

)

W

;

: : : ;

((A

i

m

)

W

[ (D

i

m

)

I

i�1

(X

1

;:::;X

m

)

) n (:A

i

m

)

W

)

where

I

i�1

(X

1

; : : : ; X

m

) := I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

Sin
e all of the D

i

j

are monotone in all of the A

i

m

, �

is a monontone fun
tion. This implies that � has a

least �xed point, whi
h we denote by (X

1

; : : : ; X

m

).

We use this �xed point to de�ne I

i

by

I

i

:= I

i�1

[A

i

1

7! X

1

; : : : ; A

i

m

7! X

m

℄

Claim 1: For ea
h 0 � i � k, I

i

stems from W .

We show this 
laim by indu
tion on i. We have already

required I

0

to stem from W . Assume I

i�1

stems from

W . Sin
e the only thing that 
hanges from I

i�1

to I

i

is

the interpretation of the atomi
 
on
epts A

i

1

; : : : ; A

i

m

,

we only have to 
he
k that A

i

j

2 L

W

(x) implies x 2

(A

i

j

)

I

i

and :A

i

j

2 L

W

(x) implies x 62 (A

i

j

)

I

i

.

By de�nition of �, and be
ause fx j A

i

j

2 L

W

(x)g \

fx j :A

i

j

2 L

W

(x)g = ;, A

i

j

2 L

W

(x) implies x 2

(A

i

j

)

I

i

. Also by the de�nition of �, :A

i

j

2 L

W

(x)

implies x 62 (A

i

j

)

I

i

. Hen
e, I

i

stems from W .

Claim 2: For ea
h 1 � j � i � k, I

i

j= T

j

.

We prove this 
laim by indu
tion over i starting from 0.

For i = 0, there is nothing to prove. Assume the 
laim

would hold for I

i�1

. The only thing that 
hanges from

I

i�1

to I

i

is the interpretation of the atomi
 
on
epts

A

i

1

; : : : A

i

m

de�ned in T

i

. Sin
e these 
on
epts may not

o

ur in T

j

for j < i, the interpretation of the 
on
epts

in these TBoxes does not 
hange, and from I

i�1

j= T

j

follows I

i

j= T

j

for 1 � j � i� 1.

It remains to show that I

i

j= T

i

. Let A

i

j

:

= D

i

j

be an

axiom from T

i

. From the de�nition of I

i

we have

(A

i

j

)

I

i

= ((A

i

j

)

W

[ (D

i

j

)

I

i

) n (:A

i

j

)

W

: (1)

W is unfolded, hen
e A

i

j

2 L

W

(x) implies D

i

j

2 L

W

(x)

and, sin
e I

i

stems from W , this implies x 2 (D

i

j

)

I

i

,

thus

(A

i

j

)

W

[ (D

i

j

)

I

i

= (D

i

j

)

I

i

(2)

Furthermore, :A

i

j

2 L

W

(x) implies :D

i

j

2 L

W

(x)

implies x 2 (:D

i

j

)

I

i

, thus

(D

i

j

)

I

i

n (:A

i

j

)

W

= (D

i

j

)

I

i

(3)

Taking together (1), (2), and (3) we get

(A

i

j

)

I

i

= (D

i

j

)

I

i

;

and hen
e I

i

j= A

i

j

:

= D

i

j

.

Together, Claim 1 and Claim 2 prove the theorem,

sin
e I

k

is an interpretation that stems from W and

satis�es T .

This theorem makes it possible to apply the same

lazy unfolding strategy as before to 
y
li
al de�nitions.

Su
h de�nitions are quite natural in a logi
 that sup-

ports inverse roles. For example, an orthopaedi
 pro-


edure might be de�ned as a pro
edure performed by

an orthopaedi
 surgeon, while an orthopaedi
 surgeon

might be de�ned as a surgeon who performs only or-

thopaedi
 pro
edures:

4

o-pro
edure

:

= pro
edure u (9performs

�

:o-surgeon)

o-surgeon

:

= surgeon u (8performs :o-pro
edure)

The absorption algorithm des
ribed in Se
tion 4 would

for
e the se
ond of these de�nitions to be added to

T

g

as two general axioms and, although both axioms

would subsequently be absorbed into T

u

, the pro
e-

dure would result in a disjun
tive term being added to

one of the de�nitions in T

u

. Using Theorem 5.2 to en-

han
e the absorption algorithm so that these kinds of

de�nition are dire
tly added to T

u

redu
es the number

of disjun
tive terms in T

u

and 
an lead to signi�
ant

improvements in performan
e.

This 
an be demonstrated by a simple experiment with

the new FaCT system, whi
h implements the SHIQ

4

This example is only intended for dida
ti
 purposes.
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Figure 2: Classi�
ation times with and without enhan
ed absorption

logi
 [HST99℄ and is thus able to deal with inverse

roles. Figure 2 shows the 
lassi�
ation time in se
onds

using the normal and enhan
ed absorption algorithms

for terminologies 
onsisting of between 5 and 50 pairs

of 
y
li
al de�nitions like those des
ribed above for

o-surgeon and o-pro
edure. With only 10 pairs the gain

in performan
e is already a fa
tor of 30, while for 45

and 50 pairs it has rea
hed several orders of magni-

tude: with the enhan
ed absorption the terminology

is 
lassi�ed in 2{3 se
onds whereas with the original al-

gorithm the time required ex
eeded the 10,000 se
ond

limit imposed in the experiment.

It is worth pointing out that it is by no means triv-

ially true that 
y
li
al de�nitions 
an be dealt with by

lazy unfolding. Even without inverse roles it is 
lear

that de�nitions su
h as A

:

= :A (or more subtle vari-

ants) for
e the domain to be empty and would lead to

an in
orre
t absorption if dealt with by lazy unfolding.

With 
onverse roles it is, for example, possible to for
e

the interpretation of a role R to be empty with a de�-

nition su
h as A

:

= 8R:(8R

�

::A), again leading to an

in
orre
t absorption if dealt with by lazy unfolding.

6 OPTIMAL ABSORPTIONS

We have demonstrated that absorption is a highly ef-

fe
tive and widely appli
able te
hnique, and by for-

mally de�ning 
orre
tness 
riteria for absorptions we

have proved that the pro
edure used by FaCT �nds


orre
t absorptions. Moreover, by establishing more

pre
ise 
orre
tness 
riteria we have demonstrated how

the e�e
tiveness of this pro
edure 
ould be further en-

han
ed.

However, the absorption algorithm used by FaCT is


learly sub-optimal, in the sense that 
hanges 
ould

be made that would, in general, allow more axioms to

be absorbed (e.g., by also giving spe
ial 
onsideration

to axioms of the form :A v C with A 2 NC). More-

over, the pro
edure is non-deterministi
, and, while it

is guaranteed to produ
e a 
orre
t absorption, its spe-


i�
 result depends on the order of the axioms in the

original TBox T . Sin
e the semanti
s of a TBox T

does not depend on the order of its axioms, there is

no reason to suppose that they will be arranged in a

way that yields a \good" absorption. Given the e�e
-

tiveness of absorption, it would be desirable to have

an algorithm that was guaranteed to �nd the \best"

absorption possible for any set of axioms, irrespe
tive

of their ordering in the TBox.

Unfortunately, it is not even 
lear how to de�ne a sen-

sible optimality 
riterion for absorptions. It is obvious

that simplisti
 approa
hes based on the number or size

of axioms remaining in T

g

will not lead to a useful so-

lution for this problem. Consider, for example, the


y
li
al TBox experiment from the previous se
tion.

Both the original FaCT absorption algorithm and the



enhan
ed algorithm, whi
h exploits Theorem 5.2, are

able to 
ompute a 
omplete absorption of the axioms

( i.e., a 
orre
t absorption with T

g

= ;), but the en-

han
ed algorithm leads to mu
h better performan
e,

as shown in Figure 2.

An important issue for future work is, therefore, the

identi�
ation of a suitable optimality 
riterion for ab-

sorptions, and the development of an algorithm that

is able to 
ompute absorptions that are optimal with

respe
t to this 
riterion.
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