Chapter 1

NEXPTIME-complete Description Logics
with Concrete Domains

CARSTEN LUTZ

ABSTRACT. Description Logics (DLs) incorporating concrete domains are useful
formalisms for integrated reasoning about abstract and concrete knowledge. In
this paper, we consider several extensions of ALC(D), which is the basic DL with
concrete domains. We show that, although reasoning with ALC(D) is PSPACE-
complete, even “harmless-looking” extensions of this logic make reasoning NEXPTIME-
complete.

1 Introduction

Description Logics (DLs) are a family of logical formalisms well-suited for the
representation of and reasoning about conceptual knowledge on an abstract
logical level. Many DLs are extensions of the basic propositionally complete
Description Logic ALC which is a notational variant of the basic multi-modal
logic K,,,. To see how knowledge is represented using ALC, let us consider
an example. The ALC concept

Process M Yworkpiece. Metal 1 Jworkpiece. Large

describes a manufacturing process which involves (i) only workpieces made
from metal and (ii) at least one large workpiece. A DL concept corresponds
to a formula in modal logics. In this example, Process, Metal, and Large are
concept names (propositional variables) and workpiece is a role (an accessi-
bility relation).

However, for many knowledge representation applications, it is essential
to integrate the abstract logical knowledge with knowledge of a more con-
crete nature. For example, in the description of the manufacturing process,
it may be important to be more precise about the meaning of “large”. The
standard technique for extending Description Logics in order to allow for
the representation of concrete knowledge is to use so-called concrete do-
mains which have been introduced by Baader and Hanschke in [1]. Baader
and Hanschke define the description logic ALC(D), i.e., the extension of

ALC by concrete domains. More precisely, ALC (D) is parameterized with a
concrete domain D, where D provides a set of predicates over a given domain
like, e.g., the real numbers or the set of time intervals. The concrete domain
predicates can then be used inside a concrete domain concept constructor.
Using ALC(D), we can describe the manufacturing process from above as

Process M Yworkpiece. Metal 1 Aworkpiece diameter.>50cm.

In this example, diameter is a role and >50c¢m is a concrete domain predicate.
The last conjunct of this concept uses the concrete domain constructor to
state that the process involves at least one workpiece whose diameter is at
least 50 centimeters.

In this paper, we are interested in the complexity of reasoning with
DLs which provide concrete domains. In [8], we proved that reasoning with
ALC(D) is PSPACE-complete provided that reasoning with the concrete do-
main D (i.e., testing the satisfiability of finite conjunctions of predicates
from D) is in PSPACE. However, for many applications, the expressivity
of ALC(D) is not sufficient and one wants to extend this logic by addi-
tional concept- and role-constructors. We investigate two such extensions
and show that, in both extensions, reasoning becomes considerably harder.
More precisely, we consider the extension of ALC(D) by acyclic TBoxes and
inverse roles. Acyclic TBoxes can be thought of as acyclic macro definitions.
For example, a process whose duration is at least one hour can be named
Long-Process:

Long-Process = Process M dstart, end.>1h.

Inverse roles correspond to converse modalities and allow, e.g., to describe
cylinders whose manufacturing takes a long time as

Cylinder M Jworkpiece™ . Long-Process

By introducing a NEXPTIME-complete variant of the Post Correspondence
Problem [10, 5], we show that there exists a concrete domain P for which
reasoning is in PTIME such that reasoning with each of the above two exten-
sions of ALC(D) (parameterized with the concrete domain P) is NEXPTIME-
hard. This dramatic increase in complexity is rather surprising since, from
a computational point of view, all of the proposed extensions look harm-
less. For example, in [7], we show that the extension of “many” PSPACE
Description Logics by acyclic TBoxes does not increase the complexity of
reasoning. Moreover, it is well-known that ALC extended by inverse roles is
still in PSPACE (see, e.g., [12, 6]). As a corresponding upper bound, we show
that, if reasoning with a concrete domain D is in NP, then reasoning with
the DL ALCZ(D) (i.e., the extension of ALC(D) with inverse roles) with
acyclic TBoxes is in NExXPTIME. This paper is accompanied by a technical
report which contains all proofs and technical details [9].

2 The Description Logic ALCZ(D)

In this section, we formally introduce the description logic ALCZ(D) with
which we are concerned in the remainder of this paper.

Definition 1 (Concrete Domain). A concrete domain D = (Ap,Pp) is
given by a a set Ap called the domain and a set of predicate names ®p.
Each predicate name P € ®p is associated with an arity n and an n-ary
predicate PP C AZ. A concrete domain D is called admissible iff (1) the set
of its predicate names is closed under negation and contains a name Tp for
Ap and (2) the satisfiability problem for finite conjunctions of predicates is
decidable.

We will only admit concrete domains which are admissible. Based on con-
crete domains, we introduce the syntax of ALCZ (D).

Definition 2 (Syntax). Let N¢, Ng, and N.r be mutually disjoint sets of
concept names, role names, and concrete feature names, respectively, and let
Nyr be a subset of Nr. Elements of N, are called abstract features. The
set of ACLCZ(D) roles Np is NpU{R ™ | R € Ng}. An expression fi -+ fng,
where f1,..., fn € Nor and g € N,p, is called a path.! The set of ALCZ(D)
concepts is the smallest set such that (1) every concept name is a concept,
and (2) if C' and D are concepts, R is a role, g is a concrete feature, P € ® is
a predicate name with arity n, and wq,...,u, are paths, then the following
expressions are also concepts:

-C, CnD, CUD, dR.C, VR.C, Fuy,...,u,.P, and gt.

An ALCZ(D) concept which uses only roles from N is called an ALC(D)
concept. In the following, we denote concepts with C' and D, roles with R,
abstract features with f, concrete features with g, and predicates with P.

Definition 3 (TBoxes). Let A be a concept name and C be a concept.
Then A = C' is a concept definition. Let T be a finite set of concept defini-
tions. A concept name A directly uses a concept name B in T if there is a
concept definition A = C' in T such that B appears in C. Let uses be the
transitive closure of “directly uses”. T is called acyclic if there is no concept
name A such that A uses itself in 7. If T is acyclic, and the left-hand sides
of all concept definitions in 7 are unique, then 7 is called a TBoz.

As usual, a set-theoretic semantics for concepts and TBoxes is given.

Definition 4 (Semantics). An interpretation is a pair (Az,-Z), where Az
is a set called the domain and - the interpretation function. The inter-
pretation function maps each concept name C to a subset C* of Az, each

'A concrete feature is a path of length 1.

role name R to a subset RT of A7 x Az, each abstract feature f to a
partial function f% from Az to Az, and each concrete feature g to a par-
tial function g7 from Az to Ap. If u = fy--- fng is a path, then u”(a)
is defined as ff o---o f o g7, where o denotes function composition and
f1o fao(a) = fa(fi(a)) for fi and fo functions. The interpretation function
is extended to arbitrary roles and concepts as follows:

(R7)* := {(a,b) | (b,a) € R} (-C)F == Ar\C*
(cnD)f:=c*nD* (CuD)t:=c*ubD’
(AR.C)T :={a e Az | {b] (a,b) € RT} N CT # 0}
(VR.C)F :={a € Az | {b| (a,b) € R*} C C}
(Fui, ..., un.P)r :={a € Az | ul(a) = z; for 1 <i<n,(x1,...,2,) € PP}
(91T := {a € Az | g* undefined}

Let C be a concept and 7 be a TBox. If CT # (), then 7 is called a model
for C. If AT = C7T for all A = C € T, then T is called a model for T.

We call elements of Az abstract objects and elements of Ap concrete objects.
In their original ALC(D) definition, Baader and Hanschke define only one
type of features which are interpreted as partial functions from Az to Az U
Ap [1]. We chose a different variant since separating concrete and abstract
features allows a clearer algorithmic treatment and the loss in expressivity
is only marginal: it cannot be expressed that a single feature f relates
a given object to an abstract or a concrete object. However, we never
encountered the need to do this when representing knowledge with ALC(D)
and its relatives.

Definition 5 (Inference Problems). Let C' and D be concepts. C sub-
sumes D w.r.t. a TBozx T (written D Cy C) iff DT C C7 for all models
T of T. C is satisfiable w.r.t. a TBox T iff there exists a model of both
T and C. Both inferences are also considered without reference to TBoxes:
C subsumes D iff C' subsumes D w.r.t. the empty TBox. C' is satisfiable iff
it is satisfiable w.r.t. the empty TBox.

It is well-known that (un)satisfiability and subsumption can be mutually
reduced to each other, i.e., C' T4 D iff C'T1 =D is unsatisfiable w.r.t. 7 and
C is satisfiable w.r.t. 7 iff we do not have C T+ A M —A for some A € Ng¢.
This connection allows us to concentrate on satisfiability for the remainder
of this paper.

3 Complexity Results

The main contribution of this paper are NEXPTIME-completeness results
for the logics introduced in the previous section. However, since deciding

satisfiability of ALC(D) or ALCZ(D) concepts (possibly w.r.t. TBoxes) in-
volves reasoning with the concrete domain D, the complexity of reasoning
with these DLs depends on the complexity of reasoning with the concrete
domain D. As the definition of admissible concrete domains suggests, the
task performed by the concrete domain reasoner is usually to decide the
satisfiability of finite conjunctions of concrete domain predicates [2, 8]. The

complexity of this inference will thus be important for establishing complex-
ity results for ALC(D) and ALCZ(D).

3.1 2"+ 1-PCPs and the Concrete Domain P

The lower complexity bounds are established by a reduction of the 2™ + 1-
PCP, a NEXPTIME-complete variant of the well-known Post Correspondence
Problem [10] which we introduce in the following. We also introduce a con-
crete domain P that can be used to reduce the 2" 4+1-PCP to the satisfiability
of ALC(D) concepts w.r.t. TBoxes and ALCZ(D) concepts, and determine
the complexity of reasoning with P.

Definition 6 (PCP). A Post Correspondence Problem (PCP) P is given
by a finite, non-empty list (¢1,71),..., (¢,) of pairs of non-empty words
over some infinite alphabet 3. A sequence of integers i1, . .., iy, with m > 1,
is called a solution for P iff ¢;, ---¢; =r; ---r; . Let f(n) be a mapping
from N to N and let |P| denote the sum of the lengths of all words in the
PCP P = (81,7“1), ceey (Zk,’l“k), i.e.,

1Pl= > [l +Iril.
1<i<k

A solution 41, ...,%y is called an f(n)-solution iff m < f(|P|). With f(n)-
PCP, we denote the version of the PCP that admits only f(n)-solutions.

Hence, a 2" + 1-PCP P admits only solutions i1, ..., im, with m < 2/PI 4 1.
By modifying the proof used by Hopcroft and Ullman to show that the
general PCP is undecidable [5], we prove the following theorem.

Theorem 7. It is NEXPTIME-complete to decide whether a 2™ + 1-PCP
has a solution.

In order to reduce the 2" + 1-PCP to concept satisfiability, we introduce an
appropriate concrete domain P.

Definition 8 (Concrete Domain P). Let ¥ be an alphabet. The con-
crete domain P is defined by setting Ap := ¥* and defining ®p as the
smallest set containing the following predicates:

e unary predicates word and nword with word? = Ap and nword” = 0,

e unary predicates =, and #, with == {¢} and #7= X7,

e a binary equality predicate = and a binary inequality predicate #, and

e for each w € ¥, two binary predicate conc, and nconc, with

concl = {(u,v) | v = vw} and nconcl, = {(u,v) | v # vw}.

To show that P is admissible, we need to prove that the satisfiability of finite
conjunctions of predicates from P is decidable. As an example for such a
conjunction, consider word(x) A concy,(z,y) A=(z,y). We prove decidability
by devising an algorithm based on repeated normalization combined with
tests for obvious inconsistencies. The algorithm does also provide an upper
bound for the complexity of reasoning with the concrete domain P.

Proposition 9. [t is decidable in deterministic polynomial time whether a
finite conjunction of predicates from P has a solution.

We claim that the concrete domain P is rather natural since, instead of
words and predicates of words, one could use natural numbers and simple
operations on natural numbers: Words over an alphabet Y can be inter-
preted as numbers written at base |¥| + 1 (assuming that the empty word
represents 0); the concatenation of two words v and w can then be expressed
as vw = v * (]3] 4+ 1)1*/ 4w, where |w| denotes the length of the word w [3].
Hence, a concrete domain which provides the natural numbers, (in)equality,
(in)equality to zero, addition, and multiplication is also appropriate for the
reductions.

3.2 Lower and Upper Bounds

As lower bounds, we show that (i) satisfiability of ALC(P) concepts w.r.t.
TBoxes and (ii) satisfiability of ALCZ(P) concepts without reference to
TBoxes are NEXPTIME-hard. As a corresponding upper bound, it can be
shown that satisfiability of ALCZ(D) concepts w.r.t. TBoxes is in NEX-
PTIME if reasoning with the concrete domain D is in NP. Due to space
limitations, however, we only sketch the proof of the upper bound.

We start with proving the lower bound for the satisfiability of ALC(D)
concepts w.r.t. TBoxes. Given a 2" 4+ 1-PCP P = (¢1,7r1),..., (¢, 7k), We
define a TBox T[P] of size polynomial in |P| and a concept (name) C' such
that C is satisfiable w.r.t. T[P] iff P has a solution. The reduction TBox
can be found in Figure 1.1, where ¢, r, z, and y are abstract features.
The first equality in the figure is not meant as a concept definition but
as an abbreviation: Replace every occurrence of Chlui,us,us,uq] in the
lower three concept definitions by the right-hand side of the first equation
substituting wq,...,us appropriately. Moreover, if f is a feature, we use
df™.C to denote the n-fold nesting 3f.---d4f.C. In the following, we give
an informal explanation of the strategy underlying the reduction.

Chluy, uz,uz, us] = (I(ug,uz). = M I(ug, uq). =)

U " |7| P(El(ul,w).conczi M 3(us, uq).conc,,)

C, =30.C,N3r.Cy
M Ch[[r”flg(g, " g, r gy, M"*lgr]

Cn_g = EIZ.C’n_l M E'T.On_l
M Chllrge, rlge, brg,,rlg,]
Cnfl = Ch[ggfa rglaggra rgr]

C=C
nag,. = NA"g,.. =,
03"y Age, gr- = N I yge. #.
N Chlr"ge, " xge, " gpr, r"xg,]
N Ch[r"zge, " yge, " xgr, 7"y gr]

Figure 1.1: The ALC(P) reduction TBox T[P] (n = |P|).

The general idea is to define 7[P] such that models of C' and T[P]
have the form of a binary tree of depth |P| whose edges are connected by
two “chains” of conc, predicates (see Figure 1.2 for an example model).
Pairs of corresponding objects (z;,y;) on the chains represent “partial solu-
tions” of the PCP P. More precisely, the first line of the definitions of the
Ci,...,Cy_1 concepts ensure that models Z of C' and T[P] have the form
of a binary tree of depth n (with n = |P|) whose left edges are labeled with
the abstract feature ¢ and whose right edges are labeled with the abstract
feature r The nodes in the tree must not necessarily be distinct. Let the
abstract objects ag,...aon_1 be the leaves of the tree. A careful analysis
of the second line of the definitions of the Ci,...,C,_1 concepts and the
definition of the Ch concept reveals that

1. every a; (0 < i < 2™) has a filler z; for the concrete feature g, and a
filler y; for the concrete feature g,, and,

2. for 0 <14 < 2" — 1, either z; = x;41 and y; = y;4+1, or there exists a
j€{1,...,k} such that (z;,z,11) € concZ and (y;,yiy1) € concl

T

Since we must consider solutions of a length up to 2" + 1, the 2" objects
on the fringe of the tree are not sufficient and we need to “add” two more
objects agn and agn i which behave analogously to the objects ag, . ..aon_1,
i.e., have associated concrete objects zon,yon and zaon 1, yon, 1, respectively.

Figure 1.2: An example model of C' for n = 2.

This is done by the last two lines of the definition of C. Finally, the second
line of the definition of C' ensures that zp = yy = € and the third line
ensures that zoni1 = yony1 # €. Hence, (z2n41,y9n+1) is a solution of the
PCP P. Using the above considerations, the correctness of the reduction
can be formally proved and thus we obtain the following theorem.

Theorem 10. There exists an admissible concrete domain D, for which sat-
isfiability is in PTIME, such that satisfiability and subsumption of ALC(D)
concepts w.r.t TBozes are NEXPTIME-hard.

For the ALCZ(P) reduction, we define a concept C[P] which is satisfiable
iff the PCP P has a solution. The ALCZ(P) reduction is similar to the
ALC(P) reduction since (i) we use two predicate chains to represent partial
solutions, and (ii) we use a tree of abstract objects to generate the chains.
However, in the ALCZ(P) reduction, the chains are generated in a different
way. They do not connect the leaves of the tree but are “laid around” all
nodes in the tree as indicated in Figure 1.4. The reduction concept can
be found in Figure 1.3, where hy, by, 24, 2y, Ye, Yr, 2¢, and z, are concrete
features. All equalities in this Figure are intended as abbreviations and not
as concept definitions. We did not repeat the definition of Ch since it can
be found in Figure 1.1.

Again, we only give an informal discussion of the reduction. Due to the
first line in the definition of C[P] and the 3f~ quantifiers in the definition
of X, models of C[P] have the form of a tree of depth |P| — 1 in which all
edges are labeled with f~. This edge labelling scheme is possible since the
inverse of an abstract feature is not a feature. The existence of the predicate
chains is ensured by the definition of X and the second line in the definition
of C[P]. Figure 1.5 shows a detailed clipping from a model of C[P] (in

X = Elfi(oh[fglaglafgragr] N El(hﬂafpl)' =n El(hrafpr)' :)
M Elf_(oh[fpﬂaglafpragr] N El(hfafhl) =n El(hrafhr) :)

CIPl=XNVf~.XMN---NV(f)"'.X
nv(f)".(3(ge, he). = M 3(gr, hy). =)
n Ch[h[,l’[,hr,wr] r Ch[ﬂfl,yéaﬂfmyr] r Ch[yfazfayTaZT]
M3ge,=c Mg, =c M3z, 2. = M3z 7ée

Figure 1.3: The ALCZ(P) reduction concept C[P] (n = |P|—1).

Figure 1.4: Predicate chains in models of C[P].

fact, Figure 1.5 shows a model of the concept X'). The second line of C[P]
establishes the edges “leading around” the fringe nodes.

The length of the two predicate chains is twice the length of the number
of edges in the tree plus the number of fringe nodes, i.e., 2x (2‘P| —2) +2IPI=1,
To eliminate the factor 2 and the summand 2/P1-1, C[P] is defined such that
every edge in the predicate chains leading “up” in the tree and every edge
“leading around” a fringe node is labeled with the equality predicate. To
extend the chains to length 2P/ + 1, we need to add three additional edges.
This is reflected in the third line of the definition of C[P]. Finally, the last
line in the definition of C[P] ensures that the first concrete object on each
chain represents the empty word and that the last pair of corresponding
objects represents a (non-empty) solution for P.

Theorem 11. There exists an admissible concrete domain D, for which sat-
isfiability is in PTIME, such that satisfiability and subsumption of ALCZ(D)
concepts are NEXPTIME-hard.

The upper bound is proved by devising a tableau algorithm which is capable
of deciding the satisfiability of ALCZ(D) concepts w.r.t. TBoxes. Tableau
algorithms decide the satisfiability of concepts C' by trying to build a canon-
ical model for C'. To do this, completion rules are repeatedly applied to
so-called completion systems until, finally, either a contradiction is found—

,,,,,,,,,, » = equality

777777 = = equality or conc,, for some w

Figure 1.5: A clipping from a model of C[P].

meaning that C does not have a model—or a completion system is obtained
to which no completion rule is applicable and which represents a. model for C'.
A tableau algorithm for deciding the satisfiability of ALCZ(D) concepts
without reference to TBoxes can be given by straightforwardly combining
known tableau algorithms for the DLs ALC(D) and ALCZ. The algorithm
is the modified to take into account TBoxes by using a technique introduced
in [7]. A complexity analysis of the algorithm yields the following theorem.

Theorem 12. If satisfiability of the concrete domain D is in NP, satisfia-
bility of ALCZ(D) concepts w.r.t. TBoxes can be decided in nondeterministic
exponential time.

4 Conclusion

As future work, we plan to extend the obtained logics by further constructors
such as transitive roles [11] and qualifying number restrictions [4]. There are
at least two ways to go: One could define extensions of ALCF (D) (see [8])
trying to obtain an expressive logic with concrete domains which is still in
PSPACE. The second approach is to define extensions of ALCZ(D) which
means that the obtained logics are at least NEXPTIME-hard and that feature
(dis)agreements cannot be considered without loosing decidability (in [9], we
prove that the DL ALCZF is undecidable).

Acknowledgments My thanks go to Franz Baader, Ulrike Sattler, and
Stephan Tobies for inspiring discussions. The work in this paper was sup-
ported by the DFG Project BA1122/3-1 “Combinations of Modal and De-
scription Logics”.

10

Bibliography

1]

[4]

[5]

8]

[9]

[10]

[11]

[12]

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Proceedings of the Twelfth International Joint Confer-
ence on Artificial Intelligence IJCAI-91, pages 452-457, Sydney, Australia,
August 24-30, 1991. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. DFKI Research Report RR-91-10, German Research Center
for Artificial Intelligence, Kaiserslautern, 1991.

F. Baader and P. Hanschke. Extensions of concept languages for a mechanical
engineering application. In Proceedings of the 16th German AI-Conference,
GWAI-92, volume 671 of Lecture Notes in Computer Science, pages 132-143,
Bonn (Germany), 1993. Springer—Verlag.

B. Hollunder and F. Baader. Qualifying number restrictions in concept lan-
guages. In Proceedings of the Second International Conference KR’91, pages
335-346, Cambridge, Mass., April 22-25, 1991. Morgan Kaufmann Publ. Inc.,
San Mateo, CA, 1991. DFKI Research Report RR-91-03, Kaiserslautern.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, Reading, Mass., 1979.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive de-
scription logics. In Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR’99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161-180. Springer-Verlag, Sept. 1999.

C. Lutz. Complexity of terminological reasoning revisited. In Proceedings
of the 6th International Conference on Logic for Programming and Automated
Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence,
pages 181-200. Springer-Verlag, Sept. 1999.

C. Lutz. Reasoning with concrete domains. In Proceedings of the Sixzteenth
International Joint Conference on Artificial Intelligence IJCAI-99, Stockholm,
Sweden, July 31 — August 6, 1999.

C. Lutz. NExpTime-complete description logics with concrete do-
mains. LTCS-Report 00-01, LuFG Theoretical Computer Science,
RWTH Aachen, Germany, 2000. See http://www-lti.informatik.rwth-
aachen.de/Forschung/Reports.html.

E. M. Post. A variant of a recursively unsolvable problem. Bull. Am. Math.
Soc., 52:264-268, 1946.

U. Sattler. A concept language extended with different kinds of transitive
roles. In 20. Deutsche Jahrestagung fiir Kiinstliche Intelligenz, number 1137
in Lecture Notes in Artificial Intelligence. Springer Verlag, 1996.

E. Spaan. The complexity of propositional tense logics. In Diamonds and
Defaults, pages 287-307. Kluwer Academic Publishers, 1993.

11

