
Chapter 1

NExpTime-omplete Desription Logis

with Conrete Domains

Carsten Lutz

Abstrat. Desription Logis (DLs) inorporating onrete domains are useful

formalisms for integrated reasoning about abstrat and onrete knowledge. In

this paper, we onsider several extensions of ALC(D), whih is the basi DL with

onrete domains. We show that, although reasoning with ALC(D) is PSpae-

omplete, even \harmless-looking" extensions of this logi make reasoningNExpTime-

omplete.

1 Introdution

Desription Logis (DLs) are a family of logial formalisms well-suited for the

representation of and reasoning about oneptual knowledge on an abstrat

logial level. Many DLs are extensions of the basi propositionally omplete

Desription Logi ALC whih is a notational variant of the basi multi-modal

logi K

m

. To see how knowledge is represented using ALC, let us onsider

an example. The ALC onept

Proess u 8workpiee:Metal u 9workpiee:Large

desribes a manufaturing proess whih involves (i) only workpiees made

from metal and (ii) at least one large workpiee. A DL onept orresponds

to a formula in modal logis. In this example, Proess, Metal, and Large are

onept names (propositional variables) and workpiee is a role (an aessi-

bility relation).

However, for many knowledge representation appliations, it is essential

to integrate the abstrat logial knowledge with knowledge of a more on-

rete nature. For example, in the desription of the manufaturing proess,

it may be important to be more preise about the meaning of \large". The

standard tehnique for extending Desription Logis in order to allow for

the representation of onrete knowledge is to use so-alled onrete do-

mains whih have been introdued by Baader and Hanshke in [1℄. Baader

and Hanshke de�ne the desription logi ALC(D), i.e., the extension of
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ALC by onrete domains. More preisely, ALC(D) is parameterized with a

onrete domain D, where D provides a set of prediates over a given domain

like, e.g., the real numbers or the set of time intervals. The onrete domain

prediates an then be used inside a onrete domain onept onstrutor.

Using ALC(D), we an desribe the manufaturing proess from above as

Proess u 8workpiee:Metal u 9workpiee diameter:�50m:

In this example, diameter is a role and�50m is a onrete domain prediate.

The last onjunt of this onept uses the onrete domain onstrutor to

state that the proess involves at least one workpiee whose diameter is at

least 50 entimeters.

In this paper, we are interested in the omplexity of reasoning with

DLs whih provide onrete domains. In [8℄, we proved that reasoning with

ALC(D) is PSpae-omplete provided that reasoning with the onrete do-

main D (i.e., testing the satis�ability of �nite onjuntions of prediates

from D) is in PSpae. However, for many appliations, the expressivity

of ALC(D) is not suÆient and one wants to extend this logi by addi-

tional onept- and role-onstrutors. We investigate two suh extensions

and show that, in both extensions, reasoning beomes onsiderably harder.

More preisely, we onsider the extension of ALC(D) by ayli TBoxes and

inverse roles. Ayli TBoxes an be thought of as ayli maro de�nitions.

For example, a proess whose duration is at least one hour an be named

Long-Proess:

Long-Proess

:

= Proess u 9start; end:�1h:

Inverse roles orrespond to onverse modalities and allow, e.g., to desribe

ylinders whose manufaturing takes a long time as

Cylinder u 9workpiee

�

:Long-Proess

By introduing a NExpTime-omplete variant of the Post Correspondene

Problem [10, 5℄, we show that there exists a onrete domain P for whih

reasoning is in PTime suh that reasoning with eah of the above two exten-

sions ofALC(D) (parameterized with the onrete domain P) isNExpTime-

hard. This dramati inrease in omplexity is rather surprising sine, from

a omputational point of view, all of the proposed extensions look harm-

less. For example, in [7℄, we show that the extension of \many" PSpae

Desription Logis by ayli TBoxes does not inrease the omplexity of

reasoning. Moreover, it is well-known that ALC extended by inverse roles is

still in PSpae (see, e.g., [12, 6℄). As a orresponding upper bound, we show

that, if reasoning with a onrete domain D is in NP, then reasoning with

the DL ALCI(D) (i.e., the extension of ALC(D) with inverse roles) with

ayli TBoxes is in NExpTime. This paper is aompanied by a tehnial

report whih ontains all proofs and tehnial details [9℄.
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2 The Desription Logi ALCI(D)

In this setion, we formally introdue the desription logi ALCI(D) with

whih we are onerned in the remainder of this paper.

De�nition 1 (Conrete Domain). A onrete domain D = (�

D

;�

D

) is

given by a a set �

D

alled the domain and a set of prediate names �

D

.

Eah prediate name P 2 �

D

is assoiated with an arity n and an n-ary

prediate P

D

� �

n

D

. A onrete domain D is alled admissible i� (1) the set

of its prediate names is losed under negation and ontains a name >

D

for

�

D

and (2) the satis�ability problem for �nite onjuntions of prediates is

deidable.

We will only admit onrete domains whih are admissible. Based on on-

rete domains, we introdue the syntax of ALCI(D).

De�nition 2 (Syntax). Let N

C

, N

R

, and N

F

be mutually disjoint sets of

onept names, role names, and onrete feature names, respetively, and let

N

aF

be a subset of N

R

. Elements of N

aF

are alled abstrat features. The

set of ALCI(D) roles N

R

is N

R

[ fR

�

j R 2 N

R

g. An expression f

1

� � � f

n

g,

where f

1

; : : : ; f

n

2 N

aF

and g 2 N

F

, is alled a path.

1

The set of ALCI(D)

onepts is the smallest set suh that (1) every onept name is a onept,

and (2) if C and D are onepts, R is a role, g is a onrete feature, P 2 � is

a prediate name with arity n, and u

1

; : : : ; u

n

are paths, then the following

expressions are also onepts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

An ALCI(D) onept whih uses only roles from N

R

is alled an ALC(D)

onept. In the following, we denote onepts with C and D, roles with R,

abstrat features with f , onrete features with g, and prediates with P .

De�nition 3 (TBoxes). Let A be a onept name and C be a onept.

Then A

:

= C is a onept de�nition. Let T be a �nite set of onept de�ni-

tions. A onept name A diretly uses a onept name B in T if there is a

onept de�nition A

:

= C in T suh that B appears in C. Let uses be the

transitive losure of \diretly uses". T is alled ayli if there is no onept

name A suh that A uses itself in T . If T is ayli, and the left-hand sides

of all onept de�nitions in T are unique, then T is alled a TBox.

As usual, a set-theoreti semantis for onepts and TBoxes is given.

De�nition 4 (Semantis). An interpretation is a pair (�

I

; �

I

), where �

I

is a set alled the domain and �

I

the interpretation funtion. The inter-

pretation funtion maps eah onept name C to a subset C

I

of �

I

, eah

1

A onrete feature is a path of length 1.
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role name R to a subset R

I

of �

I

� �

I

, eah abstrat feature f to a

partial funtion f

I

from �

I

to �

I

, and eah onrete feature g to a par-

tial funtion g

I

from �

I

to �

D

. If u = f

1

� � � f

n

g is a path, then u

I

(a)

is de�ned as f

I

1

Æ � � � Æ f

I

n

Æ g

I

, where Æ denotes funtion omposition and

f

1

Æ f

2

(a) = f

2

(f

1

(a)) for f

1

and f

2

funtions. The interpretation funtion

is extended to arbitrary roles and onepts as follows:

(R

�

)

I

:= f(a; b) j (b; a) 2 R

I

g (:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fa 2 �

I

j u

I

i

(a) = x

i

for 1 � i � n; (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fa 2 �

I

j g

I

unde�nedg

Let C be a onept and T be a TBox. If C

I

6= ;, then I is alled a model

for C. If A

I

= C

I

for all A

:

= C 2 T , then I is alled a model for T .

We all elements of �

I

abstrat objets and elements of �

D

onrete objets.

In their original ALC(D) de�nition, Baader and Hanshke de�ne only one

type of features whih are interpreted as partial funtions from �

I

to �

I

[

�

P

[1℄. We hose a di�erent variant sine separating onrete and abstrat

features allows a learer algorithmi treatment and the loss in expressivity

is only marginal: it annot be expressed that a single feature f relates

a given objet to an abstrat or a onrete objet. However, we never

enountered the need to do this when representing knowledge with ALC(D)

and its relatives.

De�nition 5 (Inferene Problems). Let C and D be onepts. C sub-

sumes D w.r.t. a TBox T (written D v

T

C) i� D

I

� C

I

for all models

I of T . C is satis�able w.r.t. a TBox T i� there exists a model of both

T and C. Both inferenes are also onsidered without referene to TBoxes:

C subsumes D i� C subsumes D w.r.t. the empty TBox. C is satis�able i�

it is satis�able w.r.t. the empty TBox.

It is well-known that (un)satis�ability and subsumption an be mutually

redued to eah other, i.e., C v

T

D i� C u:D is unsatis�able w.r.t. T and

C is satis�able w.r.t. T i� we do not have C v

T

A u :A for some A 2 N

C

.

This onnetion allows us to onentrate on satis�ability for the remainder

of this paper.

3 Complexity Results

The main ontribution of this paper are NExpTime-ompleteness results

for the logis introdued in the previous setion. However, sine deiding
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satis�ability of ALC(D) or ALCI(D) onepts (possibly w.r.t. TBoxes) in-

volves reasoning with the onrete domain D, the omplexity of reasoning

with these DLs depends on the omplexity of reasoning with the onrete

domain D. As the de�nition of admissible onrete domains suggests, the

task performed by the onrete domain reasoner is usually to deide the

satis�ability of �nite onjuntions of onrete domain prediates [2, 8℄. The

omplexity of this inferene will thus be important for establishing omplex-

ity results for ALC(D) and ALCI(D).

3.1 2

n

+ 1-PCPs and the Conrete Domain P

The lower omplexity bounds are established by a redution of the 2

n

+ 1-

PCP, aNExpTime-omplete variant of the well-known Post Correspondene

Problem [10℄ whih we introdue in the following. We also introdue a on-

rete domain P that an be used to redue the 2

n

+1-PCP to the satis�ability

of ALC(D) onepts w.r.t. TBoxes and ALCI(D) onepts, and determine

the omplexity of reasoning with P.

De�nition 6 (PCP). A Post Correspondene Problem (PCP) P is given

by a �nite, non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of non-empty words

over some in�nite alphabet �. A sequene of integers i

1

; : : : ; i

m

, withm � 1,

is alled a solution for P i� `

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

: Let f(n) be a mapping

from N to N and let jP j denote the sum of the lengths of all words in the

PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), i.e.,

jP j =

X

1�i�k

j`

i

j+ jr

i

j:

A solution i

1

; : : : ; i

m

is alled an f(n)-solution i� m � f(jP j). With f(n)-

PCP, we denote the version of the PCP that admits only f(n)-solutions.

Hene, a 2

n

+ 1-PCP P admits only solutions i

1

; : : : ; i

m

with m � 2

jP j

+ 1.

By modifying the proof used by Hoproft and Ullman to show that the

general PCP is undeidable [5℄, we prove the following theorem.

Theorem 7. It is NExpTime-omplete to deide whether a 2

n

+ 1-PCP

has a solution.

In order to redue the 2

n

+1-PCP to onept satis�ability, we introdue an

appropriate onrete domain P.

De�nition 8 (Conrete Domain P). Let � be an alphabet. The on-

rete domain P is de�ned by setting �

P

:= �

�

and de�ning �

P

as the

smallest set ontaining the following prediates:

� unary prediates word and nword with word

P

= �

P

and nword

P

= ;,

� unary prediates =

�

and 6=

�

with =

P

�

= f�g and 6=

P

�

= �

+

,
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� a binary equality prediate = and a binary inequality prediate 6=, and

� for eah w 2 �

+

, two binary prediate on

w

and non

w

with

on

P

w

= f(u; v) j v = uwg and non

P

w

= f(u; v) j v 6= uwg:

To show that P is admissible, we need to prove that the satis�ability of �nite

onjuntions of prediates from P is deidable. As an example for suh a

onjuntion, onsider word(x)^on

w

(x; y)^=(x; y). We prove deidability

by devising an algorithm based on repeated normalization ombined with

tests for obvious inonsistenies. The algorithm does also provide an upper

bound for the omplexity of reasoning with the onrete domain P.

Proposition 9. It is deidable in deterministi polynomial time whether a

�nite onjuntion of prediates from P has a solution.

We laim that the onrete domain P is rather natural sine, instead of

words and prediates of words, one ould use natural numbers and simple

operations on natural numbers: Words over an alphabet � an be inter-

preted as numbers written at base j�j + 1 (assuming that the empty word

represents 0); the onatenation of two words v and w an then be expressed

as vw = v � (j�j+1)

jwj

+w, where jwj denotes the length of the word w [3℄.

Hene, a onrete domain whih provides the natural numbers, (in)equality,

(in)equality to zero, addition, and multipliation is also appropriate for the

redutions.

3.2 Lower and Upper Bounds

As lower bounds, we show that (i) satis�ability of ALC(P) onepts w.r.t.

TBoxes and (ii) satis�ability of ALCI(P) onepts without referene to

TBoxes are NExpTime-hard. As a orresponding upper bound, it an be

shown that satis�ability of ALCI(D) onepts w.r.t. TBoxes is in NEx-

pTime if reasoning with the onrete domain D is in NP. Due to spae

limitations, however, we only sketh the proof of the upper bound.

We start with proving the lower bound for the satis�ability of ALC(D)

onepts w.r.t. TBoxes. Given a 2

n

+ 1-PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we

de�ne a TBox T [P ℄ of size polynomial in jP j and a onept (name) C suh

that C is satis�able w.r.t. T [P ℄ i� P has a solution. The redution TBox

an be found in Figure 1.1, where `, r, x, and y are abstrat features.

The �rst equality in the �gure is not meant as a onept de�nition but

as an abbreviation: Replae every ourrene of Ch[u

1

; u

2

; u

3

; u

4

℄ in the

lower three onept de�nitions by the right-hand side of the �rst equation

substituting u

1

; : : : ; u

4

appropriately. Moreover, if f is a feature, we use

9f

n

:C to denote the n-fold nesting 9f: � � � 9f:C. In the following, we give

an informal explanation of the strategy underlying the redution.
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Ch[u

1

; u

2

; u

3

; u

4

℄ = (9(u

1

; u

2

): = u 9(u

3

; u

4

): =)

t t

(`

i

;r

i

) in P

(9(u

1

; u

2

):on

`

i

u 9(u

3

; u

4

):on

r

i

)

C

1

:

= 9`:C

2

u 9r:C

2

u Ch[`r

n�1

g

`

; r`

n�1

g

`

; `r

n�1

g

r

; r`

n�1

g

r

℄

.

.

.

C

n�2

:

= 9`:C

n�1

u 9r:C

n�1

u Ch[`rg

`

; r`g

`

; `rg

r

; r`g

r

℄

C

n�1

:

= Ch[`g

`

; rg

`

; `g

r

; rg

r

℄

C

:

= C

1

u 9`

n

g

`

: =

�

u 9`

n

g

r

: =

�

u 9r

n

y:9g

`

; g

r

: = u 9r

n

yg

`

: 6=

�

u Ch[r

n

g

`

; r

n

xg

`

; r

n

g

r

; r

n

xg

r

℄

u Ch[r

n

xg

`

; r

n

yg

`

; r

n

xg

r

; r

n

yg

r

℄

Figure 1.1: The ALC(P) redution TBox T [P ℄ (n = jP j).

The general idea is to de�ne T [P ℄ suh that models of C and T [P ℄

have the form of a binary tree of depth jP j whose edges are onneted by

two \hains" of on

w

prediates (see Figure 1.2 for an example model).

Pairs of orresponding objets (x

i

; y

i

) on the hains represent \partial solu-

tions" of the PCP P . More preisely, the �rst line of the de�nitions of the

C

1

; : : : ; C

n�1

onepts ensure that models I of C and T [P ℄ have the form

of a binary tree of depth n (with n = jP j) whose left edges are labeled with

the abstrat feature ` and whose right edges are labeled with the abstrat

feature r The nodes in the tree must not neessarily be distint. Let the

abstrat objets a

0

; : : : a

2

n

�1

be the leaves of the tree. A areful analysis

of the seond line of the de�nitions of the C

1

; : : : ; C

n�1

onepts and the

de�nition of the Ch onept reveals that

1. every a

i

(0 � i < 2

n

) has a �ller x

i

for the onrete feature g

`

and a

�ller y

i

for the onrete feature g

r

, and,

2. for 0 � i < 2

n

� 1, either x

i

= x

i+1

and y

i

= y

i+1

, or there exists a

j 2 f1; : : : ; kg suh that (x

i

; x

i+1

) 2 on

P

`

j

and (y

i

; y

i+1

) 2 on

P

r

j

.

Sine we must onsider solutions of a length up to 2

n

+ 1, the 2

n

objets

on the fringe of the tree are not suÆient and we need to \add" two more

objets a

2

n

and a

2

n

+1

whih behave analogously to the objets a

0

; : : : a

2

n

�1

,

i.e., have assoiated onrete objets x

2

n

; y

2

n

and x

2

n

+1

; y

2

n

+1

, respetively.
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a

0

a

1

a

2

a

3

a

4

a

5

r r

g

`

g

`

g

`

g

`

g

`

g

`

=

�

=

g

r

g

r

g

r

g

r

g

r

g

r

=

�

= equality or on

w

for some w

r`

` `

y

x

x

0

y

1

y

0

x

1

x

2

x

3

x

4

y

2

y

3

y

4

y

5

x

5

Figure 1.2: An example model of C for n = 2.

This is done by the last two lines of the de�nition of C. Finally, the seond

line of the de�nition of C ensures that x

0

= y

0

= � and the third line

ensures that x

2

n

+1

= y

2

n

+1

6= �. Hene, (x

2

n

+1

; y

2

n

+1

) is a solution of the

PCP P . Using the above onsiderations, the orretness of the redution

an be formally proved and thus we obtain the following theorem.

Theorem 10. There exists an admissible onrete domain D, for whih sat-

is�ability is in PTime, suh that satis�ability and subsumption of ALC(D)

onepts w.r.t TBoxes are NExpTime-hard.

For the ALCI(P) redution, we de�ne a onept C[P ℄ whih is satis�able

i� the PCP P has a solution. The ALCI(P) redution is similar to the

ALC(P) redution sine (i) we use two prediate hains to represent partial

solutions, and (ii) we use a tree of abstrat objets to generate the hains.

However, in the ALCI(P) redution, the hains are generated in a di�erent

way. They do not onnet the leaves of the tree but are \laid around" all

nodes in the tree as indiated in Figure 1.4. The redution onept an

be found in Figure 1.3, where h

`

; h

r

; x

`

; x

r

; y

`

; y

r

; z

`

, and z

r

are onrete

features. All equalities in this Figure are intended as abbreviations and not

as onept de�nitions. We did not repeat the de�nition of Ch sine it an

be found in Figure 1.1.

Again, we only give an informal disussion of the redution. Due to the

�rst line in the de�nition of C[P ℄ and the 9f

�

quanti�ers in the de�nition

of X, models of C[P ℄ have the form of a tree of depth jP j � 1 in whih all

edges are labeled with f

�

. This edge labelling sheme is possible sine the

inverse of an abstrat feature is not a feature. The existene of the prediate

hains is ensured by the de�nition of X and the seond line in the de�nition

of C[P ℄. Figure 1.5 shows a detailed lipping from a model of C[P ℄ (in
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X = 9f

�

(Ch[fg

`

; g

`

; fg

r

; g

r

℄ u 9(h

`

; fp
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Figure 1.3: The ALCI(P) redution onept C[P ℄ (n = jP j � 1).

Figure 1.4: Prediate hains in models of C[P ℄.

fat, Figure 1.5 shows a model of the onept X). The seond line of C[P ℄

establishes the edges \leading around" the fringe nodes.

The length of the two prediate hains is twie the length of the number

of edges in the tree plus the number of fringe nodes, i.e., 2�(2

jP j

�2)+2

jP j�1

.

To eliminate the fator 2 and the summand 2

jP j�1

, C[P ℄ is de�ned suh that

every edge in the prediate hains leading \up" in the tree and every edge

\leading around" a fringe node is labeled with the equality prediate. To

extend the hains to length 2

jP j

+1, we need to add three additional edges.

This is reeted in the third line of the de�nition of C[P ℄. Finally, the last

line in the de�nition of C[P ℄ ensures that the �rst onrete objet on eah

hain represents the empty word and that the last pair of orresponding

objets represents a (non-empty) solution for P .

Theorem 11. There exists an admissible onrete domain D, for whih sat-

is�ability is in PTime, suh that satis�ability and subsumption of ALCI(D)

onepts are NExpTime-hard.

The upper bound is proved by devising a tableau algorithm whih is apable

of deiding the satis�ability of ALCI(D) onepts w.r.t. TBoxes. Tableau

algorithms deide the satis�ability of onepts C by trying to build a anon-

ial model for C. To do this, ompletion rules are repeatedly applied to

so-alled ompletion systems until, �nally, either a ontradition is found|

9



= equality

= equality or on

w

for some w

f

�

f

�

g

`

g

r

g

r

g

`

h

`

h

r

g

r

g

`

h

r

h

`

h

`

h

r

p

`

p

r

X

Figure 1.5: A lipping from a model of C[P ℄.

meaning that C does not have a model|or a ompletion system is obtained

to whih no ompletion rule is appliable and whih represents a model for C.

A tableau algorithm for deiding the satis�ability of ALCI(D) onepts

without referene to TBoxes an be given by straightforwardly ombining

known tableau algorithms for the DLs ALC(D) and ALCI. The algorithm

is the modi�ed to take into aount TBoxes by using a tehnique introdued

in [7℄. A omplexity analysis of the algorithm yields the following theorem.

Theorem 12. If satis�ability of the onrete domain D is in NP, satis�a-

bility of ALCI(D) onepts w.r.t. TBoxes an be deided in nondeterministi

exponential time.

4 Conlusion

As future work, we plan to extend the obtained logis by further onstrutors

suh as transitive roles [11℄ and qualifying number restritions [4℄. There are

at least two ways to go: One ould de�ne extensions of ALCF(D) (see [8℄)

trying to obtain an expressive logi with onrete domains whih is still in

PSpae. The seond approah is to de�ne extensions of ALCI(D) whih

means that the obtained logis are at leastNExpTime-hard and that feature

(dis)agreements annot be onsidered without loosing deidability (in [9℄, we

prove that the DL ALCIF is undeidable).
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