
Chapter 1

NExpTime-
omplete Des
ription Logi
s

with Con
rete Domains

Carsten Lutz

Abstra
t. Des
ription Logi
s (DLs) in
orporating 
on
rete domains are useful

formalisms for integrated reasoning about abstra
t and 
on
rete knowledge. In

this paper, we 
onsider several extensions of ALC(D), whi
h is the basi
 DL with


on
rete domains. We show that, although reasoning with ALC(D) is PSpa
e-


omplete, even \harmless-looking" extensions of this logi
 make reasoningNExpTime-


omplete.

1 Introdu
tion

Des
ription Logi
s (DLs) are a family of logi
al formalisms well-suited for the

representation of and reasoning about 
on
eptual knowledge on an abstra
t

logi
al level. Many DLs are extensions of the basi
 propositionally 
omplete

Des
ription Logi
 ALC whi
h is a notational variant of the basi
 multi-modal

logi
 K

m

. To see how knowledge is represented using ALC, let us 
onsider

an example. The ALC 
on
ept

Pro
ess u 8workpie
e:Metal u 9workpie
e:Large

des
ribes a manufa
turing pro
ess whi
h involves (i) only workpie
es made

from metal and (ii) at least one large workpie
e. A DL 
on
ept 
orresponds

to a formula in modal logi
s. In this example, Pro
ess, Metal, and Large are


on
ept names (propositional variables) and workpie
e is a role (an a

essi-

bility relation).

However, for many knowledge representation appli
ations, it is essential

to integrate the abstra
t logi
al knowledge with knowledge of a more 
on-


rete nature. For example, in the des
ription of the manufa
turing pro
ess,

it may be important to be more pre
ise about the meaning of \large". The

standard te
hnique for extending Des
ription Logi
s in order to allow for

the representation of 
on
rete knowledge is to use so-
alled 
on
rete do-

mains whi
h have been introdu
ed by Baader and Hans
hke in [1℄. Baader

and Hans
hke de�ne the des
ription logi
 ALC(D), i.e., the extension of
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ALC by 
on
rete domains. More pre
isely, ALC(D) is parameterized with a


on
rete domain D, where D provides a set of predi
ates over a given domain

like, e.g., the real numbers or the set of time intervals. The 
on
rete domain

predi
ates 
an then be used inside a 
on
rete domain 
on
ept 
onstru
tor.

Using ALC(D), we 
an des
ribe the manufa
turing pro
ess from above as

Pro
ess u 8workpie
e:Metal u 9workpie
e diameter:�50
m:

In this example, diameter is a role and�50
m is a 
on
rete domain predi
ate.

The last 
onjun
t of this 
on
ept uses the 
on
rete domain 
onstru
tor to

state that the pro
ess involves at least one workpie
e whose diameter is at

least 50 
entimeters.

In this paper, we are interested in the 
omplexity of reasoning with

DLs whi
h provide 
on
rete domains. In [8℄, we proved that reasoning with

ALC(D) is PSpa
e-
omplete provided that reasoning with the 
on
rete do-

main D (i.e., testing the satis�ability of �nite 
onjun
tions of predi
ates

from D) is in PSpa
e. However, for many appli
ations, the expressivity

of ALC(D) is not suÆ
ient and one wants to extend this logi
 by addi-

tional 
on
ept- and role-
onstru
tors. We investigate two su
h extensions

and show that, in both extensions, reasoning be
omes 
onsiderably harder.

More pre
isely, we 
onsider the extension of ALC(D) by a
y
li
 TBoxes and

inverse roles. A
y
li
 TBoxes 
an be thought of as a
y
li
 ma
ro de�nitions.

For example, a pro
ess whose duration is at least one hour 
an be named

Long-Pro
ess:

Long-Pro
ess

:

= Pro
ess u 9start; end:�1h:

Inverse roles 
orrespond to 
onverse modalities and allow, e.g., to des
ribe


ylinders whose manufa
turing takes a long time as

Cylinder u 9workpie
e

�

:Long-Pro
ess

By introdu
ing a NExpTime-
omplete variant of the Post Corresponden
e

Problem [10, 5℄, we show that there exists a 
on
rete domain P for whi
h

reasoning is in PTime su
h that reasoning with ea
h of the above two exten-

sions ofALC(D) (parameterized with the 
on
rete domain P) isNExpTime-

hard. This dramati
 in
rease in 
omplexity is rather surprising sin
e, from

a 
omputational point of view, all of the proposed extensions look harm-

less. For example, in [7℄, we show that the extension of \many" PSpa
e

Des
ription Logi
s by a
y
li
 TBoxes does not in
rease the 
omplexity of

reasoning. Moreover, it is well-known that ALC extended by inverse roles is

still in PSpa
e (see, e.g., [12, 6℄). As a 
orresponding upper bound, we show

that, if reasoning with a 
on
rete domain D is in NP, then reasoning with

the DL ALCI(D) (i.e., the extension of ALC(D) with inverse roles) with

a
y
li
 TBoxes is in NExpTime. This paper is a

ompanied by a te
hni
al

report whi
h 
ontains all proofs and te
hni
al details [9℄.
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2 The Des
ription Logi
 ALCI(D)

In this se
tion, we formally introdu
e the des
ription logi
 ALCI(D) with

whi
h we are 
on
erned in the remainder of this paper.

De�nition 1 (Con
rete Domain). A 
on
rete domain D = (�

D

;�

D

) is

given by a a set �

D


alled the domain and a set of predi
ate names �

D

.

Ea
h predi
ate name P 2 �

D

is asso
iated with an arity n and an n-ary

predi
ate P

D

� �

n

D

. A 
on
rete domain D is 
alled admissible i� (1) the set

of its predi
ate names is 
losed under negation and 
ontains a name >

D

for

�

D

and (2) the satis�ability problem for �nite 
onjun
tions of predi
ates is

de
idable.

We will only admit 
on
rete domains whi
h are admissible. Based on 
on-


rete domains, we introdu
e the syntax of ALCI(D).

De�nition 2 (Syntax). Let N

C

, N

R

, and N


F

be mutually disjoint sets of


on
ept names, role names, and 
on
rete feature names, respe
tively, and let

N

aF

be a subset of N

R

. Elements of N

aF

are 
alled abstra
t features. The

set of ALCI(D) roles N

R

is N

R

[ fR

�

j R 2 N

R

g. An expression f

1

� � � f

n

g,

where f

1

; : : : ; f

n

2 N

aF

and g 2 N


F

, is 
alled a path.

1

The set of ALCI(D)


on
epts is the smallest set su
h that (1) every 
on
ept name is a 
on
ept,

and (2) if C and D are 
on
epts, R is a role, g is a 
on
rete feature, P 2 � is

a predi
ate name with arity n, and u

1

; : : : ; u

n

are paths, then the following

expressions are also 
on
epts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

An ALCI(D) 
on
ept whi
h uses only roles from N

R

is 
alled an ALC(D)


on
ept. In the following, we denote 
on
epts with C and D, roles with R,

abstra
t features with f , 
on
rete features with g, and predi
ates with P .

De�nition 3 (TBoxes). Let A be a 
on
ept name and C be a 
on
ept.

Then A

:

= C is a 
on
ept de�nition. Let T be a �nite set of 
on
ept de�ni-

tions. A 
on
ept name A dire
tly uses a 
on
ept name B in T if there is a


on
ept de�nition A

:

= C in T su
h that B appears in C. Let uses be the

transitive 
losure of \dire
tly uses". T is 
alled a
y
li
 if there is no 
on
ept

name A su
h that A uses itself in T . If T is a
y
li
, and the left-hand sides

of all 
on
ept de�nitions in T are unique, then T is 
alled a TBox.

As usual, a set-theoreti
 semanti
s for 
on
epts and TBoxes is given.

De�nition 4 (Semanti
s). An interpretation is a pair (�

I

; �

I

), where �

I

is a set 
alled the domain and �

I

the interpretation fun
tion. The inter-

pretation fun
tion maps ea
h 
on
ept name C to a subset C

I

of �

I

, ea
h

1

A 
on
rete feature is a path of length 1.
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role name R to a subset R

I

of �

I

� �

I

, ea
h abstra
t feature f to a

partial fun
tion f

I

from �

I

to �

I

, and ea
h 
on
rete feature g to a par-

tial fun
tion g

I

from �

I

to �

D

. If u = f

1

� � � f

n

g is a path, then u

I

(a)

is de�ned as f

I

1

Æ � � � Æ f

I

n

Æ g

I

, where Æ denotes fun
tion 
omposition and

f

1

Æ f

2

(a) = f

2

(f

1

(a)) for f

1

and f

2

fun
tions. The interpretation fun
tion

is extended to arbitrary roles and 
on
epts as follows:

(R

�

)

I

:= f(a; b) j (b; a) 2 R

I

g (:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fa 2 �

I

j u

I

i

(a) = x

i

for 1 � i � n; (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fa 2 �

I

j g

I

unde�nedg

Let C be a 
on
ept and T be a TBox. If C

I

6= ;, then I is 
alled a model

for C. If A

I

= C

I

for all A

:

= C 2 T , then I is 
alled a model for T .

We 
all elements of �

I

abstra
t obje
ts and elements of �

D


on
rete obje
ts.

In their original ALC(D) de�nition, Baader and Hans
hke de�ne only one

type of features whi
h are interpreted as partial fun
tions from �

I

to �

I

[

�

P

[1℄. We 
hose a di�erent variant sin
e separating 
on
rete and abstra
t

features allows a 
learer algorithmi
 treatment and the loss in expressivity

is only marginal: it 
annot be expressed that a single feature f relates

a given obje
t to an abstra
t or a 
on
rete obje
t. However, we never

en
ountered the need to do this when representing knowledge with ALC(D)

and its relatives.

De�nition 5 (Inferen
e Problems). Let C and D be 
on
epts. C sub-

sumes D w.r.t. a TBox T (written D v

T

C) i� D

I

� C

I

for all models

I of T . C is satis�able w.r.t. a TBox T i� there exists a model of both

T and C. Both inferen
es are also 
onsidered without referen
e to TBoxes:

C subsumes D i� C subsumes D w.r.t. the empty TBox. C is satis�able i�

it is satis�able w.r.t. the empty TBox.

It is well-known that (un)satis�ability and subsumption 
an be mutually

redu
ed to ea
h other, i.e., C v

T

D i� C u:D is unsatis�able w.r.t. T and

C is satis�able w.r.t. T i� we do not have C v

T

A u :A for some A 2 N

C

.

This 
onne
tion allows us to 
on
entrate on satis�ability for the remainder

of this paper.

3 Complexity Results

The main 
ontribution of this paper are NExpTime-
ompleteness results

for the logi
s introdu
ed in the previous se
tion. However, sin
e de
iding
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satis�ability of ALC(D) or ALCI(D) 
on
epts (possibly w.r.t. TBoxes) in-

volves reasoning with the 
on
rete domain D, the 
omplexity of reasoning

with these DLs depends on the 
omplexity of reasoning with the 
on
rete

domain D. As the de�nition of admissible 
on
rete domains suggests, the

task performed by the 
on
rete domain reasoner is usually to de
ide the

satis�ability of �nite 
onjun
tions of 
on
rete domain predi
ates [2, 8℄. The


omplexity of this inferen
e will thus be important for establishing 
omplex-

ity results for ALC(D) and ALCI(D).

3.1 2

n

+ 1-PCPs and the Con
rete Domain P

The lower 
omplexity bounds are established by a redu
tion of the 2

n

+ 1-

PCP, aNExpTime-
omplete variant of the well-known Post Corresponden
e

Problem [10℄ whi
h we introdu
e in the following. We also introdu
e a 
on-


rete domain P that 
an be used to redu
e the 2

n

+1-PCP to the satis�ability

of ALC(D) 
on
epts w.r.t. TBoxes and ALCI(D) 
on
epts, and determine

the 
omplexity of reasoning with P.

De�nition 6 (PCP). A Post Corresponden
e Problem (PCP) P is given

by a �nite, non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of non-empty words

over some in�nite alphabet �. A sequen
e of integers i

1

; : : : ; i

m

, withm � 1,

is 
alled a solution for P i� `

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

: Let f(n) be a mapping

from N to N and let jP j denote the sum of the lengths of all words in the

PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), i.e.,

jP j =

X

1�i�k

j`

i

j+ jr

i

j:

A solution i

1

; : : : ; i

m

is 
alled an f(n)-solution i� m � f(jP j). With f(n)-

PCP, we denote the version of the PCP that admits only f(n)-solutions.

Hen
e, a 2

n

+ 1-PCP P admits only solutions i

1

; : : : ; i

m

with m � 2

jP j

+ 1.

By modifying the proof used by Hop
roft and Ullman to show that the

general PCP is unde
idable [5℄, we prove the following theorem.

Theorem 7. It is NExpTime-
omplete to de
ide whether a 2

n

+ 1-PCP

has a solution.

In order to redu
e the 2

n

+1-PCP to 
on
ept satis�ability, we introdu
e an

appropriate 
on
rete domain P.

De�nition 8 (Con
rete Domain P). Let � be an alphabet. The 
on-


rete domain P is de�ned by setting �

P

:= �

�

and de�ning �

P

as the

smallest set 
ontaining the following predi
ates:

� unary predi
ates word and nword with word

P

= �

P

and nword

P

= ;,

� unary predi
ates =

�

and 6=

�

with =

P

�

= f�g and 6=

P

�

= �

+

,
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� a binary equality predi
ate = and a binary inequality predi
ate 6=, and

� for ea
h w 2 �

+

, two binary predi
ate 
on


w

and n
on


w

with


on


P

w

= f(u; v) j v = uwg and n
on


P

w

= f(u; v) j v 6= uwg:

To show that P is admissible, we need to prove that the satis�ability of �nite


onjun
tions of predi
ates from P is de
idable. As an example for su
h a


onjun
tion, 
onsider word(x)^
on


w

(x; y)^=(x; y). We prove de
idability

by devising an algorithm based on repeated normalization 
ombined with

tests for obvious in
onsisten
ies. The algorithm does also provide an upper

bound for the 
omplexity of reasoning with the 
on
rete domain P.

Proposition 9. It is de
idable in deterministi
 polynomial time whether a

�nite 
onjun
tion of predi
ates from P has a solution.

We 
laim that the 
on
rete domain P is rather natural sin
e, instead of

words and predi
ates of words, one 
ould use natural numbers and simple

operations on natural numbers: Words over an alphabet � 
an be inter-

preted as numbers written at base j�j + 1 (assuming that the empty word

represents 0); the 
on
atenation of two words v and w 
an then be expressed

as vw = v � (j�j+1)

jwj

+w, where jwj denotes the length of the word w [3℄.

Hen
e, a 
on
rete domain whi
h provides the natural numbers, (in)equality,

(in)equality to zero, addition, and multipli
ation is also appropriate for the

redu
tions.

3.2 Lower and Upper Bounds

As lower bounds, we show that (i) satis�ability of ALC(P) 
on
epts w.r.t.

TBoxes and (ii) satis�ability of ALCI(P) 
on
epts without referen
e to

TBoxes are NExpTime-hard. As a 
orresponding upper bound, it 
an be

shown that satis�ability of ALCI(D) 
on
epts w.r.t. TBoxes is in NEx-

pTime if reasoning with the 
on
rete domain D is in NP. Due to spa
e

limitations, however, we only sket
h the proof of the upper bound.

We start with proving the lower bound for the satis�ability of ALC(D)


on
epts w.r.t. TBoxes. Given a 2

n

+ 1-PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we

de�ne a TBox T [P ℄ of size polynomial in jP j and a 
on
ept (name) C su
h

that C is satis�able w.r.t. T [P ℄ i� P has a solution. The redu
tion TBox


an be found in Figure 1.1, where `, r, x, and y are abstra
t features.

The �rst equality in the �gure is not meant as a 
on
ept de�nition but

as an abbreviation: Repla
e every o

urren
e of Ch[u

1

; u

2

; u

3

; u

4

℄ in the

lower three 
on
ept de�nitions by the right-hand side of the �rst equation

substituting u

1

; : : : ; u

4

appropriately. Moreover, if f is a feature, we use

9f

n

:C to denote the n-fold nesting 9f: � � � 9f:C. In the following, we give

an informal explanation of the strategy underlying the redu
tion.
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Ch[u

1

; u

2

; u

3

; u

4

℄ = (9(u

1

; u

2

): = u 9(u

3

; u

4

): =)

t t

(`

i

;r

i

) in P

(9(u

1

; u

2

):
on


`

i

u 9(u

3

; u

4

):
on


r

i

)

C

1

:

= 9`:C

2

u 9r:C

2

u Ch[`r

n�1

g

`

; r`

n�1

g

`

; `r

n�1

g

r

; r`

n�1

g

r

℄

.

.

.

C

n�2

:

= 9`:C

n�1

u 9r:C

n�1

u Ch[`rg

`

; r`g

`

; `rg

r

; r`g

r

℄

C

n�1

:

= Ch[`g

`

; rg

`

; `g

r

; rg

r

℄

C

:

= C

1

u 9`

n

g

`

: =

�

u 9`

n

g

r

: =

�

u 9r

n

y:9g

`

; g

r

: = u 9r

n

yg

`

: 6=

�

u Ch[r

n

g

`

; r

n

xg

`

; r

n

g

r

; r

n

xg

r

℄

u Ch[r

n

xg

`

; r

n

yg

`

; r

n

xg

r

; r

n

yg

r

℄

Figure 1.1: The ALC(P) redu
tion TBox T [P ℄ (n = jP j).

The general idea is to de�ne T [P ℄ su
h that models of C and T [P ℄

have the form of a binary tree of depth jP j whose edges are 
onne
ted by

two \
hains" of 
on


w

predi
ates (see Figure 1.2 for an example model).

Pairs of 
orresponding obje
ts (x

i

; y

i

) on the 
hains represent \partial solu-

tions" of the PCP P . More pre
isely, the �rst line of the de�nitions of the

C

1

; : : : ; C

n�1


on
epts ensure that models I of C and T [P ℄ have the form

of a binary tree of depth n (with n = jP j) whose left edges are labeled with

the abstra
t feature ` and whose right edges are labeled with the abstra
t

feature r The nodes in the tree must not ne
essarily be distin
t. Let the

abstra
t obje
ts a

0

; : : : a

2

n

�1

be the leaves of the tree. A 
areful analysis

of the se
ond line of the de�nitions of the C

1

; : : : ; C

n�1


on
epts and the

de�nition of the Ch 
on
ept reveals that

1. every a

i

(0 � i < 2

n

) has a �ller x

i

for the 
on
rete feature g

`

and a

�ller y

i

for the 
on
rete feature g

r

, and,

2. for 0 � i < 2

n

� 1, either x

i

= x

i+1

and y

i

= y

i+1

, or there exists a

j 2 f1; : : : ; kg su
h that (x

i

; x

i+1

) 2 
on


P

`

j

and (y

i

; y

i+1

) 2 
on


P

r

j

.

Sin
e we must 
onsider solutions of a length up to 2

n

+ 1, the 2

n

obje
ts

on the fringe of the tree are not suÆ
ient and we need to \add" two more

obje
ts a

2

n

and a

2

n

+1

whi
h behave analogously to the obje
ts a

0

; : : : a

2

n

�1

,

i.e., have asso
iated 
on
rete obje
ts x

2

n

; y

2

n

and x

2

n

+1

; y

2

n

+1

, respe
tively.
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a

0

a

1

a

2

a

3

a

4

a

5

r r

g

`

g

`

g

`

g

`

g

`

g

`

=

�

=

g

r

g

r

g

r

g

r

g

r

g

r

=

�

= equality or 
on


w

for some w

r`

` `

y

x

x

0

y

1

y

0

x

1

x

2

x

3

x

4

y

2

y

3

y

4

y

5

x

5

Figure 1.2: An example model of C for n = 2.

This is done by the last two lines of the de�nition of C. Finally, the se
ond

line of the de�nition of C ensures that x

0

= y

0

= � and the third line

ensures that x

2

n

+1

= y

2

n

+1

6= �. Hen
e, (x

2

n

+1

; y

2

n

+1

) is a solution of the

PCP P . Using the above 
onsiderations, the 
orre
tness of the redu
tion


an be formally proved and thus we obtain the following theorem.

Theorem 10. There exists an admissible 
on
rete domain D, for whi
h sat-

is�ability is in PTime, su
h that satis�ability and subsumption of ALC(D)


on
epts w.r.t TBoxes are NExpTime-hard.

For the ALCI(P) redu
tion, we de�ne a 
on
ept C[P ℄ whi
h is satis�able

i� the PCP P has a solution. The ALCI(P) redu
tion is similar to the

ALC(P) redu
tion sin
e (i) we use two predi
ate 
hains to represent partial

solutions, and (ii) we use a tree of abstra
t obje
ts to generate the 
hains.

However, in the ALCI(P) redu
tion, the 
hains are generated in a di�erent

way. They do not 
onne
t the leaves of the tree but are \laid around" all

nodes in the tree as indi
ated in Figure 1.4. The redu
tion 
on
ept 
an

be found in Figure 1.3, where h

`

; h

r

; x

`

; x

r

; y

`

; y

r

; z

`

, and z

r

are 
on
rete

features. All equalities in this Figure are intended as abbreviations and not

as 
on
ept de�nitions. We did not repeat the de�nition of Ch sin
e it 
an

be found in Figure 1.1.

Again, we only give an informal dis
ussion of the redu
tion. Due to the

�rst line in the de�nition of C[P ℄ and the 9f

�

quanti�ers in the de�nition

of X, models of C[P ℄ have the form of a tree of depth jP j � 1 in whi
h all

edges are labeled with f

�

. This edge labelling s
heme is possible sin
e the

inverse of an abstra
t feature is not a feature. The existen
e of the predi
ate


hains is ensured by the de�nition of X and the se
ond line in the de�nition

of C[P ℄. Figure 1.5 shows a detailed 
lipping from a model of C[P ℄ (in

8



X = 9f

�

(Ch[fg

`

; g

`

; fg

r

; g

r

℄ u 9(h

`

; fp

`

): = u 9(h

r

; fp

r

): =)

u 9f

�

(Ch[fp

`

; g

`

; fp

r

; g

r

℄ u 9(h

`

; fh

`

): = u 9(h

r

; fh

r

): =)

C[P ℄ = X u 8f

�

:X u � � � u 8(f

�

)

n�1

:X

u 8(f

�

)

n

:(9(g

`

; h

`

): = u 9(g

r

; h

r

): =)

u Ch[h

`

; x

`

; h

r

; x

r

℄ u Ch[x

`

; y

`

; x

r

; y

r

℄ u Ch[y

`

; z

`

; y

r

; z

r

℄

u 9g

`

;=

�

u 9g

r

;=

�

u 9z

`

; z

r

: = u 9z

`

: 6=

�

Figure 1.3: The ALCI(P) redu
tion 
on
ept C[P ℄ (n = jP j � 1).

Figure 1.4: Predi
ate 
hains in models of C[P ℄.

fa
t, Figure 1.5 shows a model of the 
on
ept X). The se
ond line of C[P ℄

establishes the edges \leading around" the fringe nodes.

The length of the two predi
ate 
hains is twi
e the length of the number

of edges in the tree plus the number of fringe nodes, i.e., 2�(2

jP j

�2)+2

jP j�1

.

To eliminate the fa
tor 2 and the summand 2

jP j�1

, C[P ℄ is de�ned su
h that

every edge in the predi
ate 
hains leading \up" in the tree and every edge

\leading around" a fringe node is labeled with the equality predi
ate. To

extend the 
hains to length 2

jP j

+1, we need to add three additional edges.

This is re
e
ted in the third line of the de�nition of C[P ℄. Finally, the last

line in the de�nition of C[P ℄ ensures that the �rst 
on
rete obje
t on ea
h


hain represents the empty word and that the last pair of 
orresponding

obje
ts represents a (non-empty) solution for P .

Theorem 11. There exists an admissible 
on
rete domain D, for whi
h sat-

is�ability is in PTime, su
h that satis�ability and subsumption of ALCI(D)


on
epts are NExpTime-hard.

The upper bound is proved by devising a tableau algorithm whi
h is 
apable

of de
iding the satis�ability of ALCI(D) 
on
epts w.r.t. TBoxes. Tableau

algorithms de
ide the satis�ability of 
on
epts C by trying to build a 
anon-

i
al model for C. To do this, 
ompletion rules are repeatedly applied to

so-
alled 
ompletion systems until, �nally, either a 
ontradi
tion is found|
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= equality

= equality or 
on


w

for some w

f

�

f

�

g

`

g

r

g

r

g

`

h

`

h

r

g

r

g

`

h

r

h

`

h

`

h

r

p

`

p

r

X

Figure 1.5: A 
lipping from a model of C[P ℄.

meaning that C does not have a model|or a 
ompletion system is obtained

to whi
h no 
ompletion rule is appli
able and whi
h represents a model for C.

A tableau algorithm for de
iding the satis�ability of ALCI(D) 
on
epts

without referen
e to TBoxes 
an be given by straightforwardly 
ombining

known tableau algorithms for the DLs ALC(D) and ALCI. The algorithm

is the modi�ed to take into a

ount TBoxes by using a te
hnique introdu
ed

in [7℄. A 
omplexity analysis of the algorithm yields the following theorem.

Theorem 12. If satis�ability of the 
on
rete domain D is in NP, satis�a-

bility of ALCI(D) 
on
epts w.r.t. TBoxes 
an be de
ided in nondeterministi


exponential time.

4 Con
lusion

As future work, we plan to extend the obtained logi
s by further 
onstru
tors

su
h as transitive roles [11℄ and qualifying number restri
tions [4℄. There are

at least two ways to go: One 
ould de�ne extensions of ALCF(D) (see [8℄)

trying to obtain an expressive logi
 with 
on
rete domains whi
h is still in

PSpa
e. The se
ond approa
h is to de�ne extensions of ALCI(D) whi
h

means that the obtained logi
s are at leastNExpTime-hard and that feature

(dis)agreements 
annot be 
onsidered without loosing de
idability (in [9℄, we

prove that the DL ALCIF is unde
idable).
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