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1 Introdution

Most Desription Logis (DLs) provide universal value restritions whih allow to

make universal statements about domain objets. For example, we an express

that an objet, say Mary, likes only ats by asserting that Mary is an instane

of 8likes:Cat. However, using universal value restritions, we annot express the

symmetri fat that Mary likes all ats. This kind of expressiveness is provided

by the DL-equivalent 8C:R of the modal logi \window" operator [7℄: Asserting

that Mary is an instane of 8Cat:likes guarantees that eah instane of Cat is

assoiated to Mary via the role likes. Suh a onstrutor was suggested in, e.g.,

[8℄ for knowledge representation.

The 8C:R onstrutor is losely related to negation of roles sine 8:R::C

is equivalent to 8C:R. Thus, negation of roles an also be used to express

that Mary likes all ats. Moreover, role negation is of interest sine (1) we

an internalize general onept inlusion axioms C v D (see [1, 16℄) using the

onept (8R::C t D) u (8:R::C t D), and (2) ALC looses the tree model

property when extended with role negation whih means that ALC with role

negation o�ers expressivity whih is not provided by most other Desription

Logis.

Although role negation is a boolean operation on roles and an be viewed

as a \standard" DL onstrutor, there seem to exist only few DLs with role

negation. One example of suh a logi is given by Hustadt and Shmidt, who

show deidability of ALB (an extension of ALC with role negation and several

other onstrutors) using resolution tehniques [12℄. In the DLs CINB and

DLR [6, 5℄, a \role negation" onstrutor is provided, whih, however, has a

non-standard semantis (i.e., it is role di�erene rather than role negation) and

annot be used to express 8C:R. In the �eld of modal logis, several logis

have been investigated whih are notational variants of DLs with role negation.

Examples are K extended with an inaessibility modality [11℄ and PDL with

negation of programs [15℄.
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Surprisingly, to the best of our knowledge, the omplexity of DLs with role

negation or orresponding modal logis has never been investigated. In this

paper, we ath up on this and determine the omplexity of (i) the extension

of ALC with role negation, (ii) the extension of ALC with transitive roles and

role negation, and (iii) the extension of ALC with role negation and all possible

ombinations of boolean onstrutors of roles (where role negation may either

be unrestrited or restrited to role names). This paper is aompanied by a

tehnial report whih ontains all proofs and tehnial details [14℄. Note that

the tehnial report is not disussing ALC with role negation, but the multi-

modal logi K

:

m

, whih is a notational variant.

2 Preliminaries

In this setion, we de�ne syntax and semantis of ALC

:

and disuss some model-

and omplexity-theoreti properties of this Desription Logi.

De�nition 1 Let N

C

be a set of onept names and N

R

a set of role names.

The set of ALC

:

-roles is N

R

[ f:R j R 2 N

R

g. The set of ALC

:

-onepts is the

smallest set suh that (i) every onept name is an ALC

:

-onept, and, (ii) if

R is an ALC

:

-role and C and D are ALC

:

-onepts, then :C, C uD, C tD,

8R:C, and 9R:C are ALC

:

-onepts.

An interpretation I = (�

I

; �

I

) onsists of a set �

I

, alled the domain of I,

and a funtion �

I

whih maps every onept to a subset of �

I

and every role to

a subset of �

I

��

I

suh that

(:R)

I

= �

I

��

I

nR

I

:C

I

= �

I

n C

I

;

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

;

(9R:C)

I

= fx 2 �

I

j There exists a y 2 �

I

with (x; y) 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if (x; y) 2 R

I

, then y 2 C

I

g:

A onept C is alled satis�able i� there is some interpretation I suh that

C

I

6= ;. Suh an interpretation is alled a model of C. A onept D subsumes

a onept C (written C v D) i� C

I

� D

I

holds for eah interpretation I. Two

onepts are said to be equivalent (written C � D) if they mutually subsume

eah other.

It is well-known that, in the presene of onept negation, (un)satis�ability and

subsumption an be mutually redued in onstant time, i.e., C v D i� C u :D

is unsatis�able and a onept C is satis�able i� not C v A u :A, where A is a

onept name. Hene, all omplexity results for satis�ability that are obtained in

this paper do also apply to subsumption. The semantis of the 8C:R onstrutor

mentioned in the introdution is

(8C:R)

I

= fx 2 �

I

j For all y 2 �

I

, y 2 C

I

implies (x; y) 2 R

I

g:
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It is easy to see that 8C:R � 8:R::C, and, hene, reasoning in ALC extended

with the 8C:R onstrutor an be redued to reasoning with ALC

:

.

It is not hard to show that the satis�ability of ALC

:

-onepts is ExpTime-

hard and in NExpTime: (i) The satis�ability of formulae of the modal logi K

u

,

i.e., uni-modalK enrihed with the universal modality is known to be ExpTime-

hard [17℄, and an be redued to the satis�ability of ALC

:

-onepts. We use the

ommon translation t from K-formulae to ALC-onepts (see, e.g., [16℄) and,

additionally, replae

� every ourrene of 2

u

:' by 8R:t(') ^ 8:R:t(') and

� every ourrene of 3

u

:' by 9R:t(') _ 9:R:t(')

where 2

u

and 3

u

denote the universal modality and R is an arbitrary role

name. Now this translation may learly lead to an exponential blowup in for-

mula/onept size if 2

u

or 3

u

are nested in the input onept. However, in the

proof of ExpTime-hardness of K

u

[17℄, 2

u

ours only one. In this ase, the

translation is linear, and, thus, satis�ability of ALC

:

-onepts is ExpTime-hard;

(ii) it is well-known that there exists a linear, satis�ability-preserving translation

from ALC

:

into L

2

, the 2-variable fragment of �rst order logi [4℄. Sine L

2

is

deidable in NExpTime [9℄, this implies that satis�ability of ALC

:

-onepts is

also in NExpTime. However, these two omplexity bounds are obviously not

tight. One main ontribution of this paper is to give an ExpTime-algorithm for

the satis�ability of ALC

:

-onepts, thus tightening the omplexity bounds.

For devising a satis�ability algorithm, it is interesting to know what kind of

models need to be onsidered. In [7℄, it is proved that the modal logi ounterpart

of ALC

:

has the �nite model property. ALC

:

does not have the tree model

property sine, e.g., the onept Au8:R::A has no tree model: It is easy to see

that, for any x 2 (A u 8:R::A)

I

, we must have (x; x) 2 R

I

. However, we will

show that there exists a one-to-one orrespondene between models and so-alled

Hintikka-trees whih we then use to deide satis�ability (and thus subsumption)

of ALC

:

-onepts. We do this by building, for eah ALC

:

-onept C, a B�uhi-

automaton A

C

whih aepts the empty (tree-)language i� C is unsatis�able.

Hene we introdue trees, B�uhi-automata, and the language they aept here.

De�nition 2 Let M be a set and k � 1. A k-ary M-tree is a mapping

T : f1; : : : ; kg

�

7! M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2 M .

Intuitively, the node �i is the i-th hild of �. We use � to denote the empty

word (orresponding to the root of the tree). A path in a k-ary M -tree is an

in�nite word over the alphabet f1; : : : ; kg.

A B�uhi-automaton A = (Q;M; I;�; F ) for k-ary M -trees is de�ned by a

set Q of states, an alphabet M , a subset I � Q of initial states, a transition

relation � � Q�M �Q

k

, and a subset F � Q of aepting states.
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A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

: A run r on T is aepting i�, for eah path i

1

i

2

� � � in

T , the set fj j r(i

1

� � � i

j

) 2 Fg is in�nite.

A B�uhi-automaton aepts all those M -trees for whih an aepting run

exists, i.e., the language L(A) of M -trees aepted by A is

L(A) = fT j There is an aepting run from A on Tg:

In [18℄, it is proved that the emptiness problem for B�uhi-automata, i.e.,

the problem to deide whether the language L(A) aepted by a given B�uhi-

automaton A is empty, is deidable in polynomial time.

3 ALC

:

is ExpTime-omplete

We show that satis�ability of ALC

:

-onepts is deidable in exponential time.

For this purpose, we �rst abstrat from models of ALC

:

-onepts to Hintikka-

trees, and then show how to onstrut a B�uhi-automaton that aepts exatly

Hintikka-trees.

Notation: We assume all onepts to be in negation normal form (NNF), i.e.,

negation ours only in front of onept names and role names. Eah onept

an easily be transformed into an equivalent one in NNF by pushing negation

inwards, employing de Morgan's law and the duality between 8R:C and 9R:C.

We use

�

C to denote the NNF of :C.

Sine we treat negated and unnegated roles symmetrially, we introdue the

notion

9

�

R:C =

�

9:R:C if R is atomi,

9S:C if R = :S for some atomi role S

and analogously 8

�

R:C. Let l(C) denote the set of C's subonepts and NNFs

of their negations, i.e.,

l(C) := fD j D is a subformula of C or

D =

�

E for a subformula E of Cg:

We assume that existential onepts 9R:D in l(C) are linearly ordered, and

that

E

(i) yields the i-th existential onept in l(C).

De�nition 3 (Hintikka-set and Hintikka-tree) Let C be anALC

:

-onept

and k the number of existential onepts in l(C). A set 	 � l(C) is a Hintikka-

set i� it satis�es the following onditions:
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(H1) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H2) if C

1

t C

2

2 	, then fC

1

; C

2

g \ 	 6= ;,

(H3) fC;

�

Cg 6� 	 for all ALC

:

-onepts C.

A k-ary 2

l(C)

-tree T is a Hintikka-tree for C i� T (�) is a Hintikka-set for eah

node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

, the following

onditions:

(H4) C 2 T (�),

(H5) if f9R:D; 8R:E

1

; : : : ; 8R:E

m

g � T (�) and

E

(i) = 9R:D,

then fD;E

1

; : : : ; E

m

g � T (�i)

(H6) if

E

(i) 62 T (�), then T (�i) = ;,

(H7) if 8R:D 2 T (�), then D 2 T (�),

�

D 2 T (�), or T (�) = ;,

(H8) if f8R:D; 8

�

R:Eg � T (�) and

�

D 2 T (�), then E 2 T (�).

In (H5), (H7), and (H8), R denotes role names and also negations of roles.

Obviously, the empty set is also a Hintikka-set. The following lemma shows the

onnetion between models and Hintikka trees.

Lemma 4 An ALC

:

-onept C is satis�able i� C has a Hintikka-tree.

Proof: Let C be an ALC

:

-onept using role names R

1

; : : : ; R

m

and let there

be k existential onepts in l(C).

\(" Let T be a Hintikka-tree for C. We de�ne an interpretation I = (�

I

; �

I

)

as follows:

�

I

= f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

A

I

= f� j A 2 T (�)g for all onept names A

R

I

= f(�; �) j � = �j and E(j) = 9R:D 2 T (�)g [

f(�; �) j 8:R:D 2 T (�) and

�

D 2 T (�)g for all role names R

To show that there exists an x 2 �

I

suh that x 2 C

I

, we �rst prove the

following laim:

Claim: D 2 T (�) implies � 2 D

I

for all � 2 �

I

and D 2 l(C).

The laim is proved by indution over the struture of D. The indution start,

i.e., the ase that D is a onept name, is an immediate onsequene of the

de�nition of I. For the indution step, we make a ase distintion aording to

the topmost onstrutor in D. Assume D 2 T (�).

� D = :E. Sine C is in NNF (by the de�nition of Hintikka-sets and l),

E is a onept name. By de�nition of I and sine T (�) is a Hintikka-set

and thus satis�es (H3), we have � 2 (:E)

I

.
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� D = C

1

u C

2

or D = C

1

t C

2

. Straightforward by (H1) and (H2) of

Hintikka-sets and by indution hypothesis.

� D = 9R:E = E(j) for a j with 1 � j � k. First assume that R is a role.

By de�nition of R

I

, we have (�; �j) 2 R

I

. By (H5), 9R:E 2 T (�) implies

E 2 T (�j). By indution, �j 2 E

I

, and, hene, � 2 (9R:E)

I

.

Now assume that R = :S for a role name S. We show that (�; �j) =2 S

I

,

for, if we have done this, � 2 (9R:E)

I

follows as in the previous ase

(where R is a onept name). Assume to the ontrary that (�; �j) 2 S

I

.

Then, by de�nition of S

I

, we have either

1. E(j) = 9S:E

0

2 T (�), or

2. 8:S:E

0

2 T (�) and

�

E

0

2 T (�j)

where E

0

2 l('). In the �rst ase, we have a ontradition to the assump-

tion E(j) = 9:S:E. In the seond ase, we have f9:S:E; 8:S:E

0

g � T (�)

whih, by (H5), implies fE;E

0

g � T (�j). Sine we also know that

�

E

0

2 T (�j), we obtain a ontradition to (H3) of Hintikka-sets and on-

lude that (�; �j) =2 S

I

.

� D = 8R:E. First assume that R is a role name and �x a � suh that

(�; �) 2 R

I

. By de�nition of R

I

, we have to distinguish two ases:

1. � = �j and E(j) = 9R:E

0

2 T (�), or

2. 8:R:E

0

2 T (�) and

�

E

0

2 T (�)

In the �rst ase, we have f9R:E

0

; 8R:Eg � T (�) whih, by (H5), implies

fE;E

0

g � T (�j). By indution, we obtain � 2 E

I

. In the seond ase,

we have f8R:E; 8:R:E

0

g � T (�) and

�

E

0

2 T (�). By (H8), we have

E 2 T (�), and, by indution, � 2 E

I

. Sine this holds independently of

the hoie of �, we onlude � 2 (8R:E)

I

.

Now assume that R = :S for a role name S. Fix a � suh that (�; �) =2 S

I

.

Sine � 2 �

I

, we have that T (�) 6= ;. Hene, by (H7), we have E 2 T (�)

or

�

E 2 T (�). However,

�

E 2 T (�) would imply (�; �) 2 S

I

by de�nition of

S

I

, whih is a ontradition to our hoie of �. Hene we dedue E 2 T (�).

By indution, we obtain � 2 E

I

. Sine this holds independently of the

hoie of �, we onlude � 2 (8:S:E)

I

.

This ompletes the proof of the laim. Sine C 2 T (�) by (H4), it is an imme-

diate onsequene of the laim that I is a model of C.

\)" Let I = (�

I

; �

I

) be a model of C, i.e., there exists an x

0

2 �

I

with

x

0

2 C

I

. We de�ne a Hintikka-tree for C (i.e., a Hintikka-set label T (�) for
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eah � 2 f1; : : : ; kg

�

). To do this, we indutively de�ne a mapping � from

f1; : : : ; kg

�

to �

I

[ f?g in suh a way that

T (�) =

�

fD 2 l(C) j �(�) 2 D

I

g if �(�) 6= ?

; otherwise

(�)

For the indution start, set

�(�) := x

0

T (�) := fD 2 l(C) j x

0

2 D

I

g

Now for the indution step. Let � 2 f1; : : : ; kg

�

suh that �(�) is already

de�ned, and let i 2 f1; : : : ; kg. We make a ase distintion as follows:

1. �(�) 6= ? and E(i) = 9R:D 2 T (�). By (�), we have �(�) 2 (9R:D)

I

whih implies the existene of a domain objet x 2 �

I

suh that (�(�); x) 2

R

I

and x 2 D

I

. Choose suh an x and de�ne �(�i) := x and T (�i) :=

fE 2 l(C) j x 2 E

I

g.

2. if �; i do not math the above ase, set �(�i) = ? and T (�i) = ;.

By de�nition, T and � satisfy (�). We need to prove that the k-ary 2

l(C)

-tree

T just de�ned is a Hintikka-tree for C. From the semantis of ALC

:

and the

de�nition of l, it is lear that T (�) is a Hintikka-set for eah � 2 f1; : : : ; kg

�

.

Hene, it remains to show that T satis�es (H4) to (H8).

(H4) Satis�ed by de�nition of T (see indution start).

(H5) Let f9R:D; 8R:E

1

; : : : ; 8R:E

m

g � T (�) and E(i) = 9R:D. By (�), we

have �(�) 6= ? and �(�) 2 (9R:D u 8R:E

1

u � � � u 8R:E

m

)

I

. By de�nition

of � (indution step, �rst ase), we have �(�i) = x for some x 2 �

I

, with

(�(�); x) 2 R

I

, and x 2 D

I

. Moreover, the semantis of ALC

:

implies

x 2 (E

1

u � � � uE

m

)

I

, and, by (�), we thus have fD;E

1

; : : : ; E

m

g � T (�i).

(H6) Satis�ed by de�nition of T (see indution step, seond ase).

(H7) Let 8R:D 2 T (�) and �x a � 2 f1; : : : ; kg

�

. If �(�) = ?, then we have

T (�) = ; by (�) and (H7) is satis�ed. If �(�) 6= ?, then �(�) 2 �

I

and

we have either �(�) 2 D

I

or �(�) 2

�

D

I

. Again, (�) implies that (H7) is

satis�ed.

(H8) Assume f8R:E; 8

�

R:Dg � T (�) and

�

E 2 T (�). By (�), we have �(�) 2

(8R:E u 8

�

R:D)

I

and �(�) 2

�

E

I

. This implies (�(�); �(�)) 2

�

R

I

sine

1. we have either (�(�); �(�)) 2 R

I

or (�(�); �(�)) 2

�

R

I

and

2. (�(�); �(�)) 2 R

I

is impossible sine �(�) 2 (8R:E)

I

and �(�) 2

�

E

I

.
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Hene, due to the semantis of ALC

:

, we have �(�) 2 D

I

, whih, by (�),

implies D 2 T (�).

❏

The lemma shows that Hintikka-trees are appropriate abstrations of models of

ALC

:

-onepts. Hintikka-trees enjoy the nie property that they are trees, and

we an thus de�ne, for an ALC

:

-onept C, a tree-automaton A

C

that aepts

exatly the Hintikka-trees for C.

De�nition 5 For an ALC

:

-onept C with k existential onepts in l(C), the

B�uhi-automaton A

C

= (Q; 2

l(C)

;�; I; Q) is de�ned as follows:

� Q � f	 2 2

l(C)

j 	 is a Hintikka-setg � 2

P

� 2

S

where

P = ff8R:D; 8

�

R:Eg j 8R:D; 8

�

R:E 2 l(C)g;

S = f8R:D j 8R:D 2 l(C)g;

and eah (	; p; s) 2 Q satis�es

1. if f8R:D; 8

�

R:Eg 2 p and

�

D 2 	, then E 2 	,

2. if 8R:D 2 s, then 	 = ; or fD;

�

Dg \ 	 6= ;,

3. if 8R:D 2 	, then 8R:D 2 s, and

4. if f8R:D; 8

�

R:Eg � 	, then f8R:D; 8

�

R:Eg 2 p.

� I = f(	; p; s) j C 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

E

(i) = 9R:D 2 	, then D 2 	

i

and E 2 	

i

for eah 8R:E 2 	 and

if

E

(i) = 9R:D 62 	, then 	

i

= ;:

As a onsequene of the following lemma and Lemma 4, we an redue satis�a-

bility of ALC

:

-onepts to the emptiness problem for B�uhi-automata.

Lemma 6 T is a Hintikka-tree for an ALC

:

-onept C i� T 2 L(A

C

).

Proof sketh: Let C be an ALC

:

-onept and k, A

C

as in De�nition 5.

\)" Let T be Hintikka-tree for C. We prove that there is an aepting run of

A

C

on T . First, de�ne

p := ff8R:D; 8

�

R:Eg j There is a node � in T with f8R:D; 8

�

R:Eg � T (�)g

s := f8R:D j There is a node � in T with 8R:D 2 T (�)g

We an show that r(�) = (T (�); p; s) is an aepting run of A

C

on T . By de�ni-

tion, r is de�ned for eah � 2 f1; : : : ; kg

�

. Furthermore, using the Properties of

Hintikka trees, it is straightforward to show that the following three onditions

hold:

8



1. r(�) 2 Q,

2. r(�) 2 I, and

3. ((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�

k

); p; s)) 2 �.

\(" Let T 2 L(A

C

) and r be an aepting run of A

C

on T . It an be proved

that T is a Hintikka-tree for C. By de�nition of A

C

, T is a k-ary 2

l(C)

-tree, and

r(�) = (	

�

; p

�

; s

�

) implies 	

�

= T (�) by de�nition of �. Hene, by de�nition

of Q, eah node in T is labelled with a Hintikka-set. It remains to prove that T

satis�ed (H4) to (H8). This is straightforward using the de�nitions of B�uhi-

automata, A

C

, and aepting runs. ❏

What is the size of B�uhi-automata A

C

= (Q

C

;M

C

; I

C

;�

C

; F

C

)? Obviously,

the ardinality of l(C) is linear in the length of C. Hene, by de�nition of

A

C

, the ardinality of Q

C

and M

C

are exponential in the length of C. Again

by de�nition of A

C

, this implies that the ardinalities of I

C

, �

C

, and F

C

are

also exponential in the length of C. Hene the size of A

C

is exponential in the

length of C. This fat together with Lemma 4, Lemma 6, and the fat that

emptiness of the language aepted by a B�uhi-automaton A

C

an be tested

in time polynomial in the size of A

C

[18℄, we have that satis�ability of ALC

:

-

onepts is in ExpTime. We already noted in Setion 2 that satis�ability of

ALC

:

-onepts is also ExpTime-hard. Hene, we obtain the following theorem:

Theorem 7 Satis�ability of ALC

:

-onepts is ExpTime-omplete.

Many Desription Logis provide roles with ertain properties, the most promi-

nent property being transitivity. It is hene an interesting question whether

the obtained result generalises to ALC

:

with transitive roles. More preisely,

the DL S

:

(generalizing the DL S de�ned in [10℄) is obtained from ALC

:

as

follows: Assume that N

t

is a subset of the set of role names N

R

. Elements of

N

t

are alled transitive roles. An S

:

interpretation is an ALC

:

interpretation

whih interprets eah R 2 N

t

as a transitive relation R

I

� �

I

��

I

. To de�ne

Hintikka trees for S

:

, we need to introdue ounterparts for (H5) and (H8)

whih deal with transitive roles. These additional two properties need then to

be reeted in the de�nition of the orresponding B�uhi-automata. Using these

modi�ed de�nitions, the following result an be proved analogously to the proof

of Theorem 7 (see [14℄ for details).

Theorem 8 Satis�ability of S

:

-onepts is ExpTime-omplete.

4 Adding Intersetion and Union of Roles

In this setion, we investigate the omplexity of adding the standard DL role

onstrutors intersetion and union of roles to the logiALC

:

. In doing this, one

9



has the hoie to either restrit the appliability of negation to atomi roles or

allowing for full negation w.r.t. roles. In the latter ase, adding union is obviously

equivalent to adding intersetion or both. We start with the smallest extension,

i.e., we add either intersetion or union of roles while restriting negation to role

names.

De�nition 9 An ALC

(:);t

-onept is an ALC

:

-onept whih, additionally, al-

lows for roles of the form R

1

t � � � t R

k

, where eah R

i

is an ALC

:

-role. An

ALC

(:);u

-onept is an ALC

:

-onept whih, additionally, allows for roles of the

form R

1

u � � � u R

k

, where eah R

i

is an ALC

:

-role. The semantis of the new

roles is de�ned as follows:

(R

1

t � � � t R

k

)

I

= R

I

1

[ � � � [R

I

k

(R

1

u � � � u R

k

)

I

= R

I

1

\ � � � \R

I

k

Let us �rst investigate the logi ALC

(:);t

. It is not hard to see that

8R

1

t � � � t R

k

:C � 8R

1

:C u � � � u 8R

k

:C and

9R

1

t � � � t R

k

:C � 9R

1

:C t � � � t 8R

k

:C;

i.e., satis�ability ofALC

(:);t

-onepts an be linearly redued to the satis�ability

of ALC

:

-onepts whih gives the following result:

Theorem 10 Satis�ability of ALC

(:);t

-onepts is ExpTime-omplete.

Next, we will show that the satis�ability of ALC

(:);u

-onepts is NExpTime-

hard. The proof is given by a redution of a NExpTime-omplete variant of the

well-known, undeidable domino problem.

A domino problem [2, 13℄ is given by a �nite set of domino types. All domino

types are of the same size, eah type has a quadrati shape and olored edges.

Of eah type, an unlimited number of dominoe is available. The problem in the

original domino problem is to arrange these dominoe to over the plane without

holes or overlapping, suh that adjaent dominoe have idential olors on their

touhing edges (rotation of the dominoe is not allowed). In the NExpTime-

omplete variant of the domino problem that we use, the task is not to tile the

whole plane, but to tile a 2

n+1

� 2

n+1

-torus, i.e., a 2

n+1

� 2

n+1

-retangle whose

edges are \glued" together. See, e.g., [2, 13℄ for undeidable versions of the

domino problem and [3℄ for bounded variants.

De�nition 11 Let D = (D;H; V ) be a domino system, where D is a �nite set of

domino types and H; V � D�D represent the horizontal and vertial mathing

onditions. For s; t 2 N , let U(s; t) be the torus Z

s

� Z

t

, where Z

n

denotes the

set f0; : : : ; n� 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe (with n � s).

We say that D tiles U(s; t) with initial ondition a i� there exists a mapping

� : U(s; t)! D suh that, for all (x; y) 2 U(s; t):

10



� if �(x; y) = d and �(x�

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Suh a mapping � is alled a solution for

D w.r.t. a.

The following is a onsequene of Theorem 6.1.2 in [3℄ (see also [14℄).

Theorem 12 There exists a domino system D suh that the following is a

NExpTime-hard problem: Given an initial ondition a = a

0

� � �a

n�1

of length n,

does D tile the torus U(2

n+1

; 2

n+1

) with initial ondition a?

We redue the NExpTime-omplete variant of the domino problem from The-

orem 12 to the satis�ability of ALC

(:);u

-onepts. Given a domino system

D = (D;H; V ) and an initial ondition a = a

0

; : : : ; a

n�1

, we de�ne a redution

onept C

(D;a)

suh that C

(D;a)

is satis�able i� D tiles the torus U(2

n+1

; 2

n+1

)

with initial ondition a. The redution onept C

(D;a)

an be found in Figure 2.

In this �gure, 8C is an abbreviation for 8R:C ^8:R:C, where R is an arbitrary

role name. Obviously, in eah model I of 8C, we have C

I

= �

I

. Furthermore,

we write 8R

n

:C to denote 8R : : :8R

| {z }

n times

:C.

The strategy of the redution is to de�ne the redution onept C

(D;a)

suh

that, for every model I of C

(D;a)

with domain �

I

,

1. there exists a onept name A

d

for every domino type d 2 D suh that

eah x 2 �

I

is in the extension of A

d

for exatly one d 2 D (�rst line of

Tiling),

2. for eah point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a orresponding

set of domain objets fx

1

; : : : ; x

k

g � �

I

with k � 1 and a d 2 D suh

that all x

1

; : : : ; x

k

are in the extension of A

d

(Count

x

, Count

y

, Stable, and

Unique onepts)

3. the horizontal and vertial onditions V and H are satis�ed w.r.t. sets of

worlds representing points in the plane (seond and third line of Tiling),

and

4. the initial ondition is satis�ed (Init).

Properties 1, 3, and 4 are enfored in a standard way using ALC onepts to-

gether with the 8C onstrutor introdued above. Property 2, however, needs

some explanation. Usually, domino-redutions axiomatize a \grid" in order to

apture the struture of the torus. As Property 2 indiates, we employ a di�er-

ent strategy: Eah world in eah model of C

(D;a)

orresponds to a point (i; j) in

11



atomi negation full negation

� ExpTime-omplete

t ExpTime-omplete NExpTime-omplete

u NExpTime-omplete NExpTime-omplete

u and t NExpTime-omplete NExpTime-omplete

Figure 1: Complexity of ALC extended with various role onstrutors.

the torus. The number i is binarily enoded by the onept names X

0

; : : : ; X

n

while the number j is enoded by the onept names Y

0

; : : : ; Y

n

. We use stan-

dard binary inrementation modulo 2

n+1

to ensure that, for every domain ob-

jet x orresponding to a position (i; j), there exists an objet y

1

suh that y

1

orresponds to (i �

2

n+1

1; j) and (x; y

1

) 2 R

I

x

, and an objet y

2

suh that y

2

orresponds to (i; j �

2

n+1

1) and (y; y

2

) 2 R

I

y

. The Count

x

and Count

y

onepts

enode the inrementation of the one dimension while the Stable onept en-

sures that the other dimension does not hange. It remains to guarantee that

every two domain objets orresponding to the same position are labeled with

the same domino. This task is aomplished by the Unique onept whih is the

only one to use negation and onjuntion of roles (not nested, though). In order

to understand the Unique onept, it may be helpful to read subonepts of the

form 8:R::C as 8C:R.

Proposition 13 A domino system D tiles the torus U(2

n+1

; 2

n+1

) with initial

ondition a = a

0

; : : : ; a

n�1

i� C

(D;a)

is satis�able.

Together with Theorem 12, we obtain the desired result.

Theorem 14 Satis�ability of ALC

(:);u

-onepts is NExpTime-hard.

Instead of giving an upper bound for ALC

(:);u

, we give an upper bound for the

logi ALC

:;u;t

, i.e., the extension of ALC

:

by union and intersetion allowing

for full negation of roles with the obvious syntax and semantis: The translation

of ALC

:

-onepts to L

2

-formulae mentioned in Setion 2 an also be applied to

ALC

:;u;t

-onepts.

Corollary 15 Satis�ability of ALC

:;u;t

-onepts is in NExpTime.

Figure 1 summarizes the omplexity results obtained in this paper (omitting the

results for S

:

).
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Count

x

= 8

h

n

u

k=0

�

(
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u
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X

j
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�

(
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j

by Y

j

, and X

k

by Y

k

Stable = 8

h

n

u

k=0
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�
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k
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k
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�

u

n
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�
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::Y

k

) u (:Y

k
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k
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k

)

�

u

u
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A
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0
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n
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0

u � � � u S

n
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i

Tiling = 8

h
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d2D

A

d

) u u

d2D

u

d

0

2Dnfdg

:(A

d

u A

d

0

) u

u

d2D

A

d

!

�

8R

x

: t

(d;d

0

)2H

p

d

0

�

u

u

d2D

A

d

!

�

8R

y

: t

(d;d

0

)2G

A

d

0

��

Init =

n

u

k=0

(:X

i

u :Y

i

) u A

w

0

u 8R

x

:A

w

1

u � � � u 8R

n�1

x

:A

w

n�1

C

(D;a)

= Count

x

u Count

y

u Stable u Unique u Tiling u Init

Figure 2: The ALC

(:);u

onept C

(D;a)

for D = (D;H; V ) and a = a

0

; : : : ; a

n�1

.
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