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1 Introdu
tion

Most Des
ription Logi
s (DLs) provide universal value restri
tions whi
h allow to

make universal statements about domain obje
ts. For example, we 
an express

that an obje
t, say Mary, likes only 
ats by asserting that Mary is an instan
e

of 8likes:Cat. However, using universal value restri
tions, we 
annot express the

symmetri
 fa
t that Mary likes all 
ats. This kind of expressiveness is provided

by the DL-equivalent 8C:R of the modal logi
 \window" operator [7℄: Asserting

that Mary is an instan
e of 8Cat:likes guarantees that ea
h instan
e of Cat is

asso
iated to Mary via the role likes. Su
h a 
onstru
tor was suggested in, e.g.,

[8℄ for knowledge representation.

The 8C:R 
onstru
tor is 
losely related to negation of roles sin
e 8:R::C

is equivalent to 8C:R. Thus, negation of roles 
an also be used to express

that Mary likes all 
ats. Moreover, role negation is of interest sin
e (1) we


an internalize general 
on
ept in
lusion axioms C v D (see [1, 16℄) using the


on
ept (8R::C t D) u (8:R::C t D), and (2) ALC looses the tree model

property when extended with role negation whi
h means that ALC with role

negation o�ers expressivity whi
h is not provided by most other Des
ription

Logi
s.

Although role negation is a boolean operation on roles and 
an be viewed

as a \standard" DL 
onstru
tor, there seem to exist only few DLs with role

negation. One example of su
h a logi
 is given by Hustadt and S
hmidt, who

show de
idability of ALB (an extension of ALC with role negation and several

other 
onstru
tors) using resolution te
hniques [12℄. In the DLs CINB and

DLR [6, 5℄, a \role negation" 
onstru
tor is provided, whi
h, however, has a

non-standard semanti
s (i.e., it is role di�eren
e rather than role negation) and


annot be used to express 8C:R. In the �eld of modal logi
s, several logi
s

have been investigated whi
h are notational variants of DLs with role negation.

Examples are K extended with an ina

essibility modality [11℄ and PDL with

negation of programs [15℄.
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Surprisingly, to the best of our knowledge, the 
omplexity of DLs with role

negation or 
orresponding modal logi
s has never been investigated. In this

paper, we 
at
h up on this and determine the 
omplexity of (i) the extension

of ALC with role negation, (ii) the extension of ALC with transitive roles and

role negation, and (iii) the extension of ALC with role negation and all possible


ombinations of boolean 
onstru
tors of roles (where role negation may either

be unrestri
ted or restri
ted to role names). This paper is a

ompanied by a

te
hni
al report whi
h 
ontains all proofs and te
hni
al details [14℄. Note that

the te
hni
al report is not dis
ussing ALC with role negation, but the multi-

modal logi
 K

:

m

, whi
h is a notational variant.

2 Preliminaries

In this se
tion, we de�ne syntax and semanti
s of ALC

:

and dis
uss some model-

and 
omplexity-theoreti
 properties of this Des
ription Logi
.

De�nition 1 Let N

C

be a set of 
on
ept names and N

R

a set of role names.

The set of ALC

:

-roles is N

R

[ f:R j R 2 N

R

g. The set of ALC

:

-
on
epts is the

smallest set su
h that (i) every 
on
ept name is an ALC

:

-
on
ept, and, (ii) if

R is an ALC

:

-role and C and D are ALC

:

-
on
epts, then :C, C uD, C tD,

8R:C, and 9R:C are ALC

:

-
on
epts.

An interpretation I = (�

I

; �

I

) 
onsists of a set �

I

, 
alled the domain of I,

and a fun
tion �

I

whi
h maps every 
on
ept to a subset of �

I

and every role to

a subset of �

I

��

I

su
h that

(:R)

I

= �

I

��

I

nR

I

:C

I

= �

I

n C

I

;

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

;

(9R:C)

I

= fx 2 �

I

j There exists a y 2 �

I

with (x; y) 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if (x; y) 2 R

I

, then y 2 C

I

g:

A 
on
ept C is 
alled satis�able i� there is some interpretation I su
h that

C

I

6= ;. Su
h an interpretation is 
alled a model of C. A 
on
ept D subsumes

a 
on
ept C (written C v D) i� C

I

� D

I

holds for ea
h interpretation I. Two


on
epts are said to be equivalent (written C � D) if they mutually subsume

ea
h other.

It is well-known that, in the presen
e of 
on
ept negation, (un)satis�ability and

subsumption 
an be mutually redu
ed in 
onstant time, i.e., C v D i� C u :D

is unsatis�able and a 
on
ept C is satis�able i� not C v A u :A, where A is a


on
ept name. Hen
e, all 
omplexity results for satis�ability that are obtained in

this paper do also apply to subsumption. The semanti
s of the 8C:R 
onstru
tor

mentioned in the introdu
tion is

(8C:R)

I

= fx 2 �

I

j For all y 2 �

I

, y 2 C

I

implies (x; y) 2 R

I

g:
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It is easy to see that 8C:R � 8:R::C, and, hen
e, reasoning in ALC extended

with the 8C:R 
onstru
tor 
an be redu
ed to reasoning with ALC

:

.

It is not hard to show that the satis�ability of ALC

:

-
on
epts is ExpTime-

hard and in NExpTime: (i) The satis�ability of formulae of the modal logi
 K

u

,

i.e., uni-modalK enri
hed with the universal modality is known to be ExpTime-

hard [17℄, and 
an be redu
ed to the satis�ability of ALC

:

-
on
epts. We use the


ommon translation t from K-formulae to ALC-
on
epts (see, e.g., [16℄) and,

additionally, repla
e

� every o

urren
e of 2

u

:' by 8R:t(') ^ 8:R:t(') and

� every o

urren
e of 3

u

:' by 9R:t(') _ 9:R:t(')

where 2

u

and 3

u

denote the universal modality and R is an arbitrary role

name. Now this translation may 
learly lead to an exponential blowup in for-

mula/
on
ept size if 2

u

or 3

u

are nested in the input 
on
ept. However, in the

proof of ExpTime-hardness of K

u

[17℄, 2

u

o

urs only on
e. In this 
ase, the

translation is linear, and, thus, satis�ability of ALC

:

-
on
epts is ExpTime-hard;

(ii) it is well-known that there exists a linear, satis�ability-preserving translation

from ALC

:

into L

2

, the 2-variable fragment of �rst order logi
 [4℄. Sin
e L

2

is

de
idable in NExpTime [9℄, this implies that satis�ability of ALC

:

-
on
epts is

also in NExpTime. However, these two 
omplexity bounds are obviously not

tight. One main 
ontribution of this paper is to give an ExpTime-algorithm for

the satis�ability of ALC

:

-
on
epts, thus tightening the 
omplexity bounds.

For devising a satis�ability algorithm, it is interesting to know what kind of

models need to be 
onsidered. In [7℄, it is proved that the modal logi
 
ounterpart

of ALC

:

has the �nite model property. ALC

:

does not have the tree model

property sin
e, e.g., the 
on
ept Au8:R::A has no tree model: It is easy to see

that, for any x 2 (A u 8:R::A)

I

, we must have (x; x) 2 R

I

. However, we will

show that there exists a one-to-one 
orresponden
e between models and so-
alled

Hintikka-trees whi
h we then use to de
ide satis�ability (and thus subsumption)

of ALC

:

-
on
epts. We do this by building, for ea
h ALC

:

-
on
ept C, a B�u
hi-

automaton A

C

whi
h a

epts the empty (tree-)language i� C is unsatis�able.

Hen
e we introdu
e trees, B�u
hi-automata, and the language they a

ept here.

De�nition 2 Let M be a set and k � 1. A k-ary M-tree is a mapping

T : f1; : : : ; kg

�

7! M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2 M .

Intuitively, the node �i is the i-th 
hild of �. We use � to denote the empty

word (
orresponding to the root of the tree). A path in a k-ary M -tree is an

in�nite word over the alphabet f1; : : : ; kg.

A B�u
hi-automaton A = (Q;M; I;�; F ) for k-ary M -trees is de�ned by a

set Q of states, an alphabet M , a subset I � Q of initial states, a transition

relation � � Q�M �Q

k

, and a subset F � Q of a

epting states.
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A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

: A run r on T is a

epting i�, for ea
h path i

1

i

2

� � � in

T , the set fj j r(i

1

� � � i

j

) 2 Fg is in�nite.

A B�u
hi-automaton a

epts all those M -trees for whi
h an a

epting run

exists, i.e., the language L(A) of M -trees a

epted by A is

L(A) = fT j There is an a

epting run from A on Tg:

In [18℄, it is proved that the emptiness problem for B�u
hi-automata, i.e.,

the problem to de
ide whether the language L(A) a

epted by a given B�u
hi-

automaton A is empty, is de
idable in polynomial time.

3 ALC

:

is ExpTime-
omplete

We show that satis�ability of ALC

:

-
on
epts is de
idable in exponential time.

For this purpose, we �rst abstra
t from models of ALC

:

-
on
epts to Hintikka-

trees, and then show how to 
onstru
t a B�u
hi-automaton that a

epts exa
tly

Hintikka-trees.

Notation: We assume all 
on
epts to be in negation normal form (NNF), i.e.,

negation o

urs only in front of 
on
ept names and role names. Ea
h 
on
ept


an easily be transformed into an equivalent one in NNF by pushing negation

inwards, employing de Morgan's law and the duality between 8R:C and 9R:C.

We use

�

C to denote the NNF of :C.

Sin
e we treat negated and unnegated roles symmetri
ally, we introdu
e the

notion

9

�

R:C =

�

9:R:C if R is atomi
,

9S:C if R = :S for some atomi
 role S

and analogously 8

�

R:C. Let 
l(C) denote the set of C's sub
on
epts and NNFs

of their negations, i.e.,


l(C) := fD j D is a subformula of C or

D =

�

E for a subformula E of Cg:

We assume that existential 
on
epts 9R:D in 
l(C) are linearly ordered, and

that

E

(i) yields the i-th existential 
on
ept in 
l(C).

De�nition 3 (Hintikka-set and Hintikka-tree) Let C be anALC

:

-
on
ept

and k the number of existential 
on
epts in 
l(C). A set 	 � 
l(C) is a Hintikka-

set i� it satis�es the following 
onditions:
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(H1) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H2) if C

1

t C

2

2 	, then fC

1

; C

2

g \ 	 6= ;,

(H3) fC;

�

Cg 6� 	 for all ALC

:

-
on
epts C.

A k-ary 2


l(C)

-tree T is a Hintikka-tree for C i� T (�) is a Hintikka-set for ea
h

node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

, the following


onditions:

(H4) C 2 T (�),

(H5) if f9R:D; 8R:E

1

; : : : ; 8R:E

m

g � T (�) and

E

(i) = 9R:D,

then fD;E

1

; : : : ; E

m

g � T (�i)

(H6) if

E

(i) 62 T (�), then T (�i) = ;,

(H7) if 8R:D 2 T (�), then D 2 T (�),

�

D 2 T (�), or T (�) = ;,

(H8) if f8R:D; 8

�

R:Eg � T (�) and

�

D 2 T (�), then E 2 T (�).

In (H5), (H7), and (H8), R denotes role names and also negations of roles.

Obviously, the empty set is also a Hintikka-set. The following lemma shows the


onne
tion between models and Hintikka trees.

Lemma 4 An ALC

:

-
on
ept C is satis�able i� C has a Hintikka-tree.

Proof: Let C be an ALC

:

-
on
ept using role names R

1

; : : : ; R

m

and let there

be k existential 
on
epts in 
l(C).

\(" Let T be a Hintikka-tree for C. We de�ne an interpretation I = (�

I

; �

I

)

as follows:

�

I

= f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

A

I

= f� j A 2 T (�)g for all 
on
ept names A

R

I

= f(�; �) j � = �j and E(j) = 9R:D 2 T (�)g [

f(�; �) j 8:R:D 2 T (�) and

�

D 2 T (�)g for all role names R

To show that there exists an x 2 �

I

su
h that x 2 C

I

, we �rst prove the

following 
laim:

Claim: D 2 T (�) implies � 2 D

I

for all � 2 �

I

and D 2 
l(C).

The 
laim is proved by indu
tion over the stru
ture of D. The indu
tion start,

i.e., the 
ase that D is a 
on
ept name, is an immediate 
onsequen
e of the

de�nition of I. For the indu
tion step, we make a 
ase distin
tion a

ording to

the topmost 
onstru
tor in D. Assume D 2 T (�).

� D = :E. Sin
e C is in NNF (by the de�nition of Hintikka-sets and 
l),

E is a 
on
ept name. By de�nition of I and sin
e T (�) is a Hintikka-set

and thus satis�es (H3), we have � 2 (:E)

I

.
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� D = C

1

u C

2

or D = C

1

t C

2

. Straightforward by (H1) and (H2) of

Hintikka-sets and by indu
tion hypothesis.

� D = 9R:E = E(j) for a j with 1 � j � k. First assume that R is a role.

By de�nition of R

I

, we have (�; �j) 2 R

I

. By (H5), 9R:E 2 T (�) implies

E 2 T (�j). By indu
tion, �j 2 E

I

, and, hen
e, � 2 (9R:E)

I

.

Now assume that R = :S for a role name S. We show that (�; �j) =2 S

I

,

for, if we have done this, � 2 (9R:E)

I

follows as in the previous 
ase

(where R is a 
on
ept name). Assume to the 
ontrary that (�; �j) 2 S

I

.

Then, by de�nition of S

I

, we have either

1. E(j) = 9S:E

0

2 T (�), or

2. 8:S:E

0

2 T (�) and

�

E

0

2 T (�j)

where E

0

2 
l('). In the �rst 
ase, we have a 
ontradi
tion to the assump-

tion E(j) = 9:S:E. In the se
ond 
ase, we have f9:S:E; 8:S:E

0

g � T (�)

whi
h, by (H5), implies fE;E

0

g � T (�j). Sin
e we also know that

�

E

0

2 T (�j), we obtain a 
ontradi
tion to (H3) of Hintikka-sets and 
on-


lude that (�; �j) =2 S

I

.

� D = 8R:E. First assume that R is a role name and �x a � su
h that

(�; �) 2 R

I

. By de�nition of R

I

, we have to distinguish two 
ases:

1. � = �j and E(j) = 9R:E

0

2 T (�), or

2. 8:R:E

0

2 T (�) and

�

E

0

2 T (�)

In the �rst 
ase, we have f9R:E

0

; 8R:Eg � T (�) whi
h, by (H5), implies

fE;E

0

g � T (�j). By indu
tion, we obtain � 2 E

I

. In the se
ond 
ase,

we have f8R:E; 8:R:E

0

g � T (�) and

�

E

0

2 T (�). By (H8), we have

E 2 T (�), and, by indu
tion, � 2 E

I

. Sin
e this holds independently of

the 
hoi
e of �, we 
on
lude � 2 (8R:E)

I

.

Now assume that R = :S for a role name S. Fix a � su
h that (�; �) =2 S

I

.

Sin
e � 2 �

I

, we have that T (�) 6= ;. Hen
e, by (H7), we have E 2 T (�)

or

�

E 2 T (�). However,

�

E 2 T (�) would imply (�; �) 2 S

I

by de�nition of

S

I

, whi
h is a 
ontradi
tion to our 
hoi
e of �. Hen
e we dedu
e E 2 T (�).

By indu
tion, we obtain � 2 E

I

. Sin
e this holds independently of the


hoi
e of �, we 
on
lude � 2 (8:S:E)

I

.

This 
ompletes the proof of the 
laim. Sin
e C 2 T (�) by (H4), it is an imme-

diate 
onsequen
e of the 
laim that I is a model of C.

\)" Let I = (�

I

; �

I

) be a model of C, i.e., there exists an x

0

2 �

I

with

x

0

2 C

I

. We de�ne a Hintikka-tree for C (i.e., a Hintikka-set label T (�) for
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ea
h � 2 f1; : : : ; kg

�

). To do this, we indu
tively de�ne a mapping � from

f1; : : : ; kg

�

to �

I

[ f?g in su
h a way that

T (�) =

�

fD 2 
l(C) j �(�) 2 D

I

g if �(�) 6= ?

; otherwise

(�)

For the indu
tion start, set

�(�) := x

0

T (�) := fD 2 
l(C) j x

0

2 D

I

g

Now for the indu
tion step. Let � 2 f1; : : : ; kg

�

su
h that �(�) is already

de�ned, and let i 2 f1; : : : ; kg. We make a 
ase distin
tion as follows:

1. �(�) 6= ? and E(i) = 9R:D 2 T (�). By (�), we have �(�) 2 (9R:D)

I

whi
h implies the existen
e of a domain obje
t x 2 �

I

su
h that (�(�); x) 2

R

I

and x 2 D

I

. Choose su
h an x and de�ne �(�i) := x and T (�i) :=

fE 2 
l(C) j x 2 E

I

g.

2. if �; i do not mat
h the above 
ase, set �(�i) = ? and T (�i) = ;.

By de�nition, T and � satisfy (�). We need to prove that the k-ary 2


l(C)

-tree

T just de�ned is a Hintikka-tree for C. From the semanti
s of ALC

:

and the

de�nition of 
l, it is 
lear that T (�) is a Hintikka-set for ea
h � 2 f1; : : : ; kg

�

.

Hen
e, it remains to show that T satis�es (H4) to (H8).

(H4) Satis�ed by de�nition of T (see indu
tion start).

(H5) Let f9R:D; 8R:E

1

; : : : ; 8R:E

m

g � T (�) and E(i) = 9R:D. By (�), we

have �(�) 6= ? and �(�) 2 (9R:D u 8R:E

1

u � � � u 8R:E

m

)

I

. By de�nition

of � (indu
tion step, �rst 
ase), we have �(�i) = x for some x 2 �

I

, with

(�(�); x) 2 R

I

, and x 2 D

I

. Moreover, the semanti
s of ALC

:

implies

x 2 (E

1

u � � � uE

m

)

I

, and, by (�), we thus have fD;E

1

; : : : ; E

m

g � T (�i).

(H6) Satis�ed by de�nition of T (see indu
tion step, se
ond 
ase).

(H7) Let 8R:D 2 T (�) and �x a � 2 f1; : : : ; kg

�

. If �(�) = ?, then we have

T (�) = ; by (�) and (H7) is satis�ed. If �(�) 6= ?, then �(�) 2 �

I

and

we have either �(�) 2 D

I

or �(�) 2

�

D

I

. Again, (�) implies that (H7) is

satis�ed.

(H8) Assume f8R:E; 8

�

R:Dg � T (�) and

�

E 2 T (�). By (�), we have �(�) 2

(8R:E u 8

�

R:D)

I

and �(�) 2

�

E

I

. This implies (�(�); �(�)) 2

�

R

I

sin
e

1. we have either (�(�); �(�)) 2 R

I

or (�(�); �(�)) 2

�

R

I

and

2. (�(�); �(�)) 2 R

I

is impossible sin
e �(�) 2 (8R:E)

I

and �(�) 2

�

E

I

.
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Hen
e, due to the semanti
s of ALC

:

, we have �(�) 2 D

I

, whi
h, by (�),

implies D 2 T (�).

❏

The lemma shows that Hintikka-trees are appropriate abstra
tions of models of

ALC

:

-
on
epts. Hintikka-trees enjoy the ni
e property that they are trees, and

we 
an thus de�ne, for an ALC

:

-
on
ept C, a tree-automaton A

C

that a

epts

exa
tly the Hintikka-trees for C.

De�nition 5 For an ALC

:

-
on
ept C with k existential 
on
epts in 
l(C), the

B�u
hi-automaton A

C

= (Q; 2


l(C)

;�; I; Q) is de�ned as follows:

� Q � f	 2 2


l(C)

j 	 is a Hintikka-setg � 2

P

� 2

S

where

P = ff8R:D; 8

�

R:Eg j 8R:D; 8

�

R:E 2 
l(C)g;

S = f8R:D j 8R:D 2 
l(C)g;

and ea
h (	; p; s) 2 Q satis�es

1. if f8R:D; 8

�

R:Eg 2 p and

�

D 2 	, then E 2 	,

2. if 8R:D 2 s, then 	 = ; or fD;

�

Dg \ 	 6= ;,

3. if 8R:D 2 	, then 8R:D 2 s, and

4. if f8R:D; 8

�

R:Eg � 	, then f8R:D; 8

�

R:Eg 2 p.

� I = f(	; p; s) j C 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

E

(i) = 9R:D 2 	, then D 2 	

i

and E 2 	

i

for ea
h 8R:E 2 	 and

if

E

(i) = 9R:D 62 	, then 	

i

= ;:

As a 
onsequen
e of the following lemma and Lemma 4, we 
an redu
e satis�a-

bility of ALC

:

-
on
epts to the emptiness problem for B�u
hi-automata.

Lemma 6 T is a Hintikka-tree for an ALC

:

-
on
ept C i� T 2 L(A

C

).

Proof sket
h: Let C be an ALC

:

-
on
ept and k, A

C

as in De�nition 5.

\)" Let T be Hintikka-tree for C. We prove that there is an a

epting run of

A

C

on T . First, de�ne

p := ff8R:D; 8

�

R:Eg j There is a node � in T with f8R:D; 8

�

R:Eg � T (�)g

s := f8R:D j There is a node � in T with 8R:D 2 T (�)g

We 
an show that r(�) = (T (�); p; s) is an a

epting run of A

C

on T . By de�ni-

tion, r is de�ned for ea
h � 2 f1; : : : ; kg

�

. Furthermore, using the Properties of

Hintikka trees, it is straightforward to show that the following three 
onditions

hold:

8



1. r(�) 2 Q,

2. r(�) 2 I, and

3. ((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�

k

); p; s)) 2 �.

\(" Let T 2 L(A

C

) and r be an a

epting run of A

C

on T . It 
an be proved

that T is a Hintikka-tree for C. By de�nition of A

C

, T is a k-ary 2


l(C)

-tree, and

r(�) = (	

�

; p

�

; s

�

) implies 	

�

= T (�) by de�nition of �. Hen
e, by de�nition

of Q, ea
h node in T is labelled with a Hintikka-set. It remains to prove that T

satis�ed (H4) to (H8). This is straightforward using the de�nitions of B�u
hi-

automata, A

C

, and a

epting runs. ❏

What is the size of B�u
hi-automata A

C

= (Q

C

;M

C

; I

C

;�

C

; F

C

)? Obviously,

the 
ardinality of 
l(C) is linear in the length of C. Hen
e, by de�nition of

A

C

, the 
ardinality of Q

C

and M

C

are exponential in the length of C. Again

by de�nition of A

C

, this implies that the 
ardinalities of I

C

, �

C

, and F

C

are

also exponential in the length of C. Hen
e the size of A

C

is exponential in the

length of C. This fa
t together with Lemma 4, Lemma 6, and the fa
t that

emptiness of the language a

epted by a B�u
hi-automaton A

C


an be tested

in time polynomial in the size of A

C

[18℄, we have that satis�ability of ALC

:

-


on
epts is in ExpTime. We already noted in Se
tion 2 that satis�ability of

ALC

:

-
on
epts is also ExpTime-hard. Hen
e, we obtain the following theorem:

Theorem 7 Satis�ability of ALC

:

-
on
epts is ExpTime-
omplete.

Many Des
ription Logi
s provide roles with 
ertain properties, the most promi-

nent property being transitivity. It is hen
e an interesting question whether

the obtained result generalises to ALC

:

with transitive roles. More pre
isely,

the DL S

:

(generalizing the DL S de�ned in [10℄) is obtained from ALC

:

as

follows: Assume that N

t

is a subset of the set of role names N

R

. Elements of

N

t

are 
alled transitive roles. An S

:

interpretation is an ALC

:

interpretation

whi
h interprets ea
h R 2 N

t

as a transitive relation R

I

� �

I

��

I

. To de�ne

Hintikka trees for S

:

, we need to introdu
e 
ounterparts for (H5) and (H8)

whi
h deal with transitive roles. These additional two properties need then to

be re
e
ted in the de�nition of the 
orresponding B�u
hi-automata. Using these

modi�ed de�nitions, the following result 
an be proved analogously to the proof

of Theorem 7 (see [14℄ for details).

Theorem 8 Satis�ability of S

:

-
on
epts is ExpTime-
omplete.

4 Adding Interse
tion and Union of Roles

In this se
tion, we investigate the 
omplexity of adding the standard DL role


onstru
tors interse
tion and union of roles to the logi
ALC

:

. In doing this, one

9



has the 
hoi
e to either restri
t the appli
ability of negation to atomi
 roles or

allowing for full negation w.r.t. roles. In the latter 
ase, adding union is obviously

equivalent to adding interse
tion or both. We start with the smallest extension,

i.e., we add either interse
tion or union of roles while restri
ting negation to role

names.

De�nition 9 An ALC

(:);t

-
on
ept is an ALC

:

-
on
ept whi
h, additionally, al-

lows for roles of the form R

1

t � � � t R

k

, where ea
h R

i

is an ALC

:

-role. An

ALC

(:);u

-
on
ept is an ALC

:

-
on
ept whi
h, additionally, allows for roles of the

form R

1

u � � � u R

k

, where ea
h R

i

is an ALC

:

-role. The semanti
s of the new

roles is de�ned as follows:

(R

1

t � � � t R

k

)

I

= R

I

1

[ � � � [R

I

k

(R

1

u � � � u R

k

)

I

= R

I

1

\ � � � \R

I

k

Let us �rst investigate the logi
 ALC

(:);t

. It is not hard to see that

8R

1

t � � � t R

k

:C � 8R

1

:C u � � � u 8R

k

:C and

9R

1

t � � � t R

k

:C � 9R

1

:C t � � � t 8R

k

:C;

i.e., satis�ability ofALC

(:);t

-
on
epts 
an be linearly redu
ed to the satis�ability

of ALC

:

-
on
epts whi
h gives the following result:

Theorem 10 Satis�ability of ALC

(:);t

-
on
epts is ExpTime-
omplete.

Next, we will show that the satis�ability of ALC

(:);u

-
on
epts is NExpTime-

hard. The proof is given by a redu
tion of a NExpTime-
omplete variant of the

well-known, unde
idable domino problem.

A domino problem [2, 13℄ is given by a �nite set of domino types. All domino

types are of the same size, ea
h type has a quadrati
 shape and 
olored edges.

Of ea
h type, an unlimited number of dominoe is available. The problem in the

original domino problem is to arrange these dominoe to 
over the plane without

holes or overlapping, su
h that adja
ent dominoe have identi
al 
olors on their

tou
hing edges (rotation of the dominoe is not allowed). In the NExpTime-


omplete variant of the domino problem that we use, the task is not to tile the

whole plane, but to tile a 2

n+1

� 2

n+1

-torus, i.e., a 2

n+1

� 2

n+1

-re
tangle whose

edges are \glued" together. See, e.g., [2, 13℄ for unde
idable versions of the

domino problem and [3℄ for bounded variants.

De�nition 11 Let D = (D;H; V ) be a domino system, where D is a �nite set of

domino types and H; V � D�D represent the horizontal and verti
al mat
hing


onditions. For s; t 2 N , let U(s; t) be the torus Z

s

� Z

t

, where Z

n

denotes the

set f0; : : : ; n� 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe (with n � s).

We say that D tiles U(s; t) with initial 
ondition a i� there exists a mapping

� : U(s; t)! D su
h that, for all (x; y) 2 U(s; t):

10



� if �(x; y) = d and �(x�

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Su
h a mapping � is 
alled a solution for

D w.r.t. a.

The following is a 
onsequen
e of Theorem 6.1.2 in [3℄ (see also [14℄).

Theorem 12 There exists a domino system D su
h that the following is a

NExpTime-hard problem: Given an initial 
ondition a = a

0

� � �a

n�1

of length n,

does D tile the torus U(2

n+1

; 2

n+1

) with initial 
ondition a?

We redu
e the NExpTime-
omplete variant of the domino problem from The-

orem 12 to the satis�ability of ALC

(:);u

-
on
epts. Given a domino system

D = (D;H; V ) and an initial 
ondition a = a

0

; : : : ; a

n�1

, we de�ne a redu
tion


on
ept C

(D;a)

su
h that C

(D;a)

is satis�able i� D tiles the torus U(2

n+1

; 2

n+1

)

with initial 
ondition a. The redu
tion 
on
ept C

(D;a)


an be found in Figure 2.

In this �gure, 8C is an abbreviation for 8R:C ^8:R:C, where R is an arbitrary

role name. Obviously, in ea
h model I of 8C, we have C

I

= �

I

. Furthermore,

we write 8R

n

:C to denote 8R : : :8R

| {z }

n times

:C.

The strategy of the redu
tion is to de�ne the redu
tion 
on
ept C

(D;a)

su
h

that, for every model I of C

(D;a)

with domain �

I

,

1. there exists a 
on
ept name A

d

for every domino type d 2 D su
h that

ea
h x 2 �

I

is in the extension of A

d

for exa
tly one d 2 D (�rst line of

Tiling),

2. for ea
h point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a 
orresponding

set of domain obje
ts fx

1

; : : : ; x

k

g � �

I

with k � 1 and a d 2 D su
h

that all x

1

; : : : ; x

k

are in the extension of A

d

(Count

x

, Count

y

, Stable, and

Unique 
on
epts)

3. the horizontal and verti
al 
onditions V and H are satis�ed w.r.t. sets of

worlds representing points in the plane (se
ond and third line of Tiling),

and

4. the initial 
ondition is satis�ed (Init).

Properties 1, 3, and 4 are enfor
ed in a standard way using ALC 
on
epts to-

gether with the 8C 
onstru
tor introdu
ed above. Property 2, however, needs

some explanation. Usually, domino-redu
tions axiomatize a \grid" in order to


apture the stru
ture of the torus. As Property 2 indi
ates, we employ a di�er-

ent strategy: Ea
h world in ea
h model of C

(D;a)


orresponds to a point (i; j) in

11



atomi
 negation full negation

� ExpTime-
omplete

t ExpTime-
omplete NExpTime-
omplete

u NExpTime-
omplete NExpTime-
omplete

u and t NExpTime-
omplete NExpTime-
omplete

Figure 1: Complexity of ALC extended with various role 
onstru
tors.

the torus. The number i is binarily en
oded by the 
on
ept names X

0

; : : : ; X

n

while the number j is en
oded by the 
on
ept names Y

0

; : : : ; Y

n

. We use stan-

dard binary in
rementation modulo 2

n+1

to ensure that, for every domain ob-

je
t x 
orresponding to a position (i; j), there exists an obje
t y

1

su
h that y

1


orresponds to (i �

2

n+1

1; j) and (x; y

1

) 2 R

I

x

, and an obje
t y

2

su
h that y

2


orresponds to (i; j �

2

n+1

1) and (y; y

2

) 2 R

I

y

. The Count

x

and Count

y


on
epts

en
ode the in
rementation of the one dimension while the Stable 
on
ept en-

sures that the other dimension does not 
hange. It remains to guarantee that

every two domain obje
ts 
orresponding to the same position are labeled with

the same domino. This task is a

omplished by the Unique 
on
ept whi
h is the

only one to use negation and 
onjun
tion of roles (not nested, though). In order

to understand the Unique 
on
ept, it may be helpful to read sub
on
epts of the

form 8:R::C as 8C:R.

Proposition 13 A domino system D tiles the torus U(2

n+1

; 2

n+1

) with initial


ondition a = a

0

; : : : ; a

n�1

i� C

(D;a)

is satis�able.

Together with Theorem 12, we obtain the desired result.

Theorem 14 Satis�ability of ALC

(:);u

-
on
epts is NExpTime-hard.

Instead of giving an upper bound for ALC

(:);u

, we give an upper bound for the

logi
 ALC

:;u;t

, i.e., the extension of ALC

:

by union and interse
tion allowing

for full negation of roles with the obvious syntax and semanti
s: The translation

of ALC

:

-
on
epts to L

2

-formulae mentioned in Se
tion 2 
an also be applied to

ALC

:;u;t

-
on
epts.

Corollary 15 Satis�ability of ALC

:;u;t

-
on
epts is in NExpTime.

Figure 1 summarizes the 
omplexity results obtained in this paper (omitting the

results for S

:

).
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Count

x
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h

n

u

k=0

�

(

k�1

u

j=0

X

j
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k
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x
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�

(
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�
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k

) u (:X

k
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k
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k

)

�

u

n

u
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�

(Y

k

! 8:S

k

::Y

k

) u (:Y

k

! 8:S

k

:Y

k

)

�

u

u

d2D

A

d

! 8R

0

u � � � u R

n

u S

0

u � � � u S

n

:A

d

i

Tiling = 8

h

( t

d2D

A

d

) u u

d2D

u

d

0

2Dnfdg

:(A

d

u A

d

0

) u

u

d2D

A

d

!

�

8R

x

: t

(d;d

0

)2H

p

d

0

�

u

u

d2D

A

d

!

�

8R

y

: t

(d;d

0

)2G

A

d

0

��

Init =

n

u

k=0

(:X

i

u :Y

i

) u A

w

0

u 8R

x

:A

w

1

u � � � u 8R

n�1

x

:A

w

n�1

C

(D;a)

= Count

x

u Count

y

u Stable u Unique u Tiling u Init

Figure 2: The ALC

(:);u


on
ept C

(D;a)

for D = (D;H; V ) and a = a

0

; : : : ; a

n�1

.
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