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1 Introduction

Most Description Logics (DLs) provide universal value restrictions which allow to
make universal statements about domain objects. For example, we can express
that an object, say Mary, likes only cats by asserting that Mary is an instance
of Vlikes.Cat. However, using universal value restrictions, we cannot express the
symmetric fact that Mary likes all cats. This kind of expressiveness is provided
by the DL-equivalent YC.R of the modal logic “window” operator [7]: Asserting
that Mary is an instance of VCat.likes guarantees that each instance of Cat is
associated to Mary via the role likes. Such a constructor was suggested in, e.g.,
[8] for knowledge representation.

The VC.R constructor is closely related to negation of roles since V-R.-C
is equivalent to VC.R. Thus, negation of roles can also be used to express
that Mary likes all cats. Moreover, role negation is of interest since (1) we
can internalize general concept inclusion axioms C' T D (see [1, 16]) using the
concept (VR.—C U D) M (V=R.—~C U D), and (2) ALC looses the tree model
property when extended with role negation which means that ALC with role
negation offers expressivity which is not provided by most other Description
Logics.

Although role negation is a boolean operation on roles and can be viewed
as a “standard” DL constructor, there seem to exist only few DLs with role
negation. One example of such a logic is given by Hustadt and Schmidt, who
show decidability of ALB (an extension of ALC with role negation and several
other constructors) using resolution techniques [12]. In the DLs CZNB and
DLR [6, 5], a “role negation” constructor is provided, which, however, has a
non-standard semantics (i.e., it is role difference rather than role negation) and
cannot be used to express VC.R. In the field of modal logics, several logics
have been investigated which are notational variants of DLs with role negation.
Examples are K extended with an inaccessibility modality [11] and PDL with
negation of programs [15].



Surprisingly, to the best of our knowledge, the complexity of DLs with role
negation or corresponding modal logics has never been investigated. In this
paper, we catch up on this and determine the complexity of (i) the extension
of ALC with role negation, (ii) the extension of ALC with transitive roles and
role negation, and (iii) the extension of ALC with role negation and all possible
combinations of boolean constructors of roles (where role negation may either
be unrestricted or restricted to role names). This paper is accompanied by a
technical report which contains all proofs and technical details [14]. Note that
the technical report is not discussing ALC with role negation, but the multi-
modal logic K, which is a notational variant.

2 Preliminaries

In this section, we define syntax and semantics of ALC™ and discuss some model-
and complexity-theoretic properties of this Description Logic.

Definition 1 Let N¢ be a set of concept names and Ngr a set of role names.
The set of ALC -roles is Np U{=R | R € Nr}. The set of ALC -concepts is the
smallest set such that (i) every concept name is an ALC -concept, and, (ii) if
R is an ALC -role and C and D are ALC -concepts, then =C, C' 11 D, C' U D,
VR.C, and dR.C are ALC -concepts.

An interpretation Z = (A7, -7) consists of a set AZ, called the domain of Z,
and a function -Z which maps every concept to a subset of AZ and every role to
a subset of AT x AZ such that

(=R)T = AT x AT\ R 0T = AT\ (F,
(Crn D)t =C*n D, (Cu D)t =C*uD?,
(3R.C)* = {x € AT | There exists a y € AT with (z,y) € R and y € C?},
(VR.C)F = {x € AT |Forall y € AL, if (z,y) € R%, then y € C*}.

A concept C is called satisfiable iff there is some interpretation Z such that
CT # (. Such an interpretation is called a model of C. A concept D subsumes
a concept C' (written C' C D) iff C* C D7 holds for each interpretation Z. Two
concepts are said to be equivalent (written C' = D) if they mutually subsume
each other.

It is well-known that, in the presence of concept negation, (un)satisfiability and
subsumption can be mutually reduced in constant time, i.e., C C D iff C 11 =D
is unsatisfiable and a concept C' is satisfiable iff not C C A —A, where A is a
concept name. Hence, all complexity results for satisfiability that are obtained in
this paper do also apply to subsumption. The semantics of the VC'. R constructor
mentioned in the introduction is

(VC.R)F = {x € AT | For all y € AT, y € CT implies (z,y) € R*}.
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It is easy to see that VC.R = V- R.—C, and, hence, reasoning in ALC extended
with the VC.R constructor can be reduced to reasoning with ALC™.

It is not hard to show that the satisfiability of ALC -concepts is ExpTime-
hard and in NExpTime: (i) The satisfiability of formulae of the modal logic K",
i.e., uni-modal K enriched with the universal modality is known to be ExpTime-
hard [17], and can be reduced to the satisfiability of ALC -concepts. We use the
common translation ¢ from K-formulae to ALC-concepts (see, e.g., [16]) and,
additionally, replace

e every occurrence of O,.¢ by VR.t(p) AV-R.t(¢) and
e every occurrence of Oy.¢ by AR.t(p) V I-R.t(p)

where O, and <, denote the universal modality and R is an arbitrary role
name. Now this translation may clearly lead to an exponential blowup in for-
mula/concept size if O, or ¢, are nested in the input concept. However, in the
proof of ExpTime-hardness of K* [17], O, occurs only once. In this case, the
translation is linear, and, thus, satisfiability of ALC -concepts is ExpTime-hard;
(ii) it is well-known that there exists a linear, satisfiability-preserving translation
from ALC™ into L?, the 2-variable fragment of first order logic [4]. Since L? is
decidable in NExpTime [9], this implies that satisfiability of ALC -concepts is
also in NExpTime. However, these two complexity bounds are obviously not
tight. One main contribution of this paper is to give an ExpTime-algorithm for
the satisfiability of ALC -concepts, thus tightening the complexity bounds.
For devising a satisfiability algorithm, it is interesting to know what kind of
models need to be considered. In [7], it is proved that the modal logic counterpart
of ALC™ has the finite model property. ALC™ does not have the tree model
property since, e.g., the concept AMV—R.—A has no tree model: It is easy to see
that, for any x € (AN V-R.—A)%, we must have (z,z) € R*. However, we will
show that there exists a one-to-one correspondence between models and so-called
Hintikka-trees which we then use to decide satisfiability (and thus subsumption)
of ALC -concepts. We do this by building, for each ALC -concept C, a Biichi-
automaton Ac which accepts the empty (tree-)language iff C' is unsatisfiable.
Hence we introduce trees, Biichi-automata, and the language they accept here.

Definition 2 Tet M be a set and £k > 1. A k-ary M-tree is a mapping
T:{1,...,k}* — M that labels each node o € {1,...,k}* with T'(o) € M.
Intuitively, the node «i is the i-th child of a. We use € to denote the empty
word (corresponding to the root of the tree). A path in a k-ary M-tree is an
infinite word over the alphabet {1,..., k}.

A Biichi-automaton A = (Q,M,I, A, F) for k-ary M-trees is defined by a
set () of states, an alphabet M, a subset I C () of initial states, a transition
relation A C Q x M x Q%, and a subset F' C Q of accepting states.



A run of A on an M-tree T is a mapping r: {1,... ,k}* — @ with
(r(a), T(a),r(al),...,r(ak)) € A

for each v € {1,... ,k}*. A run r on T is accepting iff, for each path iyiy--- in
T, the set {j | r(iy---4;) € F'} is infinite.

A Biichi-automaton accepts all those M-trees for which an accepting run
exists, i.e., the language L(A) of M-trees accepted by A is

L(A) = {T | There is an accepting run from A on T'}.

In [18], it is proved that the emptiness problem for Biichi-automata, i.e.,
the problem to decide whether the language L(.A) accepted by a given Biichi-
automaton A is empty, is decidable in polynomial time.

3 ALC is ExpTime-complete

We show that satisfiability of ALC -concepts is decidable in exponential time.
For this purpose, we first abstract from models of ALC -concepts to Hintikka-
trees, and then show how to construct a Biichi-automaton that accepts exactly
Hintikka-trees.

Notation: We assume all concepts to be in negation normal form (NNF), i.e.,
negation occurs only in front of concept names and role names. Each concept
can easily be transformed into an equivalent one in NNF by pushing negation
inwards, employing de Morgan’s law and the duality between VR.C' and dR.C.
We use C' to denote the NNF of —C.

Since we treat negated and unnegated roles symmetrically, we introduce the

notion
J=R.C' if R is atomic,

dR.C = { 35.C if R = =S for some atomic role S

and analogously VR.C. Let cl(C) denote the set of C’s subconcepts and NNFs
of their negations, i.e.,

c(C):={D| D is a subformula of C or
D = E for a subformula E of C'}.

We assume that existential concepts dR.D in cl(C) are linearly ordered, and
that £(7) yields the i-th existential concept in cl(C).

Definition 3 (Hintikka-set and Hintikka-tree) Let C' be an ALC -concept
and k the number of existential concepts in cl(C'). A set ¥ C cl(C) is a Hintikka-
set iff it satisfies the following conditions:
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(H].) ifCinc,; e v, then {Cl, CQ} cCvy,
(H2) if Cl LI 02 € ‘I’, then {Cl, 02} Nnw 7£ @,
(H3) {C,C} € W for all ALC -concepts C.

A k-ary 29 -tree T is a Hintikka-tree for C iff T(a) is a Hintikka-set for each
node « in T, and T satisfies, for all nodes «, 5 € {1,...,k}*, the following
conditions:
(H4) C € T(e),
(H5) if {3R.D,YR.E,,... ,VR.E,} C T(a) and £(i) = 3R.D,
then {D, Ey,... ,E,} C T(«ai)
(H6) if £(i) € T(a), then T(ai) = 0,
(H7) if VR.D € T(«), then D € T(B), D € T(B3), or T(3) = 0,
(H8) if {VR.D,VR.E} C T(a)) and D € T(f), then E € T(p).
In (H5), (H7), and (H8), R denotes role names and also negations of roles.

Obviously, the empty set is also a Hintikka-set. The following lemma shows the
connection between models and Hintikka trees.

Lemma 4 An ALC -concept C' is satisfiable iff C' has a Hintikka-tree.

Proof: Let C' be an ALC -concept using role names Ry, ..., R,, and let there
be k existential concepts in cl(C').

“c” Let T be a Hintikka-tree for C. We define an interpretation Z = (A%, %)
as follows:

AT = {ae{l,....k} | T(a) # 0}
AT {a| A€ T(a)} for all concept names A
R = {(a,B)|B=ajand £(j) =3R.D € T(a)} U
{(o, B) | V=R.D € T(c) and D € T(3)} for all role names R

To show that there exists an z € A such that x € CZ, we first prove the
following claim:

Claim: D € T(a) implies a € D* for all « € AT and D € cl(C).

The claim is proved by induction over the structure of D. The induction start,
i.e., the case that D is a concept name, is an immediate consequence of the
definition of Z. For the induction step, we make a case distinction according to
the topmost constructor in D. Assume D € T'(a).

e D = —E. Since C is in NNF (by the definition of Hintikka-sets and cl),
E is a concept name. By definition of Z and since T'(«) is a Hintikka-set
and thus satisfies (H3), we have a € (=FE)~.
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e D=C,NCyor D= C)UC, Straightforward by (H1) and (H2) of
Hintikka-sets and by induction hypothesis.

e D=3R.E =E&(j) for a j with 1 < j < k. First assume that R is a role.
By definition of RZ, we have (o, aj) € RZ. By (H5), 3R.E € T(«a) implies
FE € T(aj). By induction, aj € E%, and, hence, o € (IR.E)~.

Now assume that R = =S for a role name S. We show that (o, aj) ¢ SZ,
for, if we have done this, a € (IR.E)* follows as in the previous case
(where R is a concept name). Assume to the contrary that (o, aj) € S*.
Then, by definition of SZ, we have either

1. £(j) =3S.E' € T(a), or
2. V-S.E' € T(a) and E' € T(arj)

where E' € cl(g). In the first case, we have a contradiction to the assump-
tion £(j) = 3-S.E. In the second case, we have {3-S.E,V=S.E'} C T(«)
which, by (H5), implies {E,E'} C T(ayj). Since we also know that
E'" € T(aj), we obtain a contradiction to (H3) of Hintikka-sets and con-
clude that (o, aj) ¢ ST.

e D = VR.E. First assume that R is a role name and fix a ( such that
(o, B) € R*. By definition of R%, we have to distinguish two cases:

1. f=ajand £(j) =3R.E' € T(w), or
2. V=R.E' € T(a) and E' € T(J)

In the first case, we have {3R.E',VR.E} C T'(«) which, by (H5), implies
{E,E'} C T(aj). By induction, we obtain 3 € EZ. In the second case,
we have {VR.E,V-R.E'} C T(a) and E' € T(3). By (H8), we have
E € T(B), and, by induction, 3 € EZ. Since this holds independently of
the choice of 3, we conclude o € (VR.E)T.

Now assume that R = —S for a role name S. Fix a 3 such that («, 3) ¢ SZ.
Since 8 € AT, we have that T'(3) # (). Hence, by (HT7), we have E € T'(3)
or E € T(B). However, E € T(3) would imply («, 3) € ST by definition of
SZ, which is a contradiction to our choice of 3. Hence we deduce F € T(3).
By induction, we obtain 3 € EZ. Since this holds independently of the
choice of 3, we conclude o € (V=S.E)%.

This completes the proof of the claim. Since C' € T'(¢) by (H4), it is an imme-
diate consequence of the claim that Z is a model of C'.

“=” Tet T = (AZ%,-7) be a model of C, i.e., there exists an zy € A? with
zg € CT. We define a Hintikka-tree for C' (i.e., a Hintikka-set label T'(«) for



each « € {1,...,k}*). To do this, we inductively define a mapping 7 from
{1,...,k}* to AT U{L} in such a way that

For the induction start, set

T(e) =

T(e) := {DedC) |z € D"}

Now for the induction step. Let a € {1,...,k}* such that 7(a) is already
defined, and let i € {1,...,k}. We make a case distinction as follows:

1. 7(a) # L and £(i) = dR.D € T(a). By (x), we have 7(a) € (IR.D)*
which implies the existence of a domain object x € A% such that (7(a), z) €
R% and x € D*. Choose such an z and define 7(ai) := x and T'(i) :=
{E €d(C) |z € E*}.

2. if o, 7 do not match the above case, set 7(ai) = L and T'(«i) = 0.

By definition, T and 7 satisfy (). We need to prove that the k-ary 2(©)-tree
T just defined is a Hintikka-tree for C'. From the semantics of ALC™ and the
definition of cl, it is clear that T'(«) is a Hintikka-set for each o € {1,... k}*.
Hence, it remains to show that T satisfies (H4) to (H8).

(H4) Satisfied by definition of T (see induction start).

(H5) Let {3R.D,VR.E,,...,VR.E,,} C T(a) and £(i) = 3R.D. By (), we
have 7(a) # L and 7(a) € (AR.DNVR.E, 1 ---NVR.E,,)*. By definition
of 7 (induction step, first case), we have 7(ai) = x for some z € AZ, with
(r(a),z) € RT, and z € DT. Moreover, the semantics of ALC™ implies
v € (EyN---ME,)%, and, by (), we thus have {D, Ey,...,E,,} C T(«i).

(H6) Satisfied by definition of 7' (see induction step, second case).

(H7) Let VR.D € T(a) and fix a § € {1,...,k}*. If 7(8) = L, then we have
T(8) = 0 by () and (HT) is satisfied. If 7(3) # L, then 7(3) € A” and
we have either 7(3) € DT or 7(8) € D*. Again, (*) implies that (H7) is
satisfied.

(H8) Assume {VR.E,YR.D} C T(a) and E € T(3). By (), we have 7(a) €
(VR.ENVR.D)T and 7(3) € ET. This implies (7(a), 7(3 )) € RZ since

1. we have either (7(a),7(3)) € R or (7(a),7(8)) € R* and

2. (t(a),7(8)) € R* is impossible since 7(a) € (VR. ) and 7(8) € ET.
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Hence, due to the semantics of ALC™, we have 7(3) € D%, which, by (¥),
implies D € T(3).
H
The lemma shows that Hintikka-trees are appropriate abstractions of models of
ALC -concepts. Hintikka-trees enjoy the nice property that they are trees, and
we can thus define, for an ALC -concept C, a tree-automaton Aq that accepts
exactly the Hintikka-trees for C'.

Definition 5 For an ALC™-concept C' with k existential concepts in cl(C), the
Biichi-automaton A = (Q, 2%, A, I, Q) is defined as follows:

e ) C{¥ €29 | ¥is a Hintikka-set} x 27 x 25 where

P = {{VR.D,YR.E}|VR.D,YR.E € c|(C)},
S = {VR.D|VR.D € cl(C)},

and each (¥, p, s) € @ satisfies

1. if {VR.D,YR.E} € pand D € U, then E € U,
2. if VR.D € s, then ¥ = () or {D, D} N T # 0,

3. if VR.D € ¥, then VR.D € s, and

4. if {VR.D,YR.E} C ¥, then {VR.D,VR.E} € p.

o« I={(T,p5)|Cem}.
b ((\Ilapa S)a\Ian (\Ijlaplasl)a s 7(\Ilk7pk18k)) € Aiff

U=V p=p s =sforalll<i<k, and
if £(7) =3dR.D € ¥, then D € U, and E € ¥, for each VR.E € ¥ and
if £(i) =3R.D ¢ U, then ¥; = ().

As a consequence of the following lemma and Lemma 4, we can reduce satisfia-
bility of ALC -concepts to the emptiness problem for Biichi-automata.

Lemma 6 T is a Hintikka-tree for an ALC -concept C iff T € L(A¢).
Proof sketch: Let C' be an ALC -concept and k, Ac as in Definition 5.

“=" Let T be Hintikka-tree for C. We prove that there is an accepting run of
Ac on T. First, define

p = {{VR.D,VR.E} | There is a node « in T with {VR.D,YR.E} C T(a)}
s = {VR.D| There is a node a in T with VR.D € T'(«)}

We can show that r(«) = (T'(«), p, $) is an accepting run of Ac on T. By defini-
tion, r is defined for each o € {1,... , k}*. Furthermore, using the Properties of

Hintikka trees, it is straightforward to show that the following three conditions
hold:



1. r(a) € Q,
2. r(e) € I, and

3. (T(«),p,s), T(a),(T(al),p,s),...,(T(ax),p,s)) €A.

“e=” Let T € L(A¢) and r be an accepting run of Az on T. It can be proved
that 7T is a Hintikka-tree for C. By definition of A, T is a k-ary 29(©)-tree, and
r(a) = (Y, Pa, So) implies ¥, = T'(«) by definition of A. Hence, by definition
of , each node in T is labelled with a Hintikka-set. It remains to prove that T’
satisfied (H4) to (H8). This is straightforward using the definitions of Biichi-
automata, Ac, and accepting runs. O

What is the size of Biichi-automata Ac = (Qc¢, Mc, Ic, Ac, Fe)? Obviously,
the cardinality of cl(C') is linear in the length of C'. Hence, by definition of
Ac, the cardinality of Q¢ and My are exponential in the length of C. Again
by definition of A¢, this implies that the cardinalities of I, A¢c, and F¢ are
also exponential in the length of C'. Hence the size of A¢ is exponential in the
length of C'. This fact together with Lemma 4, Lemma 6, and the fact that
emptiness of the language accepted by a Biichi-automaton As can be tested
in time polynomial in the size of Ax [18], we have that satisfiability of ALC™-
concepts is in ExpTime. We already noted in Section 2 that satisfiability of
ALC -concepts is also ExpTime-hard. Hence, we obtain the following theorem:

Theorem 7 Satisfiability of ALC -concepts is ExpTime-complete.

Many Description Logics provide roles with certain properties, the most promi-
nent property being transitivity. It is hence an interesting question whether
the obtained result generalises to ALC™ with transitive roles. More precisely,
the DL 8™ (generalizing the DL S defined in [10]) is obtained from ALC™ as
follows: Assume that N, is a subset of the set of role names Np. Elements of
N; are called transitive roles. An 8™ interpretation is an ALC™ interpretation
which interprets each R € N, as a transitive relation RZ C AT x AT. To define
Hintikka trees for S7, we need to introduce counterparts for (H5) and (HS8)
which deal with transitive roles. These additional two properties need then to
be reflected in the definition of the corresponding Biichi-automata. Using these
modified definitions, the following result can be proved analogously to the proof
of Theorem 7 (see [14] for details).

Theorem 8 Satisfiability of S™-concepts is ExpTime-complete.

4 Adding Intersection and Union of Roles

In this section, we investigate the complexity of adding the standard DL role
constructors intersection and union of roles to the logic ALC™. In doing this, one
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has the choice to either restrict the applicability of negation to atomic roles or
allowing for full negation w.r.t. roles. In the latter case, adding union is obviously
equivalent to adding intersection or both. We start with the smallest extension,
i.e., we add either intersection or union of roles while restricting negation to role
names.

Definition 9 An ALCT)"-concept is an ALC -concept which, additionally, al-
lows for roles of the form R; U --- L R, where each R; is an ALC -role. An
ALCT)-concept is an ALC -concept which, additionally, allows for roles of the
form Ry M---M Ry, where each R; is an ALC -role. The semantics of the new
roles is defined as follows:

(Riyu---UR)r = RFU---URE
(Rin---NR)E = RFn---NnRE

Let us first investigate the logic ALCT. Tt is not hard to see that

VR1L|"'L|Rk.C = VRl.C'I_I---I_IVRk.C’and
AR U-- UR,.C = 3IR,.CU---UVR,.C,

i.e., satisfiability of ALCT)" -concepts can be linearly reduced to the satisfiability
of ALC -concepts which gives the following result:

Theorem 10 Satisfiability of ALC)"-concepts is ExpTime-complete.

Next, we will show that the satisfiability of ALCT) -concepts is NExpTime-
hard. The proof is given by a reduction of a NExpTime-complete variant of the
well-known, undecidable domino problem.

A domino problem [2, 13] is given by a finite set of domino types. All domino
types are of the same size, each type has a quadratic shape and colored edges.
Of each type, an unlimited number of dominoe is available. The problem in the
original domino problem is to arrange these dominoe to cover the plane without
holes or overlapping, such that adjacent dominoe have identical colors on their
touching edges (rotation of the dominoe is not allowed). In the NExpTime-
complete variant of the domino problem that we use, the task is not to tile the
whole plane, but to tile a 27" x 2"*l_torus, i.e., a 2"*! x 2"+l rectangle whose
edges are “glued” together. See, e.g., [2, 13] for undecidable versions of the
domino problem and [3] for bounded variants.

Definition 11 Let D = (D, H, V) be a domino system, where D is a finite set of
domino types and H,V C D x D represent the horizontal and vertical matching
conditions. For s,t € N, let U(s,t) be the torus Z; x Z;, where Z, denotes the
set {0,...,n—1}. Let a = ay,...,a,_1 be an n-tuple of dominoe (with n < s).
We say that D tiles U(s,t) with initial condition a iff there exists a mapping
7:U(s,t) — D such that, for all (z,y) € U(s, t):
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e if 7(z,y) =dand 7(z &, 1,y) = d', then (d,d') € H
o if 7(z,y) =dand 7(z,y ®; 1) = d', then (d,d') € V
e 7(i,0) =a; for 0 <i < n.

where @,, denotes addition modulo n. Such a mapping 7 is called a solution for
D w.r.t. a.

The following is a consequence of Theorem 6.1.2 in [3] (see also [14]).

Theorem 12 There exists a domino system D such that the following is a
NExpTime-hard problem: Given an initial condition a = ag - - - a,_; of length n,
does D tile the torus U(2""!,2"*1) with initial condition a?

We reduce the NExpTime-complete variant of the domino problem from The-
orem 12 to the satisfiability of ALC) -concepts. Given a domino system
D = (D, H,V) and an initial condition a = ay, ..., a,_1, we define a reduction
concept C(pq) such that Cp 4 is satisfiable iff D tiles the torus U(2"*!,2"+1)
with initial condition a. The reduction concept C(p,y can be found in Figure 2.
In this figure, VC' is an abbreviation for VR.C' AV-R.C, where R is an arbitrary
role name. Obviously, in each model Z of YC, we have C7 = AZ. Furthermore,
we write VR".C to denote VR...VR.C'.
—_—

n times
The strategy of the reduction is to define the reduction concept Cip 4 such

that, for every model Z of C(p ) with domain A%,

1. there exists a concept name A, for every domino type d € D such that
each z € AT is in the extension of A4 for exactly one d € D (first line of
Tiling),

2. for each point (i, j) in the torus U(2"+!, 2"F1) there exists a corresponding
set of domain objects {z1,...,7,} € AT with & > 1 and a d € D such
that all 7y, ...,z are in the extension of A; (Count,, Count,, Stable, and
Unique concepts)

3. the horizontal and vertical conditions V' and H are satisfied w.r.t. sets of
worlds representing points in the plane (second and third line of Tiling),
and

4. the initial condition is satisfied (Init).

Properties 1, 3, and 4 are enforced in a standard way using ALC concepts to-
gether with the VC constructor introduced above. Property 2, however, needs
some explanation. Usually, domino-reductions axiomatize a “grid” in order to
capture the structure of the torus. As Property 2 indicates, we employ a differ-
ent strategy: Each world in each model of C(p 4) corresponds to a point (i, 5) in
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atomic negation ‘ full negation

— ExpTime-complete

L ExpTime-complete | NExpTime-complete
M NExpTime-complete | NExpTime-complete
M and LI | NExpTime-complete | NExpTime-complete

Figure 1: Complexity of ALC extended with various role constructors.

the torus. The number i is binarily encoded by the concept names Xy, ..., X,
while the number j is encoded by the concept names Yy,...,Y,,. We use stan-
dard binary incrementation modulo 2"*! to ensure that, for every domain ob-
ject x corresponding to a position (7,j), there exists an object y; such that y;
corresponds to (i @ynt1 1,7) and (z,y;) € RE, and an object y, such that y,
corresponds to (i, j @on+1 1) and (y,y2) € R;. The Count, and Count, concepts
encode the incrementation of the one dimension while the Stable concept en-
sures that the other dimension does not change. It remains to guarantee that
every two domain objects corresponding to the same position are labeled with
the same domino. This task is accomplished by the Unique concept which is the
only one to use negation and conjunction of roles (not nested, though). In order

to understand the Unique concept, it may be helpful to read subconcepts of the
form V-R.—~C as VC.R.

Proposition 13 A domino system D tiles the torus U(2"", 2""!) with initial
condition a = ay, ..., a, 1 iff C(p 4 is satisfiable.

Together with Theorem 12, we obtain the desired result.

Theorem 14 Satisfiability of ALC™ -concepts is NExpTime-hard.

Instead of giving an upper bound for ALC™)7, we give an upper bound for the
logic ALC™™, i.e., the extension of ALC™ by union and intersection allowing
for full negation of roles with the obvious syntax and semantics: The translation
of ALC -concepts to L2-formulae mentioned in Section 2 can also be applied to
ALC™ ™ _concepts.

Corollary 15 Satisfiability of ALC ™" ""-concepts is in NExpTime.

Figure 1 summarizes the complexity results obtained in this paper (omitting the
results for 7).
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Count, = V[ Iﬂl (

k=0

k—1
(M X;) = (X, & VRz.ﬂXk)) M

J=0

n k—1
B (( LI —X;) — (X4 © VRx.Xk)> M EIR,C.T]

k=0 \5=0

Count, like Count,, replace R, by R,, X; by Y}, and X}, by Y}

Stable = ¥ klﬁo(Xk VR, Xy) M kﬁo(ﬁxk VR, ~Xy) 1
klflo(Y,c S VR,.Yi) M klflo(ﬂ/k = VRx.ﬁYk)]

Unique = v']ﬁlo ((Xk V=R Xy) M (=X — vﬂRk.Xk)> M
11 (Vi = Vo8mYi) 11 (2% = ¥=8,.Y3) )

[l Ad—>VR0I_I---I_IRnI_ISOI_I---I_ISn.Ad]
deD

Tiling = v[(u AN T M —(AgMNAg) N

deD deD d'eD\{d}

[l Ad — (VRI L pd’) 1

deD (d,d')eH
M A; — (VRy. LI Ad,)]
deD (d,d")eq
Init = kﬁo(ﬂxi M =Y;) M Ay (VR Ay, M- VR LA,
Cipay = Count, M Count, N Stable N Unique N Tiling T Init

Figure 2: The ALC™)™ concept Cp for D= (D,H,V) and a = ag, ..., 0p 1.
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