
Uni�cation in a Description Logic with

Transitive Closure of Roles

Franz Baader

1

and Ralf K�usters

2

1

RWTH Aachen, Germany, baader@informatik.rwth-aachen.de

2

CAU Kiel, Germany, kuesters@ti.informatik.uni-kiel.de

Abstract. Uni�cation of concept descriptions was introduced by Baader

and Narendran as a tool for detecting redundancies in knowledge bases.

It was shown that uni�cation in the small description logic FL

0

, which

allows for conjunction, value restriction, and the top concept only, is al-

ready ExpTime-complete. The present paper shows that the complexity

does not increase if one additionally allows for composition, union, and

transitive closure of roles. It also shows that matching (which is poly-

nomial in FL

0

) is PSpace-complete in the extended description logic.

These results are proved via a reduction to linear equations over regular

languages, which are then solved using automata. The obtained results

are also of interest in formal language theory.

1 Introduction

Knowledge representation languages based on Description Logics (DL) can be

used to represent the terminological knowledge of an application domain in a

structured and formally well-understood way [10, 4]. With the help of these lan-

guages, the important notions of the domain can be described by concept descrip-

tions , i.e., expressions that are built from atomic concepts (unary predicates)

and atomic roles (binary predicates) using the concept and role constructors pro-

vided by the DL language. Atomic concepts and concept descriptions represent

sets of individuals, whereas roles and role descriptions represent binary relations

between individuals.

Uni�cation of concept descriptions was introduced by Baader and Naren-

dran [8] as a new inference service for detecting and avoiding redundancies in

DL knowledge bases. Uni�cation considers concept patterns, i.e., concept de-

scriptions with variables, and tries to make these descriptions equivalent by re-

placing the variables by appropriate concept descriptions. The technical results

in [8] were concerned with uni�cation in the small DL FL

0

, which allows for

conjunction of concepts (C uD), value restriction (8R:C), and the top concept

(>). It is shown that uni�cation of FL

0

-concept descriptions is equivalent to

solving systems of linear equations over �nite languages, and that this problem

is ExpTime-complete.

In the present paper, we study uni�cation in FL

reg

, the DL that extends

FL

0

by the role constructors identity role ("), empty role (;), union (R [S),

composition (R�S), and re
exive-transitive closure (R

�

).

1

Uni�cation of FL

reg

-

concept descriptions is again equivalent to solving systems of linear language

equations, but the �nite languages are now replaced by regular languages. The

�rst contribution of the present paper is to show that deciding the solvability

of such equations is, as in the �nite case, ExpTime-complete. At �rst sight one

might think that it is su�cient to show that the problem is in ExpTime, since

ExpTime-hardness already holds for the \simpler" case of uni�cation in FL

0

.

However, uni�cation in FL

reg

is not a priori at least as hard as uni�cation

in FL

0

since the set of potential solutions increases. Thus, an FL

0

-uni�cation

problem (which can also be viewed as an FL

reg

-uni�cation problem) may be

solvable in FL

reg

, but not in FL

0

. (We will see such an example later on.)

Our complexity results are by reduction to/from decision problems for tree-

automata. Whereas for equations over �nite languages automata on �nite trees

could be used, we now consider automata working on in�nite trees. As a by-

product of the reduction to tree automata, we also show that, if a system of

linear equations has some (possibly irregular) solution, then it also has a regular

one. That is, restricting solutions to substitutions that map variables to regular

languages does not make a di�erence in terms of the solvability of an equation.

Equations over regular languages have already been considered by Leiss [12,

11]. However, he does not provide any decidability or complexity results for the

case we are interested in. Closely related to the problem of solving linear language

equations is the problem of solving set constraints [1], i.e., relations between sets

of terms. Set constraints are usually more general than the kind of equations

we are dealing with here. The case we consider here corresponds most closely

to positive set constraints for terms over unary and nullary function symbols

where only union of sets is allowed. For solvability of positive set constraints

over (at least two) unary and (at least one) nullary function symbols, ExpTime-

completeness is shown in [1]. However, this result does not directly imply the

corresponding result for our case. On the one hand, for set constraints one con-

siders equations with �nite languages as coe�cients, whereas we allow for regular

languages as coe�cients. It is, however, easy to see that regular coe�cients can

be expressed using set constraints. On the other hand, for set constraints one

allows for arbitrary (possibly) in�nite solutions, whereas we restrict the atten-

tion to regular solutions. Using the (new) result that the restriction to regular

sets does not change the solvability of an equation, our exponential upper bound

also follows from the complexity result in [1]. The hardness result in [1] does not

directly carry over since even positive set constraints allow for more complex

types of equations than the linear ones considered here.

Matching is a special case of uni�cation where only one of the patterns con-

tains variables. In [8] it was shown that matching in FL

0

is polynomial, and in

[7] this result was extended to the more expressive DL ALN . We will show that

matching in FL

reg

is PSpace-complete.

In case a uni�cation/matching problem is solvable, one is usually interested

in obtaining an actual solution. In the context of matching in description logics,

1

Transitive closure then corresponds to the expression R � R

�

.

2

Syntax Semantics FL

0

FL

reg

> �

I

x x

C uD C

I

\D

I

x x

8R:C fx 2 �

I

j 8y : (x; y) 2 R

I

! y 2 C

I

g x x

" f(x; x) j x 2 �

I

g x

; ; x

R � S f(x; z) j 9y : (x; y) 2 R

I

^ (y; z) 2 S

I

g x

R

�

S

n�0

(R

I

)

n

x

Table 1. Syntax and semantics of concept descriptions.

it has been argued [9, 5] that not all solutions of a matching problem are of

interest to a user. Therefore, one must look for solutions with certain desired

properties; for instance, least solutions where all variables are substituted by

concept descriptions that are as speci�c as possible turned out to be appropriate

in some contexts [9, 13]. For matching in FL

0

and FL

reg

, solvable problems

always have a least solution. For uni�cation, we will show that this is only true

for FL

reg

.

2 Uni�cation in FL

reg

Let us �rst introduce FL

0

- and FL

reg

-concept descriptions. Starting from the

�nite and disjoint sets N

C

of concept names and N

R

of role names, FL

0

-concept

descriptions are built using the concept constructors conjunction (C uD), value

restriction (8r:C), and the top concept (>). FL

reg

extends FL

0

by additionally

allowing for the role constructors identity role ("), empty role (;), union (R[S),

composition (R � S), and re
exive-transitive closure (R

�

). As an example, con-

sider the FL

reg

-concept description Womanu8child

�

:Woman; which represents

the set of all women with only female o�spring.

Role names will be denoted by lower case letters (r; s; : : : 2 N

R

), and complex

roles by upper case letters (R;S; T : : :). Note that a complex role can be viewed

as a regular expression over N

R

where " is taken as the empty word, role names

as elements of the alphabet, the empty role as the empty language, union as

union of languages, composition as concatenation, and re
exive-transitive clo-

sure as Kleene star. Therefore, we sometimes view a complex role R as a regular

expression. In the following, we will abuse notation by identifying regular ex-

pressions with the languages they describe. In particular, if R and R

0

are regular

expressions, then R = R

0

will mean that the corresponding languages are equal.

As usual, the semantics of concept and role descriptions is de�ned in terms of

an interpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the

interpretation function �

I

maps each concept name A 2 N

C

to a set A

I

� �

I

and each role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The extension of �

I

to arbitrary concept and role descriptions is de�ned inductively, as shown in the

second column of Table 1. The interested reader may note that FL

reg

-concept

descriptions can also be viewed as concepts de�ned by cyclic FL

0

-TBoxes in-

3

terpreted with the greatest �xed-point semantics [2]. The concept description D

subsumes the description C (C v D) i� C

I

� D

I

for all interpretations I. Two

concept descriptions C;D are equivalent (C � D) i� they subsume each other.

In order to de�ne uni�cation of concept descriptions, we �rst have to in-

troduce the notions concept patterns and substitutions operating on concept

patters. To this purpose, we need a set of concept variables N

X

(disjoint from

N

C

[N

R

). FL

reg

-concept patterns are FL

reg

-concept descriptions de�ned over

the set N

C

[N

X

of concept names and the set N

R

of role names. For example,

given A 2 N

C

, X 2 N

X

, and r 2 N

R

, 8r:Au8r

�

:X is an FL

reg

-concept pattern.

A substitution � is a mapping from N

X

into the set of all FL

reg

-concept

descriptions. This mapping is extended from variables to concept patterns in

the obvious way, i.e.,

{ �(>) := > and �(A) := A for all A 2 N

C

,

{ �(C uD) := �(C) u �(D) and �(8R:C) := 8R:�(C).

De�nition 1. An FL

reg

-uni�cation problem is of the form C �

?

D, where C,

D are FL

reg

-concept patterns. The substitution � is a uni�er of this problem i�

�(C) � �(D). In this case, the uni�cation problem is solvable, and C and D are

called uni�able.

For example, the substitution � = fX 7! 8r � r

�

:A; Y 7! 8r:Ag is a uni�er of

the uni�cation problem

8s:8r:A u 8r:A u 8r:X �

?

X u 8s:Y: (1)

Note that this problem can also be viewed as an FL

0

-uni�cation problem. How-

ever, in this case it does not have a solution since there are no FL

0

-concept

descriptions that, when substituted for X and Y , make the two concept pat-

terns equivalent.

For readers interested in uni�cation theory, let us point out that (just as for

FL

0

[8]), uni�cation in FL

reg

can be viewed as uni�cation modulo an appro-

priate equational theory, and that (like the theory corresponding to FL

0

) this

theory is of uni�cation type zero.

3 Reduction to regular language equations

We now show how uni�cation in FL

reg

can be reduced to solving linear equations

over regular languages built using the alphabet N

R

of role names.

The equations we are interested in are built as follows. Let � be a �nite

alphabet. For languages L;M � �

�

, their concatenation is de�ned by LM :=

fvw j v 2 L;w 2 Mg. Let X

1

; : : : ; X

n

be variables. Given regular languages

S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

2

over N

R

, a linear equation over regular languages

is of the form

S

0

[S

1

X

1

[� � � [S

n

X

n

= T

0

[T

1

X

1

[� � � [T

n

X

n

(2)

2

We assume that these languages are given by regular expressions or nondeterministic

�nite automata.

4

A (regular, �nite) solution � of this equation is a substitution assigning to each

variable a (regular, �nite) language over � such that the equation holds. We

are particularly interested in regular solutions since these can be turned into

FL

reg

-concept descriptions.

A system of regular language equations is a �nite set of regular language

equations. A substitution � solves such a system if it solves every equation in it

simultaneously. A system of equations can easily (in linear time) be turned into

a single equation with the same set of solutions by concatenating all constant

languages in an equation with a role r (a new role for every equation), i.e., the

languages S

i

and T

i

are replaced by frgS

i

and frgT

i

. Then the di�erent equa-

tions can be put together into a single equation without causing any interference

(see [8] for details). Hence, for our complexity analysis we can focus on single

equations.

To establish the reduction from uni�cation in FL

reg

to solvability of linear

equations over regular languages, FL

reg

-concept patterns are written in the

following normal form:

u

A2N

C

8R

A

:A u u

X2N

X

8R

X

:X;

where R

A

and R

X

are regular expressions over N

R

. Every concept pattern can

(in polynomial time) be turned into such a normal form by exhaustively applying

the following equivalence preserving rule: 8R:C u8R

0

:C �! 8(R[R

0

):C; where

R;R

0

are regular expressions over N

R

and C is some FL

reg

-concept pattern.

Correctness of our reduction from uni�cation to solvability of linear equations

depends on the following (easily provable [2, 3]) characterization of equivalence:

Lemma 1. Let C;D be FL

reg

-concept descriptions such that

C � u

A2N

C

8S

A

:A and D � u

A2N

C

8T

A

:A:

Then C � D i� S

A

= T

A

for all A 2 N

C

.

As an easy consequence, we obtain the following theorem, which shows that

uni�cation in FL

reg

is equivalent via linear time reductions to solving regular

language equations.

Theorem 1. Let C;D be FL

reg

-concept patterns such that

C � u

A2N

C

8S

A

:A u u

X2N

X

8S

X

:X and D � u

A2N

C

8T

A

:A u u

X2N

X

8T

X

:X:

Then C;D are uni�able i�, for all A 2 N

C

, the regular language equation

E

C;D

(A) below has a solution:

S

A

[

[

X2N

X

S

X

X

A

= T

A

[

[

X2N

X

T

X

X

A

Note that the language equations in this system do not share variables, and thus

they can be solved separately. In the equation E

C;D

(A), the variable X

A

is a

new copy of X 2 N

X

. Di�erent equations have di�erent copies.

5

Continuing our example, from the uni�cation problem (1) we obtain the

following language equation (assuming N

C

= fAg):

fr; srg [frgX

A

= f"gX

A

[fsgY

A

A solution of this equation is X

A

= rr

�

and Y

A

= r, which corresponds to the

solution � of (1).

4 The decision problem

The �rst theorem of this paper gives the exact complexity of solving systems of

linear equations over regular languages.

Theorem 2. Deciding (regular) solvability of (systems of) equations of the form

(2) is an ExpTime-complete problem.

As an immediate consequence, uni�cation in FL

reg

is ExpTime-complete as well.

The upper complexity bound. To prove that the problem can be solved in

ExpTime, it su�ces to concentrate on a single equation. Moreover, instead of (2)

we consider equations where the variables occur in front of the coe�cients. Such

an equation can easily be obtained from (2) by considering the mirror images

(or reverse) of the coe�cient languages. That is, we go from a language L � N

�

R

to its mirror image L

mi

:= fr

m

� � � r

1

j r

1

� � � r

m

2 Lg. The mirror equation of

(2) is of the form

S

mi

0

[X

1

S

mi

1

[� � � [X

n

S

mi

n

= T

mi

0

[X

1

T

mi

1

[� � � [X

n

T

mi

n

: (3)

Obviously, the mirror images of solutions of (3) are exactly the solutions of (2).

To test (3) for solvability, we build a looping tree-automaton B, i.e., a B�uchi

tree-automaton where all states are �nal. Let us brie
y introduce in�nite trees

and looping tree-automata (see [15] for details). Let � be a �nite alphabet and,

w.l.o.g., N

R

= f1; : : : ; kg. A �-labeled k-ary in�nite tree t is a mapping from

N

�

R

into �. (In particular, the nodes of t can be viewed as words over N

R

.)

In case � is a singleton, t is called unlabeled. A looping tree-automaton A is a

tuple (Q;�; I;�) where Q is the �nite set of states of A, � is a �nite alphabet,

I � Q is the set of initial states, and � � Q���Q

k

is the transition relation.

(Note that we do not de�ne �nal states. Also, we will omit � in case it is

a singleton.) A run r of A on the tree t is a Q-labeled k-ary tree such that

(r(u); t(u); r(u1); : : : ; r(uk)) 2 �. It is called successful if r(") 2 I . The tree

language accepted by A is L(A) := ft j there exists a successful run of A on tg.

Our looping tree-automaton B will work on the (unique) unlabeled k-ary

in�nite tree t (thus L(B) will be the empty set or ftg). The idea underlying

the construction is as follows. A Q-labeled k-ary in�nite tree r can be used to

describe sets of words by taking those words u for which the label r(u) satis�es

a certain property. In principle, a run of B on t represents i) a set of words

6

over N

R

obtained by instantiating the equation with one of its solutions (called

solution sets in the following), and ii) the solution itself, i.e., the languages

substituted for the variables. To achieve this, while working its way down t, in

every step B guesses whether the current node (or more precisely the word it

represents) a) belongs to the solution set, and b) to the language substituted for

X

i

(i = 1; : : : ; n). In addition, B checks whether the guesses made actually yield

a solution.

Formally, B = (Q; I;�) is de�ned as follows. (We provide a more detailed ex-

planation after the de�nition.) Let A

S;i

= (Q

S;i

; N

R

; q

S;i

; �

S;i

; F

S;i

) and A

T;i

=

(Q

T;i

; N

R

; q

T;i

; �

T;i

; F

T;i

) be (nondeterministic) �nite automata accepting the

languages S

mi

i

and T

mi

i

(i = 0; : : : ; n), respectively. We assume (w.l.o.g.) that

the set of states of these automata are pairwise disjoint. Let N := f0; 1; : : : ; ng,

Q

S

(Q

T

) be the union of the sets Q

S;i

(Q

T;i

), i = 0; : : : ; n, and F

S

(F

T

) be the

union of the sets F

S;i

(F

T;i

).

1. Q := 2

N

� 2

Q

S

� 2

Q

T

;

2. I := f(G;L;R) j G � N , L = fq

S;0

g [fq

S;i

j i 2 Gg, and

R := fq

T;0

g [fq

T;i

j i 2 Gg;

3. � consists of all tuples ((G

0

; L

0

; R

0

); (G

1

; L

1

; R

1

); : : : ; (G

k

; L

k

; R

k

)) 2 Q �

Q

k

such that

(a) 0 2 G

0

i� L

0

\ F

S

6= ; i� R

0

\ F

T

6= ;;

(b) for all i = 1; : : : ; k,

L

i

:= suc(L

0

; i) [fq

S;j

j j 2 G

i

g and R

i

:= suc(R

0

; i) [fq

T;j

j j 2 G

i

g;

where suc(L

0

; i) := fq j there exists q

0

and j with q

0

2 L

0

\ Q

S;j

and

(q

0

; i; q) 2 �

S;j

g and suc(R

0

; i) is de�ned analogously.

Intuitively, B uses the �rst component of its states to guess whether a node (the

word it represents) belongs to the solution set and/or to one of the variables X

i

.

That is, given a state (G;L;R), 0 2 G means that the current node belongs to

the solution set and i 2 G means that the node belongs to X

i

(more accurately,

to the language substituted forX

i

). The other two components are used to do the

book-keeping necessary to check whether the guesses actually yield a solution.

To understand their rôle, assume that r is a run of B on t. W.l.o.g. we consider

the second component. If r(u) = (G;L;R) and j 2 G, for some j 6= 0, then u

belongs to X

j

, and thus uv belongs to X

j

S

mi

j

for all v 2 S

mi

j

. Consequently, if

r(uv) = (G

0

; L

0

; R

0

), then we must have 0 2 G

0

. To enforce this, q

S;j

(the initial

state of the automaton A

S;j

accepting S

mi

j

) is added to L. The transitions of B

then simulate the transitions of A

S;j

in the second component. Thus, in r(uv)

the set L

0

contains a �nal state of A

S;j

, and now (3a) implies that 0 2 G

0

must

hold. Conversely, if 0 2 G

0

, then L

0

must contain a �nal state of some of the

automata A

S;i

(i = 0; : : : ; n).

Given a successful run r of B, it is now easy to prove that the substitution

�

r

:

�

r

(X

i

) := fu j r(u) = (G;L;R) and i 2 Gg

is a solution of (3). Conversely, it is not hard to show that a given solution of

(3) induces a successful run of B.

7

Lemma 2. There is a one-to-one correspondence between solutions of (3) and

successful runs of B.

The lemma implies that equation (3) has a solution i� B has a successful run

(i.e., L(B) 6= ;). The size of the set of states of B is exponential in the size

of equation (3), where the size of the regular sets S

mi

i

and T

mi

i

are measured

by the size of nondeterministic �nite automata accepting these sets. Since the

emptiness problem for B�uchi tree-automata (and thus looping tree-automata)

can be solved in polynomial time in the size of the automaton [15] (and actually

in linear time for looping automata), this yields the desired exponential time

algorithm for deciding the solvability of equation (3). However, the existence of

a solution does not a priori imply that there is also a regular one. Thus, we must

still show that regular solvability can also be decided in ExpTime.

It is well-known [15] that a B�uchi-automaton has a successful run i� it has a

regular (or rational) run. It is easy to show that the solution corresponding to a

regular run is a regular solution.

Proposition 1. If (3) has a solution, then it also has a regular one.

This proposition also follows from our results in Section 5.

The lower complexity bound. The hardness result can be shown similarly

to the proof by Baader and Narendran [8] for systems of equations over �nite

languages. In their proof, the intersection emptiness problem for deterministic

root-to-frontier automata on �nite trees, which has been shown to be ExpTime-

complete by Seidl [14], is reduced to the solvability of systems of equations over

�nite languages. The intersection emptiness problem is de�ned as follows: given

a sequence A

1

; : : : ;A

n

of deterministic root-to-frontier automata over the same

ranked alphabet �, decide whether there exists a tree t accepted by A

1

; : : : ;A

n

.

Instead of deterministic root-to-frontier automata we will here use determin-

istic looping tree-automata: a looping tree-automaton is deterministic if it has

one initial state and, for every state q and symbol f , there exists at most one

transition of the form (q; f; : : :). We will show that Seidl's result easily carries

over to these automata. However, we need to consider looping tree-automata

over in�nite trees labeled by elements of a ranked alphabet. That is, the number

of successors of a node varies depending on the arity of the label attached to the

node. Modifying the de�nition of looping tree-automata to work on these trees

is straightforward.

Proposition 2. The intersection emptiness problem for looping tree-automata

over a ranked alphabet is ExpTime-hard.

This can be shown by reducing the intersection emptiness problem for root-

to-frontier automata to the intersection emptiness problem for looping tree-

automata. The main idea is to turn every �nite tree t into an in�nite tree

b

t by

adding a new symbol # (say of rank 1) to the alphabet, and extending the �nite

tree at every leaf by attaching the in�nite tree labeled by # only. A given root-

to-frontier automaton A can then easily be modi�ed to a looping tree-automaton

8

B such that every successful run of A on t corresponds to a successful run of B

on

b

t and vice versa.

It remains to show how the intersection emptiness problem for looping tree-

automata can be reduced to the solvability of systems of linear equations over

regular languages. In the following, let � be a ranked alphabet. Seidl's result

implies that it su�ces to restrict the attention to symbols of rank 1 and 2.

We represent an in�nite tree t over the ranked alphabet � by an in�nite set

S(t) of words over �[f1; 2g. This set contains one element for every node of the

tree. Given a node u, the corresponding word describes the path from this node

to the root of the tree by listing the labels of the nodes v on this path together

with the information whether v is the �rst or second successor of its parent node.

To be more precise, if t = f(t

1

; t

2

) is the tree whose root is labeled with f and has

the two successor trees t

1

and t

2

, then S(t) := f"g [fu1f j u 2 S(t

1

)g [fu2f j

u 2 S(t

2

)g. Accordingly, if t = g(t

0

), then S(t) := f"g [fu1g j u 2 S(t

0

)g. For

example, if f is binary, g is unary, and t is the in�nite tree labeled with g only,

then S(f(t; t)) = f"g [(1g)

�

1f [(1g)

�

2f . Given a node u in t we denote the

word representing u in S(t) by w

t

(u). In the example, w

f(t;t)

(211) = 1g1g2f .

Now, let A = (Q;�; q

0

; �) be a deterministic looping tree-automaton over

the ranked alphabet �. We construct the following linear equation, where the

variables X

(q;g)

range over (possibly in�nite) sets of words over �

0

:= � [Q [

f1; 2g:

[

(q;g)2Suc

fqgX

(q;g)

= fq

0

g [

[

(q;g;q

1

;:::;q

k

)2�

fq

1

1g; : : : ; q

k

kggX

(q;g)

; (4)

where Suc denotes the set of tuples (q; g) for which there exist q

1

; : : : ; q

k

with

(q; g; q

1

; : : : ; q

k

) 2 �, and k denotes the rank of g.

We want to show that solutions of (4) induce accepting runs of A and vice

versa. Assuming that (4) has the solution �, let us try to construct a tree t

and a successful run of A on t. Since q

0

occurs on the right-hand side of (4), it

must also occur on the left-hand side. Thus, there must exist a symbol g such

that (q

0

; g) 2 Suc and " 2 �(X

(q

0

;g)

). Intuitively, this corresponds to setting

t(") := g and r(") := q

0

. Now, since " 2 �(X

(q

0

;g)

), additional words occur on

the right-hand side of (4). Indeed, since (q

0

; g) 2 Suc, there exist q

1

; : : : ; q

k

with

(q

0

; g; q

1

; : : : ; q

k

) 2 �. Thus, the words q

1

1g; : : : ; q

k

kg occur on the right-hand

side. This corresponds to setting r(1) := q

1

; : : : ; r(k) := q

k

. Let us look at q

1

1g.

This word must also occur on the left-hand side of (4). Thus, there must exist

a symbol f with (q

1

; f) 2 Suc and 1g 2 �(X

(q

1

;f)

). This corresponds to setting

t(1) := f . Now, since 1g 2 �(X

(q

1

;f)

), additional words occur on the right-hand

side of (4), and one continues just as in the case " 2 �(X

(q

0

;g)

). This illustrates

that, if (4) is solvable, then one can construct a tree t and an accepting run r of

A on t. Moreover, it follows that S(t) � V

�

:=

S

(q;g)2Suc

�(X

(q;g)

).

Conversely, if t 2 L(A) and r is the (unique) accepting run of A on t, then

we can use r to construct a solution � of (4) such that S(t) = V

�

:

�(X

(q;g)

) := fw

t

(u) j t(u) = g ^ r(u) = qg:

9

Lemma 3. If � solves (4), then there exists t 2 L(A) with S(t) � V

�

. Con-

versely, if t 2 L(A), then there exists a solution � of (4) with S(t) = V

�

.

The inclusion in the �rst part of the lemma may be strict. In fact, by the second

part, every tree in L(A) yields a solution of (4). Since the solutions of such

linear equations are closed under (argument-wise) union, there are solutions �

representing more than one accepted tree. Because of this fact, our reduction

will depend on the following lemma.

Lemma 4. Let � be a solution of (4) and t a tree. If S(t) � V

�

, then t 2 L(A).

In contrast to the previous lemma, Lemma 4 holds only because the automaton

A is assumed to be deterministic (see [6] for a proof).

We are now ready to reduce the intersection emptiness problem to solving

a system of linear equations. Let A

1

; : : : ;A

n

be deterministic looping-tree au-

tomata with pairwise disjoint sets of states. For every A

i

, we consider a system

of equations E

i

that consists of the equation of the form (4) induced by A

i

together with the equation

X =

[

(q;g)2Suc

X

(q;g)

: (5)

Now, let E be the union of the systems E

i

(i = 1; : : : ; n). Note that we use the

same variable X for every equation E

i

. Otherwise, the equations E

i

do not share

variables since the set of states of the automata A

i

were assumed to be pairwise

disjoint.

We need to show that E has a solution i� L(A

1

) \ � � � \ L(A

n

) 6= ;. If there

exists t 2 L(A

1

) \ � � � \ L(A

n

), then, according to Lemma 3, for every i there

exists a solution �

i

of the equation corresponding to A

i

satisfying S(t) = V

�

i

.

Let � be the substitution de�ned by �(X

(q;g)

) := �

i

(X

(q;g)

) if q is a state of A

i

,

and �(X) := S(t). Then � solves the system E. Conversely, if � is a solution of E,

then it solves equation (4) for every automaton A

i

. In particular, by Lemma 3,

there exists a tree t

1

2 L(A

1

) such that S(t

1

) � V

�

. Since � solves the equation

corresponding to A

i

, Lemma 4 thus yields t

1

2 L(A

i

) for every i. Thus, t

1

2

L(A

1

) \ � � � \ L(A

n

). This completes the proof of the lower complexity bound

stated in Theorem 2.

5 Least uni�ers and greatest solutions

In case a uni�cation problem is solvable, one is usually interested in obtaining

an actual solution. Since a given uni�cation problem may have in�nitely many

uni�ers, one must decide which ones to prefer.

3

As mentioned in the introduction,

3

From the viewpoint of uni�cation theory, we consider ground uni�ers (i.e., substi-

tutions whose images do not contain variables). Thus, it does not make sense to

employ the usual instantiation pre-order on uni�ers. Anyway, the equational theory

corresponding to FL

reg

is of uni�cation type zero, and thus most general uni�ers or

even �nite complete sets of uni�ers need not exist.

10

least uni�ers are of interest in some applications. The uni�er � is a least uni�er

of an FL

reg

/FL

0

uni�cation problem if it satis�es �(X) v �

0

(X) for all uni�ers

�

0

and variables X occurring in the problem.

For FL

0

, least uni�ers need not exist. For example, assume that N

C

= fAg

and N

R

= frg. Then the (trivially solvable) uni�cation problem X �

?

X does

not have a least uni�er in FL

0

; however, � with �(X) = 8r

�

:A is the least uni�er

of this problem in FL

reg

.

It is easy to see that the least uni�er of a given FL

reg

uni�cation problem

corresponds to the greatest regular solution of the corresponding formal language

equations. The solution � is a greatest solution of an equation of the form (2) (or

(3)) i� it satis�es �

0

(X) � �(X) for all solutions �

0

and variables X occurring

in the equation. Thus, we are interested in the existence and computability of

greatest regular solutions of linear equations over regular languages.

The existence of a greatest solution of a solvable equation is obvious since

the set of solutions is closed under union. In fact, if �

j

, j 2 J , are solutions

of (3), then so is � with �(X) :=

S

j2J

�

j

(X) for all variables X occurring in

the equation. Thus, the greatest solution can be obtained as the union over all

solutions. However, this greatest solution can only be translated into a least

uni�er if it is regular. We will show that this is indeed always the case.

Theorem 3. Every solvable equation of the form (3) has a greatest solution,

and this solution is regular. This solution may grow exponentially in the size of

(3), and it can be computed in exponential time.

Assume that � is the greatest solution of a solvable equation of the form

(3). We �rst show that this solution is regular. Lemma 2 implies that there

exists a corresponding run r

�

of the automaton B obtained from the equation

(cf. Section 4). We proceed in three steps.

1. We restrict B = (Q; I;�) to contain only so-called active states. The result-

ing automaton is called B

0

= (Q

0

; I

0

; �

0

).

2. Using B

0

, we show that r

�

is regular, i.e., for every q 2 Q

0

, the set fu 2

N

�

R

j r

�

(u) = qg is regular.

3. From r

�

, �nite automata accepting �(X

i

) are derived.

A state q of B is called active, if L(Q; fqg; �) 6= ;, i.e., starting from q there

exists a successful run of B. Otherwise, q is called passive. The active states can

be computed as follows. One �rst eliminates all states q for which there exist

no transitions of the form (q; : : :). One also eliminates all transitions containing

these states. This process is iterated until no more states are eliminated. It is

easy to see that the remaining states are exactly the active ones. Obviously, this

procedure needs time polynomial in the size of B. (There even exists a linear time

algorithm for this task.) Let B

0

= (Q

0

; I

0

; �

0

) denote the automaton obtained

from B by eliminating all passive states. (Note that L(B

0

) = ; i� I

0

= ;.)

To show that r

�

is regular, we need the following partial ordering � on

transitions of a state q. Let � = (q; q

1

; : : : ; q

k

); �

0

= (q; q

0

1

; : : : ; q

0

k

) 2 �

0

, q

i

=

(G

i

; L

i

; R

i

), and q

0

i

= (G

0

i

; L

0

i

; R

0

i

). Then, � � �

0

i� G

i

n f0g � G

0

i

n f0g for all

11

i = 1; : : : ; k. Note that � is in fact antisymmetric: If � � �

0

and � � �

0

, then

G

i

nf0g = G

0

i

nf0g for all i = 1; : : : ; k. Since the sets L

i

; R

i

(L

0

i

; R

0

i

) are uniquely

determined by G

i

(G

0

i

) and 0 2 G

i

(0 2 G

0

i

) is determined by L

i

; R

i

(L

0

i

; R

0

i

),

this yields � = �

0

.

Now, let u 2 N

�

R

. We claim that the transition � = (r

�

(u); q

1

; : : : ; q

k

) 2 �

0

,

where q

i

= r

�

(ui) =: (G

i

; L

i

; R

i

), is the greatest transition among the transitions

of r

�

(u) in B

0

. Otherwise, there exists a transition �

0

= (r

�

(u); q

0

1

; : : : ; q

0

k

) 2 �

0

,

where q

0

i

= (G

0

i

; L

0

i

; R

0

i

), and i 2 f1; : : : ; kg such that G

0

i

n f0g 6� G

i

n f0g, i.e.,

there exists 0 6= j 2 G

0

i

n G

i

. We can construct a new run r

0

of B

0

that uses

�

0

at node u instead of �. Since, by de�nition of B

0

, the states q

0

i

in �

0

are all

active, starting from these states there exist runs in B

0

. Thus, a successful run

r

0

using this transition at u really exists. This run corresponds to a solution of

(3). However, in this solution ui belongs to X

j

whereas this is not the case for

the greatest solution, a contradiction. Thus, � must be the greatest transition.

As a consequence, if B

0

is in the same state at di�erent nodes, then the same

transition (namely, the greatest) is used by the run r

�

. From this, it easily follows

that r

�

is regular: given q 2 Q

0

, the following (deterministic) �nite automaton

A

q

= (Q

00

; f1; : : : ; kg; q

I

; �

00

; fqg) accepts the set fu j r

�

(u) = qg:

{ Q

00

:= Q

0

;

{ q

I

:= r

�

(");

{ �

00

:= f(q; i; q

i

) j (q; q

1

; : : : ; q

k

) is the greatest transition of q in �

0

and i = 1; : : : ; kg.

If in A

q

the set of �nal states is f(G;L;R) 2 Q

0

j i 2 Gg instead of fqg, then

this automaton accepts the language substituted for X

i

in the greatest solution.

Thus, the greatest solution of (3) is regular. Finally, since B

0

and A

q

can be

computed in time exponential in the size of (3), the upper complexity bound for

computing the greatest solution follows as well.

It remains to show that the size of the greatest solution may indeed grow

exponentially. To this purpose, consider the equation

L

1

f1g [� � � [L

k

fkg = L

1

f1g [� � �L

k

fkg [Xf1; : : : ; kg; (6)

where the L

i

s are regular languages over N

R

. Obviously, the greatest solution is

the one that replaces X by L

1

\ � � � \ L

k

. From results shown in [16] it follows

that the size of automata accepting this intersection may grow exponentially in

the size of automata accepting L

1

; : : : ; L

k

.

4

6 Matching in FL

reg

Matching is the special case of uni�cation where the pattern D on the right-hand

side of the equation C �

?

D does not contain variables. As an easy consequence

4

Although these results have been shown for deterministic �nite automata, they easily

carry over to the nondeterministic case.

12

of Theorem 1, matching in FL

reg

can be reduced (in linear time) to solving

linear equations over regular languages of the following form:

S

0

[S

1

X

1

[� � � [S

n

X

n

= T

0

: (7)

For FL

0

, one obtains the same kind of equations, but there S

0

; : : : ; S

n

; T

0

are

�nite languages, and one is interested in �nite solvability. In [8] it was shown

that matching in FL

0

is polynomial, and in [7] this result was extended to the

DL ALN .

For FL

reg

, matching is at least PSpace-hard since equality of regular lan-

guages is a PSpace-complete problem if one assumes that the languages are given

by regular expressions or nondeterministic �nite automata. Thus, the equiva-

lence problem in FL

reg

is already PSpace-complete (this corresponds to the

case n = 0 in equation (7)). We can show that matching is not harder than

testing for equivalence.

Theorem 4. Matching in FL

reg

is a PSpace-complete problem.

It remains to be shown that solvability of equations of the form (7) can be

decided within polynomial space. Again, we consider the mirror equation

S

mi

0

[X

1

S

mi

1

[� � � [X

n

S

mi

n

= T

mi

0

(8)

in place of the original equation (7). The main idea underlying the proof of

Theorem 4 is that such an equation has a solution i� a certain candidate solution

solves the equation.

Lemma 5. Let L

i

:= fw j fwgS

mi

i

� T

mi

0

g. Then equation (8) has a solution

i�

S

mi

0

[L

1

S

mi

1

[� � � [L

n

S

mi

n

= T

mi

0

: (9)

In this case, the L

i

s yield a greatest solution of (8).

The proof of this lemma is similar to the one for the case of �nite languages

given in [8]. It remains to be shown that the validity of identity (9) can be tested

within polynomial space (in the size of nondeterministic �nite automata for the

languages S

mi

0

; : : : ; S

mi

n

; T

mi

0

). By de�nition of the sets L

i

, the inclusion from

left-to-right holds i� S

mi

0

� T

mi

0

. Obviously, this can be tested in PSpace.

How to derive a PSpace-test for the inclusion in the other direction is not

that obvious. Here, we sketch how the inclusion T

mi

0

� L

1

S

mi

1

can be tested

(the extension to the union in identity (9) is then simple). First, we de�ne an

exponentially large automaton for L

1

S

mi

1

. However, the representation of each

state of this automaton requires only polynomial space, and navigation in this

automaton (i.e., determining initial states, �nal states, and state transitions) can

also be realized within polynomial space. Thus, if we construct the automaton

on-the-
y, we stay within PSpace.

An automaton B for L

1

= fw j fwgS

mi

1

� T

mi

0

g can be obtained as follows.

We construct the usual deterministic powerset automaton from the given non-

deterministic automaton A for T

mi

0

. The only di�erence is the de�nition of the

13

�nal states. A state P of B (i.e., a subset of the set of states of A) is a �nal state

i� S

mi

1

� L

A

(P), where L

A

(P) is the language accepted by A if P is taken as

its set of initial states. It is easy to see that the automaton B obtained this way

indeed accepts L

1

, and that we can navigate in this automaton within PSpace.

In particular, note that testing whether a state P of this automaton is a �nal

state is a PSpace-complete problem.

The automaton C for L

1

S

mi

1

has as states tuples, where the �rst component

is a state of B and the second component is a set of states of A

1

, the nondeter-

ministic automaton for S

mi

1

. Transitions in the �rst component are those of B.

In the second component, they are in principle the transitions of the powerset

automaton corresponding to A

1

, with the following di�erence: if, on input r, the

automaton B reaches a �nal state, then in the second component we extend the

set reached with r in the powerset automaton of A

1

by the initial states of A

1

.

Final states of C are those whose second component contains a �nal state of A

1

.

The initial state is (I; J), where I is the initial state of B and J is the set of

initial states of A

1

or empty, depending on whether I is a �nal state of B or not.

Again, it is easy to see that navigation in C is possible within PSpace.

To decide whether T

mi

0

� L

1

S

mi

1

, we try to \guess" a counterexample (recall

that PSpace = NPSpace). This is a word that is in T

mi

0

, but not in L

1

S

mi

1

. The

length of a minimal such word can be bounded by the product of the size of A

(the nondeterministic automaton for T

mi

0

) and the size of C (the deterministic

automaton for L

1

S

mi

1

). We traverse A and C simultaneously, and have a coun-

terexample if A is in a �nal state and C is not. The next letter and the successor

state in A is guessed, and the successor state in C can be computed in PSpace.

In addition, we use an exponential counter (requiring only polynomial space)

that terminates the search if the (exponential) bound on the length of a minimal

counterexample is reached.

7 Conclusion

We have shown that uni�cation in FL

reg

is equivalent via linear time reduc-

tions to solvability of linear equations over regular languages, and that these

problems are ExpTime-complete. If we restrict the attention to matching prob-

lems (equations where one side does not contain variables), then the problem is

PSpace-complete. In both cases, solvable problems (equations) have least (great-

est) solutions, which may be exponential in the size of the problem (equation),

5

and which can be computed in exponential time. In addition to the application

for description logics, we think that the results on solving linear equations over

regular languages are also of interest in their own right (e.g., in formal language

theory).

From the description logic point of view, one is of course also interested

in uni�cation in more expressive DLs, but this appears to be a hard problem.

Recently, we have extended the decidability results to the DL obtained from

5

Note that equation (6) actually corresponds to a matching problem.

14

FL

reg

by adding inconsistency (?). Surprisingly, it is not clear how to handle

the corresponding extension of FL

0

.

References

1. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The Complexity of Set Con-

straints. In Proc. 1993 Conf. Computer Science Logic (CSL'93), volume 832 of

LNCS, pages 1{17. European Association Computer Science Logic, Springer, 1993.

2. F. Baader. Augmenting Concept Languages by Transitive Closure of Rules: An Al-

ternativ to Terminological Cycles. In Proc. of the 12th International Joint Confer-

ence on Arti�cial Intelligence (IJCAI'91), pages 446{451, 1991. Morgan Kaufmann

Publishers.

3. F. Baader. Using Automata Theory for Characterizing the Semantics of Termino-

logical Cycles. Annals of Mathematics and Arti�cial Intelligence, 18(2{4):175{219,

1996.

4. F. Baader and B. Hollunder. A Terminological Knowledge Representation System

with Complete Inference Algorithms. In Proc. of the First International Workshop

on Processing Declarative Knowledge, volume 572 of LNCS, pages 67{85, 1991.

Springer{Verlag.

5. F. Baader and R. K�usters. Matching in Description Logics with Existential Re-

strictions. In Proc. of the Seventh International Conference on Knowledge Rep-

resentation and Reasoning (KR2000), pages 261{272, 2000. Morgan Kaufmann

Publishers.

6. F. Baader and R. K�usters. Uni�cation in a Description Logic with Transitive

Closure of Roles. LTCS-Report 01-05, LuFG Theoretical Computer Science,

RWTH Aachen, Germany, 2001. See http://www-lti.informatik.rwth-aachen.de/

Forschung/Reports.html.

7. F. Baader, R. K�usters, A. Borgida, and D. McGuinness. Matching in Description

Logics. Journal of Logic and Computation, 9(3):411{447, 1999.

8. F. Baader and P. Narendran. Uni�cation of Concept Terms in Description Logics.

In Proc. of the 13th European Conference on Arti�cial Intelligence (ECAI-98),

pages 331{335, 1998. John Wiley & Sons Ltd. An extended version has appeared

in J. Symbolic Computation 31:277{305, 2001.

9. A. Borgida and D. L. McGuinness. Asking Queries about Frames. In Proc. of

the Fifth International Conference on Principles of Knowledge Representation and

Reasoning (KR'96), pages 340{349, 1996. Morgan Kaufmann Publishers.

10. R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Science, 9(2):171{216, 1985.

11. E. Leiss. Implicit language equations: Existence and uniqueness of solutions. The-

oretical Computer Science A, 145:71{93, 1995.

12. E. Leiss. Language Equations. Springer-Verlag, 1999.

13. D.L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis, De-

partment of Computer Science, Rutgers University, October, 1996.

14. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing

Letters, 52(2), 1994.

15. W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B, pages 133{191. Elsevier Science

Publishers, Amsterdam, 1990.

16. S. Yu and Q. Zhuang. On the State Complexity of Intersection of Regular Lan-

guages. ACM SIGACT News, 22(3):52{54, 1991.

15

