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Abstract. Description logics are a family of knowledge representation formalisms that are de-
scended from semantic networks and frames via the system KL -ONE. During the last decade,
it has been shown that the important reasoning problems (like subsumption and satisfiability)
in a great variety of description logics can be decided usingtableau-like algorithms. This is not
very surprising since description logics have turned out tobe closely related to propositional
modal logics and logics of programs (such as propositional dynamic logic), for which tableau
procedures have been quite successful.

Nevertheless, due to different underlying intuitions and applications, most description
logics differ significantly from run-of-the-mill modal andprogram logics. Consequently, the
research on tableau algorithms in description logics led tonew techniques and results, which
are, however, also of interest for modal logicians. In this article, we will focus on three features
that play an important rôle in description logics (number restrictions, terminological axioms,
and role constructors), and show how they can be taken into account by tableau algorithms.
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1. Introduction

Description logics (DLs) are a family of knowledge representation languages
which can be used to represent the terminological knowledgeof an appli-
cation domain in a structured and formally well-understoodway. The name
description logicsis motivated by the fact that, on the one hand, the important
notions of the domain are described byconcept descriptions, i.e., expres-
sions that are built from atomic concepts (unary predicates) and atomic roles
(binary predicates) using the concept and role constructors provided by the
particular DL. On the other hand, DLs differ from their predecessors, such
as semantic networks and frames (Quillian, 1967; Minsky, 1981), in that they
are equipped with a formal,logic-based semantics, which can, e.g., be given
by a translation into first-order predicate logic.

Knowledge representation systems based on description logics (DL sys-
tems) provide their users with various inference capabilities that deduce im-
plicit knowledge from the explicitly represented knowledge. For instance,
thesubsumptionalgorithm allows one to determine subconcept-superconcept
relationships:C is subsumed byD iff all instances ofC are also instances
� This is an extended version of a paper published in the proceedings of Tableaux 2000
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of D, i.e., the first description is always interpreted as a subset of the second
description. In order to ensure a reasonable and predictable behaviour of a DL
system, the subsumption problem for the DL employed by the system should
at least be decidable, and preferably of low complexity. Consequently, the
expressive power of the DL in question must be restricted in an appropriate
way. If the imposed restrictions are too severe, however, then the important
notions of the application domain can no longer be expressed. Investigating
this trade-off between the expressivity of DLs and the complexity of their
inference problems has been one of the most important issuesin DL research.
Roughly, the research related to this issue can be classifiedinto the following
four phases.

Phase 1: First system implementations.The original KL-ONE system (Brach-
man and Schmolze, 1985) as well as its early successor systems (such as
BACK (Peltason, 1991), K-REP (Mays et al., 1991), and LOOM (MacGregor,
1991)) employ so-called structural subsumption algorithms, which first nor-
malise the concept descriptions, and then recursively compare the syntactic
structure of the normalised descriptions (see, e.g., (Nebel, 1990a) for the de-
scription of such an algorithm). These algorithms are usually very efficient
(polynomial), but they have the disadvantage that they are complete only for
very inexpressive DLs, i.e., for more expressive DLs they cannot detect all
the existing subsumption relationships (though this fact was not necessarily
known to the designers of the early systems).

Phase 2: First complexity and undecidability results.Partially in parallel
with the first phase, the first formal investigations of the subsumption prob-
lem in DLs were carried out. It turned out that (under the assumptionP 6=

NP) already quite inexpressive DLs cannot have polynomial subsumption
algorithms (Brachman and Levesque, 1984; Nebel, 1990b), and that the DL
used by the KL-ONE system even has an undecidable subsumption problem
(Schmidt-Schauß, 1989). In particular, these results showed the incomplete-
ness of the (polynomial) structural subsumption algorithms. One reaction to
these results (e.g., by the designers of BACK and LOOM) was to call the
incompleteness of the subsumption algorithm a feature rather than a bug of
a DL system. The designers of the CLASSIC system (Patel-Schneider et al.,
1991; Brachman, 1992) followed another approach: they carefully chose a re-
stricted DL that still allowed for an (almost1) complete polynomial structural
subsumption algorithm (Borgida and Patel-Schneider, 1994).

Phase 3: Tableau algorithms for expressive DLs and thoroughcomplexity
analysis.For expressive DLs (in particular, DLs allowing for disjunction
and/or negation), for which the structural approach does not lead to com-
plete subsumption algorithms, tableau algorithms have turned out to be quite

1 The incompleteness is caused by individuals introduced by the one-of constructor;
however, the algorithm is complete w.r.t. a non-standard semantics.
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Tableau Algorithms for Description Logics 3

useful: they are complete and often of optimal (worst-case)complexity. The
first such algorithm was proposed by Schmidt-Schauß and Smolka (1991)
for a DL that they calledALC (for “attributive concept description language
with complements”).2 It quickly turned out that this approach for deciding
subsumption can be extended to various other DLs (Hollunderet al., 1990;
Hollunder and Baader, 1991; Baader and Hanschke, 1991; Baader, 1991;
Hanschke, 1992) and also to other inference problems such asthe instance
problem (Hollunder, 1990). Early on, DL researchers started to call the algo-
rithms obtained this way “tableau-based algorithms” sincethey observed that
the original algorithm by Schmidt-Schauß and Smolka forALC, as well as
subsequent algorithms for more expressive DLs, could be seen as specialisa-
tions of the tableau calculus for first-order predicate logic (the main problem
to solve was to find a specialisation that always terminates,and thus yields
a decision procedure). After Schild (1991) showed thatALC is a syntactic
variant of multi-modalK, it turned out that the algorithm by Schmidt-Schauß
and Smolka was actually a re-invention of the known tableau algorithm for
K.

At the same time, the (worst-case) complexity of various DLs(in partic-
ular also DLs that are not propositionally closed) was investigated in detail
(Donini et al., 1991a; Donini et al., 1991b; Donini et al., 1992).

The first DL systems employing tableau algorithms (KRIS (Baader and
Hollunder, 1991) and CRACK (Bresciani et al., 1995)) demonstrated that (in
spite of their high worst-case complexity) these algorithms lead to acceptable
behaviour in practice (Baader et al., 1994). Highly optimised systems such as
FaCT (Horrocks, 1998b), DLP (Patel-Schneider, 1999), and Race (Haarslev
and Möller, 1999) have an even better behaviour, also for benchmark prob-
lems in modal logics (Horrocks, 1998a; Horrocks and Patel-Schneider, 1999;
Haarslev and Möller, 2000a; Horrocks, 2000; Patel-Schneider, 2000).

Phase 4: Algorithms and efficient systems for very expressive DLs. Moti-
vated by applications (e.g., in the database area), DL researchers started to
investigate DLs whose expressive power goes far beyond the one ofALC
(e.g., DLs that do not have the finite model property). First decidability and
complexity results for such DLs could be obtained from the connection be-
tween propositional dynamic logic (PDL) and DLs (Schild, 1991). The idea
of this approach, which was perfected by De Giacomo and Lenzerini, is to
translate the DL in question into PDL. If the translation is polynomial and
preserves satisfiability, then the known EXPTIME-algorithms for PDL can be
employed to decide subsumption in exponential time. Thoughthis approach
has produced very strong complexity results (De Giacomo andLenzerini,

2 Actually, at that time the authors were not aware of the closeconnection between their
rule-based algorithm working on constraint systems and tableau procedures for modal and
first-order predicate logics.
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1994; De Giacomo, 1995; De Giacomo and Lenzerini, 1996), it turned out
to be less satisfactory from a practical point of view. In fact, first tests in a
database application (Horrocks et al., 1999) showed that the PDL formulae
obtained by the translation technique could not be handled by existing effi-
cient implementations of satisfiability algorithms for PDL(Patel-Schneider,
1999). To overcome this problem, DL researchers have started to design
“practical” tableau algorithms forveryexpressive DLs (Horrocks and Sattler,
1999; Horrocks et al., 1999).3

The purpose of this article is to give an impression of the work on tableau
algorithms done in the DL community, with an emphasis on features that,
though they may also occur in modal logics, are of special interest to descrip-
tion logics. After introducing some basic notions of description logics in Sec-
tion 2, we will describe a tableau algorithm forALC in Section 3. Although,
from the modal logic point of view, this is just the well-known algorithm for
multi-modalK, this section will introduce the notations and techniques used
in description logics, and thus set the stage for extensionsto more interesting
DLs. In the subsequent three sections we will show how the basic algorithm
can be extended to one that treats number restrictions, terminological axioms,
and role constructors of different expressiveness, respectively.

An overview of reasoning techniques in description logics with more em-
phasis on complexity results and on results for less expressive DLs can be
found in (Donini et al., 1996). Reasoning in very expressiveDLs with an em-
phasis on results obtained via the translation approach is treated in (Calvanese
et al., 2001).

2. Description logics: basic definitions

The main expressive means of description logics are so-called concept de-
scriptions, which describe sets of individuals or objects.Formally, concept
descriptionsare inductively defined with the help of a set ofconcept construc-
tors, starting with a setN

C

of concept namesand a setN
R

of role names. The
available constructors determine the expressive power of the DL in question.
In the next two sections, we consider concept descriptions built from the
constructors shown in Table I, whereC;D stand for concept descriptions,r
for a role name, andn for a nonnegative integer. In the description logicALC,
concept descriptions are formed using the constructors negation, conjunction,
disjunction, value restriction, and existential restriction. The description logic
ALCQ additionally provides us with (qualified) at-least and at-mostnumber
restrictions.

3 In contrast to PDL, these DLs allow for transitive roles, butnot for the transitive closure
operator.
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Table I. Syntax and semantics of concept descriptions.

Constructor Syntax Semantics

negation :C �

I

n C

I

conjunction C uD C

I

\D

I

disjunction C tD C

I

[D

I

existential
restriction

9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value
restriction

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

at-least
restriction

(>nr:C) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

^ y 2 C

I

g � ng

at-most
restriction

(6nr:C) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

^ y 2 C

I

g � ng

The semantics of concept descriptions is defined in terms of an interpre-
tation I = (�

I

; �

I

). The domain�I of I is a non-empty set of individuals
and the interpretation function�I maps each concept nameP 2 N

C

to a set
P

I

� �

I and each role namer 2 N

R

to a binary relationrI � �

I

��

I .
The extension of�I to arbitrary concept descriptions is inductively defined,
as shown in the third column of Table I.

From the modal logic point of view, roles are simply names foracces-
sibility relations, and existential (value) restrictionscorrespond to diamonds
(boxes) indexed by the respective accessibility relation.Thus, anyALC de-
scription can be translated into a multi-modalK formula and vice versa.
For example, the descriptionP u 9r:P u 8r::P corresponds to the for-
mula p ^ hrip ^ [r℄:p, wherep is an atomic proposition corresponding to
the concept nameP . As pointed out by Schild (1991), there is an obvious
correspondence between the semantics ofALC and the Kripke semantics for
multi-modalK, which satisfiesd 2 C

I iff the world d satisfies the formula
�

C

corresponding toC in the Kripke structure corresponding toI. Number
restrictions also have a corresponding construct in modal logics, so-called
graded modalities (Van der Hoek and De Rijke, 1995), which are, however,
not as well-investigated as the modal logicK.

One of the most important inference services of DL systems iscomputing
the subsumption hierarchy of a given finite set of concept descriptions.

DEFINITION 1. The concept descriptionD subsumesthe concept descrip-
tionC (writtenC v D) iff CI

� D

I for all interpretationsI; C is satisfiable
iff there exists an interpretationI such thatCI

6= ;; and C and D are
equivalentiff C v D andD v C.
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In the presence of negation, subsumption can obviously be reduced to
satisfiability:C v D iff C u :D is unsatisfiable.4 Vice versa, satisfiability
can be reduced to subsumption:C is satisfiable iff notC v P u :P , where
P is an arbitrary concept name.

Given concept descriptions that define the important notions of an appli-
cation domain, one can then describe a concrete situation with the help of the
assertional formalism of description logics.

DEFINITION 2. LetN
I

be a set ofindividual names. AnABox is a finite set
of assertions of the formC(a) (concept assertion) or r(a; b) (role assertion),
whereC is a concept description,r a role name, anda; b are individual
names.

An interpretationI, which additionally assigns elementsaI 2 �

I to
individual namesa, is a modelof an ABoxA iff aI 2 C

I ((aI ; bI) 2 r

I)
holds for all assertionsC(a) (r(a; b)) in A.

The AboxA is consistentiff it has a model. The individuala is aninstance
of the descriptionC w.r.t.A iff aI 2 C

I holds for all modelsI ofA.

Satisfiability (and thus also subsumption) of concept descriptions as well as
the instance problem can be reduced to the consistency problem for ABoxes:
(i) C is satisfiable iff the ABoxfC(a)g for somea 2 N

I

is consistent; and
(ii) a is an instance ofC w.r.t.A iff A[ f:C(a)g is inconsistent.

Usually, one imposes theunique name assumptionon ABoxes, i.e., re-
quires the mapping from individual names to elements of�

I to be injective.
Here, we dispense with this requirement since it has no effect for ALC,
and for DLs with number restrictions we will explicitly introduce inequality
assertions, which can be used to express the unique name assumption.

3. A tableau algorithm for ALC

Given anALC-concept descriptionC
0

, the tableau algorithm for satisfiabil-
ity tries to construct a finite interpretationI that satisfiesC

0

, i.e., contains
an elementx

0

such thatx
0

2 C

I

0

. Before we can describe the algorithm
more formally, we need to introduce an appropriate data structure in which
to represent (partial descriptions of) finite interpretations. The original pa-
per by Schmidt-Schauß and Smolka (1991), and also many otherpapers on
tableau algorithms for DLs, introduce the new notion of a constraint system
for this purpose. However, if we look at the information thatmust be ex-
pressed (namely, the elements of the interpretation, the concept descriptions

4 This was the reason why Schmidt-Schauß and Smolka (1991) introduced a DL with
negation in the first place.
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Tableau Algorithms for Description Logics 7

they belong to, and their role relationships), we see that ABox assertions are
sufficient for this purpose.

It will be convenient to assume that all concept descriptions are innegation
normal form(NNF), i.e., that negation occurs only directly in front of concept
names. Using de Morgan’s rules and the usual rules for quantifiers, anyALC-
concept description can be transformed (in linear time) into an equivalent
description in NNF.

The!
u

-rule
Condition: A contains(C

1

u C

2

)(x), but not bothC
1

(x) andC
2

(x).

Action: A0

:= A[ fC

1

(x); C

2

(x)g.

The!
t

-rule
Condition: A contains(C

1

t C

2

)(x), but neitherC
1

(x) norC
2

(x).

Action: A0

:= A[ fC

1

(x)g,A00

:= A [ fC

2

(x)g.

The!
9

-rule
Condition: A contains(9r:C)(x), but there is no individual namez such that

C(z) andr(x; z) are inA.

Action: A0

:= A[fC(y); r(x; y)g wherey is an individual name not occurring
in A.

The!
8

-rule
Condition: A contains(8r:C)(x) andr(x; y), but it does not containC(y).

Action: A0

:= A[ fC(y)g.

Figure 1. Transformation rules of the satisfiability algorithm forALC.

LetC
0

be anALC-concept in NNF. In order to test satisfiability ofC
0

, the
algorithm starts withA

0

:= fC

0

(x

0

)g, and applies consistency preserving
transformation rules (see Fig. 1) to this ABox. The transformation rule that
handles disjunction isnondeterministicin the sense that a given ABox is
transformed into two new ABoxes such that the original ABox is consistent
iff one of the new ABoxes is so. For this reason we will consider finite sets of
ABoxesS = fA

1

; : : : ;A

k

g instead of single ABoxes. Such a set isconsistent
iff there is somei, 1 � i � k, such thatA

i

is consistent. A rule of Fig. 1 is
applied to a given finite set of ABoxesS as follows: it takes an elementA of
S, and replaces it by one ABoxA0 or by two ABoxesA0 andA00.

DEFINITION 3. An ABoxA is calledcompleteiff none of the transforma-
tion rules of Fig. 1 applies to it. The ABoxA contains aclash iff fP (x);
:P (x)g � A for some individual namex and some concept nameP . An
ABox is calledclosedif it contains a clash, andopenotherwise.
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8 Franz Baader and Ulrike Sattler

The satisfiability algorithm forALC works as follows. It starts with the
singleton set of ABoxesffC

0

(x

0

)gg, and applies the rules of Fig. 1 (in arbi-
trary order) until no more rules apply. It answers “satisfiable” if the set bS of
ABoxes obtained this way contains an open ABox, and “unsatisfiable” other-
wise. Correctness of this algorithm is an easy consequence of the following
lemma.

LEMMA 1. LetC
0

be anALC-concept in negation normal form.

1. There cannot be an infinite sequence of rule applications

ffC

0

(x

0

)gg ! S

1

! S

2

! � � � :

2. Assume thatS 0 is obtained from the finite set of ABoxesS by application
of a transformation rule. ThenS is consistent iffS 0 is consistent.

3. Any closed ABoxA is inconsistent.

4. Any complete and open ABoxA is consistent.

The first part of this lemma (termination) is an easy consequence of the facts
that (i) all concept assertions occurring in an ABox in one ofthe setsS

i

are
of the formC(x) wereC is a sub-description ofC

0

; and (ii) if an ABox
in S

i

contains the role assertionr(x; y), then the maximal role depth (i.e.,
nesting of value and existential restrictions) of concept descriptions occurring
in concept assertions fory is strictly smaller than the maximal role depth of
concept descriptions occurring in concept assertions forx. A detailed proof
of termination (using an explicit mapping into a well-founded ordering) for
a set of rules extending the one of Fig. 1 can, e.g., be found in(Baader and
Hanschke, 1991).

The second and third part of the lemma are quite obvious, and the fourth
part can be proved by defining thecanonical interpretationI

A

of A:

1. The domain�I

A of I
A

consists of the individual names occurring inA.

2. For all concept namesP we defineP I

A

:= fx j P (x) 2 Ag.

3. For all role namesr we definerIA := f(x; y) j r(x; y) 2 Ag.

By definition, I
A

satisfies all the role assertions inA. By induction on the
structure of concept descriptions, it is easy to show that itsatisfies the concept
assertions as well, provided thatA is complete and open.

It is also easy to show that the canonical interpretation hasthe shape of
a finite tree whose depth is linearly bounded by the size ofC

0

and whose
branching factor is bounded by the number of different existential restric-
tions inC

0

. Consequently,ALC has thefinite tree model property, i.e., any
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Tableau Algorithms for Description Logics 9

satisfiable conceptC
0

is satisfiable in a finite interpretationI that has the
shape of a tree whose root belongs toC

0

.
To sum up, we have seen that the transformation rules of Fig. 1reduce

satisfiability of anALC-conceptC
0

(in NNF) to consistency of a finite setbS
of complete ABoxes. In addition, consistency ofb

S can be decided by looking
for obvious contradictions (clashes).

THEOREM 1. It is decidable whether or not anALC-concept is satisfiable.

3.1. COMPLEXITY ISSUES

The satisfiability algorithm forALC presented above may need exponential
time and space. In fact, the size of the complete and open ABox(and thus
of the canonical interpretation) built by the algorithm maybe exponential in
the size of the concept description. For example, consider the descriptionsC

n

(n � 1) that are inductively defined as follows:

C

1

:= 9r:A u 9r:B;

C

n+1

:= 9r:A u 9r:B u 8r:C

n

:

Obviously, the size ofC
n

grows linearly inn. However, given the input de-
scriptionC

n

, the satisfiability algorithm generates a complete and openABox
whose canonical interpretation is a binary tree of depthn, and thus consists
of 2n+1 � 1 individuals.

Nevertheless, the algorithm can be modified such that it needs only poly-
nomial space. The main reason is that different branches of the tree model to
be generated by the algorithm can be investigated separately, and thus the tree
can be built and searched in a depth-first manner. Since the complexity class
NPSPACE coincides with PSPACE (Savitch, 1970), it is sufficient to describe
a nondeterministic algorithm using only polynomial space,i.e., for the non-
deterministic!

t

-rule, we may simply assume that the algorithm chooses the
correct alternative. In principle, the modified algorithm works as follows: it
starts withfC

0

(x

0

)g and

1. applies the!
u

- and!
t

-rules as long as possible and checks for clashes;

2. generates all the necessary direct successors ofx

0

using the!
9

-rule and
exhaustively applies the!

8

-rule to the corresponding role assertions;

3. successively handles the successors in the same way.

Since the successors of a given individual can be treated separately, the algo-
rithm needs to store only one path of the tree model to be generated, together
with thedirect successors of the individuals on this path and the information
which of these successors must be investigated next. Since the length of the
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10 Franz Baader and Ulrike Sattler

path is linear in the size of the input descriptionC
0

, and the number of suc-
cessors is bounded by the number of different existential restrictions inC

0

,
the necessary information can obviously be stored within polynomial space.

This shows that the satisfiability problem forALC-concept descriptions is
in PSPACE. PSPACE-hardness can be shown by a reduction from validity of
Quantified Boolean Formulae (Schmidt-Schauß and Smolka, 1991; Halpern
and Moses, 1992).

THEOREM 2. Satisfiability ofALC-concept descriptions is PSPACE-comp-
lete.

3.2. THE CONSISTENCY PROBLEM FORALC-ABOXES

The satisfiability algorithm described above can also be used to decide con-
sistency ofALC-ABoxes. LetA

0

be anALC-ABox such that (w.l.o.g.) all
concept descriptions inA

0

are in NNF. To testA
0

for consistency, we simply
apply the rules of Fig. 1 to the singleton setfA

0

g. It is easy to show that
Lemma 1 still holds. Indeed, the only point that needs additional considera-
tion is the first one (termination). Thus, the rules of Fig. 1 yield a decision
procedure for consistency ofALC-ABoxes.

Since now the canonical interpretation obtained from a complete and open
ABox need no longer be of tree shape, the argument used to showthat the sat-
isfiability problem is in PSPACE cannot directly be applied to the consistency
problem. In order to show that the consistency problem is in PSPACE, one
can, however, proceed as follows: In apre-completionstep, one applies the
transformation rules only toold individuals (i.e., individuals present in the
original ABoxA

0

). Subsequently, one can forget about the role assertions,
i.e., for each individual name in the pre-completed ABox, the satisfiability al-
gorithm is applied to the conjunction of its concept assertions (see (Hollunder,
1996) for details).

THEOREM 3. Consistency ofALC-ABoxes is PSPACE-complete.

SinceALC is closed under negation, this also implies that the instance
problem is PSPACE-complete inALC. The consistency and the instance
problem for DLs not allowing for negation has been investigated in (Schaerf,
1993; Donini et al., 1994).

4. Number restrictions

Before treating the qualified number restrictions introduced in Section 2, we
consider a restricted form of number restrictions, which isthe form present
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Tableau Algorithms for Description Logics 11

in most DL systems. Inunqualifiednumber restrictions, the qualifying con-
cept is the top concept>, where> is an abbreviation forP t :P , i.e., a
concept that is always interpreted by the whole interpretation domain. In-
stead of(>nr:>) and (6nr:>), we write unqualified number restrictions
simply as(>nr) and(6nr). The DL that extendsALC by unqualified num-
ber restrictions is denoted byALCN (Hollunder et al., 1990; Donini et al.,
1991a).

Obviously,ALCN - andALCQ-concept descriptions can also be trans-
formed into NNF in linear time.

4.1. A TABLEAU ALGORITHM FOR ALCN

The main idea underlying the extension of the tableau algorithm for ALC
to ALCN is quite simple. At-least restrictions are treated by generating the
required role successors as new individuals. At-most restrictions that are cur-
rently violated are treated by (nondeterministically) identifying some of the
role successors. To avoid running into a generate-identifycycle, we introduce
explicit inequality assertions that prohibit the identification of individuals that
were introduced to satisfy an at-least restriction.

Inequality assertionsare of the formx 6 := y for individual namesx; y, with
the obvious semantics that an interpretationI satisfiesx 6

:

= y iff x

I

6= y

I .
These assertions are assumed to be symmetric, i.e., saying thatx 6 := y belongs
to an ABoxA is the same as saying thaty 6 := x belongs toA.

Thesatisfiability algorithmfor ALCN is obtained from the one forALC
by adding the rules in Fig. 2, and by considering a second typeof clashes:

� f(6nr)(x)g [ fr(x; y

i

) j 1 � i � n + 1g [ fy

i

6

:

= y

j

j 1 � i <

j � n+ 1g � A for x; y
1

; : : : ; y

n+1

2 N

I

, r 2 N

R

, and a nonnegative
integern.

The nondeterministic!
�

-rule replaces the ABoxA by finitely many new
ABoxesA

i;j

. Lemma 1 still holds for the extended algorithm (see e.g. (Baader
and Sattler, 1999), where this is proved for a more expressive DL). This shows
that satisfiability (and thus also subsumption) ofALCN -concept descriptions
is decidable.

4.1.1. Complexity issues
The ideas that lead to a PSPACE algorithm forALC can be applied to the
extended algorithm as well. The only difference is that, before handling the
successors of an individual (introduced by at-least and existential restric-
tions), one must check for clashes of the second type and generate the neces-
sary identifications. However, this simple extension only leads to a PSPACE
algorithm if we assume the numbers in at-least restrictionsto be written in
base1 representation (called unary notation in the following). Here, the size
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12 Franz Baader and Ulrike Sattler

The!
�

-rule
Condition: A contains(>nr)(x), and there are no individual namesz

1

; : : : ; z

n

such thatr(x; z
i

) (1 � i � n) andz
i

6

:

= z

j

(1 � i < j � n) are inA.

Action: A0

:= A[ fr(x; y

i

) j 1 � i � ng [ fy

i

6

:

= y

j

j 1 � i < j � ng, where
y

1

; : : : ; y

n

are distinct individual names not occurring inA.

The!
�

-rule
Condition: A contains distinct individual namesy

1

; : : : ; y

n+1

such that
(6nr)(x) and r(x; y

1

); : : : ; r(x; y

n+1

) are inA, andy
i

6

:

= y

j

is not in
A for somei; j; 1 � i < j � n+ 1.

Action: For each pairy
i

; y

j

such that1 � i < j � n + 1 andy
i

6

:

= y

j

is not
in A, the ABoxA

i;j

:= [y

i

=y

j

℄A is obtained fromA by replacing each
occurrence ofy

i

by y
j

.

Figure 2. The transformation rules handling unqualified number restrictions.

of the representation coincides with the number represented. For bases larger
than1 (e.g., numbers in decimal notation), the number represented may be
exponential in the size of the representation. Thus, we cannot introduce all the
successors required by at-least restrictions while only using space polynomial
in the size of the concept description if the numbers in this description are not
written in unary notation.

It is not hard to see, however, that most of the successors required by
the at-least restrictions need not be introduced at all. If an individual x ob-
tains at least oner-successor due to the application of the!

9

-rule, then
the!

�

-rule need not be applied tox for the roler. Otherwise, we simply
introduceoner-successor as representative. In order to detect inconsistencies
due to conflicting number restrictions, we need to addanother type of clashes:
f(6nr)(x); (>mr)(x)g � A for nonnegative integersn < m. The canonical
interpretation obtained by this modified algorithm need notsatisfy the at-least
restrictions inC

0

. However, it can easily be modified to an interpretation that
does, by duplicatingr-successors (more precisely, the whole subtrees starting
at these successors).

THEOREM 4. Satisfiability ofALCN -concept descriptions is PSPACE-com-
plete, even if numbers are not represented in unary notation.

4.1.2. The consistency problem forALCN -ABoxes
Just as withALC, the extended rule set forALCN can also be applied
to arbitrary ABoxes. Unfortunately, the algorithm obtained this way need
not terminate, unless one imposes a specific strategy on the order of rule
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Tableau Algorithms for Description Logics 13

applications. For example, consider the ABox

A

0

:= fr(a; a); (9r:P )(a); (61r)(a); (8r:9r:P )(a)g:

By applying the!
9

-rule toa, we can introduce a newr-successorx of a:

A

1

:= A

0

[ fr(a; x); P (x)g:

The!
8

-rule adds the assertion(9r:P )(x), which triggers an application of
the!

9

-rule tox. Thus, we obtain the new ABox

A

2

:= A

1

[ f(9r:P )(x); r(x; y); P (y)g:

Sincea has twor-successors inA
2

, the !
�

-rule is applicable toa. By
replacing every occurrence ofx by a, we obtain the ABox

A

3

:= A

0

[ fP (a); r(a; y); P (y)g:

Except for the individual names (and the assertionP (a), which is, however,
irrelevant),A

3

is identical toA
1

. For this reason, we can continue as above
to obtain an infinite chain of rule applications.

We can easily regain termination by requiring thatgenerating rules(i.e.,
the rules!

9

and!
�

) may only be applied if none of the other rules is
applicable. In the above example, this strategy would prevent the application
of the!

9

-rule tox in the ABoxA
1

[f(9r:P )(x)g since the!
�

-rule is also
applicable. After applying the!

�

-rule (which replacesx by a), the!
9

-rule
is no longer applicable sincea already has anr-successor that belongs toP .

In order to obtain a PSPACE algorithm for consistency ofALCN -ABoxes,
the pre-completion technique sketched above forALC can also be applied to
ALCN (Hollunder, 1996).

THEOREM 5. Consistency ofALCN -ABoxes is PSPACE-complete, even if
numbers are not represented in unary notation.

4.2. A TABLEAU ALGORITHM FOR ALCQ

An obvious idea when attempting to extend the satisfiabilityalgorithm for
ALCN to one that can handleALCQ is the following (see (Van der Hoek
and De Rijke, 1995)):

� Instead of simply generatingn newr-successorsy
1

; : : : ; y

n

in the!
�

-
rule, one also asserts that these individuals must belong tothe qualifying
conceptC of (>nr:C) by adding the assertionsC(y

i

) toA0.

� The!
�

-rule only applies to(>nr:C) if A also contains the assertions
C(y

i

) (1 � i � n+ 1).
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14 Franz Baader and Ulrike Sattler

The!choose-rule
Condition: A contains(6nr:C)(x) andr(x; y), but neitherC(y) nor:C(y).

Action: A0

:= A[ fC(y)g,A00

:= A [ f:C(y)g.

Figure 3. The!choose-rule for qualified number restrictions.

Unfortunately, this does not yield a correct algorithm for satisfiability in
ALCQ. In fact, this simple algorithm would not detect that the concept de-
scription(>3r)u (61r:P )u (61r::P ) is unsatisfiable. The (obvious) prob-
lem is that, for some individuala and concept descriptionC, the ABox may
neither containC(a) nor:C(a), whereas in the canonical interpretation con-
structed from the ABox, one of the two must hold. In order to overcome this
problem, the nondeterministic!choose-rule of Fig. 3 must be added (Hollun-
der and Baader, 1991). Together with the!choose-rule, the simple modifica-
tion of the!

�

- and!
�

-rule described above yields a correct algorithm for
satisfiability inALCQ (Hollunder and Baader, 1991).

4.2.1. Complexity issues
The approach that leads to a PSPACE-algorithm forALC can be applied to
the algorithm forALCQ as well. However, as withALCN , this yields a
PSPACE-algorithm only if the numbers in number restrictions are assumed
to be written in unary notation. ForALCQ, the idea that leads to a PSPACE-
algorithm forALCN with non-unary notation does no longer work: it is not
sufficient to introduce just one successor as representative for the role succes-
sors required by at-least restrictions. Nevertheless, it is possible to design a
PSPACE-algorithm forALCQ also w.r.t. non-unary notation of numbers (To-
bies, 1999). Like the PSPACE-algorithm forALC, this algorithm treats the
successors separately. It uses appropriate counters (and anew type of clashes)
to check whether qualified number restrictions are satisfied. By combining
the pre-completion approach of (Hollunder, 1996) with thisalgorithm, we
also obtain a PSPACE-result for consistency ofALCQ-ABoxes.

THEOREM 6. Satisfiability ofALCQ-concept descriptions as well as con-
sistency ofALCQ-ABoxes are PSPACE-complete problems, even if numbers
are not represented in unary notation.

5. Terminological axioms

DL systems usually provide their users also with a terminological formal-
ism. In its simplest form, this formalism can be used to introduce names for
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Tableau Algorithms for Description Logics 15

complex concept descriptions. More general terminological formalisms can
be used to state connections between complex concept descriptions.

DEFINITION 4. A TBox is a finite set of terminological axioms of the form
C

:

= D, whereC;D are concept descriptions. The terminological axiom
C

:

= D is calledconcept definitioniff C is a concept name.
An interpretationI is a modelof the TBoxT iff CI

= D

I holds for all
terminological axiomsC :

= D in T .
The concept descriptionD subsumesthe concept descriptionC w.r.t. the

TBox T (written C v

T

D) iff C

I

� D

I for all modelsI of T ; C is
satisfiable w.r.t.T iff there exists a modelI of T such thatCI

6= ;. The
AboxA is consistent w.r.t.T iff it has a model that is also a model ofT . The
individual a is an instance ofC w.r.t.A andT iff aI 2 C

I holds for each
modelI ofA andT .

In the following, we restrict our attention to terminological reasoning (i.e.,
the satisfiability and subsumption problem) w.r.t. TBoxes;however, the meth-
ods and results also apply to assertional reasoning (i.e., the instance and the
consistency problem for ABoxes) (see, e.g., (Buchheit et al., 1993)).

5.1. ACYCLIC TERMINOLOGIES

The early DL systems provided TBoxes only for introducing names as abbre-
viations for complex descriptions. This is possible with the help of acyclic
terminologies.

DEFINITION 5. A TBox is anacyclic terminologyiff it is a set of concept
definitions that neither contains multiple definitions nor cyclic definitions.
Multiple definitionsare of the formA

:

= C;A

:

= D for distinct concept
descriptionsC;D, andcyclic definitionsare of the formA

1

:

= C

1

; : : : ; A

n

:

=

C

n

, whereA
i

occurs inC
i�1

(1 < i � n) andA
1

occurs inC
n

. If the acyclic
terminologyT contains a concept definitionA :

= C, thenA is calleddefined
nameandC its defining concept.

Reasoning w.r.t.acyclic terminologiescan be reduced to reasoning with-
out TBoxes byunfolding the definitions: this is achieved by repeatedly re-
placing defined names by their defining concepts until no moredefined names
occur. Unfortunately, unfolding may lead to an exponentialblow-up, as the
following acyclic terminology (due to Nebel (1990b)) demonstrates:

fA

0

:

= 8r:A

1

u 8s:A

1

; : : : ; A

n�1

:

= 8r:A

n

u 8s:A

n

g:

This terminology is of size linear inn, but unfolding applied toA
0

results in
a concept description containing the nameA

n

2

n times. Nebel (1990b) also
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16 Franz Baader and Ulrike Sattler

shows that this complexity can, in general, not be avoided: for the DLFL
0

,
which allows for conjunction and value restriction only, subsumption between
concept descriptions can be tested in polynomial time, whereas subsumption
w.r.t. acyclic terminologies is coNP-complete.

For more expressive languages, the presence of acyclic TBoxes may or
may not increase the complexity of the subsumption problem.For exam-
ple, subsumption of concept descriptions in the languageALC is PSPACE-
complete, and so is subsumption w.r.t. acyclic terminologies (Lutz, 1999).
Of course, in order to obtain a PSPACE-algorithm for subsumption in ALC
w.r.t. acyclic terminologies, one cannot first apply unfolding to the concept
descriptions to be tested for subsumption since this may need exponential
space. The main idea is to use a tableau algorithm like the onedescribed in
Section 3, with the difference that it receives concept descriptions containing
defined names as input.Unfolding is then doneon demand: if the tableau
algorithm encounters an assertion of the formA(x), whereA is a defined
name andC its defining concept, then it adds the assertionC(x). However,
it does not further unfoldC at this stage. It can be shown that this really
yields a PSPACE-algorithm for satisfiability (and thus alsofor subsumption)
of concepts w.r.t. acyclic terminologies inALC (Lutz, 1999).

THEOREM 7. Satisfiability w.r.t. acyclic terminologies is PSPACE-complete
in ALC.

Although this technique also works for many extensions ofALC (such as
ALCN andALCQ), there are extensions for which it fails. One such example
is the languageALCF , which extendsALC with functional roles as well as
agreements and disagreements on chains of functional roles.

More precisely, inALCF , a setN
F

� N

R

of feature namesis fixed, and a
feature chainu = f

1

� � � f

n

is defined to be a non-empty sequence of feature
namesf

i

2 N

F

. An interpretationI maps eachf 2 N

F

to a functional role
f

I, i.e., (x; y); (x; z) 2 f

I implies y = z. The interpretation of a feature
name can thus also be viewed as a partial functionf

I

: �

I

! �

I . For
this reason, we will usually writefI(x) = y instead of(x; y) 2 f

I . The
feature chainu = f

1

� � � f

n

is interpreted as the composition of its features,
i.e.,uI(x) := f

I

n

(� � � f

I

1

(x) � � � ).
The DLALCF is obtained fromALC by allowing for feature names in

value and existential restrictions, and for additional concept descriptions of
the formu # v (agreement) andu " v (disagreement), whereu; v are feature
chains. These new descriptions are interpreted as follows:

(u # v)

I

= fx 2 �

I

j there is ay 2 �

I with u

I

(x) = y = v

I

(x)g

(u " v)

I

= fx 2 �

I

j there arey
1

; y

2

2 �

I with y

1

6= y

2

;

u

I

(x) = y

1

andvI(x) = y

2

g
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Tableau Algorithms for Description Logics 17

The tableau-based satisfiability algorithm forALC can easily be extended
to ALCF (Hollunder and Nutt, 1990). Both agreements and disagreements
are handled by rules that generate the feature successors required by the
semantics. To ensure that features are interpreted as functional roles in the
canonical interpretation, one uses an identification rule (similar to the!

�

-
rule): if f(x; y); f(x; z) occurs in the ABox, then the rule replaces every
occurrence ofy by z, unless the ABox also contains an inequality assertion
y 6

:

= z. This second case leads to a new type of clashes. Inequality assertions
are introduced by the rule that handles disagreements: the final individuals
reached by the feature chains are explicitly asserted to be distinct.

It can easily be seen that this algorithm can again be realised within poly-
nomial space. There is, however, a significant difference between the PSPACE-
algorithm forALC and the one forALCF . Due to identifications caused
by agreements, the canonical interpretation built by the algorithm need no
longer have tree shape. For example, an application of the agreement rule to
(f

1

f

2

# g

1

g

2

)(x) leads to assertionsg
1

(x; y

1

); g

2

(y

1

; z); f

1

(x; y

2

); f

2

(y

2

; z).
In particular, this means that the successorsy

1

andy
2

of x cannot be handled
independently since they lead to a common successor. However, this problem
is restricted to individuals connected by feature chains. It is easy to show
that each suchfeature-connected componentis polynomial in the size of the
concept description to be tested for satisfiability (if identification of feature
successors is done eagerly). Thus, it is unproblematic to generate the whole
feature-connected component issuing from a given individual.

In the presence of acyclic terminologies, this is no longer true. In fact, by
using a sequence of terminological axioms of the formC

n+1

:

= 9f:C

n

u

9g:C

n

, one can enforce feature-connected components of size exponential in
the size of the given terminology and concept description. In (Lutz, 1999),
this fact is used to show that satisfiability ofALCF-concept descriptions
w.r.t. acyclic terminologies is NEXPTIME-complete.

THEOREM 8. Satisfiability ofALCF-concept descriptions is PSPACE-com-
plete, but satisfiability w.r.t. acyclic terminologies is NEXPTIME-complete in
ALCF .

5.2. GENERAL TBOXES

For general terminological axioms of the formC :

= D, whereC may also
be a complex description, unfolding is obviously no longer possible. Instead
of considering finitely many such axiomsC

1

:

= D

1

; : : : ; C

n

:

= D

n

, it is
sufficient to consider the single axiombC :

= >, where

b

C := (:C

1

tD

1

) u (C

1

t :D

1

) u � � � u (:C

n

tD

n

) u (C

n

t :D

n

)

and> is an abbreviation forP t :P .
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18 Franz Baader and Ulrike Sattler

The axiomb

C

:

= > just says that any individual must belong to the concept
b

C. The tableau algorithm forALC introduced in Section 3 can easily be
modified such that it takes this axiom into account: all individuals are simply
asserted to belong tobC. However, this modification may obviously lead to
nontermination of the algorithm.

For example, consider what happens if this algorithm is applied to test
consistency of the ABoxA

0

:= f(9r:P )(x

0

)gw.r.t. the axiom9r:P :

= >: the
algorithm generates an infinite sequence of ABoxesA

1

;A

2

; : : : and individu-
alsx

1

; x

2

; : : : such thatA
i+1

:= A

i

[fr(x

i

; x

i+1

); P (x

i+1

); (9r:P )(x

i+1

)g.
Since all individualsx

i

(i � 1) receive the same concept assertions asx

1

, we
may say that the algorithm has run into a cycle.

Termination can be regained by using a mechanism that detects cyclic
computations, and then blocking the application of generating rules: the ap-
plication of the rule!

9

to an individualx is blockedby an individualy in an
ABox A iff fD j D(x) 2 Ag � fD

0

j D

0

(y) 2 Ag. The main idea underly-
ing blocking is that the blocked individualx can use the role successors ofy

instead of generating new ones. For example, instead of generating a newr-
successor forx

2

in the above example, one can simply use ther-successor of
x

1

. This yields an interpretationI with �

I

:= fx

0

; x

1

; x

2

g, P I

:= fx

1

; x

2

g,
andrI := f(x

0

; x

1

); (x

1

; x

2

); (x

2

; x

2

)g. Obviously,I is a model of bothA
0

and the axiom9r:P :

= >. Since the set of concepts asserted for the blocked
individual is a subset of the set of those asserted for the blocking individual,
we call this blocking conditionsubset blocking.

To avoid cyclic blocking (ofx by y and vice versa), we consider an enu-
meration of all individual names, and define that an individual x may only
be blocked by individualsy that occur beforex in this enumeration. This,
together with some other technical assumptions, makes surethat a tableau
algorithm using this notion of blocking is sound and complete as well as
terminating both forALC andALCN (see (Buchheit et al., 1993; Baader
et al., 1996) for details).

In the algorithm we have just described, we do not impose any order or
strategy on the application of the transformation rules. This leads to what is
calleddynamic blocking(Horrocks and Sattler, 1999), where blocks can be
established and then broken. For example, suppose an individualx is blocked
by an individualy. Then, the application of the!

8

-rule tox’s predecessor
may addC(x) toA. If C(y) is not present inA, thenx is no longer blocked
by y. However, using a strategy that (basically) applies generating rules only
if no non-generating ones can be applied, blocks that are established once will
never be broken again. Thus, when employing this strategy, we can blockstat-
ically. Note that implementations of tableau-based algorithms usually employ
this strategy anyway.

It should be noted that the algorithm we have described aboveis no longer
in PSPACE since it may generate role paths of exponential length before
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Table II. Syntax and semantics of role constructors and restrictions.

Constructor/Restriction Syntax Semantics

intersection r u s (r u s)

I

= r

I

\ s

I

union r u s (r t s)

I

= r

I

[ s

I

complement :r (:r)

I

= �

I

n r

I

composition r Æ s (r Æ s)

I

= f(x; z) j there is ay such that
(x; y) 2 r

I and(y; z) 2 s

I

g

transitive closure R

+

(R

+

)

I

= (R

I

)

+

inverse R

�

(R

�

)

I

= f(y; x) j (x; y) 2 R

I

g

transitive roles R 2 N

+

R

R

I is transitive
role hierarchy r v s r

I

� s

I

blocking occurs. In fact, even for the languageALC, satisfiability w.r.t. gen-
eral terminological axioms is known to be EXPTIME-complete(Schild, 1994).
The tableau-based algorithm sketched above is a NEXPTIME algorithm. How-
ever, using the translation technique mentioned in the introduction, it can be
shown (De Giacomo and Lenzerini, 1994) thatALCN -ABoxes and TBoxes
can be translated into PDL.

THEOREM 9. Consistency ofALCN -ABoxes w.r.t. TBoxes is EXPTIME-
complete.

Blocking does not work for all extensions ofALC that have a tableau-based
satisfiability algorithm. An example is again the DLALCF , for which sat-
isfiability is decidable, but satisfiability w.r.t. generalTBoxes undecidable
(Nebel, 1991; Baader et al., 1993).

6. Expressive roles

The DLs considered so far allowed for atomic roles only. There are two ways
of extending the expressivity of DLs w.r.t. roles: adding role constructors
and constraining the interpretation of roles. An overview of the syntax and
semantics of both are given in Table II, where the first part refers to role
constructors and the second to role constraints.Role constructorscan be used
to build complex roles from atomic ones. In the following, wewill mostly
restrict our attention to the inverse constructor, which makes it possible to
“use a role in both directions”. For example, using inverse roles, we can
describe both parents of nice children by8has 
hild:Ni
e as well as children
of nice parents by8has 
hild�:Ni
e. The other role constructors have also
been considered in the literature (e.g., Boolean operatorsin (De Giacomo,
1995; Lutz and Sattler, 2000), and composition, union, and transitive closure
in (Baader, 1991; Schild, 1991)).
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20 Franz Baader and Ulrike Sattler

Constraining the interpretation of rolesis very similar to imposing frame
conditions in modal logics. One possible such constraint has already been
mentioned in the previous section: inALCF the interpretation of rolesf 2

N

F

� N

R

is required to be functional. Here, we will consider transitive roles
and role hierarchies. In a DL withtransitive roles, a subsetN+

R

of the set of all
role namesN

R

is fixed (Sattler, 1996). Elements ofN+

R

must be interpreted
by transitive binary relations. (This corresponds to the frame condition for
the modal logicK4.) A role hierarchyis given by a finite set of role inclusion
axioms of the formr v s for rolesr; s. An interpretationI satisfies the role
hierarchyH iff rI � s

I holds for eachr v s 2 H. For example, we can use
the role inclusion axiomhas son v has 
hild to express that every son of a
person is also her child.

6.1. EXPRESSIVE ROLES IN NUMBER RESTRICTIONS

In DLs with expressive roles and number restrictions, the roles that are al-
lowed to occur in the number restrictions are usually of a restricted form
(see, e.g., (De Giacomo and Lenzerini, 1994; De Giacomo and Lenzerini,
1996; Horrocks et al., 1999; Haarslev and Möller, 2000b)).Whereas tableau-
based algorithms that respectively handle number restrictions on conjunctions
of roles (Donini et al., 1991a), on compositions of roles (Baader and Sattler,
1999), on inverse roles (see Section 6.2.3), and on roles occurring in a role hi-
erarchy (Horrocks and Sattler, 1999; Haarslev and Möller,2000b) are known
from the literature, other role constructors and restrictions appear to be more
problematic when used within number restrictions.

Let us illustrate this with two examples. First, transitiveclosure of roles,
transitive roles, or roles having a transitive sub-role (with respect to a role hi-
erarchy) are usually not allowed inside number restrictions. In fact, a tableau-
based algorithm for a DL containing such number restrictions would need to
differ significantly from the algorithms we have described until now. Intu-
itively, this is due to the fact that transitivity (in one of the forms mentioned
above) can yield situations where, for a transitive roler, a longr-path starting
at an individualx would need to be collapsed into a singler-successor ofx,
due to the presence of an assertion(� 1r)(x). This destroys the tree shape of
the canonical interpretation to be generated, which (for example) means that
the usual arguments for showing termination can no longer beapplied. At
least in the case where roles having transitive sub-roles are allowed to occur
in number restrictions, these problems cannot be overcome:the extension
of ALCN that allows roles having transitive sub-roles to occur in number
restrictions has an undecidable subsumption problem (Horrocks et al., 1999).

Second, the combination of role composition with Boolean role construc-
tors and inverse roles in number restrictions usually causes undecidability. In
(Baader and Sattler, 1999), the tableau-based algorithm for ALCN is first
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extended to composition of roles in number restrictions, and then to union
and intersection of role compositions of thesame length. It is also shown that
most of the other combinations lead to an undecidable DL.

6.2. ROLE HIERARCHIES, INVERSE ROLES, AND TRANSITIVE ROLES

Before considering different extensions ofALC andALCN by these role
constructors, a general remark is in order. For most of the DLs considered
in this subsection, satisfiability and subsumption of concept descriptions are
EXPTIME-complete problems. The reason for these DLs to be EXPTIME-
hard is that they can simulate general TBoxes within conceptdescriptions
(see below). The fact that they are in EXPTIME follows from results for
PDL and converse-PDL (Pratt, 1979; Harel, 1984). The tableau-based algo-
rithms that will be sketched below are NEXPTIME-algorithms. The point in
designing these algorithms was not to prove worst-case complexity results,
but rather to obtain “practical” algorithms, i.e., algorithms that are easy to
implement and optimise, and which behave well on realistic knowledge bases.
Nevertheless, the fact that “natural” tableau algorithms for such EXPTIME-
complete logics are usually NEXPTIME-algorithms is an unpleasant phe-
nomenon. In contrast, automata-based algorithms (Vardi and Wolper, 1986)
often yield optimal worst-case complexity results, but do not behave well
in practice (since they are also best-case exponential). Attempts to design
EXPTIME-tableaux for such logics (De Giacomo et al., 1996; De Giacomo
and Massacci, 1996; Donini and Massacci, 1999) usually leadto rather com-
plicated (and thus not easy to implement) algorithms, which(to the best of
our knowledge) have not been implemented yet.

6.2.1. DLs with transitive roles and role hierarchies
In the DLSH, i.e., the extension ofALC with transitive roles and role hierar-
chies, reasoning w.r.t. (general) TBoxes can be reduced to reasoning without
TBoxes using a standard technique from modal logics, which is calledin-
ternalisation in the DL literature (Schild, 1991; Baader et al., 1993). As
mentioned in Section 5.2, we may assume that TBoxes consist of a single
axiom of the form b

C

:

= >. Internalisation of this axiom introduces a new
transitiveroleu, and asserts in the role hierarchy thatu is a super-role of all
roles occurring inbC and the concept descriptionC

0

to be tested for satisfia-
bility. Then,C

0

is satisfiable w.r.t.f bC :

= >g iff C
0

u

b

C u 8u:

b

C is satisfiable
with respect to the role hierarchy.

With respect to expressive power, this is a nice property ofSH. How-
ever, it also shows that satisfiability and subsumption of concept descrip-
tions in SH is EXPTIME-hard.5 The tableau algorithm forSH presented
in (Horrocks, 1998b) handles role hierarchies by an appropriate definition of

5 More precisely, reasoning inSH is EXPTIME-complete (Horrocks et al., 2000a).
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r-successors: an individualy is called anr-successorof an individualx in
an ABoxA iff s(x; y) 2 A for some sub-roles of r. Then, the condition
r(x; y) 2 A in the!

9

- and the!
8

-rule is replaced by the condition “ify is
an r-successor ofx in A”. Transitive roles are taken care of by a new rule,
the!+

8

-rule, which, basically, adds(8r:C)(y) to A iff y is anr-successor
of x such that(8s:C)(x) 2 A andr is a transitive sub-role ofs. (Note that
this corresponds to the treatment ofK4-modalities in tableau algorithms from
modal logics (Halpern and Moses, 1992).) Obviously, this shifting of value re-
strictions along transitive roles makes for a non-terminating algorithm, unless
one employs an appropriate blocking technique. The blocking strategy used
in (Horrocks, 1998b) coincides with the one we have presented in Section 5.2,
i.e., subset-blocking.

6.2.2. DLs with transitive and inverse roles, and role hierarchies
The extension ofSH with inverse roles is calledSHI. In this DL, TBoxes
can be internalised in a way similar to the one we have described forSH.
The only difference is that nowu is not only specified as a (transitive) super-
role of all roles occurring in the input concept and the TBox,but also of the
inverses of these roles (Horrocks and Sattler, 1999).

In (Horrocks and Sattler, 1999), a tableau algorithm forSHI is obtained
from the one forSH sketched above by extending the notion ofr-successors
to r-neighbours, and modifying the transformation rules accordingly. Mod-
ulo some technical details, an individualy is called anr-neighbour of an
individual x in A iff s(x; y) 2 A or s�(y; x) 2 A for some sub-roles
of r. Obviously, usingr-neighbours instead ofr-successors in the new!

8

-
rule implies that the rule can now be applied in both direction. For example,
if r

�

(x; y); (8r:C)(y) 2 A, then the rule addsC(x). The main technical
problem is to find an appropriate blocking condition, i.e., acondition that still
ensures termination, but does not compromise correctness of the algorithm.
The blocking strategy introduced in (Horrocks and Sattler,1999) differs in
two points from blocking forSH.

First, one can no longer use subset blocking as described in Section 5.2.
Consider the example shown in Fig. 4 (where, for the sake of legibility, not all
concepts necessary for generating this situation are explicitly given). If subset
blocking is used, theny is blocked byx. However, when building the canon-
ical interpretationI, the r-successorx

1

of x is used to satisfy(9r:A)(y),
i.e., (y; x

1

) 2 r

I . This violates the value restriction forx
1

, which shows that
the interpretation obtained this way is not a model of the complete and open
ABox. This problem can be overcome by usingequality blocking, i.e., an
individual y is blocked by an individualx iff fD j D(x) 2 Ag = fD

0

j

D

0

(y) 2 Ag.
Second, blocking is now dynamic, even if rules are applied according to

the strategy that applies non-generating rules with higherpriority. This is
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(9r:A)(y)y

x

2

s

(:A)(x

2

); : : :

r

x

1

A(x

1

); (8r

�

:8s

�

:A)(x

1

); : : :

r

(8s

�

:A)(x); (9r:A)(x); : : :x

Figure 4. A situation where subset blocking fails forSHI.

due to the fact that the!
8

-rule can be applied back and forth on a chain
of individuals.

Alternatively to the approach described until now, which goes back and
forth in the interpretation to be generated, one could have chosen to guess
(nondeterministically) all those assertionsC(x) that could be propagated
“back” from an r-successory of x due to value restrictions(8r�:C)(y).
In the case of a wrong guess, one has a new type of clashes. Theanalytic
cut rule in (De Giacomo and Massacci, 1996) does this for a well-chosen,
relatively small set of sub-descriptions of the input description. In this setting,
blocking would again become static. However, in an actual implementation
it is preferable to avoid this “blind” guessing. ForSHI (and its extensions
treated in the following subsections), avoiding this source of nondeterminism
is indeed possible. This does not appear to be the case for theextension of
ALC with transitive closure and inverse of roles. This DL is closely related
to converse-PDL, for which a tableau algorithm is presentedin (De Giacomo
and Massacci, 1996) using the analytic cut rule. (In Section6.2.4, we will
comment in more detail on tableau algorithms for DLs with transitive closure
of roles.)

By dropping role hierarchies fromSHI, we obtain the logicSI. Ob-
viously, the internalisation of TBoxes sketched above doesno longer work
since we cannot specify super-roles of roles. It can be shownthat SI is
indeed less complex thanSH or SHI. Using a rather sophisticated blocking
technique, a tableau algorithm can be designed that decidessatisfiability of
concept descriptions inSI using space polynomial in the size of the input
description (Spaan, 1993; Horrocks et al., 1999). This implies that satisfia-
bility of concept descriptions inSI is PSPACE-complete, i.e., of the same
worst-case complexity asALC.
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6.2.3. DLs with transitive and inverse roles, role hierarchies, and number
restrictions

Things become even more complicated for the DLSHIN , which extends
SHI with unqualified number restrictions on simple roles. A roler is called
simpleiff r is an atomic role or its inverse such thatr does not have a transitive
sub-role (Horrocks and Sattler, 1999).

In contrast toSHI, the DLSHIN no longer has the finite model prop-
erty. For example, if the role hierarchy contains the axioms v r for a
transitive roler 2 N

+

R

, then the following concept is obviously satisfiable,
but each of its models has an infinites-path::Au9s:Au8r:(9s:Au(61s�)):

Thus, instead of directly trying to construct a (possibly infinite) inter-
pretation that satisfiesC

0

, the tableau algorithm forSHIN introduced in
(Horrocks and Sattler, 1999; Horrocks et al., 1999) first tries to construct a
so-calledpre-model, i.e., a structure that can be “unravelled” to a (possibly
infinite) canonical (tree) interpretation. In principle, this algorithm is obtained
by extending the algorithm forSHI with the rules that handle number re-
strictions. The main technical problem to be solved is againto design the
appropriate blocking condition.

Unravelling is also known in modal logic (see, for example, (Stirling,
1992)), and works as follows. To construct a model from a pre-model, we
define elements of the model’s domain to bepaths in the pre-model that
follow edgesr(x; y) where, instead of going to a blocked individual, the path
goes to its blocking individual. Thus, if blocking occurs, we may obtain an
infinite model (e.g., if the blocking individual is a predecessor of the blocked
individual)—even though the input concept might have a finite one.

Before describing the blocking condition introduced in (Horrocks and
Sattler, 1999; Horrocks et al., 1999), let us point out a new phenomenon
that can occur when running the tableau algorithm forSHIN . Due to the
interaction of role hierarchies and number restrictions, the algorithm can
generate an ABoxA with fr(x; y); s(x; y)g � A wherer; s are not sub-
roles of each other. This situation can be caused by an assertion (61t)(x),
wheret is a common super-role ofr ands, andx already has anr- and an
s-successor. These two successors are then merged into the single successor
y. Note, however, that each individual generated by the algorithm still has a
unique predecessor, though it may be related with more than one role to this
predecessor.

The new blocking condition forSHIN is calledpair-wise blocking. It
extends the one forSHI as follows. In order for an individualy to be blocked
by an individualx, the predecessors ofx and y must also have identical
assertion attached to them, andx andy must be related by the same roles to
their respective predecessors. More precisely, assume that x; y are individuals
in A that respectively have the predecessorsx

0

; y

0 in A. Fory to be blocked
by x, the following conditions must be satisfied: (i) for each role r, x is an
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s

s

y D(y); A(y); (� 1 s

�

)(y); (9s

�

::A)(y); (9s:D)(y); (8r:9s:D)(y)

z D(z); A(z); (� 1 s

�

)(z); (9s

�

::A)(z); (9s:D)(z); (8r:9s:D)(z)

x C

0

(x); (:A)(x); (9s:D)(x); (8r:9s:D)(x)

Figure 5. A situation where pair-wise blocking is crucial.

r-successor ofx0 iff y is an r-successor ofy0; (ii) fD j D(x) 2 Ag =

fD

0

j D

0

(y) 2 Ag; and (iii) fD j D(x

0

) 2 Ag = fD

0

j D

0

(y

0

) 2 Ag.
The following example should give a better intuition for whythis complex
blocking condition is needed. In Fig. 5, we show relevant parts of an ABox
that was generated to decide the satisfiability of the concept C

0

, where

C

0

:= :A u (9s:D) u (8r:9s:D);

s is a sub-role of the transitive roler, andD := A u (61s

�

) u (9s

�

::A).
Using equality blocking,z would be blocked byy. When constructing the
canonical interpretation, we cannot re-usey’s s-successor asz’s successor:
this would makez ans-successor of itself, and thusz would have itself andy
ass�-successors, contradicting the assertion(61s

�

)(z). Thus, unravelling is
really necessary in this example. As explained above, unravelling the ABox
to an interpretation would generate as elements of the interpretation the path
[x℄ (corresponding tox), the path[x; y℄ (corresponding toy), the path[x; y; y℄
(which is used instead of the blocked individualz), the path[x; y; y; y℄ etc.
However, in this interpretation the element[x; y; y℄ and its successors do not
belong to the concept description9s�::A, which shows that this interpreta-
tion does not satisfyC

0

. With respect to pair-wise blocking,z is not blocked
by y since the predecessorx of y has a concept assertion(:A)(x) that the
predecessory of z does not have. Hence the tableau algorithm generates ans-
successor to satisfy(9s:D)(z) and ans�-successor to satisfy(9s�::A)(z).

It should be noted that the problems that lead to the need for pair-wise
blocking do not depend on the presence of “large” numbers in number re-
strictions. In fact, the above example used onlyfunctional restrictions, i.e.,
number restrictions of the form(� 1 r).

The tableau-based satisfiability algorithm forSHIN described until now
can also be extended to decide the consistency of ABoxes (Horrocks et al.,
2000b). Recall that, forALCN , the naive extension of the satisfiability al-
gorithm to a consistency algorithm ran into termination problems. This prob-
lem can be overcome by applying the pre-completion technique, which re-
duces ABox consistency to satisfiability of concept descriptions (see Sec-
tion 4.1.2). Pre-completion does not work forSHIN due to the presence
of inverse roles. For example, the inconsistency of the ABoxfr(x; y); A(x)
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(9s:8s

�

:8r

�

::A)(y)g cannot be detected if, after the application of non-
generating rules only,x and y are treated in unrelated ABoxes. However,
the termination problem pointed out forALCN is not relevant forSHIN
since the algorithm employs blocking to ensure termination. Basically, the
only difference between the satisfiability and the consistency algorithm for
SHIN is that one must be a bit more careful when the block involves old
individuals, i.e., individuals present in the input ABox.

6.2.4. DLs with the transitive closure of roles
Finally, let us briefly comment on the difference between transitive roles and
transitive closure of roles. The transitive closure of roles is more expressive,
but it appears that one has to pay dearly for this. In fact, whereas there ex-
ist quite efficient implementations for very expressive DLswith transitive
roles, inverse roles, and role hierarchies (see above), no such implementations
are known (to us) for closely related logics with transitiveclosure, such as
converse-PDL (which is a notational variant of the extension ofALC by tran-
sitive closure, union, composition, and inverse of roles (Schild, 1991)). One
reason could be that the known tableau algorithm for converse-PDL (De Gi-
acomo and Massacci, 1996) requires an analytic cut rule (seeSection 6.2.2),
which is massively nondeterministic, and thus very hard to implement effi-
ciently.

Another problem with transitive closure is that a blocked individual need
no longer indicate “success”, as is the case in DLs with transitive roles. In the
presence of transitive closure, when blocking occurs, one must check whether
this block is due to a harmless, cyclic repetition of the sameassertions (as is
always the case forSHIN ), or whether the block is caused by the repeated
unsuccessful attempt to satisfy an assertion of the form(9r

+

:C)(x), whereC
is unsatisfiable or in conflict with an assertion(8r+:D)(x). The former case
is called a “good” cycle and the latter a “bad” cycle in (Baader, 1991). To
satisfy an assertion of the form(9r+:C)(x) (often called “eventuality” in the
modal or temporal logic literature), one has two possibilities: (i) satisfy it now,
i.e., generate anr-successor that belongs toC; or (ii) defer it till later on, i.e.,
generate anr-successor that belongs to9r+:C. However, one must ensure
that the(9r+:C)(x) is satisfied eventually, i.e., one does not always choose
the second alternative. To ensure termination, the algorithm in (Baader, 1991)
basically uses equality blocking, together with a rather strict strategy on the
application of rules. A block (called cycle in (Baader, 1991)) can now indicate
two things: either it is good, which corresponds to the situation encountered
in logics likeSHIN , or it is bad, which corresponds to infinitely deferring
to satisfy an eventuality. Since good cycles can be distinguished from bad
cycles, the algorithm can stop with success in the first case,and it must
backtrack in the second. Note that the algorithm in (Baader,1991) is very
similar to the satisfiability algorithm for DPDL sketched inSection 5.3 of
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(Ben-Ari et al., 1982). The main difference is that Ben-Ari et al. (1982) first
treat all cycles as good, but then detect bad cycles by checking whether the
generated interpretation really satisfies the input formula.

Automata-based methods (Vardi and Wolper, 1986) elegantlytreat the
problems caused by eventualities by employing appropriateacceptance con-
ditions (e.g., Büchi acceptance). However, as mentioned above, a direct im-
plementation of these methods is also best-case exponential. To the best of
our knowledge, there is no efficient implementation of thesemethods, and
we conjecture that an attempt to optimise them would lead to an algorithm
that is very similar to a tableau algorithm.

7. Conclusion

Though many of the tableau-based algorithms sketched in this paper are of
optimal worst-case complexity, and thus provide complexity results for sub-
sumption and satisfiability in DLs, theoretical complexityresults never were
the main focus of this line of DL research. The design of thesealgorithms was
strongly motivated by the goal to obtain practical algorithms, i.e., algorithms
that are easy to implement and optimise, and which behave well on realistic
knowledge bases. In particular, for the logics treated in Section 6.2, the ex-
act worst-case complexity (EXPTIME) was known before the (NEXPTIME)
tableau algorithms sketched above were designed. The claimthat these al-
gorithms really are “practical” must still be supported by more empirical
evaluations, but the first results are rather encouraging (see below).

The notion of what is thought to be a practical subsumption algorithm
in description logics has gone through a remarkable evolution in the last 15
years. Throughout the eighties and up to the early nineties,anything non-
polynomial was deemed to be impractical. Consequently, when the first com-
plexity results showed that all of the DLs used in systems hadsubsumption
problems of a higher complexity, the proposed solution was either to restrict
the expressive power or to employ incomplete algorithms. The first tableau
algorithms for more expressive DLs (with PSPACE-complete subsumption
problems) were widely considered to be of (complexity) theoretic interest
only, though not by their designers. In fact, it turned out that implementations
of these algorithms were amenable to optimisation techniques and behaved
quite well in practice (Baader et al., 1994; Bresciani et al., 1995).

Following this lead, Ian Horrocks implemented the first system, FaCT,
based on an EXPTIME-complete DL. The satisfiability algorithm of FaCT is
a highly optimised implementation of the tableau algorithmfor SH sketched
above. FaCT was originally designed to represent medical terminology (where
the whole expressive power ofSH is needed), and it has behaved very well
on the large medical knowledge base it was designed for (Horrocks, 1998b).
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In addition, FaCT performed equally well on randomly generated bench-
marks for formulae in (PSPACE) modal logics designed for system com-
parisons (Horrocks, 1998a; Patel-Schneider and Horrocks,1999; Horrocks,
2000). These formulae do not use the whole expressive power of SH, but
to the best of our knowledge there are no benchmark formulae available
for EXPTIME-complete logics. Encouraged by these experiences, other DL
systems were designed that use (optimised) implementations of the tableau al-
gorithms described in Section 6.2, and they also proved to behave quite well,
both in realistic applications, and on the available (PSPACE) benchmarks
(Horrocks and Patel-Schneider, 1999; Haarslev and Möller, 2000b; Horrocks
et al., 2000a). This shows that, at the beginning of the new millennium,
even an EXPTIME-algorithm is no longer automatically considered to be
impractical in the DL community.

Databases have turned out to be a very interesting application area for
DLs, which needs the expressive power offered by logics suchasSHIN .
Indeed, such expressive DLs can be viewed as a unifying formalism for class-
based representation systems such as object-oriented or frame-based systems,
and they capture the semantics of conceptual modelling formalisms such as
Entity-Relationship diagrams (Calvanese et al., 1999b). DL systems can be
used to support the design and evolution of database schemata or to opti-
mise queries (Calvanese et al., 1998a; Calvanese et al., 1998c); to support
the integration of sources in heterogeneous databases/data warehouses (Cal-
vanese et al., 1998b; Calvanese et al., 1999a); and to support the conceptual
modelling of multidimensional aggregation (Franconi and Sattler, 1999).

A first tool that provides an interface for the above mentioned database
applications isi�
om (Franconi and Ng, 2000). Its graphical user interface
supports the design of conceptual models using enhanced Entity-Relationship
diagrams. The underlying inference engine is the new version of the DL
system FaCT which implementsSHIQ, i.e., the extension ofSHIN with
qualified number restrictions. Once the user has finished a modelling step, she
can ask the system to translate the conceptual model into aSHIQ knowl-
edge base. This knowledge base is then given to FaCT, which checks for
implicit IS-A (i.e., subsumption) relationships between entities/relations and
tests entities/relations for inconsistencies. In case of an inconsistency or an
unexpected IS-A link, the user can then modify her conceptual model appro-
priately.
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