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1 Introdution

In many areas of Logi, Computer Siene, and Arti�ial Intelligene, there

is a need for speialized formalisms and inferene mehanisms to solve domain-

spei� tasks. For this reason, various methods and systems have been developed

that allow for an eÆient and adequate treatment of suh restrited problems.

In most realisti appliations, however, one is faed with a omplex ombination

of di�erent problems, whih means that a system tailored to solving a single

problem an only be applied if it is possible to ombine it both with other

speialized systems and with general purpose systems.

This general problem of ombining systems an be addressed on various on-

eptual levels. At one end, ombination of logial systems is studied with an

emphasis on formal properties, using tools from mathematis and logis. Exam-

ples of results obtained on this level are transfer results for modal logis [43,

28℄ and modularity results for term rewriting systems [74, 52℄. On the other

end of the spetrum, the ombination of software tools neessitates onsidering

physial onnetions and appropriate ommuniation languages [19, 44℄. Between

these two extremes lies the ombination of onstraint systems and the respetive

solvers, whih is the topi of this paper. On the one hand, de�ning a semantis

for the ombined system may depend on methods and results from formal logi

and universal algebra. On the other hand, an eÆient ombination of the atual

onstraint solvers often requires the possibility of ommuniation and oopera-

tion between the solvers.

Sine there is a great variety of onstraint systems and of approahes for

ombining them, we will start with a short lassi�ation of the di�erent ap-

proahes. Subsequently, we will desribe two of the most prominent ombination

approahes in this area:

{ the Nelson-Oppen sheme [49, 54℄ for ombining deision proedures for the

validity of quanti�er-free formulae in �rst-order theories, whih was originally

motivated by program veri�ation;

{ methods for ombining E-uni�ation algorithms [60, 15, 6℄ and more gen-

eral onstraint solvers [7℄, whih are of interest in theorem proving, term

rewriting, and onstraint programming.



Our treatment of the Nelson-Oppen method an be seen as a warm-up exerise

for the seond approah sine it is simpler both w.r.t. the atual ombination

algorithm and w.r.t. the (algebrai) tools required for proving its orretness. The

problem of ombining uni�ation algorithms will be treated in more detail. First,

we will desribe the ombination algorithm as introdued in [2, 6℄ and briey

sketh how to prove its orretness. We will then give a logial reformulation

of the ombination algorithm, and desribe an algebrai approah for proving

its orretness. This approah has the advantage that it an be generalized to

onstraints more general than the equational onstraints of uni�ation problems

and to solution strutures more general than the E-free algebras of uni�ation

problems. Finally, we will sketh approahes for optimizing the ombination

algorithm, and omment on prinipal limitations for optimizations.

2 Classi�ation of onstraint systems and ombination

approahes

Before lassifying di�erent approahes for ombining onstraint system, we must

explain what we mean by onstraint systems and onstraint solvers. We will also

onsider two examples, whih already introdue the di�erent forms of onstraint

systems whose ombination will be onsidered in more detail in this paper.

2.1 Constraint systems and solvers

Informally, a onstraint system is given by a onstraint language and a \se-

mantis" for this language. The onstraint language determines whih formal

expressions are onsidered to be admissible onstraints, and the semantis pro-

vides us with a notion of onstraint satisfation: given an admissible onstraint,

it is uniquely determined by the semantis whether this onstraint is satis�able

or not. In general, this does not mean that this question is also e�etively de-

idable. In its most basi form, a onstraint solver for a given onstraint system

is a proedure that deides satis�ability.

The onstraint language To put these notions on a more formal footing, we

assume that onstraints are formulae of �rst-order prediate logi, and that the

semantis is provided by the usual semantis of �rst-order logi. To be more

preise, we onsider an (at most ountable) signature � onsisting of funtion

symbols and prediate symbols, and a (ountably in�nite) set V of (individ-

ual) variables, and build �rst-order terms, alled �-terms , and �rst-order for-

mulae, alled �-formulae, from these ingredients in the usual way. Usually, a

�-onstraint is a �-formula '(v

1

; : : : ; v

n

) with free variables v

1

; : : : ; v

n

, and a

solution of the onstraint replaes the variables suh that the resulting expres-

sion is \true" under the given semantis. If we are interested only in solvability

of the onstraints and not in atually omputing a solution, we may also use

losed formulae (e.g., the existential losure of the open formula) as onstraints.



It should also be noted that a onstraint language usually does not allow for

all �-formulae, but only for a ertain sublass of formulae, to be used as on-

straints. Thus, a onstraint language is haraterized by a signature � and a

lass of �-formulae, whih may be open or losed.

The semantis Given suh a onstraint language, its semantis an be de�ned

in two di�erent ways: by a �-theory T or a �-struture A. A �-theory is given

by a set T of losed �-formulae, and a �-struture A is a �-interpretation, i.e.,

a nonempty set A, the domain of A, together with an interpretation of the n-ary

prediate (funtion) symbols as n-ary relations (funtions) on A.

For a given �-struture A, a solution of the �-onstraint '(v

1

; : : : ; v

n

) in

A is a mapping fv

1

7! a

1

; : : : ; v

n

7! a

n

g of the free variables of the onstraint

to elements of A suh that A j= '(a

1

; : : : ; a

n

), i.e., '(v

1

; : : : ; v

n

) is true in A

under the evaluation fv

1

7! a

1

; : : : ; v

n

7! a

n

g. The onstraint '(v

1

; : : : ; v

n

) is

satis�able in A i� it has a solution in A. This is equivalent to saying that its

existential losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is valid in A.

For a given �-theory T , there are two di�erent ways of de�ning satis�ability

of onstraints, depending on whether we want the onstraints to be satis�able

(in the sense introdued above) in all models or in some model of the theory

T . In the �rst ase, whih is the more usual ase in onstraint solving, the

�-onstraint '(v

1

; : : : ; v

n

) is satis�able in (all models of) T i� its existential

losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is valid in T . The seond ase oinides with

the usual de�nition of satis�ability of (open) formulae in prediate logi: the

�-onstraint '(v

1

; : : : ; v

n

) is satis�able in (some model of) T i� its existential

losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is satis�able in T , i.e., valid in some model of T .

In both ases, one does not have a natural notion of solution sine there is more

than one solution struture involved, though there may be spei� instanes

where suh a notion an be de�ned.

To sum up, we an de�ne satis�ability of a onstraint in three di�erent ways:

as validity of its existential losure in (i) a �xed solution struture A; (ii) all

models of a �xed theory T ; (iii) some model of a �xed theory T .

Note that (i) is a speial ase of (ii) sine we an take as theory T the theory

of A, i.e., the set of all �-formulae valid in A. In general, (ii) is not a speial ase

of (i). This is the ase, however, if there exists a �-struture A that is anonial

for T and the onstraint language in the sense that a onstraint is satis�able in

T i� it is satis�able in A.

The onstraint solver Given a onstraint language and a semantis, a on-

straint solver is a proedure that is able to deide satis�ability of the onstraints.

In this paper, we will mostly restrit our attention to the ombination of suh

deision proedures. It should be noted, however, that in many ases onstraint

solvers produe more than just the answer \yes" or \no".

If there is the notion of a solution available, one may also want to have a

solver that not only deides satis�ability, but also omputes a solution, if one

exists. Sine a given onstraint may have more than one solution one may even



be interested in obtaining a omplete set of solutions, i.e., a set of solutions from

whih all solutions an be generated in a simple way. A prominent example of

suh a omplete representation of all solutions is Robinson's most general uni�er,

from whih all uni�ers of a syntati uni�ation problem an be generated by

instantiation.

Instead of atually omputing a solution, the solver may transform the on-

straint into an equivalent one in \solved form." Suh a solved form should, in

some way, be simpler than the original onstraint; in partiular, the existene

of a solved form should indiate satis�ability of the onstraint, and it should

be \easy" to read o� an atual solution. The advantage of using solved forms

is twofold. On the one hand, omputing the solved form may be less omplex

than omputing a solution. An example of this phenomenon is the so-alled dag

solved form of syntati uni�ation problems [33℄, whih is linear in the size of

the problem, whereas the most general uni�er may be exponential in the size of

the problem. On the other hand, a solver that omputes a solved form is usually

inremental: if the onstraint is strengthened, then not all the work done during

the satis�ability test needs to be re-done. To be more preise, assume that we

have already tested ' for satis�ability, and then need to test ' ^  , a situation

that frequently ours, e.g., in onstraint logi programming and theorem prov-

ing. If all we know after the satis�ability test is that ' is satis�able, then we

must start from srath when testing ' ^  . However, if we have omputed a

solved form '

0

of ', then we an test '

0

^  instead, whih hopefully is easier.

2.2 More notation and two examples

As examples that illustrate the notions introdued above, we onsider quanti�er-

free formulae and E-uni�ation problems. Before introduing these types of on-

straint systems more formally, we de�ne some sublasses of �rst-order formulae,

whih will be of interest later on.

We onsider logi with equality , i.e., the binary prediate symbol =, whih is

interpreted as equality on the domain, is always available, without being expli-

itly ontained in the signature. A �-atom is of the form P (t

1

; : : : ; t

n

), where P

is an n-ary prediate symbol of � [ f=g and t

1

; : : : ; t

n

are �-terms. If the atom

is of the form t

1

= t

2

, i.e., P is the equality symbol =, then it is alled an equa-

tional atom; otherwise, it is alled a relational atom. Negated equational atoms

are written t

1

6= t

2

rather than :(t

1

= t

2

). A �-matrix is a Boolean ombination

of �-atoms, and a positive �-matrix is built from �-atoms using onjuntion

and disjuntion only. A positive �-formula is a quanti�er pre�x followed by a

positive �-matrix. The formula is alled positive existential (positive AE) i� the

quanti�er pre�x onsists of existential quanti�ers (universal quanti�ers followed

by existential quanti�ers). A universal formula is given by a universal quanti-

�er pre�x followed by a quanti�er-free formula. A universal formula is alled

onjuntive universal i� its matrix is a onjuntions of �-atoms and negated �-

atoms. �-sentenes (of either type) are �-formulae without free variables. Given

a �-struture A (a �-theory T ), the positive theory of A (T ) onsists of the set



of all positive �-sentenes valid in A (T ). The positive existential, positive AE,

universal, and onjuntive universal theories of A (T ) are de�ned analogously.

Quanti�er-free formulae The Nelson-Oppen ombination method [49, 54℄ ap-

plies to onstraint systems of the following form:

{ For a given signature�, the onstraint language onsists of all quanti�er-free

�-formulae, i.e., all �-matries.

{ The semantis is de�ned by an arbitrary �-theory T .

{ One is interested in satis�ability in some model of T .

Thus, the onstraint solver must be able to deide whether the existential losure

of a quanti�er-free �-formula is valid in some model of T . Sine a formula is

valid in some model of T i� its negation is not valid in all models of T , a deision

proedure for the universal theory of T an be used as a onstraint solver for

this type of onstraint systems.

Uni�ation problems Uni�ation modulo equational theories is a sub�eld

of automated dedution whih is very well-investigated (see [33, 8, 9℄ for survey

papers of the area).

An equational theory is given by a set E of identities s = t between terms

s; t. The signature of E is the set of all funtion symbols ourring in E. With

=

E

we denote the least ongruene relation on the term algebra T (�; V ) that is

losed under substitutions and ontains E. Equivalently, =

E

an be introdued

as the reexive, transitive, and symmetri losure

�

$

E

of the rewrite relation

!

E

indued by E, or as the set of equational onsequenes of E, i.e., s =

E

t i�

the universal losure of the atom s = t is valid in all models of E. An equational

theory E is trivial i� x =

E

y holds for two distint variables x; y. In the following,

we onsider only non-trivial equational theories.

Given an equational theory E with signature �, an elementary E-uni�ation

problem is a �nite system � := fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g of equations between

�-terms. In E-uni�ation problems with onstants , these terms may ontain

additional \free" onstant symbols, i.e., onstant symbols not ontained in the

signature � of E, and in general E-uni�ations problems, these terms may

ontain additional \free" funtion symbols, i.e., funtion symbols not ontained

in the signature � of E.

A solution (or E-uni�er) of the E-uni�ation problem fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g is a substitution � suh that �(s

i

) =

E

�(t

i

) for i = 1; : : : ; n. If there exists

suh a solution, then � is alled uni�able. Reall that a substitution is a mapping

from variables to terms whih is almost everywhere equal to the identity. It an

be extended to a mapping from terms to terms in the obvious way. Substitutions

will be written in the form � = fx

1

7! u

1

; : : : ; x

k

7! u

k

g, where x

1

; : : : ; x

k

are

the �nitely many variables that are hanged by the substitution, and u

1

; : : : ; u

k

are their respetive �-images. The set fx

1

; : : : ; x

k

g is alled the domain of the

substitution �, and fu

1

; : : : ; u

k

g is alled its range.



Let X be the set of all variables ourring in � . The E-uni�er � is an instane

of the E-uni�er � i� there exists a substitution � suh that �(x) =

E

�(�(x)) for

all x 2 X . A omplete set of E-uni�ers of � is a set C of E-uni�ers of � suh that

every E-uni�er of � is an instane of some uni�er in C. Finite omplete sets of

E-uni�ers yield a �nite representation of the usually in�nite sets of solutions of

E-uni�ation problems. Sine this representation should be as small as possible,

one is usually interested in minimal omplete sets of E-uni�ers , i.e., omplete

sets in whih di�erent elements are not instanes of eah other.

For a given equational theory E, elementary E-uni�ation problems an be

seen as onstraints of the following onstraint system:

{ The onstraint language onsists of all onjuntions of equational atoms

s = t. We all suh a onjuntion an E-uni�ation onstraint .

{ The semantis is de�ned by the E-free algebra in ountably many generators,

i.e., the quotient term algebra T (�; V )==

E

for the ountably in�nite set of

variables V .

Sine the E-uni�ation problem fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g has a solution i� the

existential losure of s

1

= t

1

^ : : : ^ s

n

= t

n

is valid in T (�; V )==

E

, the notion

of satis�ability of E-uni�ation onstraints indued by this semantis oinide

with the notion of uni�ability of E-uni�ation problems introdued above.

Alternatively, the semantis of E-uni�ation onstraints an also be de�ned

w.r.t. the equational theory E. In fat, the E-free algebra in ountably many

generators is a anonial solution struture for E-uni�ation onstraints: the

existential losure of s

1

= t

1

^ : : :^ s

n

= t

n

is valid in T (�; V )==

E

i� it is valid

in all models of E.

If we are interested only in deidability and not in omplexity, then we an

also onsider general positive existential sentenes instead of the onjuntive

sentenes obtained as existential losures of uni�ation onstraints. In fat, we

an simply write the positive matrix in disjuntive normal form, and then dis-

tribute the existential quanti�ers over disjuntions. This yields a disjuntion of

onjuntive sentenes, whih is valid i� one of its disjunts is valid.

These observations are summed up in the following theorem:

Theorem 1. Let E be an equational theory with signature �, and V a ountably

in�nite set of variables. Then the following are equivalent:

1. Elementary E-uni�ation is deidable.

2. The positive existential theory of E is deidable.

3. The positive existential theory of T (�; V )==

E

is deidable.

In order to obtain a lass of �rst-order formulae that orrespond to E-

uni�ation problems with onstants, but are built over the signature of E, we

note that free onstants an be generated via Skolemization. Sine we are inter-

ested in validity of the formulae, we must Skolemize universal quanti�ers, and

sine we want to obtain Skolem onstants, these universal quanti�ers should not

be in the sope of an existential quanti�er.



Theorem 2. Let E be an equational theory with signature �, and V a ountably

in�nite set of variables. Then the following are equivalent:

1. E-uni�ation with onstants is deidable.

2. The positive AE theory of E is deidable.

3. The positive AE theory of T (�; V )==

E

is deidable.

These theorems an be seen as folk theorems in the uni�ation ommunity.

Expliit proofs an be found in [14℄. For general E-uni�ation, a similar hara-

terization is possible. However, the proof of this result (whih is not as straight-

forward as the ones for the above theorems) depends on results onerning the

ombination of E-uni�ation algorithms. For this reason, we defer presenting the

haraterization to Setion 5.1.

2.3 Combining onstraint systems and solvers

Given two onstraint systems, it is not a priori lear what their ombination is

supposed to be, and in some ases there are several sensible andidates. Sine

onstraint systems onsist of a onstraint language and a orresponding seman-

tis, one must �rst de�ne the ombined language, and then introdue a ombined

semantis for this language.

Let us �rst onsider the problem of de�ning the ombined onstraint lan-

guage. This is quite simple if we restrit ourselves to the ase where the two

onstraint languages onsist of formulae of the same type, but over di�erent sig-

natures. In this ase, the most natural andidate for the ombined onstraint

language appears to be the language onsisting of formulae of the given type,

but over the union of the signatures. For example, if the onstraint languages

allow for quanti�er-free formulae over the signatures �

1

and �

2

, respetively,

then the ombined onstraint language onsists of all quanti�er-free formulae

over the signature �

1

[ �

2

. Similarly, ombined uni�ation problems onsist

of equations between terms over the union of the signatures of the omponent

onstraint systems. In this paper, we will onsider only this simple ase.

One the ombined onstraint language is de�ned, it must be equipped with

an appropriate semantis. If the semantis is de�ned via a theory, this is again

quite simple: the natural andidate is the union of the omponent theories. Thus,

given equational theories E

1

and E

2

with the respetive signatures �

1

and �

2

,

the ombined uni�ation onstraint system onsists of all (E

1

[ E

2

)-uni�ation

problems (with the usual semantis). If the semantis of the omponent on-

straint systems is de�ned with the help of solution strutures, things are more

diÆult. One must ombine the solution strutures of the omponents into a so-

lution struture for the ombined onstraint language, and it not always obvious

how this ombined solution struture should look like. We will briey ome bak

to this problem of ombining solution strutures in Subsetion 6.2.

Finally, given the ombined onstraint language with an appropriate seman-

tis, one needs a onstraint solver for this ombined onstraint system. For two

spei� onstraint systems and their ombination, one an of ourse try to on-

strut an ad ho onstraint solver for the ombined system, whih may or may



not employ the single solvers as subproedures. A more satisfatory approah,

however, is to design a ombination sheme that applies to a whole lass of on-

straint systems. The ombination proedures that we will onsider in the next

two setions are of this form. For example, the Nelson-Oppen ombination pro-

edure an be used to ombine deision proedures for the universal theories

of T

1

and T

2

into one for the universal theory of T

1

[ T

2

. This holds for arbi-

trary theories T

1

and T

2

with deidable universal theory (and not just for two

spei� theories), provided that the signatures of T

1

and T

2

are disjoint. The

ombination result for E-uni�ation algorithms is of the same type.

In both ases, the ombination approah treats the solvers of the single on-

straint systems as blak boxes, i.e., it does not make any assumptions on how

these solvers work. This distinguishes these approahes from others that assume

the existene of onstraint solvers of a ertain type. For example, a semi-omplete

(i.e., onuent and weakly normalizing) term rewriting system an be used to de-

ide the word problem of the orresponding equational theory. Sine onuene

and weak normalization are modular properties, the union of two semi-omplete

term rewriting systems over disjoint signatures is again semi-omplete [53℄, and

thus the word problem in the ombined equational theory is deidable as well.

However, this result is of no help at all if the deision proedures for the word

problem in the omponent equational theories are not based on rewriting.

3 The Nelson-Oppen ombination proedure

This proedure, whih was �rst introdued in [49℄, is onerned with ombining

deision proedures for the validity of universal sentenes in �rst-order theo-

ries, or equivalently with ombining onstraint solvers that test satis�ability of

quanti�er-free formulae in some model of the theory. To be more preise, as-

sume that �

1

and �

2

are two disjoint signatures, and that T is obtained as the

union of a �

1

-theory T

1

and a �

2

-theory T

2

. How an deision proedures for

validity (equivalently: satis�ability) in T

i

(i = 1; 2) be used to obtain a deision

proedure for validity (equivalently: satis�ability) in T ?

When onsidering the satis�ability problem, as done in Nelson and Oppen's

method, we may without loss of generality restrit our attention to onjuntive

quanti�er-free formulae, i.e., onjuntions of �-atoms and negated �-atoms.

In fat, a given quanti�er-free formula an be transformed into an equivalent

formula in disjuntive normal form (i.e., a disjuntion of onjuntive quanti�er-

free formulae), and this disjuntion is satis�able in T i� one of its disjunts is

satis�able in T .

Given a onjuntive quanti�er-free formula ' over the ombined signature

�

1

[ �

2

, it is easy to generate a onjuntion '

1

^ '

2

that is equivalent to ',

where '

i

is a pure �

i

-formula, i.e., ontains only symbols from �

i

(i = 1; 2).

Here equivalent means that ' and '

1

^ '

2

are satis�able in exatly the same

models of T . This is ahieved by variable abstration, i.e., by replaing alien

subterms by variables and adding appropriate equations.



Variable abstration Assume that t is a term whose topmost funtion symbol

is in �

i

, and let j be suh that fi; jg = f1; 2g. A subterm s of t is alled alien

subterm of t i� its topmost funtion symbol belongs to �

j

and every proper

superterm of s in t has its top symbol in �

i

.

Given a onjuntive quanti�er-free formula ', the variable abstration pro-

ess iteratively replaes terms by variables and adds appropriate equations to

the onjuntion:

{ If ' ontains an equational onjunt s = t suh that the topmost funtion

symbols of s and t belong to di�erent signatures, then replae s = t by the

onjuntion u = s ^ u = t, where u is a new variable, i.e., a variable not

ourring in '.

{ If ' ontains a negated equational onjunt s 6= t suh that the topmost

funtion symbols of s and t belong to di�erent signatures, then replae s = t

by the onjuntion u 6= v ^ u = s ^ v = t, where u; v are new variables.

{ If ' ontains a relational onjunt P (: : : ; s

i

; : : :) suh that the topmost

funtion symbol of s

i

does not belong to the signature of P , then replae

P (: : : ; s

i

; : : :) by the onjuntion P (: : : ; u; : : :) ^ u = s

i

, where u is a new

variable. Conjunts of the form :P (: : : ; s

i

; : : :) are treated analogously.

{ If ' ontains a (relational or equational) onjunt P (: : : ; s

i

; : : :) suh that s

i

ontains an alien subterm t, then replae P (: : : ; s

i

; : : :) by the P (: : : ; s

0

i

; : : :)^

u = t, where u is a new variable and s

0

i

is obtained from s

i

by replaing

the alien subterm t by u. Conjunts of the form :P (: : : ; s

i

; : : :) are treated

analogously.

Obviously, this abstration proess always terminates and the resulting formula

an be written in the form '

1

^ '

2

, where '

i

is a pure �

i

-formula (i = 1; 2). In

addition, it is easy to see that the original formula ' and the new formula '

1

^'

2

are satis�able in exatly the same models of T = T

1

[ T

2

. Consequently, if ' is

satis�able in a model of T , then both '

1

and '

2

are satis�able in a model of T ,

whih is also a model of T

1

and of T

2

. This shows that satis�ability of ' in a

model of T implies satis�ability of '

i

in a model of T

i

for i = 1; 2. Unfortunately,

the onverse need not hold, i.e., satis�ability of '

i

in a model of T

i

(i = 1; 2)

does not neessarily imply satis�ability of '

1

^'

2

in a model of T , and thus also

not satis�ability of ' in a model of T .

The reason for this problem is that '

1

and '

2

may share variables, and one

formula may fore some of these variables to be interpreted by the same element

of the model, whereas the other is only satis�able if they are interpreted by

distint elements of the model. To overome this problem, Nelson and Oppen's

proedure propagates equalities between variables from the formula '

1

to '

2

,

and vie versa.

The ombination proedure Given a onjuntive quanti�er-free (�

1

[ �

2

)-

formula ' to be tested for satis�ability (in some model of T

1

[ T

2

), Nelson and

Oppen's method for ombining deision proedures proeeds in three steps:



1. Use variable abstration to generate a onjuntion '

1

^'

2

that is equivalent

to ', where '

i

is a pure �

i

-formula (i = 1; 2).

2. Test the pure formulae for satis�ability in the respetive theories.

If '

i

is unsatis�able in T

i

for i = 1 or i = 2, then return \unsatis�able."

Otherwise proeed with the next step.

3. Propagate equalities between di�erent shared variables (i.e., distint variables

u

i

; v

i

ourring in both '

1

and '

2

), if a disjuntion of suh equalities an be

dedued from the pure parts.

A disjuntion u

1

= v

1

_ : : : _ u

k

= v

k

of equations between di�erent shared

variables an be dedued from '

i

in T

i

i� '

i

^ u

1

6= v

1

^ : : : ^ u

k

6= v

k

is unsatis�able in T

i

. Sine the satis�ability problem in T

i

was assumed to

be deidable, and sine there are only �nitely many shared variables, it is

deidable whether there exists suh a disjuntion.

If no suh disjuntions an be dedued, return \satis�able." Otherwise, take

any of them,

1

and propagate its equations as follows. For every disjunt

u

j

= v

j

, proeed with the seond step for the formula �

j

('

1

) ^ �

j

('

2

),

where �

j

:= fu

j

7! v

j

g (for j = 1; : : : ; k). The answer is \satis�able" i� one

of these ases yields \satis�able."

Obviously, the proedure terminates sine there are only �nitely many shared

variables to be identi�ed. In addition, it is easy to see that satis�ability is pre-

served at eah step. This implies ompleteness of the proedure, that is, if it

answers \unsatis�able" (sine already one of the pure subformulae is unsatis�-

able in its theory), the original formula was indeed unsatis�able. Before showing

soundness of the proedure (whih is more involved), we illustrate the working

of the proedure by an example.

Example 1. Consider the equational

2

theories T

1

:= ff(x; x) = xg and T

2

:=

fg(g(x)) = g(x)g over the signatures �

1

:= ffg and �

2

:= fgg. Assume that we

want to know whether the quanti�er-free (mixed) formula g(f(g(z); g(g(z)))) =

g(z) is valid in T

1

[ T

2

. To this purpose we apply the Nelson-Oppen proedure

to its negation g(f(g(z); g(g(z)))) 6= g(z).

In Step 1, f(g(z); g(g(z))) is an alien subterm in g(f(g(z); g(g(z)))) (sine

g 2 �

2

and f 2 �

1

). In addition, g(z) and g(g(z)) are alien subterms in

f(g(z); g(g(z))). Thus, variable abstration yields the onjuntion '

1

^'

2

, where

'

1

:= u = f(v; w) and '

2

:= g(u) 6= g(z) ^ v = g(z) ^ w = g(g(z)):

In Step 2, it is easy to see that both pure formulae are satis�able in their

respetive theories. The equation u = f(v; w) is obviously satis�able in the trivial

model of T

1

(of ardinality 1). The formula '

2

is, for example, satis�able in the

T

2

-free algebra with two generators, where u is interpreted by one generator, z

by the other, and v; w as required by the equations.

1

For eÆieny reasons, one should take a disjuntion with minimal k.

2

Reall that the identities in equational theories are (impliitly) universally quanti�ed.



In Step 3, we an dedue w = v from '

2

in T

2

sine '

2

ontains v = g(z)^w =

g(g(z)) and T

2

ontains the (universally quanti�ed) identity g(g(x)) = g(x).

Propagating the equality w = v yields the pure formulae

'

0

1

:= u = f(v; v) and '

0

2

:= g(u) 6= g(z) ^ v = g(z) ^ v = g(g(z));

whih again turn out to be separately satis�able in Step 2 (with the same models

as used above).

In Step 3, we an now dedue the equality u = v from '

0

1

in T

1

, and its

propagation yields

'

00

1

:= v = f(v; v) and '

00

2

:= g(v) 6= g(z) ^ v = g(z) ^ v = g(g(z)):

In Step 2, it turns out that '

00

2

is not satis�able in T

2

, and thus the answer is

\unsatis�able," whih shows that g(f(g(z); g(g(z)))) = g(z) is valid in T

1

[ T

2

.

In fat, v = g(z) and the identity g(g(x)) = g(x) of T

2

imply that g(v) = g(z),

whih ontradits g(v) 6= g(z).

Soundness of the proedure As mentioned above, termination and omplete-

ness of the proedure are quite trivial. Soundness of the proedure, i.e., if the

proedure answers \satis�able," then the input formula is indeed satis�able, is

less trivial. In fat, for arbitrary theories T

1

and T

2

, the ombination proedure

need not be sound. One must assume that eah T

i

is stably in�nite, that is, suh

that a quanti�er-free formula '

i

is satis�able in T

i

i� it is satis�able in an in�nite

model of T

i

. This restrition was not mentioned in Nelson and Oppen's original

artile [49℄; it was introdued by Oppen in [54℄.

The following example demonstrates that the Nelson-Oppen ombination

proedure need not be sound for theories that are not stably in�nite, even if the

theories in question are non-trivial

3

equational theories.

Example 2. Let E

1

:= ff(g(x); g(y)) = x; f(g(x); h(y)) = yg and E

2

:= fk(x) =

k(x)g. The theory E

2

is obviously non-trivial, and it is easy to see that E

1

is also

non-trivial: by orienting the equations from left to right, one obtains a anonial

term rewriting system, in whih any two distint variables have di�erent normal

forms.

First, we show that E

1

is not stably in�nite. To this purpose, we onsider the

quanti�er-free formula g(x) = h(x). Obviously, this formula is satis�able in the

trivial (one-element) model of E

1

. In every model A of E

1

that satis�es g(x) =

h(x), there exists an element e suh that g

A

(e) = h

A

(e). Here, g

A

; h

A

denote

the interpretations of the unary funtion symbols f; g by funtions A! A. But

then we have for any element a of A that

a = f

A

(g

A

(a); g

A

(e)) = f

A

(g

A

(a); h

A

(e)) = e;

3

Reall that non-trivial means that the theory has a model of ardinality greater than

1.



i.e., all elements of A are equal to e, whih shows that A is the trivial model.

Thus, g(x) = h(x) is satis�able only in the trivial model of E

1

, whih show that

the (non-trivial) equational theory E

1

is not stably in�nite.

To show that this really leads to an unsound behavior of the Nelson-Oppen

method, we onsider the mixed onjuntion g(x) = h(x) ^ k(x) 6= x. Clearly,

k(x) 6= x is satis�able in E

2

(for instane, in the E

2

-free algebra with 1 gen-

erator) and, as we saw earlier, g(x) = h(x) is satis�able in E

1

. In addition, no

equations between distint shared variables an be dedued (sine there is only

one shared variable). It follows that Nelson and Oppen's proedure would an-

swer \satis�able" on input g(x) = h(x) ^ k(x) 6= x. However, sine g(x) = h(x)

is satis�able only in the trivial model of E

1

, and no disequation an be satis�ed

in a trivial model, g(x) = h(x) ^ k(x) 6= x is unsatis�able in E

1

[ E

2

.

Nelson and Oppen's original proof of soundness of the proedure as well as a

more reent one by Tinelli and Harandi [72℄ use Craig's Interpolation Theorem

[20℄. In the following, we sketh a proof that uses a very elementary model

theoreti onstrution: the fusion of strutures. It goes bak to Ringeissen [58℄

and was further re�ned by Ringeissen and Tinelli [73, 71℄.

4

In the following, let �

1

and �

2

be disjoint signatures, and � := �

1

[ �

2

their union. A given �-struture A an also be viewed as a �

i

-struture, by just

forgetting about the interpretation of the symbols not ontained in �

i

. We all

this �

i

-struture the �

i

-redut of A, and denote it by A

�

i

.

De�nition 1. The �-struture A is a fusion of the �

1

-struture A

1

and the

�

2

-struture A

2

i� the �

i

-redut A

�

i

of A is �

i

-isomorphi to A

i

(i = 1; 2).

Sine the signatures �

1

and �

2

are disjoint, the existene of a fusion depends

only on the ardinality of the strutures A

1

and A

2

.

Lemma 1. Let A

1

be a �

1

-struture and A

2

a �

2

-struture. Then A

1

and A

2

have a fusion i� their domains A

1

and A

2

have the same ardinality.

Proof. The only-if diretion of the lemma is an immediate onsequene of the

de�nition of fusion. The if diretion an be seen as follows: if A

1

and A

2

have

the same ardinality, then there exists a bijetion � : A

1

! A

2

. This bijetion

an be used to transfer the interpretation of the elements of �

2

from A

2

to A

1

.

To be more preise, let A be the �-struture that has domain A

1

, interprets the

elements of �

1

like A

1

, and interprets the elements of �

2

as follows:

{ If f is an n-ary funtion symbol in �

2

, and a

1

; : : : ; a

n

2 A

1

, then we de�ne

f

A

(a

1

; : : : ; a

n

) := �

�1

(f

A

2

(�(a

1

); : : : ; �(a

n

))).

{ If P is an n-ary prediate symbol in �

2

, and a

1

; : : : ; a

n

2 A

1

, then

(a

1

; : : : ; a

n

) 2 P

A

i� (�(a

1

); : : : ; �(a

n

)) 2 P

A

2

.

4

Atually, these papers onsider the more general situation where the signatures need

not be disjoint. Here, we restrit our attention to the disjoint ase.



Then A is a fusion of A

1

and A

2

sine A

�

1

is idential to A

1

, and � is a �

2

-

isomorphism from A

�

2

to A

2

by onstrution of A.

There is an interesting onnetion between the union of theories and fusions

of models of the theories.

Proposition 1. For i = 1; 2, let T

i

be a �

i

-theory. The �-struture A is a

model of T

1

[ T

2

i� it is a fusion of a model A

1

of T

1

and a model A

2

of T

2

.

Proof. The only-if diretion is an immediate onsequene of the fats that A is

a fusion of its �

1

-redut A

�

1

and its �

2

-redut A

�

2

, and that A

�

i

is a model

of T

i

(i = 1; 2).

The if diretion is also trivial sine, if A is a fusion of a model A

1

of T

1

and

a model A

2

of T

2

, then its �

i

-redut is isomorphi to A

i

, and thus a model of

T

i

(i = 1; 2). Consequently, A is a model of T

1

[ T

2

.

We are now ready to show a result from whih soundness of the Nelson-Oppen

proedure follows immediately. For a �nite set of variables X , let �(X) denote

the onjuntion of all negated equations x 6= y for distint variables x; y 2 X .

Proposition 2. Let T

1

and T

2

be two stably in�nite theories over the disjoint

signatures �

1

and �

2

, respetively; let '

i

be a quanti�er-free �

i

-formula (i =

1; 2), and let X be the set of variables ourring in both '

1

and '

2

. If '

i

^�(X)

is satis�able in a model A

i

of T

i

for i = 1; 2, then '

1

^ '

2

is satis�able in a

fusion of A

1

and A

2

, and thus in a model of T

1

[ T

2

.

Proof. Sine the theories T

1

and T

2

are stably in�nite and signatures are at most

ountable, we may without loss of generality assume that the strutures A

1

and

A

2

are both ountably in�nite. Sine '

i

^ �(X) is satis�able in A

i

, there is

an evaluation �

i

: X ! A

i

that satis�es '

i

and replaes the variables in X

by distint elements of A

i

(i = 1; 2). This implies that there exists a bijetion

� : A

1

! A

2

suh that �(�

1

(x)) = �

2

(x). As shown in the proof of Lemma 1,

this bijetion indues a fusion A of A

1

and A

2

. It is easy to see that '

1

^ '

2

is

satis�able in A. The evaluation � showing satis�ability is de�ned as follows: on

the variables in '

1

it oinides with �

1

, and for the non-shared variables x in '

2

we de�ne �(x) := �

�1

(�

2

(x)).

It is easy to see that this proposition yields soundness of the Nelson-Oppen

ombination proedure, i.e, if the proedure answers \satis�able," then the origi-

nal formula was indeed satis�able. In fat, if in Step 3 no disjuntion of equalities

between shared variables an be derived from the pure formulae, the prerequi-

site for the proposition is satis�ed: sine the disjuntion of all equations x = y

for distint variables x; y 2 X annot be dedued from '

i

in T

i

, we know that

'

i

^�(X) is satis�able in T

i

. Thus, we an dedue that '

1

^ '

2

is satis�able in

T

1

[ T

2

, and sine eah step of the proedure preserves satis�ability, the input

formula was also satis�able.

To sum up, we have shown orretness of Nelson and Oppen's ombination

proedure, whih yields the following theorem:



Theorem 3. Let T

1

and T

2

be two stably in�nite theories over disjoint signa-

tures suh that the universal theory of T

i

is deidable for i = 1; 2. Then the

universal theory of T

1

[ T

2

is also deidable.

Complexity of the proedure The main soures of omplexity are (i) the

transformation of the quanti�er-free formula into a disjuntion of onjuntive

quanti�er-free formulae, and (ii) Step 3 of the ombination proedure for on-

juntive quanti�er-free formulae. It is well-known that the transformation of an

arbitrary Boolean formula into disjuntive normal form may ause an exponen-

tial blow-up. Step 3 of the proedure has again two soures of omplexity. First,

there is the problem of deiding whether there is a disjuntion of equalities be-

tween distint variables that an be derived from '

i

in T

i

. If one must really test

all possible disjuntions using the satis�ability proedure for T

i

, then already a

single suh step needs exponential time. However, even if we assume that there

is a polynomial proedure that determines an appropriate disjuntion (if there

is one), then the overall algorithm is still not polynomial unless all these dis-

juntions onsist of a single disjunt. Otherwise, the algorithm must investigate

di�erent branhes, and sine this may happen eah time Step 3 is performed, an

exponential number of branhes may need to be investigated.

Nelson and Oppen [49℄ introdue the notion of a onvex theory, and Oppen

[54℄ shows that, for onvex theories, the two soures of omplexity in Step 3

of the proedure an be avoided. A theory T is onvex i� the following the

following holds: if a disjuntion of equalities between distint variables an be

dedued from a quanti�er-free formula in T , then a single equality between

distint variables an already be dedued. For onvex theories, Step 3 of the

proedure an thus be modi�ed as follows: it is only tested whether a single

equation between distint shared variables an be dedued. Sine there are only

a polynomial number of suh equations, this an be tested by a polynomial

number of alls to the satis�ability proedure for T

i

. In addition, there is no

more branhing in Step 3. This shows that the modi�ed ombination proedure

runs in polynomial time, if applied to onjuntive quanti�er-free input formulae.

Theorem 4. Let T

1

and T

2

be two onvex and stably in�nite theories over dis-

joint signatures suh that the onjuntive universal theory of T

i

is deidable in

polynomial time for i = 1; 2. Then the onjuntive universal theory of T

1

[ T

2

is

also deidable in polynomial time.

In the general ase, the Nelson-Oppen ombination approah yields a non-

deterministi polynomial proedure. First, given an arbitrary quanti�er-free for-

mula, the nondeterministi proedure hooses from eah disjuntion one of the

disjunts. This yields a onjuntive quanti�er-free formula. This formula is then

treated by the following nondeterministi variant of the ombination proedure:

1. Use variable abstration to generate a onjuntion '

1

^'

2

that is equivalent

to ', where '

i

is a pure �

i

-formula (i = 1; 2).



2. Nondeterministially hoose a variable identi�ation, i.e., hoose a partition

� = f�

1

; : : : ; �

k

g of the variables shared by '

1

and '

2

.

For eah of the lasses �

i

, let x

i

2 �

i

be a representative of this lass, and

let X

�

:= fx

1

; : : : ; x

k

g be the set of these representatives. The substitution

that replaes, for all i = 1; : : : ; k, eah element of �

i

by its representative x

i

is denoted by �

�

.

3. Test the pure formulae for satis�ability in the respetive theories.

If �

�

('

i

) ^ �(X

�

) is unsatis�able in T

i

for i = 1 or i = 2, then return

\unsatis�able;" otherwise return \satis�able."

5

Obviously, it is possible to hoose one partition using only a polynomial number

of binary hoies, whih shows that the above proedure is indeed nondeter-

ministi polynomial. Completeness is again easy to see, and soundness is an

immediate onsequene of Proposition 2.

Theorem 5. Let T

1

and T

2

be two stably in�nite theories over disjoint signa-

tures suh that the universal theory of T

i

is deidable in NP for i = 1; 2. Then

the universal theory of T

1

[ T

2

is also deidable in NP.

Extensions and related work Shostak [64℄ desribes a more eÆient om-

bination proedure, whih is based on ongruene losure [50℄. However, unlike

the Nelson-Oppen proedure, this approah assumes that deision proedures of

a spei� form (so-alled \anonizers" and \solvers") exist for the omponent

theories, i.e., is does not treat the omponent deision proedures as blak boxes.

A formally more rigorous presentation of the method an be found in [25℄.

Above, we have always assumed that the theories to be ombined are over dis-

joint signatures. Without any suh restrition, a general ombination proedure

annot exist. In fat, it is very easy to �nd examples of deidable theories whose

(non-disjoint) ombination is undeidable. Nevertheless, it is worthwhile to try

to weaken the disjointness assumption. The �rst extension of Nelson and Op-

pen's approah in this diretion is due to Ringeissen [58℄. It was further extended

by Ringeissen and Tinelli [73, 71℄ to the ase of theories sharing \onstrutors."

Baader and Tinelli [10℄ onsider the appliation of the Nelson-Oppen pro-

edure to equational theories. Although equational theories need not be stably

in�nite (see Example 2), Nelson and Oppen's proedure an be applied, after

some minor modi�ations, to ombine deision proedures for the validity of

quanti�er-free formulae in equational theories. It is also shown that, ontrary

to a ommon belief, the method annot be used to ombine deision proedures

for the word problem. The paper then presents a method that solves this kind

of ombination problem. In [11, 12℄ it is shown that this approah an also be

extended to the ase of theories sharing onstrutors.

5

Reall that�(X

�

) denotes the onjuntion of all negated equations x 6= y for distint

variables x; y 2 X

�

.



4 Combination of E-uni�ation algorithms

The onstraints that we treat in this setion are E-uni�ation problems, i.e., sys-

tems of term equations that must be solved modulo a given equational theory E.

From a more logial point of view, this means that we are interested in the pos-

itive existential or the positive AE theory of E (see Theorems 1 and 2), depend-

ing on whether we onsider elementary uni�ation or uni�ation with onstants.

During the last three deades, researh in uni�ation theory has produed E-

uni�ation algorithms (i.e., onstraint solvers for E-uni�ation onstraints) for

a great variety of equational theories E (see [33, 8, 9℄). Suh an algorithm either

atually omputes solutions of the E-uni�ation onstraints (usually omplete

sets of E-uni�ers), or it just deides satis�ability of E-uni�ation onstraints.

Using deision proedures instead of algorithms omputing omplete sets of uni-

�ers may be advantageous for theories where the omplete sets are large or even

in�nite.

E-uni�ation algorithms that ompute omplete sets of uni�ers are, for ex-

ample, applied in theorem proving with \built in" theories (see, e.g., [55, 68℄), in

generalizations of the Knuth-Bendix ompletion proedure to rewriting modulo

theories (see, e.g., [34, 13℄), and in logi programming with equality (see, e.g.,

[32℄). With the development of onstraint approahes to theorem proving (see,

e.g., [18, 51℄), term rewriting (see, e.g., [41℄), and logi programming (see, e.g.,

[31, 22℄), deision proedures for E-uni�ation have been gaining in importane.

The ombination problem for E-uni�ation algorithms is diretly motivated

by these appliations. In this setion, we �rst motivate the problem and briey

review the researh on this topi, whih led to a omplete solution for the ase of

theories over disjoint signatures. Subsequently, we desribe the ombination al-

gorithm developed in [2, 6℄, and sketh how to prove its orretness. In Setion 5,

we derive an algebrai and logial reformulation of the ombination problem and

the ombination algorithm. This leads to a more abstrat proof, whih an also

be generalized to other lasses of onstraints (Setion 6). Finally, in Setion 7 we

omment on the omplexity of the ombination problem, and desribe possible

optimizations of the ombination proedure.

4.1 The problem and its history

Basially, the problem of ombining E-uni�ation algorithms an be desribed

as follows:

Assume we are given uni�ation algorithms for solving uni�ation prob-

lems modulo the equational theories E

1

and E

2

. How an we obtain a

uni�ation algorithm for the union of the theories, E

1

[ E

2

?

Here, uni�ation algorithms may either be algorithms omputing omplete sets

of uni�ers or deision proedures for uni�ability.

The relevane of this problem relies on the observation that, quite often,

a given E-uni�ation algorithm an only treat uni�ation problems where the



terms ourring in the problem are omposed over the signature of E (elemen-

tary E-uni�ation), possibly enrihed by some free onstants (E-uni�ation with

onstants). This is, for example, the ase for the \natural" uni�ation algorithms

for the theory AC of an assoiative-ommutative funtion symbol [67, 30℄, whih

depend on solving linear Diophantine equations in the natural numbers. How-

ever, in the appliations mentioned above, uni�ation problems often ontain

\mixed" terms, i.e, terms that are onstruted from funtion symbols belonging

to di�erent theories.

For example, in automated theorem proving, free funtion symbols of arbi-

trary arity are frequently introdued by Skolemization. Thus, the E-uni�ation

problems that must be solved there are usually general E-uni�ation problems.

If the given E-uni�ation algorithm an treat only E-uni�ation problems with

onstants, the question arises whether it is always possible to onstrut an al-

gorithm for general E-uni�ation from a given algorithm for E-uni�ation with

onstants. This an be seen as an instane of the ombination problem where

E

1

is the theory E, and E

2

is the free theory for the free funtion symbols

(e.g., onsisting of the \dummy" identities f(x

1

; : : : ; x

n

) = f(x

1

; : : : ; x

n

) for the

free funtion symbols f). The ombination problem in its general form arises

if the semanti properties of several funtion symbols are to be integrated into

the uni�ation; for example, one may want to build in an assoiative symbol

representing onatenation of lists, and an assoiative-ommutative symbol rep-

resenting addition of numbers.

Similarly as in the ase of the Nelson-Oppen proedure, there annot be a

general solution to the ombination problem as stated above: there exist equa-

tional theories E

1

and E

2

where uni�ation with onstants is deidable both for

E

1

and for E

2

, but solvability of uni�ation problems with onstants modulo

E

1

[ E

2

is undeidable. For example, both uni�ation with onstants modulo

left-distributivity of the binary symbol f over the binary symbol g [70℄ and

uni�ation with onstants modulo assoiativity of the binary symbol g [46℄ are

deidable, but uni�ation with onstants modulo the union of these theories is

undeidable [65℄. Again, the restrition to theories over disjoint signatures avoids

this problem. Until now, most of the researh was onentrated on this restrited

ase.

A �rst important instane of the problem was onsidered by Stikel [66, 67℄.

Stikel'sAC-uni�ation algorithm allowed for the presene of severalAC-symbols

and free symbols. However, termination of this algorithm ould only be shown

for restrited ases and it took almost a deade until Fages [27℄ ould lose this

gap.

Subsequently, more general ombination problems were, for example, treated

in [40, 69, 29, 75, 16℄, but the theories onsidered in these papers always had to

satisfy ertain restritions (suh as ollapse-freeness or regularity) on the synta-

ti form of their de�ning identities. Reall that a theory E is alled ollapse-free

if it does not ontain an identity of the form x = t where x is a variable and t is

a non-variable term, and it is alled regular if the left- and right-hand sides of

the identities ontain the same variables. Suh restritions simplify the ombina-



tion problem, both from the oneptual and from the omputational omplexity

point of view.

An important break-through in the researh on the ombination problem was

the ombination algorithm by Shmidt-Shau� [60℄. The algorithm applies to ar-

bitrary equational theories over disjoint signatures, provided that an additional

algorithmi requirement is ful�lled: in addition to algorithms for uni�ation with

onstants, one needs algorithms that solve so-alled onstant elimination prob-

lems. A more eÆient version of this highly nondeterministi algorithm has been

desribed by Boudet [15℄. Basially, whereas the algorithm by Shmidt-Shau�

performs two nondeterministi steps right at the beginning, Boudet's algorithm

tries to defer nondeterministi steps as long as possible; nondeterminism is only

used \on demand" to resolve ertain onits. For restrited lasses of theories

(e.g., ollapse-free theories) some of these onits annot our, and thus the

orresponding nondeterministi steps an be avoided.

The ombination proedures mentioned until now all onsidered the problem

of ombining algorithms that ompute (�nite) omplete sets of E-uni�ers. The

problem of how to ombine deision proedures is not solved by these approahes,

in partiular not for theories like assoiativity, where uni�ation problems need

not have a �nite omplete set of uni�ers. Atually, the paper by Shmidt-Shau�

[60℄ also onsidered the problem of ombining deision proedures. It showed

that deision proedures an be ombined, provided that solvability of general

uni�ation problems is deidable in the omponent theories. The drawbak of

this result was that for many theories (e.g., assoiativity) one already needs to

employ ombination methods to show that general uni�ation (i.e., uni�ation in

the ombination of the given theory with syntati equality of the free funtion

symbols) is deidable.

The problem of how to ombine deision proedures was �nally solved in a

very general form in [2, 6℄, where a ombination algorithm was given that an be

used both for ombining deision proedures and for ombining algorithms om-

puting omplete sets of uni�ers. This algorithm applies to arbitrary equational

theories over disjoint signatures, but it requires as a prerequisite that algorithms

solving so-alled uni�ation problems with linear onstant restritions

6

are avail-

able for these theories (whih was, e.g., the ase for assoiativity). In the sequel,

we desribe this ombination algorithm.

All the ombination results that will be presented in the following are re-

strited to the ase of disjoint signatures. There are some approahes that try

to weaken the disjointness assumption, but the theories to be ombined must

satisfy rather strong onditions [57, 26℄.

4.2 A ombination algorithm for E-uni�ation algorithms

In the following, we onsider equational theories E

1

and E

2

over the disjoint

signatures �

1

and �

2

. We denote the union of the theories by E := E

1

[E

2

and

6

In retrospet, if one looks at the ombination method for deision proedures by

Shmidt-Shau�, then one sees that he used the free funtion symbols in the general

uni�ation problems just to enode linear onstant restritions.



the union of the signatures by � := �

1

[�

2

. The theories E

1

; E

2

are alled the

omponent theories of the ombined theory E.

Before desribing the algorithm in detail, we motivate its entral steps and

the ideas underlying these steps by examples. In these examples, E

1

will be the

theory of a binary assoiative funtion symbol f , i.e., E

1

:= ff(f(x; y); z) =

f(x; f(y; z))g, and E

2

will be the free theory for the unary funtion symbol g

and the onstant symbol a, .e., E

2

:= fg(x) = g(x); a = ag.

Assume that we are given an elementary E-uni�ation problem � . First,

we proeed in the same way as in the Nelson-Oppen proedure: using variable

abstration, we deompose � into a union of two pure uni�ation problems, i.e.,

we ompute an equivalent system of equations of the form

7

�

1

℄ �

2

, where �

i

ontains only terms over the signature �

i

(i = 1; 2).

Again, it is easy to see that an E-uni�er � of the original problem � is also

an E-uni�ers of the problems �

1

and �

2

. By using an appropriate projetion

tehnique, whih replaes alien subterms by variables, � an be turned into an

E

i

-uni�er of �

i

(see Subsetion 4.4 for more details). As in the ase of the Nelson-

Oppen proedure, the other diretion need not be true: given solutions �

1

and

�

2

of �

1

and �

2

, it is not lear how to ombine them into a solution of �

1

℄ �

2

.

An obvious problem that one may enounter is that the substitutions �

1

and

�

2

may assign di�erent terms to the same variable.

Example 3. Consider the deomposed problem �

1

℄ �

2

, where

�

1

:= fx =

?

f(z; z)g and �

2

:= fx =

?

ag:

The substitution �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fx 7! ag solves �

2

.

Thus, there are oniting assignment for the variable x, and it is not lear how

to ombine the two substitutions into a single one. In fat, in the example, there

is no solution for the ombined problem �

1

℄ �

2

.

This problem motivates the following step of the ombination algorithm.

Theory labeling. Given �

1

℄ �

2

, we (nondeterministially) introdue for

eah variable ourring in this problem a label 1 or 2. The label 1 for

variable x indiates that x may be instantiated by solutions of the E

1

-

uni�ation problem �

1

, whereas it must be treated as a onstant by

solutions of the E

2

-uni�ation problem �

2

. Label 2 is interpreted in the

dual way.

In the example, the variable x must be assigned either label 1 or 2. In the �rst

ase, �

2

does not have a solution, whereas in the seond ase �

1

does not have

a solution.

Unfortunately, this step introdues a new problem. Some of the new free

\onstants" generated by the labeling step may need to be identi�ed by a solution

of the subproblem, but this is no longer possible sine they are onstants, and

thus annot be replaed.

7

The symbol \℄" indiates that this union is disjoint.



Example 4. Consider the deomposed problem �

1

℄ �

2

, where

�

1

:= fx =

?

f(z; z); y =

?

f(z; z)g and �

2

:= fg(x) =

?

g(y)g:

Obviously, �

1

an only be solved if both x and y obtain label 1. However, then

�

2

does not have a solution sine x and y are viewed as di�erent onstants in �

2

.

Nevertheless, �

1

℄ �

2

has a solution, namely � := fx 7! f(z; z); y 7! f(z; z)g.

There is, however, a simple solution to this problem.

Variable identi�ation. Before introduing the theory labeling, variables

are (nondeterministially) identi�ed.

8

In the example, we just identify x and y (e.g., by replaing all ourrenes of y

by x). The resulting problem �

0

2

= fg(x) =

?

g(x)g is now obviously solvable.

After we have performed the identi�ation and the labeling step, we an be

sure that given solutions �

1

and �

2

of �

1

and �

2

have a disjoint domain, and thus

it makes sense to onsider the substitution �

1

[�

2

. Nevertheless, this substitution

need not be a solution of �

1

℄ �

2

, as illustrated by the following example.

Example 5. Consider the deomposed problem �

1

℄ �

2

, where

�

1

:= fx = f(z; z)g and �

2

:= fz =

?

ag:

We assume that no variables are identi�ed and that x obtains label 1 and z label

2. Then �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fz 7! ag solves �

2

. However,

� := �

1

[ �

2

= fx 7! f(z; z); z 7! ag does not solve �

1

℄ �

2

sine �(x) = f(z; z)

and �(f(z; z)) = f(a; a).

To avoid this kind of problem, we must iteratively apply the substitutions

�

1

and �

2

to eah other, i.e., onsider the sequene �

1

, �

2

Æ �

1

, �

1

Æ �

2

Æ �

1

,

9

et. until it stabilizes. In the above example, the orret ombined substitution

would be fx 7! f(a; a); z 7! ag = �

2

Æ �

1

= �

1

Æ �

2

Æ �

1

= : : :. In general, this

proess need not terminate sine there may be yli dependenies between the

variable instantiations.

Example 6. Consider the deomposed problem �

1

℄ �

2

, where

�

1

:= fx = f(z; z)g and �

2

:= fz =

?

g(x)g:

We assume that no variables are identi�ed and that x obtains label 1 and z label

2. Then �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fz 7! g(x)g solves �

2

. Beause

x is replaed by a term ontaining y and y by a term ontaining x, iterated

appliation of the substitutions to eah other does not terminate. In fat, it is

easy to see that the ombined problem �

1

℄ �

2

does not have a solution.

8

This is a step that also ours in the nondeterministi variant of the Nelson-Oppen

proedure.

9

The symbol \Æ" denotes omposition of substitution, where the substitution on the

right is applied �rst.



In the ombination proedure, suh yli dependenies between solutions of the

omponent problems are prohibited by the following step:

Linear ordering. We (nondeterministially) hoose a linear ordering <

on the variables ourring in �

1

℄ �

2

. Given a labeling of variables as

explained above, we ask for solutions �

i

of �

i

(i = 1; 2) that respet

the labeling in the sense introdued above, and satisfy the following

additional ondition: if a variable y with label j ours in �

i

(x), where

x has label i 6= j, then y < x.

As a onsequene of these steps, the E

i

-uni�ation problems obtained as output

of the ombination proedure are no longer elementary E

i

-uni�ation problems.

Beause of the labeling, they ontain free onstants (the variables with label

j 6= i), and the linear ordering imposes additional restritions on the possible

solutions. We all suh a problem an E

i

-uni�ation problem with linear onstant

restritions.

De�nition 2. Let F be an equational theory. An F -uni�ation problem with

linear onstant restrition is a quadruple (�;X;C;<). The �rst omponent, � ,

is an elementary F -uni�ation problem. X and C are disjoint �nite sets suh that

X [ C is a superset of the set of variables ourring in � . The last omponent,

<, is a linear ordering on X [ C. A solution of (�;X;C;<) is a substitution �

that satis�es the following onditions:

1. � solves the elementary F -uni�ation problem � ;

2. � treats all elements of C as onstants, i.e., �(x) = x for all x 2 C;

3. for all x 2 X and  2 C, if x < , then  must not our in �(x).

We are now ready to give a formal desription of the ombination algorithm in

Fig. 1. As before, we restrit the desription to the ombination of two omponent

algorithms. It should be noted, however, that the generalization to n > 2 theories

would be straightforward. Sine Steps 2{4 are nondeterministi, the proedure

atually generates a �nite set of possible output pairs. The following proposition

shows that the ombination algorithm is sound and omplete if used as a sheme

for ombining E

i

-uni�ation algorithms that deide solvability. A sketh of a

proof will be given later on.

Proposition 3. The input problem, � , has a solution i� there exists an output

pair of the Combination Algorithm, ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), suh that

both omponents are solvable.

4.3 Consequenes

The straightforward generalization of Proposition 3 to n � 2 theories yields the

following ombination result for deision proedures.

Theorem 6. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint signa-

tures suh that solvability of E

i

-uni�ation problems with linear onstant restri-

tions is deidable for i = 1; : : : ; n. Then uni�ability is deidable for the ombined

theory E := E

1

[ : : : [ E

n

.



Input: A �nite set � of equations between (�

1

[ �

2

)-terms. The following steps

are applied in onseutive order.

1. Deomposition.

Using variable abstration, we ompute an equivalent system �

1

℄�

2

where �

1

only

ontains pure �

1

-terms and �

2

only ontains pure �

2

-terms.

2. Choose Variable Identi�ation.

A partition � of the set of variables ourring in �

1

℄ �

2

is hosen, and for eah

equivalene lass of � a representative is seleted. If y is the representative of

� 2 � and x 2 � we say that y is the representative of x. Let Y denote the set of

all representatives. Now eah variable is replaed by its representative. We obtain

the new system �

0

1

℄ �

0

2

.

3. Choose Theory Labeling.

A labeling funtion Lab : Y ! f1; 2g is hosen. Let Y

1

and Y

2

respetively denote

the set of variables with label 1 and 2.

4. Choose Linear Ordering.

A linear ordering \<" on Y is seleted.

Output: The pair ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)).

Eah omponent (�

0

i

; Y

i

; Y

j

; <) is treated as an E

i

-uni�ation problem with linear

onstant restrition (i = 1; 2).

Fig. 1. The Combination Algorithm

By \uni�ability" we mean here solvability of elementary E-uni�ation problems.

Sine, for eah set 
 of free funtion symbols, solvability of uni�ation problems

with linear onstant restrition in the free theory F




= ff(: : :) = f(: : :) j f 2 
g

is deidable (see below), the result of Theorem 6 an also be lifted to general E-

uni�ation problems. In fat, given a general E-uni�ation problem, � , we just

have to apply the theorem to the theories E

1

; : : : ; E

n

; F




where 
 denotes the

set of free funtion symbols ourring in � . In Setion 5.1 we shall see that E-

uni�ation problems with linear onstant restritions an always be enoded as

E-uni�ation problems with free funtion symbols. As a onsequene, Theorem 6

also holds for E-uni�ation problems with linear onstant restritions, whih

yields a modularity result for uni�ation with linear onstant restritions.

A simple analysis of the (nondeterministi) steps of the Combination Algo-

rithm also provides us with the following omplexity result, whih is analogous

to the one of Theorem 5:

Theorem 7. If solvability of E

i

-uni�ation problems with linear onstant re-

stritions is deidable in NP, then uni�ability in the ombined theory E

1

[E

2

is

also deidable in NP.

Although it was designed for the purpose of ombining deision proedures,

the Combination Algorithm an also be used to ompute omplete sets of uni�ers

modulo the union of equational theories.



Theorem 8. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint signa-

tures, and let E := E

1

[ : : :[E

n

be their union. Assume that we have uni�ation

algorithms that ompute, for eah E

i

-uni�ation problem with linear onstant

restritions, a �nite omplete set of E

i

-uni�ers (i = 1; : : : ; n). Then we an

ompute a �nite omplete set of E-uni�ers for eah elementary E-uni�ation

problem.

The main idea for proving this theorem (skethed here for the ase of n = 2

theories) is as follows. In the proof of soundness of the ombination algorithm

(see Setion 4.4 below), we will show how an arbitrary pair (�

1

; �

2

) of solutions

of an output pair of the ombination algorithm an be ombined into a solution

�

1

� �

2

of the input problem (see also Example 5). Given a single output pair

((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), one an ompute omplete sets of uni�ers for

the two omponent problems, and then ombine the elements of these omplete

sets in all possible ways. If this is done for all output pairs, then the set of all

ombined solutions obtained this way is a omplete set of uni�ers for the input

problem (see [6℄ for details).

The last two results an again be lifted from elementary uni�ation problems

to general uni�ation problems and to uni�ation problems with linear onstant

restritions in the ombined theory, whih provides us with a modularity result.

In order to apply these general ombination results to spei� theories, one

needs algorithms that an solve uni�ation problems with linear onstant re-

stritions for these theories. For regular theories, an algorithm for omputing

omplete sets of uni�ers for uni�ation with onstants an be used to obtain

an algorithm for omputing omplete sets of uni�ers for uni�ation with linear

onstant restritions: just remove the uni�ers violating the onstant restritions

from the omplete set. In partiular, sine the free theory is obviously regular,

one an test solvability of a uni�ation problem with linear onstant restritions

in the free theory by omputing the most general uni�er, and then heking

whether this uni�er satis�es the onstant restritions. For non-regular theories,

this simple way of proeeding is not possible. However, the onstant elimina-

tion proedures required by the approah of Shmidt-Shau� an be used to

turn omplete sets of uni�ers for uni�ation with onstants into omplete sets of

uni�ers for uni�ation with linear onstant restritions (see [6℄, Setion 5.2, for

details).

With respet to deision proedures, it has turned out that, for several in-

teresting theories (e.g., the theory AC of an assoiative-ommutative symbol or

the theory ACI of an assoiative-ommutative-idempotent symbol), the known

deision proedures for uni�ation with onstants an easily be modi�ed into

algorithms for uni�ation with linear onstant restritions [3℄. In partiular, it

is easy to show that Theorem 7 applies to AC and ACI, whih yields a simple

proof that the deision problem for general AC- and ACI-uni�ation is in NP.

For the theory A of an assoiative funtion symbol, deidability of uni�ation

problems with linear onstant restritions is an easy onsequene (see [3℄) of a

result by Shulz [61℄ on a generalization of Makanin's deision proedure. As a



onsequene, general A-uni�ation is also deidable (this problem had been open

before the development of the ombination algorithm presented above).

There are, however, also theories for whih uni�ation with linear onstant

restritions is onsiderably harder than uni�ation with onstants. For example,

it an be shown [1℄ that Boolean uni�ation with linear onstant restritions

is PSPACE-omplete whereas Boolean uni�ation with onstants is \only" �

p

2

-

omplete. Until now, it is not known whether there exists an equational theory

for whih uni�ation with onstants is deidable, but uni�ation with linear

onstant restritions is undeidable.

4.4 Corretness

In the remainder of this setion, we sketh how to prove Proposition 3. The full

proof an be found in [6℄.

To show soundness of the Combination Algorithm, it suÆes to show that, for

eah output pair ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), a given pair of solutions (�

1

; �

2

)

of the two omponents an be ombined into a solution � of �

0

1

℄ �

0

2

, whih is

treated as an elementary E-uni�ation problem here. In fat, this obviously

implies that � an be extended to a solution of the input problem � .

The ombined solution � is de�ned by indution on the linear ordering <.

Assume that � is de�ned for all variables y 2 Y that are smaller than z 2 Y

with respet to <. Without loss of generality we may assume that z 2 Y

1

has

label 1 and that �

1

(z) does not ontain any variables from Y

1

. Sine �

1

satis�es

the linear onstant restritions, it follows that all labeled variables y ourring in

�

1

(z) are smaller than z with respet to \<", whih implies that �(y) is de�ned

by indution hypothesis. We de�ne �(z) := �(�

1

(z)). It is easy to see that the

substitution � obtained in this way is an instane of both �

1

and �

2

. It follows

that � is an E

i

-uni�er, and hene an E-uni�er, of �

0

i

(i = 1; 2). Consequently, �

is a solution of �

0

1

℄ �

0

2

.

It is more diÆult to prove the ompleteness part of Proposition 3. Basially,

the proof proeeds as follows. A given solution � of � is used to de�ne suitable

hoies in the nondeterministi steps of the Combination Algorithm, i.e., hoies

that lead to an output pair where both omponents are solvable:

{ at the variable identi�ation step, two variables x and y are identi�ed i�

�(x) =

E

�(y). Obviously � is a solution of the system �

0

1

℄ �

0

2

reahed after

this identi�ation.

{ at the labeling step, a representative y reeives label 1 i� �(x) has a symbol

from �

1

as topmost funtion symbol.

{ the linear ordering \<" that is hosen is an arbitrary extension of the par-

tial ordering that is indued by the subterm relationship of the �-values of

representatives.

However, this way of proeedings is orret only if the solution � of the input

problem is assumed to be normalized in a partiular way. In [2℄, using so-alled

\unfailing ompletion," a (possibly in�nite) anonial rewrite system R for the



ombined theory E is de�ned. For eah variable x in the system �

0

1

℄ �

0

2

it is

then assumed that �(x) is in R-normal form. Another possibility is to assume

that the terms �(x) are in the so-alled layer-redued form [60, 42℄. In priniple,

this normal form is obtained by applying ollapse-equations as muh as possible.

It remains to �nd, given a normalized solution �, suitable solutions �

1

and

�

2

of the output pair determined by the hoies indued by �. To de�ne these

solutions, a \projetion tehnique" is introdued that transforms possibly mixed

solution terms of the form �(y) to a pure �

i

-terms �

i

(y). Basially, to de�ne

�

i

(y), \alien" subterms of �(y) (i.e., maximal subterms starting with a symbol

not belonging to �

i

) are replaed by new variables, while ensuring that E-

equivalent subterms are replaed by the same variable. If �(y) itself is alien,

then �

i

(y) := y, whih ensures that variables with label j 6= i are treated as free

onstants.

5 The logial and algebrai perspetive

In this setion, we desribe the problem of ombining uni�ation algorithms from

a more logial and algebrai point of view. This leads to a modi�ed desription

of the ombination algorithm and to a new proof of its orretness. In the next

setion, we will show that the tehniques developed in the present setion allow

us to lift the ombination methodology to more general lasses of onstraints.

5.1 A logial reformulation of the Combination Algorithm

Theorems 1 and 2 show that elementary E-uni�ation problems and E-

uni�ation problems with onstants orrespond to natural lasses of logial dei-

sion problems. The question arises whether this lassi�ation an be extended to

general E-uni�ation problems and to E-uni�ation problems with linear on-

stant restritions. The following theorem, whih was �rst proved in [6℄, gives

a positive answer to this question. In partiular, it states that both problems

orrespond to the same lass of logial formulae.

Theorem 9. Let E be an equational theory with signature �, and V a ountably

in�nite set of variables. Then the following statements are equivalent:

1. Solvability of E-uni�ation problems with linear onstant restritions is de-

idable.

2. The positive theory of E is deidable.

3. The positive theory of T (�; V )==

E

is deidable.

4. Solvability of general E-uni�ation problems is deidable.

From a pratial point of view, the theorem is interesting beause it shows that

any theory that an reasonably be integrated in a universal dedutive mahinery

via uni�ation an also be ombined with other suh theories. In fat, as men-

tioned at the beginning of Setion 4.1, suh an integration usually requires an

algorithm for general uni�ation. The theorem shows that suh an algorithm also



makes sure that the preondition for our ombination method to apply|namely,

the existene of an algorithm for uni�ation with linear onstant restritions|

are satis�ed.

10

Theorem 9, together with our ombination result for deision proedures,

yields the following modularity result for the deidability of positive theories:

Theorem 10. Let E

1

; : : : ; E

n

be equational theories over disjoint signatures.

Then the positive theory of E

1

[ : : : [ E

n

is deidable i� the positive theories of

the omponent theories E

i

are deidable, for i = 1; : : : ; n.

In the following, we motivate the equivalenes stated in Theorem 9 by sketh-

ing how the respetive problems an be translated into eah other (see [6℄ for a

detailed proof of the theorem):

{ Any E-uni�ation problem with linear onstant restritions (�;X;C;<) an

be translated into a positive �-sentene �

�

as follows: both variables (i.e.,

elements ofX) and free onstants (i.e., elements of C) are treated as variables

in this formula; the matrix of �

�

is the onjuntion of all equations in � ; and

in the quanti�er pre�x, the elements of X are existentially quanti�ed, the

elements of C are universally quanti�ed, and the order of the quanti�ations

is given by the linear ordering <.

{ The equivalene between 2) and 3) is due to the well-known fat that the

E-free algebra with ountably many generators is anonial for the positive

theory of E [48℄, i.e., a positive sentene is valid in T (�; V )==

E

i� it is valid

in all models of E.

{ Given a positive �-sentene �, one �rst removes universal quanti�ers by

Skolemization. The positive existential sentene obtained this way may on-

tain additional free funtion symbols, the Skolem funtions. It an be trans-

formed into a disjuntion of onjuntive positive existential sentenes, and

eah of the disjunts an obviously be translated into a general E-uni�ation

problem.

{ The ombination method desribed in Setion 4 an be used to redue solv-

ability of a given general E-uni�ation problem to solvability of E-uni�ation

problems with linear onstant restritions.

As an example, onsider the free theory F

fgg

:= fg(x) = g(x)g, and the F

fgg

-

uni�ation problem with onstants fx =

?

g()g. If we add the onstant restri-

tion x < , then this problem is not solvable (sine any solution must substitute

x by the term g(), whih ontains the onstant ). However, under the restri-

tion  < x the problem is solvable. The following are the positive sentenes

and general uni�ation problems obtained by translating these two uni�ation

10

Stritly speaking, the theorem makes this statement only for deision proedures.

In [6℄ it is shown, however, that the equivalene between general uni�ation and

uni�ation with linear onstant restritions also holds with respet to algorithms

that ompute omplete sets of uni�ers.



problems with linear onstant restritions:

uni�ation with lr positive sentene general uni�ation

fx =

?

g()g; x <  9x:8y: x = g(y) fx =

?

g(h(x))g

fx =

?

g()g;  < x 8y:9x: x = g(y) fx =

?

g(d)g

For example, 9x:8y: x = g(y) is not valid in all models of F

fgg

sine this formula

says that g must be a onstant funtion, whih obviously does not follow from

F

fgg

. Correspondingly, fx = g(h(x))g does not have a solution beause it auses

an our-hek failure during syntati uni�ation.

Returning now to the ombination problem, let E

1

and E

2

be two nontrivial

equational theories over disjoint signatures �

1

and �

2

, let E := E

1

[ E

2

de-

note the union of the theories and � := �

1

[ �

2

the union of the signatures.

Using the orrespondene between elementary E-uni�ation problems and ex-

istentially quanti�ed onjuntions of equations for the input of the algorithm,

and the orrespondene between E

i

-uni�ation problems with linear onstant

restrition and positive sentenes for the output omponents we obtain the re-

formulation of the Combination Algorithm shown in Fig. 2. The advantage of

the new formulation is that it does no longer rely on notions and onepts that

are spei� to uni�ation problems modulo equational theories, suh as linear

onstant restritions, whih are quite tehnial restritions on the form of the

allowed solutions. Corretness follows from the following proposition.

Proposition 4. The input sentene 9u:  holds in the ombined quotient term

algebra T (�

1

[�

2

; V )==

E

1

[E

2

i� there exists an output pair (�; �) suh that �

holds in T (�

1

; V )==

E

1

and � holds in T (�

2

; V )==

E

2

.

Sine the new ombination algorithm is just a reformulation of the earlier version,

Proposition 4 is a trivial onsequene of Proposition 3.

The remainder of this setion is devoted to giving an independent orretness

proof for the logial version of the Combination Algorithm. The new proof will

have some signi�ant advantages: it is more abstrat and less tehnial, and thus

easier to generalize to larger lasses of onstraints.

5.2 Fusions of free algebras

The proof of soundness of the Nelson-Oppen ombination proedure that we

have presented in Setion 3 depends on a very simple algebrai onstrution: the

fusion of strutures. Our goal is to adapt this algebrai approah to the task of

proving orretness of the (logial reformulation of the) ombination proedure

for uni�ation algorithms. At �rst sight, the input problems onsidered in the

ase of uni�ation look like a speial ase of the problems aepted by the Nelson-

Oppen proedure: they are (existentially quanti�ed) onjuntions of equations.

11

11

The Nelson-Oppen proedure additionally allows for negation and for non-equational

atoms.



Input: A (�

1

[�

2

)-sentene of the form 9u: , where  is a onjuntion of equa-

tions between (�

1

[�

2

)-terms and u is a �nite sequene onsisting of the variables

ourring in . The following steps are applied in onseutive order.

1. Deomposition.

Using variable abstration, ompute an equivalent sentene 9v: (

1

^ 

2

), where 

i

is a onjuntion of equations between pure �

i

-terms for i = 1; 2.

2. Choose Variable Identi�ation.

A partition � of the set of variables ourring in v is hosen, and for eah equiv-

alene lass of � a representative is seleted. If v is the representative of � 2 �

and u 2 �, then we say that v is the representative of u. Let W denote the set of

all representatives. Now eah variable is replaed by its representative both in the

quanti�er pre�x and in the matrix. Multiple quanti�ations over the same variable

in the pre�x are disarded. We obtain the new sentene 9w: (

0

1

^ 

0

2

).

3. Choose Labeling.

A labeling funtion Lab : W ! f1; 2g is hosen.

4. Choose Linear Ordering.

A linear ordering \<" on W is seleted.

Output: The pair

� = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 

0

1

and � = 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 

0

2

:

Here u

1

v

1

: : :u

k

v

k

is the unique re-ordering of W along <. The sequenes u

i

(v

i

)

represent the bloks of variables with label 1 (label 2).

Fig. 2. The Combination Algorithm (Logial Reformulation)

The main di�erene between the two ombination problems lies in the semantis

of the onstraints. In the ase treated by Nelson and Oppen, the input onstraint

must be satis�ed in some model of the ombined theory T

1

[ T

2

, whereas in the

ase of uni�ation algorithms the input onstraint must be satis�ed in the free

model of the ombined theory E

1

[ E

2

. In the proof of orretness this means

that, for the Nelson-Oppen proedure, it is suÆient to show that the input

onstraint an be satis�ed in an arbitrary fusion of a model of T

1

with a model

of T

2

. In the uni�ation ase, we must make sure that this fusion is in fat the

(E

1

[ E

2

)-free algebra with ountably in�nitely many generators. Thus, given

the E

1

- and E

2

-free algebras B

1

:= T (�

1

; V )==

E

1

and B

2

:= T (�

2

; V )==

E

2

,

respetively, we want to onstrut a fusion of both algebras that is (isomorphi

to) the (E

1

[ E

2

)-free algebra B := T (�

1

[ �

2

; V )==

E

1

[E

2

. This onstrution

will be alled the amalgamation onstrution.

In the sequel, as always in this setion, we assume that the signatures �

1

and

�

2

are disjoint, and that the theories E

1

and E

2

are nontrivial. For simpliity

we shall identify eah variable x 2 V with its equivalene lass w.r.t. E

i

in B

i

,

i.e., write again x for the E

i

-lass [x℄

E

i

= ft 2 T (�

i

; V ) j t =

E

i

xg.



The onstrution starts with a preparatory step where we extend B

i

to an

E

i

-free algebra B

1

i

of the form T (�

i

; V [Y

i

)==

E

i

where Y

i

denotes a ountably

in�nite set of additional variables (i = 1; 2). Sine the sets V [ Y

i

and V have

the same ardinality, B

1

1

and B

1

2

are isomorphi to B

1

and B

2

, respetively.

We assume (without loss of generality) that B

1

1

\B

1

2

= V . These two algebras

(as well as details of the amalgamation onstrution) are depited in Fig. 3.

1

1

0 0

2

2

3

34

4

5

56

6

B2B1

V V

Y1 Y2

B1
∞ B2

∞

B1

B1

B2

B2
(1) (1)

(2)
(2)

Fig. 3. The amalgamation onstrution.

We shall now onstrut a bijetion between the domains B

1

1

and B

1

2

of

the extended algebras B

1

1

and B

1

2

. This bijetion will then be used to de�ne a

fusion of B

1

1

and B

1

2

(see Lemma 1), whih is also a fusion of B

1

and B

2

. Note,

however, that we annot use an arbitrary bijetion between B

1

1

and B

1

2

sine

we want this fusion to be the (E

1

[ E

2

)-free algebra with ountably in�nitely

many generators.

In the following, let us all an element of B

1

i

n (V [Y

i

) a non-atomi element

of B

1

i

. The elements of V [ Y

i

are alled atomi. The ruial property that we

want to obtain is that non-atomi elements of one side are always mapped to

atomi elements of the other side. The de�nition of the bijetion proeeds in

an in�nite series of zig-zag steps: at eah step an existing partial bijetion is

extended by adding a new partial bijetion with domain and image sets disjoint

to the sets already used.



In step 0 we use the identity mapping on V to obtain a bijetion between

the ommon set of generators of both sides (see areas 0 in Fig. 3). We say that

the elements in V of both sides are now �bered.

In step 1 we assign suitable images to the elements of B

1

n V (see area 1 on

the left-hand side). To this end, we selet a set of atoms Y

(1)

2

� Y

2

with the

same ardinality as B

1

n V (area 1 on the right-hand side represents Y

(1)

2

). The

existing partial bijetion is extended by adding a bijetion between B

1

n V and

Y

(1)

2

(indiated by a double arrow between the areas 1). We say that the elements

in B

1

nV and Y

(1)

2

are now �bered as well. In step 1 and in the sequel, whenever

we selet a set of new atoms, we leave an in�nite set of atoms untouhed, whih

are thus available in subsequent steps of the onstrution.

In the symmetri step 2 we add a bijetion between B

2

nV (area 2, right-hand

side ) and a suitable set of new atoms Y

(1)

1

� Y

1

(area 2, left-hand side). With

this step we say that now the elements in B

2

n V and Y

(1)

1

are �bered as well.

For i = 1; 2, let B

(1)

i

denote the subalgebra of B

1

i

that is generated by

V [Y

(1)

i

. The elements of B

(1)

1

that do not yet have an image are �bered in step

3 using a fresh set of atoms Y

(2)

2

of the right-hand side (areas 3); in step 4 the

elements of B

(1)

2

that do not yet have images are �bered using a fresh set of

atoms Y

(2)

1

of left-hand side (areas 4).

For i = 1; 2, let B

(2)

i

denote the subalgebra of B

1

i

that is generated by

V [ Y

(1)

i

[ Y

(2)

i

. We ontinue in the same way as above (areas 5; 6), et. The

onstrution determines for i = 1; 2 an asending tower of �

i

-subalgebras

B

i

= B

(0)

i

� B

(1)

i

� B

(2)

i

� : : :

of B

1

i

. For simpliity we assume that the onstrution eventually overs eah

atom of both sides, hene we have B

1

i

=

S

1

k=0

B

(k)

i

. Sine the limit bijetion

an be read in two diretions we now have two inverse bijetions

h

1�2

: B

1

1

! B

1

2

and h

2�1

: B

1

2

! B

1

1

:

As in the proof of Lemma 1, these bijetions an be used to arry the�

i

-struture

of B

1

i

to B

1

j

(where fi; jg = f1; 2g). Let f be an n-ary funtion symbol of �

i

and b

1

; : : : ; b

n

2 B

1

j

. We de�ne

f

B

1

j

(b

1

; : : : ; b

n

) := h

i�j

(f

B

1

i

(h

j�i

(b

1

); : : : ; h

j�i

(b

n

))):

With this de�nition, the mappings h

1�2

and h

2�1

are inverse isomorphisms

between the (�

1

[ �

2

)-algebras obtained from B

1

1

and B

1

2

by means of the

above signature expansion. For this reason, it is irrelevant whih of the two

algebras we take as the ombined algebra. We take, say, the (�

1

[ �

2

)-algebra

obtained from B

1

1

, and denote it by B

1

� B

2

.

Reall that B

i

and B

1

i

are �

i

-isomorphi algebras sine both are free over a

ountably in�nite set of generators for the lass of all models of E

i

. In addition,

the onstrution makes sure that B

1

� B

2

is �

i

-isomorphi to B

1

i

(i = 1; 2),

whih yields the following lemma:



Lemma 2. B

1

� B

2

is a fusion of B

1

and B

2

.

More interestingly, the following theorem (whose proof an be found in [7℄) shows

that we have indeed found the desired desription of T (�

1

[�

2

; V )==

E

1

[E

2

as a

fusion of the omponent algebras B

1

= T (�

1

; V )==

E

1

and B

2

= T (�

2

; V )==

E

2

:

Theorem 11. B

1

� B

2

is (isomorphi to) the (E

1

[ E

2

)-free algebra over a

ountably in�nite set of generators.

At �rst sight, it is perhaps not easy to see the relationship between the

amalgamation onstrution and the usual desription of T (�

1

[ �

2

; V )=

E

1

[E

2

in terms of =

(E

1

[E

2

)

-equivalene lasses of terms (i.e., �nite trees). In order to

illustrate this onnetion, let us look at the simplest possible ase where we

ombine two absolutely free algebras, i.e., where E

1

and E

2

are free theories.

Let us assume that �

1

= ff; ag and �

2

= fg; bg, where f is binary, g is unary

and a; b are onstants. The following �gure depits, on the left-hand side, an

element of the ombined domain using the onventional desription as a �nite

tree. Subparts belonging to distint signatures are highlighted aordingly.

b

g
g

g

f

a

y3 y4

z1

z2

f
y1 y2

b g

b

g
g

g

f

a
g

b

f

The \leaf" elements a and b; g(b) orrespond to elements of B

1

and B

2

that are

�bered in steps 1 and 2 of the onstrution, say, with atoms z

1

and y

1

; y

2

, re-

spetively. Thus, the subtree f(b; g(b)) orresponds to the element f

B

1

1

(y

1

; y

2

)

of B

(1)

1

, and g(g(a)) to the element g

B

1

2

(g

B

1

2

(z

1

)) of B

(1)

2

. These elements are

�bered with new atoms (say z

2

and y

3

) in the steps 2 and 3. The subtree

g(f(b; g(b))) orresponds to an element of B

(2)

2

, whih is �bered by a new atom

(say y

4

) in step 6. Finally, the omplete tree f(g(g(a)); g(f(b; g(b)))) orresponds

to an element of B

(3)

1

. On the right-hand side of the �gure, we have represented

all elements of the fusion that are involved in the representation of the omplete

tree and made the �bering bijetions expliit using arrows. Due to the indutive

form of the onstrution, the elements of the fusion an be onsidered as gener-

alized \�nite trees" where nodes represent elements of the two omponents, and

links represent ordered pairs of the �bering funtion.

If E

1

and E

2

are more interesting equational theories, the relationship be-

tween a given mixed term and the orresponding element of B

1

� B

2

may be

less obvious. For example, if E

2

ontains the ollapse axiom g(x) = x, then



g(g(a)) is equivalent to a, and thus the orresponding element belongs to B

1

,

and not to B

(1)

2

. A similar phenomenon ours in the presene of non-regular

axioms. For example, if E

1

is the free theory, then f(b; g(b)) orresponds to an

element of B

(1)

1

. However, if E

1

ontains the (non-regular) axiom f(x; y) = a,

then f(b; g(b)) is equivalent to a, and the orresponding element belongs to B

1

.

This issue is losely related to the fat that, in the proof of ompleteness of

Proposition 3, we needed a normalized substitution. Given a mixed term that

is normalized by the (possibly in�nite) anonial rewrite system R, the simple

syntati orrespondene between subtrees of this term and elements of B

1

�B

2

holds also for theories that are not regular and ollapse-free.

In the next subsetion, we will use the new desription of the ombined

algebra T (�

1

[ �

2

; V )==

E

1

[E

2

as a fusion B

1

� B

2

to show orretness of the

ombination algorithm in its logial reformulation.

5.3 Corretness of the Combination Algorithm

First, we show soundness of the Combination Algorithm (logial formulation).

In the following, boldfae letters like u;v and b;d (possibly with subsripts)

will respetively denote �nite sequenes of variables and algebra elements. An

expression like b 2 B expresses that b is a sequene of elements of B, whih

denotes the arrier set of the algebra B. We denote by h(b) the result of applying

the homomorphism h to the sequene b, i.e., the sequene onsisting of the

omponents h(b) for all omponents b of b.

Lemma 3. Let 9u:  be an input sentene of the Combination Algorithm. Then

B

1

� B

2

j= 9u:  if B

1

j= � and B

2

j= � for some output pair (�; �).

Proof. Sine B

1

and B

1

1

are isomorphi �

i

-algebras, we know that B

1

1

j= �.

Aordingly, we also have B

1

2

j= �. More preisely, this means

(�) B

1

1

j= 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 

0

1

(u

1

;v

1

; : : : ;u

k

;v

k

);

(��) B

1

2

j= 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 

0

2

(u

1

;v

1

; : : : ;u

k

;v

k

):

Beause of the existential quanti�ation over u

1

in (��), there exists a sequene

b

1

2 B

1

2

suh that

(� � �) B

1

2

j= 8v

1

: � � � 9u

k

:8v

k

: 

0

2

(b

1

;v

1

; : : : ;u

k

;v

k

):

We onsider a

1

:= h

2�1

(b

1

). Beause of the universal quanti�ation over u

1

in

(�) we have

B

1

1

j= 9v

1

: � � � 8u

k

:9v

k

: 

0

1

(a

1

;v

1

; : : : ;u

k

;v

k

):

Beause of the existential quanti�ation over v

1

in this formula there exists a

sequene 

1

2 B

1

1

suh that

B

1

1

j= 8u

2

:9v

2

: � � � 8u

k

:9v

k

: 

0

1

(a

1

; 

1

;u

2

;v

2

; : : : ;u

k

;v

k

):



We onsider d

1

:= h

1�2

(

1

). Beause of the universal quanti�ation over v

1

in

(� � �) we have

B

1

2

j= 9u

2

:8v

2

: � � � 9u

k

:8v

k

: 

0

2

(b

1

;d

1

;u

2

;v

2

; : : : ;u

k

;v

k

):

Iterating this argument, we thus obtain

B

1

1

j= 

0

1

(a

1

; 

1

; : : : ;a

k

; 

k

);

B

1

2

j= 

0

2

(b

1

;d

1

; : : : ; b

k

;d

k

);

where a

i

= h

2�1

(b

i

) and d

i

= h

1�2

(

i

) (for 1 � i � k). Sine h

1�2

and h

2�1

are

inverse (�

1

[�

2

)-isomorphisms we also know that

B

1

1

j= 

0

2

(a

1

; 

1

; : : : ;a

k

; 

k

):

It follows that

B

1

� B

2

j= 

0

1

(a

1

; 

1

; : : : ;a

k

; 

k

) ^ 

0

2

(a

1

; 

1

; : : : ;a

k

; 

k

):

Obviously, this implies that B

1

�B

2

j= 9v: (

0

1

^ 

0

2

), i.e., the sentenes obtained

after Step 1 of the algorithm holds in B

1

�B

2

. It is easy to see that this implies

that B

1

� B

2

j= 9u: .

Before we an show ompleteness of the deomposition algorithm, we need

one more prerequisite. The following lemma haraterizes validity of positive

sentenes in free algebras in terms of satisfying assignments. The proof of this

lemma, whih uses the well-known fat that validity of positive formulae is pre-

served under surjetive homomorphisms, is not diÆult and an be found in [7℄

for the more general ase of quasi-free strutures.

Lemma 4. Let A = T (�;V )==

E

be the E-free �-algebra over the ountably

in�nite set of generators V , and let

 = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: '(u

1

;v

1

; : : : ;u

k

;v

k

)

be a positive �-sentene. Then the following onditions are equivalent:

1. A j= 8u

1

:9v

1

: � � � 8u

k

:9v

k

: '(u

1

;v

1

; : : : ;u

k

;v

k

).

2. There exist tuples x

1

2 V ; e

1

2 A; : : : ;x

k

2 V ; e

k

2 A and �nite subsets

Z

1

; : : : ; Z

k

of V suh that

(a) A j= '(x

1

; e

1

; : : : ;x

k

; e

k

),

(b) all generators ourring in the tuples x

1

; : : : ;x

k

are distint,

() for all j; 1 � j � k, the omponents of e

j

are generated by Z

j

, i.e., they

belong to T (�;Z

j

)==

E

(d) for all j; 1 < j � k, no omponent of x

j

ours in Z

1

[ : : : [ Z

j�1

.

Using this lemma, we an now prove ompleteness of the Combination Algorithm

(logial reformulation).



Lemma 5. Let 9u:  be an input sentene of the Combination Algorithm. If

B

1

�B

2

j= 9u:  then there exists an output pair with omponents � and � suh

that B

1

j= � and B

2

j= �.

Proof. Assume that B

1

1

' B

1

� B

2

j= 9u

0

: 

0

.

12

Obviously, this implies that

B

1

1

j= 9v: (

1

(v) ^ 

2

(v)), i.e., B

1

1

satis�es the sentene that is obtained after

Step 2 of the Combination Algorithm. Thus there exists an assignment � : V !

B

1

1

suh that B

1

1

j= 

1

(�(v)) ^ 

2

(�(v)).

In Step 3 of the deomposition algorithm we identify two variables u and u

0

of v if, and only if, �(u) = �(u

0

). With this hoie, the assignment � satis�es the

formula obtained after the identi�ation step, i.e.,

B

1

1

j= 

0

1

(�(w)) ^ 

0

2

(�(w));

and all omponents of �(w) are distint.

In Step 4, a variable w in w is labeled with 2 if �(w) 2 Y

1

, and with 1

otherwise. In order to hoose the linear ordering on the variables, we partition

the range B

1

1

of � as follows:

B

(0)

1

; Y

(1)

1

; B

(1)

1

n (B

(0)

1

[ Y

(1)

1

); Y

(2)

1

; B

(2)

1

n (B

(0)

1

[ Y

(2)

1

);

Y

(3)

1

; B

(3)

1

n (B

(2)

1

[ Y

3

); : : :

In Fig. 3 these subsets orrespond to the areas (0 and 1), 2, 3, 4, 5, 6; : : : of the

left-hand side. Now, let u

1

;v

1

; : : : ;u

k

;v

k

be a re-ordering of the tuple w suh

that the following holds:

1. The tuple u

1

ontains exatly the variables whose �-images are in B

(0)

1

.

2. For all i; 1 � i � k, the tuple v

i

ontains exatly the variables whose �-

images are in Y

(i)

1

.

3. For all i; 1 < i � k, the tuple u

i

ontains exatly the variables whose �-

images are in B

(i�1)

1

n (B

(i�2)

1

[ Y

(i�1)

1

).

Obviously, this implies that the variables in the tuples v

i

have label 2, whereas

the variables in the tuples u

i

have label 1. Note that some of these tuples may be

of dimension 0. This re-ordering of w determines the linear ordering we hoose

in Step 4. Let

� = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 

0

1

and � = 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 

0

2

be the output pair that is obtained by these hoies. Let x

i

:= �(w

i

) and e

i

:=

�(v

i

). For i = 1; : : : ; k, let Z

i

denote a �nite set of variables in B

(i�1)

1

\ (V [Y

1

)

that generates all elements in e

i

. We laim that the sequene x

1

; e

1

; : : : ;x

k

; e

k

and the sets Z

1

; : : : ; Z

k

satisfy Condition 2 of Lemma 4 for ' = 

0

1

and the

struture B

1

1

= T (�

1

; V [ Y

1

)==E

1

.

12

Here and in the sequel, B

1

1

is sometimes treated as a (�

1

[ �

2

)-algebra, using the

signature expansion desribed in the onstrution of B

1

� B

2

.



Part (a) of this ondition is satis�ed sine B

1

1

j= 

0

1

(�(w)), and thus

B

1

1

j= 

0

1

(x

1

; e

1

; : : : ;x

k

; e

k

):

Part (b) of the ondition is satis�ed sine the �-images of all variables in w

are distint aording to our hoie in the variable identi�ation step. Part () is

satis�ed due to our hoie of the sets Z

j

. Part (d) is satis�ed sine the omponents

of x

j

belong to Y

(j)

1

and Y

(j)

1

\ (Z

1

[ : : :[Z

j�1

) = ;, the last equality following

from the fat that Y

(j)

1

and

S

j�1

i=0

Y

(i)

1

are disjoint by de�nition.

Thus, we an apply Lemma 4, whih yields B

1

1

j= �. Sine B

1

1

and B

1

are

�

1

-isomorphi we have B

1

j= �.

Using the fat the h

1�2

: B

1

1

! B

1

2

is a (�

1

[ �

2

)-isomorphism, B

2

j= �.

an be shown similarly.

6 Generalizations

The ombination method for equational uni�ation algorithms that we have

desribed in the previous two setions an be generalized along several orthogonal

dimensions. Three suh extensions will be desribed in this setion. The �rst

generalization onerns the syntati form of input problems: we study the e�et

of adding negation to the mixed input sentenes. Afterwards we introdue a lass

of strutures that properly extends the lass of free algebras, and show how to

lift our ombination results to this more general lass of strutures. In the third

subsetion we sketh a variant of the amalgamation onstrution introdued in

Subsetion 5.2, whih leads to a di�erent ombined solution struture and a

ombination algorithm with less nondeterminism.

6.1 Adding negation to uni�ation problems

Compared to the Nelson-Oppen approah, the major limitation of the ombi-

nation results presented in the previous two setions is that they are restrited

to positive sentenes, i.e., negated equations, so-alled disequations , are not al-

lowed. We shall now onsider the ombination of uni�ation onstraints with

negation. Sine the onstraint solvers of onstraint programming languages of-

ten have to hek entailment of onstraints, and sine entailment uses an impliit

form of negation, this extension is of great pratial relevane.

As before, let E

1

and E

2

denote equational theories over disjoint signatures

�

1

and �

2

. When treating sentenes with negation, we must �rst deide whih

form of semantis we want to use: the equivalene between validity in all models

of E

1

[ E

2

on the one hand, and validity in the (E

1

[ E

2

)-free algebra over a

ountably in�nite set of generators V on the other hand does no longer hold if

we do not restrit ourselves to positive sentenes. We shall look at two alter-

native semantis usually onsidered in the literature. First, we onsider validity

of existential (�

1

[ �

2

)-sentenes in the free algebra T (�

1

[ �

2

; V )==

E

1

[E

2

.

Later, we onsider validity in the initial algebra T (�

1

[ �

2

; ;)==

E

1

[E

2

. In the



�rst ase, we talk about solvability and in the seond about ground solvability

of the onstraints.

As long as we want to deide validity of positive existential sentenes, both

semantis lead to the same result as long as we assume that the joint signature

ontains at least one onstant. This follows diretly from the fat that validity

of positive existential sentenes is preserved under homomorphisms. For on-

straints with negation, the two semantis de�nitely lead to distint notions of

validity. The latter semantis is often preferred in the literature on onstraints

with negation (see, e.g., [23℄), but the �rst semantis an also be found [17℄.

Sine a sentene holds in a given algebra A if, and only if, its negation

does not hold in A, a deision proedure for validity of existential sentenes

in A immediately gives a deision proedure for validity of universal sentenes

in A and vie versa. Hene the results of this subsetion onern the universal

fragments of the given algebras as well.

Disuni�ation over the free algebra In order to desribe the following re-

sults, some terminology is needed. Given an equational theory E with signature

�, an elementary E-disuni�ation problem is a �nite system � of equations

s =

?

t and disequations s 6=

?

t between �-terms. A substitution � solves � i�

�(s) =

E

�(t) for eah equation s =

?

t in � and �(s) 6=

E

�(t) for eah disequa-

tions s 6=

?

t in � . E-disuni�ation problems with linear onstant restritions,

and solutions for E-disuni�ation problems with linear onstant restritions are

de�ned as in the ase of E-uni�ation problems.

Theorem 12. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint sig-

natures, let E := E

1

[ : : : [ E

n

denote their union. Then solvability of E-

disuni�ation problems is deidable provided that solvability of E

i

-disuni�ation

problems with linear onstant restritions is deidable for i = 1; : : : n.

Sine existential quanti�ation distributes over disjuntion, the theorem

shows that validity of existential sentenes in T (�

1

[: : :[�

n

; V )==

E

is deidable

if solvability of E

i

-disuni�ation problems with linear onstant restritions is de-

idable for i = 1; : : : n. Unfortunately, we do not have a logial haraterization

of E

i

-disuni�ation problems with linear onstant restritions.

A proof of this theorem an be found in [5℄. It is based on a ombination algo-

rithm that is a variant of the Combination Algorithm for ombined E-uni�ation

problems. In priniple, the only di�erene is that, for eah pair (x; y) of variables

in the input problem that is not identi�ed at the variable identi�ation step, we

add a disequation x 6= y to both output systems. For details we refer to [5℄.

Disuni�ation over the initial algebra A solution � of the E-disuni�ation

problem � is a ground solution i� �(x) is a ground term (i.e., does not ontain

variables) for all variables x ourring in � .

In view of Theorem 12, an obvious onjeture ould be that ground solvability

of a disuni�ation problem � in the ombined theory E an be deided by



deomposing � into a �nite set of pairs of E

i

-disuni�ation problems with linear

onstant restritions, and then asking for ground solvability of the subproblems.

However, in [5℄ an example is given that shows that this method is only sound,

but not omplete (see Example 4.2, p. 243). The proper adaption of Theorem 13

to the ase of ground solvability needs another notation: a solution � of an E-

disuni�ation problem with linear onstant restritions, (�;X;C;<), is alled

restritive if, under �, all variables x 2 X are mapped to terms �(x) that are

not E-equivalent to a variable.

Theorem 13. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint sig-

natures �

1

; : : : ; �

n

, and let E := E

1

[ : : : [ E

n

denote the ombined theory.

Assume that the initial algebras T (�

i

; ;)==

E

i

are in�nite for i = 1; : : : ; n. Then

ground solvability of E-disuni�ation problems is deidable provided that restri-

tive solvability of E

i

-disuni�ation problems with linear onstant restritions is

deidable for i = 1; : : : n.

A proof of this theorem, as well as of some variants that relax the ondition that

all the initial algebras must be in�nite, an be found in [5℄. These tehniques

yield the following result.

Corollary 1. Solvability of disuni�ation problems is deidable for every equa-

tional theory that is a disjoint ombination of �nitely many theories E

f

express-

ing assoiativity, assoiativity-ommutativity, or assoiativity-ommutativity-

idempotene of some binary funtion symbol, together with a free theory F . If

the free theory F ontains at least one onstants and one funtion symbol of

arity n � 1, then ground solvability of disuni�ation problems over the ombined

theory is deidable as well.

6.2 More general solution strutures

Exept for the initial desription of the Nelson-Oppen proedure, our disussion

has been restrited to onstraints that are omposed of equations and disequa-

tions, and the only solution domains that we onsidered so far were free algebras.

Obviously, a muh broader variety of onstraints and solution domains are rele-

vant for the general �eld of onstraint programming. In this subsetion we �rst

introdue a lass of strutures that properly extends the lass of free algebras.

The lass ontains many non-free algebras and relational strutures that are of

interest for onstraint solving. Then we disuss the problem of ombining so-

lution domains within the given lass. Finally, we show how the ombination

results that we obtained for free algebras an be lifted to this more general

situation.

Quasi-free strutures The motivation for introduing the lass of quasi-free

strutures is the observation that most of the non-numerial and non-�nite solu-

tion domains that are used in di�erent areas of onstraint programming an be



treated within a ommon algebrai bakground when we generalize the onept

of a free algebra appropriately.

In a �rst step, one an go from free algebras to free strutures where, in addi-

tion to funtion symbols, the signature may also ontain prediate symbols. Free

strutures are de�ned Mal'ev [47℄ analogously to free algebras: a �-struture

A is alled free over X in the lass of �-strutures K if A 2 K is generated by

X , and if every mapping from X into the domain of a struture B 2 K an be

extended to a �-homomorphism of A into B. Mal'ev shows that free strutures

have properties that are very similar to the properties of free algebras. This fat

was used in [4℄ to extend the ombination results for uni�ation onstraints to

more general onstraints over free solution strutures.

The following lemma (see [7℄, Theorem 3.4) yields an internal harateriza-

tion of strutures that are free in some lass of over a ountably in�nite set

of generators. It will be the basis for our generalization from free strutures to

quasi-free strutures.

Lemma 6. A �-struture A is free (in some lass of �-strutures) over X � A

i�

1. A is generated by X,

2. for every �nite subset X

0

of X, every mapping from X

0

to A an be extended

to a surjetive endomorphism of A.

We will now generalize the �rst ondition in order to arrive at the onept of

a quasi-free struture. Sine some of the following notions are quite abstrat,

the algebra of rational trees will be used to exemplify de�nitions. In the sequel,

we onsider a �xed �-struture A with domain A. With End

�

A

we denote the

monoid of �-endomorphisms of A. It should be stressed that in the sequel the

signature � is arbitrary in the sense that it may ontain prediate symbols as

well as funtion symbols.

De�nition 3. Let A

0

; A

1

be subsets of the �-struture A. Then A

0

stabilizes

A

1

i� all elements m

1

and m

2

of End

�

A

that oinide on A

0

also oinide on

A

1

. For A

0

� A the stable hull of A

0

is the set

SH

A

(A

0

) := fa 2 A j A

0

stabilizes fagg:

The stable hull of a set A

0

has properties that are similar to those of the

subalgebra generated by A

0

: SH

A

(A

0

) is always a �-substruture of A, and

A

0

� SH

A

(A

0

). In general, however, the stable hull an be larger than the

generated substruture. For example, if A := R(�;X) denotes the algebra of

rational trees over signature � and with variables in X , and if Y � X is a

subset of the set of variables X , then SH

A

(Y ) onsists of all rational trees with

variables in Y , while Y generates all �nite trees with variables in Y only.

De�nition 4. The set X � A is an atom set for A if every mapping X ! A

an be extended to an endomorphism of A.



For example, if A := R(�;X) is the algebra of rational trees with variables in

X , then X is an atom set for A.

De�nition 5. A ountably in�nite �-struture A is quasi-free i� A has an

in�nite atom set X where every a 2 A is stabilized by a �nite subset of X.

The de�nition generalizes the haraterization of free algebras given in Lemma 6.

The ountably in�nite set of generators is replaed by the atom set, but we re-

tain some properties of generators. In the free ase, every element of the algebra

is generated by a �nite set of generators, whereas in the quasi-free ase it is sta-

bilized by a �nite set of atoms. It an be shown easily that the seond ondition

of Lemma 6 holds in the quasi-free ase as well.

Examples 14 Eah free algebra and eah free struture is quasi-free. Examples

of non-free quasi-free strutures are rational tree algebras; nested, hereditarily

�nite non-wellfounded sets, multisets, and lists; as well as various types of feature

strutures. In eah ase we have to assume the presene of a ountably in�nite set

of atoms (variables, urelements, et.). For the exat de�nitions of these example

strutures we refer to [7℄.

Free amalgamation of quasi-free strutures When ombining onstraint

systems for quasi-free strutures, the question arises how to de�ne the ombined

solution struture. It turns out that the amalgamation onstrution that we

have desribed in Subsetion 5.2 an be generalized from free algebras to quasi-

free strutures. The result of this onstrution is a quasi-free struture over the

ombined signature. In the modi�ed onstrution, the atom sets of the two quasi-

free omponent strutures play the rôle of the variable sets. The intermediate

substrutures that our during the �bering proess are now de�ned as the stable

hulls of the atom sets onsidered at the steps of the onstrution.

In the ase of free algebras, the use of the amalgamation onstrution was

justi�ed by the fat that it yielded exatly the ombined algebra we were look-

ing for, i.e., the free algebra for the ombined theory. In the ase of quasi-free

strutures, we do not have an equational theory de�ning the omponent stru-

tures. Thus, the question arises whether the amalgamation onstrution really

yields a \sensible" ombined solution struture. This question has been answered

aÆrmatively in [7℄.

In fat, the resulting ombined struture has a unique and privileged sta-

tus. In [7℄ we have introdued the notion of an admissible ombination of two

strutures. The free amalgamated produt A

1

�A

2

of two strutures is the most

general admissible ombination of A

1

and A

2

in the sense that every other ad-

missible ombination C is a homomorphi image of A

1

�A

2

(see [7℄ for an exat

de�nition). It an be shown that the free amalgamated produt of two quasi-free

strutures over disjoint signatures always exists sine it oinides with the stru-

ture produed by our amalgamation onstrution (i.e., the extension to quasi-free

strutures of the onstrution presented above for the ase of free algebras).



Solving mixed onstraints in the free amalgamated produt When using

the free amalgamated produt of two given quasi-free strutures A

1

and A

2

as the solution domain for mixed onstraints, a simple adaption of the logial

reformulation of the Combination Algorithm an be used to redue solvability

of positive existential formulae in A

1

�A

2

to solvability of positive sentenes in

the omponent strutures A

1

and A

2

. The only di�erene omes from the fat

that we now have a new type of atomi formulae in the input problems, namely,

atomi formulae that are built with prediate symbols in the signature. It is,

however, straightforward to show that, given an existential sentene 9u:  over

the mixed signature �

1

[�

2

, it is possible to ompute an equivalent existential

sentene of the form 9v: (

1

^ 

2

) where the onjuntion of atomi formulae



i

is built using symbols from �

i

only; in fat, the variable abstration step

introdued in Setion 3 also treats non-equational atoms. The remaining steps

of the logial version of the Combination Algorithm an be used without any

hanges.

The orretness of the modi�ed Combination Algorithm, whih is proved in

[7℄, yields the following result.

Theorem 15. Let A

1

; : : : ;A

n

be quasi-free strutures over disjoint signatures

�

1

; : : : ; �

n

, and let � denote the union of these signatures. Then validity of

positive existential �-sentenes in the free amalgamated produt A

1

�� � ��A

n

is

deidable provided that validity of positive �

i

-sentenes in the omponent stru-

tures is deidable.

As in the ase of free algebras, it is possible to lift this result to general positive

input sentenes.

Theorem 16. Let A

1

; : : : ;A

n

be quasi-free strutures over disjoint signatures

�

1

; : : : ; �

n

, and let � denote the union of these signatures. Then validity of

positive �-sentenes in the free amalgamated produt A

1

� � � � �A

n

is deidable

provided that validity of positive �

i

-sentenes in the omponent strutures is

deidable.

For the following quasi-free strutures, the positive theories turn out to be de-

idable (f. Ex. 14): non-ground rational feature strutures with arity; �nite or

rational tree algebras; nested, hereditarily �nite wellfounded or non-wellfounded

sets; and nested, hereditarily �nite wellfounded or non-wellfounded lists. Hene,

provided that the signatures are disjoint, the free amalgamated produt of any

�nite number of these strutures has a deidable positive theory.

It is also possible to extend the results ombination results for disuni�ation

to the ase of quasi-free strutures. This yields deidability results for the exis-

tential (or universal) theory of the free amalgamated produt of a great variety

of strutures, suh as feature strutures, nested lists, sets and multisets, rational

tree algebras and others. We refer to Kepser [36, 35℄ for details.

6.3 Other amalgamation tehniques

In Shulz and Kepser [39℄ a seond systemati way of ombining onstraint sys-

tems over quasi-free strutures, alled rational amalgamation, has been intro-



dued. Like the free amalgamated produt, rational amalgamation yields a om-

bined struture with \mixed" elements that inter-weave a �nite number of \pure"

elements of the two omponents in a partiular way. The di�erene between both

onstrutions beomes transparent when we ignore the interior struture of these

pure subelements and onsider them as onstrution units with a �xed arity, sim-

ilar to \omplex funtion symbols." Under this perspetive, and ignoring details

that onern the ordering of the hildren of a node, mixed elements of the free

amalgamated produt an be onsidered as �nite trees, whereas mixed elements

of the rational amalgam are like rational trees.

13

Mixed element of free amalgam (1) and of rational amalgam (2).

(1) (2)

Dark (bright) ellipses represent pure
subelements of the first (second)
amalgamation component.

...

With this bakground, it should not be surprising that in praxis rational amal-

gamation appears to be the preferred ombination priniple in the literature in

situations where the two solution strutures to be ombined are themselves \ra-

tional" or \yli" domains: for example, it represents the way how rational trees

and rational lists are interwoven in the solution domain of Prolog III [22℄, and

a variant of rational amalgamation has been used to ombine feature strutures

with non-wellfounded sets in a system introdued by Rounds [59℄.

Rational amalgamation an be used to ombine so-alled non-ollapsing

quasi-free strutures over disjoint signatures.

De�nition 6. An quasi-free struture A with atom set X is non-ollapsing if

every endomorphism of A maps non-atoms to non-atoms (i.e., m(a) 2 A n X

for all a 2 A nX and all endomorphisms m of A).

For example, quotient term algebras for ollapse-free equational theories, rational

tree algebras, feature strutures, feature strutures with arity, the domains with

nested, �nite or rational lists, and the domains with nested, �nite or rational

multi-sets are always non-ollapsing.

The amalgamation onstrution for rational amalgamation is rather tehni-

al and thus beyond the sope of this paper; we refer to [39℄ for details. Just as

in the ase of free amalgamation, onstraint solvers for two omponent stru-

tures an be ombined to a onstraint solver for their rational amalgam. To be

13

A (possibly in�nite) tree is rational if it is �nitely branhing and has only a �nite

number of distint subtrees; see [21, 45, 24℄.



more preise, validity of positive existential sentenes in the rational amalgam

an be redued to solvability of onjuntions of atomi onstraints with so-alled

atom/non-atom delarations in the omponent strutures (see [39℄ for a formal

de�nition of this notion). From the algorithmi point of view, rational amalga-

mation appears to be interesting sine the ombination tehnique for rational

amalgamation avoids one soure of nondeterminism that is needed in the orre-

sponding sheme for free amalgamation: the hoie of a linear ordering, whih

is indispensable for free amalgamation, must be omitted in the ase of rational

amalgamation.

One interesting onnetion between free and rational amalgamation is the

observation that the free amalgamated produt is always a substruture of the

rational amalgamated produt (see [35℄).

7 Optimization and omplexity issues

Until now, we have desribed the ombination method for uni�ation algorithms

from a theoretial point of view, that is, our main emphasis was on learness

of presentation and on ease of proving orretness. It should be lear, however,

that a na��ve implementation of the highly nondeterministi Combination Algo-

rithm annot be used in pratie. It is easy to see that the nondeterminism of

the proedure indeed represents a serious problem: the number of possible par-

titions of a set of n variables is known as the n-th Bell number, whih grows

faster than 2

n

. The hoie of a labeling funtion and a linear ordering leads to

another exponential number of subases that must be investigated. Hene, signif-

iant optimizations are neessary before one an hope for a ombined uni�ation

algorithm that an be used in a realisti appliation.

In the following, we show how the algorithm that ombines deision proe-

dures an be optimized. (An optimized version of the ombination method for

algorithms that ompute omplete sets of uni�ers an be found in [15℄.) In gen-

eral, however, there is an inherent nondeterminism in the problem of ombining

uni�ation algorithms, whih annot be avoided. We will ome bak to this point

at the end of this setion.

Some simple optimizations of the Combination Algorithm are quite straight-

forward. It is possible to restrit all nondeterministi hoies to \shared" vari-

ables, that is, variables that our in at least two subproblems of the deomposed

problem. Another simple optimization relies on the observation that di�erent lin-

ear orders need not lead to di�erent onstant restritions. For example, assume

that x; y are variables and ; d are (variables treated as) onstants. Then the

ordering x <  < d < y leads to the same restritions on solutions of a uni�-

ation problem as the ordering x < d <  < y (both just say that x must not

be replaed by a term ontaining  or d). This observation an easily be used to

prune the number of di�erent linear orderings that must be onsidered.

On a more sophistiated level, Kepser and Rihts [37℄ have desribed two

powerful orthogonal optimization methods. We desribe the �rst method, alled



\dedutive method," in more detail, and then briey sketh the seond one,

alled \iterative method," and the integration of both approahes.

The dedutive method tries to redue the amount of nondeterminism by

avoiding ertain branhes in the searh tree for whih one an \easily detet"

that they annot lead to solutions. Before going into more detail, we onsider an

example that illustrates the basi idea.

Example 7. Assume that the omponent theory E

i

is ollapse-free and the de-

omposed input problem ontains an equation x =

?

f(: : :) where f 2 �

i

. Then

x must reeive label i sine x 6=

E

i

�(f(: : :)) for all substitutions �, i.e., if x is

treated as a onstant in the ith subproblem, then this problem does not have

a solution. Consequently, labeling funtions Lab with Lab(x) 6= i need not be

onsidered.

If E

i

is regular, the deomposed input problem ontains an equation x =

?

t,

and y 2 Var(t) for a variable y with Lab(x) 6= Lab(y), then there annot be a

solution � (of the subproblem in whih x is instantiated) in whih y does not

our in �(x). Hene, we an deterministially hoose the order y < x between

x and y, i.e., the other alternative need not be onsidered.

In order to formalize this idea, we introdue a onstraint language that allows

us to represent suh mandatory hoies on the way to a fully spei�ed output

pair of the Combination Algorithm. A omplete set of guesses of the algorithm|

with the trivial optimizations mentioned above inluded now|an be desribed

in the form (�;Lab; <), where

{ � is a partition of the set X of shared variables of the deomposed problem

�

1

℄ : : : ℄ �

n

reahed after the �rst step,

{ Lab : X ! f1; : : : ; ng is a labeling funtion that respets equivalene lasses

of � , i.e., if x and y belong to the same lass, then Lab(x) = Lab(y), and

{ < is a strit linear ordering on the equivalene lasses. We write x < y if the

equivalene lasses [x℄ and [y℄ of x and y are in the relation [x℄ < [y℄.

In the sequel, output problems will be desribed as quadruples of the form

(�

i

; �;Lab; <). The orresponding E

i

-uni�ation with linear onstant restri-

tions, (�

0

i

; X

i

; C

i

; <), an be obtained from this quadruple as desribed in the

Combination Algorithm, i.e., �

0

i

is obtained from �

i

by replaing all shared vari-

ables by the representatives of their equivalene lasses w.r.t. � , X

i

is the union

of the set of shared variables with label i and the set of non-shared variables in

�

i

, and C

i

is the set of shared variables with a label di�erent from i. The quadru-

ple (�

i

; �;Lab; <) is said to be solvable i� the orresponding E

i

-uni�ation with

linear onstant restritions is solvable.

Constraints are of the form x = y, :(x = y), x < y, :(x < y), x : i, or :(x :

i), with the obvious meaning that x = y (:(x = y)) exludes partitions in whih

x and y belong to di�erent lasses (the same lass), x < y (:(x < y)) exludes

orderings and partitions in whih y � x (x < y), and x : i (:(x : i)) exludes

labelling funtions Lab suh that Lab(x) 6= i (Lab(x) = i). On the one hand, a

set of onstraints exludes ertain triples (�;Lab; <). On the other hand, it an



also be seen as a partial desription of a triple that satis�es these onstraints

(i.e., is not exluded by them). A set of onstraints C is alled omplete i� there

is exatly one triple (�;Lab; <) that satis�es C, and it is alled inonsistent i�

no triple satis�es C (i.e., it ontains two ontraditory onstraints).

The dedutive method assumes that eah theory E

i

is equipped with a om-

ponent algorithm that, given a pure E

i

-uni�ation problem �

i

together with a

set of onstraints C, dedues a (possibly empty) set of additional onstraints D.

This algorithm is required to be orret in the following sense: if (�;Lab; <) is a

triple that satis�es C and for whih (�

i

; �;Lab; <) is solvable, then (�;Lab; <)

also satis�es D.

Given a system �

1

℄� � �℄�

n

in deomposed form, the searh for an appropriate

triple (�;Lab; <) is now performed by the nondeterministi algorithm of Fig. 4.

Initialize C := ;;

Repeat

Repeat

For eah system i

(� Dedue new onstraints �)

all the omponent algorithm of theory E

i

to alulate

new onsequenes D of �

i

and C;

set the urrent set of onstraints to C := C [ D

Until C is inonsistent or no more new onstraints are omputed;

If C is onsistent and not omplete

(� Selet next hoie �)

Selet a onstraint  suh that f;:g \ C = ;;

Non-deterministially hoose either

C := C [ fg or

C := C [ f:g

Until C is inonsistent or omplete;

Return C

Fig. 4. The dedutive method.

Proposition 5. Let � := �

1

℄ � � � ℄ �

n

be an (elementary) (E

1

[ � � � [ E

n

)-

uni�ation problem in deomposed form where the equational theories E

i

have

pairwise disjoint signatures. Then the following statements are equivalent:

1. � is solvable, i.e., there exists an (E

1

[ � � � [E

n

)-uni�er of � .

2. One of the omplete onstraint sets generated by the nondeterministi algo-

rithm of Fig. 4 desribes a triple (�;Lab; <) suh that, for all i = 1; : : : ; n,

(�

i

; �;Lab; <) is solvable.

One should note that the trivial omponent algorithm that always returns the

empty set of onstraints is orret. If all omponent algorithms are trivial, then

the algorithm of Fig. 4 simply generates all possible triples (�;Lab; <).



We have already illustrated by an example that the fat that a theory is reg-

ular and/or ollapse-free an be used to derive new onstraints. For a free theory

E

i

, the most general uni�er of �

i

(whih an be omputed in linear time) an be

used to read o� new onstraints. The following example shows how information

provided by one omponent algorithm an help another omponent algorithm

in deriving additional onstraints. This explains why the step of deduing new

onstraints must be iterated.

Example 8. Assume that we are given the mixed input problem ff(g(x

4

); x

2

) =

?

f(g(y); x

4

); x

4

=

?

f(a; a)g, where f; a belong to the regular, ollapse-free theory

E

1

(e.g., AC

f

) and g belongs to the free theory E

2

. By deomposition, the E

1

-

subsystem ff(x

1

; x

2

) =

?

f(x

3

; x

4

); x

4

=

?

f(a; a)g and the E

2

-subsystem fx

1

=

?

g(x

4

); x

3

=

?

g(y)g are reated. Sine E

1

is ollapse-free, the equation x

4

=

?

f(a; a) an be used by the �rst omponent algorithm to dedue the onstraint x

4

:

1. From the most general uni�er fx

1

7! g(x

4

); x

3

7! g(y)g of the E

2

-subsystem,

the seond omponent algorithm an derive the onstraints x

1

: 2; x

3

: 2 and

x

4

< x

1

. Given the regularity of E

1

, the �rst omponent algorithm an now

derive x

1

= x

3

. In fat, x

1

(whih must be treated as a onstant in the E

1

-

subsystem) ours on the left-hand side of f(x

1

; x

2

) =

?

f(x

3

; x

4

), and thus must

our on the (instantiated) right-hand side f(�(x

3

); �(x

4

)) for any solution � of

the E

1

-subsystem. Sine we already have the onstraints x

4

: 1, x

4

< x

1

, and

x

3

: 2, we know that �(x

3

) = x

3

and x

1

annot our in �(x

4

). Consequently,

x

1

an only our in f(�(x

3

); �(x

4

)) = f(x

3

; �(x

4

)) if x

1

and x

3

are identi�ed.

Obviously, the quality of the omponent algorithms used in the dedutive method

deides the amount of optimization ahieved. The goal is to dedue as muh in-

formation as is possible with a reasonable e�ort. Detailed desriptions of ompo-

nent algorithms for free theories, the theory AC of an assoiative-ommutative

funtion symbol, and the theory ACI of an assoiative-ommutative-idempotent

funtion symbol an be found in [56℄.

While the dedutive method helps to reah ertain deisions deterministially,

the \iterative method" introdued in [37, 35℄|whih is relevant if n � 3 theories

are ombined|determines in whih order the nondeterministi deisions should

best be made. Basially, the output systems are solved iteratively, one system at

a time. All deisions in nondeterministi steps are made loally, for the urrent

system i only. This means, for example, that we only onsider variables ourring

in the system �

i

, and for suh a variable we just deide if it reeives label i or not.

In the latter ase, the exat label j 6= i is not spei�ed. One all deisions relevant

to system �

i

have been made, it is immediately tested for solvability. If �

i

turns

out to be unsolvable, we thus have avoided �nding this out as many times as

there are possible hoies for the onstraints not relevant to the subsystem �

i

.

An integration of the dedutive and the iterative method is ahieved by

plugging the iterative seletion strategy into the dedutive algorithm. To be

more preise, whenever the dedutive algorithm (see Fig. 4) needs to make a

nondeterministi hoie (sine no more onstraints an be dedued), the seletion

strategy of the iterative method deides for whih onstraint this hoie is made.

This synthesis of both optimization tehniques has been implemented, and run



time tests show that the optimized ombination method obtained this way leads

to ombined deision proedures that have a quite reasonable pratial time

omplexity [37, 38℄.

Fundamental limitations for optimization Complexity theoretial onsid-

erations in [62℄ show that, in many ases, there are lear limitations for op-

timizing the Combination Algorithm. We lose this setion with some results

onerning the situation where an equational theory E is ombined with a free

theory in order to obtain an algorithm for general E-uni�ation.

De�nition 7. A polynomial-time optimization of the Combination Algorithm

for general E-uni�ation is an algorithm that aepts as input an arbitrary gen-

eral E-uni�ation problem � and omputes in polynomial time a �nite set M

of output pairs ((�

1

; �;X

1

; X

2

; <); (�

2

; �;X

2

; X

1

; <)) of an E-uni�ation prob-

lems with linear onstant restritions and a free uni�ation problems with linear

onstant restritions suh that

{ eah output pair in M is also a possible output pair of the original Combi-

nation Algorithm, and

{ � is solvable i�, for some output pair in M , both omponents are solvable.

On the one hand, Shulz [62℄ haraterizes a large lass of equational theories

E where a polynomial optimization of the Combination Algorithm for general

E-uni�ation is impossible unless P = NP. In order to formulate one result

that follows from this haraterization, we need the following notation: a binary

funtion symbol \f" is alled a ommutative (resp. assoiative) funtion symbol

of the equational theory E if f belongs to the signature of E and f(x; y) =

E

f(y; x) (resp. f(x; f(y; z)) =

E

f(f(x; y); z)).

Theorem 17. Let E be an equational theory that ontains an assoiative or

ommutative funtion symbol. If E is regular, then there exists no polynomial-

time optimization of the Combination Algorithm for general E-uni�ation, unless

P = NP.

In [63℄ it is shown that suh impossibility results for polynomial optimization

of ombination algorithms are by no means spei� to the problem of ombining

E-uni�ation algorithms. The paper presents a general framework that hara-

terizes situations in whih ombination algorithms for deision proedures annot

be polynomially optimized. In partiular, various ombinations of �rst-order the-

ories are haraterized where the non-deterministi variant of the Nelson-Oppen

proedure does not have a polynomial optimization.

On the other hand, Shulz [62℄ also introdues a lass of equational theo-

ries for whih a polynomial-time optimization of the Combination Algorithm is

always possible. Basially, these are regular and ollapse-free theories of uni�-

ation type unitary (i.e., all solvable uni�ation problems have a most general

uni�er) suh that \enough" information about the most general uni�er an be

omputed in polynomial time.



8 Open problems

The results desribed in this paper show that the problem of ombining on-

straint solvers over disjoint signatures is well-investigated, at least if one onsid-

ers as onstraint solvers proedures that deide satis�ability of onstraints.

As mentioned in Setion 2.1, it is often desirable to have onstraint solvers

that are able to ompute solved forms in an inremental way. To the best of

our knowledge, there are no general results on how to ombine suh inremental

onstraint solvers. A general solution to this problem depends on a general and

abstrat de�nition of the onept of a solved form that overs most of the relevant

instanes.

Another hallenging �eld for future researh is the problem of ombining

onstraint solvers over non-disjoint signatures. Sine non-disjoint ombinations

may lead to undeidability, the main point is to �nd appropriate restritions

on the onstraint languages to be ombined. For the kind of ombination prob-

lems onsidered by Nelson-Oppen, �rst ombination results for the non-disjoint

ase have been obtained by Ch. Ringeissen and C. Tinelli [58, 71, 73℄. Similarly,

the known ombination methods for solving the word problem in the union of

equational theories have been lifted to the ase of non-disjoint signatures in [26,

10{12℄. Conerning the ombination of uni�ation algorithms for equational the-

ories over non-disjoint signatures, �rst results have been presented in [26℄. Using

the more abstrat algebrai onepts that have been developed during the last

years it should be possible to simplify and then generalize this work, whih only

addresses the ombination of algorithms for omputing omplete sets of uni�ers.
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