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1 Introdu
tion

In many areas of Logi
, Computer S
ien
e, and Arti�
ial Intelligen
e, there

is a need for spe
ialized formalisms and inferen
e me
hanisms to solve domain-

spe
i�
 tasks. For this reason, various methods and systems have been developed

that allow for an eÆ
ient and adequate treatment of su
h restri
ted problems.

In most realisti
 appli
ations, however, one is fa
ed with a 
omplex 
ombination

of di�erent problems, whi
h means that a system tailored to solving a single

problem 
an only be applied if it is possible to 
ombine it both with other

spe
ialized systems and with general purpose systems.

This general problem of 
ombining systems 
an be addressed on various 
on-


eptual levels. At one end, 
ombination of logi
al systems is studied with an

emphasis on formal properties, using tools from mathemati
s and logi
s. Exam-

ples of results obtained on this level are transfer results for modal logi
s [43,

28℄ and modularity results for term rewriting systems [74, 52℄. On the other

end of the spe
trum, the 
ombination of software tools ne
essitates 
onsidering

physi
al 
onne
tions and appropriate 
ommuni
ation languages [19, 44℄. Between

these two extremes lies the 
ombination of 
onstraint systems and the respe
tive

solvers, whi
h is the topi
 of this paper. On the one hand, de�ning a semanti
s

for the 
ombined system may depend on methods and results from formal logi


and universal algebra. On the other hand, an eÆ
ient 
ombination of the a
tual


onstraint solvers often requires the possibility of 
ommuni
ation and 
oopera-

tion between the solvers.

Sin
e there is a great variety of 
onstraint systems and of approa
hes for


ombining them, we will start with a short 
lassi�
ation of the di�erent ap-

proa
hes. Subsequently, we will des
ribe two of the most prominent 
ombination

approa
hes in this area:

{ the Nelson-Oppen s
heme [49, 54℄ for 
ombining de
ision pro
edures for the

validity of quanti�er-free formulae in �rst-order theories, whi
h was originally

motivated by program veri�
ation;

{ methods for 
ombining E-uni�
ation algorithms [60, 15, 6℄ and more gen-

eral 
onstraint solvers [7℄, whi
h are of interest in theorem proving, term

rewriting, and 
onstraint programming.



Our treatment of the Nelson-Oppen method 
an be seen as a warm-up exer
ise

for the se
ond approa
h sin
e it is simpler both w.r.t. the a
tual 
ombination

algorithm and w.r.t. the (algebrai
) tools required for proving its 
orre
tness. The

problem of 
ombining uni�
ation algorithms will be treated in more detail. First,

we will des
ribe the 
ombination algorithm as introdu
ed in [2, 6℄ and brie
y

sket
h how to prove its 
orre
tness. We will then give a logi
al reformulation

of the 
ombination algorithm, and des
ribe an algebrai
 approa
h for proving

its 
orre
tness. This approa
h has the advantage that it 
an be generalized to


onstraints more general than the equational 
onstraints of uni�
ation problems

and to solution stru
tures more general than the E-free algebras of uni�
ation

problems. Finally, we will sket
h approa
hes for optimizing the 
ombination

algorithm, and 
omment on prin
ipal limitations for optimizations.

2 Classi�
ation of 
onstraint systems and 
ombination

approa
hes

Before 
lassifying di�erent approa
hes for 
ombining 
onstraint system, we must

explain what we mean by 
onstraint systems and 
onstraint solvers. We will also


onsider two examples, whi
h already introdu
e the di�erent forms of 
onstraint

systems whose 
ombination will be 
onsidered in more detail in this paper.

2.1 Constraint systems and solvers

Informally, a 
onstraint system is given by a 
onstraint language and a \se-

manti
s" for this language. The 
onstraint language determines whi
h formal

expressions are 
onsidered to be admissible 
onstraints, and the semanti
s pro-

vides us with a notion of 
onstraint satisfa
tion: given an admissible 
onstraint,

it is uniquely determined by the semanti
s whether this 
onstraint is satis�able

or not. In general, this does not mean that this question is also e�e
tively de-


idable. In its most basi
 form, a 
onstraint solver for a given 
onstraint system

is a pro
edure that de
ides satis�ability.

The 
onstraint language To put these notions on a more formal footing, we

assume that 
onstraints are formulae of �rst-order predi
ate logi
, and that the

semanti
s is provided by the usual semanti
s of �rst-order logi
. To be more

pre
ise, we 
onsider an (at most 
ountable) signature � 
onsisting of fun
tion

symbols and predi
ate symbols, and a (
ountably in�nite) set V of (individ-

ual) variables, and build �rst-order terms, 
alled �-terms , and �rst-order for-

mulae, 
alled �-formulae, from these ingredients in the usual way. Usually, a

�-
onstraint is a �-formula '(v

1

; : : : ; v

n

) with free variables v

1

; : : : ; v

n

, and a

solution of the 
onstraint repla
es the variables su
h that the resulting expres-

sion is \true" under the given semanti
s. If we are interested only in solvability

of the 
onstraints and not in a
tually 
omputing a solution, we may also use


losed formulae (e.g., the existential 
losure of the open formula) as 
onstraints.



It should also be noted that a 
onstraint language usually does not allow for

all �-formulae, but only for a 
ertain sub
lass of formulae, to be used as 
on-

straints. Thus, a 
onstraint language is 
hara
terized by a signature � and a


lass of �-formulae, whi
h may be open or 
losed.

The semanti
s Given su
h a 
onstraint language, its semanti
s 
an be de�ned

in two di�erent ways: by a �-theory T or a �-stru
ture A. A �-theory is given

by a set T of 
losed �-formulae, and a �-stru
ture A is a �-interpretation, i.e.,

a nonempty set A, the domain of A, together with an interpretation of the n-ary

predi
ate (fun
tion) symbols as n-ary relations (fun
tions) on A.

For a given �-stru
ture A, a solution of the �-
onstraint '(v

1

; : : : ; v

n

) in

A is a mapping fv

1

7! a

1

; : : : ; v

n

7! a

n

g of the free variables of the 
onstraint

to elements of A su
h that A j= '(a

1

; : : : ; a

n

), i.e., '(v

1

; : : : ; v

n

) is true in A

under the evaluation fv

1

7! a

1

; : : : ; v

n

7! a

n

g. The 
onstraint '(v

1

; : : : ; v

n

) is

satis�able in A i� it has a solution in A. This is equivalent to saying that its

existential 
losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is valid in A.

For a given �-theory T , there are two di�erent ways of de�ning satis�ability

of 
onstraints, depending on whether we want the 
onstraints to be satis�able

(in the sense introdu
ed above) in all models or in some model of the theory

T . In the �rst 
ase, whi
h is the more usual 
ase in 
onstraint solving, the

�-
onstraint '(v

1

; : : : ; v

n

) is satis�able in (all models of) T i� its existential


losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is valid in T . The se
ond 
ase 
oin
ides with

the usual de�nition of satis�ability of (open) formulae in predi
ate logi
: the

�-
onstraint '(v

1

; : : : ; v

n

) is satis�able in (some model of) T i� its existential


losure 9v

1

: � � � 9v

n

:'(v

1

; : : : ; v

n

) is satis�able in T , i.e., valid in some model of T .

In both 
ases, one does not have a natural notion of solution sin
e there is more

than one solution stru
ture involved, though there may be spe
i�
 instan
es

where su
h a notion 
an be de�ned.

To sum up, we 
an de�ne satis�ability of a 
onstraint in three di�erent ways:

as validity of its existential 
losure in (i) a �xed solution stru
ture A; (ii) all

models of a �xed theory T ; (iii) some model of a �xed theory T .

Note that (i) is a spe
ial 
ase of (ii) sin
e we 
an take as theory T the theory

of A, i.e., the set of all �-formulae valid in A. In general, (ii) is not a spe
ial 
ase

of (i). This is the 
ase, however, if there exists a �-stru
ture A that is 
anoni
al

for T and the 
onstraint language in the sense that a 
onstraint is satis�able in

T i� it is satis�able in A.

The 
onstraint solver Given a 
onstraint language and a semanti
s, a 
on-

straint solver is a pro
edure that is able to de
ide satis�ability of the 
onstraints.

In this paper, we will mostly restri
t our attention to the 
ombination of su
h

de
ision pro
edures. It should be noted, however, that in many 
ases 
onstraint

solvers produ
e more than just the answer \yes" or \no".

If there is the notion of a solution available, one may also want to have a

solver that not only de
ides satis�ability, but also 
omputes a solution, if one

exists. Sin
e a given 
onstraint may have more than one solution one may even



be interested in obtaining a 
omplete set of solutions, i.e., a set of solutions from

whi
h all solutions 
an be generated in a simple way. A prominent example of

su
h a 
omplete representation of all solutions is Robinson's most general uni�er,

from whi
h all uni�ers of a synta
ti
 uni�
ation problem 
an be generated by

instantiation.

Instead of a
tually 
omputing a solution, the solver may transform the 
on-

straint into an equivalent one in \solved form." Su
h a solved form should, in

some way, be simpler than the original 
onstraint; in parti
ular, the existen
e

of a solved form should indi
ate satis�ability of the 
onstraint, and it should

be \easy" to read o� an a
tual solution. The advantage of using solved forms

is twofold. On the one hand, 
omputing the solved form may be less 
omplex

than 
omputing a solution. An example of this phenomenon is the so-
alled dag

solved form of synta
ti
 uni�
ation problems [33℄, whi
h is linear in the size of

the problem, whereas the most general uni�er may be exponential in the size of

the problem. On the other hand, a solver that 
omputes a solved form is usually

in
remental: if the 
onstraint is strengthened, then not all the work done during

the satis�ability test needs to be re-done. To be more pre
ise, assume that we

have already tested ' for satis�ability, and then need to test ' ^  , a situation

that frequently o

urs, e.g., in 
onstraint logi
 programming and theorem prov-

ing. If all we know after the satis�ability test is that ' is satis�able, then we

must start from s
rat
h when testing ' ^  . However, if we have 
omputed a

solved form '

0

of ', then we 
an test '

0

^  instead, whi
h hopefully is easier.

2.2 More notation and two examples

As examples that illustrate the notions introdu
ed above, we 
onsider quanti�er-

free formulae and E-uni�
ation problems. Before introdu
ing these types of 
on-

straint systems more formally, we de�ne some sub
lasses of �rst-order formulae,

whi
h will be of interest later on.

We 
onsider logi
 with equality , i.e., the binary predi
ate symbol =, whi
h is

interpreted as equality on the domain, is always available, without being expli
-

itly 
ontained in the signature. A �-atom is of the form P (t

1

; : : : ; t

n

), where P

is an n-ary predi
ate symbol of � [ f=g and t

1

; : : : ; t

n

are �-terms. If the atom

is of the form t

1

= t

2

, i.e., P is the equality symbol =, then it is 
alled an equa-

tional atom; otherwise, it is 
alled a relational atom. Negated equational atoms

are written t

1

6= t

2

rather than :(t

1

= t

2

). A �-matrix is a Boolean 
ombination

of �-atoms, and a positive �-matrix is built from �-atoms using 
onjun
tion

and disjun
tion only. A positive �-formula is a quanti�er pre�x followed by a

positive �-matrix. The formula is 
alled positive existential (positive AE) i� the

quanti�er pre�x 
onsists of existential quanti�ers (universal quanti�ers followed

by existential quanti�ers). A universal formula is given by a universal quanti-

�er pre�x followed by a quanti�er-free formula. A universal formula is 
alled


onjun
tive universal i� its matrix is a 
onjun
tions of �-atoms and negated �-

atoms. �-senten
es (of either type) are �-formulae without free variables. Given

a �-stru
ture A (a �-theory T ), the positive theory of A (T ) 
onsists of the set



of all positive �-senten
es valid in A (T ). The positive existential, positive AE,

universal, and 
onjun
tive universal theories of A (T ) are de�ned analogously.

Quanti�er-free formulae The Nelson-Oppen 
ombination method [49, 54℄ ap-

plies to 
onstraint systems of the following form:

{ For a given signature�, the 
onstraint language 
onsists of all quanti�er-free

�-formulae, i.e., all �-matri
es.

{ The semanti
s is de�ned by an arbitrary �-theory T .

{ One is interested in satis�ability in some model of T .

Thus, the 
onstraint solver must be able to de
ide whether the existential 
losure

of a quanti�er-free �-formula is valid in some model of T . Sin
e a formula is

valid in some model of T i� its negation is not valid in all models of T , a de
ision

pro
edure for the universal theory of T 
an be used as a 
onstraint solver for

this type of 
onstraint systems.

Uni�
ation problems Uni�
ation modulo equational theories is a sub�eld

of automated dedu
tion whi
h is very well-investigated (see [33, 8, 9℄ for survey

papers of the area).

An equational theory is given by a set E of identities s = t between terms

s; t. The signature of E is the set of all fun
tion symbols o

urring in E. With

=

E

we denote the least 
ongruen
e relation on the term algebra T (�; V ) that is


losed under substitutions and 
ontains E. Equivalently, =

E


an be introdu
ed

as the re
exive, transitive, and symmetri
 
losure

�

$

E

of the rewrite relation

!

E

indu
ed by E, or as the set of equational 
onsequen
es of E, i.e., s =

E

t i�

the universal 
losure of the atom s = t is valid in all models of E. An equational

theory E is trivial i� x =

E

y holds for two distin
t variables x; y. In the following,

we 
onsider only non-trivial equational theories.

Given an equational theory E with signature �, an elementary E-uni�
ation

problem is a �nite system � := fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g of equations between

�-terms. In E-uni�
ation problems with 
onstants , these terms may 
ontain

additional \free" 
onstant symbols, i.e., 
onstant symbols not 
ontained in the

signature � of E, and in general E-uni�
ations problems, these terms may


ontain additional \free" fun
tion symbols, i.e., fun
tion symbols not 
ontained

in the signature � of E.

A solution (or E-uni�er) of the E-uni�
ation problem fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g is a substitution � su
h that �(s

i

) =

E

�(t

i

) for i = 1; : : : ; n. If there exists

su
h a solution, then � is 
alled uni�able. Re
all that a substitution is a mapping

from variables to terms whi
h is almost everywhere equal to the identity. It 
an

be extended to a mapping from terms to terms in the obvious way. Substitutions

will be written in the form � = fx

1

7! u

1

; : : : ; x

k

7! u

k

g, where x

1

; : : : ; x

k

are

the �nitely many variables that are 
hanged by the substitution, and u

1

; : : : ; u

k

are their respe
tive �-images. The set fx

1

; : : : ; x

k

g is 
alled the domain of the

substitution �, and fu

1

; : : : ; u

k

g is 
alled its range.



Let X be the set of all variables o

urring in � . The E-uni�er � is an instan
e

of the E-uni�er � i� there exists a substitution � su
h that �(x) =

E

�(�(x)) for

all x 2 X . A 
omplete set of E-uni�ers of � is a set C of E-uni�ers of � su
h that

every E-uni�er of � is an instan
e of some uni�er in C. Finite 
omplete sets of

E-uni�ers yield a �nite representation of the usually in�nite sets of solutions of

E-uni�
ation problems. Sin
e this representation should be as small as possible,

one is usually interested in minimal 
omplete sets of E-uni�ers , i.e., 
omplete

sets in whi
h di�erent elements are not instan
es of ea
h other.

For a given equational theory E, elementary E-uni�
ation problems 
an be

seen as 
onstraints of the following 
onstraint system:

{ The 
onstraint language 
onsists of all 
onjun
tions of equational atoms

s = t. We 
all su
h a 
onjun
tion an E-uni�
ation 
onstraint .

{ The semanti
s is de�ned by the E-free algebra in 
ountably many generators,

i.e., the quotient term algebra T (�; V )==

E

for the 
ountably in�nite set of

variables V .

Sin
e the E-uni�
ation problem fs

1

=

?

t

1

; : : : ; s

n

=

?

t

n

g has a solution i� the

existential 
losure of s

1

= t

1

^ : : : ^ s

n

= t

n

is valid in T (�; V )==

E

, the notion

of satis�ability of E-uni�
ation 
onstraints indu
ed by this semanti
s 
oin
ide

with the notion of uni�ability of E-uni�
ation problems introdu
ed above.

Alternatively, the semanti
s of E-uni�
ation 
onstraints 
an also be de�ned

w.r.t. the equational theory E. In fa
t, the E-free algebra in 
ountably many

generators is a 
anoni
al solution stru
ture for E-uni�
ation 
onstraints: the

existential 
losure of s

1

= t

1

^ : : :^ s

n

= t

n

is valid in T (�; V )==

E

i� it is valid

in all models of E.

If we are interested only in de
idability and not in 
omplexity, then we 
an

also 
onsider general positive existential senten
es instead of the 
onjun
tive

senten
es obtained as existential 
losures of uni�
ation 
onstraints. In fa
t, we


an simply write the positive matrix in disjun
tive normal form, and then dis-

tribute the existential quanti�ers over disjun
tions. This yields a disjun
tion of


onjun
tive senten
es, whi
h is valid i� one of its disjun
ts is valid.

These observations are summed up in the following theorem:

Theorem 1. Let E be an equational theory with signature �, and V a 
ountably

in�nite set of variables. Then the following are equivalent:

1. Elementary E-uni�
ation is de
idable.

2. The positive existential theory of E is de
idable.

3. The positive existential theory of T (�; V )==

E

is de
idable.

In order to obtain a 
lass of �rst-order formulae that 
orrespond to E-

uni�
ation problems with 
onstants, but are built over the signature of E, we

note that free 
onstants 
an be generated via Skolemization. Sin
e we are inter-

ested in validity of the formulae, we must Skolemize universal quanti�ers, and

sin
e we want to obtain Skolem 
onstants, these universal quanti�ers should not

be in the s
ope of an existential quanti�er.



Theorem 2. Let E be an equational theory with signature �, and V a 
ountably

in�nite set of variables. Then the following are equivalent:

1. E-uni�
ation with 
onstants is de
idable.

2. The positive AE theory of E is de
idable.

3. The positive AE theory of T (�; V )==

E

is de
idable.

These theorems 
an be seen as folk theorems in the uni�
ation 
ommunity.

Expli
it proofs 
an be found in [14℄. For general E-uni�
ation, a similar 
hara
-

terization is possible. However, the proof of this result (whi
h is not as straight-

forward as the ones for the above theorems) depends on results 
on
erning the


ombination of E-uni�
ation algorithms. For this reason, we defer presenting the


hara
terization to Se
tion 5.1.

2.3 Combining 
onstraint systems and solvers

Given two 
onstraint systems, it is not a priori 
lear what their 
ombination is

supposed to be, and in some 
ases there are several sensible 
andidates. Sin
e


onstraint systems 
onsist of a 
onstraint language and a 
orresponding seman-

ti
s, one must �rst de�ne the 
ombined language, and then introdu
e a 
ombined

semanti
s for this language.

Let us �rst 
onsider the problem of de�ning the 
ombined 
onstraint lan-

guage. This is quite simple if we restri
t ourselves to the 
ase where the two


onstraint languages 
onsist of formulae of the same type, but over di�erent sig-

natures. In this 
ase, the most natural 
andidate for the 
ombined 
onstraint

language appears to be the language 
onsisting of formulae of the given type,

but over the union of the signatures. For example, if the 
onstraint languages

allow for quanti�er-free formulae over the signatures �

1

and �

2

, respe
tively,

then the 
ombined 
onstraint language 
onsists of all quanti�er-free formulae

over the signature �

1

[ �

2

. Similarly, 
ombined uni�
ation problems 
onsist

of equations between terms over the union of the signatures of the 
omponent


onstraint systems. In this paper, we will 
onsider only this simple 
ase.

On
e the 
ombined 
onstraint language is de�ned, it must be equipped with

an appropriate semanti
s. If the semanti
s is de�ned via a theory, this is again

quite simple: the natural 
andidate is the union of the 
omponent theories. Thus,

given equational theories E

1

and E

2

with the respe
tive signatures �

1

and �

2

,

the 
ombined uni�
ation 
onstraint system 
onsists of all (E

1

[ E

2

)-uni�
ation

problems (with the usual semanti
s). If the semanti
s of the 
omponent 
on-

straint systems is de�ned with the help of solution stru
tures, things are more

diÆ
ult. One must 
ombine the solution stru
tures of the 
omponents into a so-

lution stru
ture for the 
ombined 
onstraint language, and it not always obvious

how this 
ombined solution stru
ture should look like. We will brie
y 
ome ba
k

to this problem of 
ombining solution stru
tures in Subse
tion 6.2.

Finally, given the 
ombined 
onstraint language with an appropriate seman-

ti
s, one needs a 
onstraint solver for this 
ombined 
onstraint system. For two

spe
i�
 
onstraint systems and their 
ombination, one 
an of 
ourse try to 
on-

stru
t an ad ho
 
onstraint solver for the 
ombined system, whi
h may or may



not employ the single solvers as subpro
edures. A more satisfa
tory approa
h,

however, is to design a 
ombination s
heme that applies to a whole 
lass of 
on-

straint systems. The 
ombination pro
edures that we will 
onsider in the next

two se
tions are of this form. For example, the Nelson-Oppen 
ombination pro-


edure 
an be used to 
ombine de
ision pro
edures for the universal theories

of T

1

and T

2

into one for the universal theory of T

1

[ T

2

. This holds for arbi-

trary theories T

1

and T

2

with de
idable universal theory (and not just for two

spe
i�
 theories), provided that the signatures of T

1

and T

2

are disjoint. The


ombination result for E-uni�
ation algorithms is of the same type.

In both 
ases, the 
ombination approa
h treats the solvers of the single 
on-

straint systems as bla
k boxes, i.e., it does not make any assumptions on how

these solvers work. This distinguishes these approa
hes from others that assume

the existen
e of 
onstraint solvers of a 
ertain type. For example, a semi-
omplete

(i.e., 
on
uent and weakly normalizing) term rewriting system 
an be used to de-


ide the word problem of the 
orresponding equational theory. Sin
e 
on
uen
e

and weak normalization are modular properties, the union of two semi-
omplete

term rewriting systems over disjoint signatures is again semi-
omplete [53℄, and

thus the word problem in the 
ombined equational theory is de
idable as well.

However, this result is of no help at all if the de
ision pro
edures for the word

problem in the 
omponent equational theories are not based on rewriting.

3 The Nelson-Oppen 
ombination pro
edure

This pro
edure, whi
h was �rst introdu
ed in [49℄, is 
on
erned with 
ombining

de
ision pro
edures for the validity of universal senten
es in �rst-order theo-

ries, or equivalently with 
ombining 
onstraint solvers that test satis�ability of

quanti�er-free formulae in some model of the theory. To be more pre
ise, as-

sume that �

1

and �

2

are two disjoint signatures, and that T is obtained as the

union of a �

1

-theory T

1

and a �

2

-theory T

2

. How 
an de
ision pro
edures for

validity (equivalently: satis�ability) in T

i

(i = 1; 2) be used to obtain a de
ision

pro
edure for validity (equivalently: satis�ability) in T ?

When 
onsidering the satis�ability problem, as done in Nelson and Oppen's

method, we may without loss of generality restri
t our attention to 
onjun
tive

quanti�er-free formulae, i.e., 
onjun
tions of �-atoms and negated �-atoms.

In fa
t, a given quanti�er-free formula 
an be transformed into an equivalent

formula in disjun
tive normal form (i.e., a disjun
tion of 
onjun
tive quanti�er-

free formulae), and this disjun
tion is satis�able in T i� one of its disjun
ts is

satis�able in T .

Given a 
onjun
tive quanti�er-free formula ' over the 
ombined signature

�

1

[ �

2

, it is easy to generate a 
onjun
tion '

1

^ '

2

that is equivalent to ',

where '

i

is a pure �

i

-formula, i.e., 
ontains only symbols from �

i

(i = 1; 2).

Here equivalent means that ' and '

1

^ '

2

are satis�able in exa
tly the same

models of T . This is a
hieved by variable abstra
tion, i.e., by repla
ing alien

subterms by variables and adding appropriate equations.



Variable abstra
tion Assume that t is a term whose topmost fun
tion symbol

is in �

i

, and let j be su
h that fi; jg = f1; 2g. A subterm s of t is 
alled alien

subterm of t i� its topmost fun
tion symbol belongs to �

j

and every proper

superterm of s in t has its top symbol in �

i

.

Given a 
onjun
tive quanti�er-free formula ', the variable abstra
tion pro-


ess iteratively repla
es terms by variables and adds appropriate equations to

the 
onjun
tion:

{ If ' 
ontains an equational 
onjun
t s = t su
h that the topmost fun
tion

symbols of s and t belong to di�erent signatures, then repla
e s = t by the


onjun
tion u = s ^ u = t, where u is a new variable, i.e., a variable not

o

urring in '.

{ If ' 
ontains a negated equational 
onjun
t s 6= t su
h that the topmost

fun
tion symbols of s and t belong to di�erent signatures, then repla
e s = t

by the 
onjun
tion u 6= v ^ u = s ^ v = t, where u; v are new variables.

{ If ' 
ontains a relational 
onjun
t P (: : : ; s

i

; : : :) su
h that the topmost

fun
tion symbol of s

i

does not belong to the signature of P , then repla
e

P (: : : ; s

i

; : : :) by the 
onjun
tion P (: : : ; u; : : :) ^ u = s

i

, where u is a new

variable. Conjun
ts of the form :P (: : : ; s

i

; : : :) are treated analogously.

{ If ' 
ontains a (relational or equational) 
onjun
t P (: : : ; s

i

; : : :) su
h that s

i


ontains an alien subterm t, then repla
e P (: : : ; s

i

; : : :) by the P (: : : ; s

0

i

; : : :)^

u = t, where u is a new variable and s

0

i

is obtained from s

i

by repla
ing

the alien subterm t by u. Conjun
ts of the form :P (: : : ; s

i

; : : :) are treated

analogously.

Obviously, this abstra
tion pro
ess always terminates and the resulting formula


an be written in the form '

1

^ '

2

, where '

i

is a pure �

i

-formula (i = 1; 2). In

addition, it is easy to see that the original formula ' and the new formula '

1

^'

2

are satis�able in exa
tly the same models of T = T

1

[ T

2

. Consequently, if ' is

satis�able in a model of T , then both '

1

and '

2

are satis�able in a model of T ,

whi
h is also a model of T

1

and of T

2

. This shows that satis�ability of ' in a

model of T implies satis�ability of '

i

in a model of T

i

for i = 1; 2. Unfortunately,

the 
onverse need not hold, i.e., satis�ability of '

i

in a model of T

i

(i = 1; 2)

does not ne
essarily imply satis�ability of '

1

^'

2

in a model of T , and thus also

not satis�ability of ' in a model of T .

The reason for this problem is that '

1

and '

2

may share variables, and one

formula may for
e some of these variables to be interpreted by the same element

of the model, whereas the other is only satis�able if they are interpreted by

distin
t elements of the model. To over
ome this problem, Nelson and Oppen's

pro
edure propagates equalities between variables from the formula '

1

to '

2

,

and vi
e versa.

The 
ombination pro
edure Given a 
onjun
tive quanti�er-free (�

1

[ �

2

)-

formula ' to be tested for satis�ability (in some model of T

1

[ T

2

), Nelson and

Oppen's method for 
ombining de
ision pro
edures pro
eeds in three steps:



1. Use variable abstra
tion to generate a 
onjun
tion '

1

^'

2

that is equivalent

to ', where '

i

is a pure �

i

-formula (i = 1; 2).

2. Test the pure formulae for satis�ability in the respe
tive theories.

If '

i

is unsatis�able in T

i

for i = 1 or i = 2, then return \unsatis�able."

Otherwise pro
eed with the next step.

3. Propagate equalities between di�erent shared variables (i.e., distin
t variables

u

i

; v

i

o

urring in both '

1

and '

2

), if a disjun
tion of su
h equalities 
an be

dedu
ed from the pure parts.

A disjun
tion u

1

= v

1

_ : : : _ u

k

= v

k

of equations between di�erent shared

variables 
an be dedu
ed from '

i

in T

i

i� '

i

^ u

1

6= v

1

^ : : : ^ u

k

6= v

k

is unsatis�able in T

i

. Sin
e the satis�ability problem in T

i

was assumed to

be de
idable, and sin
e there are only �nitely many shared variables, it is

de
idable whether there exists su
h a disjun
tion.

If no su
h disjun
tions 
an be dedu
ed, return \satis�able." Otherwise, take

any of them,

1

and propagate its equations as follows. For every disjun
t

u

j

= v

j

, pro
eed with the se
ond step for the formula �

j

('

1

) ^ �

j

('

2

),

where �

j

:= fu

j

7! v

j

g (for j = 1; : : : ; k). The answer is \satis�able" i� one

of these 
ases yields \satis�able."

Obviously, the pro
edure terminates sin
e there are only �nitely many shared

variables to be identi�ed. In addition, it is easy to see that satis�ability is pre-

served at ea
h step. This implies 
ompleteness of the pro
edure, that is, if it

answers \unsatis�able" (sin
e already one of the pure subformulae is unsatis�-

able in its theory), the original formula was indeed unsatis�able. Before showing

soundness of the pro
edure (whi
h is more involved), we illustrate the working

of the pro
edure by an example.

Example 1. Consider the equational

2

theories T

1

:= ff(x; x) = xg and T

2

:=

fg(g(x)) = g(x)g over the signatures �

1

:= ffg and �

2

:= fgg. Assume that we

want to know whether the quanti�er-free (mixed) formula g(f(g(z); g(g(z)))) =

g(z) is valid in T

1

[ T

2

. To this purpose we apply the Nelson-Oppen pro
edure

to its negation g(f(g(z); g(g(z)))) 6= g(z).

In Step 1, f(g(z); g(g(z))) is an alien subterm in g(f(g(z); g(g(z)))) (sin
e

g 2 �

2

and f 2 �

1

). In addition, g(z) and g(g(z)) are alien subterms in

f(g(z); g(g(z))). Thus, variable abstra
tion yields the 
onjun
tion '

1

^'

2

, where

'

1

:= u = f(v; w) and '

2

:= g(u) 6= g(z) ^ v = g(z) ^ w = g(g(z)):

In Step 2, it is easy to see that both pure formulae are satis�able in their

respe
tive theories. The equation u = f(v; w) is obviously satis�able in the trivial

model of T

1

(of 
ardinality 1). The formula '

2

is, for example, satis�able in the

T

2

-free algebra with two generators, where u is interpreted by one generator, z

by the other, and v; w as required by the equations.

1

For eÆ
ien
y reasons, one should take a disjun
tion with minimal k.

2

Re
all that the identities in equational theories are (impli
itly) universally quanti�ed.



In Step 3, we 
an dedu
e w = v from '

2

in T

2

sin
e '

2


ontains v = g(z)^w =

g(g(z)) and T

2


ontains the (universally quanti�ed) identity g(g(x)) = g(x).

Propagating the equality w = v yields the pure formulae

'

0

1

:= u = f(v; v) and '

0

2

:= g(u) 6= g(z) ^ v = g(z) ^ v = g(g(z));

whi
h again turn out to be separately satis�able in Step 2 (with the same models

as used above).

In Step 3, we 
an now dedu
e the equality u = v from '

0

1

in T

1

, and its

propagation yields

'

00

1

:= v = f(v; v) and '

00

2

:= g(v) 6= g(z) ^ v = g(z) ^ v = g(g(z)):

In Step 2, it turns out that '

00

2

is not satis�able in T

2

, and thus the answer is

\unsatis�able," whi
h shows that g(f(g(z); g(g(z)))) = g(z) is valid in T

1

[ T

2

.

In fa
t, v = g(z) and the identity g(g(x)) = g(x) of T

2

imply that g(v) = g(z),

whi
h 
ontradi
ts g(v) 6= g(z).

Soundness of the pro
edure As mentioned above, termination and 
omplete-

ness of the pro
edure are quite trivial. Soundness of the pro
edure, i.e., if the

pro
edure answers \satis�able," then the input formula is indeed satis�able, is

less trivial. In fa
t, for arbitrary theories T

1

and T

2

, the 
ombination pro
edure

need not be sound. One must assume that ea
h T

i

is stably in�nite, that is, su
h

that a quanti�er-free formula '

i

is satis�able in T

i

i� it is satis�able in an in�nite

model of T

i

. This restri
tion was not mentioned in Nelson and Oppen's original

arti
le [49℄; it was introdu
ed by Oppen in [54℄.

The following example demonstrates that the Nelson-Oppen 
ombination

pro
edure need not be sound for theories that are not stably in�nite, even if the

theories in question are non-trivial

3

equational theories.

Example 2. Let E

1

:= ff(g(x); g(y)) = x; f(g(x); h(y)) = yg and E

2

:= fk(x) =

k(x)g. The theory E

2

is obviously non-trivial, and it is easy to see that E

1

is also

non-trivial: by orienting the equations from left to right, one obtains a 
anoni
al

term rewriting system, in whi
h any two distin
t variables have di�erent normal

forms.

First, we show that E

1

is not stably in�nite. To this purpose, we 
onsider the

quanti�er-free formula g(x) = h(x). Obviously, this formula is satis�able in the

trivial (one-element) model of E

1

. In every model A of E

1

that satis�es g(x) =

h(x), there exists an element e su
h that g

A

(e) = h

A

(e). Here, g

A

; h

A

denote

the interpretations of the unary fun
tion symbols f; g by fun
tions A! A. But

then we have for any element a of A that

a = f

A

(g

A

(a); g

A

(e)) = f

A

(g

A

(a); h

A

(e)) = e;

3

Re
all that non-trivial means that the theory has a model of 
ardinality greater than

1.



i.e., all elements of A are equal to e, whi
h shows that A is the trivial model.

Thus, g(x) = h(x) is satis�able only in the trivial model of E

1

, whi
h show that

the (non-trivial) equational theory E

1

is not stably in�nite.

To show that this really leads to an unsound behavior of the Nelson-Oppen

method, we 
onsider the mixed 
onjun
tion g(x) = h(x) ^ k(x) 6= x. Clearly,

k(x) 6= x is satis�able in E

2

(for instan
e, in the E

2

-free algebra with 1 gen-

erator) and, as we saw earlier, g(x) = h(x) is satis�able in E

1

. In addition, no

equations between distin
t shared variables 
an be dedu
ed (sin
e there is only

one shared variable). It follows that Nelson and Oppen's pro
edure would an-

swer \satis�able" on input g(x) = h(x) ^ k(x) 6= x. However, sin
e g(x) = h(x)

is satis�able only in the trivial model of E

1

, and no disequation 
an be satis�ed

in a trivial model, g(x) = h(x) ^ k(x) 6= x is unsatis�able in E

1

[ E

2

.

Nelson and Oppen's original proof of soundness of the pro
edure as well as a

more re
ent one by Tinelli and Harandi [72℄ use Craig's Interpolation Theorem

[20℄. In the following, we sket
h a proof that uses a very elementary model

theoreti
 
onstru
tion: the fusion of stru
tures. It goes ba
k to Ringeissen [58℄

and was further re�ned by Ringeissen and Tinelli [73, 71℄.

4

In the following, let �

1

and �

2

be disjoint signatures, and � := �

1

[ �

2

their union. A given �-stru
ture A 
an also be viewed as a �

i

-stru
ture, by just

forgetting about the interpretation of the symbols not 
ontained in �

i

. We 
all

this �

i

-stru
ture the �

i

-redu
t of A, and denote it by A

�

i

.

De�nition 1. The �-stru
ture A is a fusion of the �

1

-stru
ture A

1

and the

�

2

-stru
ture A

2

i� the �

i

-redu
t A

�

i

of A is �

i

-isomorphi
 to A

i

(i = 1; 2).

Sin
e the signatures �

1

and �

2

are disjoint, the existen
e of a fusion depends

only on the 
ardinality of the stru
tures A

1

and A

2

.

Lemma 1. Let A

1

be a �

1

-stru
ture and A

2

a �

2

-stru
ture. Then A

1

and A

2

have a fusion i� their domains A

1

and A

2

have the same 
ardinality.

Proof. The only-if dire
tion of the lemma is an immediate 
onsequen
e of the

de�nition of fusion. The if dire
tion 
an be seen as follows: if A

1

and A

2

have

the same 
ardinality, then there exists a bije
tion � : A

1

! A

2

. This bije
tion


an be used to transfer the interpretation of the elements of �

2

from A

2

to A

1

.

To be more pre
ise, let A be the �-stru
ture that has domain A

1

, interprets the

elements of �

1

like A

1

, and interprets the elements of �

2

as follows:

{ If f is an n-ary fun
tion symbol in �

2

, and a

1

; : : : ; a

n

2 A

1

, then we de�ne

f

A

(a

1

; : : : ; a

n

) := �

�1

(f

A

2

(�(a

1

); : : : ; �(a

n

))).

{ If P is an n-ary predi
ate symbol in �

2

, and a

1

; : : : ; a

n

2 A

1

, then

(a

1

; : : : ; a

n

) 2 P

A

i� (�(a

1

); : : : ; �(a

n

)) 2 P

A

2

.

4

A
tually, these papers 
onsider the more general situation where the signatures need

not be disjoint. Here, we restri
t our attention to the disjoint 
ase.



Then A is a fusion of A

1

and A

2

sin
e A

�

1

is identi
al to A

1

, and � is a �

2

-

isomorphism from A

�

2

to A

2

by 
onstru
tion of A.

There is an interesting 
onne
tion between the union of theories and fusions

of models of the theories.

Proposition 1. For i = 1; 2, let T

i

be a �

i

-theory. The �-stru
ture A is a

model of T

1

[ T

2

i� it is a fusion of a model A

1

of T

1

and a model A

2

of T

2

.

Proof. The only-if dire
tion is an immediate 
onsequen
e of the fa
ts that A is

a fusion of its �

1

-redu
t A

�

1

and its �

2

-redu
t A

�

2

, and that A

�

i

is a model

of T

i

(i = 1; 2).

The if dire
tion is also trivial sin
e, if A is a fusion of a model A

1

of T

1

and

a model A

2

of T

2

, then its �

i

-redu
t is isomorphi
 to A

i

, and thus a model of

T

i

(i = 1; 2). Consequently, A is a model of T

1

[ T

2

.

We are now ready to show a result from whi
h soundness of the Nelson-Oppen

pro
edure follows immediately. For a �nite set of variables X , let �(X) denote

the 
onjun
tion of all negated equations x 6= y for distin
t variables x; y 2 X .

Proposition 2. Let T

1

and T

2

be two stably in�nite theories over the disjoint

signatures �

1

and �

2

, respe
tively; let '

i

be a quanti�er-free �

i

-formula (i =

1; 2), and let X be the set of variables o

urring in both '

1

and '

2

. If '

i

^�(X)

is satis�able in a model A

i

of T

i

for i = 1; 2, then '

1

^ '

2

is satis�able in a

fusion of A

1

and A

2

, and thus in a model of T

1

[ T

2

.

Proof. Sin
e the theories T

1

and T

2

are stably in�nite and signatures are at most


ountable, we may without loss of generality assume that the stru
tures A

1

and

A

2

are both 
ountably in�nite. Sin
e '

i

^ �(X) is satis�able in A

i

, there is

an evaluation �

i

: X ! A

i

that satis�es '

i

and repla
es the variables in X

by distin
t elements of A

i

(i = 1; 2). This implies that there exists a bije
tion

� : A

1

! A

2

su
h that �(�

1

(x)) = �

2

(x). As shown in the proof of Lemma 1,

this bije
tion indu
es a fusion A of A

1

and A

2

. It is easy to see that '

1

^ '

2

is

satis�able in A. The evaluation � showing satis�ability is de�ned as follows: on

the variables in '

1

it 
oin
ides with �

1

, and for the non-shared variables x in '

2

we de�ne �(x) := �

�1

(�

2

(x)).

It is easy to see that this proposition yields soundness of the Nelson-Oppen


ombination pro
edure, i.e, if the pro
edure answers \satis�able," then the origi-

nal formula was indeed satis�able. In fa
t, if in Step 3 no disjun
tion of equalities

between shared variables 
an be derived from the pure formulae, the prerequi-

site for the proposition is satis�ed: sin
e the disjun
tion of all equations x = y

for distin
t variables x; y 2 X 
annot be dedu
ed from '

i

in T

i

, we know that

'

i

^�(X) is satis�able in T

i

. Thus, we 
an dedu
e that '

1

^ '

2

is satis�able in

T

1

[ T

2

, and sin
e ea
h step of the pro
edure preserves satis�ability, the input

formula was also satis�able.

To sum up, we have shown 
orre
tness of Nelson and Oppen's 
ombination

pro
edure, whi
h yields the following theorem:



Theorem 3. Let T

1

and T

2

be two stably in�nite theories over disjoint signa-

tures su
h that the universal theory of T

i

is de
idable for i = 1; 2. Then the

universal theory of T

1

[ T

2

is also de
idable.

Complexity of the pro
edure The main sour
es of 
omplexity are (i) the

transformation of the quanti�er-free formula into a disjun
tion of 
onjun
tive

quanti�er-free formulae, and (ii) Step 3 of the 
ombination pro
edure for 
on-

jun
tive quanti�er-free formulae. It is well-known that the transformation of an

arbitrary Boolean formula into disjun
tive normal form may 
ause an exponen-

tial blow-up. Step 3 of the pro
edure has again two sour
es of 
omplexity. First,

there is the problem of de
iding whether there is a disjun
tion of equalities be-

tween distin
t variables that 
an be derived from '

i

in T

i

. If one must really test

all possible disjun
tions using the satis�ability pro
edure for T

i

, then already a

single su
h step needs exponential time. However, even if we assume that there

is a polynomial pro
edure that determines an appropriate disjun
tion (if there

is one), then the overall algorithm is still not polynomial unless all these dis-

jun
tions 
onsist of a single disjun
t. Otherwise, the algorithm must investigate

di�erent bran
hes, and sin
e this may happen ea
h time Step 3 is performed, an

exponential number of bran
hes may need to be investigated.

Nelson and Oppen [49℄ introdu
e the notion of a 
onvex theory, and Oppen

[54℄ shows that, for 
onvex theories, the two sour
es of 
omplexity in Step 3

of the pro
edure 
an be avoided. A theory T is 
onvex i� the following the

following holds: if a disjun
tion of equalities between distin
t variables 
an be

dedu
ed from a quanti�er-free formula in T , then a single equality between

distin
t variables 
an already be dedu
ed. For 
onvex theories, Step 3 of the

pro
edure 
an thus be modi�ed as follows: it is only tested whether a single

equation between distin
t shared variables 
an be dedu
ed. Sin
e there are only

a polynomial number of su
h equations, this 
an be tested by a polynomial

number of 
alls to the satis�ability pro
edure for T

i

. In addition, there is no

more bran
hing in Step 3. This shows that the modi�ed 
ombination pro
edure

runs in polynomial time, if applied to 
onjun
tive quanti�er-free input formulae.

Theorem 4. Let T

1

and T

2

be two 
onvex and stably in�nite theories over dis-

joint signatures su
h that the 
onjun
tive universal theory of T

i

is de
idable in

polynomial time for i = 1; 2. Then the 
onjun
tive universal theory of T

1

[ T

2

is

also de
idable in polynomial time.

In the general 
ase, the Nelson-Oppen 
ombination approa
h yields a non-

deterministi
 polynomial pro
edure. First, given an arbitrary quanti�er-free for-

mula, the nondeterministi
 pro
edure 
hooses from ea
h disjun
tion one of the

disjun
ts. This yields a 
onjun
tive quanti�er-free formula. This formula is then

treated by the following nondeterministi
 variant of the 
ombination pro
edure:

1. Use variable abstra
tion to generate a 
onjun
tion '

1

^'

2

that is equivalent

to ', where '

i

is a pure �

i

-formula (i = 1; 2).



2. Nondeterministi
ally 
hoose a variable identi�
ation, i.e., 
hoose a partition

� = f�

1

; : : : ; �

k

g of the variables shared by '

1

and '

2

.

For ea
h of the 
lasses �

i

, let x

i

2 �

i

be a representative of this 
lass, and

let X

�

:= fx

1

; : : : ; x

k

g be the set of these representatives. The substitution

that repla
es, for all i = 1; : : : ; k, ea
h element of �

i

by its representative x

i

is denoted by �

�

.

3. Test the pure formulae for satis�ability in the respe
tive theories.

If �

�

('

i

) ^ �(X

�

) is unsatis�able in T

i

for i = 1 or i = 2, then return

\unsatis�able;" otherwise return \satis�able."
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Obviously, it is possible to 
hoose one partition using only a polynomial number

of binary 
hoi
es, whi
h shows that the above pro
edure is indeed nondeter-

ministi
 polynomial. Completeness is again easy to see, and soundness is an

immediate 
onsequen
e of Proposition 2.

Theorem 5. Let T

1

and T

2

be two stably in�nite theories over disjoint signa-

tures su
h that the universal theory of T

i

is de
idable in NP for i = 1; 2. Then

the universal theory of T

1

[ T

2

is also de
idable in NP.

Extensions and related work Shostak [64℄ des
ribes a more eÆ
ient 
om-

bination pro
edure, whi
h is based on 
ongruen
e 
losure [50℄. However, unlike

the Nelson-Oppen pro
edure, this approa
h assumes that de
ision pro
edures of

a spe
i�
 form (so-
alled \
anonizers" and \solvers") exist for the 
omponent

theories, i.e., is does not treat the 
omponent de
ision pro
edures as bla
k boxes.

A formally more rigorous presentation of the method 
an be found in [25℄.

Above, we have always assumed that the theories to be 
ombined are over dis-

joint signatures. Without any su
h restri
tion, a general 
ombination pro
edure


annot exist. In fa
t, it is very easy to �nd examples of de
idable theories whose

(non-disjoint) 
ombination is unde
idable. Nevertheless, it is worthwhile to try

to weaken the disjointness assumption. The �rst extension of Nelson and Op-

pen's approa
h in this dire
tion is due to Ringeissen [58℄. It was further extended

by Ringeissen and Tinelli [73, 71℄ to the 
ase of theories sharing \
onstru
tors."

Baader and Tinelli [10℄ 
onsider the appli
ation of the Nelson-Oppen pro-


edure to equational theories. Although equational theories need not be stably

in�nite (see Example 2), Nelson and Oppen's pro
edure 
an be applied, after

some minor modi�
ations, to 
ombine de
ision pro
edures for the validity of

quanti�er-free formulae in equational theories. It is also shown that, 
ontrary

to a 
ommon belief, the method 
annot be used to 
ombine de
ision pro
edures

for the word problem. The paper then presents a method that solves this kind

of 
ombination problem. In [11, 12℄ it is shown that this approa
h 
an also be

extended to the 
ase of theories sharing 
onstru
tors.

5

Re
all that�(X

�

) denotes the 
onjun
tion of all negated equations x 6= y for distin
t

variables x; y 2 X

�

.



4 Combination of E-uni�
ation algorithms

The 
onstraints that we treat in this se
tion are E-uni�
ation problems, i.e., sys-

tems of term equations that must be solved modulo a given equational theory E.

From a more logi
al point of view, this means that we are interested in the pos-

itive existential or the positive AE theory of E (see Theorems 1 and 2), depend-

ing on whether we 
onsider elementary uni�
ation or uni�
ation with 
onstants.

During the last three de
ades, resear
h in uni�
ation theory has produ
ed E-

uni�
ation algorithms (i.e., 
onstraint solvers for E-uni�
ation 
onstraints) for

a great variety of equational theories E (see [33, 8, 9℄). Su
h an algorithm either

a
tually 
omputes solutions of the E-uni�
ation 
onstraints (usually 
omplete

sets of E-uni�ers), or it just de
ides satis�ability of E-uni�
ation 
onstraints.

Using de
ision pro
edures instead of algorithms 
omputing 
omplete sets of uni-

�ers may be advantageous for theories where the 
omplete sets are large or even

in�nite.

E-uni�
ation algorithms that 
ompute 
omplete sets of uni�ers are, for ex-

ample, applied in theorem proving with \built in" theories (see, e.g., [55, 68℄), in

generalizations of the Knuth-Bendix 
ompletion pro
edure to rewriting modulo

theories (see, e.g., [34, 13℄), and in logi
 programming with equality (see, e.g.,

[32℄). With the development of 
onstraint approa
hes to theorem proving (see,

e.g., [18, 51℄), term rewriting (see, e.g., [41℄), and logi
 programming (see, e.g.,

[31, 22℄), de
ision pro
edures for E-uni�
ation have been gaining in importan
e.

The 
ombination problem for E-uni�
ation algorithms is dire
tly motivated

by these appli
ations. In this se
tion, we �rst motivate the problem and brie
y

review the resear
h on this topi
, whi
h led to a 
omplete solution for the 
ase of

theories over disjoint signatures. Subsequently, we des
ribe the 
ombination al-

gorithm developed in [2, 6℄, and sket
h how to prove its 
orre
tness. In Se
tion 5,

we derive an algebrai
 and logi
al reformulation of the 
ombination problem and

the 
ombination algorithm. This leads to a more abstra
t proof, whi
h 
an also

be generalized to other 
lasses of 
onstraints (Se
tion 6). Finally, in Se
tion 7 we


omment on the 
omplexity of the 
ombination problem, and des
ribe possible

optimizations of the 
ombination pro
edure.

4.1 The problem and its history

Basi
ally, the problem of 
ombining E-uni�
ation algorithms 
an be des
ribed

as follows:

Assume we are given uni�
ation algorithms for solving uni�
ation prob-

lems modulo the equational theories E

1

and E

2

. How 
an we obtain a

uni�
ation algorithm for the union of the theories, E

1

[ E

2

?

Here, uni�
ation algorithms may either be algorithms 
omputing 
omplete sets

of uni�ers or de
ision pro
edures for uni�ability.

The relevan
e of this problem relies on the observation that, quite often,

a given E-uni�
ation algorithm 
an only treat uni�
ation problems where the



terms o

urring in the problem are 
omposed over the signature of E (elemen-

tary E-uni�
ation), possibly enri
hed by some free 
onstants (E-uni�
ation with


onstants). This is, for example, the 
ase for the \natural" uni�
ation algorithms

for the theory AC of an asso
iative-
ommutative fun
tion symbol [67, 30℄, whi
h

depend on solving linear Diophantine equations in the natural numbers. How-

ever, in the appli
ations mentioned above, uni�
ation problems often 
ontain

\mixed" terms, i.e, terms that are 
onstru
ted from fun
tion symbols belonging

to di�erent theories.

For example, in automated theorem proving, free fun
tion symbols of arbi-

trary arity are frequently introdu
ed by Skolemization. Thus, the E-uni�
ation

problems that must be solved there are usually general E-uni�
ation problems.

If the given E-uni�
ation algorithm 
an treat only E-uni�
ation problems with


onstants, the question arises whether it is always possible to 
onstru
t an al-

gorithm for general E-uni�
ation from a given algorithm for E-uni�
ation with


onstants. This 
an be seen as an instan
e of the 
ombination problem where

E

1

is the theory E, and E

2

is the free theory for the free fun
tion symbols

(e.g., 
onsisting of the \dummy" identities f(x

1

; : : : ; x

n

) = f(x

1

; : : : ; x

n

) for the

free fun
tion symbols f). The 
ombination problem in its general form arises

if the semanti
 properties of several fun
tion symbols are to be integrated into

the uni�
ation; for example, one may want to build in an asso
iative symbol

representing 
on
atenation of lists, and an asso
iative-
ommutative symbol rep-

resenting addition of numbers.

Similarly as in the 
ase of the Nelson-Oppen pro
edure, there 
annot be a

general solution to the 
ombination problem as stated above: there exist equa-

tional theories E

1

and E

2

where uni�
ation with 
onstants is de
idable both for

E

1

and for E

2

, but solvability of uni�
ation problems with 
onstants modulo

E

1

[ E

2

is unde
idable. For example, both uni�
ation with 
onstants modulo

left-distributivity of the binary symbol f over the binary symbol g [70℄ and

uni�
ation with 
onstants modulo asso
iativity of the binary symbol g [46℄ are

de
idable, but uni�
ation with 
onstants modulo the union of these theories is

unde
idable [65℄. Again, the restri
tion to theories over disjoint signatures avoids

this problem. Until now, most of the resear
h was 
on
entrated on this restri
ted


ase.

A �rst important instan
e of the problem was 
onsidered by Sti
kel [66, 67℄.

Sti
kel'sAC-uni�
ation algorithm allowed for the presen
e of severalAC-symbols

and free symbols. However, termination of this algorithm 
ould only be shown

for restri
ted 
ases and it took almost a de
ade until Fages [27℄ 
ould 
lose this

gap.

Subsequently, more general 
ombination problems were, for example, treated

in [40, 69, 29, 75, 16℄, but the theories 
onsidered in these papers always had to

satisfy 
ertain restri
tions (su
h as 
ollapse-freeness or regularity) on the synta
-

ti
 form of their de�ning identities. Re
all that a theory E is 
alled 
ollapse-free

if it does not 
ontain an identity of the form x = t where x is a variable and t is

a non-variable term, and it is 
alled regular if the left- and right-hand sides of

the identities 
ontain the same variables. Su
h restri
tions simplify the 
ombina-



tion problem, both from the 
on
eptual and from the 
omputational 
omplexity

point of view.

An important break-through in the resear
h on the 
ombination problem was

the 
ombination algorithm by S
hmidt-S
hau� [60℄. The algorithm applies to ar-

bitrary equational theories over disjoint signatures, provided that an additional

algorithmi
 requirement is ful�lled: in addition to algorithms for uni�
ation with


onstants, one needs algorithms that solve so-
alled 
onstant elimination prob-

lems. A more eÆ
ient version of this highly nondeterministi
 algorithm has been

des
ribed by Boudet [15℄. Basi
ally, whereas the algorithm by S
hmidt-S
hau�

performs two nondeterministi
 steps right at the beginning, Boudet's algorithm

tries to defer nondeterministi
 steps as long as possible; nondeterminism is only

used \on demand" to resolve 
ertain 
on
i
ts. For restri
ted 
lasses of theories

(e.g., 
ollapse-free theories) some of these 
on
i
ts 
annot o

ur, and thus the


orresponding nondeterministi
 steps 
an be avoided.

The 
ombination pro
edures mentioned until now all 
onsidered the problem

of 
ombining algorithms that 
ompute (�nite) 
omplete sets of E-uni�ers. The

problem of how to 
ombine de
ision pro
edures is not solved by these approa
hes,

in parti
ular not for theories like asso
iativity, where uni�
ation problems need

not have a �nite 
omplete set of uni�ers. A
tually, the paper by S
hmidt-S
hau�

[60℄ also 
onsidered the problem of 
ombining de
ision pro
edures. It showed

that de
ision pro
edures 
an be 
ombined, provided that solvability of general

uni�
ation problems is de
idable in the 
omponent theories. The drawba
k of

this result was that for many theories (e.g., asso
iativity) one already needs to

employ 
ombination methods to show that general uni�
ation (i.e., uni�
ation in

the 
ombination of the given theory with synta
ti
 equality of the free fun
tion

symbols) is de
idable.

The problem of how to 
ombine de
ision pro
edures was �nally solved in a

very general form in [2, 6℄, where a 
ombination algorithm was given that 
an be

used both for 
ombining de
ision pro
edures and for 
ombining algorithms 
om-

puting 
omplete sets of uni�ers. This algorithm applies to arbitrary equational

theories over disjoint signatures, but it requires as a prerequisite that algorithms

solving so-
alled uni�
ation problems with linear 
onstant restri
tions
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are avail-

able for these theories (whi
h was, e.g., the 
ase for asso
iativity). In the sequel,

we des
ribe this 
ombination algorithm.

All the 
ombination results that will be presented in the following are re-

stri
ted to the 
ase of disjoint signatures. There are some approa
hes that try

to weaken the disjointness assumption, but the theories to be 
ombined must

satisfy rather strong 
onditions [57, 26℄.

4.2 A 
ombination algorithm for E-uni�
ation algorithms

In the following, we 
onsider equational theories E

1

and E

2

over the disjoint

signatures �

1

and �

2

. We denote the union of the theories by E := E

1

[E

2

and

6

In retrospe
t, if one looks at the 
ombination method for de
ision pro
edures by

S
hmidt-S
hau�, then one sees that he used the free fun
tion symbols in the general

uni�
ation problems just to en
ode linear 
onstant restri
tions.



the union of the signatures by � := �

1

[�

2

. The theories E

1

; E

2

are 
alled the


omponent theories of the 
ombined theory E.

Before des
ribing the algorithm in detail, we motivate its 
entral steps and

the ideas underlying these steps by examples. In these examples, E

1

will be the

theory of a binary asso
iative fun
tion symbol f , i.e., E

1

:= ff(f(x; y); z) =

f(x; f(y; z))g, and E

2

will be the free theory for the unary fun
tion symbol g

and the 
onstant symbol a, .e., E

2

:= fg(x) = g(x); a = ag.

Assume that we are given an elementary E-uni�
ation problem � . First,

we pro
eed in the same way as in the Nelson-Oppen pro
edure: using variable

abstra
tion, we de
ompose � into a union of two pure uni�
ation problems, i.e.,

we 
ompute an equivalent system of equations of the form

7

�

1

℄ �

2

, where �

i


ontains only terms over the signature �

i

(i = 1; 2).

Again, it is easy to see that an E-uni�er � of the original problem � is also

an E-uni�ers of the problems �

1

and �

2

. By using an appropriate proje
tion

te
hnique, whi
h repla
es alien subterms by variables, � 
an be turned into an

E

i

-uni�er of �

i

(see Subse
tion 4.4 for more details). As in the 
ase of the Nelson-

Oppen pro
edure, the other dire
tion need not be true: given solutions �

1

and

�

2

of �

1

and �

2

, it is not 
lear how to 
ombine them into a solution of �

1

℄ �

2

.

An obvious problem that one may en
ounter is that the substitutions �

1

and

�

2

may assign di�erent terms to the same variable.

Example 3. Consider the de
omposed problem �

1

℄ �

2

, where

�

1

:= fx =

?

f(z; z)g and �

2

:= fx =

?

ag:

The substitution �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fx 7! ag solves �

2

.

Thus, there are 
on
i
ting assignment for the variable x, and it is not 
lear how

to 
ombine the two substitutions into a single one. In fa
t, in the example, there

is no solution for the 
ombined problem �

1

℄ �

2

.

This problem motivates the following step of the 
ombination algorithm.

Theory labeling. Given �

1

℄ �

2

, we (nondeterministi
ally) introdu
e for

ea
h variable o

urring in this problem a label 1 or 2. The label 1 for

variable x indi
ates that x may be instantiated by solutions of the E

1

-

uni�
ation problem �

1

, whereas it must be treated as a 
onstant by

solutions of the E

2

-uni�
ation problem �

2

. Label 2 is interpreted in the

dual way.

In the example, the variable x must be assigned either label 1 or 2. In the �rst


ase, �

2

does not have a solution, whereas in the se
ond 
ase �

1

does not have

a solution.

Unfortunately, this step introdu
es a new problem. Some of the new free

\
onstants" generated by the labeling step may need to be identi�ed by a solution

of the subproblem, but this is no longer possible sin
e they are 
onstants, and

thus 
annot be repla
ed.

7

The symbol \℄" indi
ates that this union is disjoint.



Example 4. Consider the de
omposed problem �

1

℄ �

2

, where

�

1

:= fx =

?

f(z; z); y =

?

f(z; z)g and �

2

:= fg(x) =

?

g(y)g:

Obviously, �

1


an only be solved if both x and y obtain label 1. However, then

�

2

does not have a solution sin
e x and y are viewed as di�erent 
onstants in �

2

.

Nevertheless, �

1

℄ �

2

has a solution, namely � := fx 7! f(z; z); y 7! f(z; z)g.

There is, however, a simple solution to this problem.

Variable identi�
ation. Before introdu
ing the theory labeling, variables

are (nondeterministi
ally) identi�ed.

8

In the example, we just identify x and y (e.g., by repla
ing all o

urren
es of y

by x). The resulting problem �

0

2

= fg(x) =

?

g(x)g is now obviously solvable.

After we have performed the identi�
ation and the labeling step, we 
an be

sure that given solutions �

1

and �

2

of �

1

and �

2

have a disjoint domain, and thus

it makes sense to 
onsider the substitution �

1

[�

2

. Nevertheless, this substitution

need not be a solution of �

1

℄ �

2

, as illustrated by the following example.

Example 5. Consider the de
omposed problem �

1

℄ �

2

, where

�

1

:= fx = f(z; z)g and �

2

:= fz =

?

ag:

We assume that no variables are identi�ed and that x obtains label 1 and z label

2. Then �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fz 7! ag solves �

2

. However,

� := �

1

[ �

2

= fx 7! f(z; z); z 7! ag does not solve �

1

℄ �

2

sin
e �(x) = f(z; z)

and �(f(z; z)) = f(a; a).

To avoid this kind of problem, we must iteratively apply the substitutions

�

1

and �

2

to ea
h other, i.e., 
onsider the sequen
e �

1

, �

2

Æ �

1

, �

1

Æ �

2

Æ �

1

,

9

et
. until it stabilizes. In the above example, the 
orre
t 
ombined substitution

would be fx 7! f(a; a); z 7! ag = �

2

Æ �

1

= �

1

Æ �

2

Æ �

1

= : : :. In general, this

pro
ess need not terminate sin
e there may be 
y
li
 dependen
ies between the

variable instantiations.

Example 6. Consider the de
omposed problem �

1

℄ �

2

, where

�

1

:= fx = f(z; z)g and �

2

:= fz =

?

g(x)g:

We assume that no variables are identi�ed and that x obtains label 1 and z label

2. Then �

1

:= fx 7! f(z; z)g solves �

1

and �

2

:= fz 7! g(x)g solves �

2

. Be
ause

x is repla
ed by a term 
ontaining y and y by a term 
ontaining x, iterated

appli
ation of the substitutions to ea
h other does not terminate. In fa
t, it is

easy to see that the 
ombined problem �

1

℄ �

2

does not have a solution.

8

This is a step that also o

urs in the nondeterministi
 variant of the Nelson-Oppen

pro
edure.

9

The symbol \Æ" denotes 
omposition of substitution, where the substitution on the

right is applied �rst.



In the 
ombination pro
edure, su
h 
y
li
 dependen
ies between solutions of the


omponent problems are prohibited by the following step:

Linear ordering. We (nondeterministi
ally) 
hoose a linear ordering <

on the variables o

urring in �

1

℄ �

2

. Given a labeling of variables as

explained above, we ask for solutions �

i

of �

i

(i = 1; 2) that respe
t

the labeling in the sense introdu
ed above, and satisfy the following

additional 
ondition: if a variable y with label j o

urs in �

i

(x), where

x has label i 6= j, then y < x.

As a 
onsequen
e of these steps, the E

i

-uni�
ation problems obtained as output

of the 
ombination pro
edure are no longer elementary E

i

-uni�
ation problems.

Be
ause of the labeling, they 
ontain free 
onstants (the variables with label

j 6= i), and the linear ordering imposes additional restri
tions on the possible

solutions. We 
all su
h a problem an E

i

-uni�
ation problem with linear 
onstant

restri
tions.

De�nition 2. Let F be an equational theory. An F -uni�
ation problem with

linear 
onstant restri
tion is a quadruple (�;X;C;<). The �rst 
omponent, � ,

is an elementary F -uni�
ation problem. X and C are disjoint �nite sets su
h that

X [ C is a superset of the set of variables o

urring in � . The last 
omponent,

<, is a linear ordering on X [ C. A solution of (�;X;C;<) is a substitution �

that satis�es the following 
onditions:

1. � solves the elementary F -uni�
ation problem � ;

2. � treats all elements of C as 
onstants, i.e., �(x) = x for all x 2 C;

3. for all x 2 X and 
 2 C, if x < 
, then 
 must not o

ur in �(x).

We are now ready to give a formal des
ription of the 
ombination algorithm in

Fig. 1. As before, we restri
t the des
ription to the 
ombination of two 
omponent

algorithms. It should be noted, however, that the generalization to n > 2 theories

would be straightforward. Sin
e Steps 2{4 are nondeterministi
, the pro
edure

a
tually generates a �nite set of possible output pairs. The following proposition

shows that the 
ombination algorithm is sound and 
omplete if used as a s
heme

for 
ombining E

i

-uni�
ation algorithms that de
ide solvability. A sket
h of a

proof will be given later on.

Proposition 3. The input problem, � , has a solution i� there exists an output

pair of the Combination Algorithm, ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), su
h that

both 
omponents are solvable.

4.3 Consequen
es

The straightforward generalization of Proposition 3 to n � 2 theories yields the

following 
ombination result for de
ision pro
edures.

Theorem 6. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint signa-

tures su
h that solvability of E

i

-uni�
ation problems with linear 
onstant restri
-

tions is de
idable for i = 1; : : : ; n. Then uni�ability is de
idable for the 
ombined

theory E := E

1

[ : : : [ E

n

.



Input: A �nite set � of equations between (�

1

[ �

2

)-terms. The following steps

are applied in 
onse
utive order.

1. De
omposition.

Using variable abstra
tion, we 
ompute an equivalent system �

1

℄�

2

where �

1

only


ontains pure �

1

-terms and �

2

only 
ontains pure �

2

-terms.

2. Choose Variable Identi�
ation.

A partition � of the set of variables o

urring in �

1

℄ �

2

is 
hosen, and for ea
h

equivalen
e 
lass of � a representative is sele
ted. If y is the representative of

� 2 � and x 2 � we say that y is the representative of x. Let Y denote the set of

all representatives. Now ea
h variable is repla
ed by its representative. We obtain

the new system �

0

1

℄ �

0

2

.

3. Choose Theory Labeling.

A labeling fun
tion Lab : Y ! f1; 2g is 
hosen. Let Y

1

and Y

2

respe
tively denote

the set of variables with label 1 and 2.

4. Choose Linear Ordering.

A linear ordering \<" on Y is sele
ted.

Output: The pair ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)).

Ea
h 
omponent (�

0

i

; Y

i

; Y

j

; <) is treated as an E

i

-uni�
ation problem with linear


onstant restri
tion (i = 1; 2).

Fig. 1. The Combination Algorithm

By \uni�ability" we mean here solvability of elementary E-uni�
ation problems.

Sin
e, for ea
h set 
 of free fun
tion symbols, solvability of uni�
ation problems

with linear 
onstant restri
tion in the free theory F




= ff(: : :) = f(: : :) j f 2 
g

is de
idable (see below), the result of Theorem 6 
an also be lifted to general E-

uni�
ation problems. In fa
t, given a general E-uni�
ation problem, � , we just

have to apply the theorem to the theories E

1

; : : : ; E

n

; F




where 
 denotes the

set of free fun
tion symbols o

urring in � . In Se
tion 5.1 we shall see that E-

uni�
ation problems with linear 
onstant restri
tions 
an always be en
oded as

E-uni�
ation problems with free fun
tion symbols. As a 
onsequen
e, Theorem 6

also holds for E-uni�
ation problems with linear 
onstant restri
tions, whi
h

yields a modularity result for uni�
ation with linear 
onstant restri
tions.

A simple analysis of the (nondeterministi
) steps of the Combination Algo-

rithm also provides us with the following 
omplexity result, whi
h is analogous

to the one of Theorem 5:

Theorem 7. If solvability of E

i

-uni�
ation problems with linear 
onstant re-

stri
tions is de
idable in NP, then uni�ability in the 
ombined theory E

1

[E

2

is

also de
idable in NP.

Although it was designed for the purpose of 
ombining de
ision pro
edures,

the Combination Algorithm 
an also be used to 
ompute 
omplete sets of uni�ers

modulo the union of equational theories.



Theorem 8. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint signa-

tures, and let E := E

1

[ : : :[E

n

be their union. Assume that we have uni�
ation

algorithms that 
ompute, for ea
h E

i

-uni�
ation problem with linear 
onstant

restri
tions, a �nite 
omplete set of E

i

-uni�ers (i = 1; : : : ; n). Then we 
an


ompute a �nite 
omplete set of E-uni�ers for ea
h elementary E-uni�
ation

problem.

The main idea for proving this theorem (sket
hed here for the 
ase of n = 2

theories) is as follows. In the proof of soundness of the 
ombination algorithm

(see Se
tion 4.4 below), we will show how an arbitrary pair (�

1

; �

2

) of solutions

of an output pair of the 
ombination algorithm 
an be 
ombined into a solution

�

1

� �

2

of the input problem (see also Example 5). Given a single output pair

((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), one 
an 
ompute 
omplete sets of uni�ers for

the two 
omponent problems, and then 
ombine the elements of these 
omplete

sets in all possible ways. If this is done for all output pairs, then the set of all


ombined solutions obtained this way is a 
omplete set of uni�ers for the input

problem (see [6℄ for details).

The last two results 
an again be lifted from elementary uni�
ation problems

to general uni�
ation problems and to uni�
ation problems with linear 
onstant

restri
tions in the 
ombined theory, whi
h provides us with a modularity result.

In order to apply these general 
ombination results to spe
i�
 theories, one

needs algorithms that 
an solve uni�
ation problems with linear 
onstant re-

stri
tions for these theories. For regular theories, an algorithm for 
omputing


omplete sets of uni�ers for uni�
ation with 
onstants 
an be used to obtain

an algorithm for 
omputing 
omplete sets of uni�ers for uni�
ation with linear


onstant restri
tions: just remove the uni�ers violating the 
onstant restri
tions

from the 
omplete set. In parti
ular, sin
e the free theory is obviously regular,

one 
an test solvability of a uni�
ation problem with linear 
onstant restri
tions

in the free theory by 
omputing the most general uni�er, and then 
he
king

whether this uni�er satis�es the 
onstant restri
tions. For non-regular theories,

this simple way of pro
eeding is not possible. However, the 
onstant elimina-

tion pro
edures required by the approa
h of S
hmidt-S
hau� 
an be used to

turn 
omplete sets of uni�ers for uni�
ation with 
onstants into 
omplete sets of

uni�ers for uni�
ation with linear 
onstant restri
tions (see [6℄, Se
tion 5.2, for

details).

With respe
t to de
ision pro
edures, it has turned out that, for several in-

teresting theories (e.g., the theory AC of an asso
iative-
ommutative symbol or

the theory ACI of an asso
iative-
ommutative-idempotent symbol), the known

de
ision pro
edures for uni�
ation with 
onstants 
an easily be modi�ed into

algorithms for uni�
ation with linear 
onstant restri
tions [3℄. In parti
ular, it

is easy to show that Theorem 7 applies to AC and ACI, whi
h yields a simple

proof that the de
ision problem for general AC- and ACI-uni�
ation is in NP.

For the theory A of an asso
iative fun
tion symbol, de
idability of uni�
ation

problems with linear 
onstant restri
tions is an easy 
onsequen
e (see [3℄) of a

result by S
hulz [61℄ on a generalization of Makanin's de
ision pro
edure. As a




onsequen
e, general A-uni�
ation is also de
idable (this problem had been open

before the development of the 
ombination algorithm presented above).

There are, however, also theories for whi
h uni�
ation with linear 
onstant

restri
tions is 
onsiderably harder than uni�
ation with 
onstants. For example,

it 
an be shown [1℄ that Boolean uni�
ation with linear 
onstant restri
tions

is PSPACE-
omplete whereas Boolean uni�
ation with 
onstants is \only" �

p

2

-


omplete. Until now, it is not known whether there exists an equational theory

for whi
h uni�
ation with 
onstants is de
idable, but uni�
ation with linear


onstant restri
tions is unde
idable.

4.4 Corre
tness

In the remainder of this se
tion, we sket
h how to prove Proposition 3. The full

proof 
an be found in [6℄.

To show soundness of the Combination Algorithm, it suÆ
es to show that, for

ea
h output pair ((�

0

1

; Y

1

; Y

2

; <); (�

0

2

; Y

2

; Y

1

; <)), a given pair of solutions (�

1

; �

2

)

of the two 
omponents 
an be 
ombined into a solution � of �

0

1

℄ �

0

2

, whi
h is

treated as an elementary E-uni�
ation problem here. In fa
t, this obviously

implies that � 
an be extended to a solution of the input problem � .

The 
ombined solution � is de�ned by indu
tion on the linear ordering <.

Assume that � is de�ned for all variables y 2 Y that are smaller than z 2 Y

with respe
t to <. Without loss of generality we may assume that z 2 Y

1

has

label 1 and that �

1

(z) does not 
ontain any variables from Y

1

. Sin
e �

1

satis�es

the linear 
onstant restri
tions, it follows that all labeled variables y o

urring in

�

1

(z) are smaller than z with respe
t to \<", whi
h implies that �(y) is de�ned

by indu
tion hypothesis. We de�ne �(z) := �(�

1

(z)). It is easy to see that the

substitution � obtained in this way is an instan
e of both �

1

and �

2

. It follows

that � is an E

i

-uni�er, and hen
e an E-uni�er, of �

0

i

(i = 1; 2). Consequently, �

is a solution of �

0

1

℄ �

0

2

.

It is more diÆ
ult to prove the 
ompleteness part of Proposition 3. Basi
ally,

the proof pro
eeds as follows. A given solution � of � is used to de�ne suitable


hoi
es in the nondeterministi
 steps of the Combination Algorithm, i.e., 
hoi
es

that lead to an output pair where both 
omponents are solvable:

{ at the variable identi�
ation step, two variables x and y are identi�ed i�

�(x) =

E

�(y). Obviously � is a solution of the system �

0

1

℄ �

0

2

rea
hed after

this identi�
ation.

{ at the labeling step, a representative y re
eives label 1 i� �(x) has a symbol

from �

1

as topmost fun
tion symbol.

{ the linear ordering \<" that is 
hosen is an arbitrary extension of the par-

tial ordering that is indu
ed by the subterm relationship of the �-values of

representatives.

However, this way of pro
eedings is 
orre
t only if the solution � of the input

problem is assumed to be normalized in a parti
ular way. In [2℄, using so-
alled

\unfailing 
ompletion," a (possibly in�nite) 
anoni
al rewrite system R for the




ombined theory E is de�ned. For ea
h variable x in the system �

0

1

℄ �

0

2

it is

then assumed that �(x) is in R-normal form. Another possibility is to assume

that the terms �(x) are in the so-
alled layer-redu
ed form [60, 42℄. In prin
iple,

this normal form is obtained by applying 
ollapse-equations as mu
h as possible.

It remains to �nd, given a normalized solution �, suitable solutions �

1

and

�

2

of the output pair determined by the 
hoi
es indu
ed by �. To de�ne these

solutions, a \proje
tion te
hnique" is introdu
ed that transforms possibly mixed

solution terms of the form �(y) to a pure �

i

-terms �

i

(y). Basi
ally, to de�ne

�

i

(y), \alien" subterms of �(y) (i.e., maximal subterms starting with a symbol

not belonging to �

i

) are repla
ed by new variables, while ensuring that E-

equivalent subterms are repla
ed by the same variable. If �(y) itself is alien,

then �

i

(y) := y, whi
h ensures that variables with label j 6= i are treated as free


onstants.

5 The logi
al and algebrai
 perspe
tive

In this se
tion, we des
ribe the problem of 
ombining uni�
ation algorithms from

a more logi
al and algebrai
 point of view. This leads to a modi�ed des
ription

of the 
ombination algorithm and to a new proof of its 
orre
tness. In the next

se
tion, we will show that the te
hniques developed in the present se
tion allow

us to lift the 
ombination methodology to more general 
lasses of 
onstraints.

5.1 A logi
al reformulation of the Combination Algorithm

Theorems 1 and 2 show that elementary E-uni�
ation problems and E-

uni�
ation problems with 
onstants 
orrespond to natural 
lasses of logi
al de
i-

sion problems. The question arises whether this 
lassi�
ation 
an be extended to

general E-uni�
ation problems and to E-uni�
ation problems with linear 
on-

stant restri
tions. The following theorem, whi
h was �rst proved in [6℄, gives

a positive answer to this question. In parti
ular, it states that both problems


orrespond to the same 
lass of logi
al formulae.

Theorem 9. Let E be an equational theory with signature �, and V a 
ountably

in�nite set of variables. Then the following statements are equivalent:

1. Solvability of E-uni�
ation problems with linear 
onstant restri
tions is de-


idable.

2. The positive theory of E is de
idable.

3. The positive theory of T (�; V )==

E

is de
idable.

4. Solvability of general E-uni�
ation problems is de
idable.

From a pra
ti
al point of view, the theorem is interesting be
ause it shows that

any theory that 
an reasonably be integrated in a universal dedu
tive ma
hinery

via uni�
ation 
an also be 
ombined with other su
h theories. In fa
t, as men-

tioned at the beginning of Se
tion 4.1, su
h an integration usually requires an

algorithm for general uni�
ation. The theorem shows that su
h an algorithm also



makes sure that the pre
ondition for our 
ombination method to apply|namely,

the existen
e of an algorithm for uni�
ation with linear 
onstant restri
tions|

are satis�ed.

10

Theorem 9, together with our 
ombination result for de
ision pro
edures,

yields the following modularity result for the de
idability of positive theories:

Theorem 10. Let E

1

; : : : ; E

n

be equational theories over disjoint signatures.

Then the positive theory of E

1

[ : : : [ E

n

is de
idable i� the positive theories of

the 
omponent theories E

i

are de
idable, for i = 1; : : : ; n.

In the following, we motivate the equivalen
es stated in Theorem 9 by sket
h-

ing how the respe
tive problems 
an be translated into ea
h other (see [6℄ for a

detailed proof of the theorem):

{ Any E-uni�
ation problem with linear 
onstant restri
tions (�;X;C;<) 
an

be translated into a positive �-senten
e �

�

as follows: both variables (i.e.,

elements ofX) and free 
onstants (i.e., elements of C) are treated as variables

in this formula; the matrix of �

�

is the 
onjun
tion of all equations in � ; and

in the quanti�er pre�x, the elements of X are existentially quanti�ed, the

elements of C are universally quanti�ed, and the order of the quanti�
ations

is given by the linear ordering <.

{ The equivalen
e between 2) and 3) is due to the well-known fa
t that the

E-free algebra with 
ountably many generators is 
anoni
al for the positive

theory of E [48℄, i.e., a positive senten
e is valid in T (�; V )==

E

i� it is valid

in all models of E.

{ Given a positive �-senten
e �, one �rst removes universal quanti�ers by

Skolemization. The positive existential senten
e obtained this way may 
on-

tain additional free fun
tion symbols, the Skolem fun
tions. It 
an be trans-

formed into a disjun
tion of 
onjun
tive positive existential senten
es, and

ea
h of the disjun
ts 
an obviously be translated into a general E-uni�
ation

problem.

{ The 
ombination method des
ribed in Se
tion 4 
an be used to redu
e solv-

ability of a given general E-uni�
ation problem to solvability of E-uni�
ation

problems with linear 
onstant restri
tions.

As an example, 
onsider the free theory F

fgg

:= fg(x) = g(x)g, and the F

fgg

-

uni�
ation problem with 
onstants fx =

?

g(
)g. If we add the 
onstant restri
-

tion x < 
, then this problem is not solvable (sin
e any solution must substitute

x by the term g(
), whi
h 
ontains the 
onstant 
). However, under the restri
-

tion 
 < x the problem is solvable. The following are the positive senten
es

and general uni�
ation problems obtained by translating these two uni�
ation

10

Stri
tly speaking, the theorem makes this statement only for de
ision pro
edures.

In [6℄ it is shown, however, that the equivalen
e between general uni�
ation and

uni�
ation with linear 
onstant restri
tions also holds with respe
t to algorithms

that 
ompute 
omplete sets of uni�ers.



problems with linear 
onstant restri
tions:

uni�
ation with l
r positive senten
e general uni�
ation

fx =

?

g(
)g; x < 
 9x:8y: x = g(y) fx =

?

g(h(x))g

fx =

?

g(
)g; 
 < x 8y:9x: x = g(y) fx =

?

g(d)g

For example, 9x:8y: x = g(y) is not valid in all models of F

fgg

sin
e this formula

says that g must be a 
onstant fun
tion, whi
h obviously does not follow from

F

fgg

. Correspondingly, fx = g(h(x))g does not have a solution be
ause it 
auses

an o

ur-
he
k failure during synta
ti
 uni�
ation.

Returning now to the 
ombination problem, let E

1

and E

2

be two nontrivial

equational theories over disjoint signatures �

1

and �

2

, let E := E

1

[ E

2

de-

note the union of the theories and � := �

1

[ �

2

the union of the signatures.

Using the 
orresponden
e between elementary E-uni�
ation problems and ex-

istentially quanti�ed 
onjun
tions of equations for the input of the algorithm,

and the 
orresponden
e between E

i

-uni�
ation problems with linear 
onstant

restri
tion and positive senten
es for the output 
omponents we obtain the re-

formulation of the Combination Algorithm shown in Fig. 2. The advantage of

the new formulation is that it does no longer rely on notions and 
on
epts that

are spe
i�
 to uni�
ation problems modulo equational theories, su
h as linear


onstant restri
tions, whi
h are quite te
hni
al restri
tions on the form of the

allowed solutions. Corre
tness follows from the following proposition.

Proposition 4. The input senten
e 9u: 
 holds in the 
ombined quotient term

algebra T (�

1

[�

2

; V )==

E

1

[E

2

i� there exists an output pair (�; �) su
h that �

holds in T (�

1

; V )==

E

1

and � holds in T (�

2

; V )==

E

2

.

Sin
e the new 
ombination algorithm is just a reformulation of the earlier version,

Proposition 4 is a trivial 
onsequen
e of Proposition 3.

The remainder of this se
tion is devoted to giving an independent 
orre
tness

proof for the logi
al version of the Combination Algorithm. The new proof will

have some signi�
ant advantages: it is more abstra
t and less te
hni
al, and thus

easier to generalize to larger 
lasses of 
onstraints.

5.2 Fusions of free algebras

The proof of soundness of the Nelson-Oppen 
ombination pro
edure that we

have presented in Se
tion 3 depends on a very simple algebrai
 
onstru
tion: the

fusion of stru
tures. Our goal is to adapt this algebrai
 approa
h to the task of

proving 
orre
tness of the (logi
al reformulation of the) 
ombination pro
edure

for uni�
ation algorithms. At �rst sight, the input problems 
onsidered in the


ase of uni�
ation look like a spe
ial 
ase of the problems a

epted by the Nelson-

Oppen pro
edure: they are (existentially quanti�ed) 
onjun
tions of equations.

11

11

The Nelson-Oppen pro
edure additionally allows for negation and for non-equational

atoms.



Input: A (�

1

[�

2

)-senten
e of the form 9u: 
, where 
 is a 
onjun
tion of equa-

tions between (�

1

[�

2

)-terms and u is a �nite sequen
e 
onsisting of the variables

o

urring in 
. The following steps are applied in 
onse
utive order.

1. De
omposition.

Using variable abstra
tion, 
ompute an equivalent senten
e 9v: (


1

^ 


2

), where 


i

is a 
onjun
tion of equations between pure �

i

-terms for i = 1; 2.

2. Choose Variable Identi�
ation.

A partition � of the set of variables o

urring in v is 
hosen, and for ea
h equiv-

alen
e 
lass of � a representative is sele
ted. If v is the representative of � 2 �

and u 2 �, then we say that v is the representative of u. Let W denote the set of

all representatives. Now ea
h variable is repla
ed by its representative both in the

quanti�er pre�x and in the matrix. Multiple quanti�
ations over the same variable

in the pre�x are dis
arded. We obtain the new senten
e 9w: (


0

1

^ 


0

2

).

3. Choose Labeling.

A labeling fun
tion Lab : W ! f1; 2g is 
hosen.

4. Choose Linear Ordering.

A linear ordering \<" on W is sele
ted.

Output: The pair

� = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 


0

1

and � = 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 


0

2

:

Here u

1

v

1

: : :u

k

v

k

is the unique re-ordering of W along <. The sequen
es u

i

(v

i

)

represent the blo
ks of variables with label 1 (label 2).

Fig. 2. The Combination Algorithm (Logi
al Reformulation)

The main di�eren
e between the two 
ombination problems lies in the semanti
s

of the 
onstraints. In the 
ase treated by Nelson and Oppen, the input 
onstraint

must be satis�ed in some model of the 
ombined theory T

1

[ T

2

, whereas in the


ase of uni�
ation algorithms the input 
onstraint must be satis�ed in the free

model of the 
ombined theory E

1

[ E

2

. In the proof of 
orre
tness this means

that, for the Nelson-Oppen pro
edure, it is suÆ
ient to show that the input


onstraint 
an be satis�ed in an arbitrary fusion of a model of T

1

with a model

of T

2

. In the uni�
ation 
ase, we must make sure that this fusion is in fa
t the

(E

1

[ E

2

)-free algebra with 
ountably in�nitely many generators. Thus, given

the E

1

- and E

2

-free algebras B

1

:= T (�

1

; V )==

E

1

and B

2

:= T (�

2

; V )==

E

2

,

respe
tively, we want to 
onstru
t a fusion of both algebras that is (isomorphi


to) the (E

1

[ E

2

)-free algebra B := T (�

1

[ �

2

; V )==

E

1

[E

2

. This 
onstru
tion

will be 
alled the amalgamation 
onstru
tion.

In the sequel, as always in this se
tion, we assume that the signatures �

1

and

�

2

are disjoint, and that the theories E

1

and E

2

are nontrivial. For simpli
ity

we shall identify ea
h variable x 2 V with its equivalen
e 
lass w.r.t. E

i

in B

i

,

i.e., write again x for the E

i

-
lass [x℄

E

i

= ft 2 T (�

i

; V ) j t =

E

i

xg.



The 
onstru
tion starts with a preparatory step where we extend B

i

to an

E

i

-free algebra B

1

i

of the form T (�

i

; V [Y

i

)==

E

i

where Y

i

denotes a 
ountably

in�nite set of additional variables (i = 1; 2). Sin
e the sets V [ Y

i

and V have

the same 
ardinality, B

1

1

and B

1

2

are isomorphi
 to B

1

and B

2

, respe
tively.

We assume (without loss of generality) that B

1

1

\B

1

2

= V . These two algebras

(as well as details of the amalgamation 
onstru
tion) are depi
ted in Fig. 3.

1

1

0 0

2

2

3

34

4

5

56

6

B2B1

V V

Y1 Y2

B1
∞ B2

∞

B1

B1

B2

B2
(1) (1)

(2)
(2)

Fig. 3. The amalgamation 
onstru
tion.

We shall now 
onstru
t a bije
tion between the domains B

1

1

and B

1

2

of

the extended algebras B

1

1

and B

1

2

. This bije
tion will then be used to de�ne a

fusion of B

1

1

and B

1

2

(see Lemma 1), whi
h is also a fusion of B

1

and B

2

. Note,

however, that we 
annot use an arbitrary bije
tion between B

1

1

and B

1

2

sin
e

we want this fusion to be the (E

1

[ E

2

)-free algebra with 
ountably in�nitely

many generators.

In the following, let us 
all an element of B

1

i

n (V [Y

i

) a non-atomi
 element

of B

1

i

. The elements of V [ Y

i

are 
alled atomi
. The 
ru
ial property that we

want to obtain is that non-atomi
 elements of one side are always mapped to

atomi
 elements of the other side. The de�nition of the bije
tion pro
eeds in

an in�nite series of zig-zag steps: at ea
h step an existing partial bije
tion is

extended by adding a new partial bije
tion with domain and image sets disjoint

to the sets already used.



In step 0 we use the identity mapping on V to obtain a bije
tion between

the 
ommon set of generators of both sides (see areas 0 in Fig. 3). We say that

the elements in V of both sides are now �bered.

In step 1 we assign suitable images to the elements of B

1

n V (see area 1 on

the left-hand side). To this end, we sele
t a set of atoms Y

(1)

2

� Y

2

with the

same 
ardinality as B

1

n V (area 1 on the right-hand side represents Y

(1)

2

). The

existing partial bije
tion is extended by adding a bije
tion between B

1

n V and

Y

(1)

2

(indi
ated by a double arrow between the areas 1). We say that the elements

in B

1

nV and Y

(1)

2

are now �bered as well. In step 1 and in the sequel, whenever

we sele
t a set of new atoms, we leave an in�nite set of atoms untou
hed, whi
h

are thus available in subsequent steps of the 
onstru
tion.

In the symmetri
 step 2 we add a bije
tion between B

2

nV (area 2, right-hand

side ) and a suitable set of new atoms Y

(1)

1

� Y

1

(area 2, left-hand side). With

this step we say that now the elements in B

2

n V and Y

(1)

1

are �bered as well.

For i = 1; 2, let B

(1)

i

denote the subalgebra of B

1

i

that is generated by

V [Y

(1)

i

. The elements of B

(1)

1

that do not yet have an image are �bered in step

3 using a fresh set of atoms Y

(2)

2

of the right-hand side (areas 3); in step 4 the

elements of B

(1)

2

that do not yet have images are �bered using a fresh set of

atoms Y

(2)

1

of left-hand side (areas 4).

For i = 1; 2, let B

(2)

i

denote the subalgebra of B

1

i

that is generated by

V [ Y

(1)

i

[ Y

(2)

i

. We 
ontinue in the same way as above (areas 5; 6), et
. The


onstru
tion determines for i = 1; 2 an as
ending tower of �

i

-subalgebras

B

i

= B

(0)

i

� B

(1)

i

� B

(2)

i

� : : :

of B

1

i

. For simpli
ity we assume that the 
onstru
tion eventually 
overs ea
h

atom of both sides, hen
e we have B

1

i

=

S

1

k=0

B

(k)

i

. Sin
e the limit bije
tion


an be read in two dire
tions we now have two inverse bije
tions

h

1�2

: B

1

1

! B

1

2

and h

2�1

: B

1

2

! B

1

1

:

As in the proof of Lemma 1, these bije
tions 
an be used to 
arry the�

i

-stru
ture

of B

1

i

to B

1

j

(where fi; jg = f1; 2g). Let f be an n-ary fun
tion symbol of �

i

and b

1

; : : : ; b

n

2 B

1

j

. We de�ne

f

B

1

j

(b

1

; : : : ; b

n

) := h

i�j

(f

B

1

i

(h

j�i

(b

1

); : : : ; h

j�i

(b

n

))):

With this de�nition, the mappings h

1�2

and h

2�1

are inverse isomorphisms

between the (�

1

[ �

2

)-algebras obtained from B

1

1

and B

1

2

by means of the

above signature expansion. For this reason, it is irrelevant whi
h of the two

algebras we take as the 
ombined algebra. We take, say, the (�

1

[ �

2

)-algebra

obtained from B

1

1

, and denote it by B

1

� B

2

.

Re
all that B

i

and B

1

i

are �

i

-isomorphi
 algebras sin
e both are free over a


ountably in�nite set of generators for the 
lass of all models of E

i

. In addition,

the 
onstru
tion makes sure that B

1

� B

2

is �

i

-isomorphi
 to B

1

i

(i = 1; 2),

whi
h yields the following lemma:



Lemma 2. B

1

� B

2

is a fusion of B

1

and B

2

.

More interestingly, the following theorem (whose proof 
an be found in [7℄) shows

that we have indeed found the desired des
ription of T (�

1

[�

2

; V )==

E

1

[E

2

as a

fusion of the 
omponent algebras B

1

= T (�

1

; V )==

E

1

and B

2

= T (�

2

; V )==

E

2

:

Theorem 11. B

1

� B

2

is (isomorphi
 to) the (E

1

[ E

2

)-free algebra over a


ountably in�nite set of generators.

At �rst sight, it is perhaps not easy to see the relationship between the

amalgamation 
onstru
tion and the usual des
ription of T (�

1

[ �

2

; V )=

E

1

[E

2

in terms of =

(E

1

[E

2

)

-equivalen
e 
lasses of terms (i.e., �nite trees). In order to

illustrate this 
onne
tion, let us look at the simplest possible 
ase where we


ombine two absolutely free algebras, i.e., where E

1

and E

2

are free theories.

Let us assume that �

1

= ff; ag and �

2

= fg; bg, where f is binary, g is unary

and a; b are 
onstants. The following �gure depi
ts, on the left-hand side, an

element of the 
ombined domain using the 
onventional des
ription as a �nite

tree. Subparts belonging to distin
t signatures are highlighted a

ordingly.

b

g
g

g

f

a

y3 y4

z1

z2

f
y1 y2

b g

b

g
g

g

f

a
g

b

f

The \leaf" elements a and b; g(b) 
orrespond to elements of B

1

and B

2

that are

�bered in steps 1 and 2 of the 
onstru
tion, say, with atoms z

1

and y

1

; y

2

, re-

spe
tively. Thus, the subtree f(b; g(b)) 
orresponds to the element f

B

1

1

(y

1

; y

2

)

of B

(1)

1

, and g(g(a)) to the element g

B

1

2

(g

B

1

2

(z

1

)) of B

(1)

2

. These elements are

�bered with new atoms (say z

2

and y

3

) in the steps 2 and 3. The subtree

g(f(b; g(b))) 
orresponds to an element of B

(2)

2

, whi
h is �bered by a new atom

(say y

4

) in step 6. Finally, the 
omplete tree f(g(g(a)); g(f(b; g(b)))) 
orresponds

to an element of B

(3)

1

. On the right-hand side of the �gure, we have represented

all elements of the fusion that are involved in the representation of the 
omplete

tree and made the �bering bije
tions expli
it using arrows. Due to the indu
tive

form of the 
onstru
tion, the elements of the fusion 
an be 
onsidered as gener-

alized \�nite trees" where nodes represent elements of the two 
omponents, and

links represent ordered pairs of the �bering fun
tion.

If E

1

and E

2

are more interesting equational theories, the relationship be-

tween a given mixed term and the 
orresponding element of B

1

� B

2

may be

less obvious. For example, if E

2


ontains the 
ollapse axiom g(x) = x, then



g(g(a)) is equivalent to a, and thus the 
orresponding element belongs to B

1

,

and not to B

(1)

2

. A similar phenomenon o

urs in the presen
e of non-regular

axioms. For example, if E

1

is the free theory, then f(b; g(b)) 
orresponds to an

element of B

(1)

1

. However, if E

1


ontains the (non-regular) axiom f(x; y) = a,

then f(b; g(b)) is equivalent to a, and the 
orresponding element belongs to B

1

.

This issue is 
losely related to the fa
t that, in the proof of 
ompleteness of

Proposition 3, we needed a normalized substitution. Given a mixed term that

is normalized by the (possibly in�nite) 
anoni
al rewrite system R, the simple

synta
ti
 
orresponden
e between subtrees of this term and elements of B

1

�B

2

holds also for theories that are not regular and 
ollapse-free.

In the next subse
tion, we will use the new des
ription of the 
ombined

algebra T (�

1

[ �

2

; V )==

E

1

[E

2

as a fusion B

1

� B

2

to show 
orre
tness of the


ombination algorithm in its logi
al reformulation.

5.3 Corre
tness of the Combination Algorithm

First, we show soundness of the Combination Algorithm (logi
al formulation).

In the following, boldfa
e letters like u;v and b;d (possibly with subs
ripts)

will respe
tively denote �nite sequen
es of variables and algebra elements. An

expression like b 2 B expresses that b is a sequen
e of elements of B, whi
h

denotes the 
arrier set of the algebra B. We denote by h(b) the result of applying

the homomorphism h to the sequen
e b, i.e., the sequen
e 
onsisting of the


omponents h(b) for all 
omponents b of b.

Lemma 3. Let 9u: 
 be an input senten
e of the Combination Algorithm. Then

B

1

� B

2

j= 9u: 
 if B

1

j= � and B

2

j= � for some output pair (�; �).

Proof. Sin
e B

1

and B

1

1

are isomorphi
 �

i

-algebras, we know that B

1

1

j= �.

A

ordingly, we also have B

1

2

j= �. More pre
isely, this means

(�) B

1

1

j= 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 


0

1

(u

1

;v

1

; : : : ;u

k

;v

k

);

(��) B

1

2

j= 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 


0

2

(u

1

;v

1

; : : : ;u

k

;v

k

):

Be
ause of the existential quanti�
ation over u

1

in (��), there exists a sequen
e

b

1

2 B

1

2

su
h that

(� � �) B

1

2

j= 8v

1

: � � � 9u

k

:8v

k

: 


0

2

(b

1

;v

1

; : : : ;u

k

;v

k

):

We 
onsider a

1

:= h

2�1

(b

1

). Be
ause of the universal quanti�
ation over u

1

in

(�) we have

B

1

1

j= 9v

1

: � � � 8u

k

:9v

k

: 


0

1

(a

1

;v

1

; : : : ;u

k

;v

k

):

Be
ause of the existential quanti�
ation over v

1

in this formula there exists a

sequen
e 


1

2 B

1

1

su
h that

B

1

1

j= 8u

2

:9v

2

: � � � 8u

k

:9v

k

: 


0

1

(a

1

; 


1

;u

2

;v

2

; : : : ;u

k

;v

k

):



We 
onsider d

1

:= h

1�2

(


1

). Be
ause of the universal quanti�
ation over v

1

in

(� � �) we have

B

1

2

j= 9u

2

:8v

2

: � � � 9u

k

:8v

k

: 


0

2

(b

1

;d

1

;u

2

;v

2

; : : : ;u

k

;v

k

):

Iterating this argument, we thus obtain

B

1

1

j= 


0

1

(a

1

; 


1

; : : : ;a

k

; 


k

);

B

1

2

j= 


0

2

(b

1

;d

1

; : : : ; b

k

;d

k

);

where a

i

= h

2�1

(b

i

) and d

i

= h

1�2

(


i

) (for 1 � i � k). Sin
e h

1�2

and h

2�1

are

inverse (�

1

[�

2

)-isomorphisms we also know that

B

1

1

j= 


0

2

(a

1

; 


1

; : : : ;a

k

; 


k

):

It follows that

B

1

� B

2

j= 


0

1

(a

1

; 


1

; : : : ;a

k

; 


k

) ^ 


0

2

(a

1

; 


1

; : : : ;a

k

; 


k

):

Obviously, this implies that B

1

�B

2

j= 9v: (


0

1

^ 


0

2

), i.e., the senten
es obtained

after Step 1 of the algorithm holds in B

1

�B

2

. It is easy to see that this implies

that B

1

� B

2

j= 9u: 
.

Before we 
an show 
ompleteness of the de
omposition algorithm, we need

one more prerequisite. The following lemma 
hara
terizes validity of positive

senten
es in free algebras in terms of satisfying assignments. The proof of this

lemma, whi
h uses the well-known fa
t that validity of positive formulae is pre-

served under surje
tive homomorphisms, is not diÆ
ult and 
an be found in [7℄

for the more general 
ase of quasi-free stru
tures.

Lemma 4. Let A = T (�;V )==

E

be the E-free �-algebra over the 
ountably

in�nite set of generators V , and let


 = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: '(u

1

;v

1

; : : : ;u

k

;v

k

)

be a positive �-senten
e. Then the following 
onditions are equivalent:

1. A j= 8u

1

:9v

1

: � � � 8u

k

:9v

k

: '(u

1

;v

1

; : : : ;u

k

;v

k

).

2. There exist tuples x

1

2 V ; e

1

2 A; : : : ;x

k

2 V ; e

k

2 A and �nite subsets

Z

1

; : : : ; Z

k

of V su
h that

(a) A j= '(x

1

; e

1

; : : : ;x

k

; e

k

),

(b) all generators o

urring in the tuples x

1

; : : : ;x

k

are distin
t,

(
) for all j; 1 � j � k, the 
omponents of e

j

are generated by Z

j

, i.e., they

belong to T (�;Z

j

)==

E

(d) for all j; 1 < j � k, no 
omponent of x

j

o

urs in Z

1

[ : : : [ Z

j�1

.

Using this lemma, we 
an now prove 
ompleteness of the Combination Algorithm

(logi
al reformulation).



Lemma 5. Let 9u: 
 be an input senten
e of the Combination Algorithm. If

B

1

�B

2

j= 9u: 
 then there exists an output pair with 
omponents � and � su
h

that B

1

j= � and B

2

j= �.

Proof. Assume that B

1

1

' B

1

� B

2

j= 9u

0

: 


0

.

12

Obviously, this implies that

B

1

1

j= 9v: (


1

(v) ^ 


2

(v)), i.e., B

1

1

satis�es the senten
e that is obtained after

Step 2 of the Combination Algorithm. Thus there exists an assignment � : V !

B

1

1

su
h that B

1

1

j= 


1

(�(v)) ^ 


2

(�(v)).

In Step 3 of the de
omposition algorithm we identify two variables u and u

0

of v if, and only if, �(u) = �(u

0

). With this 
hoi
e, the assignment � satis�es the

formula obtained after the identi�
ation step, i.e.,

B

1

1

j= 


0

1

(�(w)) ^ 


0

2

(�(w));

and all 
omponents of �(w) are distin
t.

In Step 4, a variable w in w is labeled with 2 if �(w) 2 Y

1

, and with 1

otherwise. In order to 
hoose the linear ordering on the variables, we partition

the range B

1

1

of � as follows:

B

(0)

1

; Y

(1)

1

; B

(1)

1

n (B

(0)

1

[ Y

(1)

1

); Y

(2)

1

; B

(2)

1

n (B

(0)

1

[ Y

(2)

1

);

Y

(3)

1

; B

(3)

1

n (B

(2)

1

[ Y

3

); : : :

In Fig. 3 these subsets 
orrespond to the areas (0 and 1), 2, 3, 4, 5, 6; : : : of the

left-hand side. Now, let u

1

;v

1

; : : : ;u

k

;v

k

be a re-ordering of the tuple w su
h

that the following holds:

1. The tuple u

1


ontains exa
tly the variables whose �-images are in B

(0)

1

.

2. For all i; 1 � i � k, the tuple v

i


ontains exa
tly the variables whose �-

images are in Y

(i)

1

.

3. For all i; 1 < i � k, the tuple u

i


ontains exa
tly the variables whose �-

images are in B

(i�1)

1

n (B

(i�2)

1

[ Y

(i�1)

1

).

Obviously, this implies that the variables in the tuples v

i

have label 2, whereas

the variables in the tuples u

i

have label 1. Note that some of these tuples may be

of dimension 0. This re-ordering of w determines the linear ordering we 
hoose

in Step 4. Let

� = 8u

1

:9v

1

: � � � 8u

k

:9v

k

: 


0

1

and � = 9u

1

:8v

1

: � � � 9u

k

:8v

k

: 


0

2

be the output pair that is obtained by these 
hoi
es. Let x

i

:= �(w

i

) and e

i

:=

�(v

i

). For i = 1; : : : ; k, let Z

i

denote a �nite set of variables in B

(i�1)

1

\ (V [Y

1

)

that generates all elements in e

i

. We 
laim that the sequen
e x

1

; e

1

; : : : ;x

k

; e

k

and the sets Z

1

; : : : ; Z

k

satisfy Condition 2 of Lemma 4 for ' = 


0

1

and the

stru
ture B

1

1

= T (�

1

; V [ Y

1

)==E

1

.

12

Here and in the sequel, B

1

1

is sometimes treated as a (�

1

[ �

2

)-algebra, using the

signature expansion des
ribed in the 
onstru
tion of B

1

� B

2

.



Part (a) of this 
ondition is satis�ed sin
e B

1

1

j= 


0

1

(�(w)), and thus

B

1

1

j= 


0

1

(x

1

; e

1

; : : : ;x

k

; e

k

):

Part (b) of the 
ondition is satis�ed sin
e the �-images of all variables in w

are distin
t a

ording to our 
hoi
e in the variable identi�
ation step. Part (
) is

satis�ed due to our 
hoi
e of the sets Z

j

. Part (d) is satis�ed sin
e the 
omponents

of x

j

belong to Y

(j)

1

and Y

(j)

1

\ (Z

1

[ : : :[Z

j�1

) = ;, the last equality following

from the fa
t that Y

(j)

1

and

S

j�1

i=0

Y

(i)

1

are disjoint by de�nition.

Thus, we 
an apply Lemma 4, whi
h yields B

1

1

j= �. Sin
e B

1

1

and B

1

are

�

1

-isomorphi
 we have B

1

j= �.

Using the fa
t the h

1�2

: B

1

1

! B

1

2

is a (�

1

[ �

2

)-isomorphism, B

2

j= �.


an be shown similarly.

6 Generalizations

The 
ombination method for equational uni�
ation algorithms that we have

des
ribed in the previous two se
tions 
an be generalized along several orthogonal

dimensions. Three su
h extensions will be des
ribed in this se
tion. The �rst

generalization 
on
erns the synta
ti
 form of input problems: we study the e�e
t

of adding negation to the mixed input senten
es. Afterwards we introdu
e a 
lass

of stru
tures that properly extends the 
lass of free algebras, and show how to

lift our 
ombination results to this more general 
lass of stru
tures. In the third

subse
tion we sket
h a variant of the amalgamation 
onstru
tion introdu
ed in

Subse
tion 5.2, whi
h leads to a di�erent 
ombined solution stru
ture and a


ombination algorithm with less nondeterminism.

6.1 Adding negation to uni�
ation problems

Compared to the Nelson-Oppen approa
h, the major limitation of the 
ombi-

nation results presented in the previous two se
tions is that they are restri
ted

to positive senten
es, i.e., negated equations, so-
alled disequations , are not al-

lowed. We shall now 
onsider the 
ombination of uni�
ation 
onstraints with

negation. Sin
e the 
onstraint solvers of 
onstraint programming languages of-

ten have to 
he
k entailment of 
onstraints, and sin
e entailment uses an impli
it

form of negation, this extension is of great pra
ti
al relevan
e.

As before, let E

1

and E

2

denote equational theories over disjoint signatures

�

1

and �

2

. When treating senten
es with negation, we must �rst de
ide whi
h

form of semanti
s we want to use: the equivalen
e between validity in all models

of E

1

[ E

2

on the one hand, and validity in the (E

1

[ E

2

)-free algebra over a


ountably in�nite set of generators V on the other hand does no longer hold if

we do not restri
t ourselves to positive senten
es. We shall look at two alter-

native semanti
s usually 
onsidered in the literature. First, we 
onsider validity

of existential (�

1

[ �

2

)-senten
es in the free algebra T (�

1

[ �

2

; V )==

E

1

[E

2

.

Later, we 
onsider validity in the initial algebra T (�

1

[ �

2

; ;)==

E

1

[E

2

. In the



�rst 
ase, we talk about solvability and in the se
ond about ground solvability

of the 
onstraints.

As long as we want to de
ide validity of positive existential senten
es, both

semanti
s lead to the same result as long as we assume that the joint signature


ontains at least one 
onstant. This follows dire
tly from the fa
t that validity

of positive existential senten
es is preserved under homomorphisms. For 
on-

straints with negation, the two semanti
s de�nitely lead to distin
t notions of

validity. The latter semanti
s is often preferred in the literature on 
onstraints

with negation (see, e.g., [23℄), but the �rst semanti
s 
an also be found [17℄.

Sin
e a senten
e holds in a given algebra A if, and only if, its negation

does not hold in A, a de
ision pro
edure for validity of existential senten
es

in A immediately gives a de
ision pro
edure for validity of universal senten
es

in A and vi
e versa. Hen
e the results of this subse
tion 
on
ern the universal

fragments of the given algebras as well.

Disuni�
ation over the free algebra In order to des
ribe the following re-

sults, some terminology is needed. Given an equational theory E with signature

�, an elementary E-disuni�
ation problem is a �nite system � of equations

s =

?

t and disequations s 6=

?

t between �-terms. A substitution � solves � i�

�(s) =

E

�(t) for ea
h equation s =

?

t in � and �(s) 6=

E

�(t) for ea
h disequa-

tions s 6=

?

t in � . E-disuni�
ation problems with linear 
onstant restri
tions,

and solutions for E-disuni�
ation problems with linear 
onstant restri
tions are

de�ned as in the 
ase of E-uni�
ation problems.

Theorem 12. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint sig-

natures, let E := E

1

[ : : : [ E

n

denote their union. Then solvability of E-

disuni�
ation problems is de
idable provided that solvability of E

i

-disuni�
ation

problems with linear 
onstant restri
tions is de
idable for i = 1; : : : n.

Sin
e existential quanti�
ation distributes over disjun
tion, the theorem

shows that validity of existential senten
es in T (�

1

[: : :[�

n

; V )==

E

is de
idable

if solvability of E

i

-disuni�
ation problems with linear 
onstant restri
tions is de-


idable for i = 1; : : : n. Unfortunately, we do not have a logi
al 
hara
terization

of E

i

-disuni�
ation problems with linear 
onstant restri
tions.

A proof of this theorem 
an be found in [5℄. It is based on a 
ombination algo-

rithm that is a variant of the Combination Algorithm for 
ombined E-uni�
ation

problems. In prin
iple, the only di�eren
e is that, for ea
h pair (x; y) of variables

in the input problem that is not identi�ed at the variable identi�
ation step, we

add a disequation x 6= y to both output systems. For details we refer to [5℄.

Disuni�
ation over the initial algebra A solution � of the E-disuni�
ation

problem � is a ground solution i� �(x) is a ground term (i.e., does not 
ontain

variables) for all variables x o

urring in � .

In view of Theorem 12, an obvious 
onje
ture 
ould be that ground solvability

of a disuni�
ation problem � in the 
ombined theory E 
an be de
ided by



de
omposing � into a �nite set of pairs of E

i

-disuni�
ation problems with linear


onstant restri
tions, and then asking for ground solvability of the subproblems.

However, in [5℄ an example is given that shows that this method is only sound,

but not 
omplete (see Example 4.2, p. 243). The proper adaption of Theorem 13

to the 
ase of ground solvability needs another notation: a solution � of an E-

disuni�
ation problem with linear 
onstant restri
tions, (�;X;C;<), is 
alled

restri
tive if, under �, all variables x 2 X are mapped to terms �(x) that are

not E-equivalent to a variable.

Theorem 13. Let E

1

; : : : ; E

n

be equational theories over pairwise disjoint sig-

natures �

1

; : : : ; �

n

, and let E := E

1

[ : : : [ E

n

denote the 
ombined theory.

Assume that the initial algebras T (�

i

; ;)==

E

i

are in�nite for i = 1; : : : ; n. Then

ground solvability of E-disuni�
ation problems is de
idable provided that restri
-

tive solvability of E

i

-disuni�
ation problems with linear 
onstant restri
tions is

de
idable for i = 1; : : : n.

A proof of this theorem, as well as of some variants that relax the 
ondition that

all the initial algebras must be in�nite, 
an be found in [5℄. These te
hniques

yield the following result.

Corollary 1. Solvability of disuni�
ation problems is de
idable for every equa-

tional theory that is a disjoint 
ombination of �nitely many theories E

f

express-

ing asso
iativity, asso
iativity-
ommutativity, or asso
iativity-
ommutativity-

idempoten
e of some binary fun
tion symbol, together with a free theory F . If

the free theory F 
ontains at least one 
onstants and one fun
tion symbol of

arity n � 1, then ground solvability of disuni�
ation problems over the 
ombined

theory is de
idable as well.

6.2 More general solution stru
tures

Ex
ept for the initial des
ription of the Nelson-Oppen pro
edure, our dis
ussion

has been restri
ted to 
onstraints that are 
omposed of equations and disequa-

tions, and the only solution domains that we 
onsidered so far were free algebras.

Obviously, a mu
h broader variety of 
onstraints and solution domains are rele-

vant for the general �eld of 
onstraint programming. In this subse
tion we �rst

introdu
e a 
lass of stru
tures that properly extends the 
lass of free algebras.

The 
lass 
ontains many non-free algebras and relational stru
tures that are of

interest for 
onstraint solving. Then we dis
uss the problem of 
ombining so-

lution domains within the given 
lass. Finally, we show how the 
ombination

results that we obtained for free algebras 
an be lifted to this more general

situation.

Quasi-free stru
tures The motivation for introdu
ing the 
lass of quasi-free

stru
tures is the observation that most of the non-numeri
al and non-�nite solu-

tion domains that are used in di�erent areas of 
onstraint programming 
an be



treated within a 
ommon algebrai
 ba
kground when we generalize the 
on
ept

of a free algebra appropriately.

In a �rst step, one 
an go from free algebras to free stru
tures where, in addi-

tion to fun
tion symbols, the signature may also 
ontain predi
ate symbols. Free

stru
tures are de�ned Mal'
ev [47℄ analogously to free algebras: a �-stru
ture

A is 
alled free over X in the 
lass of �-stru
tures K if A 2 K is generated by

X , and if every mapping from X into the domain of a stru
ture B 2 K 
an be

extended to a �-homomorphism of A into B. Mal'
ev shows that free stru
tures

have properties that are very similar to the properties of free algebras. This fa
t

was used in [4℄ to extend the 
ombination results for uni�
ation 
onstraints to

more general 
onstraints over free solution stru
tures.

The following lemma (see [7℄, Theorem 3.4) yields an internal 
hara
teriza-

tion of stru
tures that are free in some 
lass of over a 
ountably in�nite set

of generators. It will be the basis for our generalization from free stru
tures to

quasi-free stru
tures.

Lemma 6. A �-stru
ture A is free (in some 
lass of �-stru
tures) over X � A

i�

1. A is generated by X,

2. for every �nite subset X

0

of X, every mapping from X

0

to A 
an be extended

to a surje
tive endomorphism of A.

We will now generalize the �rst 
ondition in order to arrive at the 
on
ept of

a quasi-free stru
ture. Sin
e some of the following notions are quite abstra
t,

the algebra of rational trees will be used to exemplify de�nitions. In the sequel,

we 
onsider a �xed �-stru
ture A with domain A. With End

�

A

we denote the

monoid of �-endomorphisms of A. It should be stressed that in the sequel the

signature � is arbitrary in the sense that it may 
ontain predi
ate symbols as

well as fun
tion symbols.

De�nition 3. Let A

0

; A

1

be subsets of the �-stru
ture A. Then A

0

stabilizes

A

1

i� all elements m

1

and m

2

of End

�

A

that 
oin
ide on A

0

also 
oin
ide on

A

1

. For A

0

� A the stable hull of A

0

is the set

SH

A

(A

0

) := fa 2 A j A

0

stabilizes fagg:

The stable hull of a set A

0

has properties that are similar to those of the

subalgebra generated by A

0

: SH

A

(A

0

) is always a �-substru
ture of A, and

A

0

� SH

A

(A

0

). In general, however, the stable hull 
an be larger than the

generated substru
ture. For example, if A := R(�;X) denotes the algebra of

rational trees over signature � and with variables in X , and if Y � X is a

subset of the set of variables X , then SH

A

(Y ) 
onsists of all rational trees with

variables in Y , while Y generates all �nite trees with variables in Y only.

De�nition 4. The set X � A is an atom set for A if every mapping X ! A


an be extended to an endomorphism of A.



For example, if A := R(�;X) is the algebra of rational trees with variables in

X , then X is an atom set for A.

De�nition 5. A 
ountably in�nite �-stru
ture A is quasi-free i� A has an

in�nite atom set X where every a 2 A is stabilized by a �nite subset of X.

The de�nition generalizes the 
hara
terization of free algebras given in Lemma 6.

The 
ountably in�nite set of generators is repla
ed by the atom set, but we re-

tain some properties of generators. In the free 
ase, every element of the algebra

is generated by a �nite set of generators, whereas in the quasi-free 
ase it is sta-

bilized by a �nite set of atoms. It 
an be shown easily that the se
ond 
ondition

of Lemma 6 holds in the quasi-free 
ase as well.

Examples 14 Ea
h free algebra and ea
h free stru
ture is quasi-free. Examples

of non-free quasi-free stru
tures are rational tree algebras; nested, hereditarily

�nite non-wellfounded sets, multisets, and lists; as well as various types of feature

stru
tures. In ea
h 
ase we have to assume the presen
e of a 
ountably in�nite set

of atoms (variables, urelements, et
.). For the exa
t de�nitions of these example

stru
tures we refer to [7℄.

Free amalgamation of quasi-free stru
tures When 
ombining 
onstraint

systems for quasi-free stru
tures, the question arises how to de�ne the 
ombined

solution stru
ture. It turns out that the amalgamation 
onstru
tion that we

have des
ribed in Subse
tion 5.2 
an be generalized from free algebras to quasi-

free stru
tures. The result of this 
onstru
tion is a quasi-free stru
ture over the


ombined signature. In the modi�ed 
onstru
tion, the atom sets of the two quasi-

free 
omponent stru
tures play the rôle of the variable sets. The intermediate

substru
tures that o

ur during the �bering pro
ess are now de�ned as the stable

hulls of the atom sets 
onsidered at the steps of the 
onstru
tion.

In the 
ase of free algebras, the use of the amalgamation 
onstru
tion was

justi�ed by the fa
t that it yielded exa
tly the 
ombined algebra we were look-

ing for, i.e., the free algebra for the 
ombined theory. In the 
ase of quasi-free

stru
tures, we do not have an equational theory de�ning the 
omponent stru
-

tures. Thus, the question arises whether the amalgamation 
onstru
tion really

yields a \sensible" 
ombined solution stru
ture. This question has been answered

aÆrmatively in [7℄.

In fa
t, the resulting 
ombined stru
ture has a unique and privileged sta-

tus. In [7℄ we have introdu
ed the notion of an admissible 
ombination of two

stru
tures. The free amalgamated produ
t A

1

�A

2

of two stru
tures is the most

general admissible 
ombination of A

1

and A

2

in the sense that every other ad-

missible 
ombination C is a homomorphi
 image of A

1

�A

2

(see [7℄ for an exa
t

de�nition). It 
an be shown that the free amalgamated produ
t of two quasi-free

stru
tures over disjoint signatures always exists sin
e it 
oin
ides with the stru
-

ture produ
ed by our amalgamation 
onstru
tion (i.e., the extension to quasi-free

stru
tures of the 
onstru
tion presented above for the 
ase of free algebras).



Solving mixed 
onstraints in the free amalgamated produ
t When using

the free amalgamated produ
t of two given quasi-free stru
tures A

1

and A

2

as the solution domain for mixed 
onstraints, a simple adaption of the logi
al

reformulation of the Combination Algorithm 
an be used to redu
e solvability

of positive existential formulae in A

1

�A

2

to solvability of positive senten
es in

the 
omponent stru
tures A

1

and A

2

. The only di�eren
e 
omes from the fa
t

that we now have a new type of atomi
 formulae in the input problems, namely,

atomi
 formulae that are built with predi
ate symbols in the signature. It is,

however, straightforward to show that, given an existential senten
e 9u: 
 over

the mixed signature �

1

[�

2

, it is possible to 
ompute an equivalent existential

senten
e of the form 9v: (


1

^ 


2

) where the 
onjun
tion of atomi
 formulae




i

is built using symbols from �

i

only; in fa
t, the variable abstra
tion step

introdu
ed in Se
tion 3 also treats non-equational atoms. The remaining steps

of the logi
al version of the Combination Algorithm 
an be used without any


hanges.

The 
orre
tness of the modi�ed Combination Algorithm, whi
h is proved in

[7℄, yields the following result.

Theorem 15. Let A

1

; : : : ;A

n

be quasi-free stru
tures over disjoint signatures

�

1

; : : : ; �

n

, and let � denote the union of these signatures. Then validity of

positive existential �-senten
es in the free amalgamated produ
t A

1

�� � ��A

n

is

de
idable provided that validity of positive �

i

-senten
es in the 
omponent stru
-

tures is de
idable.

As in the 
ase of free algebras, it is possible to lift this result to general positive

input senten
es.

Theorem 16. Let A

1

; : : : ;A

n

be quasi-free stru
tures over disjoint signatures

�

1

; : : : ; �

n

, and let � denote the union of these signatures. Then validity of

positive �-senten
es in the free amalgamated produ
t A

1

� � � � �A

n

is de
idable

provided that validity of positive �

i

-senten
es in the 
omponent stru
tures is

de
idable.

For the following quasi-free stru
tures, the positive theories turn out to be de-


idable (
f. Ex. 14): non-ground rational feature stru
tures with arity; �nite or

rational tree algebras; nested, hereditarily �nite wellfounded or non-wellfounded

sets; and nested, hereditarily �nite wellfounded or non-wellfounded lists. Hen
e,

provided that the signatures are disjoint, the free amalgamated produ
t of any

�nite number of these stru
tures has a de
idable positive theory.

It is also possible to extend the results 
ombination results for disuni�
ation

to the 
ase of quasi-free stru
tures. This yields de
idability results for the exis-

tential (or universal) theory of the free amalgamated produ
t of a great variety

of stru
tures, su
h as feature stru
tures, nested lists, sets and multisets, rational

tree algebras and others. We refer to Kepser [36, 35℄ for details.

6.3 Other amalgamation te
hniques

In S
hulz and Kepser [39℄ a se
ond systemati
 way of 
ombining 
onstraint sys-

tems over quasi-free stru
tures, 
alled rational amalgamation, has been intro-



du
ed. Like the free amalgamated produ
t, rational amalgamation yields a 
om-

bined stru
ture with \mixed" elements that inter-weave a �nite number of \pure"

elements of the two 
omponents in a parti
ular way. The di�eren
e between both


onstru
tions be
omes transparent when we ignore the interior stru
ture of these

pure subelements and 
onsider them as 
onstru
tion units with a �xed arity, sim-

ilar to \
omplex fun
tion symbols." Under this perspe
tive, and ignoring details

that 
on
ern the ordering of the 
hildren of a node, mixed elements of the free

amalgamated produ
t 
an be 
onsidered as �nite trees, whereas mixed elements

of the rational amalgam are like rational trees.

13

Mixed element of free amalgam (1) and of rational amalgam (2).

(1) (2)

Dark (bright) ellipses represent pure
subelements of the first (second)
amalgamation component.

...

With this ba
kground, it should not be surprising that in praxis rational amal-

gamation appears to be the preferred 
ombination prin
iple in the literature in

situations where the two solution stru
tures to be 
ombined are themselves \ra-

tional" or \
y
li
" domains: for example, it represents the way how rational trees

and rational lists are interwoven in the solution domain of Prolog III [22℄, and

a variant of rational amalgamation has been used to 
ombine feature stru
tures

with non-wellfounded sets in a system introdu
ed by Rounds [59℄.

Rational amalgamation 
an be used to 
ombine so-
alled non-
ollapsing

quasi-free stru
tures over disjoint signatures.

De�nition 6. An quasi-free stru
ture A with atom set X is non-
ollapsing if

every endomorphism of A maps non-atoms to non-atoms (i.e., m(a) 2 A n X

for all a 2 A nX and all endomorphisms m of A).

For example, quotient term algebras for 
ollapse-free equational theories, rational

tree algebras, feature stru
tures, feature stru
tures with arity, the domains with

nested, �nite or rational lists, and the domains with nested, �nite or rational

multi-sets are always non-
ollapsing.

The amalgamation 
onstru
tion for rational amalgamation is rather te
hni-


al and thus beyond the s
ope of this paper; we refer to [39℄ for details. Just as

in the 
ase of free amalgamation, 
onstraint solvers for two 
omponent stru
-

tures 
an be 
ombined to a 
onstraint solver for their rational amalgam. To be

13

A (possibly in�nite) tree is rational if it is �nitely bran
hing and has only a �nite

number of distin
t subtrees; see [21, 45, 24℄.



more pre
ise, validity of positive existential senten
es in the rational amalgam


an be redu
ed to solvability of 
onjun
tions of atomi
 
onstraints with so-
alled

atom/non-atom de
larations in the 
omponent stru
tures (see [39℄ for a formal

de�nition of this notion). From the algorithmi
 point of view, rational amalga-

mation appears to be interesting sin
e the 
ombination te
hnique for rational

amalgamation avoids one sour
e of nondeterminism that is needed in the 
orre-

sponding s
heme for free amalgamation: the 
hoi
e of a linear ordering, whi
h

is indispensable for free amalgamation, must be omitted in the 
ase of rational

amalgamation.

One interesting 
onne
tion between free and rational amalgamation is the

observation that the free amalgamated produ
t is always a substru
ture of the

rational amalgamated produ
t (see [35℄).

7 Optimization and 
omplexity issues

Until now, we have des
ribed the 
ombination method for uni�
ation algorithms

from a theoreti
al point of view, that is, our main emphasis was on 
learness

of presentation and on ease of proving 
orre
tness. It should be 
lear, however,

that a na��ve implementation of the highly nondeterministi
 Combination Algo-

rithm 
annot be used in pra
ti
e. It is easy to see that the nondeterminism of

the pro
edure indeed represents a serious problem: the number of possible par-

titions of a set of n variables is known as the n-th Bell number, whi
h grows

faster than 2

n

. The 
hoi
e of a labeling fun
tion and a linear ordering leads to

another exponential number of sub
ases that must be investigated. Hen
e, signif-

i
ant optimizations are ne
essary before one 
an hope for a 
ombined uni�
ation

algorithm that 
an be used in a realisti
 appli
ation.

In the following, we show how the algorithm that 
ombines de
ision pro
e-

dures 
an be optimized. (An optimized version of the 
ombination method for

algorithms that 
ompute 
omplete sets of uni�ers 
an be found in [15℄.) In gen-

eral, however, there is an inherent nondeterminism in the problem of 
ombining

uni�
ation algorithms, whi
h 
annot be avoided. We will 
ome ba
k to this point

at the end of this se
tion.

Some simple optimizations of the Combination Algorithm are quite straight-

forward. It is possible to restri
t all nondeterministi
 
hoi
es to \shared" vari-

ables, that is, variables that o

ur in at least two subproblems of the de
omposed

problem. Another simple optimization relies on the observation that di�erent lin-

ear orders need not lead to di�erent 
onstant restri
tions. For example, assume

that x; y are variables and 
; d are (variables treated as) 
onstants. Then the

ordering x < 
 < d < y leads to the same restri
tions on solutions of a uni�-


ation problem as the ordering x < d < 
 < y (both just say that x must not

be repla
ed by a term 
ontaining 
 or d). This observation 
an easily be used to

prune the number of di�erent linear orderings that must be 
onsidered.

On a more sophisti
ated level, Kepser and Ri
hts [37℄ have des
ribed two

powerful orthogonal optimization methods. We des
ribe the �rst method, 
alled



\dedu
tive method," in more detail, and then brie
y sket
h the se
ond one,


alled \iterative method," and the integration of both approa
hes.

The dedu
tive method tries to redu
e the amount of nondeterminism by

avoiding 
ertain bran
hes in the sear
h tree for whi
h one 
an \easily dete
t"

that they 
annot lead to solutions. Before going into more detail, we 
onsider an

example that illustrates the basi
 idea.

Example 7. Assume that the 
omponent theory E

i

is 
ollapse-free and the de-


omposed input problem 
ontains an equation x =

?

f(: : :) where f 2 �

i

. Then

x must re
eive label i sin
e x 6=

E

i

�(f(: : :)) for all substitutions �, i.e., if x is

treated as a 
onstant in the ith subproblem, then this problem does not have

a solution. Consequently, labeling fun
tions Lab with Lab(x) 6= i need not be


onsidered.

If E

i

is regular, the de
omposed input problem 
ontains an equation x =

?

t,

and y 2 Var(t) for a variable y with Lab(x) 6= Lab(y), then there 
annot be a

solution � (of the subproblem in whi
h x is instantiated) in whi
h y does not

o

ur in �(x). Hen
e, we 
an deterministi
ally 
hoose the order y < x between

x and y, i.e., the other alternative need not be 
onsidered.

In order to formalize this idea, we introdu
e a 
onstraint language that allows

us to represent su
h mandatory 
hoi
es on the way to a fully spe
i�ed output

pair of the Combination Algorithm. A 
omplete set of guesses of the algorithm|

with the trivial optimizations mentioned above in
luded now|
an be des
ribed

in the form (�;Lab; <), where

{ � is a partition of the set X of shared variables of the de
omposed problem

�

1

℄ : : : ℄ �

n

rea
hed after the �rst step,

{ Lab : X ! f1; : : : ; ng is a labeling fun
tion that respe
ts equivalen
e 
lasses

of � , i.e., if x and y belong to the same 
lass, then Lab(x) = Lab(y), and

{ < is a stri
t linear ordering on the equivalen
e 
lasses. We write x < y if the

equivalen
e 
lasses [x℄ and [y℄ of x and y are in the relation [x℄ < [y℄.

In the sequel, output problems will be des
ribed as quadruples of the form

(�

i

; �;Lab; <). The 
orresponding E

i

-uni�
ation with linear 
onstant restri
-

tions, (�

0

i

; X

i

; C

i

; <), 
an be obtained from this quadruple as des
ribed in the

Combination Algorithm, i.e., �

0

i

is obtained from �

i

by repla
ing all shared vari-

ables by the representatives of their equivalen
e 
lasses w.r.t. � , X

i

is the union

of the set of shared variables with label i and the set of non-shared variables in

�

i

, and C

i

is the set of shared variables with a label di�erent from i. The quadru-

ple (�

i

; �;Lab; <) is said to be solvable i� the 
orresponding E

i

-uni�
ation with

linear 
onstant restri
tions is solvable.

Constraints are of the form x = y, :(x = y), x < y, :(x < y), x : i, or :(x :

i), with the obvious meaning that x = y (:(x = y)) ex
ludes partitions in whi
h

x and y belong to di�erent 
lasses (the same 
lass), x < y (:(x < y)) ex
ludes

orderings and partitions in whi
h y � x (x < y), and x : i (:(x : i)) ex
ludes

labelling fun
tions Lab su
h that Lab(x) 6= i (Lab(x) = i). On the one hand, a

set of 
onstraints ex
ludes 
ertain triples (�;Lab; <). On the other hand, it 
an



also be seen as a partial des
ription of a triple that satis�es these 
onstraints

(i.e., is not ex
luded by them). A set of 
onstraints C is 
alled 
omplete i� there

is exa
tly one triple (�;Lab; <) that satis�es C, and it is 
alled in
onsistent i�

no triple satis�es C (i.e., it 
ontains two 
ontradi
tory 
onstraints).

The dedu
tive method assumes that ea
h theory E

i

is equipped with a 
om-

ponent algorithm that, given a pure E

i

-uni�
ation problem �

i

together with a

set of 
onstraints C, dedu
es a (possibly empty) set of additional 
onstraints D.

This algorithm is required to be 
orre
t in the following sense: if (�;Lab; <) is a

triple that satis�es C and for whi
h (�

i

; �;Lab; <) is solvable, then (�;Lab; <)

also satis�es D.

Given a system �

1

℄� � �℄�

n

in de
omposed form, the sear
h for an appropriate

triple (�;Lab; <) is now performed by the nondeterministi
 algorithm of Fig. 4.

Initialize C := ;;

Repeat

Repeat

For ea
h system i

(� Dedu
e new 
onstraints �)


all the 
omponent algorithm of theory E

i

to 
al
ulate

new 
onsequen
es D of �

i

and C;

set the 
urrent set of 
onstraints to C := C [ D

Until C is in
onsistent or no more new 
onstraints are 
omputed;

If C is 
onsistent and not 
omplete

(� Sele
t next 
hoi
e �)

Sele
t a 
onstraint 
 su
h that f
;:
g \ C = ;;

Non-deterministi
ally 
hoose either

C := C [ f
g or

C := C [ f:
g

Until C is in
onsistent or 
omplete;

Return C

Fig. 4. The dedu
tive method.

Proposition 5. Let � := �

1

℄ � � � ℄ �

n

be an (elementary) (E

1

[ � � � [ E

n

)-

uni�
ation problem in de
omposed form where the equational theories E

i

have

pairwise disjoint signatures. Then the following statements are equivalent:

1. � is solvable, i.e., there exists an (E

1

[ � � � [E

n

)-uni�er of � .

2. One of the 
omplete 
onstraint sets generated by the nondeterministi
 algo-

rithm of Fig. 4 des
ribes a triple (�;Lab; <) su
h that, for all i = 1; : : : ; n,

(�

i

; �;Lab; <) is solvable.

One should note that the trivial 
omponent algorithm that always returns the

empty set of 
onstraints is 
orre
t. If all 
omponent algorithms are trivial, then

the algorithm of Fig. 4 simply generates all possible triples (�;Lab; <).



We have already illustrated by an example that the fa
t that a theory is reg-

ular and/or 
ollapse-free 
an be used to derive new 
onstraints. For a free theory

E

i

, the most general uni�er of �

i

(whi
h 
an be 
omputed in linear time) 
an be

used to read o� new 
onstraints. The following example shows how information

provided by one 
omponent algorithm 
an help another 
omponent algorithm

in deriving additional 
onstraints. This explains why the step of dedu
ing new


onstraints must be iterated.

Example 8. Assume that we are given the mixed input problem ff(g(x

4

); x

2

) =

?

f(g(y); x

4

); x

4

=

?

f(a; a)g, where f; a belong to the regular, 
ollapse-free theory

E

1

(e.g., AC

f

) and g belongs to the free theory E

2

. By de
omposition, the E

1

-

subsystem ff(x

1

; x

2

) =

?

f(x

3

; x

4

); x

4

=

?

f(a; a)g and the E

2

-subsystem fx

1

=

?

g(x

4

); x

3

=

?

g(y)g are 
reated. Sin
e E

1

is 
ollapse-free, the equation x

4

=

?

f(a; a) 
an be used by the �rst 
omponent algorithm to dedu
e the 
onstraint x

4

:

1. From the most general uni�er fx

1

7! g(x

4

); x

3

7! g(y)g of the E

2

-subsystem,

the se
ond 
omponent algorithm 
an derive the 
onstraints x

1

: 2; x

3

: 2 and

x

4

< x

1

. Given the regularity of E

1

, the �rst 
omponent algorithm 
an now

derive x

1

= x

3

. In fa
t, x

1

(whi
h must be treated as a 
onstant in the E

1

-

subsystem) o

urs on the left-hand side of f(x

1

; x

2

) =

?

f(x

3

; x

4

), and thus must

o

ur on the (instantiated) right-hand side f(�(x

3

); �(x

4

)) for any solution � of

the E

1

-subsystem. Sin
e we already have the 
onstraints x

4

: 1, x

4

< x

1

, and

x

3

: 2, we know that �(x

3

) = x

3

and x

1


annot o

ur in �(x

4

). Consequently,

x

1


an only o

ur in f(�(x

3

); �(x

4

)) = f(x

3

; �(x

4

)) if x

1

and x

3

are identi�ed.

Obviously, the quality of the 
omponent algorithms used in the dedu
tive method

de
ides the amount of optimization a
hieved. The goal is to dedu
e as mu
h in-

formation as is possible with a reasonable e�ort. Detailed des
riptions of 
ompo-

nent algorithms for free theories, the theory AC of an asso
iative-
ommutative

fun
tion symbol, and the theory ACI of an asso
iative-
ommutative-idempotent

fun
tion symbol 
an be found in [56℄.

While the dedu
tive method helps to rea
h 
ertain de
isions deterministi
ally,

the \iterative method" introdu
ed in [37, 35℄|whi
h is relevant if n � 3 theories

are 
ombined|determines in whi
h order the nondeterministi
 de
isions should

best be made. Basi
ally, the output systems are solved iteratively, one system at

a time. All de
isions in nondeterministi
 steps are made lo
ally, for the 
urrent

system i only. This means, for example, that we only 
onsider variables o

urring

in the system �

i

, and for su
h a variable we just de
ide if it re
eives label i or not.

In the latter 
ase, the exa
t label j 6= i is not spe
i�ed. On
e all de
isions relevant

to system �

i

have been made, it is immediately tested for solvability. If �

i

turns

out to be unsolvable, we thus have avoided �nding this out as many times as

there are possible 
hoi
es for the 
onstraints not relevant to the subsystem �

i

.

An integration of the dedu
tive and the iterative method is a
hieved by

plugging the iterative sele
tion strategy into the dedu
tive algorithm. To be

more pre
ise, whenever the dedu
tive algorithm (see Fig. 4) needs to make a

nondeterministi
 
hoi
e (sin
e no more 
onstraints 
an be dedu
ed), the sele
tion

strategy of the iterative method de
ides for whi
h 
onstraint this 
hoi
e is made.

This synthesis of both optimization te
hniques has been implemented, and run



time tests show that the optimized 
ombination method obtained this way leads

to 
ombined de
ision pro
edures that have a quite reasonable pra
ti
al time


omplexity [37, 38℄.

Fundamental limitations for optimization Complexity theoreti
al 
onsid-

erations in [62℄ show that, in many 
ases, there are 
lear limitations for op-

timizing the Combination Algorithm. We 
lose this se
tion with some results


on
erning the situation where an equational theory E is 
ombined with a free

theory in order to obtain an algorithm for general E-uni�
ation.

De�nition 7. A polynomial-time optimization of the Combination Algorithm

for general E-uni�
ation is an algorithm that a

epts as input an arbitrary gen-

eral E-uni�
ation problem � and 
omputes in polynomial time a �nite set M

of output pairs ((�

1

; �;X

1

; X

2

; <); (�

2

; �;X

2

; X

1

; <)) of an E-uni�
ation prob-

lems with linear 
onstant restri
tions and a free uni�
ation problems with linear


onstant restri
tions su
h that

{ ea
h output pair in M is also a possible output pair of the original Combi-

nation Algorithm, and

{ � is solvable i�, for some output pair in M , both 
omponents are solvable.

On the one hand, S
hulz [62℄ 
hara
terizes a large 
lass of equational theories

E where a polynomial optimization of the Combination Algorithm for general

E-uni�
ation is impossible unless P = NP. In order to formulate one result

that follows from this 
hara
terization, we need the following notation: a binary

fun
tion symbol \f" is 
alled a 
ommutative (resp. asso
iative) fun
tion symbol

of the equational theory E if f belongs to the signature of E and f(x; y) =

E

f(y; x) (resp. f(x; f(y; z)) =

E

f(f(x; y); z)).

Theorem 17. Let E be an equational theory that 
ontains an asso
iative or


ommutative fun
tion symbol. If E is regular, then there exists no polynomial-

time optimization of the Combination Algorithm for general E-uni�
ation, unless

P = NP.

In [63℄ it is shown that su
h impossibility results for polynomial optimization

of 
ombination algorithms are by no means spe
i�
 to the problem of 
ombining

E-uni�
ation algorithms. The paper presents a general framework that 
hara
-

terizes situations in whi
h 
ombination algorithms for de
ision pro
edures 
annot

be polynomially optimized. In parti
ular, various 
ombinations of �rst-order the-

ories are 
hara
terized where the non-deterministi
 variant of the Nelson-Oppen

pro
edure does not have a polynomial optimization.

On the other hand, S
hulz [62℄ also introdu
es a 
lass of equational theo-

ries for whi
h a polynomial-time optimization of the Combination Algorithm is

always possible. Basi
ally, these are regular and 
ollapse-free theories of uni�-


ation type unitary (i.e., all solvable uni�
ation problems have a most general

uni�er) su
h that \enough" information about the most general uni�er 
an be


omputed in polynomial time.



8 Open problems

The results des
ribed in this paper show that the problem of 
ombining 
on-

straint solvers over disjoint signatures is well-investigated, at least if one 
onsid-

ers as 
onstraint solvers pro
edures that de
ide satis�ability of 
onstraints.

As mentioned in Se
tion 2.1, it is often desirable to have 
onstraint solvers

that are able to 
ompute solved forms in an in
remental way. To the best of

our knowledge, there are no general results on how to 
ombine su
h in
remental


onstraint solvers. A general solution to this problem depends on a general and

abstra
t de�nition of the 
on
ept of a solved form that 
overs most of the relevant

instan
es.

Another 
hallenging �eld for future resear
h is the problem of 
ombining


onstraint solvers over non-disjoint signatures. Sin
e non-disjoint 
ombinations

may lead to unde
idability, the main point is to �nd appropriate restri
tions

on the 
onstraint languages to be 
ombined. For the kind of 
ombination prob-

lems 
onsidered by Nelson-Oppen, �rst 
ombination results for the non-disjoint


ase have been obtained by Ch. Ringeissen and C. Tinelli [58, 71, 73℄. Similarly,

the known 
ombination methods for solving the word problem in the union of

equational theories have been lifted to the 
ase of non-disjoint signatures in [26,

10{12℄. Con
erning the 
ombination of uni�
ation algorithms for equational the-

ories over non-disjoint signatures, �rst results have been presented in [26℄. Using

the more abstra
t algebrai
 
on
epts that have been developed during the last

years it should be possible to simplify and then generalize this work, whi
h only

addresses the 
ombination of algorithms for 
omputing 
omplete sets of uni�ers.
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