Combining Constraint Solving

Franz Baader! & Klaus U. Schulz?

! Theoretical Computer Science, RWTH Aachen, Germany
E-mail: baader@Qinformatik.rwth-aachen.de
2 (IS, University of Munich, Germany
E-mail: schulzQcis.uni-muenchen.de

1 Introduction

In many areas of Logic, Computer Science, and Artificial Intelligence, there
is a need for specialized formalisms and inference mechanisms to solve domain-
specific tasks. For this reason, various methods and systems have been developed
that allow for an efficient and adequate treatment of such restricted problems.
In most realistic applications, however, one is faced with a complex combination
of different problems, which means that a system tailored to solving a single
problem can only be applied if it is possible to combine it both with other
specialized systems and with general purpose systems.

This general problem of combining systems can be addressed on various con-
ceptual levels. At one end, combination of logical systems is studied with an
emphasis on formal properties, using tools from mathematics and logics. Exam-
ples of results obtained on this level are transfer results for modal logics [43,
28] and modularity results for term rewriting systems [74,52]. On the other
end of the spectrum, the combination of software tools necessitates considering
physical connections and appropriate communication languages [19, 44]. Between
these two extremes lies the combination of constraint systems and the respective
solvers, which is the topic of this paper. On the one hand, defining a semantics
for the combined system may depend on methods and results from formal logic
and universal algebra. On the other hand, an efficient combination of the actual
constraint solvers often requires the possibility of communication and coopera-
tion between the solvers.

Since there is a great variety of constraint systems and of approaches for
combining them, we will start with a short classification of the different ap-
proaches. Subsequently, we will describe two of the most prominent combination
approaches in this area:

— the Nelson-Oppen scheme [49, 54] for combining decision procedures for the
validity of quantifier-free formulae in first-order theories, which was originally
motivated by program verification;

— methods for combining FE-unification algorithms [60,15,6] and more gen-
eral constraint solvers [7], which are of interest in theorem proving, term
rewriting, and constraint programming.

Our treatment of the Nelson-Oppen method can be seen as a warm-up exercise
for the second approach since it is simpler both w.r.t. the actual combination
algorithm and w.r.t. the (algebraic) tools required for proving its correctness. The
problem of combining unification algorithms will be treated in more detail. First,
we will describe the combination algorithm as introduced in [2,6] and briefly
sketch how to prove its correctness. We will then give a logical reformulation
of the combination algorithm, and describe an algebraic approach for proving
its correctness. This approach has the advantage that it can be generalized to
constraints more general than the equational constraints of unification problems
and to solution structures more general than the E-free algebras of unification
problems. Finally, we will sketch approaches for optimizing the combination
algorithm, and comment on principal limitations for optimizations.

2 Classification of constraint systems and combination
approaches

Before classifying different approaches for combining constraint system, we must
explain what we mean by constraint systems and constraint solvers. We will also
consider two examples, which already introduce the different forms of constraint
systems whose combination will be considered in more detail in this paper.

2.1 Constraint systems and solvers

Informally, a constraint system is given by a constraint language and a “se-
mantics” for this language. The constraint language determines which formal
expressions are considered to be admissible constraints, and the semantics pro-
vides us with a notion of constraint satisfaction: given an admissible constraint,
it is uniquely determined by the semantics whether this constraint is satisfiable
or not. In general, this does not mean that this question is also effectively de-
cidable. In its most basic form, a constraint solver for a given constraint system
is a procedure that decides satisfiability.

The constraint language To put these notions on a more formal footing, we
assume that constraints are formulae of first-order predicate logic, and that the
semantics is provided by the usual semantics of first-order logic. To be more
precise, we consider an (at most countable) signature X consisting of function
symbols and predicate symbols, and a (countably infinite) set V' of (individ-
ual) variables, and build first-order terms, called X'-terms, and first-order for-
mulae, called X-formulae, from these ingredients in the usual way. Usually, a
Y-constraint is a X-formula p(vy,...,v,) with free variables vq,...,v,, and a
solution of the constraint replaces the variables such that the resulting expres-
sion is “true” under the given semantics. If we are interested only in solvability
of the constraints and not in actually computing a solution, we may also use
closed formulae (e.g., the existential closure of the open formula) as constraints.

It should also be noted that a constraint language usually does not allow for
all ¥Y-formulae, but only for a certain subclass of formulae, to be used as con-
straints. Thus, a constraint language is characterized by a signature X and a
class of X-formulae, which may be open or closed.

The semantics Given such a constraint language, its semantics can be defined
in two different ways: by a Y-theory T or a X-structure A. A Y-theory is given
by a set T of closed X-formulae, and a X-structure A is a Y-interpretation, i.e.,
a nonempty set A, the domain of A, together with an interpretation of the n-ary
predicate (function) symbols as n-ary relations (functions) on A.

For a given X-structure A, a solution of the Y-constraint ¢(vy,...,v,) in
A is a mapping {v1 — ai,...,v, = a,} of the free variables of the constraint
to elements of A such that A = ¢(ai,...,a,), i.e, p(v1,...,v,) is true in A
under the evaluation {vy — ai,...,v, = an}. The constraint p(vy,...,v,) is
satisfiable in A iff it has a solution in A. This is equivalent to saying that its
existential closure Jv;.--- Jv,.(vy,...,v,) is valid in A.

For a given YX-theory T, there are two different ways of defining satisfiability
of constraints, depending on whether we want the constraints to be satisfiable
(in the sense introduced above) in all models or in some model of the theory
T. In the first case, which is the more usual case in constraint solving, the
Y-constraint ¢(vy,...,v,) is satisfiable in (all models of) T iff its existential
closure Jvy. - - Jv,.p(v1,...,v,) is valid in T. The second case coincides with
the usual definition of satisfiability of (open) formulae in predicate logic: the
XY-constraint ¢(vq,...,v,) 18 satisfiable in (some model of) T iff its existential
closure Jv;. - - Jup-(v1, - . ., vy) is satisfiable in T', i.e., valid in some model of T'.
In both cases, one does not have a natural notion of solution since there is more
than one solution structure involved, though there may be specific instances
where such a notion can be defined.

To sum up, we can define satisfiability of a constraint in three different ways:
as validity of its existential closure in (i) a fixed solution structure A; (ii) all
models of a fixed theory T'; (iii) some model of a fixed theory T

Note that (i) is a special case of (ii) since we can take as theory T' the theory
of A, i.e., the set of all ¥'-formulae valid in A. In general, (ii) is not a special case
of (i). This is the case, however, if there exists a X-structure A that is canonical
for T and the constraint language in the sense that a constraint is satisfiable in
T iff it is satisfiable in A.

The constraint solver Given a constraint language and a semantics, a con-
straint solver is a procedure that is able to decide satisfiability of the constraints.
In this paper, we will mostly restrict our attention to the combination of such
decision procedures. It should be noted, however, that in many cases constraint
solvers produce more than just the answer “yes” or “no”.

If there is the notion of a solution available, one may also want to have a
solver that not only decides satisfiability, but also computes a solution, if one
exists. Since a given constraint may have more than one solution one may even

be interested in obtaining a complete set of solutions, i.e., a set of solutions from
which all solutions can be generated in a simple way. A prominent example of
such a complete representation of all solutions is Robinson’s most general unifier,
from which all unifiers of a syntactic unification problem can be generated by
instantiation.

Instead of actually computing a solution, the solver may transform the con-
straint into an equivalent one in “solved form.” Such a solved form should, in
some way, be simpler than the original constraint; in particular, the existence
of a solved form should indicate satisfiability of the constraint, and it should
be “easy” to read off an actual solution. The advantage of using solved forms
is twofold. On the one hand, computing the solved form may be less complex
than computing a solution. An example of this phenomenon is the so-called dag
solved form of syntactic unification problems [33], which is linear in the size of
the problem, whereas the most general unifier may be exponential in the size of
the problem. On the other hand, a solver that computes a solved form is usually
incremental: if the constraint is strengthened, then not all the work done during
the satisfiability test needs to be re-done. To be more precise, assume that we
have already tested ¢ for satisfiability, and then need to test ¢ A 1), a situation
that frequently occurs, e.g., in constraint logic programming and theorem prov-
ing. If all we know after the satisfiability test is that ¢ is satisfiable, then we
must start from scratch when testing ¢ A ¢. However, if we have computed a
solved form ¢’ of ¢, then we can test ¢’ A ¢ instead, which hopefully is easier.

2.2 More notation and two examples

As examples that illustrate the notions introduced above, we consider quantifier-
free formulae and E-unification problems. Before introducing these types of con-
straint systems more formally, we define some subclasses of first-order formulae,
which will be of interest later on.

We consider logic with equality, i.e., the binary predicate symbol =, which is
interpreted as equality on the domain, is always available, without being explic-
itly contained in the signature. A Y-atom is of the form P(ty,...,t,), where P
is an n-ary predicate symbol of ¥ U{=} and ty,...,t, are X-terms. If the atom
is of the form ¢; = ¢, i.e., P is the equality symbol =, then it is called an equa-
tional atom; otherwise, it is called a relational atom. Negated equational atoms
are written t; # ts rather than = (1 = t2). A Y-matrix is a Boolean combination
of X-atoms, and a positive X-matrix is built from X-atoms using conjunction
and disjunction only. A positive X'-formula is a quantifier prefix followed by a
positive X-matrix. The formula is called positive existential (positive AE) iff the
quantifier prefix consists of existential quantifiers (universal quantifiers followed
by existential quantifiers). A universal formula is given by a universal quanti-
fier prefix followed by a quantifier-free formula. A universal formula is called
conjunctive universal iff its matrix is a conjunctions of X-atoms and negated X-
atoms. X-sentences (of either type) are ¥'-formulae without free variables. Given
a Y-structure A (a X-theory T'), the positive theory of A (T') consists of the set

of all positive X-sentences valid in A (T'). The positive existential, positive AE,
universal, and conjunctive universal theories of A (T') are defined analogously.

Quantifier-free formulae The Nelson-Oppen combination method [49, 54] ap-
plies to constraint systems of the following form:

— For a given signature X, the constraint language consists of all quantifier-free
Y-formulae, i.e., all Y'-matrices.

— The semantics is defined by an arbitrary X-theory T'.

— One is interested in satisfiability in some model of T'.

Thus, the constraint solver must be able to decide whether the existential closure
of a quantifier-free Y'-formula is valid in some model of T'. Since a formula is
valid in some model of T iff its negation is not valid in all models of T', a decision
procedure for the universal theory of 7' can be used as a constraint solver for
this type of constraint systems.

Unification problems Unification modulo equational theories is a subfield
of automated deduction which is very well-investigated (see [33,8,9] for survey
papers of the area).

An equational theory is given by a set E of identities s = t between terms
s,t. The signature of E is the set of all function symbols occurring in E. With
=g we denote the least congruence relation on the term algebra 7 (X, V') that is
closed under substitutions and contains E. Equivalently, =g can be introduced
as the reflexive, transitive, and symmetric closure <>z of the rewrite relation
— g induced by E, or as the set of equational consequences of F, i.e., s =g t iff
the universal closure of the atom s = ¢ is valid in all models of E. An equational
theory E is trivial iff x = y holds for two distinct variables x, y. In the following,
we consider only non-trivial equational theories.

Given an equational theory E with signature X, an elementary E-unification
problem is a finite system I' := {s; = t,...,8, = t,} of equations between
Y-terms. In E-unification problems with constants, these terms may contain
additional “free” constant symbols, i.e., constant symbols not contained in the
signature Y of E, and in general FE-unifications problems, these terms may
contain additional “free” function symbols, i.e., function symbols not contained
in the signature X' of E.

A solution (or E-unifier) of the E-unification problem {s; =7 t1,...,5, ="
t,} is a substitution o such that o(s;) =g o(¢;) for i = 1,...,n. If there exists
such a solution, then I" is called unifiable. Recall that a substitution is a mapping
from variables to terms which is almost everywhere equal to the identity. It can
be extended to a mapping from terms to terms in the obvious way. Substitutions

will be written in the form o = {z; — u1,..., 2t — ui}, where z1,...,z) are
the finitely many variables that are changed by the substitution, and u, ..., u
are their respective o-images. The set {z1,...,z} is called the domain of the

substitution o, and {uy,...,u;} is called its range.

Let X be the set of all variables occurring in I'. The E-unifier 6 is an instance
of the E-unifier o iff there exists a substitution A such that 6(z) =g A(o(z)) for
all z € X. A complete set of E-unifiers of I' is a set C of E-unifiers of I" such that
every F-unifier of I' is an instance of some unifier in C. Finite complete sets of
E-unifiers yield a finite representation of the usually infinite sets of solutions of
FE-unification problems. Since this representation should be as small as possible,
one is usually interested in minimal complete sets of E-unifiers, i.e., complete
sets in which different elements are not instances of each other.

For a given equational theory E, elementary E-unification problems can be
seen as constraints of the following constraint system:

— The constraint language consists of all conjunctions of equational atoms
s = t. We call such a conjunction an E-unification constraint.

— The semantics is defined by the E-free algebra in countably many generators,
i.e., the quotient term algebra 7(X,V)/=pg for the countably infinite set of
variables V.

Since the E-unification problem {s; =7 t1,...,s, =’ t,} has a solution iff the
existential closure of sy =t A ... A s, = t, is valid in T(X,V) /=g, the notion
of satisfiability of E-unification constraints induced by this semantics coincide
with the notion of unifiability of E-unification problems introduced above.

Alternatively, the semantics of E-unification constraints can also be defined
w.r.t. the equational theory E. In fact, the E-free algebra in countably many
generators is a canonical solution structure for FE-unification constraints: the
existential closure of sy =t A... A s, =t, is valid in T(X,V) /=g iff it is valid
in all models of E.

If we are interested only in decidability and not in complexity, then we can
also consider general positive existential sentences instead of the conjunctive
sentences obtained as existential closures of unification constraints. In fact, we
can simply write the positive matrix in disjunctive normal form, and then dis-
tribute the existential quantifiers over disjunctions. This yields a disjunction of
conjunctive sentences, which is valid iff one of its disjuncts is valid.

These observations are summed up in the following theorem:

Theorem 1. Let E be an equational theory with signature X, and V' a countably
infinite set of variables. Then the following are equivalent:

1. Elementary E-unification is decidable.
2. The positive existential theory of E is decidable.
3. The positive existential theory of T(X,V)/=Fg is decidable.

In order to obtain a class of first-order formulae that correspond to E-
unification problems with constants, but are built over the signature of E, we
note that free constants can be generated via Skolemization. Since we are inter-
ested in validity of the formulae, we must Skolemize universal quantifiers, and
since we want to obtain Skolem constants, these universal quantifiers should not
be in the scope of an existential quantifier.

Theorem 2. Let E be an equational theory with signature X, and V' a countably
infinite set of variables. Then the following are equivalent:

1. E-unification with constants is decidable.
2. The positive AFE theory of E is decidable.
3. The positive AE theory of T(X,V)/=g is decidable.

These theorems can be seen as folk theorems in the unification community.
Explicit proofs can be found in [14]. For general E-unification, a similar charac-
terization is possible. However, the proof of this result (which is not as straight-
forward as the ones for the above theorems) depends on results concerning the
combination of E-unification algorithms. For this reason, we defer presenting the
characterization to Section 5.1.

2.3 Combining constraint systems and solvers

Given two constraint systems, it is not a priori clear what their combination is
supposed to be, and in some cases there are several sensible candidates. Since
constraint systems consist of a constraint language and a corresponding seman-
tics, one must first define the combined language, and then introduce a combined
semantics for this language.

Let us first consider the problem of defining the combined constraint lan-
guage. This is quite simple if we restrict ourselves to the case where the two
constraint languages consist of formulae of the same type, but over different sig-
natures. In this case, the most natural candidate for the combined constraint
language appears to be the language consisting of formulae of the given type,
but over the union of the signatures. For example, if the constraint languages
allow for quantifier-free formulae over the signatures X; and X, respectively,
then the combined constraint language consists of all quantifier-free formulae
over the signature X; U Y,. Similarly, combined unification problems consist
of equations between terms over the union of the signatures of the component
constraint systems. In this paper, we will consider only this simple case.

Once the combined constraint language is defined, it must be equipped with
an appropriate semantics. If the semantics is defined via a theory, this is again
quite simple: the natural candidate is the union of the component theories. Thus,
given equational theories E; and Es with the respective signatures ¥y and X5,
the combined unification constraint system consists of all (E; U Es)-unification
problems (with the usual semantics). If the semantics of the component con-
straint systems is defined with the help of solution structures, things are more
difficult. One must combine the solution structures of the components into a so-
lution structure for the combined constraint language, and it not always obvious
how this combined solution structure should look like. We will briefly come back
to this problem of combining solution structures in Subsection 6.2.

Finally, given the combined constraint language with an appropriate seman-
tics, one needs a constraint solver for this combined constraint system. For two
specific constraint systems and their combination, one can of course try to con-
struct an ad hoc constraint solver for the combined system, which may or may

not employ the single solvers as subprocedures. A more satisfactory approach,
however, is to design a combination scheme that applies to a whole class of con-
straint systems. The combination procedures that we will consider in the next
two sections are of this form. For example, the Nelson-Oppen combination pro-
cedure can be used to combine decision procedures for the universal theories
of T1 and 75 into one for the universal theory of T} U T5. This holds for arbi-
trary theories 77 and T» with decidable universal theory (and not just for two
specific theories), provided that the signatures of T} and T» are disjoint. The
combination result for F-unification algorithms is of the same type.

In both cases, the combination approach treats the solvers of the single con-
straint systems as black boxes, i.e., it does not make any assumptions on how
these solvers work. This distinguishes these approaches from others that assume
the existence of constraint solvers of a certain type. For example, a semi-complete
(i.e., confluent and weakly normalizing) term rewriting system can be used to de-
cide the word problem of the corresponding equational theory. Since confluence
and weak normalization are modular properties, the union of two semi-complete
term rewriting systems over disjoint signatures is again semi-complete [53], and
thus the word problem in the combined equational theory is decidable as well.
However, this result is of no help at all if the decision procedures for the word
problem in the component equational theories are not based on rewriting.

3 The Nelson-Oppen combination procedure

This procedure, which was first introduced in [49], is concerned with combining
decision procedures for the validity of universal sentences in first-order theo-
ries, or equivalently with combining constraint solvers that test satisfiability of
quantifier-free formulae in some model of the theory. To be more precise, as-
sume that Y, and X5 are two disjoint signatures, and that T is obtained as the
union of a X;-theory T7 and a Xs-theory Ty. How can decision procedures for
validity (equivalently: satisfiability) in T; (i = 1,2) be used to obtain a decision
procedure for validity (equivalently: satisfiability) in T'?

When considering the satisfiability problem, as done in Nelson and Oppen’s
method, we may without loss of generality restrict our attention to conjunctive
quantifier-free formulae, i.e., conjunctions of X-atoms and negated X-atoms.
In fact, a given quantifier-free formula can be transformed into an equivalent
formula in disjunctive normal form (i.e., a disjunction of conjunctive quantifier-
free formulae), and this disjunction is satisfiable in T' iff one of its disjuncts is
satisfiable in T'.

Given a conjunctive quantifier-free formula ¢ over the combined signature
Xy U X, it is easy to generate a conjunction p; A o that is equivalent to ¢,
where ; is a pure Y;-formula, i.e., contains only symbols from ¥; (i = 1,2).
Here equivalent means that ¢ and ¢; A 2 are satisfiable in exactly the same
models of T. This is achieved by wariable abstraction, i.e., by replacing alien
subterms by variables and adding appropriate equations.

Variable abstraction Assume that ¢ is a term whose topmost function symbol
is in X, and let j be such that {i,j} = {1,2}. A subterm s of ¢ is called alien
subterm of t iff its topmost function symbol belongs to X'; and every proper
superterm of s in ¢ has its top symbol in X;.

Given a conjunctive quantifier-free formula ¢, the variable abstraction pro-
cess iteratively replaces terms by variables and adds appropriate equations to
the conjunction:

— If ¢ contains an equational conjunct s = ¢ such that the topmost function
symbols of s and ¢ belong to different signatures, then replace s =t by the
conjunction u = s A u = t, where u is a new variable, i.e., a variable not
occurring in ¢.

— If ¢ contains a negated equational conjunct s # t such that the topmost
function symbols of s and ¢ belong to different signatures, then replace s =t
by the conjunction u # v Au = s Av = t, where u, v are new variables.

— If ¢ contains a relational conjunct P(...,s;,...) such that the topmost
function symbol of s; does not belong to the signature of P, then replace
P(...,s;,...) by the conjunction P(...,u,...) Au = s;, where u is a new
variable. Conjuncts of the form —P(...,s;,...) are treated analogously.

— If contains a (relational or equational) conjunct P(...,s;,...) such that s;
contains an alien subterm ¢, then replace P(...,s;,...) by the P(...,s},...)A
u = t, where u is a new variable and s} is obtained from s; by replacing
the alien subterm ¢ by u. Conjuncts of the form —P(...,s;,...) are treated
analogously.

Obviously, this abstraction process always terminates and the resulting formula
can be written in the form ¢; A @2, where @; is a pure X;-formula (i = 1,2). In
addition, it is easy to see that the original formula ¢ and the new formula p; Aps
are satisfiable in exactly the same models of T = T} U T5. Consequently, if ¢ is
satisfiable in a model of T', then both ¢, and ¢, are satisfiable in a model of T,
which is also a model of T7 and of Ty. This shows that satisfiability of ¢ in a
model of T implies satisfiability of ¢; in a model of T; for i = 1, 2. Unfortunately,
the converse need not hold, i.e., satisfiability of ¢; in a model of T; (i = 1,2)
does not necessarily imply satisfiability of ¢1 A @2 in a model of T', and thus also
not satisfiability of ¢ in a model of T.

The reason for this problem is that ¢; and s may share variables, and one
formula may force some of these variables to be interpreted by the same element
of the model, whereas the other is only satisfiable if they are interpreted by
distinct elements of the model. To overcome this problem, Nelson and Oppen’s
procedure propagates equalities between variables from the formula ¢1 to s,
and vice versa.

The combination procedure Given a conjunctive quantifier-free (X U X5)-
formula ¢ to be tested for satisfiability (in some model of T} U T3), Nelson and
Oppen’s method for combining decision procedures proceeds in three steps:

1. Use variable abstraction to generate a conjunction o1 A @2 that is equivalent
to @, where p; is a pure X;-formula (i =1,2).

2. Test the pure formulae for satisfiability in the respective theories.

If ; is unsatisfiable in T; for ¢ = 1 or ¢ = 2, then return “unsatisfiable.”
Otherwise proceed with the next step.

3. Propagate equalities between different shared variables (i.e., distinct variables
ug, v; occurring in both o1 and @3), if a disjunction of such equalities can be
deduced from the pure parts.

A disjunction u; = v1 V...V u = v of equations between different shared
variables can be deduced from ¢; in T; iff o; Auy # vy A oo Aug # vg
is unsatisfiable in T;. Since the satisfiability problem in 7; was assumed to
be decidable, and since there are only finitely many shared variables, it is
decidable whether there exists such a disjunction.

If no such disjunctions can be deduced, return “satisfiable.” Otherwise, take
any of them,! and propagate its equations as follows. For every disjunct
uj = vj, proceed with the second step for the formula o;(p1) A 0;(p2),
where ¢; := {u; — v;} (for j =1,...,k). The answer is “satisfiable” iff one
of these cases yields “satisfiable.”

Obviously, the procedure terminates since there are only finitely many shared
variables to be identified. In addition, it is easy to see that satisfiability is pre-
served at each step. This implies completeness of the procedure, that is, if it
answers “unsatisfiable” (since already one of the pure subformulae is unsatisfi-
able in its theory), the original formula was indeed unsatisfiable. Before showing
soundness of the procedure (which is more involved), we illustrate the working
of the procedure by an example.

Ezample 1. Consider the equational® theories Ty := {f(z,z) = z} and Ty :=
{g9(g(z)) = g(x)} over the signatures ¥y := {f} and X5 := {g}. Assume that we
want to know whether the quantifier-free (mixed) formula g(f(g(z), g(g9(z)))) =
g(z) is valid in Ty U T». To this purpose we apply the Nelson-Oppen procedure
to its negation g(f(g(2),9(9(2)))) # 9(2).

In Step 1, f(g9(2),9(g(2))) is an alien subterm in g(f(g(z),g(g(z)))) (since
g € Yy and f € Xp). In addition, g(z) and g(g(z)) are alien subterms in

f(g(2),9(g(2))). Thus, variable abstraction yields the conjunction (1 A s, where
p1:=u= f(v,w) and ¢y :=g(u) # g(z) Av =g(2) Aw = g(g(2))-

In Step 2, it is easy to see that both pure formulae are satisfiable in their
respective theories. The equation u = f (v, w) is obviously satisfiable in the trivial
model of T} (of cardinality 1). The formula ¢ is, for example, satisfiable in the
T5-free algebra with two generators, where u is interpreted by one generator, z
by the other, and v, w as required by the equations.

! For efficiency reasons, one should take a disjunction with minimal k.
2 Recall that the identities in equational theories are (implicitly) universally quantified.

In Step 3, we can deduce w = v from g5 in T since 2 contains v = g(z)Aw =
g(g9(2)) and T contains the (universally quantified) identity g(g(z)) = g(z).
Propagating the equality w = v yields the pure formulae

p1:=u=f(v,v) and @)= g(u) # g(z) Av =g(2) Av = g(g9(2)),

which again turn out to be separately satisfiable in Step 2 (with the same models
as used above).

In Step 3, we can now deduce the equality v = v from ¢} in T;, and its
propagation yields

¢ :==v = f(v,v) and @y :=g(v) # g(z) Av=g(2) Av = g(g(2)).

In Step 2, it turns out that o} is not satisfiable in T5, and thus the answer is
“unsatisfiable,” which shows that g(f(g(2), g(g(2)))) = g(z) is valid in T} U T5.
In fact, v = g(2) and the identity g(g(z)) = g(z) of Ty imply that g(v) = g(2),
which contradicts g(v) # g(2).

Soundness of the procedure As mentioned above, termination and complete-
ness of the procedure are quite trivial. Soundness of the procedure, i.e., if the
procedure answers “satisfiable,” then the input formula is indeed satisfiable, is
less trivial. In fact, for arbitrary theories T and 75, the combination procedure
need not be sound. One must assume that each T} is stably infinite, that is, such
that a quantifier-free formula ¢; is satisfiable in 7 iff it is satisfiable in an infinite
model of T;. This restriction was not mentioned in Nelson and Oppen’s original
article [49]; it was introduced by Oppen in [54].

The following example demonstrates that the Nelson-Oppen combination
procedure need not be sound for theories that are not stably infinite, even if the
theories in question are non-trivial® equational theories.

Ezample 2. Let Ey := {f(9(x),9(y)) =z, f(g(z),h(y)) =y} and B> := {k(z) =
k(x)}. The theory E5 is obviously non-trivial, and it is easy to see that E; is also
non-trivial: by orienting the equations from left to right, one obtains a canonical
term rewriting system, in which any two distinct variables have different normal
forms.

First, we show that F is not stably infinite. To this purpose, we consider the
quantifier-free formula g(z) = h(z). Obviously, this formula is satisfiable in the
trivial (one-element) model of E;. In every model A of E; that satisfies g(z) =
h(z), there exists an element e such that g*(e) = h“(e). Here, g, h** denote
the interpretations of the unary function symbols f, g by functions A — A. But
then we have for any element a of A that

a = fA(g"(a), 9" (e)) = (9% (a), 1" (e)) = e,

Recall that non-trivial means that the theory has a model of cardinality greater than
1.

i.e., all elements of A are equal to e, which shows that A is the trivial model.
Thus, g(z) = h(x) is satisfiable only in the trivial model of E;, which show that
the (non-trivial) equational theory E; is not stably infinite.

To show that this really leads to an unsound behavior of the Nelson-Oppen
method, we consider the mixed conjunction g(z) = h(z) A k(z) # z. Clearly,
k(x) # x is satisfiable in Ey (for instance, in the FEs-free algebra with 1 gen-
erator) and, as we saw earlier, g(z) = h(z) is satisfiable in E;. In addition, no
equations between distinct shared variables can be deduced (since there is only
one shared variable). It follows that Nelson and Oppen’s procedure would an-
swer “satisfiable” on input g(z) = h(z) A k(z) # z. However, since g(z) = h(x)
is satisfiable only in the trivial model of E;, and no disequation can be satisfied
in a trivial model, g(z) = h(x) A k(z) # x is unsatisfiable in E; U E».

Nelson and Oppen’s original proof of soundness of the procedure as well as a
more recent one by Tinelli and Harandi [72] use Craig’s Interpolation Theorem
[20]. In the following, we sketch a proof that uses a very elementary model
theoretic construction: the fusion of structures. It goes back to Ringeissen [58]
and was further refined by Ringeissen and Tinelli [73,71].%

In the following, let X; and X5 be disjoint signatures, and X := X U Xy
their union. A given Y-structure A can also be viewed as a X;-structure, by just
forgetting about the interpretation of the symbols not contained in X;. We call
this X;-structure the X;-reduct of A, and denote it by A>:.

Definition 1. The X-structure A is a fusion of the Xy -structure Ay and the
Xy-structure As iff the Xi-reduct A*: of A is Xi-isomorphic to A; (i =1,2).

Since the signatures Yy and X5 are disjoint, the existence of a fusion depends
only on the cardinality of the structures A; and As,.

Lemma 1. Let A be a X1 -structure and As a X5-structure. Then A; and A-
have a fusion iff their domains Ay and Ay have the same cardinality.

Proof. The only-if direction of the lemma is an immediate consequence of the
definition of fusion. The if direction can be seen as follows: if 4; and A, have
the same cardinality, then there exists a bijection 7 : Ay — As. This bijection
can be used to transfer the interpretation of the elements of X5 from As to Aj.
To be more precise, let A be the X-structure that has domain Ay, interprets the
elements of Xy like A, and interprets the elements of X5 as follows:

— If f is an n-ary function symbol in X, and a,...,a, € Ay, then we define
fAa,. .. an) =17 (f22(n(a1), ..., m(an))).
— If P is an m-ary predicate symbol in X5, and ay,...,a, € A, then

(a1,...,ay) € PAIff (m(ar),...,7(a,)) € PA2.

4 Actually, these papers consider the more general situation where the signatures need
not be disjoint. Here, we restrict our attention to the disjoint case.

Then A is a fusion of A; and A, since A" is identical to A;, and 7 is a Y-
isomorphism from A4*2 to Ay by construction of A. O

There is an interesting connection between the union of theories and fusions
of models of the theories.

Proposition 1. For i = 1,2, let T; be a X;-theory. The X-structure A is a
model of Ty U T iff it is a fusion of a model Ay of Ty and a model Ay of Ts.

Proof. The only-if direction is an immediate consequence of the facts that A is
a fusion of its ¥;-reduct A*" and its Ys-reduct A2, and that A* is a model
of T; (i = 1,2).

The if direction is also trivial since, if A is a fusion of a model A; of T} and
a model As of Ts, then its X;-reduct is isomorphic to A;, and thus a model of
T; (i = 1,2). Consequently, A is a model of T U T5. O

We are now ready to show a result from which soundness of the Nelson-Oppen
procedure follows immediately. For a finite set of variables X, let A(X) denote
the conjunction of all negated equations x # y for distinct variables z,y € X.

Proposition 2. Let T and Ty be two stably infinite theories over the disjoint
signatures X1 and X, respectively; let p; be a quantifier-free X;-formula (i =
1,2), and let X be the set of variables occurring in both @1 and @o. If p; AN A(X)
is satisfiable in a model A; of T; for i = 1,2, then o1 A @o is satisfiable in a
fusion of A1 and Az, and thus in a model of Ty U Ts.

Proof. Since the theories T7 and T5 are stably infinite and signatures are at most
countable, we may without loss of generality assume that the structures A; and
Ay are both countably infinite. Since ¢; A A(X) is satisfiable in A;, there is
an evaluation «; : X — A; that satisfies ¢; and replaces the variables in X
by distinct elements of A; (¢ = 1,2). This implies that there exists a bijection
7w Ay — A such that m(ai(z)) = as(x). As shown in the proof of Lemma 1,
this bijection induces a fusion A of A; and As. It is easy to see that @1 A o is
satisfiable in 4. The evaluation a showing satisfiability is defined as follows: on
the variables in ¢y it coincides with ay, and for the non-shared variables z in o
we define a(z) := 7 H(az()). O

It is easy to see that this proposition yields soundness of the Nelson-Oppen
combination procedure, i.e, if the procedure answers “satisfiable,” then the origi-
nal formula was indeed satisfiable. In fact, if in Step 3 no disjunction of equalities
between shared variables can be derived from the pure formulae, the prerequi-
site for the proposition is satisfied: since the disjunction of all equations z = y
for distinct variables x,y € X cannot be deduced from ¢; in T;, we know that
p; N A(X) is satisfiable in T;. Thus, we can deduce that o1 A 2 is satisfiable in
Ty U T5, and since each step of the procedure preserves satisfiability, the input
formula was also satisfiable.

To sum up, we have shown correctness of Nelson and Oppen’s combination
procedure, which yields the following theorem:

Theorem 3. Let Ty and T> be two stably infinite theories over disjoint signa-
tures such that the universal theory of T; is decidable for i = 1,2. Then the
universal theory of Ty U Ty is also decidable.

Complexity of the procedure The main sources of complexity are (i) the
transformation of the quantifier-free formula into a disjunction of conjunctive
quantifier-free formulae, and (ii) Step 3 of the combination procedure for con-
junctive quantifier-free formulae. It is well-known that the transformation of an
arbitrary Boolean formula into disjunctive normal form may cause an exponen-
tial blow-up. Step 3 of the procedure has again two sources of complexity. First,
there is the problem of deciding whether there is a disjunction of equalities be-
tween distinct variables that can be derived from ¢; in T;. If one must really test
all possible disjunctions using the satisfiability procedure for T;, then already a
single such step needs exponential time. However, even if we assume that there
is a polynomial procedure that determines an appropriate disjunction (if there
is one), then the overall algorithm is still not polynomial unless all these dis-
junctions consist of a single disjunct. Otherwise, the algorithm must investigate
different branches, and since this may happen each time Step 3 is performed, an
exponential number of branches may need to be investigated.

Nelson and Oppen [49] introduce the notion of a convex theory, and Oppen
[54] shows that, for convex theories, the two sources of complexity in Step 3
of the procedure can be avoided. A theory T is convez iff the following the
following holds: if a disjunction of equalities between distinct variables can be
deduced from a quantifier-free formula in 7', then a single equality between
distinct variables can already be deduced. For convex theories, Step 3 of the
procedure can thus be modified as follows: it is only tested whether a single
equation between distinct shared variables can be deduced. Since there are only
a polynomial number of such equations, this can be tested by a polynomial
number of calls to the satisfiability procedure for T;. In addition, there is no
more branching in Step 3. This shows that the modified combination procedure
runs in polynomial time, if applied to conjunctive quantifier-free input formulae.

Theorem 4. Let T} and Ty be two convex and stably infinite theories over dis-
joint signatures such that the conjunctive universal theory of T; is decidable in
polynomial time for i = 1,2. Then the conjunctive universal theory of Ty UTs is
also decidable in polynomial time.

In the general case, the Nelson-Oppen combination approach yields a non-
deterministic polynomial procedure. First, given an arbitrary quantifier-free for-
mula, the nondeterministic procedure chooses from each disjunction one of the
disjuncts. This yields a conjunctive quantifier-free formula. This formula is then
treated by the following nondeterministic variant of the combination procedure:

1. Use variable abstraction to generate a conjunction o1 A @2 that is equivalent
to @, where p; is a pure X;-formula (i =1,2).

2. Nondeterministically choose a variable identification, i.e., choose a partition
II ={m,...,m} of the variables shared by v1 and vs.
For each of the classes 7;, let z; € m; be a representative of this class, and
let X7 :={z1,..., 21} be the set of these representatives. The substitution
that replaces, for all i = 1,..., k, each element of m; by its representative x;
is denoted by or7.

3. Test the pure formulae for satisfiability in the respective theories.
If om(p;) AN A(Xr) is unsatisfiable in T; for ¢ = 1 or ¢ = 2, then return
“unsatisfiable;” otherwise return “satisfiable.”®

Obviously, it is possible to choose one partition using only a polynomial number
of binary choices, which shows that the above procedure is indeed nondeter-
ministic polynomial. Completeness is again easy to see, and soundness is an
immediate consequence of Proposition 2.

Theorem 5. Let Ty and T be two stably infinite theories over disjoint signa-
tures such that the universal theory of T; is decidable in NP for i = 1,2. Then
the universal theory of Ty U Ty is also decidable in NP.

Extensions and related work Shostak [64] describes a more efficient com-
bination procedure, which is based on congruence closure [50]. However, unlike
the Nelson-Oppen procedure, this approach assumes that decision procedures of
a specific form (so-called “canonizers” and “solvers”) exist for the component
theories, i.e., is does not treat the component decision procedures as black boxes.
A formally more rigorous presentation of the method can be found in [25].

Above, we have always assumed that the theories to be combined are over dis-
joint signatures. Without any such restriction, a general combination procedure
cannot exist. In fact, it is very easy to find examples of decidable theories whose
(non-disjoint) combination is undecidable. Nevertheless, it is worthwhile to try
to weaken the disjointness assumption. The first extension of Nelson and Op-
pen’s approach in this direction is due to Ringeissen [58]. It was further extended
by Ringeissen and Tinelli [73,71] to the case of theories sharing “constructors.”

Baader and Tinelli [10] consider the application of the Nelson-Oppen pro-
cedure to equational theories. Although equational theories need not be stably
infinite (see Example 2), Nelson and Oppen’s procedure can be applied, after
some minor modifications, to combine decision procedures for the validity of
quantifier-free formulae in equational theories. It is also shown that, contrary
to a common belief, the method cannot be used to combine decision procedures
for the word problem. The paper then presents a method that solves this kind
of combination problem. In [11,12] it is shown that this approach can also be
extended to the case of theories sharing constructors.

® Recall that A(X) denotes the conjunction of all negated equations z # y for distinct
variables z,y € Xp1.

4 Combination of E-unification algorithms

The constraints that we treat in this section are E-unification problems, i.e., sys-
tems of term equations that must be solved modulo a given equational theory E.
From a more logical point of view, this means that we are interested in the pos-
itive existential or the positive AE theory of E (see Theorems 1 and 2), depend-
ing on whether we consider elementary unification or unification with constants.
During the last three decades, research in unification theory has produced E-
unification algorithms (i.e., constraint solvers for E-unification constraints) for
a great variety of equational theories E (see [33,8,9]). Such an algorithm either
actually computes solutions of the E-unification constraints (usually complete
sets of E-unifiers), or it just decides satisfiability of E-unification constraints.
Using decision procedures instead of algorithms computing complete sets of uni-
fiers may be advantageous for theories where the complete sets are large or even
infinite.

E-unification algorithms that compute complete sets of unifiers are, for ex-
ample, applied in theorem proving with “built in” theories (see, e.g., [55,68]), in
generalizations of the Knuth-Bendix completion procedure to rewriting modulo
theories (see, e.g., [34,13]), and in logic programming with equality (see, e.g.,
[32]). With the development of constraint approaches to theorem proving (see,
e.g., [18,51]), term rewriting (see, e.g., [41]), and logic programming (see, e.g.,
[31,22]), decision procedures for E-unification have been gaining in importance.

The combination problem for E-unification algorithms is directly motivated
by these applications. In this section, we first motivate the problem and briefly
review the research on this topic, which led to a complete solution for the case of
theories over disjoint signatures. Subsequently, we describe the combination al-
gorithm developed in [2, 6], and sketch how to prove its correctness. In Section 5,
we derive an algebraic and logical reformulation of the combination problem and
the combination algorithm. This leads to a more abstract proof, which can also
be generalized to other classes of constraints (Section 6). Finally, in Section 7 we
comment on the complexity of the combination problem, and describe possible
optimizations of the combination procedure.

4.1 The problem and its history

Basically, the problem of combining E-unification algorithms can be described
as follows:

Assume we are given unification algorithms for solving unification prob-
lems modulo the equational theories Ei and E>. How can we obtain a
unification algorithm for the union of the theories, Ey U Ey?

Here, unification algorithms may either be algorithms computing complete sets
of unifiers or decision procedures for unifiability.

The relevance of this problem relies on the observation that, quite often,
a given E-unification algorithm can only treat unification problems where the

terms occurring in the problem are composed over the signature of E (elemen-
tary E-unification), possibly enriched by some free constants (E-unification with
constants). This is, for example, the case for the “natural” unification algorithms
for the theory AC of an associative-commutative function symbol [67,30], which
depend on solving linear Diophantine equations in the natural numbers. How-
ever, in the applications mentioned above, unification problems often contain
“mixed” terms, i.e, terms that are constructed from function symbols belonging
to different theories.

For example, in automated theorem proving, free function symbols of arbi-
trary arity are frequently introduced by Skolemization. Thus, the E-unification
problems that must be solved there are usually general E-unification problems.
If the given E-unification algorithm can treat only E-unification problems with
constants, the question arises whether it is always possible to construct an al-
gorithm for general E-unification from a given algorithm for F-unification with
constants. This can be seen as an instance of the combination problem where
FEy is the theory E, and E, is the free theory for the free function symbols
(e.g., consisting of the “dummy” identities f(z1,...,2z,) = f(z1,...,2,) for the
free function symbols f). The combination problem in its general form arises
if the semantic properties of several function symbols are to be integrated into
the unification; for example, one may want to build in an associative symbol
representing concatenation of lists, and an associative-commutative symbol rep-
resenting addition of numbers.

Similarly as in the case of the Nelson-Oppen procedure, there cannot be a
general solution to the combination problem as stated above: there exist equa-
tional theories F; and FE> where unification with constants is decidable both for
E, and for E,, but solvability of unification problems with constants modulo
E; U Es is undecidable. For example, both unification with constants modulo
left-distributivity of the binary symbol f over the binary symbol g [70] and
unification with constants modulo associativity of the binary symbol g [46] are
decidable, but unification with constants modulo the union of these theories is
undecidable [65]. Again, the restriction to theories over disjoint signatures avoids
this problem. Until now, most of the research was concentrated on this restricted
case.

A first important instance of the problem was considered by Stickel [66,67].
Stickel’s A C-unification algorithm allowed for the presence of several AC-symbols
and free symbols. However, termination of this algorithm could only be shown
for restricted cases and it took almost a decade until Fages [27] could close this
gap-

Subsequently, more general combination problems were, for example, treated
in [40,69,29,75,16], but the theories considered in these papers always had to
satisfy certain restrictions (such as collapse-freeness or regularity) on the syntac-
tic form of their defining identities. Recall that a theory FE is called collapse-free
if it does not contain an identity of the form x = ¢ where z is a variable and # is
a non-variable term, and it is called regular if the left- and right-hand sides of
the identities contain the same variables. Such restrictions simplify the combina-

tion problem, both from the conceptual and from the computational complexity
point, of view.

An important break-through in the research on the combination problem was
the combination algorithm by Schmidt-Schauf} [60]. The algorithm applies to ar-
bitrary equational theories over disjoint signatures, provided that an additional
algorithmic requirement is fulfilled: in addition to algorithms for unification with
constants, one needs algorithms that solve so-called constant elimination prob-
lems. A more efficient version of this highly nondeterministic algorithm has been
described by Boudet [15]. Basically, whereas the algorithm by Schmidt-Schaufl
performs two nondeterministic steps right at the beginning, Boudet’s algorithm
tries to defer nondeterministic steps as long as possible; nondeterminism is only
used “on demand” to resolve certain conflicts. For restricted classes of theories
(e.g., collapse-free theories) some of these conflicts cannot occur, and thus the
corresponding nondeterministic steps can be avoided.

The combination procedures mentioned until now all considered the problem
of combining algorithms that compute (finite) complete sets of E-unifiers. The
problem of how to combine decision procedures is not solved by these approaches,
in particular not for theories like associativity, where unification problems need
not have a finite complete set of unifiers. Actually, the paper by Schmidt-Schauf}
[60] also considered the problem of combining decision procedures. It showed
that decision procedures can be combined, provided that solvability of general
unification problems is decidable in the component theories. The drawback of
this result was that for many theories (e.g., associativity) one already needs to
employ combination methods to show that general unification (i.e., unification in
the combination of the given theory with syntactic equality of the free function
symbols) is decidable.

The problem of how to combine decision procedures was finally solved in a
very general form in [2, 6], where a combination algorithm was given that can be
used both for combining decision procedures and for combining algorithms com-
puting complete sets of unifiers. This algorithm applies to arbitrary equational
theories over disjoint signatures, but it requires as a prerequisite that algorithms
solving so-called unification problems with linear constant restrictions® are avail-
able for these theories (which was, e.g., the case for associativity). In the sequel,
we describe this combination algorithm.

All the combination results that will be presented in the following are re-
stricted to the case of disjoint signatures. There are some approaches that try
to weaken the disjointness assumption, but the theories to be combined must
satisfy rather strong conditions [57,26].

4.2 A combination algorithm for E-unification algorithms

In the following, we consider equational theories E; and FEs over the disjoint
signatures Xy and Y. We denote the union of the theories by E := FE; U E5 and

6 In retrospect, if one looks at the combination method for decision procedures by
Schmidt-SchauB, then one sees that he used the free function symbols in the general
unification problems just to encode linear constant restrictions.

the union of the signatures by X' := Y, U X5. The theories Ey, E> are called the
component theories of the combined theory E.

Before describing the algorithm in detail, we motivate its central steps and
the ideas underlying these steps by examples. In these examples, F; will be the
theory of a binary associative function symbol f, i.e., By := {f(f(z,y),2) =
f(z, f(y,2))}, and Ey will be the free theory for the unary function symbol g
and the constant symbol a, .e., By := {g(x) = g(x), a = a}.

Assume that we are given an elementary FE-unification problem I'. First,
we proceed in the same way as in the Nelson-Oppen procedure: using variable
abstraction, we decompose I" into a union of two pure unification problems, i.e.,
we compute an equivalent system of equations of the form” I'y W I, where I}
contains only terms over the signature X; (i = 1,2).

Again, it is easy to see that an E-unifier o of the original problem I is also
an FE-unifiers of the problems I1 and I. By using an appropriate projection
technique, which replaces alien subterms by variables, o can be turned into an
E;-unifier of I'; (see Subsection 4.4 for more details). As in the case of the Nelson-
Oppen procedure, the other direction need not be true: given solutions oy and
o9 of I'l and I, it is not clear how to combine them into a solution of Iy W I's.

An obvious problem that one may encounter is that the substitutions oy and
oy may assign different terms to the same variable.

Example 3. Consider the decomposed problem Iy W I's, where
I :={z="f(z,2)} and I}:={z="a}.

The substitution oy := {z — f(2,2)} solves I} and o5 := {z — a} solves I5.
Thus, there are conflicting assignment for the variable z, and it is not clear how
to combine the two substitutions into a single one. In fact, in the example, there
is no solution for the combined problem Iy & I5.

This problem motivates the following step of the combination algorithm.

Theory labeling. Given It W I, we (nondeterministically) introduce for
each variable occurring in this problem a label 1 or 2. The label 1 for
variable z indicates that z may be instantiated by solutions of the Ej-
unification problem I7, whereas it must be treated as a constant by
solutions of the Es-unification problem I%. Label 2 is interpreted in the
dual way.

In the example, the variable x must be assigned either label 1 or 2. In the first
case, I's does not have a solution, whereas in the second case I'y does not have
a solution.

Unfortunately, this step introduces a new problem. Some of the new free
“constants” generated by the labeling step may need to be identified by a solution
of the subproblem, but this is no longer possible since they are constants, and
thus cannot be replaced.

" The symbol “&” indicates that this union is disjoint.

Ezample /. Consider the decomposed problem Iy W I's, where

I={z =" f(2,2),y =" f(z,2)} and I»:={g(z) =" g(y)}.

Obviously, I't can only be solved if both z and y obtain label 1. However, then
I'; does not have a solution since z and y are viewed as different constants in I5.
Nevertheless, I'] W I'; has a solution, namely o := {z — f(z,2), y = f(z,2)}.

There is, however, a simple solution to this problem.

Variable identification. Before introducing the theory labeling, variables
are (nondeterministically) identified.®

In the example, we just identify =z and y (e.g., by replacing all occurrences of y
by z). The resulting problem I'j = {g(x) =’ g(z)} is now obviously solvable.

After we have performed the identification and the labeling step, we can be
sure that given solutions oy and o2 of I'7 and I'; have a disjoint domain, and thus
it makes sense to consider the substitution o Uos. Nevertheless, this substitution
need not be a solution of Iy W I3, as illustrated by the following example.

Ezample 5. Consider the decomposed problem Iy W I's, where
I :={z=f(z,2)} and I} :={z="al.

We assume that no variables are identified and that x obtains label 1 and z label
2. Then o1 := {z — f(z,2)} solves Iy and o2 := {z — a} solves I';. However,
o:=01Uos = {z— f(z,2), 2 — a} does not solve I'1 & I'; since o(z) = f(z,2)
and o(f(z,2)) = f(a,a).

To avoid this kind of problem, we must iteratively apply the substitutions
o1 and o5 to each other, i.e., consider the sequence o1, 05 0 01, 01 0 03 0 01,°
etc. until it stabilizes. In the above example, the correct combined substitution
would be {z — f(a,a), z+— a} = 02001 = 01002007 = In general, this
process need not terminate since there may be cyclic dependencies between the
variable instantiations.

Example 6. Consider the decomposed problem Iy W I's, where
I o={z=f(z,2)} and I, :={z="g(z)}.

We assume that no variables are identified and that x obtains label 1 and z label
2. Then oy := {z — f(z,2)} solves I'1 and o2 := {2z — g(x)} solves I'y. Because
x is replaced by a term containing y and y by a term containing =z, iterated
application of the substitutions to each other does not terminate. In fact, it is
easy to see that the combined problem I} W I'> does not have a solution.

8 This is a step that also occurs in the nondeterministic variant of the Nelson-Oppen
procedure.

 The symbol “o” denotes composition of substitution, where the substitution on the
right is applied first.

In the combination procedure, such cyclic dependencies between solutions of the
component problems are prohibited by the following step:

Linear ordering. We (nondeterministically) choose a linear ordering <
on the variables occurring in It W I'». Given a labeling of variables as
explained above, we ask for solutions o; of I; (i = 1,2) that respect
the labeling in the sense introduced above, and satisfy the following
additional condition: if a variable y with label j occurs in o;(z), where
x has label ¢ # 7, then y < z.

As a consequence of these steps, the E;-unification problems obtained as output
of the combination procedure are no longer elementary FE;-unification problems.
Because of the labeling, they contain free constants (the variables with label
Jj # 1), and the linear ordering imposes additional restrictions on the possible
solutions. We call such a problem an FE;-unification problem with linear constant
restrictions.

Definition 2. Let F' be an equational theory. An F-unification problem with
linear constant restriction is a quadruple (I, X,C, <). The first component, I,
is an elementary F -unification problem. X and C are disjoint finite sets such that
X UC is a superset of the set of variables occurring in I'. The last component,
<, is a linear ordering on X U C. A solution of (I, X,C, <) is a substitution o
that satisfies the following conditions:

1. o solves the elementary F-unification problem I';
2. o treats all elements of C' as constants, i.e., o(x) =z for all z € C;
3. forallz € X and c € C, if x < ¢, then ¢ must not occur in o(x).

We are now ready to give a formal description of the combination algorithm in
Fig. 1. As before, we restrict the description to the combination of two component
algorithms. It should be noted, however, that the generalization to n > 2 theories
would be straightforward. Since Steps 2—4 are nondeterministic, the procedure
actually generates a finite set of possible output pairs. The following proposition
shows that the combination algorithm is sound and complete if used as a scheme
for combining E;-unification algorithms that decide solvability. A sketch of a
proof will be given later on.

Proposition 3. The input problem, I', has a solution iff there exists an output
pair of the Combination Algorithm, ((I'],Y1,Ys,<),([3,Y3,Y1,<)), such that
both components are solvable.

4.3 Consequences

The straightforward generalization of Proposition 3 to n > 2 theories yields the
following combination result for decision procedures.

Theorem 6. Let Ey, ..., E, be equational theories over pairwise disjoint signa-
tures such that solvability of E;-unification problems with linear constant restric-
tions is decidable for i = 1,...,n. Then unifiability is decidable for the combined
theory E:= EyU...UE,.

Input: A finite set I' of equations between (X1 U X3)-terms. The following steps
are applied in consecutive order.

1. Decomposition.

Using variable abstraction, we compute an equivalent system Iy W I, where I't only
contains pure Xi-terms and Iy only contains pure Xo-terms.

2. Choose Variable Identification.

A partition IT of the set of variables occurring in It & I'y is chosen, and for each
equivalence class of II a representative is selected. If y is the representative of
m € IT and © € © we say that y is the representative of x. Let Y denote the set of
all representatives. Now each variable is replaced by its representative. We obtain
the new system I'| & I'y.

3. Choose Theory Labeling.

A labeling function Lab : Y — {1,2} is chosen. Let Y1 and Ya respectively denote
the set of variables with label 1 and 2.

4. Choose Linear Ordering.
A linear ordering “<” on'Y is selected.

Output: The pair ((I7,Y1,Y>, <), (I3, Y2, Y1, <)).
Each component (I7,Y;,Y;, <) is treated as an E;-unification problem with linear
constant restriction (i =1,2).

Fig. 1. The Combination Algorithm

By “unifiability” we mean here solvability of elementary E-unification problems.
Since, for each set (2 of free function symbols, solvability of unification problems
with linear constant restriction in the free theory Fo = {f(...) = f(...) | f € 2}
is decidable (see below), the result of Theorem 6 can also be lifted to general E-
unification problems. In fact, given a general E-unification problem, I"; we just
have to apply the theorem to the theories Ei, ..., E,, Fp where {2 denotes the
set of free function symbols occurring in I'. In Section 5.1 we shall see that E-
unification problems with linear constant restrictions can always be encoded as
E-unification problems with free function symbols. As a consequence, Theorem 6
also holds for E-unification problems with linear constant restrictions, which
yields a modularity result for unification with linear constant restrictions.

A simple analysis of the (nondeterministic) steps of the Combination Algo-
rithm also provides us with the following complexity result, which is analogous
to the one of Theorem 5:

Theorem 7. If solvability of E;-unification problems with linear constant re-
strictions is decidable in NP, then unifiability in the combined theory Ey U Es is
also decidable in NP.

Although it was designed for the purpose of combining decision procedures,
the Combination Algorithm can also be used to compute complete sets of unifiers
modulo the union of equational theories.

Theorem 8. Let Ey, ..., E, be equational theories over pairwise disjoint signa-
tures, and let E := FEyU...UE, be their union. Assume that we have unification
algorithms that compute, for each E;-unification problem with linear constant
restrictions, a finite complete set of E;-unifiers (i = 1,...,n). Then we can
compute a finite complete set of E-unifiers for each elementary E-unification
problem.

The main idea for proving this theorem (sketched here for the case of n = 2
theories) is as follows. In the proof of soundness of the combination algorithm
(see Section 4.4 below), we will show how an arbitrary pair (o1, 02) of solutions
of an output pair of the combination algorithm can be combined into a solution
o1 @ oy of the input problem (see also Example 5). Given a single output pair
(I, Y1,Y5,<),(I3,Y3,Y1,<)), one can compute complete sets of unifiers for
the two component problems, and then combine the elements of these complete
sets in all possible ways. If this is done for all output pairs, then the set of all
combined solutions obtained this way is a complete set of unifiers for the input
problem (see [6] for details).

The last two results can again be lifted from elementary unification problems
to general unification problems and to unification problems with linear constant
restrictions in the combined theory, which provides us with a modularity result.

In order to apply these general combination results to specific theories, one
needs algorithms that can solve unification problems with linear constant re-
strictions for these theories. For regular theories, an algorithm for computing
complete sets of unifiers for unification with constants can be used to obtain
an algorithm for computing complete sets of unifiers for unification with linear
constant restrictions: just remove the unifiers violating the constant restrictions
from the complete set. In particular, since the free theory is obviously regular,
one can test solvability of a unification problem with linear constant restrictions
in the free theory by computing the most general unifier, and then checking
whether this unifier satisfies the constant restrictions. For non-regular theories,
this simple way of proceeding is not possible. However, the constant elimina-
tion procedures required by the approach of Schmidt-Schaufl can be used to
turn complete sets of unifiers for unification with constants into complete sets of
unifiers for unification with linear constant restrictions (see [6], Section 5.2, for
details).

With respect to decision procedures, it has turned out that, for several in-
teresting theories (e.g., the theory AC of an associative-commutative symbol or
the theory ACI of an associative-commutative-idempotent symbol), the known
decision procedures for unification with constants can easily be modified into
algorithms for unification with linear constant restrictions [3]. In particular, it
is easy to show that Theorem 7 applies to AC and ACI, which yields a simple
proof that the decision problem for general AC- and AClI-unification is in NP.
For the theory A of an associative function symbol, decidability of unification
problems with linear constant restrictions is an easy consequence (see [3]) of a
result by Schulz [61] on a generalization of Makanin’s decision procedure. As a

consequence, general A-unification is also decidable (this problem had been open
before the development of the combination algorithm presented above).

There are, however, also theories for which unification with linear constant
restrictions is considerably harder than unification with constants. For example,
it can be shown [1] that Boolean unification with linear constant restrictions
is PSPACE-complete whereas Boolean unification with constants is “only” IT7-
complete. Until now, it is not known whether there exists an equational theory
for which unification with constants is decidable, but unification with linear
constant restrictions is undecidable.

4.4 Correctness

In the remainder of this section, we sketch how to prove Proposition 3. The full
proof can be found in [6].

To show soundness of the Combination Algorithm, it suffices to show that, for
each output pair ((I'1,Y1,Ys, <), (I3, Y2,Y7, <)), a given pair of solutions (o1, 02)
of the two components can be combined into a solution ¢ of I'f W I';, which is
treated as an elementary FE-unification problem here. In fact, this obviously
implies that o can be extended to a solution of the input problem I".

The combined solution ¢ is defined by induction on the linear ordering <.
Agsume that o is defined for all variables y € Y that are smaller than z € YV
with respect to <. Without loss of generality we may assume that z € Y; has
label 1 and that oy (2) does not contain any variables from Y;. Since o; satisfies
the linear constant restrictions, it follows that all labeled variables y occurring in
o1(z) are smaller than z with respect to “<”, which implies that o(y) is defined
by induction hypothesis. We define o(z) := o(01(z)). It is easy to see that the
substitution o obtained in this way is an instance of both o1 and o2. It follows
that o is an Ej;-unifier, and hence an E-unifier, of I} (i = 1,2). Consequently, o
is a solution of I W Iy.

It is more difficult to prove the completeness part of Proposition 3. Basically,
the proof proceeds as follows. A given solution ¢ of I is used to define suitable
choices in the nondeterministic steps of the Combination Algorithm, i.e., choices
that lead to an output pair where both components are solvable:

— at the variable identification step, two variables x and y are identified iff
o(z) =g o(y). Obviously o is a solution of the system I W I'; reached after
this identification.

— at the labeling step, a representative y receives label 1 iff o(z) has a symbol
from X, as topmost function symbol.

— the linear ordering “<” that is chosen is an arbitrary extension of the par-
tial ordering that is induced by the subterm relationship of the o-values of
representatives.

However, this way of proceedings is correct only if the solution o of the input
problem is assumed to be normalized in a particular way. In [2], using so-called
“unfailing completion,” a (possibly infinite) canonical rewrite system R for the

combined theory E is defined. For each variable z in the system I W I it is
then assumed that o(z) is in R-normal form. Another possibility is to assume
that the terms o(z) are in the so-called layer-reduced form [60,42]. In principle,
this normal form is obtained by applying collapse-equations as much as possible.

It remains to find, given a normalized solution o, suitable solutions oy and
oo of the output pair determined by the choices induced by o. To define these
solutions, a “projection technique” is introduced that transforms possibly mixed
solution terms of the form o(y) to a pure X;-terms o;(y). Basically, to define
oi(y), “alien” subterms of o(y) (i.e., maximal subterms starting with a symbol
not belonging to X;) are replaced by new variables, while ensuring that E-
equivalent subterms are replaced by the same variable. If o(y) itself is alien,
then o;(y) := y, which ensures that variables with label j # i are treated as free
constants.

5 The logical and algebraic perspective

In this section, we describe the problem of combining unification algorithms from
a more logical and algebraic point of view. This leads to a modified description
of the combination algorithm and to a new proof of its correctness. In the next
section, we will show that the techniques developed in the present section allow
us to lift the combination methodology to more general classes of constraints.

5.1 A logical reformulation of the Combination Algorithm

Theorems 1 and 2 show that elementary FE-unification problems and E-
unification problems with constants correspond to natural classes of logical deci-
sion problems. The question arises whether this classification can be extended to
general F-unification problems and to E-unification problems with linear con-
stant restrictions. The following theorem, which was first proved in [6], gives
a positive answer to this question. In particular, it states that both problems
correspond to the same class of logical formulae.

Theorem 9. Let E be an equational theory with signature X, and V' a countably
infinite set of variables. Then the following statements are equivalent:

1. Solvability of E-unification problems with linear constant restrictions is de-
cidable.

2. The positive theory of E is decidable.

3. The positive theory of T(X,V) /=g is decidable.

4. Solvability of general E-unification problems is decidable.

From a practical point of view, the theorem is interesting because it shows that
any theory that can reasonably be integrated in a universal deductive machinery
via unification can also be combined with other such theories. In fact, as men-
tioned at the beginning of Section 4.1, such an integration usually requires an
algorithm for general unification. The theorem shows that such an algorithm also

makes sure that the precondition for our combination method to apply—namely,
the existence of an algorithm for unification with linear constant restrictions—
are satisfied.1®

Theorem 9, together with our combination result for decision procedures,
yields the following modularity result for the decidability of positive theories:

Theorem 10. Let E,...,E, be equational theories over disjoint signatures.
Then the positive theory of Ey U . ..U E, is decidable iff the positive theories of
the component theories E; are decidable, for i =1,...,n.

In the following, we motivate the equivalences stated in Theorem 9 by sketch-
ing how the respective problems can be translated into each other (see [6] for a
detailed proof of the theorem):

— Any E-unification problem with linear constant restrictions (I, X, C, <) can
be translated into a positive X-sentence ¢ as follows: both variables (i.e.,
elements of X') and free constants (i.e., elements of C') are treated as variables
in this formula; the matrix of ¢ is the conjunction of all equations in I'; and
in the quantifier prefix, the elements of X are existentially quantified, the
elements of C' are universally quantified, and the order of the quantifications
is given by the linear ordering <.

— The equivalence between 2) and 3) is due to the well-known fact that the
E-free algebra with countably many generators is canonical for the positive
theory of E [48], i.e., a positive sentence is valid in 7 (X, V) /=g iff it is valid
in all models of E.

— Given a positive Y-sentence ¢, one first removes universal quantifiers by
Skolemization. The positive existential sentence obtained this way may con-
tain additional free function symbols, the Skolem functions. It can be trans-
formed into a disjunction of conjunctive positive existential sentences, and
each of the disjuncts can obviously be translated into a general E-unification
problem.

— The combination method described in Section 4 can be used to reduce solv-
ability of a given general E-unification problem to solvability of E-unification
problems with linear constant restrictions.

As an example, consider the free theory Fy, := {g(x) = g(z)}, and the Fg-
unification problem with constants {z =" g(c)}. If we add the constant restric-
tion z < ¢, then this problem is not solvable (since any solution must substitute
x by the term g(c), which contains the constant ¢). However, under the restric-
tion ¢ < z the problem is solvable. The following are the positive sentences
and general unification problems obtained by translating these two unification

10 Strictly speaking, the theorem makes this statement only for decision procedures.
In [6] it is shown, however, that the equivalence between general unification and
unification with linear constant restrictions also holds with respect to algorithms
that compute complete sets of unifiers.

problems with linear constant restrictions:

unification with Icr positive sentence general unification
{z="g(0)}, z<c ¥y z = g(y) {z =7 g(h(2))}
{z="9(c)}, c<x Vy3z. x = g(y) {z =7 g(d)}

For example, 32.Vy. x = g(y) is not valid in all models of Ff,y since this formula
says that g must be a constant function, which obviously does not follow from
Fygy. Correspondingly, {x = g(h(x))} does not have a solution because it causes
an occur-check failure during syntactic unification.

Returning now to the combination problem, let F; and F5 be two nontrivial
equational theories over disjoint signatures Xy and X, let E := E; U Ey de-
note the union of the theories and X := X; U X5 the union of the signatures.
Using the correspondence between elementary FE-unification problems and ex-
istentially quantified conjunctions of equations for the input of the algorithm,
and the correspondence between FE;-unification problems with linear constant
restriction and positive sentences for the output components we obtain the re-
formulation of the Combination Algorithm shown in Fig. 2. The advantage of
the new formulation is that it does no longer rely on notions and concepts that
are specific to unification problems modulo equational theories, such as linear
constant restrictions, which are quite technical restrictions on the form of the
allowed solutions. Correctness follows from the following proposition.

Proposition 4. The input sentence Fu.~y holds in the combined quotient term
algebra T(X1 U X5, V) /=g,unE, iff there exists an output pair («, B) such that «
holds in T(X1,V)/=g, and 8 holds in T(¥2,V)/=g,-

Since the new combination algorithm is just a reformulation of the earlier version,
Proposition 4 is a trivial consequence of Proposition 3.

The remainder of this section is devoted to giving an independent correctness
proof for the logical version of the Combination Algorithm. The new proof will
have some significant advantages: it is more abstract and less technical, and thus
easier to generalize to larger classes of constraints.

5.2 Fusions of free algebras

The proof of soundness of the Nelson-Oppen combination procedure that we
have presented in Section 3 depends on a very simple algebraic construction: the
fusion of structures. Our goal is to adapt this algebraic approach to the task of
proving correctness of the (logical reformulation of the) combination procedure
for unification algorithms. At first sight, the input problems considered in the
case of unification look like a special case of the problems accepted by the Nelson-
Oppen procedure: they are (existentially quantified) conjunctions of equations.!!

1 The Nelson-Oppen procedure additionally allows for negation and for non-equational
atoms.

Input: A (¥ U Xs)-sentence of the form Ju.y, where « is a conjunction of equa-
tions between (X1 UX5)-terms and u is a finite sequence consisting of the variables
occurring in «. The following steps are applied in consecutive order.

1. Decomposition.
Using variable abstraction, compute an equivalent sentence Jv. (1 A ~y2), where v;
18 a conjunction of equations between pure X;-terms for i =1, 2.

2. Choose Variable Identification.

A partition IT of the set of variables occurring in v is chosen, and for each equiv-
alence class of IT a representative is selected. If v is the representative of w € IT
and u € m, then we say that v is the representative of uw. Let W denote the set of
all representatives. Now each variable is replaced by its representative both in the
quantifier prefiz and in the matriz. Multiple quantifications over the same variable
in the prefiz are discarded. We obtain the new sentence Jw. (Y] A 73).

3. Choose Labeling.
A labeling function Lab: W — {1,2} is chosen.

4. Choose Linear Ordering.
A linear ordering “<” on W 1is selected.

Output: The pair
a=Vuy.Jv;.--- Vuk.Elvk.'y{ and # = Jui.Vo;.--- Eluk.Vvk.'yé.

Here ©1v1 . .. u,vy is the unique re-ordering of W along <. The sequences u; (v;)
represent the blocks of variables with label 1 (label 2).

Fig. 2. The Combination Algorithm (Logical Reformulation)

The main difference between the two combination problems lies in the semantics
of the constraints. In the case treated by Nelson and Oppen, the input constraint
must be satisfied in some model of the combined theory T} U T, whereas in the
case of unification algorithms the input constraint must be satisfied in the free
model of the combined theory E; U E5. In the proof of correctness this means
that, for the Nelson-Oppen procedure, it is sufficient to show that the input
constraint can be satisfied in an arbitrary fusion of a model of T} with a model
of T5. In the unification case, we must make sure that this fusion is in fact the
(E1 U Ey)-free algebra with countably infinitely many generators. Thus, given
the Ei- and Es-free algebras By := T(X1,V)/=pg, and By := T(X,V)/=kg,,
respectively, we want to construct a fusion of both algebras that is (isomorphic
to) the (Ey U Esy)-free algebra B := T (X U X5, V)/=pg,uE,. This construction
will be called the amalgamation construction.

In the sequel, as always in this section, we assume that the signatures 3; and
Yo are disjoint, and that the theories F; and Es are nontrivial. For simplicity
we shall identify each variable z € V with its equivalence class w.r.t. E; in B;,
i.e., write again z for the E;-class [z]g, = {t € T(X;,V) | t =g, x}.

The construction starts with a preparatory step where we extend B; to an
E;-free algebra B:° of the form T'(X;,V UY;)/=g, where Y; denotes a countably
infinite set of additional variables (i = 1,2). Since the sets V UY; and V have
the same cardinality, B{® and B$° are isomorphic to B; and Ba, respectively.
We assume (without loss of generality) that B{° N B3° = V. These two algebras
(as well as details of the amalgamation construction) are depicted in Fig. 3.

[0e] 00
6. 5
A~ -3
2
@ = . =
1) 23 r1 (
| B,
3 4
1 2
Bl BZ
0 0
V

Fig. 3. The amalgamation construction.

We shall now construct a bijection between the domains B{® and B of
the extended algebras Bf® and B5°. This bijection will then be used to define a
fusion of B° and BS° (see Lemma 1), which is also a fusion of B; and Bs. Note,
however, that we cannot use an arbitrary bijection between B{® and B5° since
we want this fusion to be the (E; U Es)-free algebra with countably infinitely
many generators.

In the following, let us call an element of B\ (V' UY;) a non-atomic element
of B®. The elements of V UY; are called atomic. The crucial property that we
want to obtain is that mon-atomic elements of one side are always mapped to
atomic elements of the other side. The definition of the bijection proceeds in
an infinite series of zig-zag steps: at each step an existing partial bijection is
extended by adding a new partial bijection with domain and image sets disjoint
to the sets already used.

In step 0 we use the identity mapping on V' to obtain a bijection between
the common set of generators of both sides (see areas 0 in Fig. 3). We say that
the elements in V' of both sides are now fibered.

In step 1 we assign suitable images to the elements of By \ V' (see area 1 on
the left-hand side). To this end, we select a set of atoms Y2(1) C Y, with the
same cardinality as By \ V (area 1 on the right-hand side represents YQ(U). The
existing partial bijection is extended by adding a bijection between By \ V and
YQ(l) (indicated by a double arrow between the areas 1). We say that the elements
in B;\V and Y2(1) are now fibered as well. In step 1 and in the sequel, whenever
we select a set of new atoms, we leave an infinite set of atoms untouched, which
are thus available in subsequent steps of the construction.

In the symmetric step 2 we add a bijection between B2\ V' (area 2, right-hand
side) and a suitable set of new atoms Yl(l) C Y3 (area 2, left-hand side). With
this step we say that now the elements in By \ V' and Yl(l) are fibered as well.

For ¢ = 1,2, let Bgl) denote the subalgebra of B{® that is generated by
Vu Yi(l). The elements of Bgl) that do not yet have an image are fibered in step
3 using a fresh set of atoms Y2(2) of the right-hand side (areas 3); in step 4 the
elements of Bél) that do not yet have images are fibered using a fresh set of
atoms Y1(2) of left-hand side (areas 4).

For ¢ = 1,2, let 852) denote the subalgebra of BJ° that is generated by
Vu Yi(l) u Yi(Q). We continue in the same way as above (areas 5,6), etc. The
construction determines for i = 1,2 an ascending tower of X;-subalgebras

Bi=8B2cpB®cp?®c...

of B°. For simplicity we assume that the construction eventually covers each

atom of both sides, hence we have B = |J;—, Bl(k). Since the limit bijection
can be read in two directions we now have two inverse bijections

h1_2 : B(fo — 6(2)0 and h2_1 BSO — Bfo

As in the proof of Lemma 1, these bijections can be used to carry the X;-structure
of B to Bf° (where {i,j} = {1,2}). Let f be an n-ary function symbol of X;
and by, ..., b, € B;°. We define

FB7 (bey o) = B (f57 (hj—i(ba), .. hyj—i(bn))).

With this definition, the mappings h;_» and hs_; are inverse isomorphisms
between the (X U Xy)-algebras obtained from B{° and B$° by means of the
above signature expansion. For this reason, it is irrelevant which of the two
algebras we take as the combined algebra. We take, say, the (X U X5)-algebra
obtained from B{°, and denote it by By & Bs.

Recall that B; and B{° are X;-isomorphic algebras since both are free over a
countably infinite set of generators for the class of all models of F;. In addition,
the construction makes sure that By @ By is X;-isomorphic to B (i = 1,2),
which yields the following lemma:

Lemma 2. By @ By is a fusion of By and Bs.

More interestingly, the following theorem (whose proof can be found in [7]) shows
that we have indeed found the desired description of T'(Xy U X5, V) /=g,uR, as a
fusion of the component algebras By = T'(Xy,V) /=g, and By = T(Xs,V)/=p,:

Theorem 11. By ® By is (isomorphic to) the (Ey U Ex)-free algebra over a
countably infinite set of generators.

At first sight, it is perhaps not easy to see the relationship between the
amalgamation construction and the usual description of T'(X) U X, V)/ g, 0B,
in terms of =g, p,)-equivalence classes of terms (i.e., finite trees). In order to
illustrate this connection, let us look at the simplest possible case where we
combine two absolutely free algebras, i.e., where E; and E are free theories.
Let us assume that Xy = {f,a} and ¥y = {g,b}, where f is binary, g is unary
and a,b are constants. The following figure depicts, on the left-hand side, an
element of the combined domain using the conventional description as a finite
tree. Subparts belonging to distinct signatures are highlighted accordingly.

The “leaf” elements a and b, g(b) correspond to elements of B; and B, that are
fibered in steps 1 and 2 of the construction, say, with atoms z; and yq,ys, re-
spectively. Thus, the subtree f(b,g(b)) corresponds to the element 57 (y;,ys)

oo

of Bgl), and g(g(a)) to the element g5 (g5 (21)) of Bél). These elements are
fibered with new atoms (say z, and ys) in the steps 2 and 3. The subtree
g(f(b,g(b))) corresponds to an element of BéQ), which is fibered by a new atom
(say y4) in step 6. Finally, the complete tree f(g(g(a)), g(f(b, g(b)))) corresponds
to an element of B%S). On the right-hand side of the figure, we have represented
all elements of the fusion that are involved in the representation of the complete
tree and made the fibering bijections explicit using arrows. Due to the inductive
form of the construction, the elements of the fusion can be considered as gener-
alized “finite trees” where nodes represent elements of the two components, and
links represent ordered pairs of the fibering function.

If Ey and E, are more interesting equational theories, the relationship be-
tween a given mixed term and the corresponding element of B; & Bs may be

less obvious. For example, if E» contains the collapse axiom g(xz) = z, then

g(g(a)) is equivalent to a, and thus the corresponding element belongs to By,
and not to Bgl). A similar phenomenon occurs in the presence of non-regular
axioms. For example, if E; is the free theory, then f(b, g(b)) corresponds to an
element of BF). However, if E; contains the (non-regular) axiom f(z,y) = a,
then f(b, g(b)) is equivalent to a, and the corresponding element belongs to Bj.
This issue is closely related to the fact that, in the proof of completeness of
Proposition 3, we needed a normalized substitution. Given a mixed term that
is normalized by the (possibly infinite) canonical rewrite system R, the simple
syntactic correspondence between subtrees of this term and elements of By & Bs
holds also for theories that are not regular and collapse-free.

In the next subsection, we will use the new description of the combined
algebra T (X U X5, V)/=g,uE, as a fusion B; & By to show correctness of the
combination algorithm in its logical reformulation.

5.3 Correctness of the Combination Algorithm

First, we show soundness of the Combination Algorithm (logical formulation).
In the following, boldface letters like u,v and b,d (possibly with subscripts)
will respectively denote finite sequences of variables and algebra elements. An
expression like b € B expresses that b is a sequence of elements of B, which
denotes the carrier set of the algebra B. We denote by h(b) the result of applying
the homomorphism h to the sequence b, i.e., the sequence consisting of the
components h(b) for all components b of b.

Lemma 3. Let Ju.vy be an input sentence of the Combination Algorithm. Then
By @ B2 = Ju.y if Bi E a and By = 8 for some output pair (a,).

Proof. Since B; and B$° are isomorphic Y;-algebras, we know that B{® [«.
Accordingly, we also have B3 |= 3. More precisely, this means

(x) B EVup.Jvy. - Vug.Jvg. v (w01, . .., Uk, Vi),
(**) 8(2)0 |= Elul.Vvl.---Eluk.Vvk.'yé(ul,vl,...,uk,vk).

Because of the existential quantification over u; in (xx), there exists a sequence
b, € B3 such that

(* * *) B<2>o |= Y. - -Eluk.‘v’vk.yé(bl,vl, - ,uk,vk).

We consider @y := ha_;(b;). Because of the universal quantification over u; in
(x) we have

B & Jvy. - -Vug.Jvg. vy (a1, v1, .., U, U).

Because of the existential quantification over v, in this formula there exists a
sequence ¢; € BP° such that

'
Bfo |= VUQ.HvQ. B -Vuk.ﬂvk.vl(al,cl,ug,vg, Ce ,uk,'vk).

We consider d; := hi_s(e1). Because of the universal quantification over v in
(x * x) we have

B E Jua Vvs. - - Jug Nvg. v5(by, di, us, va, . .. ug, V).
Iterating this argument, we thus obtain

BIDO ': Vi(alacla"'aakack)a
BQDO ': ryé(bladla"'abkadk)a

where a; = ha_1(b;) and d; = h1_2(¢;) (for 1 < i < k). Since hy_» and hy_; are
inverse (X U Xy)-isomorphisms we also know that

Bfo |= 'yé(al,cl,...,ak,ck).
It follows that
B & By |= vi(al,cl,...,ak,ck)/\ 'yé(al,cl,...,ak,ck).

Obviously, this implies that By @ B = Jv. (7] A v5), i.e., the sentences obtained
after Step 1 of the algorithm holds in B; & Bs. It is easy to see that this implies
that By @ Bs = Ju. 7. O

Before we can show completeness of the decomposition algorithm, we need
one more prerequisite. The following lemma characterizes validity of positive
sentences in free algebras in terms of satisfying assignments. The proof of this
lemma, which uses the well-known fact that validity of positive formulae is pre-
served under surjective homomorphisms, is not difficult and can be found in [7]
for the more general case of quasi-free structures.

Lemma 4. Let A = T(A,V)/=g be the E-free A-algebra over the countably
infinite set of generators V, and let

v =Vuy.dv. - -Vug.Jvg. o(ur, v1, ..., U, V)
be a positive A-sentence. Then the following conditions are equivalent:

1. AEVYuy.Jvy. - -Vu.Jvg. o(ug, vy, ..., up, Ug).
2. There ezist tuples 1 € V,e; € A,...,x € V, e, € A and finite subsets
Zyy..yZy of V such that
(a) A= o(x1,e1,...,xk, €x),
(b) all generators occurring in the tuples xy,...,xy are distinct,
(c) for all j,1 < j <k, the components of e; are generated by Z;, i.e., they
belong to T(A,Z;)/=k
(d) for all j,1 < j <k, no component of x; occurs in Z; U...U Z;_q.

Using this lemma, we can now prove completeness of the Combination Algorithm
(logical reformulation).

Lemma 5. Let Ju.v be an input sentence of the Combination Algorithm. If
By @ By = Ju. vy then there exists an output pair with components o and 3 such
that By =« and By = B.

Proof. Assume that B ~ By @ By |= Jug. v0.'2 Obviously, this implies that
Bf® |= Fv. (71 (v) A y2(v)), i.e., B satisfies the sentence that is obtained after
Step 2 of the Combination Algorithm. Thus there exists an assignment v : V —
Bf* such that B{® = v1(v(v)) A v2(v(v)).

In Step 3 of the decomposition algorithm we identify two variables u and '
of v if, and only if, v(u) = v(u'). With this choice, the assignment v satisfies the
formula obtained after the identification step, i.e.,

B E i (v(w) Aya(v(w)),

and all components of v(w) are distinct.

In Step 4, a variable w in w is labeled with 2 if v(w) € Vi, and with 1
otherwise. In order to choose the linear ordering on the variables, we partition
the range B{° of v as follows:

B%O), Yl(l)a BF) \3(B£0) L;yl(l)),Q Yl(Q), B§2) \ (B%O) U Yl(Q)),
v, B\ (B u), ...

In Fig. 3 these subsets correspond to the areas (0 and 1), 2, 3, 4, 5, 6, ... of the
left-hand side. Now, let w1, v1,...,ug, v be a re-ordering of the tuple w such
that the following holds:
1. The tuple u; contains exactly the variables whose v-images are in Bfo).
2. For all 4,1 < i < k, the tuple v; contains exactly the variables whose v-
images are in Yl(i).
3. For all 4,1 < ¢ < k, the tuple u; contains exactly the variables whose v-
images are in By*l) \ (Byﬂ) u Yl(ifl)).

Obviously, this implies that the variables in the tuples v; have label 2, whereas
the variables in the tuples u; have label 1. Note that some of these tuples may be
of dimension 0. This re-ordering of w determines the linear ordering we choose
in Step 4. Let

a=VYu;. vy -Vup.Jv,.y; and B = Juy Voy. - Jug Vog. 74

be the output pair that is obtained by these choices. Let x; := v(w;) and e; :=
v(v;). Fori=1,...,k, let Z; denote a finite set of variables in B§i71) N(Vuvy)
that generates all elements in e;. We claim that the sequence x1, e, ..., 2, e
and the sets Z1,..., 7y satisfy Condition 2 of Lemma 4 for ¢ = +] and the
structure B{° = T(X,,V UY1)/=E;.

12 Here and in the sequel, B® is sometimes treated as a (X1 U Xy)-algebra, using the
signature expansion described in the construction of By @ Bs.

Part (a) of this condition is satisfied since B =] (v(w)), and thus
B E (i, er,... o, ep).

Part (b) of the condition is satisfied since the v-images of all variables in w
are distinct according to our choice in the variable identification step. Part (c) is
satisfied due to our choice of the sets Z;. Part (d) is satisfied since the components
of z; belong to ng) and Yl(]) N(Z1U...UZ;_1) =0, the last equality following
from the fact that Yl(j) and Ug;é Yl(i) are disjoint by definition.

Thus, we can apply Lemma 4, which yields B{® |= «. Since B{® and B; are
XY1-isomorphic we have By E a.

Using the fact the hy_» : B — B3 is a (X; U Xy)-isomorphism, By E 5.
can be shown similarly. 4

6 Generalizations

The combination method for equational unification algorithms that we have
described in the previous two sections can be generalized along several orthogonal
dimensions. Three such extensions will be described in this section. The first
generalization concerns the syntactic form of input problems: we study the effect
of adding negation to the mixed input sentences. Afterwards we introduce a class
of structures that properly extends the class of free algebras, and show how to
lift our combination results to this more general class of structures. In the third
subsection we sketch a variant of the amalgamation construction introduced in
Subsection 5.2, which leads to a different combined solution structure and a
combination algorithm with less nondeterminism.

6.1 Adding negation to unification problems

Compared to the Nelson-Oppen approach, the major limitation of the combi-
nation results presented in the previous two sections is that they are restricted
to positive sentences, i.e., negated equations, so-called disequations, are not al-
lowed. We shall now consider the combination of unification constraints with
negation. Since the constraint solvers of constraint programming languages of-
ten have to check entailment of constraints, and since entailment uses an implicit
form of negation, this extension is of great practical relevance.

As before, let E; and E» denote equational theories over disjoint signatures
Y, and Y. When treating sentences with negation, we must first decide which
form of semantics we want to use: the equivalence between validity in all models
of E; U E> on the one hand, and validity in the (E; U Ey)-free algebra over a
countably infinite set of generators V' on the other hand does no longer hold if
we do not restrict ourselves to positive sentences. We shall look at two alter-
native semantics usually considered in the literature. First, we consider validity
of existential (X U Xs)-sentences in the free algebra T(X) U X5, V)/=g,uE,.
Later, we consider validity in the initial algebra T'(X; U X2,0)/=g,uE,- In the

first case, we talk about solvability and in the second about ground solvability
of the constraints.

As long as we want to decide validity of positive existential sentences, both
semantics lead to the same result as long as we assume that the joint signature
contains at least one constant. This follows directly from the fact that validity
of positive existential sentences is preserved under homomorphisms. For con-
straints with negation, the two semantics definitely lead to distinct notions of
validity. The latter semantics is often preferred in the literature on constraints
with negation (see, e.g., [23]), but the first semantics can also be found [17].

Since a sentence holds in a given algebra A if, and only if, its negation
does not hold in A, a decision procedure for validity of existential sentences
in A immediately gives a decision procedure for validity of universal sentences
in A and vice versa. Hence the results of this subsection concern the universal
fragments of the given algebras as well.

Disunification over the free algebra In order to describe the following re-
sults, some terminology is needed. Given an equational theory E with signature
X, an elementary E-disunification problem is a finite system I' of equations
s =’ t and disequations s #° t between X-terms. A substitution o solves I" iff
o(s) =g o(t) for each equation s =7 t in I" and o(s) #g o(t) for each disequa-
tions s #° t in I'. E-disunification problems with linear constant restrictions,
and solutions for E-disunification problems with linear constant restrictions are
defined as in the case of E-unification problems.

Theorem 12. Let E,..., E, be equational theories over pairwise disjoint sig-
natures, let £ := Ey U ... U E, denote their union. Then solvability of E-
disunification problems is decidable provided that solvability of E;-disunification
problems with linear constant restrictions is decidable for i =1,...n.

Since existential quantification distributes over disjunction, the theorem
shows that validity of existential sentences in T'(X; U...UX,, V) /=g is decidable
if solvability of F;-disunification problems with linear constant restrictions is de-
cidable for i = 1,...n. Unfortunately, we do not have a logical characterization
of E;-disunification problems with linear constant restrictions.

A proof of this theorem can be found in [5]. It is based on a combination algo-
rithm that is a variant of the Combination Algorithm for combined E-unification
problems. In principle, the only difference is that, for each pair (z,y) of variables
in the input problem that is not identified at the variable identification step, we
add a disequation z # y to both output systems. For details we refer to [5].

Disunification over the initial algebra A solution ¢ of the E-disunification
problem I' is a ground solution iff o(z) is a ground term (i.e., does not contain
variables) for all variables x occurring in I

In view of Theorem 12, an obvious conjecture could be that ground solvability
of a disunification problem I' in the combined theory E can be decided by

decomposing I" into a finite set of pairs of E;-disunification problems with linear
constant restrictions, and then asking for ground solvability of the subproblems.
However, in [5] an example is given that shows that this method is only sound,
but not complete (see Example 4.2, p. 243). The proper adaption of Theorem 13
to the case of ground solvability needs another notation: a solution o of an E-
disunification problem with linear constant restrictions, (I, X, C, <), is called
restrictive if, under o, all variables € X are mapped to terms o(z) that are
not F-equivalent to a variable.

Theorem 13. Let E,..., E, be equational theories over pairwise disjoint sig-
natures Xq,...,%,, and let E := FEy U...U E, denote the combined theory.
Assume that the initial algebras T(X;,0)/=g, are infinite fori =1,...,n. Then
ground solvability of E-disunification problems is decidable provided that restric-
tive solvability of E;-disunification problems with linear constant restrictions is
decidable fori=1,...n.

A proof of this theorem, as well as of some variants that relax the condition that
all the initial algebras must be infinite, can be found in [5]. These techniques
yield the following result.

Corollary 1. Solvability of disunification problems is decidable for every equa-
tional theory that is a disjoint combination of finitely many theories E¢ express-
ing associalivity, associativity-commutativity, or associativity-commutativity-
idempotence of some binary function symbol, together with a free theory F. If
the free theory F contains at least one constants and one function symbol of
arity n > 1, then ground solvability of disunification problems over the combined
theory is decidable as well.

6.2 More general solution structures

Except for the initial description of the Nelson-Oppen procedure, our discussion
has been restricted to constraints that are composed of equations and disequa-
tions, and the only solution domains that we considered so far were free algebras.
Obviously, a much broader variety of constraints and solution domains are rele-
vant for the general field of constraint programming. In this subsection we first
introduce a class of structures that properly extends the class of free algebras.
The class contains many non-free algebras and relational structures that are of
interest for constraint solving. Then we discuss the problem of combining so-
lution domains within the given class. Finally, we show how the combination
results that we obtained for free algebras can be lifted to this more general
situation.

Quasi-free structures The motivation for introducing the class of quasi-free
structures is the observation that most of the non-numerical and non-finite solu-
tion domains that are used in different areas of constraint programming can be

treated within a common algebraic background when we generalize the concept
of a free algebra appropriately.

In a first step, one can go from free algebras to free structures where, in addi-
tion to function symbols, the signature may also contain predicate symbols. Free
structures are defined Mal’cev [47] analogously to free algebras: a XY-structure
A is called free over X in the class of X-structures K if A € K is generated by
X, and if every mapping from X into the domain of a structure B € K can be
extended to a X-homomorphism of A into B. Mal’cev shows that free structures
have properties that are very similar to the properties of free algebras. This fact
was used in [4] to extend the combination results for unification constraints to
more general constraints over free solution structures.

The following lemma (see [7], Theorem 3.4) yields an internal characteriza-
tion of structures that are free in some class of over a countably infinite set
of generators. It will be the basis for our generalization from free structures to
quasi-free structures.

Lemma 6. A Y-structure A is free (in some class of X-structures) over X C A
iff
1. A is generated by X,

2. for every finite subset X of X, every mapping from Xo to A can be extended
to a surjective endomorphism of A.

We will now generalize the first condition in order to arrive at the concept of
a quasi-free structure. Since some of the following notions are quite abstract,
the algebra of rational trees will be used to exemplify definitions. In the sequel,
we consider a fixed Z-structure A with domain A. With End’ we denote the
monoid of Y-endomorphisms of A. It should be stressed that in the sequel the
signature X' is arbitrary in the sense that it may contain predicate symbols as
well as function symbols.

Definition 3. Let Ay, A1 be subsets of the X -structure A. Then Ay stabilizes
Ay iff all elements my and ms of Endi that coincide on Ay also coincide on
Ajq. For Ay C A the stable hull of Ag is the set

SHA(Ao) := {a € A| Ay stabilizes {a}}.

The stable hull of a set Ay has properties that are similar to those of the
subalgebra generated by Ag: SH*(Ag) is always a Y-substructure of A, and
A9 C SHA(AO). In general, however, the stable hull can be larger than the
generated substructure. For example, if 4 := R(X, X) denotes the algebra of
rational trees over signature X and with variables in X, and if Y C X is a
subset of the set of variables X, then SH*(Y') consists of all rational trees with
variables in Y, while Y generates all finite trees with variables in Y only.

Definition 4. The set X C A is an atom set for A if every mapping X — A
can be extended to an endomorphism of A.

For example, if A := R(X, X) is the algebra of rational trees with variables in
X, then X is an atom set for A.

Definition 5. A countably infinite X-structure A is quasi-free iff A has an
infinite atom set X where every a € A is stabilized by a finite subset of X.

The definition generalizes the characterization of free algebras given in Lemma 6.
The countably infinite set of generators is replaced by the atom set, but we re-
tain some properties of generators. In the free case, every element of the algebra
is generated by a finite set of generators, whereas in the quasi-free case it is sta-
bilized by a finite set of atoms. It can be shown easily that the second condition
of Lemma 6 holds in the quasi-free case as well.

Examples 14 Each free algebra and each free structure is quasi-free. Examples
of non-free quasi-free structures are rational tree algebras; nested, hereditarily
finite non-wellfounded sets, multisets, and lists; as well as various types of feature
structures. In each case we have to assume the presence of a countably infinite set
of atoms (variables, urelements, etc.). For the exact definitions of these example
structures we refer to [7].

Free amalgamation of quasi-free structures When combining constraint
systems for quasi-free structures, the question arises how to define the combined
solution structure. It turns out that the amalgamation construction that we
have described in Subsection 5.2 can be generalized from free algebras to quasi-
free structures. The result of this construction is a quasi-free structure over the
combined signature. In the modified construction, the atom sets of the two quasi-
free component structures play the role of the variable sets. The intermediate
substructures that occur during the fibering process are now defined as the stable
hulls of the atom sets considered at the steps of the construction.

In the case of free algebras, the use of the amalgamation construction was
justified by the fact that it yielded exactly the combined algebra we were look-
ing for, i.e., the free algebra for the combined theory. In the case of quasi-free
structures, we do not have an equational theory defining the component struc-
tures. Thus, the question arises whether the amalgamation construction really
yields a “sensible” combined solution structure. This question has been answered
affirmatively in [7].

In fact, the resulting combined structure has a unique and privileged sta-
tus. In [7] we have introduced the notion of an admissible combination of two
structures. The free amalgamated product Ay ® Az of two structures is the most
general admissible combination of 4; and As in the sense that every other ad-
missible combination C is a homomorphic image of A; ® As (see [7] for an exact
definition). It can be shown that the free amalgamated product of two quasi-free
structures over disjoint signatures always exists since it coincides with the struc-
ture produced by our amalgamation construction (i.e., the extension to quasi-free
structures of the construction presented above for the case of free algebras).

Solving mixed constraints in the free amalgamated product When using
the free amalgamated product of two given quasi-free structures A; and As
as the solution domain for mixed constraints, a simple adaption of the logical
reformulation of the Combination Algorithm can be used to reduce solvability
of positive existential formulae in 4; ® A, to solvability of positive sentences in
the component structures A; and Ay. The only difference comes from the fact
that we now have a new type of atomic formulae in the input problems, namely,
atomic formulae that are built with predicate symbols in the signature. It is,
however, straightforward to show that, given an existential sentence Ju.~y over
the mixed signature Xy U Y5, it is possible to compute an equivalent existential
sentence of the form Jv.(y; A 72) where the conjunction of atomic formulae
v; is built using symbols from X; only; in fact, the variable abstraction step
introduced in Section 3 also treats non-equational atoms. The remaining steps
of the logical version of the Combination Algorithm can be used without any
changes.

The correctness of the modified Combination Algorithm, which is proved in
[7], yields the following result.

Theorem 15. Let Aq,..., A, be quasi-free structures over disjoint signatures
X1y, X0, and let X denote the union of these signatures. Then validity of
positive existential X -sentences in the free amalgamated product Ay ®--- D A, is
decidable provided that validity of positive X;-sentences in the component struc-
tures is decidable.

As in the case of free algebras, it is possible to lift this result to general positive
input sentences.

Theorem 16. Let Ay,..., A, be quasi-free structures over disjoint signatures
Xi,..., X0, and let X denote the union of these signatures. Then wvalidity of
positive X -sentences in the free amalgamated product Ay & --- D A, is decidable

provided that validity of positive X;-sentences in the component structures is
decidable.

For the following quasi-free structures, the positive theories turn out to be de-
cidable (cf. Ex. 14): non-ground rational feature structures with arity; finite or
rational tree algebras; nested, hereditarily finite wellfounded or non-wellfounded
sets; and nested, hereditarily finite wellfounded or non-wellfounded lists. Hence,
provided that the signatures are disjoint, the free amalgamated product of any
finite number of these structures has a decidable positive theory.

It is also possible to extend the results combination results for disunification
to the case of quasi-free structures. This yields decidability results for the exis-
tential (or universal) theory of the free amalgamated product of a great variety
of structures, such as feature structures, nested lists, sets and multisets, rational
tree algebras and others. We refer to Kepser [36,35] for details.

6.3 Other amalgamation techniques

In Schulz and Kepser [39] a second systematic way of combining constraint sys-
tems over quasi-free structures, called rational amalgamation, has been intro-

duced. Like the free amalgamated product, rational amalgamation yields a com-
bined structure with “mixed” elements that inter-weave a finite number of “pure”
elements of the two components in a particular way. The difference between both
constructions becomes transparent when we ignore the interior structure of these
pure subelements and consider them as construction units with a fixed arity, sim-
ilar to “complex function symbols.” Under this perspective, and ignoring details
that concern the ordering of the children of a node, mixed elements of the free
amalgamated product can be considered as finite trees, whereas mixed elements
of the rational amalgam are like rational trees.!®

Mixed element of free amalgam (1) and of rational amalgam (2).

@0 (&) @

@)

Dark (bright) ellipses represent pure
subelements of the first (second)
amal gamation component.

With this background, it should not be surprising that in praxis rational amal-
gamation appears to be the preferred combination principle in the literature in
situations where the two solution structures to be combined are themselves “ra-
tional” or “cyclic” domains: for example, it represents the way how rational trees
and rational lists are interwoven in the solution domain of Prolog III [22], and
a variant of rational amalgamation has been used to combine feature structures
with non-wellfounded sets in a system introduced by Rounds [59].

Rational amalgamation can be used to combine so-called non-collapsing
quasi-free structures over disjoint signatures.

Definition 6. An quasi-free structure A with atom set X is non-collapsing if
every endomorphism of A maps non-atoms to non-atoms (i.e., m(a) € A\ X
for all a € A\ X and all endomorphisms m of A).

For example, quotient term algebras for collapse-free equational theories, rational
tree algebras, feature structures, feature structures with arity, the domains with
nested, finite or rational lists, and the domains with nested, finite or rational
multi-sets are always non-collapsing.

The amalgamation construction for rational amalgamation is rather techni-
cal and thus beyond the scope of this paper; we refer to [39] for details. Just as
in the case of free amalgamation, constraint solvers for two component struc-
tures can be combined to a constraint solver for their rational amalgam. To be

13 A (possibly infinite) tree is rational if it is finitely branching and has only a finite
number of distinct subtrees; see [21, 45, 24].

more precise, validity of positive existential sentences in the rational amalgam
can be reduced to solvability of conjunctions of atomic constraints with so-called
atom/non-atom declarations in the component structures (see [39] for a formal
definition of this notion). From the algorithmic point of view, rational amalga-
mation appears to be interesting since the combination technique for rational
amalgamation avoids one source of nondeterminism that is needed in the corre-
sponding scheme for free amalgamation: the choice of a linear ordering, which
is indispensable for free amalgamation, must be omitted in the case of rational
amalgamation.

One interesting connection between free and rational amalgamation is the
observation that the free amalgamated product is always a substructure of the
rational amalgamated product (see [35]).

7 Optimization and complexity issues

Until now, we have described the combination method for unification algorithms
from a theoretical point of view, that is, our main emphasis was on clearness
of presentation and on ease of proving correctness. It should be clear, however,
that a naive implementation of the highly nondeterministic Combination Algo-
rithm cannot be used in practice. It is easy to see that the nondeterminism of
the procedure indeed represents a serious problem: the number of possible par-
titions of a set of n variables is known as the n-th Bell number, which grows
faster than 2™. The choice of a labeling function and a linear ordering leads to
another exponential number of subcases that must be investigated. Hence, signif-
icant optimizations are necessary before one can hope for a combined unification
algorithm that can be used in a realistic application.

In the following, we show how the algorithm that combines decision proce-
dures can be optimized. (An optimized version of the combination method for
algorithms that compute complete sets of unifiers can be found in [15].) In gen-
eral, however, there is an inherent nondeterminism in the problem of combining
unification algorithms, which cannot be avoided. We will come back to this point
at the end of this section.

Some simple optimizations of the Combination Algorithm are quite straight-
forward. It is possible to restrict all nondeterministic choices to “shared” vari-
ables, that is, variables that occur in at least two subproblems of the decomposed
problem. Another simple optimization relies on the observation that different lin-
ear orders need not lead to different constant restrictions. For example, assume
that z,y are variables and ¢,d are (variables treated as) constants. Then the
ordering © < ¢ < d < y leads to the same restrictions on solutions of a unifi-
cation problem as the ordering z < d < ¢ < y (both just say that x must not
be replaced by a term containing ¢ or d). This observation can easily be used to
prune the number of different linear orderings that must be considered.

On a more sophisticated level, Kepser and Richts [37] have described two
powerful orthogonal optimization methods. We describe the first method, called

“deductive method,” in more detail, and then briefly sketch the second one,
called “iterative method,” and the integration of both approaches.

The deductive method tries to reduce the amount of nondeterminism by
avoiding certain branches in the search tree for which one can “easily detect”
that they cannot lead to solutions. Before going into more detail, we consider an
example that illustrates the basic idea.

Example 7. Assume that the component theory E; is collapse-free and the de-
composed input problem contains an equation x =’ f(...) where f € X;. Then
x must receive label i since = #g, o(f(...)) for all substitutions o, i.e., if z is
treated as a constant in the ith subproblem, then this problem does not have
a solution. Consequently, labeling functions Lab with Lab(z) # i need not be
considered.

If E; is regular, the decomposed input problem contains an equation = =" ¢,
and y € Var(t) for a variable y with Lab(x) # Lab(y), then there cannot be a
solution ¢ (of the subproblem in which z is instantiated) in which y does not
occur in o(z). Hence, we can deterministically choose the order y < = between
z and y, i.e., the other alternative need not be considered.

In order to formalize this idea, we introduce a constraint language that allows
us to represent such mandatory choices on the way to a fully specified output
pair of the Combination Algorithm. A complete set of guesses of the algorithm—
with the trivial optimizations mentioned above included now—can be described
in the form (I, Lab, <), where

— II is a partition of the set X of shared variables of the decomposed problem
I1 ... W I, reached after the first step,

— Lab: X — {1,...,n} is a labeling function that respects equivalence classes
of IT, i.e., if z and y belong to the same class, then Lab(x) = Lab(y), and

— < is a strict linear ordering on the equivalence classes. We write z < y if the
equivalence classes [z] and [y] of z and y are in the relation [z] < [y].

In the sequel, output problems will be described as quadruples of the form
(I, I, Lab, <). The corresponding F;-unification with linear constant restric-
tions, (I7,X;,C;, <), can be obtained from this quadruple as described in the
Combination Algorithm, i.e., I'} is obtained from I'; by replacing all shared vari-
ables by the representatives of their equivalence classes w.r.t. IT, X; is the union
of the set of shared variables with label i and the set of non-shared variables in
I;, and C} is the set of shared variables with a label different from i. The quadru-
ple (I3, I1, Lab, <) is said to be solvable iff the corresponding E;-unification with
linear constant restrictions is solvable.

Constraints are of the form z =y, =(z =y), z <y, =(z <y), x : i, or =(x :
i), with the obvious meaning that z = y (=(z = y)) excludes partitions in which
x and y belong to different classes (the same class), z < y (—=(z < y)) excludes
orderings and partitions in which y < z (z < y), and x : i (=(z : 7)) excludes
labelling functions Lab such that Lab(z) # i (Lab(z) = i). On the one hand, a
set of constraints excludes certain triples (I1, Lab, <). On the other hand, it can

also be seen as a partial description of a triple that satisfies these constraints
(i.e., is not excluded by them). A set of constraints C is called complete iff there
is exactly one triple (II, Lab, <) that satisfies C, and it is called inconsistent iff
no triple satisfies C (i.e., it contains two contradictory constraints).

The deductive method assumes that each theory E; is equipped with a com-
ponent algorithm that, given a pure F;-unification problem I together with a
set of constraints C, deduces a (possibly empty) set of additional constraints D.
This algorithm is required to be correct in the following sense: if (I, Lab, <) is a
triple that satisfies C and for which (I3, IT, Lab, <) is solvable, then (II, Lab, <)
also satisfies D.

Given a system [1W- - -WI, in decomposed form, the search for an appropriate
triple (I1, Lab, <) is now performed by the nondeterministic algorithm of Fig. 4.

Initialize C := 0;
Repeat
Repeat
For each system +¢
(* Deduce new constraints x)
call the component algorithm of theory E; to calculate
new consequences D of I; and C;
set the current set of constraints to C :=C U D
Until C is inconsistent or no more new constraints are computed;

If C is consistent and not complete
(* Select next choice *)
Select a constraint ¢ such that {¢, 7¢} NC = 0;
Non-deterministically choose either

C:=CU{c} or
C:=CU{~c}
Until C is inconsistent or complete;
Return C

Fig. 4. The deductive method.

Proposition 5. Let I' := [N W ---W I, be an (elementary) (E4 U --- U E,)-
unification problem in decomposed form where the equational theories E; have
pairwise disjoint signatures. Then the following statements are equivalent:

1. I is solvable, i.e., there exists an (Ey U---U E,)-unifier of I'.

2. One of the complete constraint sets generated by the nondeterministic algo-
rithm of Fig. 4 describes a triple (I, Lab, <) such that, for alli=1,...,n,
(I, I, Lab, <) is solvable.

One should note that the trivial component algorithm that always returns the
empty set of constraints is correct. If all component algorithms are trivial, then
the algorithm of Fig. 4 simply generates all possible triples (II, Lab, <).

We have already illustrated by an example that the fact that a theory is reg-
ular and/or collapse-free can be used to derive new constraints. For a free theory
E;, the most general unifier of I'; (which can be computed in linear time) can be
used to read off new constraints. The following example shows how information
provided by one component algorithm can help another component algorithm
in deriving additional constraints. This explains why the step of deducing new
constraints must be iterated.

Ezample 8. Assume that we are given the mixed input problem {f(g(z4), z2) =7
f(g(y),z4), x4 =" f(a,a)}, where f,a belong to the regular, collapse-free theory
E, (e.g., ACy) and g belongs to the free theory E,. By decomposition, the E;-
subsystem {f(z1,72) =’ f(23,74), 4 = f(a,a)} and the E,-subsystem {z; =’
g(z4), z3 =7 g(y)} are created. Since E; is collapse-free, the equation x4 =’
f(a,a) can be used by the first component algorithm to deduce the constraint x4 :
1. From the most general unifier {1 — g(z4), 23 — g(y)} of the E>-subsystem,
the second component algorithm can derive the constraints x; : 2,23 : 2 and
x4 < x1. Given the regularity of Fj, the first component algorithm can now
derive ; = 3. In fact, x; (which must be treated as a constant in the E;-
subsystem) occurs on the left-hand side of f(z1,z2) =7 f(z3,24), and thus must
occur on the (instantiated) right-hand side f(o(z3),0(z4)) for any solution o of
the Fj-subsystem. Since we already have the constraints z4 : 1, 4 < 21, and
x3 : 2, we know that o(z3) = z3 and z; cannot occur in o(z4). Consequently,
x1 can only occur in f(o(x3),0(x4)) = f(x3,0(x4)) if 21 and z3 are identified.

Obviously, the quality of the component algorithms used in the deductive method
decides the amount of optimization achieved. The goal is to deduce as much in-
formation as is possible with a reasonable effort. Detailed descriptions of compo-
nent algorithms for free theories, the theory AC of an associative-commutative
function symbol, and the theory ACI of an associative-commutative-idempotent
function symbol can be found in [56].

While the deductive method helps to reach certain decisions deterministically,
the “iterative method” introduced in [37,35]—which is relevant if n > 3 theories
are combined—determines in which order the nondeterministic decisions should
best be made. Basically, the output systems are solved iteratively, one system at
a time. All decisions in nondeterministic steps are made locally, for the current
system ¢ only. This means, for example, that we only consider variables occurring
in the system I, and for such a variable we just decide if it receives label i or not.
In the latter case, the exact label j # i is not specified. Once all decisions relevant
to system I'; have been made, it is immediately tested for solvability. If I'; turns
out to be unsolvable, we thus have avoided finding this out as many times as
there are possible choices for the constraints not relevant to the subsystem I7.

An integration of the deductive and the iterative method is achieved by
plugging the iterative selection strategy into the deductive algorithm. To be
more precise, whenever the deductive algorithm (see Fig. 4) needs to make a
nondeterministic choice (since no more constraints can be deduced), the selection
strategy of the iterative method decides for which constraint this choice is made.
This synthesis of both optimization techniques has been implemented, and run

time tests show that the optimized combination method obtained this way leads
to combined decision procedures that have a quite reasonable practical time
complexity [37, 38].

Fundamental limitations for optimization Complexity theoretical consid-
erations in [62] show that, in many cases, there are clear limitations for op-
timizing the Combination Algorithm. We close this section with some results
concerning the situation where an equational theory F is combined with a free
theory in order to obtain an algorithm for general E-unification.

Definition 7. A polynomial-time optimization of the Combination Algorithm
for general E-unification is an algorithm that accepts as input an arbitrary gen-
eral E-unification problem I' and computes in polynomial time a finite set M
of output pairs ((I', II, X1, Xo, <), (I, I, X5, X1,<)) of an E-unification prob-
lems with linear constant restrictions and a free unification problems with linear
constant restrictions such that

— each output pair in M is also a possible output pair of the original Combi-
nation Algorithm, and
— I' is solvable iff, for some output pair in M, both components are solvable.

On the one hand, Schulz [62] characterizes a large class of equational theories
E where a polynomial optimization of the Combination Algorithm for general
E-unification is impossible unless P = NP. In order to formulate one result
that follows from this characterization, we need the following notation: a binary
function symbol “f” is called a commutative (resp. associative) function symbol
of the equational theory FE if f belongs to the signature of E and f(z,y) =g

f(yax) (resp. f(xaf(yaz)) =E f(f(x,y),z))

Theorem 17. Let E be an equational theory that contains an associative or
commautative function symbol. If E is reqular, then there exists no polynomial-
time optimization of the Combination Algorithm for general E-unification, unless
P = NP.

In [63] it is shown that such impossibility results for polynomial optimization
of combination algorithms are by no means specific to the problem of combining
FE-unification algorithms. The paper presents a general framework that charac-
terizes situations in which combination algorithms for decision procedures cannot
be polynomially optimized. In particular, various combinations of first-order the-
ories are characterized where the non-deterministic variant of the Nelson-Oppen
procedure does not have a polynomial optimization.

On the other hand, Schulz [62] also introduces a class of equational theo-
ries for which a polynomial-time optimization of the Combination Algorithm is
always possible. Basically, these are regular and collapse-free theories of unifi-
cation type unitary (i.e., all solvable unification problems have a most general
unifier) such that “enough” information about the most general unifier can be
computed in polynomial time.

8 Open problems

The results described in this paper show that the problem of combining con-
straint solvers over disjoint signatures is well-investigated, at least if one consid-
ers as constraint solvers procedures that decide satisfiability of constraints.

As mentioned in Section 2.1, it is often desirable to have constraint solvers
that are able to compute solved forms in an incremental way. To the best of
our knowledge, there are no general results on how to combine such incremental
constraint solvers. A general solution to this problem depends on a general and
abstract definition of the concept of a solved form that covers most of the relevant
instances.

Another challenging field for future research is the problem of combining
constraint solvers over non-disjoint signatures. Since non-disjoint combinations
may lead to undecidability, the main point is to find appropriate restrictions
on the constraint languages to be combined. For the kind of combination prob-
lems considered by Nelson-Oppen, first combination results for the non-disjoint
case have been obtained by Ch. Ringeissen and C. Tinelli [58,71,73]. Similarly,
the known combination methods for solving the word problem in the union of
equational theories have been lifted to the case of non-disjoint signatures in [26,
10-12]. Concerning the combination of unification algorithms for equational the-
ories over non-disjoint signatures, first results have been presented in [26]. Using
the more abstract algebraic concepts that have been developed during the last
years it should be possible to simplify and then generalize this work, which only
addresses the combination of algorithms for computing complete sets of unifiers.

Acknowledgements The authors should like to thank the anonymous referee
for his comments, which helped to improve the presentation of this paper. This
work was partially supported by the ESPRIT Working Group CCL and by the
DFG SPP “Deduktion”.

References

1. F. Baader. On the complexity of Boolean unification. Information Processing
Letters, 67(4):215-220, 1998.

2. F. Baader and K.U. Schulz. Unification in the union of disjoint equational theo-
ries: Combining decision procedures. In D. Kapur, editor, Proceedings of the 11th
International Conference on Automated Deduction, volume 607 of Lecture Notes
in Artificial Intelligence, pages 50—65, Saratoga Springs, NY, USA, 1992. Springer-
Verlag.

3. F. Baader and K.U. Schulz. General A- and AX-unification via optimized combi-
nation procedures. In Proceedings of the Second International Workshop on Word
Equations and Related Topics, volume 677 of Lecture Notes in Computer Science,
pages 23-42, Rouen, France, 1993. Springer-Verlag.

4. F. Baader and K.U. Schulz. Combination of constraint solving techniques: An
algebraic point of view. In Proceedings of the 6th International Conference on
Rewriting Techniques and Applications, volume 914 of Lecture Notes in Artificial
Intelligence, pages 352-366, Kaiserslautern, Germany, 1995. Springer-Verlag.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Baader and K.U. Schulz. Combination techniques and decision problems for
disunification. Theoretical Computer Science B, 142:229-255, 1995.

F. Baader and K.U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. Symbolic Computation, 21:211-243, 1996.

F. Baader and K.U. Schulz. Combination of constraint solvers for free and quasi-
free structures. Theoretical Computer Science, 192:107-161, 1998.

F. Baader and J.H. Siekmann. Unification theory. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, pages 41-125. Oxford University Press, Oxford, UK, 1994.

F. Baader and W. Snyder. Unification theory. In J.A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 2000. To
appear.

F. Baader and C. Tinelli. A new approach for combining decision procedures for
the word problem, and its connection to the Nelson-Oppen combination method.
In W. McCune, editor, Proceedings of the 14th International Conference on Auto-
mated Deduction (Townsville, Australia), volume 1249 of Lecture Notes in Artificial
Intelligence, pages 19-33. Springer-Verlag, 1997.

F. Baader and C. Tinelli. Deciding the word problem in the union of equational
theories sharing constructors. In P. Narendran and M. Rusinowitch, editors, Pro-
ceedings of the 10th International Conference on Rewriting Techniques and Ap-
plications (RTA-99), volume 1631 of Lecture Notes in Computer Science, pages
175-189. Springer-Verlag, 1999.

F. Baader and C. Tinelli. Combining equational theories sharing non-collapse-free
constructors. In H. Kirchner and Ch. Ringeissen, editors, Proceedings of the 3rd
International Workshop on Frontiers of Combining Systems (FroCoS 2000), vol-
ume 1794 of Lecture Notes in Artificial Intelligence, pages 257-271, Nancy, France,
2000. Springer-Verlag.

L. Bachmair. Canonical Equational Proofs. Birkhduser, Boston, Basel, Berlin,
1991.

A. Bockmayr. Algebraic and logical aspects of unification. In K.U. Schulz, editor,
Proceedings of the 1st International Workshop on Word Equations and Related
Topics (IWWERT ’90), volume 572 of Lecture Notes in Computer Science, pages
171-180, Tiibingen, Germany, October 1992. Springer-Verlag.

A. Boudet. Combining unification algorithms. Journal of Symbolic Computation,
8:449-477, 1993.

A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schaufl. Unification in Boolean rings
and Abelian groups. J. Symbolic Computation, 8:449-477, 1989.

W.L. Buntine and H.-J. Biirckert. On solving equations and disequations. Journal
of the ACM, 41(4):591-629, 1994.

H.-J. Biirckert. A Resolution Principle for a Logic with Restricted Quantifiers,
volume 568 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1991.

J. Calmet and K. Homann. Classification of communication and cooperation mech-
anisms for logical and symbolic computation systems. In F. Baader and K.U.
Schulz, editors, Frontiers of Combining Systems: Proceedings of the 1st Interna-
tional Workshop, Munich (Germany), Applied Logic, pages 221-234. Kluwer Aca-
demic Publishers, March 1996.

C.C. Chang and H.J. Keisler. Model Theory, volume 73 of Studies in Logic and
the Foundations of Mathematics. Elsevier, Amsterdam, 3rd edition, 1990. (1st ed.,
1973; 2nd ed., 1977).

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A. Colmerauer. Equations and inequations on finite and infinite trees. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems,
pages 8599, Tokyo, Japan, 1984. North Holland.

A. Colmerauer. An introduction to Prolog III. Communications of the ACM,
33(7):69-90, 1990.

H. Comon. Disunification: A survey. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson, pages 322-359. MIT
Press, Cambridge, MA, 1991.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence, 25(2):95-169, 1983.

D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure for com-
binations of theories. In M.A. McRobbie and J.K. Slaney, editors, Proceedings of
the 18th International Conference on Automated Deduction, (New Brunswick, NJ),
volume 1104 of Lecture Notes in Artificial Intelligence, pages 463-477. Springer-
Verlag, 1996.

E. Domenjoud, F. Klay, and C. Ringeissen. Combination techniques for non-
disjoint equational theories. In A. Bundy, editor, Proceedings of the 12th Interna-
tional Conference on Automated Deduction, volume 814 of Lecture Notes in Arti-
ficial Intelligence, pages 267281, Nancy, France, 1994. Springer-Verlag.

F. Fages. Associative-commutative unification. In R. E. Shostak, editor, Proceed-
ings of the Tth International Conference on Automated Deduction, volume 170 of
Lecture Notes in Computer Science, pages 194-208, Napa, USA, 1984. Springer-
Verlag.

E. Hemaspaandra. Complexity transfer for modal logic. In Proceedings of the
Ninth Annual IEEE Symposium on Logic in Computer Science (LICS ’94), pages
164-175, Paris, France, 1994. IEEE Computer Society Press.

A. Herold. Combination of unification algorithms. In J.H. Siekmann, editor, Pro-
ceedings of the 8th International Conference on Automated Deduction, volume 230
of Lecture Notes in Computer Science, pages 450-469, Oxford, UK, 1986. Springer-
Verlag.

A. Herold and J.H. Siekmann. Unification in Abelian semigroups. J. Automated
Reasoning, 3:247-283, 1987.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Programming Languages, pages 111-119,
Munich, Germany, 1987.

J. Jaffar, J.-L. Lassez, and M. Maher. A theory of complete logic programs with
equality. J. Logic Programming, 1, 1984.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of A. Robinson. MIT Press, Cambridge, MA, 1991.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM J. Computing, 15(4):1155-1194, 1986.

S. Kepser. Combination of Constraint Systems. Phd thesis, CIS-Universitét
Miinchen, Miinchen, Germany, 1998. Also available as CIS-Report 98-118.

S. Kepser. Negation in combining constraint systems. In Dov Gabbay and Maarten
de Rijke, editors, Frontiers of Combining Systems 2, Papers presented at Fro-
C0S8’98, pages 117-192, Amsterdam, 1999. Research Studies Press/Wiley.

S. Kepser and J. Richts. Optimisation techniques for combining constraint solvers.
In Dov Gabbay and Maarten de Rijke, editors, Frontiers of Combining Systems 2,
Papers presented at FroCoS’98, pages 193-210, Amsterdam, 1999. Research Studies
Press/Wiley.

38

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

S. Kepser and J. Richts. Unimok — a system for combining equational unification
algorithms. In P. Narendran and M. Rusinowitch, editors, Proceedings of the 10th
International Conference on Rewriting Techniques and Applications, volume 1631
of Lecture Notes in Computer Science, pages 248-251, Trento, Italy, 1999. Springer-
Verlag.

S. Kepser and K. U. Schulz. Combination of constraint systems II: Rational amal-
gamation. In E.C. Freuder, editor, Principles and Practice of Constraint Program-
ming - CP96, volume 1118 of LNCS, pages 282-296. Springer, 1996. Long version
to appear in Theoretical Computer Science.

C. Kirchner. M¢éthodes et Outils de Conception Systématique d’Algorithmes
d’Unification dans les Théories Equationelles. These d’Etat, Université de Nancy
I, France, 1985.

C. Kirchner and H. Kirchner. Constrained equational reasoning. In Proceedings
of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic
Computation, Portland, Oregon, 1989. ACM Press.

H. Kirchner and Ch. Ringeissen. Combining symbolic constraint solvers on alge-
braic domains. Journal of Symbolic Computation, 18(2):113-155, 1994.

M. Kracht and F. Wolter. Properties of independently axiomatizable bimodal
logics. The Journal of Symbolic Logic, 56(4):1469-1485, December 1991.

C. Landauer and K.L. Bellman. Integration systems and interaction spaces. In
F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems: Proceedings
of the 1st International Workshop, Munich (Germany), Applied Logic, pages 249—
266. Kluwer Academic Publishers, March 1996.

M.J. Maher. Complete axiomatizations of the algebras of finite, rational and in-
finite trees. In Proceedings of the Third Annual IEEE Symposium on Logic in
Computer Science, pages 348-357, Edinburgh, Scotland, 1988. IEEE Computer
Society.

G.S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147-236, 1977. English translation in Math. USSR, Sbornik 32, 1977.
A1 Mal’cev. The Metamathematics of Algebraic Systems, volume 66 of Studies in
Logic and the Foundation of Mathematics. North Holland, Amsterdam, 1971.
A1 Mal'cev. Algebraic Systems, volume 192 of Die Grundlehren der mathematis-
chen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin, 1973.

G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245-257, October 1979.
G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356-364, 1980.

R. Nieuwenhuis and A. Rubio. AC-superposition with constraints: No AC-unifiers
needed. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, volume 814 of Lecture Notes in Artificial Intelligence, pages
545-559, Nancy, France, 1994. Springer-Verlag.

E. Ohlebusch. On the modularity of termination of term rewriting systems. The-
oretical Computer Science, 136:333-360, 1994.

E. Ohlebusch. Modular properties of composable term rewriting systems. Journal
of Symbolic Computation, 20(1):1-41, 1995.

D.C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12:291-302, 1980.

G. Plotkin. Building in equational theories. Machine Intelligence, 7:73-90, 1972.
J. Richts. Effiziente Entscheidungsverfahren zur E-Unifikation. Dissertation,
RWTH Aachen, Germany, 1999. Published by Shaker Verlag Aachen, Berichte
aus der Informatik, 2000.

57

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

C. Ringeissen. Unification in a combination of equational theories with shared con-
stants and its application to primal algebras. In A. Voronkov, editor, Proceedings of
the Conference on Logic Programming and Automated Reasoning, Lecture Notes
in Artificial Intelligence, pages 261-272, St. Petersburg, Russia, 1992. Springer-
Verlag.

Ch. Ringeissen. Cooperation of decision procedures for the satisfiability problem. In
F. Baader and K.U. Schulz, editors, Frontiers of Combining Systems: Proceedings
of the 1st International Workshop, Munich (Germany), Applied Logic, pages 121—
140. Kluwer, March 1996.

W.C. Rounds. Set values for unification-based grammar formalisms and logic
programming. Research Report CSLI-88-129, CSLI, Stanford, 1988.

M. Schmidt-Schauf. Unification in a combination of arbitrary disjoint equational
theories. J. Symbolic Computation, 8(1,2):51-99, 1989.

K.U. Schulz. Makanin’s algorithm for word equations: Two improvements and a
generalization. In K.U. Schulz, editor, Proceedings of the 1st International Work-
shop on Word Equations and Related Topics (IWWERT ’90), volume 572 of Lec-
ture Notes in Computer Science, pages 85—150, Berlin, Germany, October 1992.
Springer-Verlag.

K.U. Schulz. Tractable and intractable instances of combination problems for
unification and disunification. J. Logic and Computation, 10(1):105-135, 2000.
K.U. Schulz. Why combined decision procedures are often intractable. In H. Kirch-
ner and Ch. Ringeissen, editors, Proceedings of the Srd International Workshop on
Frontiers of Combining Systems (FroCoS 2000), volume 1794 of Lecture Notes in
Artificial Intelligence, pages 217-244, Nancy, France, 2000. Springer-Verlag.

R.E. Shostak. Deciding combinations of theories. Journal of the ACM, 31:1-12,
1984.

J.H. Siekmann and P. Szab6. The undecidability of the D 4-unification problem.
J. Symbolic Computation, 54(2):402-414, 1989.

M. E. Stickel. A complete unification algorithm for associative-commutative func-
tions. In Proceedings of the 4th International Joint Conference on Artificial Intel-
ligence, pages 71-82, Tblisi, USSR, 1975.

M.E. Stickel. A unification algorithm for associative commutative functions. J. of
the ACM, 28(3):423-434, 1981.

M.E. Stickel. Automated deduction by theory resolution. J. Automated Reasoning,
1(4):333-355, 1985.

E. Tidén. Unification in combinations of collapse-free theories with disjoint sets of
function symbols. In J.H. Siekmann, editor, Proceedings of the 8th International
Conference on Automated Deduction, volume 230 of Lecture Notes in Computer
Science, pages 431-449, Oxford, UK, 1986. Springer-Verlag.

E. Tidén and S. Arnborg. Unification problems with one-sided distributivity. J.
Symbolic Computation, 3(1-2):183-202, 1987.

C. Tinelli. Combining Satisfiability Procedures for Automated Deduction and
Constraint-based Reasoning. Phd thesis, Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign, Illinois, 1999.

C. Tinelli and M. Harandi. A new correctness proof of the Nelson-Oppen combi-
nation procedure. In F. Baader and K.U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop, Munich (Germany), Ap-
plied Logic, pages 103-120. Kluwer, March 1996.

C. Tinelli and Ch. Ringeissen. Non-disjoint unions of theories and combinations
of satisfiability procedures: First results. Technical Report UTUCDCS-R-98-2044,

Department of Computer Science, University of Illinois at Urbana-Champaign,
April 1998. (also available as INRIA research report no. RR-3402).

74. Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. J. ACM, 34:128-143, 1987.

75. K. Yelick. Unification in combinations of collapse-free regular theories. J. Symbolic
Computation, 3(1,2):1563-182, 1987.

