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1. Introdution

Uni�ation is a fundamental proess upon whih many methods for automated de-

dution are based. Uni�ation theory abstrats from the spei� appliations of

this proess: it provides formal de�nitions for important notions like instantiation,

most general uni�er, et., investigates properties of these notions, and provides and

analyzes uni�ation algorithms that an be used in di�erent ontexts. In this intro-

dutory setion, we will �rst present the onept of uni�ation in an informal way,

then make some historial remarks on where uni�ation was originally introdued,

and �nally explain our approah to writing this hapter.

1.1. What is uni�ation?

Very generally speaking, uni�ation tries to identify two symboli expressions by

replaing ertain sub-expressions (variables) by other expressions. To be more on-

rete, one usually onsiders terms that are built from funtion symbols (say f , a,

and b, where f is binary and a; b are nullary) and variable symbols (say x and

y). The uni�ation problem for the terms s = f(a; x) and t = f(y; b) is onerned

with the following question: is it possible to replae the variables x; y in s and t by

terms suh that the two terms obtained this way are (syntatially) equal. In this

example, if we substitute b for x and a for y, we obtain the uni�ed term f(a; b).

This substitution is denoted as � := fx 7! b; y 7! ag, and its appliation to terms

is written suÆx, i.e., s� = f(a; b) = t�. Note that di�erent ourrenes of the same

variable in a uni�ation problem must always be replaed by the same term. For

this reason, the terms s

0

= f(a; x) and t

0

= f(x; b) annot be uni�ed sine this

would require the ourrene of x in s

0

to be replaed by b, and the ourrene of

x in t

0

to be replaed by the di�erent onstant a.

In most appliations of uni�ation, one is not just interested in the deision

problem for uni�ation, whih simply asks for a \yes" or \no" answer to the question

of whether two terms s and t are uni�able. If they are uni�able, one would like to

onstrut a solution, i.e., a substitution that identi�es s and t. Suh a substitution

is alled a uni�er of s and t. In general, a uni�ation problem may have in�nitely

many solutions; e.g., f(x; y) and f(y; x) an be uni�ed by replaing x and y by

the same term s (and there are in�nitely many terms available). Fortunately, the

appliations of uni�ation in automated dedution do not require the omputation

of all uni�ers. It is suÆient to onsider the so-alled most general uni�er , i.e., a

uni�er suh that every other uni�er an be obtained by instantiation. In the above

example, � := fx 7! yg is suh a most general uni�er sine for all terms s we have

fx 7! s; y 7! sg = �fy 7! sg. A uni�ation algorithm should thus not only deide

solvability of a given uni�ation problem: if the problem is solvable, it should also

ompute a most general uni�er. As we will show, there exist very eÆient algorithms

for this purpose.

Uni�ation as desribed until now is alled syntati uni�ation of �rst-order

terms. \Syntati" means that the terms must be made syntatially equal, whereas
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\�rst-order" expresses the fat that we do not allow for higher-order variables, i.e.,

variables for funtions. For example, the terms f(x; a) and g(a; x) obviously annot

be made syntatially equal by �rst-order uni�ation. However, f(x; a) and G(a; x)

an be made equal by higher-order uni�ation if G is a (higher-order) variable,

whih may be replaed by f . We will not onsider higher-order uni�ation in more

detail sine it is treated in [Dowek 2001℄ (Chapter 16 of this Handbook). However,

equational uni�ation|as opposed to syntati uni�ation|of �rst-order terms will

be one of the most important topis of this hapter. Instead of requiring that the

terms are made syntatially equal, equational uni�ation is onerned with mak-

ing terms equivalent with respet to a ongruene indued by ertain equational

axioms E. In this ase, one talks about E-uni�ation or uni�ation modulo E. For

example, if E = ff(a; a) � g(a; a)g, then the terms f(x; a) and g(a; x), whih are

not (syntatially) uni�able, are E-uni�able: for the substitution � := fx 7! ag, we

have f(x; a)� = f(a; a) =

E

g(a; a) = g(a; x)�, where =

E

denotes the equational

theory indued by E. For equational uni�ation, things are not as nie as for syn-

tati uni�ation. In fat, depending on the theory E in question, E-uni�ability

may be undeidable, and even if it is deidable, solvable uni�ation problems need

not have a most general E-uni�er. Researh on equational uni�ation is, on the

one hand, interested in lassifying equational theories of interest aording to their

behavior in this respet. On the other hand, it develops general approahes and

algorithms that apply to whole lasses of theories.

1.2. History and appliations

The name \uni�ation" and the �rst formal investigation of this notion is due to

J.A. Robinson [1965℄, who introdued uni�ation as the basi operation of his res-

olution priniple, showed that uni�able terms have a most general uni�er, and de-

sribed an algorithm for omputing this uni�er. In the propositional ase, the reso-

lution priniple an be desribed as follows, see also [Bahmair and Ganzinger 2001℄

(Chapter 2 of this Handbook). Assume that lauses C _p and C

0

_:p have already

been derived (where C;C

0

are sub-lauses and p is a propositional variable). Then

one an also dedue C _C

0

. In the �rst-order ase, the lauses one starts with may

ontain variables. Herbrand's famous theorem implies that �nitely many ground in-

stanes (i.e., instanes obtained by substituting all variables by terms without vari-

ables) are suÆient to show unsatis�ability of a given unsatis�able set of lauses by

propositional reasoning (e.g., propositional resolution). The problem is, however, to

�nd the appropriate instantiations. Early theorem provers approahed this problem

by a breadth-�rst enumeration of all possible ground instantiations, whih led to an

immediate ombinatorial explosion [Robinson 1963℄. Theorem provers based on the

resolution priniple need not searh blindly for the right instantiations: they an

ompute them via syntati uni�ation. For example, assume the lauses C _ P (s)

and C

0

_:P (t) are given. Obviously, the resolution rule applies to ground instanes

of these lauses i� in these instanes the prediate P ontains the same term, i.e., i�

the substitution used in the instantiation proess is a (syntati) uni�er of s and t.
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Instead of using all ground uni�ers for instantiation, Robinson proposed to lift the

resolution priniple to terms with variables, and apply only the most general uni�er

� of s and t. In the example, this yields the resolvent (C _C

0

)�. The ompleteness

proof for propositional resolution an be lifted to non-ground resolution by using

the fat that every ground uni�er of s; t is an instane of the most general uni�er.

In fat, the notion \most general uni�er" was de�ned in this way just to make this

lifting possible.

Similar ideas for determining appropriate instantiations have been proposed prior

to Robinson by Post, Herbrand [1930a, 1930b, 1967, 1971℄ (in the investigation of

his property A), Prawitz [1960℄, and Guard [1964, 1969℄. However, in this previous

work, the notions \uni�ation" and \most general uni�er" are not singled out as

interesting onepts of their own (they don't even reeive a name). Prawitz only

onsiders the funtion-free ase (in whih uni�ation is rather trivial), and Herbrand

also �rst presents his approah for this restrited ase. The desription by Herbrand

of the uni�ation algorithm for the general ase (whih appears to be the �rst

published aount of suh an algorithm, and whih is similar to the transformation-

based algorithm by Martelli and Montanari [1982℄) is rather informal, and there is

no proof of orretness.

1

The notions \uni�ation" and \most general uni�er" were independently re-

invented by Knuth and Bendix [1970℄ as a tool for testing term rewriting systems

for loal onuene by omputing ritial pairs. Again, the de�nition of the most

general uni�er makes sure that every ritial situation is an instane of a ritial

pair, and thus it is suÆient to test the ritial pairs for onuene, see [Dershowitz

and Plaisted 2001℄ (Chapter 9 of this Handbook). Equational uni�ation was intro-

dued both in resolution-based theorem proving and in term rewriting as a means

for treating ertain troublesome equational axioms (like assoiativity and ommu-

tativity) in a speial manner. In automated theorem proving, it quikly beame

apparent that the equality relation requires a speial treatment (see [Degtyarev and

Voronkov 2001a, Nieuwenhuis and Rubio 2001℄, Chapters 10 and 7 of this Hand-

book), sine a simple integration of axioms that desribe the properties of equality

(in priniple, being a ongruene relation) often leads to an unaeptable inrease in

the searh spae. Whereas the �rst approahes providing suh a speial treatment

of equality replaed only the axiomatization of equality by speial inferene rules,

Plotkin [1972℄ proposed to go one step further. In his approah, also ertain axioms

that use equality (like f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z))) an be

built into the inferene rule (namely resolution). This is ahieved by replaing the

use of syntati uni�ation in the resolution step by equational uni�ation, i.e.,

uni�ation modulo the equational theory indued by the axioms to be built in.

In term rewriting, axioms like ommutativity (i.e., f(x; y) � f(y; x)) annot be

oriented into terminating rewrite rules. One way of solving this problem is to take

suh non-orientable identities ompletely out of the rewrite proess, and perform

1

Stritly speaking, Herbrand's uni�ation algorithm is not an algorithm for simple syntati

uni�ation, but an algorithm for uni�ation with so-alled linear onstant restritions (see se-

tion 3.3.2). This is due to the fat that he does not Skolemize his formulae, and thus he has both

universal and existential quanti�ers in the quanti�er pre�x.
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rewriting with respet to the remaining (orientable) rules modulo the unoriented

ones. In this setting, ritial pairs must now be omputed by equational uni�ation,

i.e., modulo the unoriented identities, see, e.g., [Peterson and Stikel 1981, Jouan-

naud and Kirhner 1986℄ and [Dershowitz and Plaisted 2001℄ (Chapter 9 of this

Handbook).

1.3. Approah

This hapter is not intended to give a omplete overage of all the results obtained in

uni�ation theory (see the overview artiles [Jouannaud and Kirhner 1991, Baader

and Siekmann 1994℄ for this purpose). Instead we try to over a number of signi�ant

topis in more detail. This should give a feeling for uni�ation researh and its

methodology, provide the most important referenes, and enable the reader to study

reent researh papers on the topi.

Notational and typographi onventions

We will try to keep as lose as possible to the typographi onventions introdued

by Dershowitz and Jouannaud [1991℄, whih they also used in their survey artile on

rewrite systems [Dershowitz and Jouannaud 1990℄. In partiular, substitutions are

written in suÆx notation (i.e., s� instead of �(s)), and onsequently omposition

of substitution should be read from left to right (i.e., �� means: �rst apply � and

then �).

Equational axioms (written s � t) that de�ne equational theories will be alled

\identities," whereas uni�ation problems onsist of \equations" (written s=

?

t for

syntati uni�ation and s=

?

E

t for uni�ation modulo E). Thus, identities must

hold, whereas equations must be solved.

2. Syntati uni�ation

As mentioned earlier, syntati uni�ation of �rst-order terms was introdued by

Post and Herbrand in the early part of this entury. Various researhers have studied

the problem further [Champeaux 1986, Corbin and Bidoit 1983, Huet 1976, Martelli

and Montanari 1982, Paterson and Wegman 1978, Robinson 1971, Venturini-

Zilli 1975℄ and, among other results, it was shown that linear time algorithms

for uni�ation exist [Martelli and Montanari 1976, Paterson and Wegman 1978℄.

The orresponding lower omplexity bound was shown by Dwork, Kanellakis and

Mithell [1984℄: the uni�ation problem is log-spae omplete for P , the lass of

polynomial-time solvable problems. In partiular, this implies that it is very un-

likely that an eÆient parallel uni�ation algorithm exists.

In this setion we review the major approahes to syntati uni�ation.
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2.1. De�nitions

A signature is a (�nite or ountably in�nite) set of funtion symbols F . We assume

the reader is familiar with the term algebra T (F ;V) generated by a signature

funtion symbols F and a (ountably) in�nite set of variables V ; we shall all these

F-terms , or simply terms when F is unimportant, and denote them by the letters

l, r, s, t, u, and v. Variables will be denoted by w, x, y, and z. The set of variables

ourring in a term t will be denoted by Vars(t), and this will be extended to sets

of variables, equations, and sets of equations.

A substitution is a mapping from variables to terms whih is almost everywhere

equal to the identity, and will generally be represented by �, �, �, or �. The identity

substitution is represented by Id . The appliation of a substitution � to a term t,

denoted t�, is de�ned by indution on the struture of terms:

t� :=

(

x� if t = x,

f(t

1

�; : : : ; t

n

�) if t = f(t

1

; : : : ; t

n

).

In the seond ase of this de�nition, n = 0 is allowed: in this ase, f is a onstant

symbol and f� = f . Substitutions an also be applied to sets of terms, equations,

and sets of equations, in the obvious fashion.

For a substitution �, the domain is the set of variables

Dom(�) := fx jx� 6= x g;

the range is the set of terms

Ran(�) :=

[

x2Dom(�)

fx�g;

and the set of variables ourring in the range is VRan(�) := Vars(Ran(�)):

A substitution an be represented expliitly as a funtion by a set of bindings of

variables in its domain, e.g.,

fx

1

7! s

1

; : : : ; x

n

7! s

n

g:

The restrition of a substitution � to a set of variables X , denoted by �j

X

, is

the substitution whih is equal to the identity everywhere exept over X \Dom(�),

where it is equal to �. Composition of two substitutions is written ��, and is de�ned

by

t�� = (t�)�:

An algorithm for onstruting the omposition �� of two substitutions represented

as sets of bindings is as follows:

1. Apply � to every term in Ran(�) to obtain �

1

;

2. Remove from � any binding x 7! t, where x 2 Dom(�), to obtain �

1

;

3. Remove from �

1

any trivial binding x 7! x, to obtain �

2

; and
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4. Take the union of the two sets of bindings �

2

and �

1

.

It is also useful to be able to represent substitutions in their triangular form as

a sequential list of bindings, e.g.,

[x

1

7! t

1

; x

2

7! t

2

; : : : ; x

n

7! t

n

℄;

whih represents the omposition of n substitutions eah onsisting of a single

binding:

fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g:

A substitution is idempotent if �� = �; it is easy to show that this is true i�

Dom(�) \ VRan(�) = ;.

A variable renaming substitution is de�ned as a substitution � suh that

Dom(�) = Ran(�). (For example, fx 7! y; y 7! z; z 7! xg is a variable renam-

ing, whereas fx 7! yg and fy 7! z; x 7! zg are not.) For any suh variable renaming

� = fx

1

7! y

1

; : : : ; x

n

7! y

n

g, we denote its inverse fy

1

7! x

1

; : : : ; y

n

7! x

n

g by �

�1

.

Two substitutions are equal, denoted � = �, if x� = x� for every variable x. We

say that � is more general than �, denoted � �

�

�, if there exists an � suh that

� = ��. The relation�

�

is alled the instantiation quasi-ordering. The orresponding

equivalene relation (i.e., �

�

\

�

�) is denoted by

�

=; it an be shown [Lassez, Maher

and Mariott 1987℄ that �

�

= � i� there exists some variable renaming � suh that

� = ��.

2.1. Definition. A substitution � is a uni�er of two terms s and t if s� = t�; it

is a most general uni�er (or mgu for short), if for every uni�er � of s and t, � �

�

�.

A uni�ation problem for two terms s and t is represented by s=

?

t.

A multiset is an unordered olletion with possible dupliate elements. We denote

the number of ourrenes of an objet x in a multiset M by M(x), and de�ne the

multiset union M [N as the multiset Q suh that Q(x) =M(x) +N(x) for every

x.

2.2. Uni�ation of terms

In this setion and the next, we present a series of algorithms for uni�ation, eah

of whih returns an mgu for two uni�able terms. Our approah will be two-sided:

on the one hand we will present a series of pratial algorithms, from the \naive"

to the more sophistiated (and faster), in pseudo-ode suitable for implementing in

a programming language; and on the other we will present a \rule-based" approah

whih serves to larify the essential properties of the proess and also to prove the

orretness of some of the pratial algorithms.

2.2.1. A naive algorithm

The simplest algorithm for uni�ation is perhaps one that is taught in many intro-

dutory ourses in AI:
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Write down two terms and set markers (e.g., two index �ngers) at the begin-

ning of the terms. Then:

1. Move the markers together, one symbol at a time, until both move o� the end

of the term (suess!), or until they point to two di�erent symbols;

2. If the two symbols are both non-variables, then fail; otherwise, one is a variable

(all it x) and the other is the �rst symbol of a subterm (all it t):

(a) If x ours in t, then fail;

(b) Otherwise, write down \x 7! t" as part of the solution, replae x everywhere

by t (inluding in the solution), and return to (1).

This simple algorithm methodially �nds disagreements in the two terms to be

uni�ed, and attempts to repair them by binding variables to terms: it fails when

funtion symbols lash, or when an attempt is made to unify a variable with a

term ontaining that variable (whih is impossible). Already present in this simple

algorithm are several interesting issues:

Implementation: What data strutures should be used for terms and substitu-

tions? How should appliation of a substitution be implemented? What order

should the operations be performed in?

Corretness: Does the algorithm always terminate? Does it always produe an

mgu for two uni�able terms, and fail for non-uni�able terms? Do these answers

depend on the order of operations?

Complexity: How muh spae does this take, and how muh time?

In the remainder of this setion we will onsider these issues in detail while devel-

oping our sequene of algorithms.

2.2.2. Uni�ation by reursive desent

If we take our naive algorithm and implement it as simply as possible in a pro-

gramming language, then we would represent terms using either expliit pointer

strutures (as in C or Pasal) or built-in reursive data types (as in ML and Lisp),

and represent substitutions as lists of pairs of terms. Appliation of a substitution

would involve onstruting a new term or replaing a variable with a new term.

The left-to-right searh for disagreements would then be implemented by reursive

desent through the terms as shown in Figure 1.

(In an atual implementation, the ase \Unify( t, s )" ould be moved up before

the �rst \else if" and simply swap s and t if the former is not a variable.) The

only detail that might ause some onfusion is the exat method for implementing

the omposition in the last line. This was desribed in setion 2.1; however, in

our naive uni�ation algorithm, we omitted the seond and third steps from the

informal algorithm for omposition, and this may be done as well here, due to a

simple but important fat about these algorithms: when a binding x 7! t is reated

and applied, x will never appear in another term onsidered by the algorithm|x

has been \eliminated" and ours only one, in the solution.

This algorithm is essentially the one �rst desribed by Robinson [1965℄, and has

been almost universally used in symboli omputation systems.
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global � : substitution; f Initialized to Id g

Unify( s : term; t : term )

begin

if s is a variable then f Instantiate variables g

s := s�;

if t is a variable then

t := t�;

if s is a variable and s = t then

f Do nothing g

else if s = f(s

1

; : : : ; s

n

) and t = g(t

1

; : : : ; t

m

) for n;m � 0 then begin

if f = g then

for i := 1 to n do

Unify( s

i

, t

i

);

else Exit with failure f Symbol lash g

end

else if s is not a variable then

Unify( t, s );

else if s ours in t then

Exit with failure; f Ours hek g

else � := �fs 7! tg;

end;

Figure 1: Uni�ation by reursive desent

2.2.3. A rule-based approah U

In order to explore some of the logial properties of this algorithm, we now present

a simple inferene system for deriving solutions for uni�ation problems.

An idempotent substitution fx

1

7! t

1

; : : : ; x

n

7! t

n

g may be represented by a set

of equations fx

1

� t

1

; : : : ; x

n

� t

n

g in solved form, i.e., where eah x

i

has a single

ourrene in the set. For any idempotent substitution �, the orresponding solved

form set will be denoted by [�℄, and for any set of equations S in solved form, the

orresponding substitution will be denoted by �

S

.

A system is either the symbol ? (representing failure) or a pair onsisting of a

multiset P of uni�ation problems and a set S of equations in solved form. We

will use � to denote an arbitrary system. A substitution is said to be a uni�er (or

solution) of a system P ;S if it uni�es eah of the equations in P and S; the system

? has no uni�ers.

The inferene system U onsists of the following transformations on systems:

2

2

The symbol [ below when applied to P is multiset union.
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Trivial:

fs

?

= sg [ P

0

;S =) P

0

;S

Deomposition:

ff(s

1

; : : : ; s

n

)

?

= f(t

1

; : : : ; t

n

)g [ P

0

;S =) fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ P

0

;S

(Note that possibly n = 0.)

Symbol Clash:

ff(s

1

; : : : ; s

n

)

?

= g(t

1

; : : : ; t

m

)g [ P

0

;S =) ?

if f 6= g.

Orient:

ft

?

=xg [ P

0

;S =) fx

?

= tg [ P

0

;S

if t is not a variable.

Ours Chek:

fx

?

= tg [ P

0

;S =) ?

if x 2 Vars(t) but x 6= t.

Variable Elimination:

fx

?

= tg [ P

0

;S =) P

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x 62 Vars(t).

In order to unify s and t, we reate an initial system fs=

?

tg; ; and apply sues-

sively rules from U ; we show below that suh a proess must terminate, produing

a terminal system (i.e., to whih no rule applies) in the form of ? or ;;S, where S

is a solved form system representing the mgu of s and t.

The inferene system U is in essene the same algorithm for uni�ation presented

by Herbrand (see Appendix 3 in [Herbrand 1971℄); more reently, this formulation

of the uni�ation proess was introdued by Martelli and Montanari [1982℄ and has

gained wide urreny as a formalism for representing uni�ation algorithms (see,

for example, [Jouannaud and Kirhner 1991, Snyder 1991℄).

Before onsidering U per se, let us onsider how this set of transformations might

simulate the ations of the reursive desent algorithm. Suppose we were to print

out a trae of the terms s and t, and the global substitution �, just before the third

if-statement in Unify, e.g.,
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s

1

t

1

Id

s

2

t

2

�

2

s

3

t

3

�

3

: : :

This sequene an be simulated by a sequene of transformations

fs

1

=

?

t

1

g; ;

=) fs

2

=

?

t

2

g [ P

2

;S

2

=) fs

3

=

?

t

3

g [ P

3

;S

3

=) : : :

where eah s

i

=

?

t

i

is the equation ated on by the rule, and eah �

i

is idential

to �

S

i

. Furthermore, if the all to Unify ends in failure, then the transformation

sequene ends in ?; and if the all to Unify terminates with suess, with a global

substitution �

n

, then the transformation sequene ends in a system ;;S where

�

S

= �

n

. This simulation an be ahieved by treating the multiset P as a stak,

always applying a rule to the top equation, and only using Trivial when s is a

variable; there is only one possible rule to apply at eah step under this ontrol

strategy.

Therefore, U an be viewed as an abstrat version of the reursive desent algo-

rithm, and an be used to prove its orretness. In fat, U has many interesting

features in its own right, as we now proeed to show.

2.2.4. Tehnial results about U

In this setion we present a number of results about U , adapted from Martelli and

Montanari [1982℄. Perhaps the simplest property to show is termination.

2.2. Lemma. For any �nite multiset of equations P , every sequene of transforma-

tions in U

P ; ; =) P

1

;S

1

=) P

2

;S

2

=) : : :

terminates either with ? or with ;;S, with S in solved form.

Proof. De�ne a omplexity measure hn

1

; n

2

; n

3

i on multisets of equations, ordered

by the (well-founded) lexiographi ordering on triples of natural numbers, where

n

1

= The number of distint variables in P ;

n

2

= The number of symbols in P ; and

n

3

= The number of equations in P of the form t=

?

x, with t not a variable.

Eah rule in U redues the omplexity of the problem P . Furthermore, any equation

must �t into one of the ases mentioned on the left-hand sides of the rules, so that

a rule an always be applied to a system with non-empty P . Thus, a system to

whih no rule applies must be in the form ? or ;;S. Sine whenever an equation is

added to S, the variable on the left-side is eliminated from the rest of the system,

eah of the systems S

1

; S

2

; : : : ; S must be in solved form.

Another interesting fat is that a solution � produed by U is always idempotent.
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2.3. Corollary. If P ; ; =)

+

;;S, then �

S

is idempotent.

One of the most interesting features of U is that its rules do not hange the set of

uni�ers of a system. The main orretness results about U are essentially orollaries

of this fat.

2.4. Lemma. For any transformation P ;S =) �, a substitution � uni�es P ;S i�

it uni�es �.

Proof. The only non-trivial ases onern Ours Chek and Variable Elimination.

If x ours in, but is not equal to, t, then learly x ontains fewer symbols than t;

but then x� must also ontain fewer symbols than t�, so that x and t an have no

uni�er.

Regarding Variable Elimination, we know that x� = t�, from whih (by strutural

indution) we an show that

u� = (ufx 7! tg)�

for any term u, or indeed for any equation or multiset of equations. But then

P

0

� = P

0

fx 7! tg� and S� = Sfx 7! tg�

from whih the result follows.

The �rst of our major results about U shows that it does indeed produe a uni�er.

2.5. Theorem. (Soundness) If P ; ; =)

+

;;S, then �

S

uni�es every equation in

P .

Proof. Note that �

S

uni�es S, beause it is idempotent; a simple indution with

lemma 2.4 shows that �

S

must unify the equations in P .

Our seond major result shows that U is able to alulate anmgu for two uni�able

terms.

2.6. Theorem. (Completeness) If � uni�es every equation in P , then any maximal

sequene of transformations

P ; ; =) : : :

must end in some system ;;S suh that �

S

�

�

�.

Proof. Lemmas 2.2 and 2.4 show that suh a sequene must end in some terminal

system ;;S where � uni�es S. Now for every binding x 7! t in �

S

,

x�

S

� = t� = x�;

and for every x 62 Dom(�

S

), x�

S

� = x�, so that � = �

S

�.

An immediate onsequene of these two results is the following.



458 Franz Baader and Wayne Snyder

2.7. Corollary. If P has no uni�er, then any maximal transformation sequene

from P ; ; must have the form

P ; ; =) : : : =) ?:

The most interesting feature of this proof (and the reason for the emphasis on the

word \any") is that the hoie of a rule to apply at any stage of the omputation is

don't are non-deterministi, whih implies that any ontrol strategy will result in

an mgu for two uni�able terms, and failure for two non-uni�able terms. Thus, any

pratial uni�ation algorithm whih proeeds by performing the atomi ations of

U , in any order, is sound and omplete, and in partiular it generates idempotent

mgus for uni�able terms. However, some sequenes of these basi operations may

be longer than others, or reate larger terms, and not all sequenes end in the same

exat mgu. Before onsidering the issue of omplexity in detail, we digress for a

moment to onsider this last point.

2.2.5. Some properties of MGU's

Theorem 2.6 shows that any substitution produed by U (or any algorithm that U

an simulate) is a ompat representation of the (in�nite) set of all uni�ers, whih

ould be generated by omposing all possible substitutions with the mgu. This

means that no information is lost in symboli omputation systems (suh as �rst-

order theorem provers and logi-programming interpreters) in solving a uni�ation

subproblem and applying the solution to the rest of the omputation (this is what

happens, in fat, during the uni�ation proess itself).

The inferene system U , starting from a single pair of terms s and t, ould produe

(�nitely) many di�erent terminal forms, orresponding to distint mgus for s and t.

What is the relationship of these distint mgus? Are there other mgus than these?

Is there an in�nite number? The key to answering these questions lies in the onept

of a variable renaming, de�ned in setion 2.1: if � and � are both mgus of s and

t, then �

�

= �, i.e., they are instanes of eah other, and hene � = �� for some

variable renaming � (for a proof, see [Lassez et al. 1987℄.)

This means that the set of mgus of two terms an be generated from a single mgu,

by omposition with variable renamings (whih is a speial ase of the fat that the

set of all uni�ers an be generated by omposition with arbitrary substitutions). By

suh an operation, it is possible to reate an in�nite number of idempotent mgus

and an in�nite number of non-idempotent mgus; the �nite searh tree generated by

U is not able to onstrut any arbitrary mgu, nor even every idempotent mgu.

An oft-repeated phrase in the literature states that \mgus are unique up to

renaming"; the reader should now understand that this vague statement should

more properly be: \mgus are unique up to omposition with a variable renaming."

This brief exposition of some of the important properties of mgus should onvine

the reader that the olletion of all uni�ers of two terms has non-trivial properties;

later on in this hapter we shall examine the even more omplex ase of sets of

uni�ers for E-uni�ation problems. For further haraterizations of the set of mgus

produed by U , and on uni�ers in general, see [Lassez et al. 1987, Eder 1985℄.
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2.2.6. Complexity of reursive desent

This setion will begin to onsider the omplexity of the uni�ation proess, a ques-

tion whih will motivate the onsideration of further, more sophistiated algorithms

for uni�ation.

The approahes to uni�ation so far onsidered, unfortunately, an take expo-

nential time and spae.

2.8. Example.

h(x

1

; x

2

; : : : ; x

n

; f(y

0

; y

0

); : : : ; f(y

n�1

; y

n�1

); y

n

)

and

h(f(x

0

; x

0

); f(x

1

; x

1

); : : : ; f(x

n�1

; x

n�1

); y

1

; : : : ; y

n

; x

n

)

Unifying these two terms will reate an mgu where eah x

i

and eah y

i

is bound to

a term with 2

i+1

�1 symbols. Clearly the problem is that the substitution ontains

many dupliate opies of the same subterms. One idea that might help here would

be to represent substitutions as \triangular forms." Thus,

[ y

0

7! x

0

; y

n

7! f(y

n�1

; y

n�1

); y

n�1

7! f(y

n�2

; y

n�2

); : : :℄

would be a triangular form uni�er of the two terms. Building up suh a substitution

during uni�ation onsists of simply olleting a list of bindings; no dupliate terms

are reated, and hene triangular form uni�ers an be no larger than the original

problem.

Unfortunately, this good idea is not suÆient to resue the algorithm, as it ap-

pears that substitution, and hene the dupliation of subterms, is neessary in the

terms themselves: in the example, the all to Unify on the last arguments, x

n

and

y

n

, whih by then are bound to terms with 2

n+1

� 1 symbols, will lead to an expo-

nential number of reursive alls. The solution to this problem is to develop a more

subtle data struture for terms, and a di�erent method for applying substitutions.

2.3. Uni�ation of term dags

In this setion, we onsider two approahes to speeding up the uni�ation proess.

The �rst approah, whih we adapt from Corbin and Bidoit [1983℄, �xes the problem

of dupliation of subterms reated by substitution by using a graph representation of

terms whih an share struture; this results in a quadrati algorithm. To develop an

asymptotially faster algorithm, however, it is neessary to abandon the reursive

desent approah, and reast the problem of uni�ation as the onstrution of a

ertain kind of equivalene relation on graphs. This seond approah is due to Huet

[1976℄.

2.3.1. Term dags and substitution

Conerning example 2.8, it should be remarked that the explosion in the size of

the terms ourred preisely beause there were dupliate ourrenes of the same
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variables, whih ause a dupliation of ever larger and larger terms. In order to �x

this problem, it is neessary to onsider in detail how to represent terms as expliit

graphs whih share subterms.

2.9. Definition. A term dag is a direted, ayli graph whose nodes are labeled

with funtion symbols, onstants, or variables, whose outgoing edges from any node

are ordered, and where the outdegree of any node labelled with a symbol f is equal

to the arity of f (variables have outdegree 0).

In suh a graph, eah node has a natural interpretation as a term, and we shall

speak of nodes and terms as if they were one and the same (e.g., a \node" f(a; x)

is one labeled with f and having ars to nodes a and x). The only di�erene be-

tween various dags representing a partiular term is the amount of struture sharing

among the subterms. For example, we ould represent the term f(g(a; x); g(a; x))

by any of the following dags:

a

g g

a xx

f f

g g

a ax

f

g

a x

Assuming that names of symbols are strings of haraters, it is possible to reate a

dag with unique, shared ourrenes of variables in O(n), where n is the number of

all haraters in the string representation of a uni�ation problem. For example, one

an use a trie to store the variable names when parsing the terms, so that dupliate

ourrenes of variables an be pointed to a unique, shared representation of the

variable. In the normal ase, names have a onstant size, and n just represents the

number of symbols in the term; we make this assumption in what follows.

Therefore, we assume that the input to our algorithm is a term dag representing

the two terms to be uni�ed, with unique, shared ourrenes of all variables. We

also assume that eah node t has an attribute parents(t) whih is a list of all parents

of t in the graph (i.e., all nodes p whih point to t), but do not show these in the

diagrams below for simpliity. Parent pointers are neessary when sharing nodes in

the dag.

A substitution involving only the subterms of a term dag an be represented

diretly by a relation on the nodes of the dag , either stored expliitly as a list

of pairs of pointers to nodes, or by storing a link (we will all these substitution

ars) in the graph itself, and maintaining a list of variables (nodes) bound by the

substitution. Appliation of suh a substitution an be impliit or expliit, the latter

involving atual moving of subterm links. For example, two terms f(x; g(a)) and

f(g(y); g(y)), and their mgu fx 7! g(a); y 7! a g an be represented by the dag :
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x

g

g

g

f f

a

y

The impliit appliation of a substitution identi�es two nodes onneted with a

substitution ar, without atually moving any of the subterm links; the binding for

a variable an be determined by traversing the graph depth �rst, left to right. This

essentially represents the triangular form (e.g., [x 7! g(y); y 7! a ℄) in the dag . We

use this form of substitution in the algorithm of setion 2.3.3.

The expliit appliation of a substitution expresses the substitution of binding

for variable by moving any ar (subterm or substitution) pointing to a variable to

point to the binding. For example,

x

g

g

g

f f

a

y

This represents the \funtional" form fx 7! g(a); y 7! a g of the substitution in a

diret way. We shall use this expliit form of appliation in the next algorithm.

2.3.2. Reursive desent on term dags

In this setion we present the �rst algorithm whih uses term dags. If we think about

traing the operation of the reursive desent algorithm on this new data struture,

it might appear that the soure of exponential blowup has been removed, sine

substitution does not dupliate terms. However, it still may be possible to have

dupliate alls to the same term; in example 2.8, for instane, the terms bound to

x

n

and y

n

(see �g. 2) will be uni�ed when x

0

is bound to y

0

; however, the reursive

desent algorithm will then blithely explore every other path through the pair of

terms, resulting in an exponential number of reursive alls.

Clearly, we need to keep from revisiting already-solved problems in the graph.

The best solution is simply to do struture sharing \on the y" by merging uni�ed

terms (whih are, after all, now idential), and then heking for identity of nodes

in the �rst step. Merging two nodes s and t in a graph � an be implemented by

moving ars. Let parents(s) = fp

1

; : : : ; p

n

g; then

1. For eah p

i

, replae the subterm ar p

i

�! s by p

i

�! t;

2. Let parents(t) := parents(s) [ parents(t); and

3. Let parents(s) := ;.

This shares the struture of t and isolates the node s. In the algorithm below, we

will denote by Replae(�, s, t) the new graph reated from a graph � by merging
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f

f

.

.

.

f

x

0

f

f

f

.

.

.

y

0

x

n

y

n

x

n�1

x

1

y

n�1

y

1

Figure 2: A dag representation of the terms bound to x

n

and y

n

in example 2.8.

s and t in this fashion.

The algorithm takes as input a term dag in whih all ourrenes of variables

are shared (i.e., eah variable ours exatly one). Even with these additions, our

reursive desent algorithm is mostly unhanged:

global � : termDag; f Term dag for s and t with shared variables g

global � : list of pairs of nodes; f Initialized to empty g

UnifyDag( s : node; t : node )

begin

if s and t are the same node then

f Do nothing g

else if s = f(s

1

; : : : ; s

n

) and t = g(t

1

; : : : ; t

m

) then begin

if f = g then

for i := 1 to n do

UnifyDag( s

i

, t

i

);

else Exit with failure f Symbol lash g

end

else if s is not a variable then

Unify( t, s );

else if s ours in t then

Exit with failure; f Ours hek g

else

Add (s; t) to the end of the list �;

� := Replae(�, s, t); f Sine they are now uni�ed g

end;

The ours hek is implemented as a standard graph traversal to searh for the

given node s below t by following subterm ars.
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The orretness of the data struture for this algorithm is dependent on the

following result from Corbin and Bidoit [1983℄, whih an be proved by indution

on the dag .

2.10. Lemma. Let � be a term dag with nodes x and t suh that there is no path

from t to x.

� Replae(�, x, t) is an ayli graph ontaining the same nodes (with the same

labels) as �.

� Consider a distinguished node in � orresponding to the term s, and let s

0

be

the term orresponding to the same node in Replae(�, x, t); then:

{ if s = x, then s

0

= x;

{ otherwise, s

0

= sfx 7! tg.

In order to prove soundness and ompleteness, we may again show that U an

\trae" the terms in eah all to UnifyDags, the only di�erene being that when

Trivial is used, s may not neessarily be a variable (i.e., when UnifyDag is alled on

two terms previously uni�ed, and hene shared as one node). From a logial point

of view (thinking in term of the symboli expressions being manipulated), nothing

has hanged|only the underlying data struture for terms and substitutions.

Thus, the only thing that remains to be onsidered is the omplexity of UnifyDag.

Sine eah all to this funtion isolates a node, there an not be more than n alls

in toto (where n is the number of symbols ourring in the original terms). Eah

all does a onstant amount of work exept for the ours hek (whih traverses no

more than n nodes) and the moving of no more than n pointers. Maintaining the

lists of parents osts O(n) at eah all. The original onstrution of the dag takes

O(n). This results in a time omplexity of O(n

2

); learly the spae used is O(n).

2.3.3. An almost-linear algorithm

It would be possible to speed up this algorithm by making hanges to the way

substitutions are represented (see [Baader and Siekmann 1994℄), however, we will

now onsider an alternate approah whih gives more insight into the nature of uni-

�ation. This approah makes the following fundamental hanges to the approah

onsidered so far:

� instead of reursive alls to pairs of subterms whih must be uni�ed, we will

reast the problem as that of onstruting an equivalene relation whose lasses

are terms that must be uni�ed;

� substitution will (in some sense) be replaed by the union of equivalene lasses;

and

� the repeated alls to the ours hek will be replaed by a single pass through

the graph to hek for ayliity.

The term dag data struture will be used for these algorithms as well, however, we

will not move pointers as in the last setion. Instead, we onsider the uni�ation

problem as one involving the following relation on terms.
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2.11. Definition. A term relation is an equivalene relation on terms, and is ho-

mogeneous if no equivalene lass ontains f(: : :) and g(: : :) with f 6= g; it is ayli

if no term is equivalent to a proper subterm of itself.

A uni�ation relation is a homogeneous, ayli term relation satisfying the uni-

�ation axiom: For any f and terms s

i

and t

i

,

f(s

1

; : : : ; s

n

)

�

=

f(t

1

; : : : ; t

n

) �! s

1

�

=

t

1

^ : : : ^ s

n

�

=

t

n

:

The uni�ation losure of s and t, when it exists, is the least uni�ation relation

whih makes s and t equivalent.

The algorithm presented in this setion takes its starting point from the following

fat.

2.12. Lemma. If s and t are uni�able, then there exists a uni�ation losure for s

and t.

Proof. For any uni�er � of s and t, de�ne the relation

u

�

=

�

v i� u� = v�:

Clearly this is a uni�ation relation. Sine the intersetion of two uni�ation rela-

tions relating s and t is again a uni�ation relation relating s and t, whenever s

and t are uni�able there is a least suh relation

�

=

whih joins lasses only when

fored to apply the uni�ation axiom to subterms of s and t.

The uni�ation-losure approah to uni�ation, �rst presented in [Huet 1976℄,

attempts to onstrut this relation on two terms, whih, as we shall show, orre-

sponds to �nding an mgu. However, before presenting the algorithm, we need a

number of anillary notions.

2.13. Definition. For any term relation

�

=

, let a shema funtion be a funtion &

from equivalene lasses to terms suh that for any lass C,

1. &(C) 2 C; and

2. &(C) is a variable only if C onsists entirely of variables.

The term &(C) will be alled the shema term for C.

The point here is that the shema term is a funtional form whenever suh exists,

and will be used to propagate information downward using the uni�ation axiom; it

is also used to de�ne substitutions. Note that shema funtions are not unique, but

there always exists at least one for any term relation; we assume in the following

that suh a funtion has been hosen for any given uni�ation losure.

Note that for any ayli term relation there exists a partial ordering � suh that

for any term f(: : : s : : :), we have [f(: : : s : : :)℄ � [s℄.

2.14. Definition. For any uni�ation losure

�

=

, de�ne �

�

=

by:

x�

�

=

=

(

y if &([x℄) = y

f(s

1

�

�

=

; : : : ; s

n

�

�

=

) if &([x℄) = f(s

1

; : : : ; s

n

)
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(This notion is well-de�ned by reursion on the partial order �; Dom(�

�

=

) is �nite

beause

�

=

has only a �nite number of non-trivial equivalene lasses.)

2.15. Theorem. Terms s and t are uni�able i� there is a uni�ation losure for s

and t. In the aÆrmative ase, �

�

=

is an mgu for s and t.

Proof. The only if diretion has been proved in our previous lemma. For the other

diretion, let

�

=

be a uni�ation losure for s and t. We laim that for every term u,

u�

�

=

= &([u℄)�

�

=

(thus, �

�

=

uni�es eah pair of equivalent terms, in partiular s and

t), and proeed by indution on the size of u. For the base ase, if u is a onstant

or variable, then the result is trivial by the de�nition of �

�

=

. Now suppose that

u = f(s

1

; : : : ; s

n

) and &([u℄) = f(t

1

; : : : ; t

n

); sine

�

=

is losed under the uni�ation

axiom, then for eah i, s

i

�

=

t

i

, and thus by the indution hypothesis, s

i

�

�

=

= t

i

�

�

=

.

To prove that �

�

=

is an mgu in the aÆrmative ase, we show that for any uni�er

�, we have u�

�

=

� = u� for any term u, and proeed by indution on �. Assume

that

�

=

�

is as de�ned in the previous lemma. (In the following, & refers to some

�xed shema funtion for �

�

=

.) First, note that if u

�

=

v, then u� = v�, sine

�

=

is

ontained in

�

=

�

. Now, for the base ase, if [u℄ ontains only onstants and variables,

then u�

�

=

= &([u℄)

�

=

u, from whih it follows that u�

�

=

� = u�. For the indution

step, it must be the ase that &([u℄) equals some f(s

1

; : : : ; s

n

), and u is either a term

of the form f(t

1

; : : : ; t

n

), or is a variable x. In the �rst ase, u�

�

=

� = u� by a diret

use of the indution hypothesis. In the seond ase, x�

�

=

= f(s

1

�

�

=

; : : : ; s

n

�

�

=

), and

x� = f(s

1

; : : : ; s

n

)� (sine

�

=

is ontained in

�

=

�

), so that

x� = f(s

1

�; : : : ; s

n

�) = f(s

1

�

�

=

�; : : : ; s

n

�

�

=

�) = f(s

1

�

�

=

; : : : ; s

n

�

�

=

)� = x�

�

=

�;

the seond step involving the indution hypothesis.

This result motivates the design of an eÆient uni�ation algorithm whih at-

tempts to build a uni�ation losure for two terms, and then extrats the mgu.

To do this, it is neessary to have some means for maintaining equivalene lasses

and for applying the uni�ation axiom to lasses; the most eÆient data struture

represents lasses as trees of lass pointers (whih we represent by dashed lines)

with a lass representative at the root:

t

1

t

4

s

2

u

2

t

2

u

3

s

1

u

1

t

3

To determine whether two terms are equivalent, it is only neessary to �nd the

roots of the trees and hek for identity; and to join two lasses, one lass is made
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a subtree of the other's root. To redue the height of the trees as muh as possible,

two subtle re�nements are made: (i) maintain a ount of the size of eah lass in

the representative, and when joining lasses, make the smaller one a subtree of the

larger; and (ii) when following paths to the root to determine equivalene, ompress

the paths by pointing all nodes enountered diretly at the root. For example, if

we wished to take the union of the two lasses [t

3

℄ and [u

3

℄, we would �nd the

representatives for the two lasses, ompressing the path from t

3

, and then add a

lass link from the representative of the smaller lass to the larger:

t

1

t

4

s

2

s

1

t

2

u

2

u

3

u

1

t

3

Suh a data struture an proess a series of O(n) Unions and Finds in O(n�(n)),

where � is the funtional inverse of Akermann's funtion, and whih, for all pra-

tial purposes, may be onsidered as a small onstant fator.

The term dag for this approah needs no parent pointers, as in the previous

algorithm, but does need

� lass pointers;

� a ounter of the size of the lass stored in the representative;

� a pointer from eah representative to the shema term for the lass;

� boolean ags visited and ayli in eah node used in yle heking (both

initialized to false);

� a pointer vars from eah representative to a list of all variables in the lass

(used when generating solutions).

Note that maintaining lists of parents of eah node is not neessary in this algorithm.

A representative is simply a node whose lass pointer points to itself. The algorithm

based on this approah may now be given. It is shown in Figures 3 and 4. The term

dag � for s and t is initialized to the identity relation, where eah lass ontains

a single term; thus for eah node the lass and shema pointers are initialized to

point to the same node, and the size is initialized to 1. The vars list is initialized

to empty for non-variable nodes, and to a singleton list for variable nodes.

If Unify(s, t) does not fail, then � ontains a triangular form solution. Find-

Solution attempts to �nd suh a solution, and fails i� there exists a yle in the

graph. (We are essentially traversing the ommon term s� by replaing s by its

shema term in the �rst line.) The �elds visited and ayli are both neessary, the

�rst to �nd a yle in the urrent exploration path, and the seond to keep from

reexamining nodes whih have already been exluded from any possible yles.

The orretness of this method depends on verifying that it implements orretly

the onstrution of an ayli uni�ation losure. The essential points are that

� the equivalene is learly homogeneous;

� equivalene lasses are joined i� required by the uni�ation axiom, hene the

relation is least ;
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global � : termDag; f Term dag for s and t with shared variables g

global � : list of bindings := nil; f Triangular form solution g

Unify( s : node; t : node )

begin

UnifClosure(s, t);

FindSolution(s);

end;

UnifClosure( s : node; t : node )

begin

s := Find(s); f Find representatives g

t := Find(t);

if s and t are the same node then

f Do nothing g

else begin

if &([s℄) = f(s

1

; : : : ; s

n

) and &([t℄) = g(t

1

; : : : ; t

m

) for n;m � 0

then begin

if f = g then begin

Union(s, t);

for i := 1 to n do

UnifClosure( s

i

, t

i

);

end

else Exit with failure f Symbol lash g

end

else Union(s, t);

end;

end;

Union( s : node; t : node ) f s and t are representatives g

begin

if size(s) � size(t) then begin

size(s) := size(s) + size(t);

vars(s) := onatenation of lists vars(s) and vars(t);

if &([s℄) is a variable then

&([s℄) := &([t℄);

lass(t) := s;

end

else begin

size(t) := size(t) + size(s);

vars(t) := onatenation of lists vars(t) and vars(s);

if &([t℄) is a variable then

&([t℄) := &([s℄);

lass(s) := t;

end;

end;

Figure 3: Uni�ation algorithm
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Find( s : node ) f Returns representative for [s℄ and ompresses paths g

t : node;

begin

if lass(s) = s f s is a representative g then

Return s;

else begin

t := Find(lass(s));

lass(s) := t;

return t;

end;

end;

FindSolution(s : node); f Fails if exists a yle below s g

begin;

s := &(Find(s));

if ayli(s) then

Return; f s is not part of a yle g

if visited(s) then

Fail; f Exists a yle g

if s = f(s

1

; : : : ; s

n

) for some n > 0 then begin

visited(s) := true;

for i := 1 to n do

FindSolution(s

i

);

visited(s) := false;

end;

ayli(s) := true;

foreah x 2 vars(Find(s)) do

if x 6= s then

Add [x 7! s℄ to front of �;

end;

Figure 4: Uni�ation algorithm, ontinued

� FindSolution fails i� there is a yle in the graph; and

� whenever a binding [x 7! s℄ is added to �, all relevant bindings for variables in

s already our in �.

The omplexity of the algorithm is O(n�(n)), as, with the exeption of Find,

eah funtion an be alled at most n times for terms with n symbols, and eah all

performs a onstant amount of work (note that the work of onatenating the vars

lists an be aomplished in O(n) if pointers to the last ell in the list are kept,

and onatenation is performed by moving pointers rather than by the standard

append operation). The dominating ost is therefore the alls to Find, whih, as

mentioned above, an ost O(n�(n)).

Linear-time algorithms for uni�ation have been presented by Paterson and Weg-

man [1978℄ (f. [Champeaux 1986℄) and Martelli and Montanari [1982℄, to whih
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we refer the reader for further study.

3. Equational uni�ation

Like syntati uni�ation, equational uni�ation is onerned with the problem of

making terms equal by applying a suitable substitution. The only di�erene is that

syntati equality is replaed by equality modulo an equational theory E. At �rst

sight, one might think that this is minor hange, and that the notions and ap-

proahes from syntati uni�ation an easily be adapted to this new situation.

It turns out, however, that equational uni�ation requires some non-trivial adjust-

ments of the basi notation. In partiular, the notion of a most general uni�er is

no longer suÆient for the purpose of representing all uni�ers sine there may exist

E-uni�able terms that do not have a most general E-uni�er. In the �rst subsetion,

we introdue the basi notions as they are urrently used in uni�ation theory, and

in the subsequent subsetion, we point out some di�erenes to the ase of syntati

uni�ation, and explain the reason for introduing the notions in this modi�ed way.

The third subsetion introdues order-theoreti, logial, algebrai, and ategory-

theoreti reformulations of some of these notions. We onlude the setion with a

short survey of results in uni�ation theory. Some of these results will be treated

in more detail in subsequent setions.

3.1. Basi notions

An equational theory is de�ned by a set of identities E, i.e., a subset of

T (F ;V)� T (F ;V) for a signature F and a (ountably in�nite) set of variables

V . It is the least ongruene relation on the term algebra T (F ;V) that is losed un-

der substitution and ontains E, and it will be denoted by =

E

(see [Dershowitz and

Plaisted 2001, page 575℄ (Chapter 9 of this Handbook) for a more detailed de�ni-

tion of the relation =

E

). Identities are written in the form s � t. If s =

E

t, then we

say that the term s is equal modulo E to the term t. For example, let f be a binary

funtion symbol. The identity C := ff(x; y) � f(y; x)g says that f is ommuta-

tive, and the identity A := ff(f(x; y); z) � f(x; f(y; z))g expresses assoiativity

of f . We have f(f(a; b); ) =

C

f(; f(b; a)), and f(a; f(x; b)) =

A

f(f(a; x); b). In

the following, we will often slightly abuse the notion of an equational theory by

also alling a set of de�ning identities E an equational theory. For a given set of

identities E, we denote by Sig(E) the set of all funtion symbols ourring in E.

3.1. Definition. Let E be an equational theory and F a signature ontaining

Sig(E). An E-uni�ation problem over F is a �nite set of equations

� = fs

1

?

=

E

t

1

; : : : ; s

n

?

=

E

t

n

g

between F-terms with variables in a (ountably in�nite) set of variables V . An E-

uni�er of � is a substitution � suh that s

1

� =

E

t

1

�; : : : ; s

n

� =

E

t

n

�. The set of
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all E-uni�ers of � is denoted by U

E

(�), and � is E-uni�able i� U

E

(�) 6= ;.

Obviously, syntati uni�ation is the speial ase of this de�nition where E = ;.

Any syntati uni�er of an E-uni�ation problem � is also an E-uni�er, but for

E 6= ;, the set U

E

(�) may have additional elements. For example, if a and b are

distint onstant symbols, then the C-uni�ation problem ff(a; x)=

?

C

f(b; y)g has

fx 7! b; y 7! ag as C-uni�er, whereas the terms f(a; x) and f(b; y) do not have a

syntati uni�er. For the A-uni�ation problem � := ff(a; x)=

?

A

f(y; b)g, the set

U

A

(�) ontains the syntati uni�er fx 7! b; y 7! ag of f(a; x) and f(y; b), but also

additional A-uni�ers suh as fx 7! f(z; b); y 7! f(a; z)g.

The instantiation quasi-ordering �

�

on substitutions is adapted to the ase of

equational uni�ation as follows:

3.2. Definition. Let E be an equational theory and X a set of variables. The

substitution � is more general modulo E on X than the substitution � i� there

exists a substitution � suh that x� =

E

x�� for all x 2 X . In this ase we write

� �

�

X

E

� and say that � is an E-instane of � on X .

It is easy to see that �

�

X

E

is a quasi-ordering, i.e., a reexive and transitive binary

relation. The assoiated equivalene is denoted by

�

=

X

E

, i.e., �

�

=

X

E

� i� � �

�

X

E

� and

� �

�

X

E

�.

When omparing E-uni�ers of a problem �, the set X is the set of all vari-

ables ourring in �. Unlike the ase of syntati uni�ation, uni�able E-uni�ation

problems need not have a most general E-uni�er. For example, the C-uni�ation

problem ff(x; y)=

?

C

f(a; b)g has the two C-uni�ers �

1

:= fx 7! a; y 7! bg and

�

2

:= fx 7! b; y 7! ag. On Var(�) = fx; yg, any C-uni�er of � is equal to either

�

1

or �

2

, and �

1

and �

2

are not omparable w.r.t the instantiation quasi-ordering

�

�

fx;yg

C

. Consequently, there annot be a most general C-uni�er of �. Thus, the rôle

of the most general uni�er must in general be taken on by a omplete set of uni�ers.

3.3. Definition. Let � be an E-uni�ation problem over F and let X := Var(�)

be the set of all variables ourring in �. A omplete set of E-uni�ers of � is a set

C of substitutions suh that

1. C � U

E

(�), i.e., eah element of C is an E-uni�er of �,

2. for eah � 2 U

E

(�) there exists � 2 C suh that � �

�

X

E

�.

The set C is a minimal omplete set of E-uni�ers of � i� it is a omplete set that

satis�es

3. two distint elements of C are inomparable w.r.t. �

�

X

E

, i.e., for all �; �

0

2 C,

� �

�

X

E

�

0

implies � = �

0

.

The substitution � is a most general E-uni�er of � i� f�g is a (minimal) omplete

set of E-uni�ers of �.

If the uni�ation problem � is not E-uni�able, then the empty set is a minimal

omplete set of E-uni�ers of �. Depending on the equational theory E, minimal

omplete sets of E-uni�ers need not always exist, and even if they do, they may be
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in�nite (see below). It is, however, easy to show that they are unique up to instan-

tiation equivalene

�

=

X

E

(see subsetion 3.3.1). This makes sure that the following

de�nition of the uni�ation type of an E-uni�ation problem and of an equational

theory E is unambiguous.

3.4. Definition. Let E be an equational theory, and let � be an E-uni�ation

problem over F . The problem � has type unitary (�nitary , in�nitary) i� it has

a minimal omplete set of E-uni�ers of ardinality 1 (�nite ardinality, in�nite

ardinality). If � does not have a minimal omplete set of E-uni�ers, then it is of

type zero. We abbreviate type unitary by 1, type �nitary by !, type in�nitary by

1, and type zero by 0, and order these types as follows: 1 < ! <1 < 0.

The uni�ation type of E w.r.t. the signature F is the maximal type of an E-

uni�ation problem over F .

Aording to this de�nition, an equational theory that is unitary is not �nitary,

and a theory of type zero is not in�nitary. In the literature, these notion have

sometimes been de�ned suh that unitary implies �nitary (i.e., unitary theories are a

speial ase of �nitary theories) and type zero implies in�nitary. We prefer a striter

separation between the types. In order to express that a theory is unitary or �nitary

(in the sense of de�nition 3.4) we say that it is at most �nitary . Analogously, to

express that a theory is in�nitary or of type zero we say that it is at least in�nitary .

It should also be noted that the uni�ation type of an equational theory depends

not only on E, but also on the set of funtion symbols F that are allowed to our

in the uni�ation problems (see subsetion 3.2.2 for more details). We provide an

example for eah of the four types.

3.5. Example (unitary). Sine any uni�able uni�ation problem has a most gen-

eral syntati uni�er, the empty theory ; (whih obviously de�nes syntati equal-

ity) has uni�ation type unitary w.r.t. any signature F .

3.6. Example (�nitary). Above, we have seen that ommutativity C is not unitary

sine the C-uni�ation problem ff(x; y)=

?

C

f(a; b)g does not have a most general

C-uni�er. It is not hard to show that C is �nitary w.r.t. any signature F . In fat,

the C-equivalene lass [t℄

C

:= ft

0

j t=

C

t

0

g of a given term t is easily shown to be

�nite. For a given C-uni�ation problem � = fs

1

=

?

C

t

1

; : : : ; s

n

=

?

C

t

n

g, we onsider

all possible syntati uni�ation problems of the form �

0

= fs

0

1

=

?

t

0

1

; : : : ; s

0

n

=

?

t

0

n

g

where s

i

=

C

s

0

i

and t

i

=

C

t

0

i

for all i; 1 � i � n. There are only �nitely many

suh sets �

0

, and it an be shown that the olletion of all the syntati most

general uni�ers of these sets is a omplete set of C-uni�ers of � [Siekmann 1979℄.

In most ases, this set is not minimal, but obviously a minimal omplete set an be

obtained by eliminating redundant elements, i.e., elements that are C-instanes of

other elements of the set.

3.7. Example (in�nitary). Even though assoiativity A is similar to C in that A-

equivalene lasses are �nite, the uni�ation method outlined for C does not work
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for A. It is easy to see that the A-uni�ation problem ff(a; x)=

?

A

f(x; a)g has an

in�nite minimal omplete set of A-uni�ers, namely f�

n

j n � 1g, where for eah

n the substitution �

n

:= fx 7! f(a; f(a; � � � ; f(a; a) � � �))g replaes x by a term

ontaining n ourrenes of the onstant a. Consequently, A annot be unitary or

�nitary. Plotkin [1972℄ desribes a proedure that generates a minimal omplete

set of A-uni�ers of a given A-uni�ation problem over an arbitrary set of funtion

symbols F , whih shows that A is in fat in�nitary and not of type zero.

3.8. Example (zero). The �rst example of an equational theory of uni�ation

type zero was desribed by Fages and Huet [1983℄ and [1986℄. In [Baader

1986℄ it is shown that the theory of idempotent semigroups, i.e., AI := A [

ff(x; x) � xg is of uni�ation type zero sine the AI-uni�ation problem

ff(x; f(y; x))=

?

AI

f(x; f(z; x))g does not have a minimal omplete set of AI-uni�ers.

This result was also shown by Shmidt-Shau� [1986b℄, but his example problem

ff(z; f(a; f(x; f(a; z))))=

?

AI

f(z; f(a; z))g ontains an additional onstant a.

For syntati uni�ation, a \uni�ation algorithm" is an algorithm that om-

putes a most general (syntati) uni�er of a given uni�ation problem if it exists,

and determines non-uni�ability otherwise. For equational uni�ation, this notion

must be adapted. More preisely, we are interested in di�erent types of algorithms,

depending on what the equational theory allows and what is needed in appliations.

An E-uni�ation algorithm (w.r.t. F) is an algorithm that omputes a �nite om-

plete set of E-uni�ers for all E-uni�ation problems over F . Ideally, the omputed

sets should also be minimal. There are, however, theories for whih it is easier to

ompute a not neessarily minimal set (ommutativity C is an example). We all

an E-uni�ation algorithm minimal i� it omputes a �nite minimal omplete set

of E-uni�ers. As mentioned in example 3.6, an E-uni�ation algorithm an always

be turned into a minimal one by eliminating redundant uni�ers, provided that the

E-instantiation quasi-ordering is deidable.

In appliations suh as onstraint-based approahes to automated dedution

and rewriting (see [B�urkert 1991, Nieuwenhuis and Rubio 1994, Kirhner and

Kirhner 1989℄ and [Nieuwenhuis and Rubio 2001℄, Chapter 7 of this Handbook), it

is not neessary to ompute omplete sets of uni�ers. Instead, it is suÆient to test

uni�ation problems for uni�ability. An algorithm that is able to deide uni�ability

of E-uni�ation problems (over F) is alled a deision proedure for E-uni�ation

(w.r.t. F). Obviously, any E-uni�ation algorithm yields a deision proedure for

E-uni�ation sine a given E-uni�ation problem � is uni�able i� the omputed

�nite omplete set is nonempty.

For theories that are not unitary or �nitary, the notion of an E-uni�ation al-

gorithm, as introdued above, is not appropriate. A (minimal) E-uni�ation pro-

edure is a proedure that enumerates a possibly in�nite (minimal) omplete set

of E-uni�ers. The proedure by Plotkin [1972℄ mentioned in example 3.7 is a mini-

mal A-uni�ation proedure. An E-uni�ation proedure need not yield a deision

proedure for E-uni�ation sine it need not terminate even if the input prob-

lem does not have E-uni�ers. This is, e.g., the ase for Plotkin's proedure. A-
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uni�ation (more preisely, the question whether there exists an A-uni�er for a

given A-uni�ation problem) is nevertheless deidable, but this is a lot harder to

show [Makanin 1977℄ than designing a minimal A-uni�ation proedure.

3.2. New issues

The notions introdued above deviate in several respets from the notions intro-

dued for syntati uni�ation. In this subsetion, we point out the reasons why

this was neessary.

3.2.1. The instantiation quasi-ordering

For syntati uni�ation, the instantiation quasi-ordering�

�

was de�ned by � �

�

� i�

there exists � suh that � = ��. In the de�nition of the instantiation quasi-ordering

for E-uni�ation, syntati equality is (quite naturally) replaed by equality mod-

ulo E. What may seem less lear is why we have restrited this equality (modulo

E) to the variables ourring in the uni�ation problem. Obviously, the ordering

obtained this way is stronger than the one that requires equality on all variables

(i.e., more substitutions are omparable). In appliations in automated dedution,

where substitutions generally have meaning only in the ontext of the expressions

(i.e., uni�ation problems) that produed them, it is admissible to use an ordering

that ompares alternate solutions only with respet to this small set of variables.

It is also advisable, as this stronger ordering allows for smaller minimal omplete

sets. For example, the theory ACU := AC [ ff(x; e) = xg is known to be uni-

tary w.r.t. F := ff; eg. If the weaker instantiation quasi-ordering (i.e., the one

omparing substitutions on all variables) were used, this would no longer be true

[Baader 1991℄.

Another di�erene between the equational ase and the syntati ase onerns

the haraterization of the instantiation equivalene

�

=. For E = ;, two substitutions

are instantiation equivalent i� they are equal up to omposition with a variable

renaming. It should be noted that this need no longer be the ase for E 6= ;,

even if one replaes \equal up to omposition with a variable renaming" by \equal

modulo E up to omposition with a variable renaming." For example, onsider the

equational theory I := ff(x; x) � xg, and the substitutions � := fx 7! yg and

� := fx 7! f(y; z)g. Using the substitutions �

1

:= fy 7! f(y; z)g and �

2

:= fy 7!

y; z 7! yg, it is easy to show that �

�

=

fxg

E

�. However, a variable renaming annot

identify y and z, and thus f(y; z)� 6=

I

y for every suh renaming �.

3.2.2. The signature matters

In the de�nitions of E-uni�ation problems, uni�ation type, et., we have always

expliitly stated whih funtion symbols may our in the uni�ation problems. The

reason is that the uni�ation properties of an equational theory (like deidability,

uni�ation type, et.) may depend on this set of funtion symbols. In most ases,

however, a less �ne-grained distintion is suÆient. Reall that Sig(E) denotes the
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set of all funtion symbols ourring in the equational theory E.

3.9. Definition. Let E be an equational theory and � an E-uni�ation problem

over F .

� � is an elementary E-uni�ation problem i� F = Sig(E).

� � is an E-uni�ation problem with onstants i� F nSig(E) is a set of onstant

symbols.

� In a general E-uni�ation problem, F nSig(E) may ontain arbitrary funtion

symbols.

Following this distintion, we an introdue three di�erent uni�ation types for

an equational theory. The uni�ation type of E w.r.t. elementary uni�ation is

the maximal uni�ation type of E w.r.t. all sets of funtion symbols F satisfying

F = Sig(E). Aordingly, the uni�ation type of E w.r.t. uni�ation with onstants

is the maximal uni�ation type of E w.r.t. all sets of funtion symbols F suh that

F nSig(E) is a set of onstant symbols, and the uni�ation type of E w.r.t. general

uni�ation

3

is the maximal uni�ation type of E w.r.t. all signatures F . Obviously,

the same distintion an be made for deidability of E-uni�ation, and for other

interesting properties of E-uni�ation problems. Constant (funtion) symbols that

do not our in E are alled free onstant (funtion) symbols w.r.t. E.

The theory ACU introdued above is an example of a theory that is unitary

for elementary uni�ation, but only �nitary for uni�ation with onstants (see,

e.g., [Herold and Siekmann 1987℄). B�urkert [1989℄ has shown that there exists an

equational theory for whih elementary uni�ation is deidable, but uni�ation with

onstants is undeidable.

Appliations of equational uni�ation in automated dedution usually yield gen-

eral uni�ation problems. For example, in resolution-based theorem proving, the

additional free funtion symbols are often generated by Skolemization.

From a stritly formal point of view, the de�nition of an E-uni�er (see de�ni-

tion 3.1) is ambiguous sine it does not speify over whih signature the terms that

are substituted for the variables may be built. By default, we have assumed that

this set is the set F , whih ontains all funtion symbols ourring in E or �. One

might ask whether there would be a signi�ant di�erene if we allowed the substi-

tutions to introdue additional free funtion symbols. It is easy to show, however,

that there is no suh di�erene sine any E-uni�er of � that introdues additional

free funtion symbols is an instane of an E-uni�er that uses only symbols from F :

this more general uni�er an, in priniple, be obtained by replaing subterms start-

ing with suh additional funtion symbols by new variables, while taking are that

=

E

-equal subterms are replaed by the same variable. Thus, if we restrit the set

of E-uni�ers to substitutions over F , we obtain a omplete set of E-uni�ers even

w.r.t. substitutions over larger signatures. This justi�es the (formally somewhat

sloppy) de�nition of the set of E-uni�ers given above.

3

It should be noted that this use of the term \general uni�ation" is distint from the one

in [Gallier and Snyder 1989, Snyder 1991℄, where it refers to methods that provide uni�ation

proedures for arbitrary equational theories (see setion 4.1).
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3.2.3. Single equations versus systems of equations

For syntati uni�ation, solving a system of term equations an be redued to

solving a single equation s=

?

t. For this reason, syntati uni�ation is sometimes

only onsidered for single equations. For equational uni�ation, the same holds if

one onsiders general uni�ation. In fat, if f 2 F is an n-ary funtion symbol not

ontained in Sig(E), then the E-uni�ation problem fs

1

=

?

E

t

1

; : : : ; s

n

=

?

E

t

n

g over

F has the same set of uni�ers as ff(s

1

; : : : ; s

n

)=

?

E

f(t

1

; : : : ; t

n

)g.

For elementary uni�ation and for uni�ation with onstants, however, there may

be signi�ant di�erenes. For example, there exists an equational theory E suh

that all elementary E-uni�ation problems of ardinality 1 (i.e., single equations)

have minimal omplete sets of E-uni�ers, but E is of type zero w.r.t. elementary

uni�ation sine there exists an elementary E-uni�ation problem of ardinality

2 that does not have a minimal omplete set of E-uni�ers [B�urkert, Herold and

Shmidt-Shau� 1989℄. Narendran and Otto [1990℄ give an example of a theory suh

that uni�ability of elementary uni�ation problems of ardinality 1 is deidable, but

uni�ability is undeidable for elementary uni�ation problems of larger ardinality.

3.3. Reformulations

In this subsetion, we onsider reformulations of (some of) the notions introdued

above from an order-theoreti, logial, algebrai, and ategory-theoreti point of

view. This will shed a new light on the notions, and it allows us to utilize approahes

and results from the respetive areas in uni�ation theory.

3.3.1. The order-theoreti point of view

Let E be an equational theory and � an E-uni�ation problem with variables

X := Var(�). We know that the relation �

�

X

E

is a quasi-ordering on U

E

(�) with

assoiated equivalene relation

�

=

X

E

. Thus, �

�

X

E

indues a partial ordering � on the

set U := f[�℄ j � 2 U

E

(�)g of all

�

=

X

E

-lasses [�℄ := f� j �

�

=

X

E

�g:

[�℄ � [�℄ i� � �

�

X

E

�:

This allows us to investigate notions like omplete and minimal omplete sets of

E-uni�ers on the abstrat order-theoreti level.

Thus, let (U;�) be an arbitrary partially ordered set. A subset C of U is alled

omplete i� for all u 2 U there exists  2 C suh that suh that  � u. A omplete

set C is alled minimal i� it is minimal with respet to set inlusion.

3.10. Lemma. The omplete set C � U is minimal i� for all x; y 2 C, x � y

implies x = y.

Proof. If the elements x; y of the omplete set C satisfy x < y, then C nfyg is also

omplete, whih shows that C is not minimal. Conversely, if C

1

; C

2

are omplete

sets suh that C

1

� C

2

, then there exists y 2 C

2

n C

1

. Sine C

1

is omplete, there

exists x 2 C

1

suh that x � y, and sine y 62 C

1

, we have x 6= y.
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The following lemma desribes the onnetion between minimal omplete sets

and minimal elements in partially ordered sets.

3.11. Lemma. Let M be the set of �-minimal elements of U .

1. If C � U is a minimal omplete set, then C =M .

2. If M is omplete, then it is minimal omplete.

Proof. The seond statement is obvious, sine di�erent �-minimal elements of U

annot be omparable w.r.t. �. To show the �rst statement, let C � U be a minimal

omplete set. Obviously, M � C sine any �-minimal element must be ontained

in a omplete set. To see the other inlusion, assume that y 2 C is not minimal.

Thus, there exists an element y

0

2 U suh that y

0

< y. Sine C is omplete, there

exists x 2 C suh that x � y

0

. Thus, we have x; y 2 C with x < y, whih shows

that C annot be minimal.

Figure 5 shows (the Hasse diagrams of) two partially ordered sets. The left one

onsists of an in�nitely desending hain x

1

> x

2

> x

3

> � � �. Consequently, the

set of �-minimal elements is empty, and thus not omplete. The right one also

ontains an in�nitely desending hain (onsisting of the elements y

1

; y

2

; : : :), but

the set of �-minimal elements (the elements z

1

; z

2

; : : :) is obviously omplete. If

x

1

x

2

x

3

x

5

.

.

.

x

4

y

1

y

2

y

3

y

5

.

.

.

y

4

z

1

z

2

z

3

z

5

z

4

.

.

.

Figure 5: Two partially ordered sets.

U = f[�℄ j � 2 U

E

(�)g is the set of

�

=

X

E

-lasses of E-uni�ers of �, and � is the

partial ordering on U indued by�

�

X

E

, then lemma 3.11 yields a nie haraterization

of all minimal omplete sets of E-uni�ers. If M is a subset of U , then a set of

representatives of M is any subset of U

E

(�) that ontains for eah lass m 2 M

exatly one representative, i.e., a uni�er �

m

suh that [�

m

℄ = m.

3.12. Theorem. LetM be the set of all �-minimal elements of U . If C is a minimal

omplete set of E-uni�ers of �, then M = f[�℄ j � 2 Cg. Conversely, if M is

omplete, then any set of representatives of M is a minimal omplete set of E-

uni�ers of �.
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As an immediate onsequene of this theorem we an dedue

3.13. Corollary. Let M be the set of all �-minimal elements of U .

1. A minimal omplete set of E-uni�ers of � exists i� M is omplete.

2. If a minimal omplete set of E-uni�ers of � exists, then it is unique up to the

equivalene

�

=

X

E

.

In [Baader 1989a℄, this order-theoreti point of view was used to derive di�erent

haraterizations of uni�ation type zero.

3.3.2. The algebrai and logial point of view

It is well known that the deision problems for elementary uni�ation and for uni-

�ation with onstants orrespond to natural lasses of logial deision problems

[Bokmayr 1992℄, and it turns out that the same is true for general uni�ation.

Before stating these logial haraterizations of E-uni�ation, we reall some

results from universal algebra about equationally de�ned lasses (see, e.g., [Cohn

1965, Mal'ev 1971, Gr�atzer 1979℄ for more details). An equational theory E de�nes

a variety (or equational lass) V (E), i.e., the lass of all models of E. The theory

E is alled non-trivial if V (E) ontains algebras of ardinality > 1, and trivial

otherwise. Obviously, E is trivial i� x =

E

y for distint variables x; y. If E is

a non-trivial equational theory, then V (E) ontains free algebras over any set of

generators. In fat, let F

0

:= Sig(E), and let X be a set of variables of ardinality

�. Then the quotient term algebra T (F

0

;X )=

=

E

is a free algebra in V (E). Its set

of generators onsists of the =

E

-lasses of the variables, and this set has ardinality

� sine E was assumed to be non-trivial. We all this algebra the E-free algebra

with generators X .

4

The fat that it is free in V (E) means that any mapping from

X into an algebra A 2 V (E) an uniquely be extended to a homomorphism of

T (F

0

;X )=

=

E

into A.

Now, we introdue the lasses of formulae that orrespond to equational uni�-

ation problems. Let E be an equational theory, and F

0

:= Sig(E) be the set of

funtion symbols ourring in E. An atomi F

0

-formula is an equation s = t. A

positive F

0

-matrix is built from atomi F

0

-formulae using onjuntion and disjun-

tion. A positive F

0

-sentene is a quanti�er-pre�x followed by a positive F

0

-matrix

that ontains only variables introdued in the pre�x. Without loss of generality

we assume that the variables ourring in the pre�x are all distint. A positive

existential F

0

-sentene is a positive F

0

-sentene whose pre�x ontains only exis-

tential quanti�ers, and a positive AE F

0

-sentene has a pre�x onsisting of a blok

of universal quanti�ers, followed by a blok of existential quanti�ers. The positive

(positive existential, positive AE) fragment of the equational theory E onsists of

the set of all positive (positive existential, positive AE) F

0

-sentenes that are valid

in E, i.e., true in all models of E. Aordingly, for an F

0

-algebra A, the positive

4

Stritly speaking, the generators are the =

E

-lasses of the elements of X , but sine di�erent

variables belong to di�erent lasses, we slightly abuse the notation by identifying a variable x 2 X

with its =

E

-lass.
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(positive existential, positive AE) theory of A is the set of all positive (positive

existential, positive AE) F

0

-sentenes that are true in A.

3.14. Theorem. Let E be a non-trivial equational theory, F

0

:= Sig(E), and V a

ountably in�nite set of variables.

1. Elementary E-uni�ation is deidable i� the positive existential fragment of E

is deidable i� the positive existential theory of T (F

0

;V)=

=

E

is deidable.

2. E-uni�ation with onstants is deidable i� the positive AE fragment of E is

deidable i� the positive AE theory of T (F

0

;V)=

=

E

is deidable.

Proof. (1.1) Let � := fs

1

=

?

E

t

1

; : : : ; s

n

=

?

E

t

n

g be an elementary E-uni�ation

problem, and let Var(�) = fx

1

; : : : ; x

k

g. The terms s

1

; t

1

; : : : ; s

n

; t

n

are F

0

-terms

with variables in Var(�), whih implies that

�

�

:= 9x

1

: � � � 9x

k

: s

1

= t

1

^ : : : ^ s

n

= t

n

is a positive existential F

0

-sentene. We laim that � is E-uni�able i� �

�

holds in

T (F

0

;V)=

=

E

i� �

�

is valid in E.

Assume that � is an E-uni�er of �, i.e., s

1

� =

E

t

1

�; : : : ; s

n

� =

E

t

n

�. Without

loss of generality we may assume that � introdues only variables from V . Thus, the

substitution � may also be onsidered as a valuation of the variables fx

1

; : : : ; x

k

g

by elements of T (F

0

;V)=

=

E

. Conversely, any suh valuation an be seen as a sub-

stitution. This shows that � is E-uni�able i� �

�

holds in T (F

0

;V)=

=

E

.

If �

�

is valid in all models of E, it obviously holds in T (F

0

;V)=

=

E

2 V (E).

Conversely, assume that �

�

holds in T (F

0

;V)=

=

E

. If �

�

is not valid in E, then there

exists an algebra A 2 V (E) in whih �

�

does not hold. By the L�owenheim-Skolem

theorem, we may without loss of generality assume that A is ountable. Thus,

there exists a surjetive homomorphism from T (F

0

;V)=

=

E

onto A (extending an

arbitrary surjetion of X onto the arrier ofA). Sine validity of positive sentenes is

invariant under surjetive homomorphisms,

5

validity of �

�

in T (F

0

;V)=

=

E

2 V (E)

implies validity of �

�

in A, whih is a ontradition.

(1.2) Let � = 9x

1

: � � � 9x

n

:  be a positive existential F

0

-sentene. Without loss

of generality we may assume that its matrix  is in disjuntive normal form, i.e.,

 =  

1

_ : : : _  

n

where the formulae  

i

are onjuntions of equations. Sine

existential quanti�er distribute over disjuntion, � is valid in E (in T (F

0

;V)=

=

E

)

i� one of the formulae 9x

1

: � � � 9x

n

:  

i

is valid in E (in T (F

0

;V)=

=

E

). Obviously,

the formulae  

i

an be translated into uni�ation problems �

i

, and as in part (1.1)

of the proof we an show that �

i

is uni�able i� 9x

1

: � � � 9x

n

:  

i

is valid in E (in

T (F

0

;V)=

=

E

).

(2) The seond equivalene an be shown as in part (1.1) of the proof (sine there

we have only used the fat that �

�

is a positive F

0

-sentene).

To see the �rst equivalene, assume that � is a positive AE sentene. Skolemizing

the universally quanti�ed variables

6

yields a positive existential (F

0

[F

1

)-sentene

5

See [Mal'ev 1973℄, pp. 143, 144 for a proof.

6

We must Skolemize the universally quanti�ed variables sine we are interested in validity

instead of satis�ability.
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�

0

suh that F

1

is a set of onstants (not ontained in Sig(E)) and � is valid

in E i� �

0

is valid in E. As in (1.2) of the proof, �

0

an be translated into E-

uni�ation problems �

 

0

i

suh that �

0

is valid in E i� one of these uni�ation

problems is uni�able. Obviously, the problems �

 

0

i

are E-uni�ation problem with

onstants sine they ontains the additional Skolem onstants F

1

. Conversely, any

E-uni�ation problem with onstants an be turned into a positive AE sentene by

replaing its free onstants by universally quanti�ed variables.

The redution desribed in part (1.2) of the proof is exponential in the worst ase

sine the disjuntive normal form of the matrix  an be exponential in the size of

 . For syntati equality (i.e., E = ;), it an be shown that the problem of deiding

validity of positive existential sentenes is NP-omplete, whereas the orresponding

uni�ation problem is linear [Kozen 1981℄.

Before we state the analogous orrespondene between general E-uni�ation and

the (full) positive fragment of E, we introdue another lass of uni�ation problems,

whih turns out to be equivalent to general E-uni�ation.

3.15. Definition. An E-uni�ation problem with linear onstant restritions (lr)

onsists of an E-uni�ation problem with onstants, �, and a linear ordering < on

the variables and free onstants ourring in �. A substitution � is an E-uni�er of

(�; <) i� it is an E-uni�er of � that satis�es

x <  implies  does not our in x�

for all variables x and free onstants  in �.

For example, the (syntati) uni�ation problem ff(x)=

?

f()g has fx 7! g as

most general uni�er. Under the restrition x < , this uni�er is not admissible.

3.16. Theorem. Let E be a non-trivial equational theory, F

0

:= Sig(E), and V a

ountably in�nite set of variables. Then the following statements are equivalent:

1. The positive theory of E is deidable.

2. The positive theory of T (F

0

;V)=

=

E

is deidable.

3. General E-uni�ation is deidable.

4. E-uni�ation with linear onstant restritions is deidable.

Proof.We only give a sketh of the proof (see [Baader and Shulz 1996℄ for details).

In order to show (1), (2), it is suÆient to show that a positive F

0

-sentene �

is valid in E i� it is true in T (F

0

;V)=

=

E

. This an be shown as in part (1.1) of the

proof of theorem 3.14.

A given positive sentene � an be turned into a positive existential sentene �

0

by Skolemization. As in part (2) of the proof of theorem 3.14, validity of �

0

an be

redued to validity of several E-uni�ation problems, whih are general sine they

may ontain Skolem funtions of arbitrary arity. This shows (3)) (1).

A given E-uni�ation problem with linear onstant restritions (�; <) an be

transformed into a positive F

0

-sentene �

<

�

as follows: the matrix of �

<

�

is simply
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the onjuntion of all equations in �. However, the onstants in � are onsidered

as variables in this matrix. The quanti�er-pre�x ontains a universal quanti�er for

every free onstant in �, and an existential quanti�er for every variable in �. The

order of the quanti�ers is determined by the linear ordering <. It an be shown

that (�; <) is uni�able i� �

<

�

is valid in E. This proves (1)) (4).

Finally, (4)) (3) follows from the ombination result in [Baader and Shulz 1996℄

(see setion 6).

The following example, in whih we assume E = ff(x) � f(x)g, illustrates the

transformation of an E-uni�ation problem with linear onstant restritions into a

positive sentenes, and of this positive sentene into a general E-uni�ation problem

(by Skolemization).

uni�ation with lr positive sentene general uni�ation

fx=

?

E

f()g; x <  9x:8y: x = f(y) fx=

?

E

f(h(x))g

fx

:

= f()g;  < x 8y:9x: x = f(y) fx=

?

E

f(d)g

The problem fx=

?

E

f()g is not uni�able under the restrition x < , sine any

uni�er must replae x by f(), whih ontains the forbidden onstant . The or-

responding positive sentene 9x:8y: x = f(y) is not valid sine it says that f is

a onstant funtion, whih is not true in all models of E. Finally, the general E-

uni�ation problem fx=

?

E

f(h(x))g, whih ontains the Skolem funtion h, is not

uni�able sine one obtains an ours hek failure. Changing the linear ordering

to  < x leads to a uni�able uni�ation problem with lr, and the orresponding

positive sentene is trivially valid.

3.3.3. The ategory-theoreti point of view

Let � := fs

i

=

?

E

t

i

j i = 1; : : : ; ng be an E-uni�ation problem over F , and

X := Var(�) be the �nite set of variables ourring in �. Sine all our alu-

lations are done modulo E, we may onsider the terms s

i

and t

i

as elements

of T (F ;X )=

=

E

, the E-free algebra with generators X . For example, let F on-

sist of a binary funtion symbol f , and let A axiomatize assoiativity of f , i.e.,

A := ff(x; f(y; z)) � f(f(x; y); z)g. The E-free algebra with generators X is the

free semigroup X

+

, whose elements are the nonempty words over the alphabet X .

Instead of writing terms like f(x; f(y; f(x; x))) in A-uni�ation problems, we an

omit the parentheses and all ourrenes of the letter f , and simply write words

like xyxx.

Also, sine the instantiation quasi-ordering ompares substitutions only on X and

modulo E, eah substitution an be seen as a homomorphism from T (F ;X )=

=

E

into

an E-free algebra T (F ;Y)=

=

E

, where Y is a suitable �nite set (of variables or gener-

ators). For example, modulo A, the substitution � := fx 7! f(x; f(y; f(x; x))); y 7!

f(y; z)g an be viewed as a homomorphism �: fx; yg

+

! fx; y; zg

+

that maps x to

the word xyxx and y to the word yz.
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The E-uni�ation problem � itself an be represented as a pair of homomorphisms

between �nitely generated E-free algebras. Indeed, let I := fx

1

; : : : ; x

n

g be a set

of ardinality n. If we de�ne �; � : T (F ; I)=

=

E

! T (F ;X )=

=

E

by

x

i

� := s

i

and x

i

� := t

i

(i = 1; : : : ; n);

then Æ: T (F ;X )=

=

E

! T (F ;Y)=

=

E

is an E-uni�er of � i� x

i

�Æ = s

i

Æ = t

i

Æ =

x

i

�Æ,

7

that is, i� �Æ = �Æ. Consequently, any E-uni�ation problem over F an be

represented as a parallel pair of morphisms in the following ategory:

8

3.17. Definition. Let E be an equational theory and F be a signature suh that

Sig(E) � F . The ategory C

F

(E) is de�ned as follows:

1. The objets of C

F

(E) are the �nitely generated E-free algebras T (F ;X )=

=

E

.

2. The morphisms of C

F

(E) are the homomorphisms between these algebras. For

a morphism Æ: T (F ;X )=

=

E

! T (F ;Y)=

=

E

, the algebra T (F ;X )=

=

E

is alled

its domain, and the algebra T (F ;Y)=

=

E

its odomain.

3. Composition �Æ of morphisms is the usual omposition of mappings, whih is

only de�ned if the odomain of � oinides with the domain of Æ.

A uni�ation problem in C

F

(E) is a pair h�; �i of morphisms �; � : T (F ; I)=

=

E

!

T (F ;X )=

=

E

having the same domain and the same odomain. A uni�er of h�; �i

in C

F

(E) is a morphism Æ with domain T (F ;X )=

=

E

suh that �Æ = �Æ.

The instantiation quasi-order, and the notions omplete and minimal omplete

set of uni�ers as well as most general uni�er an be adapted in an obvious way to

this view of E-uni�ation as a problem in C

F

(E). For example, the morphism Æ is

a most general uni�er of h�; �i i� it is a uni�er of h�; �i suh that, for all uni�ers �

of h�; �i, there exists a morphism � satisfying � = Æ�.

Readers familiar with basi notions from ategory theory may have notied that

this de�nition of a most general uni�er of h�; �i strongly resembles the de�nition of

a oequalizer of a parallel pair of morphisms (i.e., a pair with the same domain and

the same odomain). The only di�erene is that for a most general uni�er of h�; �i

to be a oequalizer, the morphism � suh that � = Æ� must always be unique.

It is easy to see that a most general uni�er of h�; �i need not be a oequalizer of

this parallel pair. For example, the most general (syntati) uni�er Æ := fy 7! xg of

the equation f(x; y)=

?

f(y; x) an be viewed as a morphism Æ

Y

: T (ffg; fx; yg)!

T (ffg;Y) for any �nite set of variables Y ontaining x. All these morphisms are

most general uni�ers of the parallel pair orresponding to the uni�ation problem

f(x; y)=

?

f(y; x), but only Æ

fxg

is a oequalizer. More generally, a most general

uni�er in C

F

(;) need not be a oequalizer, but it an always be transformed into

one by appropriately restriting the set of generators in its odomain.

For nonempty theories, suh a transformation need not be possible, however. As

shown in [Baader 1991℄, there exists an equational theory, namely the theory ACU

7

Sine terms are now viewed as elements of E-free algebras (i.e., =

E

-equivalene lasses), we

may write equality (=) in plae of equality modulo E (=

E

).

8

See [Piere 1991℄ for basi de�nitions and results of ategory theory.



482 Franz Baader and Wayne Snyder

that axiomatizes an assoiative-ommutative binary symbol f with a unit e, suh

that all solvable uni�ation problems in C

ff;eg

(ACU) have a most general uni�er,

but not all solvable uni�ation problems in this ategory have a oequalizer. In the

appliations of E-uni�ation in automated dedution, the additional uniqueness

requirement in the de�nition of a oequalizer is not relevant. Thus, one should stik

with the de�nition of a most general uni�er as introdued above, and not replae

it by the one of a oequalizer.

As suh, the simple observation that E-uni�ation has a ategory-theoreti in-

terpretation does not solve any problems: it just transforms them into a di�erent

representation. This new representation is only of interest if tehniques and re-

sults from ategory theory an be used to solve new and interesting problems in

uni�ation theory. Rydeheard and Burstall [1985℄ use the ategory-theoreti repre-

sentation of syntati uni�ation to derive a uni�ation algorithm based on olimit

onstrutions in C

F

(;). In [Baader 1989b℄, results from ategory theory on so-alled

semi-additive ategories are used to obtain results on uni�ation modulo so-alled

ommutative theories (see subsetion 5.2 below).

Even though the onstrution of the ategory C

F

(E) is quite natural, there are

also other ways of representing uni�ation problems in ategory-theoreti terms.

Whereas Goguen [1989℄ just introdues the dual ategory of C

F

(E) (where mor-

phisms are inverse homomorphisms), Ghilardi [1997℄ takes a quite di�erent ap-

proah: he onsiders the ategory of all algebras in V (E) (not only the �nitely

generated free ones), and represents uni�ation problems as �nitely presented alge-

bras in this ategory. In this setting, the proof that uni�ation in Boolean algebras

and in primal algebras is unitary [Nipkow 1990℄ beomes trivial.

3.4. Survey of results for spei� theories

Researh in uni�ation theory has produed results on uni�ation properties of a

great variety of equational theories. In this setion, we will briey review some of

these results, with an emphasis on the more reent ones that are not yet overed

by previous surveys of the area [Siekmann 1989, Jouannaud and Kirhner 1991,

Kapur and Narendran 1992a, Baader and Siekmann 1994℄. For eah theory, we are

interested in the deision problem and its omplexity as well as its uni�ation type

and the existene of uni�ation algorithms and proedures. Depending on whih

kind of uni�ation problems (elementary, with onstants, or general) is onsidered,

there may exist di�erent results for a given theory.

Assoiativity

The theory A

f

:= ff(f(x; y); z) � f(x; f(y; z))g axiomatizes assoiativity of the

binary funtion symbol f .

Deision problem: This problem, whih is very hard and had been open for a long

time, was �nally solved by Makanin [1977℄, who proves deidability of A

f

-

uni�ation with onstants (see also [P�euhet 1981, Ja�ar 1990, Abdulrab and

P�euhet 1989, Shulz 1993℄). Using general ombination tehniques and an
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extension of Makanin's algorithm [Shulz 1992℄, deidability of general A

f

-

uni�ation was shown in [Baader and Shulz 1992, Baader and Shulz 1996℄.

The deision problem for A

f

-uni�ation is NP-hard [Benanav, Kapur and

Narendran 1985℄. The known upper bound is still higher, even though there has

reently been onsiderable progress in lowering the bound: the 3-NEXPTIME

result by Kosielski and Paholski [1990℄ was �rst improved to EXPSPACE

by Guti�errez [1998℄, then to NEXPTIME by Plandowski [1999a℄, and �nally

to PSPACE [Plandowski 1999b℄. Interestingly, the last two results no longer

need Makanin's algorithm, i.e., they yield a new deision proedure that is

independent of Makanin's result.

Uni�ation type: in�nitary for all three kinds of uni�ation problems [Plotkin 1972℄

(see also example 3.7).

Uni�ation proedures: Plotkin [1972℄ desribes a minimal uni�ation proedure for

general A

f

-uni�ation, whih an even deal with several assoiative funtion

symbols. In general, this proedure does not yield a deision proedure sine

it need not terminate even for non-solvable problems or problems having a

�nite minimal omplete set of A

f

-uni�ers. For ertain restrited types of A

f

-

uni�ation problems, modi�ations of Plotkin's proedure an be turned into

deision proedures that are simpler than Makanin's general proedure [Au�ray

and Enjalbert 1992, Shmidt 1998℄.

Commutativity

The theory C

f

:= ff(x; y) � f(y; x))g, whih axiomatizes ommutativity of the

binary funtion symbol f , has already been onsidered in example 3.6.

Deision problem: NP-omplete for C

f

-uni�ation with onstants and general C

f

-

uni�ation. The hardness result for uni�ation with onstants is mentioned in

[Garey and Johnson 1979℄, where it is attributed to Sethi (private ommuni-

ation, 1977). A simple NP-hardness proof due to Narendran (private om-

muniation, 1993) is skethed in [Baader and Siekmann 1994℄. It is easy to

see that this proof an also be used to show NP-hardness of elementary C

f

-

uni�ation (private ommuniation by Narendran, 1997).

9

NP-deision proe-

dures for general C

f

-uni�ation an easily be obtained from the simple uni�a-

tion algorithm skethed in example 3.6: instead of testing all possible sets �

0

,

the non-deterministi deision proedure �rst guesses suh a set �

0

, and then

tests whether this set has a syntati uni�er.

Uni�ation type: �nitary for all three kinds of uni�ation problems [Siekmann

1979℄.

Uni�ation algorithms: In addition to Siekmann's simple (non-minimal) uni�ation

algorithm for general C

f

-uni�ation [Siekmann 1979℄, various other methods

have been proposed [Fages 1983, Kirhner 1985, Herold 1987℄. However, none

of them diretly produes a minimal omplete set of C

f

-uni�ers.

9

In this proof, simply replae the onstants a; b by the terms t

a

:= f(x; f(x; x) and t

b

:= f(x; x)

and add for eah propositional variable q an equation f(x

q

; y

q

)=

?

C

f

f(t

a

; t

b

), whih makes sure

that x

q

is instantiated either by t

a

or by t

b

.
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Distributivity

The theories D

l

f;g

:= ff(x; g(y; z)) � g(f(x; y); f(x; z))g and D

r

f;g

:= ff(g(y; z); x)

� g(f(y; x); f(z; x))g axiomatize left-distributivity and right-distributivity of f over

g, and their union D

f;g

:= D

l

f;g

[ D

r

f;g

axiomatizes (both-sided) distributivity of

f over g. In addition, we onsider ombinations of these theories with A

g

and

U

f

:= ff(x; e) � x; f(e; x) � xg.

Deision problem: D

l

f;g

-uni�ation (and, by symmetry, D

r

f;g

-uni�ation) with on-

stants is deidable in polynomial time [Tid�en and Arnborg 1987℄.

If one adds a unit for f , i.e., onsiders D

l

f;g

[U

f

(or D

r

f;g

[U

f

), then the prob-

lem beomes muh harder sine A

f

-uni�ation an be redued to (D

l

f;g

[ U

f

)-

uni�ation. Deidability of (D

l

f;g

[U

f

)-uni�ation with onstants was shown in

[Shmidt-Shau� 1996b℄. Sine this deision proedure an be extended to ope

with linear onstant restritions, general results on the ombination of deision

proedures [Baader and Shulz 1996℄ imply that general (D

l

f;g

[U

f

)-uni�ation

is deidable.

For uni�ation modulo both-sided distributivity, the deision problem was open

for quite a while. After some preliminary deidability results for restrited

lasses of D

f;g

-uni�ation problems [Contejean 1993, Shmidt-Shau� 1992℄,

deidability of D

f;g

-uni�ation with onstants was �nally shown by Shmidt-

Shau� [1996a℄. His non-deterministi algorithm redues solvability of D

f;g

-

uni�ation problems with onstants to A

f

-uni�ation with onstants and ACU-

uni�ation with linear onstant restritions. Thus, the algorithm is of quite high

omplexity, ompared to the best known lower bound, whih is NP-hard [Tid�en

and Arnborg 1987℄.

Undeidability of (D

f;g

[ A

g

)-uni�ation with onstants was proved in [Szab�o

1982, Siekmann and Szab�o 1989℄. This negative result has been strengthened in

[Tid�en and Arnborg 1987℄: every equational theory that lies above (D

f;g

[A

g

)

or (D

l

f;g

[ U

f

[ A

g

) and is onsistent with Peano arithmeti (where f stands

for multipliation, g for addition, and e for 1) has an undeidable uni�ation

problem. Deidability of (D

f;g

[ U

f

)-uni�ation is still an open problem.

Uni�ation type: in�nitary for D

f;g

-uni�ation problems with onstants and gen-

eral D

f;g

-uni�ation problems. Szab�o [1982℄ gives an example of a D

f;g

-

uni�ation problem with onstants whose minimal omplete set of uni�ers is

in�nite. The existene of minimal omplete sets of D

f;g

-uni�ers (for all three

kinds of uni�ation problems) is a onsequene of the fat that the =

D

f;g

-lass

of a given term is always �nite [Szab�o 1982℄, whih implies that the instan-

tiation quasi-ordering �

�

X

D

f;g

is Noetherian [Szab�o 1982, B�urkert et al. 1989℄.

D

l

f;g

-uni�ation (and, by symmetry,D

r

f;g

-uni�ation) with onstants is unitary,

and an mgu an be omputed in polynomial time [Tid�en and Arnborg 1987℄.

Assoiativity-ommutativity

The theories AC

f

:= A

f

[ C

f

and ACU

f

:= AC

f

[ U

f

will be onsidered in

more detail in subsetion 5.1. Examples of operations satisfying theses identities

are addition and multipliation of (rational, real, et.) numbers.
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Deision problem: NP-omplete for uni�ation problems with onstants and general

uni�ation problems both for AC

f

and ACU

f

[Kapur and Narendran 1992a℄.

Elementary ACU

f

-uni�ation problems always have a trivial solution, and solv-

ability of elementary AC

f

-uni�ation problems is deidable in polynomial time

using linear programming [Domenjoud 1991℄.

Uni�ation type: ACU

f

is unitary for elementary and �nitary for the two other

kinds of uni�ation problems, and AC

f

is �nitary for all three kinds of uni�-

ation problems [Livesey and Siekmann 1975, Stikel 1981, Fages 1987℄. The

number of uni�ers in a minimal omplete set of AC

f

-uni�ers may be doubly-

exponential in the size of a given elementary AC

f

-uni�ation problem [Kapur

and Narendran 1992b℄.

Uni�ation algorithms: Beause uni�ation modulo assoiativity-ommutativity

has many appliations in automated dedution, a great variety of uni�ation

algorithms has been developed for AC

f

and ACU

f

[Stikel 1975, Livesey and

Siekmann 1975, Kirhner 1985, Fortenbaher 1985, B�uttner 1986a, Herold 1987,

Herold and Siekmann 1987, Linoln and Christian 1989, Boudet, Contejean and

Devie 1990℄ (see also subsetion 5.1).

Assoiativity-ommutativity-idempoteny

We onsider the theories ACI

f

:= AC

f

[ ff(x; x) � xg, its extension by a unit

e, ACUI

f

:= ACI

f

[ U

f

, and by a zero n, ACUZI

f

:= ACUI [ ff(x; n) � ng.

Examples of operations satisfying theses identities are union and intersetion of

sets. The theory ACUI

f

will be onsidered in more detail in subsetion 5.1.

Deision problem: For all three theories, the deision problem is polynomial for

elementary uni�ation and for uni�ation with onstants, and NP-omplete

for general uni�ation [Kapur and Narendran 1992a, Narendran 1996b℄. Like

syntati uni�ation, ACI

f

- and ACUI

f

-uni�ation with onstants are not only

in P , but even P -omplete [Hermann and Kolaitis 1997℄.

Uni�ation type: ACUI

f

is unitary for elementary and �nitary for the two other

kinds of uni�ation problems, and ACI

f

is �nitary for all three kinds of uni-

�ation problems [Livesey and Siekmann 1975, B�uttner 1986b, Baader and

B�uttner 1988, Kapur and Narendran 1992b℄. As with AC

f

, the number of ACI

f

-

uni�ers in a minimal omplete set may be doubly-exponential in the size of a

given elementary ACI

f

-uni�ation problem [Kapur and Narendran 1992b℄. Her-

mann and Kolaitis show that omputing the ardinality of a minimal omplete

set of uni�ers for given ACI

f

- or ACUI

f

-uni�ation uni�ation problems is

#P -hard, whih implies that this funtion annot be omputed in polynomial

time, unless P = NP [Hermann and Kolaitis 1997℄.

Uni�ation algorithms: Baader and B�uttner [1988℄ desribe an algorithm for

ACUI

f

-uni�ation problems with onstants onsisting of a single equation, and

Kapur and Narendran [1992b℄ sketh an algorithm for general ACI

f

-uni�ation.
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Abelian groups

The theory of Abelian groups is de�ned by the identities AG

f

:= ACU

f

[

ff(i(x); x) � eg.

Deision problem: trivial for elementary uni�ation, polynomial for uni�ation with

onstants [Baader and Siekmann 1994℄, and NP-omplete for general uni�ation

[Shulz 1997℄.

Uni�ation type: unitary for elementary uni�ation and for uni�ation with on-

stants [Lankford, Butler and Brady 1984℄, and �nitary for general uni�ation

[Shmidt-Shau� 1989b, Boudet, Jouannaud and Shmidt-Shau� 1989℄. Com-

puting the ardinality of a minimal omplete set of uni�ers for a given general

AG

f

-uni�ation is again #P -hard [Hermann and Kolaitis 1996℄.

Uni�ation algorithms: Lankford et al. [1984℄ desribe an algorithm for AG

f

-

uni�ation with onstants, and Shmidt-Shau� [1989b℄ shows that this algo-

rithm an be ombined with an algorithm for syntati uni�ation into an

algorithm for general AG

f

-uni�ation.

Commutative and Boolean rings

Let CRU denote the well-known axioms for ommutative rings with a (multiplia-

tive) unit, and BR the theory of Boolean rings.

Deision problem: As skethed in [Baader and Siekmann 1994℄, undeidability of

elementary CRU-uni�ation is an easy onsequene of the fat that Hilbert's

10th problem is undeidable [Matiyasevih 1971, Davis 1973℄.

For the theory BR, the deision problem is NP-omplete for elementary uni�-

ation, �

p

2

-omplete for uni�ation with onstants, and PSPACE-omplete for

general uni�ation [Baader 1998℄.

Uni�ation type: The uni�ation type of CRU is at least in�nitary, even for ele-

mentary uni�ation [Burris and Lawrene 1990℄.

10

.

BR is unitary for elementary uni�ation and for uni�ation with onstants

[B�uttner and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow

1989a℄, and �nitary for general uni�ation [Shmidt-Shau� 1989b℄. As with the

theory of Abelian groups, the problem of omputing the ardinality of a minimal

omplete set of uni�ers is #P -hard for general BR-uni�ation [Hermann and

Kolaitis 1996℄.

Uni�ation algorithms: Algorithms that ompute most general uni�ers for elemen-

tary BR-uni�ation and BR-uni�ation with onstants are desribed in [B�uttner

and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow 1989a℄. Gen-

eral ombination methods an be used to obtain algorithms for general BR-

uni�ation [Shmidt-Shau� 1989b, Boudet et al. 1989℄.

Endomorphisms

The theory End

h;g

:= fh(g(x; y)) � g(h(x); h(y))g states that the unary funtion

symbol h behaves like an endomorphism for the binary funtion symbol g, and

10

The losely related theory of ommutative semirings is known to be of uni�ation type zero

w.r.t. elementary uni�ation [Franzen 1992℄
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End

h;e

:= fh(e) � eg states that h behaves like an endomorphism for the onstant

symbol e. We onsider these two theories in ombination with some of the theories

introdued above:

Deision problem: Solvability of End

h;g

-uni�ation problems with onstants is de-

idable [Vogel 1978℄.

For the theories End

h;g

[AC

g

and End

h;g

[ End

h;e

[ACU

g

, solvability of uni-

�ation problems with onstants is undeidable [Narendran 1996a℄.

In ontrast, solvability of uni�ation problems with onstants is deidable for

the theory End

h;g

[End

h;e

[ACUI

g

. In [Baader and Narendran 1998℄ it shown

that this problem is EXPTIME-omplete.

A similar result holds for End

h;g

[ACUI

g

: for this theory, the deision problem is

known to be o-NP-hard and in EXPTIME [Guo, Narendran and Shukla 1998℄.

Finally, for End

h;g

[ End

h;e

[ AG

g

, deidability of uni�ation with onstants

was shown in [Baader 1993℄. Sine this deidability result an be extended to

uni�ation with linear onstant restritions, general ombination results yield

deidability for general uni�ation modulo this theory [Baader and Nutt 1996℄.

Uni�ation type: The theory End

h;g

is unitary for uni�ation with onstants [Vogel

1978℄.

End

h;g

[ End

h;e

[ ACU

g

and End

h;g

[ End

h;e

[ ACUI

g

are of type zero, even

for elementary uni�ation [Baader 1993, Baader 1989b℄.

End

h;g

[End

h;e

[AG

g

is unitary for elementary uni�ation and for uni�ation

with onstants [Nutt 1990, Baader 1993℄, and �nitary for general uni�ation

[Baader and Nutt 1996℄.

In addition to investigating uni�ation properties of spei� equational theories

of interest, uni�ation theory also tries to develop more general methods, and thus

to obtain results for whole lasses of equational theories. Sine uni�ation modulo

equational theories is in general undeidable (as illustrated by some of the examples

above), and also uni�ation properties suh as the uni�ation type of a given the-

ory are in general undeidable [Nutt 1991℄, approahes that apply to all equational

theories are likely to yield very weak results. For example, the general E-uni�ation

proedure introdued in setion 4.1, whih an be used to enumerate a omplete

set of E-uni�ers, is very ineÆient, and usually does not yield a deision proedure

or a (minimal) E-uni�ation algorithm even for unitary or �nitary theories whose

uni�ation problem is deidable. In order to obtain more useful results, one an try

to develop methods that work for appropriately restrited lasses of theories. There

are basially two di�erent ways of introduing appropriate restritions on equa-

tional theories. Syntati approahes impose restritions on the syntati form of

the identities de�ning the equational theories. The uni�ation methods produed by

these approahes are usually also of a quite syntati nature: as with the rule-based

approah to syntati uni�ation, they transform the given uni�ation problem into

a problem in solved form (setion 4). In ontrast, semanti approahes depend on

properties of the (free) algebras de�ned by the equational theory. Uni�ation prob-

lems are translated into equations over ertain algebrai strutures, whih (in some

ases) an be solved using known results from mathematis (setion 5).
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4. Syntati methods for E-uni�ation

In this setion we disuss two syntati approahes to generating omplete sets of

E-uni�ers, using inferene systems extending the set U presented in setion 2.2.3.

We �rst onsider the general problem (E-uni�ation in arbitrary theories) and

show how it an be solved by adding a single rule to introdue identities into the

transformation proess; this simple method is proved to be omplete and some

restritions whih preserve ompleteness are disussed. We then present the most

signi�ant speial ase of the general problem, when the equational theory an

be presented by a onvergent set of rewrite rules. This method, alled narrowing ,

has been thoroughly investigated, and we will present the major results in the

framework of transformation rules.

4.1. E-uni�ation in arbitrary theories

In this setion, we present a rule for introduing identities into inferene steps in U

in suh a way that a omplete set of E-uni�ers for an arbitrary set E of equations

may be generated. By speializing various aspets of the resultant alulus (and its

ompleteness proof), we will obtain more pratial methods for the speial ase of

onvergent sets of rewrite rules. The results of this setion are based on [Gallier

and Snyder 1989, Snyder 1991℄.

In this setion we assume that the reader is familiar with the basi onepts of

rewriting (espeially equational proofs, redution orderings, ground onvergene,

and ritial pairs) disussed in [Dershowitz and Plaisted 2001℄ (Chapter 9 of this

Handbook). By rewrite proof we refer to a sequene of rewrite steps between two

terms of the form

s

�

�!u

�

 � t

where u is in normal form. We will use e[u℄ in the following to represent a equation

(or identity) with a distinguished ourrene of a subterm u in one of its terms; in

suh a ontext e[r℄ will denote the result of replaing this subterm with the term r.

We will use systems P ;S, representing uni�ation problems and sets of equations

in solved form, as before.

4.1. Definition. For any equational theory E, a substitution � is an E-solution

(or simply a solution when E is understood) of a system P ;S if it is an E-uni�er

of every equation in P , and a uni�er of every equation in S.

4.1.1. The alulus G

The set G of inferene rules onsists of the rules Trivial, Deomposition, Orientation,

and Variable Elimination from U , plus the following rule for introduing identities:

Lazy Paramodulation (LP):

fe[u℄g [ P ;S =)

lp

fl

?

=u; e[r℄g [ P ;S
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for a fresh variant

11

of the identity l � r from E [ E

�1

, and where (i) u is not

a variable, and (ii) if l is not a variable, then the top symbols of l and u are

idential, and no other inferene rule may be applied to the equation l=

?

u before

it is subjeted to a Deomposition step.

Computation in G proeeds as in U , starting with an initial system of the form

fs=

?

tg; ; and applying inferene rules in an attempt to �nd some terminal system

;;S representing an E-uni�er �

S

of s and t. Clearly, by the general harateristis

of E-uni�ation disussed above, suh a proess an not share the nie properties

of U whih we disussed in setion 2.2.4. However, it is possible to say quite a lot

about how to restrit the appliation of rules, as we shall see.

4.1.2. Completeness of G

It an be shown easily that the alulus G is sound in the sense that a solution it

produes is always an E-uni�er; however this proof does not give muh insight into

the properties of G and we refer the interested reader to [Gallier and Snyder 1989℄. It

is more interesting to onsider the issue of ompleteness, whih is onsiderably more

omplex than in the standard ase. What we want to show is that if we onsider

the (�nitely-branhing but in�nite) searh tree of every possible transformation

sequene starting from fs=

?

tg; ;, then the leaves form a omplete set of E-uni�ers

for s and t. However, it is simpler to state and prove this in the following \non-

deterministi" form.

4.2. Theorem. Let E be a non-trivial equational theory and P be a set of uni�a-

tion problems. If � is an E-solution of P ; ;, then there exists a sequene

P ; ;

�

=) ;;S

(with S in solved form) in the alulus G suh that �

S

�

�

X

E

�, where X = Vars(P ).

There are three main stages to the proof. First we will prove the result given

ertain strong restritions on the equational theory E. Then we onstrut a kind

of \abstrat ompletion" of E whih has the requisite restritions; �nally, we show

that any transformation sequene using this abstrat ompletion an be onverted

into one using simply E.

The major diÆulty in proving ompleteness of equational inferene systems

is generally in dealing with the restrition that equational steps not take plae at

variable positions (hene, \u is not a variable" in LP). The solution, due to Peterson

[1983℄, is to work with a restrited form of substitution in the proof.

4.3. Definition. Given a rewrite system R, a substitution � is R-redued (or just

redued if R is unimportant) if for every x 2 Dom(�), x� is in R-normal form.

11

By a fresh variant we refer to an expression that has been renamed with fresh variables that

do not our anywhere else in the previous omputation. Whenever we mention a rewrite rule or

identity used in an inferene step, we will assume that it has been so renamed.
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Note that it is always possible for any � and terminating set of rules R to �nd an R-

equivalent redued substitution �

0

. This allows us to assume, when \lifting" rewrite

steps at the ground level to inferene steps, that the position is a non-variable.

Another essential ingredient in our proof is the notion of an \oriented ground

instane" of an identity.

4.4. Definition. Let E be a non-trivial equational theory and � be a redution

ordering total on ground terms. The set of ground instanes of E is

Gr(E) := f l� � r� j l� and r� are ground and l � r 2 E [ E

�1

g:

The set of oriented ground instanes of E is

Gr

�

(E) := f l� �! r� j l� � r� 2 Gr(E) and l� � r� g:

A member l� �! r� of suh a set is alled redued if � is redued with respet to

the entire set.

12

For any E, the set of redued oriented ground instanes is denoted

R

E

.

An important fat about Gr(E) is the following.

4.5. Proposition. For any two ground terms s and t, there exists an equational

proof s

�

 !

E

t i� there exists a proof s

�

 !

Gr(E)

t

This is easily proved by showing that equational steps are losed under instantiation,

and hene we an instantiate any \unbound variables" by ground terms so that only

ground instanes of identities from E are used.

Another kind of restrition on proofs, whih will be essential in proving the

\no inferenes into variable positions" restrition in our ompleteness result, is the

subjet of the next de�nition and lemma.

4.6. Definition. Let u� be an instane of u, and R a set of rewrite rules. A

rewrite step u� �!

R

u

0

is based on u i� the redex is at a non-variable position in

u (equivalently, is not wholly ontained within a term introdued by �). A rewrite

sequene s�

�

�!

R

t is based on s (or simply basi) i� either s� = t (reexive ase)

or it starts with a rewrite step based on s, e.g.,

s� �!

R

(s�)[r�℄ = s[r℄��

�

�!

R

t

and the remainder is based on s[r℄. A rewrite proof s�

�

�!

�

 � t� is basi if the left

side is based on s and the right side is based on t.

Intuitively, this means that no rewrite step an take plae at a term introdued by

any substitution.

The relationship between redued substitutions, redued oriented ground in-

stanes, ground onvergene, and basi rewrite sequenes is now explored.

12

This notion is well-de�ned, as it ould more formally be de�ned by indution on a suitable

ordering of rules, using the fat that l an not be a variable when E is non-trivial.
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4.7. Lemma. Let E be a non-trivial equational theory suh that Gr

�

(E) is ground

onvergent, and s� be a ground term suh that � is R

E

-redued. Then for any rewrite

sequene s�

�

�! t using rules from Gr

�

(E) to redue s� to its normal form t, there

exists a basi rewrite sequene s�

�

�! t using rules only from R

E

.

Proof. Sine Gr

�

(E) is ground anonial, we may hoose any fair strategy for

redution; in partiular, we may speify that at eah step, among all the possible

rules that ould be used for redution, we hoose one that is minimal in the lexi-

ographi extension of � to pairs of terms. But then for any l� �! r� used in the

sequene, � must be redued, or else the rule would not be minimal. Thus, there

exists a rewrite sequene from s� to t using rules only from R

E

; learly, sine all

substitutions involved are redued, this is also a basi sequene.

For our purposes we may summarize these results as follows.

4.8. Corollary. Let E be an equational theory suh that Gr

�

(E) is ground on-

vergent. For any ground terms s� and t�, where � is redued with respet to Gr

�

(E),

the following are equivalent:

1. s� and t� are E-equivalent.

2. There exists a basi rewrite proof for s� and t� using rules from Gr

�

(E).

We now prove our ompleteness result in the speial ase we have been disussing.

4.9. Lemma. Let E be a non-trivial equational theory suh that Gr

�

(E) is ground

onvergent, and P be a set of uni�ation problems. If � is a Gr

�

(E)-redued solution

of P ; ;, then there exists a sequene

P ; ;

�

=) ;;S

(with S in solved form) in the alulus G suh that �

S

�

�

X

� for X = Vars(P ).

Proof. We proeed by indution, using the following measure. The omplexity of

a system P ;S and its solution � is a four-tuple hm;n

1

; n

2

; n

3

i, where

m = The total number of rewrite steps in all the minimal-length basi

rewrite proofs for equations in P�;

n

1

= The number of distint variables ourring in equations u=

?

v 2 P

suh that u� = v� and u� is in Gr

�

(E)-normal form;

n

2

= The number of symbols ourring in equations u=

?

v 2 P suh that

u� = v� and u� is in normal form;

n

3

= The number of equations in P of the form t=

?

x, where t is not a

variable, and suh that t� = x� and t� is in normal form.

The assoiated (well-founded) ordering is the lexiographi ordering using the

natural ordering on positive integers.

We show by indution on this measure that if � is a solution of a system P ;S

0

,

with S

0

in solved form, there exists a transformation sequene

P ;S

0

�

=) ;;S
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where �

S

�

�

X

� for X = Vars(P; S

0

).

The base ase of the indution onsists of a system ;;S and the result is trivial,

sine a fortiori �

S

�

�

�. For the indution step, suppose P = fu=

?

vg [ P

0

. If

u� = v� with u� in normal form; then we proeed as before with the inferene

system U to generate a transformation step to a smaller system ontaining the

same set of variables, and with the same solution (f. lemma 2.4). As with U , any

equation introdued into S must keep this set in solved form. Completing this with

the indution hypothesis, we have

P ;S

0

=)

U

P

00

;S

00

�

=) ;;S

suh that �

S

�

�

X

� with X = Vars(P; S

0

).

Otherwise, without loss of generality, pik a rewrite step from the term u� in a

minimal-length basi rewrite proof u� �!

�

�!

�

 � v�, in whih a redued ground

instane l� �! r� was used. If we let �

0

= ��, then this �rst step was in fat

u[u

0

℄�

0

= u[l℄�

0

�! u[r℄�

0

, where u

0

an not be a variable (sine � is redued). In

addition, the top symbols of u

0

and l are idential if l is not a variable. Hene, there

exists some transformation step

fu[u

0

℄

?

= vg [ P

0

;S

0

=)

lp

fl

?

=u

0

; u[r℄

?

= vg [ P

0

;S

0

to a new system whih has a smaller omplexity with respet to its new solution

�

0

. (It also ontains additional variables, i.e., those in Vars(l; r)). By the indution

hypothesis we an ontinue this with:

fl

?

=u

0

; u[r℄

?

= vg [ P

0

;S

0

�

=) ;;S

suh that �

S

�

�

X

�

0

with X = Vars(l; r; P; S

0

). But, sine x� = x�

0

for every

x 2 Vars(P; S

0

), we are done.

The seond stage of our main ompleteness proof for G involves onstruting a

set of identities �tting the onditions of the previous lemma. We do this by a kind

of abstrat ompletion of E:

4.10. Definition. Let Cr(E) be the set of ritial pairs w.r.t. � of E, reated

from fresh variants of identities in E using the inferene system U to alulate the

requisite mgu's. Then, for eah i � 0, de�ne

E

0

= E

.

.

.

E

i+1

= E

i

[ Cr(E

i

)

.

.

.

E

!

=

S

n�0

E

n



Unifiation Theory 493

The entire point of this onstrution is ontained in the following lemma, whih

an be proved using tehniques familiar from [Dershowitz and Plaisted 2001℄, Chap-

ter 9 of this Handbook (for a spei� proof, see Theorem 6.1.7 in [Snyder 1991℄).

4.11. Lemma. For any E, Gr

�

(E

!

) is ground onvergent and equivalent to E on

ground terms.

Thus, we an (oneptually, at least) use E

!

to onstrut transformation se-

quenes as just shown in lemma 4.9. The seond main lemma of our ompleteness

proof for G shows how to onvert suh a transformation sequene into one using

only identities from E.

4.12. Lemma. For any sequene

P ; ;

�

=) ;;S

introduing identities from E

!

, and suh that �

S

is an E-uni�er for P , there exists

a sequene

P ; ;

�

=) ;;S

0

introduing identities only from E, suh that S � S

0

and x�

S

0

= x�

S

for every

x 2 Vars(P ).

Proof. The basi idea is to use the alulus G itself to onstrut ritial pairs. The

omplexity measure in our indutive proof is as follows. The depth of an identity

e 2 E

!

is the least k suh that e 2 E

k

; the omplexity of a transformation sequene

is the (�nite) multiset of the depths of all identities from E

!

introdued, with the

assoiated (well-founded) multiset ordering.

The base ase being trivial, we proeed diretly to the indution step. Suppose

the transformation sequene uses some identity r

1

� � l

1

[r

2

℄� of non-zero depth,

obtained by forming a ritial pair from l

1

[l

0

℄ � r

1

and l

2

� r

2

(eah of smaller

depth) with � = mgu(l

0

; l

2

). We show how the original use of the ritial pair in a

LP step an be simulated by two LP steps involving the omponent identities, plus

some number of U-transformations to simulate the onstrution of the ritial pair.

There are two ases, depending on whih diretion the ritial pair was used in.

Case One. Suppose the ritial pair was r

1

� � l

1

[r

2

℄�, e.g.,

�

=) fe[u℄g [ P ;S

0

=)

lp

fr

1

�=

?

u; e[l

1

[r

2

℄�℄g [ P ;S

0

�

=) ;;S

where an additional Deomposition is possibly applied afterwards to r

1

�=

?

u (if

r

1

� is not a variable). This sequene an be onverted into:

�

=) fe[u℄g [ P ;S

0

=)

lp

fr

1

=

?

u; e[l

1

[l

0

1

℄℄g [ P ;S

0

=)

lp

fl

2

=

?

l

0

1

; r

1

=

?

u; e[l

1

[r

2

℄℄g [ P ;S

0

�

=) fr

1

�=

?

u; e[l

1

[r

2

℄�℄g [ P ;S [ [�℄

�

=) ;;S [ [�

0

℄
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(where by [�℄ we mean a set of equations representing the bindings in �). This

sequene has a smaller omplexity, as it replaed a ritial pair by two identities of

stritly smaller depth. The seond line from the bottom represents the alulation

of the mgu; these bindings apply only to terms from the two equations, although as

they are arried along in the solution set they may hange as the result of additional

substitutions (hene the hange to �

0

). The (possible) Deomposition step after the

�rst LP step in the original is delayed until after the omputation of �.

Case Two. Suppose the ritial pair was l

1

[r

2

℄� � r

1

�; in this ase, we may

assume that the overlap in this ritial pair is not at the root, sine otherwise we

ould apply ase one. Our original sequene is thus:

�

=) fe[u℄g [ P ;S

0

=)

lp

fl

1

[r

2

℄�=

?

u; e[r

1

�℄g [ P ;S

0

�

=) ;;S

where Deomposition is applied to l

1

[r

1

℄� � u at some point after the LP step

(sine l

1

has at least one funtion symbol above the overlap position). This sequene

beomes:

�

=) fe[u℄g [ P ;S

0

=)

lp

fl

1

[l

0

1

℄ =

?

u; e[r

1

℄g [ P ;S

0

=)

lp

fl

2

=

?

l

0

1

; l

1

[r

2

℄ =

?

u; e[r

1

℄g [ P ;S

0

�

=) fl

1

[r

2

℄�=

?

u; e[r

1

�℄g [ P ;S [ [�℄

�

=) ;;S [ [�

0

℄

The Deomposition step is delayed until after the omputation of �. This sequene

is, again, of smaller omplexity than the original.

Note in both ases that the variables in Dom(�) are (e�etively) fresh, as they

our in the omponent identities but not in the ritial pair; thus, x�

S

0

= x�

S

for

all x 2 Vars(P ) as required.

We may now present the proof of our main ompleteness result.

Proof of theorem 4.2. First, note that we may assume that P� ontains only

ground equations, using a straight-forward Skolemization argument (viz. [Snyder

1991℄, p.90). If � is an E-uni�er of P , we may onstrut an Gr

�

(E)-redued sub-

stitution �

0

suh that � =

E

�

0

. We then apply lemma 4.9, using rules from E

!

, to

obtain a sequene

P ; ;

�

=) ;;S

where �

S

�

�

X

�

0

for X = Vars(P ). This is then onverted, using the tehnique of

lemma 4.12 to a new sequene using rules only from E:

P ; ;

�

=) ;;S

0

where x�

S

= x�

S

0

for every x 2 Vars(P ). Thus, we may onlude that �

S

�

�

X

E

�,

where X = Vars(P ), as required.
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4.2. Restritions on E-uni�ation in arbitrary theories

In this setion we desribe two re�nements of the alulus G that have been sug-

gested:

� The restrition on a equation l=

?

u introdued by LP, when l is not a variable,

that the top symbol of l and u must be the same, an be strengthened so

that the entire overlap of the non-variable positions in the two terms must be

idential.

� The restrition in LP that u not be a variable may be strengthened so that

u an not even be a term introdued into P by substitution (i.e., Variable

Elimination) at any point in the sequene.

Both of these restritions in some sense extend the original restritions on G hered-

itarily , in the �rst ase inheriting the restrition on top symbols down into the

terms, and in the seond, inheriting the non-variable restrition throughout the

history of the equation, and regarding terms introdued by variable elimination

as being seond-lass itizens whih do not play a diret role in equational infer-

enes, but only serve to onstrain the appliation of rules. This is alled the basi

restrition, as it rests on the existene of basi rewrite proofs as shown above.

For lak of spae, we do not onsider these re�nements to G in detail here, al-

though the seond will form an essential part of the alulus in the next setion.

For the �rst, see [Dougherty and Johann 1992℄, and also [Soher-Ambrosius 1994℄

(where a further re�nement is presented); for the seond see [Moser 1993℄.

4.3. Narrowing

In this setion we onsider the most important speial ase of the E-uni�ation

problem, when the equational theory an be represented by a ground onvergent

set of rewrite rules. In this ase, the onversion of transformation sequenes to

simulate ritial pair generation is not neessary, and we an take a loser look at

the ompleteness proof and the restritions that an be imposed on the alulus.

In partiular, we shall from the start onsider the existene of basi rewrite proofs

as fundamental, and develop a new representation for problems whih prevents LP

inferenes at terms introdued by substitutions.

A onstraint system (or simply system in the rest of the setion) is either the

symbol ? (representing failure) or a triple onsisting of a multiset P of equations

(representing the shema of the problem, in a sense that will beome lear below),

a set C of equations (representing onstraints on variables in P ), and a set S of

equations (representing bindings in the solution). The set C plays a role similar

to the multiset P in setion 2.2.4, and rules from U will be applied to C;S as

before. The equational problems being worked on are in fat P�

S

, the separation

into the shema P and onstraints C;S serving to enfore the basi restrition on

the appliation of LP mentioned above. As expeted, a substitution � is said to be

a solution (or E-uni�er) of a system P ;C;S if it E-uni�es eah equation in P , and

uni�es eah of the equations in C and S; the system ? has no E-uni�ers.
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We assume that our rewrite system R (representing E) is ground onvergent with

respet to a redution ordering �, and onsists of a numbered sequene of rules

fl

1

�! r

1

; l

2

�! r

2

; : : : ; l

n

�! r

n

g:

The index of a rule will be its number in this sequene, and will be used in a ertain

re�nement of our inferene system.

4.3.1. The alulus B

In this setion we present the rules whih are used in the alulus B for basi

narrowing . We will �rst onsider a simple set of rules and prove its ompleteness,

and then onsider re�nements and modi�ations based on the details of the proof.

The set B onsists of the following six rules.

Trivial:

P ; fs

?

= sg [ C

0

;S =) P ;C

0

;S

Deomposition:

P ; ff(s

1

; : : : ; s

n

)

?

= f(t

1

; : : : ; t

n

)g [ C

0

;S =) P ; fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ C

0

;S

Orient:

P ; ft

?

=xg [ C

0

;S =) P ; fx

?

= tg [ C

0

;S

if t is not a variable.

Basi Variable Elimination:

P ; fx

?

= tg [ C

0

;S =) P ;C

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x does not our in t. (Note that the substitution is not applied to the set P .)

(Modulo the hanges to Variable Elimination, these are just the non-failure rules

from U , adapted for onstraint systems; we shall denote these �rst four rules as S.)

Constrain:

feg [ P

0

;C;S =)

on

P

0

; fe�

S

g [ C;S

Lazy Paramodulation:

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl�

S

?

=u�

S

g [ C;S

(with the exat same restritions as given above in setion 4.1.1).
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Essentially, this alulus is no di�erent from G, exept that it is designed to

enfore the basi restrition, by separating out the parts of terms that were intro-

dued into the problem by substitution (i.e., Variable Elimination) and those that

were not (the \shema"). The latter onstitute the only positions where equational

inferenes may take plae in the basi strategy. The ompleteness proof is hene

very similar to lemma 4.9. We will add more restritions to the way that ertain

hoies are made, however, whih will give us the ability to restrit our alulus

orrespondingly.

4.13. Theorem. Let R be a ground onvergent set of rewrite rules. If � is an R-

solution of P ; ;; ;, then there exists a sequene

P ; ;; ;

�

=)

B

;; ;;S

suh that �

S

�

�

X

R

�, where X = Vars(P ).

Proof. As in our ompleteness proof for G, we may assume that P� is ground and

that � is R-redued, sine the relation�

�

R

does not distinguish between R-equivalent

substitutions. Thus, we will prove a stronger result, that when � is R-redued, then

in fat �

S

�

�

X

�.

The omplexity of a system P ;C;S and assoiated solution � is hM;n

1

; n

2

; n

3

i,

where

M = The multiset of all terms ourring in P�;

n

1

= The number of distint variables in C;

n

2

= The number of symbols in C;

n

3

= The number of equations in C of the form t=

?

x, where t is not a

variable.

The assoiated ordering is the lexiographi ordering using the multiset extension

of the redution ordering � for the �rst omponent, and the ordering on natural

numbers for the remaining omponents.

Our indution shows that if � is a solution of a system P ;C;S

0

, with S

0

in solved

form, there exists a transformation sequene

P ;C;S

0

�

=) ;; ;;S

where �

S

�

�

X

�, where X = Vars(P;C; S

0

).

The base ase ;; ;;S is again trivial. For the indution step, there are several

overlapping ases.

(1) If C = fu=

?

vg[C

0

, then u� = v� and we use S to generate a transformation

step to a smaller system ontaining the same set of variables, and with the same

solution (f. lemma 2.4). Completing this with the indution hypothesis, we have

P ;C;S

0

=)

S

P

00

;C

0

;S

00

�

=) ;; ;;S

suh that �

S

�

�

X

� for X = Vars(P;C; S

0

).
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(2) If P = fu=

?

vg [ P

0

and u� = v�, then we may apply Constrain to obtain a

smaller system (reduing the omponent M) with the same solution and the same

set of variables, and we onlude as in the previous ase.

(3) Suppose P = fu=

?

vg [ P

0

and there is some redex in either u� or v�;

without loss of generally, assume the former. We may also assume that the redex is

innermost, and that if more than one instane of a rule from R redues this redex,

we hoose the rule l� �! r� with the smallest index in the set R. Note that, sine

� is R-redued, the redex must our inside the non-variable positions of u; thus

we have the following transformation:

fu[u

0

℄

?

= vg [ P

0

;C;S

0

=)

lp

fu[r℄

?

= vg [ P

0

; fl�

S

0

?

=u

0

�

S

0

g [ C;S

0

to a system whih is smaller with respet to its new solution �

0

= �� (sine the new

equation introdued into C is an identity modulo �

0

). Note that �

0

is still R-redued.

By the indution hypothesis we have

fu[r℄

?

= vg [ P

0

; fl�

S

0

?

=u

0

�

S

0

g [ C;S

0

�

=) ;; ;;S

suh that �

S

�

�

X

�

0

with X = Vars(l; r; P; C; S

0

), and sine x� = x�

0

for every

x 2 Vars(P;C; S

0

), the indution is omplete.

4.3.2. Standard narrowing

An interesting feature of this proof is that it also provides for the ompleteness

of an alternate (and historially earlier) version of narrowing due to Fay [1979℄,

whih does not distinguish between substitution positions and other positions in

the problem.

Let us de�ne the alulus N for standard narrowing as the inferene system B

with the following hange: Basi Variable Elimination is replaed by the following

transformation:

Variable Elimination:

P ; fx

?

= tg [ C

0

;S =) Pfx 7! tg;C

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x does not our in t.

(The Constrain rule might also be hanged so that is does not instantiate an

equation when moving it from P to C, however, sine �

S

is always idempotent, the

existing rule would have the same e�et.)

The only di�erene is that the set P is kept instantiated with the substitution

de�ned by S during the transformation proess, so that substitution positions an

be used for narrowing.

4.14. Corollary. Let R be a ground onvergent set of rewrite rules. If � is an

R-solution of P ; ;; ;, then there exists a sequene

P ; ;; ;

�

=)

N

;; ;;S

in the alulus N suh that �

S

�

�

X

R

� with X = Vars(P ).
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The proof is essentially the same as the previous one, sine the same transforma-

tion sequene an be used in eah ase.

The di�erene between the two inferene systems is that B restrits the appli-

ation of inferene rules to a smaller set of positions than N does, and hene the

searh tree for solutions is narrower.

4.4. Strategies and re�nements of basi narrowing

There is a variety of strategies and re�nements that an be developed for the basi

narrowing alulus without destroying ompleteness. Most of these, in one way or

another, an be derived from a lose examination of the ompleteness proof just

given. In this setion we briey desribe the most important of these.

4.4.1. Composite rules for basi narrowing

The �rst observation that an be made is that it is not neessary to onsider all pos-

sible sequenes of transformation rules, sine we either solve (standard) uni�ation

problems (e.g., equations between two idential terms in P�) or simulate rewriting

at the ground level by unifying left-hand sides of rules with non-variable positions

in terms, at the non-ground level. Thus, we may use the following two omposite

rules as an alternate form of B:

Solve (=)

sol

):

feg [ P

0

;C;S =)

on

P

0

; fe�

S

g [ C;S

�

=)

S

P

0

;C�;S� [ [�℄

(i.e., � = mgu(e�

S

)).

Narrow (=)

nar

):

fe[u℄g[P ;C;S =)

lp

fe[r℄g[ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

(that is, � = mgu(l�

S

; u�

S

)), where l �! r is a fresh variant from R.

The ompleteness proof goes through with few hanges. Note that in this formu-

lation, no new equations remain in C after eah step. A similar set of omposite

rules ould be given for N .

4.4.2. Simpli�ation

The inferene rules in S (like U) are signi�ant in that they an be applied when-

ever we want during a transformation sequene without a�eting the outome; in

our indutive proof, we may observe that they make the problem smaller without

hanging the solution. Suh rules are extremely important in reduing the searh

spae for a solution.
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4.15. Definition. A transformation � is alled a simpli�ation rule for B if

whenever P ;C;S � P

0

;C

0

;S

0

, then � is an R-redued solution of P

0

;C

0

;S

0

i�

�j

Vars(P;C;S)

is an R-redued solution to P ;C;S, and P

0

;C

0

;S

0

is smaller in the

indution ordering used in Theorem 4.13 with respet to � than P ;C;S w.r.t.

�j

Vars(P;C;S)

.

The restritions in this de�nition ensure that suh a rule an be used any time

it applies in the indution step to obtain a smaller system without hanging the

solution (w.r.t. the variables in the left side).

Thus, the rules in S are simpli�ation rules in this respet. There are many other

ad-ho simpli�ation rules that have been suggested for narrowing. For example,

we may perform a form of Deomposition within P when we know that this does

not remove a redex.

Problem Deomposition:

ff(s

1

; : : : ; s

n

?

= f(t

1

; : : : ; t

n

)g [ P

0

;C

0

;S =) fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ P

0

;C;S

if the symbol f does not our at the top of the left-side of a rule in R.

In the indution in the ompleteness proof this rule dereases the measure (speif-

ially, it redues the omponentM). Clearly it does not hange the set of solutions.

Therefore, we may apply this rule any time, in any ontext, without a�eting the

ompleteness properties of the alulus.

Suh rules an be applied \eagerly" to produe smaller problems, hopefully re-

duing the searh spae.

4.16. Definition. If T is a subset of rules for some alulus C, then the eager T

strategy requires that a rule from CnT may only be applied if no rule from T applies

anywhere in the system.

Simpli�ation rules an be performed eagerly.

4.17. Theorem. Let R be a ground onvergent set of rewrite rules, and A be a set

of simpli�ation rules. If � is an R-solution of P ; ;; ;, then there exists a sequene

P ; ;; ;

�

=)

B[A

;; ;;S

under the eager A strategy suh that �

S

�

�

X

R

�, where X = Vars(P ).

The proof proeeds as before, with the exeption that in the indution step, we

must use a simpli�ation step if one applies; as noted above, the onditions of a

simpli�ation rule ensure that the indution in the ompleteness proof goes through.

One of the most useful simpli�ation rules is reduing the problem set by the set of

rules R. From an abstrat point of view, we may motivate suh equational inferenes

as follows. If u�

�

 !

E

v� and u

0

�

 !

E

u, then, sine equational proofs are losed

under instantiation, we have u

0

�

�

 !

E

u�

�

 !

E

v�. Thus, we an not hange the set
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of solutions by performing equational inferenes on the problem terms themselves,

for example, by reduing them.

From the point of view of our alulus, we might observe that in the rule Narrow

just introdued, if no appliation of Variable Elimination is ever applied to a variable

from the system on the left side, then the set of solutions is unhanged by this

transformation: the substitution generated must in this ase apply only to l and

r, and hene we have, at the ground level, replaed e[u℄�� = e[l℄�� = e[l�℄� with

e[r�℄�. Sine the properties of � were not involved, this means that e�etively we

have done a rewrite step u[l�℄ �!

R

u[r�℄. Alternately, we might say that if you end

up doing Variable Elimination on x=

?

t for x 2 Dom(�) for some solution �, then

you are assuming that x� = t�; this uts down on the number of possible solutions.

The resultant rule is:

Redue (=)

red

):

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl

?

=u�

S

g [ C;S

�

=) fe[r�℄g [ P ;C;S [ [�℄

where l �! r is a fresh variant from R (note that the variables in Dom(�) our

only in r), and where the last line involves only Trivial, Deomposition, and Variable

Elimination applied to the variables from l (i.e., l� = u).

Note that in the ontext of B, we are losing some \basiness" by instantiating

fully the right-hand side r; below we shall onsider how to reover some of the basi

restrition lost in this fashion.

4.18. Proposition. The Eager Redue Strategy is omplete for B and N .

Historially, the narrowing alulus was the �rst to be invented, by Fay [1979℄;

the basi narrowing alulus was developed by Hullot [1980℄, and it was observed

by R�ety [1987℄ that redution needed to be modi�ed in this setting. A study of

basi narrowing with redution, to whih our treatment is heavily indebted, may be

found in [Nutt, R�ety and Smolka 1989℄. In the next two setions we present further

re�nements whih may also be found in [Bokmayr, Krisher and Werner 1992℄ and

[Nutt et al. 1989℄. For a omprehensive study of basi inferene systems, the reader

is referred to [Bahmair, Ganzinger, Lynh and Snyder 1995℄ and to [Nieuwenhuis

and Rubio 2001℄ (Chapter 7 of this Handbook).

4.4.3. Redex orderings and variable abstration

One of the useful properties of onvergent systems mentioned above is that any

strategy whih an �nd a redex in a reduible term is suÆient for reduing terms

to normal form, and hene for generating rewrite proofs. For example, at the ground

level we might always look for redies in depth-�rst, left-to-right order. More gen-

erally, we may de�ne a redex ordering �

red

as an ordering on the positions in an

equation whih ontains the proper subterm ordering (i.e., for any u[u

0

℄ with u 6= u

0

,
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we have u

0

�

red

u). Before onsidering whether a term t is reduible at a position

� by some rule, we must onsider all positions �

0

�

red

�. The ompleteness proof

ould be sharpened by suh an ordering simply by adding that we must hoose the

minimal redex aording to the redex ordering (suh a redex must be innermost).

In suh a ase, the positions less than this redex may be assumed to be irreduible.

No further narrowing steps need be performed at suh positions, and in fat, we

ould remove these parts of the term and move them into the solved part of the

system to enfore this.

Variable Abstration (=)

abst

):

fe[s℄g [ P ;C;S =) fe[x℄g [ P ; fx

?

= sg [ C;S

if x is a fresh variable.

A new version of the narrowing rule ould then be presented whih abstrats out

terms whih are known to be redued.

Redex Ordered Narrow (=)

ron

):

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

�

=)

abst

fe

0

[r℄g [ P ;C� [ C

0

;S� [ [�℄

where u ours at position � in e, and Variable Abstration is applied eagerly to

all positions �

0

�

red

� in e to obtain e

0

.

The substitution of this version of Narrow in N preserves ompleteness; the

fundamental idea is that whenever a term (at the ground level in our ompleteness

proof) may be assumed to be redued, it may be moved into the onstraint part

of the system without losing ompleteness. This leads to a further use for Variable

Abstration in propagating what is known about redued terms: if a term ours

in S, then (at the ground level) it may be assumed to be redued, and hene other

ourrenes of this term may be abstrated out.

Propagation:

fe[u℄g [ P

0

;C; fx � t[s℄g [ S =)

prop

fe[y℄g [ P

0

;C; fx � t[s℄; y � sg [ S

if u�

S

= s is a non-variable and y is a fresh variable.

This rule is a simpli�ation rule if we hange the omplexity measure in the proof

to

hM; i; n

1

; n

2

; n

3

i

where the additional omponent i is the number of non-variable symbols ourring

in P . Clearly it hanges the solution � of a system to a new solution �fy 7! s�g

whih satis�es the ondition for a simpli�ation rule.

Returning to our Redue rule, we observe that in the ontext of B, Redue may

instantiate terms into r that are known to be redued; Propagation an remove these

again. The ombination of Redution with Eager Propagation e�etively gives us

the more omplex form of \basi simpli�ation" desribed for example in [Bahmair

et al. 1995℄ and [Nutt et al. 1989℄, see also [Nieuwenhuis and Rubio 2001℄ (Chapter 7

of this Handbook).
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4.4.4. Failure rules

Unlike our presentation of the alulus U , we have hosen here not to present failure

rules from the outset, in order to highlight the essential issues �rst. The onditions

under whih sequenes may fail are of two kinds. First, the failure rules for U

(Symbol Clash and Our Chek) may be applied to the sets C and S as before,

sine these represent uni�ation problems; however, in this ase the orresponding

Solve, Narrow, or Redue would simply not be performed.

The seond lass of onditions basially amount to heking for violations of the

reduibility onditions in a system. At the ground level during the ompleteness

proof, the substitution � is kept redued, and in addition, ertain assumptions an

be made about the existene of redies in terms. However, we have to be areful, as

our proof only allows us to assume that all substitutions are R-redued, and that

no redex may be redued below its root, or at the root by an equation of lower

index.

This leads to the following rule:

Bloking (=)

blok

):

P ;C;S =) ?

if some term in S is R-reduible, or if some term in C is reduible below the root.

The Eager Bloking Strategy is omplete, sine the ompleteness proof requires

the onverse of the ondition of this rule at all times. Note that this rule ould

be applied in the middle of a omposite rule, for example, just after moving the

equation into the set C in Narrow.

In order to aount for redution at the top of equations in C, it is preferable to

add a further restrition to our Narrowing rule:

Narrow (=)

nar

):

fe[u℄g[P ;C;S =)

lp

fe[r℄g[ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

where l �! r is a fresh variant from R and l�

S

� is not the instane of the left-side

of any rule of lower index from R.

This rule is onsistent with Redex Orderings.

5. Semanti approahes to E-uni�ation

The syntati approahes to E-uni�ation introdued above an be seen as exten-

sions of the rule-based approah to syntati uni�ation, whih use the identities

de�ning the equational theory E to ome up with additional transformation rules.

In ontrast, semanti approahes to E-uni�ation try to utilize algebrai properties

of the models of the equational theories. The two most prominent instanes of the

approah are
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1. Uni�ation in Boolean algebras and rings [B�uttner and Simonis 1987, Martin

and Nipkow 1989b, Martin and Nipkow 1989a℄, and its generalization to �nite

and to primal algebras [B�uttner 1988, B�uttner, Estenfeld, Shmid, Shneider

and Tid�en 1990, Nipkow 1990, Kirhner and Ringeissen 1994℄, and

2. Uni�ation modulo the theories ACU, ACUI, and AG (see subsetion 3.4 for

referenes to result on uni�ation modulo these theories).

In the following, we onentrate on the approah used in the seond ase sine it an

be generalized to a whole lass of equational theories, alled ommutative theories

in [Baader 1989b℄ and monoidal theories in [Nutt 1990℄. For suh theories, uni�a-

tion an be redued to solving linear equations in a orresponding semiring.

13

In the

following, we introdue the lass of ommutative/monoidal theories, show how the

orresponding semiring is de�ned, and how uni�ation in ommutative/monoidal

theories an be redued to solving linear equations in this semiring. In ontrast to

the syntati approahes introdued above, general uni�ation problems annot be

solved diretly by the semanti approah desribed below. However, for ommuta-

tive/monoidal theories, the known tehniques for ombining uni�ation algorithms

an always be used to extend an algorithm for uni�ation with onstants to an

algorithm for general uni�ation [Baader and Nutt 1996℄.

The theories

ACU := ff(x; y) � f(y; x); f(f(x; y); z) � f(x; f(y; z)); f(x; e) � xg;

ACUI := ACU [ ff(x; x) � xg;

AG := ACU [ ff(x; i(x)) � eg

will be used as examples throughout this setion. The introdution of the lass of

ommutative/monoidal theories was motivated by the observation that the known

algorithms for uni�ation modulo these three theories have many ommon features.

5.1. Uni�ation modulo ACU, ACUI, and AG: an example

We will �rst restrit our attention to elementary uni�ation, and then show how

the methods an be extended to uni�ation with onstants.

Elementary uni�ation

To illustrate how the algorithms for elementary uni�ation modulo these three

theories work, let us onsider the problem of unifying the two terms f(x; f(x; y))

and f(z; f(z; z)).

Let us start with the theory ACU. Obviously, the substitution �

1

:= fx 7!

z

1

; y 7! z

1

; z 7! z

1

g is a syntati uni�er of this pair of terms, and thus also

an ACU-uni�er of �

ACU

:= ff(x; f(x; y))=

?

ACU

f(z; f(z; z))g. There are, however,

ACU-uni�ers of �

ACU

that are not syntati uni�ers of the two terms: �

2

:= fx 7!

13

A semiring is similar to a ring, with the only di�erene being that its addition is just required

to form an Abelian monoid, and not neessarily an Abelian group.
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e; y 7! f(z

2

; f(z

2

; z

2

)); z 7! z

2

g is an example of suh a uni�er, and �

3

:= fx 7!

f(z

3

; f(z

3

; z

3

)); y 7! e; z 7! f(z

3

; z

3

)g is another one. None of these substitutions

is a most general ACU-uni�er of �

ACU

, but their \ombination"

� := fx 7! f(x�

1

; f(x�

2

; x�

3

)); y 7! f(y�

1

; f(y�

2

; y�

3

));

z 7! f(z�

1

; f(z�

2

; z�

3

))g

=

ACU

fx 7! f(z

1

; f(z

3

; f(z

3

; z

3

))); y 7! f(z

1

; f(z

2

; f(z

2

; z

2

)));

z 7! f(z

1

; f(z

2

; f(z

3

; z

3

)))g

is. For example, �

2

an be obtained as an ACU-instane of � by applying the

substitution fz

1

7! e; z

3

7! eg. More generally, any �nite olletion �

1

; : : : ; �

n

of

ACU-uni�ers of a given ACU-uni�ation problem an be ombined in this way to a

new ACU-uni�er �, whih has all the uni�ers �

i

as ACU-instanes. In our example,

there still remains the question of how we have found the three uni�ers �

1

; �

2

; �

3

,

and why their ombination is a most general ACU-uni�er of the problem.

In order to explain how we ame up with these uni�ers, assume that � is an ACU-

uni�er of �

ACU

, and that z

0

is a variable introdued by � , i.e., z

0

ours in (at least)

one of the terms x�; y�; z� . It is easy to see that f(x; f(x; y))� =

ACU

f(z; f(z; z))�

implies that the number of ourrenes of z

0

in f(x; f(x; y))� oinides with the

number of ourrenes of z

0

in f(z; f(z; z))� . Thus, if jx� j

z

0

; jy� j

z

0

; jz� j

z

0

respetively

denote the number of ourrenes of z

0

in x�; y�; z� , then we have 2jx� j

z

0

+ jy� j

z

0

=

3jz� j

z

0

, i.e., the numbers jx� j

z

0

; jy� j

z

0

; jz� j

z

0

are nonnegative integer solutions of the

linear equation

2x+ y = 3z:

Thus, every variable introdued by an ACU-uni�er of a given ACU-uni�ation prob-

lem yields a non-trivial

14

solution of the linear equation orresponding to the prob-

lem in the semiring of all nonnegative integers (with addition and multipliation as

semiring operations). For the uni�er � introdued above, the variable z

1

yields the

solution (1; 1; 1), z

2

yields (0; 3; 1), and z

3

yields (3; 0; 2). What makes these three

solutions speial is that they are the minimal non-trivial solutions of 2x + y = 3z

(w.r.t. the omponent-wise �-ordering on triples). Consequently, any solution an

be obtained as a (nonnegative) linear ombination of these three solutions.

Conversely, a substitution that introdues only variables (or free onstants)

orresponding to solutions of the linear equation is an ACU-uni�er of the or-

responding ACU-uni�ation problem. For example, the substitution � := fx 7!

f(z

0

f(z

00

; f(z

00

; z

00

))); y 7! f(z

0

; f(z

0

; f(z

0

; z

0

))); z 7! f(z

0

; f(z

0

f(z

00

; z

00

)))g is an

ACU-uni�er of �

ACU

sine 2 � 1 + 4 = 3 � 2 and 2 � 3 + 0 = 3 � 2. The solutions

(1; 4; 2) and (3; 0; 2) an be obtained as linear ombination of the minimal solu-

tions:

(1; 4; 2) = 1 � (1; 1; 1) + 1 � (0; 3; 1) + 0 � (3; 0; 2);

(3; 0; 2) = 0 � (1; 1; 1) + 0 � (0; 3; 1) + 1 � (3; 0; 2):

14

Variables not introdued by the uni�er orrespond to the trivial solution (0; : : : ; 0).
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This fat an be used to obtain a substitution � suh that u� =

ACU

u�� for all

u 2 fx; y; zg: � := fz

1

7! z

0

; z

2

7! z

0

; z

3

7! z

00

g.

To sum up, we have seen that a given elementary ACU-uni�ation problem or-

responds to a system

15

of linear equations, whih must be solved in the semir-

ing N of all nonnegative integers. A most general ACU-uni�er of the problem

is obtained by ombining the uni�ers orresponding to the (�nitely many) min-

imal solutions of the system of linear equations. The important property of the

set of minimal solutions is that it generates all solutions as linear ombinations

in N . The fat that this set is always �nite is an easy onsequene of Dikson's

Lemma [Dikson 1913℄. Methods for omputing this set an, for example, be found

in [Huet and Lang 1978, Lambert 1987, Clausen and Fortenbaher 1989, Boudet

et al. 1990, Pottier 1991, Domenjoud 1991, Contejean and Devie 1994, Filgueira

and Tom�as 1995℄.

The theory ACUI an be treated similarly, with the only di�erene being that

the semiring N must be replaed by the Boolean semiring BS, whih onsists

of the truth values 0 and 1, and has onjuntion as its multipliation and dis-

juntion as its addition operation. In fat, modulo ACUI it is no longer ne-

essary that the numbers of ourrenes of variables on the left-hand side and

the right-hand side of the equation oinide. It is suÆient that eah variable

that ours on the right-hand side also ours on the left-hand side and vie

versa. Thus, the linear equation orresponding to the ACUI-uni�ation problem

�

ACUI

:= ff(x; f(x; y))=

?

ACUI

f(z; f(z; z))g is x+ y = z, and it is easy to see that

all solutions in BS an be generated as linear ombinations in BS of the solutions

(1; 0; 1) and (0; 1; 1). The most general ACUI-uni�er obtained from this generating

set of solutions is �

0

:= fx 7! z

1

; y 7! z

2

; z 7! f(z

1

; z

2

)g. The ACU-uni�er �

1

from

above is also an ACUI-uni�er of �

ACUI

, and it an be obtained as an ACUI-instane

of �

0

via the substitution �

0

:= fz

1

7! z

1

; z

2

7! z

1

g. Sine the Boolean semiring BS

is �nite, there always exists a �nite set of solutions that generates all solutions as

linear ombinations in BS.

For the theory AG, the presene of the inverse operation leads to the fat

that both the oeÆients and the solutions of the linear equations orre-

sponding to an AG-uni�ation problem may also be negative integers. Thus,

the semiring to be onsidered here is an fat a ring, namely the ring Z of

all integers. The linear equation orresponding to the AG-uni�ation problem

�

AG

:= ff(x; f(x; y))=

?

AG

f(z; f(z; z))g oinides with the one obtained from

�

ACU

, but in Z there exists a smaller set generating all solutions, onsist-

ing of (0; 3; 1) and (1; �2; 0). Thus, the substitution �

00

:= fx 7! z

2

; y 7!

f(z

1

; f(z

1

; f(z

1

; f(i(z

2

); i(z

2

))))); z 7! z

1

g is a most general AG-uni�er of �

AG

.

General methods for omputing suh a �nite generating set of solutions of systems

of linear equations in Z an, for example, be found in [Knuth 1981, Kannan and

Bahem 1979, Iliopoulos 1989a, Iliopoulos 1989b℄.

15

Every equation in the uni�ation problem yields one linear equation.
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Uni�ation with onstants

For ACU-uni�ation with onstants, there are two di�erent ways of extending the

approah for elementary uni�ation to the ase of uni�ation with onstants. The

approah originally proposed by Stikel [1975℄ and [1981℄ �rst solves an elementary

ACU-uni�ation problem, whih is obtained by treating free onstants as variables,

and then modi�es the solutions of the elementary problem to obtain solutions of the

problem with onstants. The other approah, due to Livesey and Siekmann [1975℄

and desribed in more detail in [Herold and Siekmann 1987℄, handles free onstants

with the help of inhomogeneous linear equations. In the following, we restrit our

attention to this seond method.

As an example, we slightly modify the ACU-uni�ation problem from above. Let

�

0

ACU

:= ff(x; f(x; y))=

?

ACU

f(a; f(z; f(z; z)))g, where a is a (free) onstant. Of

ourse, the numbers of ourrenes jx� j

z

0

; jy� j

z

0

; jz� j

z

0

of a variable z

0

introdued by

an ACU-uni�er of this problem must still solve the (homogeneous) linear equation

2x+ y = 3z. For the free onstant a, however, one must also take into aount that

a already ours one on the right-hand side. Thus, the numbers jx� j

a

; jy� j

a

; jz� j

a

must solve the following inhomogeneous equation:

2x+ y = 3z + 1:

The minimal (non-trivial) nonnegative integer solutions of this equation are (0; 1; 0)

and (2; 0; 1). Every nonnegative integer solution of the equation an be obtained

as the sum of one of the minimal solution and a solution of the orresponding

homogeneous equation 2x + y = 3z. Consequently, eah of the minimal solutions

of the inhomogeneous equation together with the set of all minimal solutions of

the homogeneous equation gives rise to one element of the minimal omplete set of

ACU-uni�ers of the problem:

ffx 7! f(z

1

; f(z

3

; f(z

3

; z

3

))); y 7! f(a; f(z

1

; f(z

2

; f(z

2

; z

2

))));

z 7! f(z

1

; f(z

2

; f(z

3

; z

3

)))g;

fx 7! f(a; f(a; f(z

1

; f(z

3

; f(z

3

; z

3

))))); y 7! f(z

1

; f(z

2

; f(z

2

; z

2

)));

z 7! f(a; f(z

1

; f(z

2

; f(z

3

; z

3

))))g g:

In the general ase, one must solve one inhomogeneous equation for eah free on-

stant ourring in the uni�ation problem. The uni�ers in the minimal omplete

set then orrespond to all possible ombinations of the minimal solutions of these

inhomogeneous equations. For example, if the uni�ation problem ontains the free

onstants a; b; , and if the sets of minimal solutions of the inhomogeneous equations

indued by a; b, and , respetively, have ardinality 2; 3, and 5, then the minimal

omplete set is of ardinality 2 � 3 � 5 = 30.

Uni�ation with onstants modulo the theories ACUI and AG an be treated a-

ordingly. In both ases, one works in the semiring orresponding to the theory, and

�rst determines a generating set of solutions for the system of homogeneous equa-

tions orresponding to the uni�ation problem. Then, one onsiders the systems of
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inhomogeneous equations indued by the free onstants, and for eah system deter-

mines �nitely many solutions suh that all solutions of this system of inhomogeneous

equations an be represented as the sum of one of these partiular solutions and

a solution of the homogeneous equation. From these sets of solutions, the minimal

omplete set of uni�ers an be omputed, as illustrated in the above example.

For AG, the fat that the orresponding semiring is a ring implies that taking

one partiular solution for eah system of inhomogeneous equations is suÆient.

Consequently, AG is unitary both for elementary uni�ation and for uni�ation

with onstants, whereas the other two theories, though unitary for elementary uni-

�ation, are only �nitary for uni�ation with onstants.

5.2. The lass of ommutative/monoidal theories

In order to generalize this semanti approah to a whole lass of theories, let us try

to determine the relevant ommon features of the theories ACU, ACUI, and AG.

Using a rather syntati point of view, we may observe that all three theories are

onerned with an assoiative-ommutative binary funtion symbol f with a unit e.

In addition, the signature of AG ontains a unary funtion symbol i, whih behaves

like an endomorphism for f and e, i.e., i(f(x; y)) =

AG

f(i(x); i(y)) and i(e) =

AG

e.

This observation motivates the following de�nition of monoidal theories [Nutt 1990℄:

5.1. Definition. An equational theory E is alled monoidal i� it satis�es the

following properties:

1. Sig(E) ontains a binary funtion symbol f and a onstant symbol e, and all

other funtion symbols in Sig(E) are unary.

2. The symbol f is assoiative-ommutative with unit e, i.e., f(f(x; y); z) =

E

f(x; f(y; z)), f(x; y) =

E

f(y; x), and f(x; e) =

E

x.

3. Every unary funtion symbol h 2 Sig(E) is an endomorphism for f and e, i.e.,

h(f(x; y)) =

E

f(h(x); h(y)) and h(e) =

E

e.

Obviously, the theories ACU, ACUI, and AG are monoidal. Other examples of

monoidal theories are the theories E

h;g

[ E

h;e

[ ACU

g

, E

h;g

[ E

h;e

[ ACUI

g

, and

E

h;g

[ E

h;e

[ AG

g

introdued in subsetion 3.4. The theory of Boolean rings and

the theory of ommutative rings are not monoidal sine their signatures ontain

two binary funtion symbols.

A drawbak of the above de�nition of monoidal theories is that the signature and

the axioms de�ning a theory play an important rôle. In fat, the theory of Abelian

groups allows for many di�erent axiomatizations, some of whih do not satisfy the

de�nition of a monoidal theory. For example, let g be a binary funtion symbol and

e be a onstant symbol. The theory

AG

0

:= fg(x; x) � e; g(x; e) � e; g(g(x; g(e; y)); g(e; z)) � g(g(z; g(e; y)); g(e; x))g

is not monoidal sine g is neither assoiative nor ommutative modulo AG

0

. Never-

theless, any model of AG

0

is an Abelian group, where the group operations f and

i are de�ned as f(x; y) := g(x; g(e; y)) and i(x) := g(e; x).
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In order to apture theories like AG

0

as well, one must take a more semanti

point of view. A ommon feature of the free algebras de�ned by ACU, ACUI,

and AG is that the �nitely generated free algebras are diret powers of the free

algebras in one generator. For example, it is well known that the free Abelian

group in one generator is just the additive group of the integers, and that the free

Abelian group in n generators is the n-fold diret produt of this group. As shown

in [Baader 1989b℄, this ommon feature an niely be generalized in the ategorial

setting introdued in subsetion 3.3.3:

5.2. Definition. Let E be an equational theory and F := Sig(E). Then E is a

ommutative theory i� C

F

(E) is a semi-additive ategory,

16

i.e.,

1. C

F

(E) has a zero objet.

2. For every pair of objets in C

F

(E), their oprodut is also their produt.

In algebrai terms, the �rst ondition means that the initial algebra in V (E), i.e.,

T (F ; ;)=

=

E

, is of ardinality 1. Sine the oprodut of T (F ;X )=

=

E

and T (F ;Y)=

=

E

is simply T (F ;X ℄ Y)=

=

E

(where ℄ denotes disjoint union), the seond ondition

means that the free algebra T (F ;X ℄ Y)=

=

E

is isomorphi to the diret produt

T (F ;X )=

=

E

� T (F ;Y)=

=

E

. In partiular, this implies that the �nitely generated

E-free algebras are diret powers of the E-free algebra in one generator.

The theory of Abelian groups satis�es these properties (and thus is ommuta-

tive). The theory of Boolean rings and the theory of ommutative rings are not

ommutative in the sense of the above de�nition sine the initial algebras ontain

two elements (the onstants 0 and 1).

In order to obtain a more algebrai de�nition of ommutative theories, whih

also makes lear that all monoidal theories are ommutative, we need two more

notions from universal algebra. A onstant symbol e 2 F is alled idempotent in E

i� f(e; : : : ; e) =

E

e holds for all f 2 F . Any term t(x

1

; : : : ; x

n

) over the signature F

de�nes an n-ary impliit operation o

t

in V (E): for an algebra A 2 V (E), the result

of applying o

t

to elements a

1

; : : : ; a

n

of the arrier of A is obtained by evaluating

t(a

1

; : : : ; a

n

) in A. For example, the terms g(x; g(e; y)) and g(e; x) de�ne a binary

and a unary impliit operation, whih together with the onstant e satisfy the

axioms of Abelian groups in all models of AG

0

, i.e., all algebras in V (AG

0

).

5.3. Proposition. Let E be an equational theory and F := Sig(E). Then E is a

ommutative theory i�

1. The signature F ontains a onstant e that is idempotent in E.

2. There is a binary impliit operation � in V (E) suh that

(a) The onstant e is a unit for � in all algebras in V (E).

(b) For any n-ary funtion symbol h 2 F , the identity h(x

1

� y

1

; : : : ; x

n

� y

n

) �

h(x

1

; : : : ; x

n

) � h(y

1

; : : : ; y

n

) holds in all algebras in V (E).

16

See, e.g., [Herrlih and Streker 1973, Baader 1989b℄ for a more preise de�nition of and more

information on semi-additive ategories.
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Although it is not expliitly required by the proposition, the impliit operation �

turns out to be assoiative and ommutative. Using this proposition, it is easy to

show that the theory AG

0

is indeed ommutative: the impliit operation � is de�ned

by the term g(x; g(e; y)).

Another easy onsequene of the proposition is that every monoidal theory is

ommutative: just take the expliit assoiative-ommutative binary operation f in

the de�nition of monoidal theories as the impliit operation �. The theory AG

0

is an example of a ommutative theory that is not monoidal. However, it an be

shown [Baader and Nutt 1996℄ that every ommutative theory an be turned into

an \equivalent" monoidal theory with the help of a signature transformation. For

this reason, one an in priniple use both notions synonymously.

5.3. The orresponding semiring

Let E be a ommutative theory with Sig(E) = F . The semiring S

E

orresponding

to E is obtained by onsidering the E-free algebra in one generator, say x, and then

taking the set of all endomorphisms of this algebra. Eah suh endomorphism is

uniquely determined by the image of the generator x. The multipliation operation

\�" in S

E

is just omposition of morphisms, and the addition operation \+" is ob-

tained by argument-wise appliation of the impliit operation � of the ommutative

theory E: (� + �)(x) := �(x) � �(x).

As an example, we onsider the ommutative theory ACUI, where the ex-

pliit operation f serves as the impliit operation �. Sine the ACUI-free alge-

bra generated by x onsists of two equivalene lasses, with representatives x

and e, respetively, there are two possible endomorphisms: 0, whih is de�ned

by x 7! e, and 1, whih is de�ned by x 7! x. It is easy to see that the op-

eration \+" in S

ACUI

behaves like disjuntion and \�" like onjuntion on the

truth values 0 and 1. For example, (0 � 1)(x) = 1(0(x)) = 1(e) = e = 0(x) and

(0 + 1)(x) = f(0(x); 1(x)) = f(e; x) =

ACUI

x = 1(x). Consequently, S

ACUI

is the

two-element Boolean semiring BS.

A well-known result for semi-additive ategories [Herrlih and Streker 1973℄ says

that morphisms � in the semi-additive ategory C

F

(E) an be represented as matri-

esM

�

over S

E

suh that omposition of morphisms orresponds to matrix multipli-

ation, i.e.,M

��

=M

�

�M

�

. For example, the morphism �: T (F ; fx

1

; x

2

g)=

=

ACUI

!

T (F ; fy

1

; y

2

g)=

=

ACUI

de�ned by �(x

1

) := f(y

1

; y

2

); �(x

2

) := y

2

orresponds to the

matrix

M

�

=

 

fx

1

7! y

1

g fx

1

7! y

2

g

fx

2

7! eg fx

2

7! y

2

g

!

=

 

1 1

0 1

!

:

The seond equality depends on the fat that all E-free algebras in one generator

are isomorphi, and thus a morphism �

ij

: T (F ; fx

i

g)=

=

E

! T (F ; fy

j

g)=

=

E

an be

seen as an endomorphism of T (Ffxg)=

=

E

, i.e., an element of S

E

.
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5.4. Results on uni�ation in ommutative theories

Let E be a ommutative theory with Sig(E) = F . In subsetion 3.3.3 we

have seen that any E-uni�ation problem over F orresponds to a parallel pair

�; � : T (F ; I)=

=

E

! T (F ;X )=

=

E

of morphisms in C

F

(E), and that an E-uni�er

orresponds to a morphism Æ with domain T (F ;X )=

=

E

suh that �Æ = �Æ holds in

C

F

(E).

If we translate the morphisms into matries over S

E

, this means that an E-

uni�er of the parallel pair h�; �i orresponds to a matrix M over S

E

suh that

M

�

�M = M

�

�M . This orrespondene is used in [Nutt 1990, Baader 1993℄ to

haraterize the uni�ation types of ommutative theories by algebrai properties

of the orresponding semirings. The rows of the matrix M are n-tuples of elements

of S

E

, written as row vetors. We will denote the set of all suh n-dimensional row

vetors over S

E

by S

n

E

.

5.4. Theorem. A ommutative theory E is unitary w.r.t. elementary uni�ation

i� the orresponding semiring S

E

satis�es the following ondition: for all m;n � 1

and all m� n-matries M

1

;M

2

over S

E

the set

U(M

1

;M

2

) := fv 2 S

n

E

jM

1

� v =M

2

� vg

is �nitely generated, i.e., there exist k � 0 and v

1

; : : : ; v

k

2 S

n

E

suh that

U(M

1

;M

2

) = fv

1

� s

1

+ � � �+ v

k

� s

k

j s

1

; : : : ; s

k

2 S

E

g.

If fv

1

; : : : ; v

k

g is suh a �nite generating set for U(M

�

;M

�

), then the matrix whose

olumns are the vetors v

1

; : : : ; v

k

orresponds to the most general E-uni�er of

h�; �i.

Uni�ation with onstants an also be reformulated as a problem in C

F

(E) for

F = Sig(E). To this end we view onstants as speial variables that must always

be substituted for themselves. Let C be a �nite set of free onstants. We say that

a morphism �: T (F ;X [ C)=

=

E

! T (F ;Y [ C)=

=

E

respets the onstants in C i�

� =  for all  2 C. In this ase, the matrix M

�

has a speial form:

M

�

=

 

M

h

�

M

i

�

0 U

!

;

whereM

h

�

is an jX j�jYj-matrix,M

i

�

is an jX j�jCj-matrix, 0 is the jCj�jYj-matrix

with all entries 0, and U is the jCj � jCj-unit matrix. The 0-submatrix is due to the

fat that � does not substitute terms with variables for onstants, and the unit

matrix expresses that � maps any onstant to itself.

An E-uni�ation problem with onstants from a �nite set C orresponds to a

parallel pair h�; �i of morphisms respeting the onstants in C, and eah E-uni�er

Æ of this pair also orresponds to a morphism respeting C. For the omponents of

the orresponding matries, the fat that Æ is a uni�er of h�; �i, i.e., thatM

�

�M

Æ

=

M

�

�M

Æ

, leads to the following equations:

M

h

�

M

h

Æ

= M

h

�

M

h

Æ

;
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M

h

�

M

i

Æ

+M

i

�

= M

h

�

M

i

Æ

+M

i

�

:

The �rst equation is a system of homogeneous equations in S

E

, whereas the seond

is a system of inhomogeneous equations.

From these observations one an derive the following haraterization of the type

\at most �nitary" for uni�ation with onstants in ommutative theories:

17

5.5. Theorem. Let E be a ommutative theory that is unitary w.r.t. elementary

uni�ation. Then E is at most �nitary w.r.t. uni�ation with onstants i� the

orresponding semiring S

E

satis�es the following ondition: for all m;n � 1, all

m � n-matries M

1

;M

2

over S

E

, and all u

1

; u

2

2 S

m

E

, there exist �nitely many

v

1

; : : : ; v

k

2 S

n

E

suh that

fw 2 S

n

E

jM

1

� w + u

1

=M

2

� w + u

2

g = fv

i

+ v j 1 � i � k; v 2 U(M

1

;M

2

)g:

This onditions means that �nitely many partiular solutions of the system of in-

homogeneous equations, M

1

� x + u

1

= M

2

� x + u

2

, together with the solutions

U(M

1

;M

2

) of the orresponding system of homogeneous equations,M

1

�x =M

2

�x,

generate all solutions of the system of inhomogeneous equations. The assumption

that E is unitary w.r.t. elementary uni�ation implies that U(M

1

;M

2

) is �nitely

generated. The omplete set of E-uni�ers an now be built from the generating set

of U(M

1

;M

2

) and the �nitely many partiular solutions of the systems of inhomoge-

neous equations orresponding to the free onstants as illustrated in subsetion 5.1.

We lose this setion by mentioning some additional results on uni�ation in

ommutative theories. Let E be a ommutative theory.

1. For elementary uni�ation, E is either unitary or of type zero.

2. If S

E

is �nite, then E is unitary for elementary uni�ation and at most �nitary

for uni�ation with onstants.

3. If S

E

is a ring and E is unitary for elementary uni�ation, then E is also unitary

for uni�ation with onstants.

4. If E is at most �nitary for uni�ation with onstants, then E is also at most

�nitary for uni�ation with linear onstant restritions, and thus also for general

uni�ation.

Proofs of these and other interesting results on uni�ation in ommutative/monoidal

theories an be found in [Baader 1989b, Nutt 1990, Baader 1993, Baader and

Nutt 1996℄.

Compared to syntati approahes to uni�ation, the semanti approah intro-

dued here has the disadvantage that it annot treat general uni�ation problems

diretly. In fat, for a ommutative theory E, we have onsidered the ategory

C

F

(E) for F = Sig(E), and have used the fat that this ategory is semi-additive.

For an extended signature F

1

� F , the ategory C

F

1

(E) would no longer be semi-

additive, and thus the presented approah to uni�ation in ommutative theories

annot be applied diretly. For uni�ation with onstants, we have shown that one

an still work within the ategory C

F

(E) by onsidering speial morphisms. For

17

Reall that \at most �nitary" means unitary or �nitary.
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arbitrary free funtion symbols suh an approah does not appear to be possible.

The general methods for ombining uni�ation algorithms desribed in the next

setion an, however, overome this problem (see result 4. from above).

6. Combination of uni�ation algorithms

In appliations of equational uni�ation in automated dedution, one is often faed

with the problem of unifying terms ontaining several funtion symbols whose prop-

erties are de�ned by equational theories. For example, assoiative-ommutative

funtion symbols often ome in pairs (e.g., the addition operation + and the multi-

pliation operation � of rings). However, a given AC- or ACU-uni�ation algorithm

an only treat terms ontaining one of these two symbols, but not both. In pro-

gram veri�ation one may enounter data strutures suh as sets and lists, and their

ombination (e.g., sets of lists). Sine union of sets ([) is assoiative, ommutative,

and idempotent, and the append operation for lists (app) is assoiative, uni�ation

of terms ontaining both ACI- and A-symbols is of interest in this setting. Thus,

the question arises whether we an use the known ACI

[

- and A

app

-uni�ation al-

gorithms for unifying terms ontaining both [ and app modulo ACI

[

[A

app

. This

is an instane of the following ombination problem for uni�ation algorithms:

Assume that E

1

; : : : ; E

n

are equational theories over pairwise disjoint sig-

natures. How an algorithms for uni�ation modulo E

i

(i = 1; : : : ; n) be

ombined to an algorithm for uni�ation modulo E

1

[ � � � [ E

n

?

To be more preise, there are two variants of this problem: one an either try

to ombine algorithms omputing omplete sets of uni�ers or deision proedures.

It should also be noted that without the disjointness ondition there annot ex-

ist a general ombination method.

18

For example, as mentioned in setion 3.4,

D

l

f;g

-uni�ation and D

r

f;g

-uni�ation are unitary, whereas uni�ation modulo their

union D

f;g

is in�nitary, whih shows that algorithms omputing �nite omplete sets

of uni�ers annot be ombined in the non-disjoint ase. Setion 3.4 also yields a

negative example for the ombination of deision proedures: D

f;g

-uni�ation and

A

g

-uni�ation are deidable, whereas uni�ation modulo their union is undeidable.

The formulation of the ombination problem given above is still not quite preise

sine it does not speify whih kind of E

i

-uni�ation problems (elementary, with

onstants, or general) the omponent algorithms must be able to handle. As we

shall see below, algorithms for uni�ation with onstants are not quite suÆient:

the ombination method requires algorithms for uni�ation with linear onstant

restritions for the omponent theories E

i

. In partiular, algorithms for general E-

uni�ation an be obtained from algorithms for E-uni�ation with lr by ombining

them with an algorithm for syntati uni�ation (whih treats the free funtion

symbols).

18

There are some approahes that try to weaken the disjointness assumption, but the theories

to be ombined must satisfy rather strong onditions [Ringeissen 1992, Domenjoud, Klay and

Ringeissen 1994℄.



514 Franz Baader and Wayne Snyder

The researh on the ombination problem was triggered by the searh for a

uni�ation algorithm that an deal with terms ontaining several assoiative-

ommutative funtion symbols and free symbols [Stikel 1975, Stikel 1981, Fages

1984, Fages 1987, Herold and Siekmann 1987℄. It turned out that the methods used

in this partiular instane of the ombination problem an easily be generalized to

other equational theories, provided that they satisfy ertain restritions (suh as

ollapse-freeness or regularity

19

) on the syntati form of their de�ning identities,

whih make sure that the theories behave similarly to assoiativity-ommutativity

and syntati equality [Kirhner 1985, Tid�en 1986, Herold 1986, Yelik 1987, Boudet

et al. 1989℄.

The problem of ombining algorithms omputing omplete sets of uni�ers was

solved in a very general form by Shmidt-Shau� [1989b℄. His approah imposes no

restrition on the syntati form of the identities. The only requirements on the

omponent theories E

i

are of an algorithmi nature: both E

i

-uni�ation problems

with onstants and so-alled \onstant elimination problems" (see [Shmidt-Shau�

1989b℄ for a de�nition) must be �nitary solvable modulo E

i

. Boudet [1993℄ desribes

a more eÆient ombination algorithm, whih depends on the same requirements

as the one by Shmidt-Shau�.

In the following, we will desribe the ombination method introdued in [Baader

and Shulz 1992, Baader and Shulz 1996℄ in more detail, sine it an be used both

for ombining algorithms omputing omplete sets of uni�ers and for ombining de-

ision proedures. Instead of splitting the algorithmi problem to be solved for the

omponent theories E

i

into two parts (uni�ation with onstants and onstant elim-

ination), this method requires algorithms (deision proedures) for E

i

-uni�ation

with lr. In this setting, Shmidt-Shau�'s ondition that onstant elimination prob-

lems must be �nitary solvable modulo E

i

an be seen as just one way of ensuring

that E

i

-uni�ation with lr is at most �nitary provided that E

i

-uni�ation with

onstants is at most �nitary.

6.1. A general ombination method

Before desribing the ombination method of Baader and Shulz [1992℄ and [1996℄

formally, we illustrate the underlying ideas by a simple example. Let g be a unary

and f be a binary funtion symbol. We onsider the theories A

f

and F

g

:= fg(x) �

g(x)g,

20

and the (elementary) uni�ation problem

�

0

:= fg(f(y; y))

?

=

E

g(x); g(x)

?

=

E

g(y); x

?

=

E

f(y; y)g

modulo their union E := A

f

[F

g

. In a �rst step, we transform �

0

into an equivalent

uni�ation problem in deomposed form, i.e., into a union of an (elementary) A

f

-

19

A theory E is alled ollapse-free if it does not ontain an identity of the form x = t where x

is a variable and t is a non-variable term, and it is alled regular if the left- and right-hand sides

of the identities ontain the same variables.

20

Obviously, =

F

g

is just syntati equality. The \dummy" axiom g(x) � g(x) makes sure that

g belongs to Sig(F

g

).
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uni�ation problem and an (elementary) F

g

-uni�ation problem:

� := fz

?

=

A

f

f(y; y); x

?

=

A

f

f(y; y)g [ fg(z)

?

=

F

g

g(x); g(x)

?

=

F

g

g(y)g:

This has been ahieved by replaing \alien" subterms (in the example, just the term

f(y; y) ourring on the left-hand side of the �rst equation) by new variables and

introduing appropriate new equations (see [Baader and Shulz 1996℄ for a formal

de�nition of this deomposition step).

Unfortunately, it is not suÆient simply to test the \pure" uni�ation problems

obtained this way for solvability. The problem is that these uni�ation problems

still share variables, and the single solutions may instantiate these variables with

inompatible terms. For example, �

1

:= fx 7! f(y; y); z 7! f(y; y)g solves the

A

f

-subproblem, and �

2

:= fx 7! g(x); y 7! g(x); z 7! g(x)g is a solution of the

F

g

-subproblem, but these solutions replae both x and z by di�erent (even non-

uni�able) terms. In order to avoid suh inompatible assignments, we hoose a

theory label for eah variable: in the subproblem orresponding to this theory, the

variable may be instantiated, whereas in the other subproblem the variable must

be treated as a onstant. For example, if we assign

L(x) := L(z) := A

f

and L(y) := F

g

;

then y must be treated as a onstant in the A

f

-subproblem, whereas x and z must

be treated as onstants in the F

g

-subproblem.

This avoids inompatible instantiations of shared variables, but also leads to

a new problem: in the example, the equation g(z)=

?

F

g

g(x) is no longer solvable

sine both z and x must be treated as (di�erent) onstants. This problem an be

overome by hoosing an appropriate variable identi�ation. In the example, x must

be identi�ed with z, whih an be ahieved by replaing every ourrene of z by

x:

�

0

:= fx

?

=

A

f

f(y; y)g [ fg(x)

?

=

F

g

g(x); g(x)

?

=

F

g

g(y)g:

Unfortunately, the solutions �

0

1

:= fx 7! f(y; y)g and �

0

2

:= fy 7! xg of the

pure subproblems still annot be ombined to a solution of their union, sine there

is a yli dependeny between the two substitutions: x is replaed by a term

ontaining y, and y is replaed by a term ontaining x. Suh yli dependenies

between solutions of the pure subproblems an �nally be avoided by hoosing a

linear ordering on the shared variables of the uni�ation problem, whih indues

linear onstant restritions for the subproblems.

These ideas an be formalized as follows. Let E

1

; : : : ; E

n

be non-trivial equational

theories over disjoint signatures. An (E

1

[ � � � [ E

n

)-uni�ation problem � is in

deomposed form i� � = �

1

[� � �[�

n

where eah �

i

is an elementary E

i

-uni�ation

problem. As illustrated in the example, it is easy to transform a given elementary

(E

1

[ � � �[E

n

)-uni�ation problem into an equivalent problem in deomposed form

(see [Baader and Shulz 1996℄ for details). Thus, we may without loss of generality

assume that all our (E

1

[ � � � [ E

n

)-uni�ation problems are in deomposed form
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� = �

1

[ � � � [ �

n

. A variable ourring in � is alled a shared variable i� it ours

in at least two of the pure subproblems �

i

.

Let X be the set of shared variables of � = �

1

[� � �[�

n

. A variable identi�ation

an be represented by a partition � = fP

1

; : : : ; P

k

g of X . For eah of the lasses

P

i

, let x

i

2 P

i

be a representative of this lass, and let X

�

:= fx

1

; : : : ; x

k

g be the

set of these representatives. The substitution that replaes, for all i = 1; : : : ; k, eah

element of P

i

by its representative x

i

is denoted by �

�

. We denote the result of

applying �

�

to eah term in �

i

by �

i

�

�

. For a given partition � of the shared

variables of �, let L : X

�

! f1; : : : ; ng be a labelling funtion, whih assigns a

theory label to eah variable in X

�

, and let < be a linear ordering on X

�

. Using L

and <, eah of the elementary E

i

-uni�ation problems �

i

�

�

an be turned into an

E

i

-uni�ation problem with linear onstant restritions h�

i

�

�

; L;<i: the variables

x 2 X

�

with label L(x) 6= i are treated as (free) onstants in h�

i

�

�

; L;<i, whereas

the other variables are still treated as variables, and the linear onstant restritions

are indued by <.

21

6.1. Proposition. Let � := �

1

[ � � �[�

n

be an (E

1

[ � � �[E

n

)-uni�ation problem

in deomposed form. Then the following statements are equivalent:

1. � is solvable, i.e., there exists an (E

1

[ � � � [ E

n

)-uni�er of �.

2. There exists a partition �, a labelling funtion L : X

�

! f1; : : : ; ng, and a

linear ordering < on X

�

suh that, for all i = 1; : : : ; n, the E

i

-uni�ation

problem with linear onstant restritions h�

i

�

�

; L;<i is solvable.

Assume that solvability of E

i

-uni�ation problems with lr is deidable for i =

1; : : : ; n. For a given elementary (E

1

[ � � � [ E

n

)-uni�ation problem �

0

one an

ompute an equivalent problem in deomposed form � in polynomial time. For

�, there exist only �nitely many di�erent triples (�; L;<), whih means that it

is possible to ompute all possible suh triples, and then test the obtained E

i

-

uni�ation problems with lr for solvability. Thus, proposition 6.1 implies that

solvability of elementary (E

1

[ � � � [ E

n

)-uni�ation problems is deidable. To be

more preise, instead of deterministially omputing all possible triples (�; L;<),

one an also employ a non-deterministi algorithm that \guesses the right tuple"

in polynomial time.

6.2. Theorem. Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint sig-

natures. If solvability of E

i

-uni�ation problems with linear onstant restritions is

deidable (in NP) for i = 1; : : : ; n, then solvability of elementary (E

1

[ � � � [ E

n

)-

uni�ation problems is deidable (in NP).

In general, it is not possible to avoid the non-determinism inherent in this ombi-

nation method [Shulz 1997℄. For example, the deision problem is polynomial for

ACUI-uni�ation with lr, but NP-omplete for general ACUI-uni�ation [Baader

21

Non-shared variables are assumed to be larger than all shared variables, i.e., there are no

restritions for the images of these variables.
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and Shulz 1993b, Kapur and Narendran 1992a℄. This shows that the ombina-

tion of an algorithm for syntati uni�ation with a deision proedure for ACUI-

uni�ation with lr annot be ahieved with the help of a polynomial ombination

method. For regular and ollapse-free theories for whih, in addition, it is possible

to ompute most general uni�ers in polynomial time, one an, however, design a

(deterministi) polynomial ombination proedure [Shulz 1999℄.

The naive ombination algorithm obtained by a diret appliation of proposi-

tion 6.1 is highly non-deterministi, and thus does not lead to satisfatory results

in pratie. Optimizations of the ombination algorithm (whih avoid this unsatis-

fatory behavior in many ases) are desribed in [Kepser and Rihts 1999℄.

Proposition 6.1 an also be used to obtain a method for ombining uni�ation

algorithms, i.e., algorithms omputing �nite omplete sets of uni�ers. In fat, as we

shall see below, given solutions �

i

of the E

i

-uni�ation problems with lr indued

by the triple (�; L;<) an e�etively be ombined into a solution �

1

�� � ���

n

of the

original (E

1

[ � � � [E

n

)-uni�ation problem. For a given (E

1

[ � � � [E

n

)-uni�ation

problem � in deomposed form, let T

1

; : : : ; T

k

be all the triples onsisting of a

partition �, a labelling funtion L, and a linear ordering < on X

�

, and let C

i;j

be

a omplete set of E

i

-uni�ers of the E

i

-uni�ation problem with lr indued by T

j

.

Then the set

k

[

j=1

f�

1

� � � � � �

n

j �

i

2 C

i;j

g

is a omplete set of (E

1

[ � � � [ E

n

)-uni�ers of � (see [Baader and Shulz 1996℄ for

a proof).

6.3. Theorem. Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint sig-

natures that are at most �nitary for E

i

-uni�ation with linear onstant restritions.

Then E

1

[ � � � [ E

n

is at most �nitary for elementary uni�ation.

Although the ombination results (as formulated in theorem 6.2 and theorem 6.3)

only apply to elementary uni�ation in the ombined theory, they an easily be

extended to general uni�ation. In fat, it is easy to see that syntati uni�ation

with lr is deidable and unitary: just ompute the mgu of the uni�ation problem

without lr, and then test whether it satis�es the onstant restritions. Thus, one

an simply take as one of the E

i

's a \free" theory F suh that Sig(F ) ontains all

the free funtion symbols ourring in the general uni�ation problem and =

F

is

the syntati equality on Sig(F )-terms.

6.2. Proving orretness of the ombination method

In order to show soundness of the ombination method (i.e., (2) ! (1) of propo-

sition 6.1), it is suÆient to show that given solutions �

i

of the E

i

-uni�ation

problems with lr indued by the triple (�; L;<) an indeed be ombined into a
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solution �

1

� � � � � �

n

of the original (E

1

[ � � � [E

n

)-uni�ation problem in deom-

posed form � = �

1

[ � � � [ �

n

. First, we ombine �

1

; : : : ; �

n

into a solution � of

��

�

= �

1

�

�

[ � � � [ �

n

�

�

. Obviously, this implies that �

�

� is a solution of �.

Without loss of generality, we may assume that the substitution �

i

maps all

variables with label i to terms ontaining only variables with label j 6= i (whih are

treated as free onstants in �

i

�

�

) or new variables, i.e., variables not ourring in

�. The ombined solution � of ��

�

is de�ned along the linear ordering <.

Let x be the least variable with respet to <, and let i be its label. Sine the

solution �

i

of �

i

�

�

satis�es the onstant restritions indued by <, the term x�

i

does not ontain any variables with index j 6= i. Thus we an simply de�ne x� :=

x�

i

.

Now let x be an arbitrary variable with label i, and let y

1

; : : : ; y

m

be the variables

with labels di�erent from i ourring in x�

i

. Sine �

i

satis�es the onstant restri-

tions indued by <, the variables y

1

; : : : ; y

m

(whih are treated as free onstants in

�

i

�

�

) must be smaller than x. This means that y

1

�; : : : ; y

m

� are already de�ned.

The term x� is now obtained from x�

i

by replaing eah y

k

by y

k

� (k = 1; : : : ;m).

It is easy to see that the substitution � obtained this way satis�es � = �

i

�

(i = 1; : : : ; n), i.e., � is an instane of all the substitutions �

i

. Sine �

i

is an

E

i

-uni�er of �

i

�

�

, this implies that � is also an E

i

-uni�er of �

i

�

�

, and thus an

E-uni�er of �

i

�

�

. Consequently, � is an E-uni�er of ��

�

= �

1

�

�

[ � � � [ �

n

�

�

.

Proving ompleteness of the ombination method (i.e, (1) ! (2) of proposi-

tion 6.1) turns out to be a bit more omplex. In the following, we only give a

sketh of the proof. Assume that � is a solution of the (E

1

[ � � � [ E

n

)-uni�ation

problem in deomposed form � = �

1

[ � � � [�

n

. This solution an be used to de�ne

the orret triple (�; L;<):

1. Two shared variables x; y belong to the same lass of � i� x� =

E

y�.

2. If x� is not a variables, then L(x) = i i� the top symbol of x� belongs to

Sig(E

i

). Otherwise, L(x) := 1 (this is an arbitrary deision).

3. < is an arbitrary linear extension of the strit partial ordering � de�ned by

x � y i� x� is a strit subterm of y�.

It is easy to see that � is also a solution of ��

�

= �

1

�

�

[ � � � [ �

n

�

�

. For eah

i, the substitution � (whih is a substitution of the ombined signature Sig(E

1

) [

� � � [ Sig(E

n

)) an be turned into a Sig(E

i

)-substitution �

i

by replaing alien

subterms in x� (i.e., subterms starting with a symbol not belonging to Sig(E

i

))

by new variables in suh a way that =

E

-equivalent subterms are replaed by the

same variable. Unfortunately, for an arbitrary E-uni�er � of �, the substitution

�

i

obtained this way need not be a solution of the E

i

-uni�ation problem with

lr h�

i

�

�

; L;<i. For this to be true, � must be normalized in a ertain way. One

possibility to obtain an appropriate notion of a normalized substitution is to apply

unfailing ompletion to the equational theory E

1

[ � � � [ E

n

, and normalize w.r.t.

the ordered rewrite system R obtained this way (see [Baader and Shulz 1996℄

for details). Sine R may be in�nite, it is not neessarily possible to ompute the

normal form of a given term, but this is irrelevant for the proof of ompleteness.

Another possibility (whih has the advantage that normalization is e�etive) is to
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ompute a so-alled \layer-redued" form [Shmidt-Shau� 1989b, Kirhner and

Ringeissen 1994℄. In priniples, this normal form is obtained by applying ollapse-

equations as muh as possible.

A di�erent way of proving soundness and ompleteness of the ombination

method desribed above was introdued in [Baader and Shulz 1995a℄: it depends

on a representation of the free algebra in V (E

1

[ � � � [ E

n

) over ountably many

generators as the so-alled free amalgamated produt of the free algebras in V (E

i

)

in ountably many generators. This approah an also deal with the ombination

of onstraint solvers in free strutures (where the signature may also ontain pred-

iate symbols), and it has been generalized to strutures that are not neessarily

free [Baader and Shulz 1995, Baader and Shulz 1998℄. The ombination method

has also been extended to disuni�ation [Baader and Shulz 1995b, Kepser 1999℄.

7. Further topis

In this artile we have onentrated on uni�ation of �rst-order terms, and have

mentioned only appliations in term rewriting and resolution-based theorem prov-

ing. However, uni�ation is a broad paradigm with appliations in almost every

area of automated dedution, and we would like to draw the reader's attention

in partiular to the two hapters of this handbook where varieties of uni�ation

not overed here are treated: higher-order uni�ation [Dowek 2001℄ and rigid E-

uni�ation [Degtyarev and Voronkov 2001a℄ (Chapters 16 and 10 of this Handbook).

In addition, we briey mention in this �nal setion a number of important variants

of the uni�ation problem that have been studied in the literature.

Mathing

Given a pair of terms s; t, the mathing problem asks for a substitution � suh that

s� = t. Again, this syntati mathing problem an be generalized to mathing

modulo an equational theory E, where one asks for a substitution � satisfying

s� =

E

t.

If t does not ontain variables, then mathing and uni�ation are obviously the

same problem. In general, one an turn a given mathing problem into an \equiva-

lent" uni�ation problem by replaing the variables in t by new free onstants. This

transformation shows that mathing modulo E an be redued to E-uni�ation with

onstants . B�urkert [1989℄ has shown that there exists an equational theory for

whih elementary uni�ation is deidable, but mathing and uni�ation with on-

stants is undeidable. Also, if one is interested in omplete sets of E-mathers, then

one must be areful how to de�ne the instantiation quasi-ordering [B�urkert 1989℄.

Semiuni�ation

Semiuni�ation is a deeptively simple ombination of syntati mathing and syn-

tati uni�ation on �rst-order terms.



520 Franz Baader and Wayne Snyder

A semiuni�ation problem onsists of a set of pairs of terms

fs

1

�

?

t

1

; : : : ; s

n

�

?

t

n

g

and is alled uniform if n = 1. A substitution � is a solution (a semiuni�er) of suh

a problem i� there exist substitutions �

1

; : : : ; �

n

suh that

s

1

��

1

= t

1

�; : : : ; s

n

��

n

= t

n

�:

This simple de�nition belies the broad variety of appliations of semiuni�ation in

term rewriting, type heking for programming languages, proof theory, and ompu-

tational linguistis; in addition, proving the properties of the problem turned out to

be extremely diÆult. Although it is easy to show that so-alled prinipal solutions

(analogous to mgus in syntati uni�ation) always exist for solvable semiuni�a-

tion problems, the proof that the non-uniform ase is undeidable is exeedingly

omplex; the interested reader is referred to [Kfoury, Tiuryn and Urzyzyn 1993℄,

where a review of the results on the non-uniform ase is presented.

The uniform ase is deidable, but it took a long time to develop a orret,

eÆient algorithm. A fast algorithm based on the uni�ation-losure method, as

well as a review of the various attempts to provide algorithms for the problem, may

be found in [Oliart and Snyder 1998℄. This paper shows that the uniform ase an

be deided in O(n

2

�(n)

2

), where n is the size of the two input terms, and � is

the funtional inverse of Akermann's funtion; onstruting a prinipal solution is

somewhat more omplex.

Disuni�ation

A disuni�ation problem is of the form

fs

1

?

= t

1

; : : : ; s

n

?

= t

n

; s

n+1

?

6= t

n+1

; : : : ; s

n+m

?

6= t

n+m

g;

where s

1

; : : : ; t

n+m

are terms. A solution of suh a problem is a substitution �

satisfying s

i

� = t

i

� (i = 1; : : : ; n) and s

n+j

� 6= t

n+j

� (j = 1; : : : ;m). Again, this

problem an be generalized to disuni�ation modulo an equational theory E.

In ontrast to uni�ation, one must distinguish between di�erent types of solv-

ability: for disuni�ation it makes a di�erene whether solutions are required to

be ground substitutions (i.e., substitution introduing only variable-free terms),

or whether they may be arbitrary substitutions. Both types of solvability have

been onsidered in the literature [Colmerauer 1984, Kirhner and Lesanne 1987,

B�urkert 1988, Comon and Lesanne 1989, Comon 1988, Comon 1991, Buntine

and B�urkert 1994, Baader and Shulz 1993a℄, but ground solvability appears to

be more interesting for most appliations. It should also be noted that sometimes

more general problems than the one introdued above are still alled disuni�ation

problems (see, e.g., [Comon 1991℄).

Sorted uni�ation

In many appliations, the domain on whih the funtion symbols operate is not

one homogeneous set: it is divided into di�erent subsets, whih on the syntati



Unifiation Theory 521

level are represented as sorts. Sorted uni�ation generalizes syntati uni�ation

in that the domain of variables is restrited to ertain sorts. Uni�ers are then

required to be well-sorted in the sense that variables an only be replaed by

terms of a \ompatible" sort. Results for sorted uni�ation strongly depend on

the expressiveness of the sort language. An overview on sorted uni�ation an,

for example, be found in [Weidenbah 1998℄; other important referenes on the

topi are [Walther 1983, Walther 1987, Shmidt-Shau� 1986a, Shmidt-Shau�

1989a, Comon 1989, Meseguer, Goguen and Smolka 1989, Tommasi 1991, Frish

and Cohn 1992, Weidenbah 1996℄.
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