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1. Introdu
tion

Uni�
ation is a fundamental pro
ess upon whi
h many methods for automated de-

du
tion are based. Uni�
ation theory abstra
ts from the spe
i�
 appli
ations of

this pro
ess: it provides formal de�nitions for important notions like instantiation,

most general uni�er, et
., investigates properties of these notions, and provides and

analyzes uni�
ation algorithms that 
an be used in di�erent 
ontexts. In this intro-

du
tory se
tion, we will �rst present the 
on
ept of uni�
ation in an informal way,

then make some histori
al remarks on where uni�
ation was originally introdu
ed,

and �nally explain our approa
h to writing this 
hapter.

1.1. What is uni�
ation?

Very generally speaking, uni�
ation tries to identify two symboli
 expressions by

repla
ing 
ertain sub-expressions (variables) by other expressions. To be more 
on-


rete, one usually 
onsiders terms that are built from fun
tion symbols (say f , a,

and b, where f is binary and a; b are nullary) and variable symbols (say x and

y). The uni�
ation problem for the terms s = f(a; x) and t = f(y; b) is 
on
erned

with the following question: is it possible to repla
e the variables x; y in s and t by

terms su
h that the two terms obtained this way are (synta
ti
ally) equal. In this

example, if we substitute b for x and a for y, we obtain the uni�ed term f(a; b).

This substitution is denoted as � := fx 7! b; y 7! ag, and its appli
ation to terms

is written suÆx, i.e., s� = f(a; b) = t�. Note that di�erent o

urren
es of the same

variable in a uni�
ation problem must always be repla
ed by the same term. For

this reason, the terms s

0

= f(a; x) and t

0

= f(x; b) 
annot be uni�ed sin
e this

would require the o

urren
e of x in s

0

to be repla
ed by b, and the o

urren
e of

x in t

0

to be repla
ed by the di�erent 
onstant a.

In most appli
ations of uni�
ation, one is not just interested in the de
ision

problem for uni�
ation, whi
h simply asks for a \yes" or \no" answer to the question

of whether two terms s and t are uni�able. If they are uni�able, one would like to


onstru
t a solution, i.e., a substitution that identi�es s and t. Su
h a substitution

is 
alled a uni�er of s and t. In general, a uni�
ation problem may have in�nitely

many solutions; e.g., f(x; y) and f(y; x) 
an be uni�ed by repla
ing x and y by

the same term s (and there are in�nitely many terms available). Fortunately, the

appli
ations of uni�
ation in automated dedu
tion do not require the 
omputation

of all uni�ers. It is suÆ
ient to 
onsider the so-
alled most general uni�er , i.e., a

uni�er su
h that every other uni�er 
an be obtained by instantiation. In the above

example, � := fx 7! yg is su
h a most general uni�er sin
e for all terms s we have

fx 7! s; y 7! sg = �fy 7! sg. A uni�
ation algorithm should thus not only de
ide

solvability of a given uni�
ation problem: if the problem is solvable, it should also


ompute a most general uni�er. As we will show, there exist very eÆ
ient algorithms

for this purpose.

Uni�
ation as des
ribed until now is 
alled synta
ti
 uni�
ation of �rst-order

terms. \Synta
ti
" means that the terms must be made synta
ti
ally equal, whereas
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\�rst-order" expresses the fa
t that we do not allow for higher-order variables, i.e.,

variables for fun
tions. For example, the terms f(x; a) and g(a; x) obviously 
annot

be made synta
ti
ally equal by �rst-order uni�
ation. However, f(x; a) and G(a; x)


an be made equal by higher-order uni�
ation if G is a (higher-order) variable,

whi
h may be repla
ed by f . We will not 
onsider higher-order uni�
ation in more

detail sin
e it is treated in [Dowek 2001℄ (Chapter 16 of this Handbook). However,

equational uni�
ation|as opposed to synta
ti
 uni�
ation|of �rst-order terms will

be one of the most important topi
s of this 
hapter. Instead of requiring that the

terms are made synta
ti
ally equal, equational uni�
ation is 
on
erned with mak-

ing terms equivalent with respe
t to a 
ongruen
e indu
ed by 
ertain equational

axioms E. In this 
ase, one talks about E-uni�
ation or uni�
ation modulo E. For

example, if E = ff(a; a) � g(a; a)g, then the terms f(x; a) and g(a; x), whi
h are

not (synta
ti
ally) uni�able, are E-uni�able: for the substitution � := fx 7! ag, we

have f(x; a)� = f(a; a) =

E

g(a; a) = g(a; x)�, where =

E

denotes the equational

theory indu
ed by E. For equational uni�
ation, things are not as ni
e as for syn-

ta
ti
 uni�
ation. In fa
t, depending on the theory E in question, E-uni�ability

may be unde
idable, and even if it is de
idable, solvable uni�
ation problems need

not have a most general E-uni�er. Resear
h on equational uni�
ation is, on the

one hand, interested in 
lassifying equational theories of interest a

ording to their

behavior in this respe
t. On the other hand, it develops general approa
hes and

algorithms that apply to whole 
lasses of theories.

1.2. History and appli
ations

The name \uni�
ation" and the �rst formal investigation of this notion is due to

J.A. Robinson [1965℄, who introdu
ed uni�
ation as the basi
 operation of his res-

olution prin
iple, showed that uni�able terms have a most general uni�er, and de-

s
ribed an algorithm for 
omputing this uni�er. In the propositional 
ase, the reso-

lution prin
iple 
an be des
ribed as follows, see also [Ba
hmair and Ganzinger 2001℄

(Chapter 2 of this Handbook). Assume that 
lauses C _p and C

0

_:p have already

been derived (where C;C

0

are sub-
lauses and p is a propositional variable). Then

one 
an also dedu
e C _C

0

. In the �rst-order 
ase, the 
lauses one starts with may


ontain variables. Herbrand's famous theorem implies that �nitely many ground in-

stan
es (i.e., instan
es obtained by substituting all variables by terms without vari-

ables) are suÆ
ient to show unsatis�ability of a given unsatis�able set of 
lauses by

propositional reasoning (e.g., propositional resolution). The problem is, however, to

�nd the appropriate instantiations. Early theorem provers approa
hed this problem

by a breadth-�rst enumeration of all possible ground instantiations, whi
h led to an

immediate 
ombinatorial explosion [Robinson 1963℄. Theorem provers based on the

resolution prin
iple need not sear
h blindly for the right instantiations: they 
an


ompute them via synta
ti
 uni�
ation. For example, assume the 
lauses C _ P (s)

and C

0

_:P (t) are given. Obviously, the resolution rule applies to ground instan
es

of these 
lauses i� in these instan
es the predi
ate P 
ontains the same term, i.e., i�

the substitution used in the instantiation pro
ess is a (synta
ti
) uni�er of s and t.
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Instead of using all ground uni�ers for instantiation, Robinson proposed to lift the

resolution prin
iple to terms with variables, and apply only the most general uni�er

� of s and t. In the example, this yields the resolvent (C _C

0

)�. The 
ompleteness

proof for propositional resolution 
an be lifted to non-ground resolution by using

the fa
t that every ground uni�er of s; t is an instan
e of the most general uni�er.

In fa
t, the notion \most general uni�er" was de�ned in this way just to make this

lifting possible.

Similar ideas for determining appropriate instantiations have been proposed prior

to Robinson by Post, Herbrand [1930a, 1930b, 1967, 1971℄ (in the investigation of

his property A), Prawitz [1960℄, and Guard [1964, 1969℄. However, in this previous

work, the notions \uni�
ation" and \most general uni�er" are not singled out as

interesting 
on
epts of their own (they don't even re
eive a name). Prawitz only


onsiders the fun
tion-free 
ase (in whi
h uni�
ation is rather trivial), and Herbrand

also �rst presents his approa
h for this restri
ted 
ase. The des
ription by Herbrand

of the uni�
ation algorithm for the general 
ase (whi
h appears to be the �rst

published a

ount of su
h an algorithm, and whi
h is similar to the transformation-

based algorithm by Martelli and Montanari [1982℄) is rather informal, and there is

no proof of 
orre
tness.

1

The notions \uni�
ation" and \most general uni�er" were independently re-

invented by Knuth and Bendix [1970℄ as a tool for testing term rewriting systems

for lo
al 
on
uen
e by 
omputing 
riti
al pairs. Again, the de�nition of the most

general uni�er makes sure that every 
riti
al situation is an instan
e of a 
riti
al

pair, and thus it is suÆ
ient to test the 
riti
al pairs for 
on
uen
e, see [Dershowitz

and Plaisted 2001℄ (Chapter 9 of this Handbook). Equational uni�
ation was intro-

du
ed both in resolution-based theorem proving and in term rewriting as a means

for treating 
ertain troublesome equational axioms (like asso
iativity and 
ommu-

tativity) in a spe
ial manner. In automated theorem proving, it qui
kly be
ame

apparent that the equality relation requires a spe
ial treatment (see [Degtyarev and

Voronkov 2001a, Nieuwenhuis and Rubio 2001℄, Chapters 10 and 7 of this Hand-

book), sin
e a simple integration of axioms that des
ribe the properties of equality

(in prin
iple, being a 
ongruen
e relation) often leads to an una

eptable in
rease in

the sear
h spa
e. Whereas the �rst approa
hes providing su
h a spe
ial treatment

of equality repla
ed only the axiomatization of equality by spe
ial inferen
e rules,

Plotkin [1972℄ proposed to go one step further. In his approa
h, also 
ertain axioms

that use equality (like f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z))) 
an be

built into the inferen
e rule (namely resolution). This is a
hieved by repla
ing the

use of synta
ti
 uni�
ation in the resolution step by equational uni�
ation, i.e.,

uni�
ation modulo the equational theory indu
ed by the axioms to be built in.

In term rewriting, axioms like 
ommutativity (i.e., f(x; y) � f(y; x)) 
annot be

oriented into terminating rewrite rules. One way of solving this problem is to take

su
h non-orientable identities 
ompletely out of the rewrite pro
ess, and perform

1

Stri
tly speaking, Herbrand's uni�
ation algorithm is not an algorithm for simple synta
ti


uni�
ation, but an algorithm for uni�
ation with so-
alled linear 
onstant restri
tions (see se
-

tion 3.3.2). This is due to the fa
t that he does not Skolemize his formulae, and thus he has both

universal and existential quanti�ers in the quanti�er pre�x.
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rewriting with respe
t to the remaining (orientable) rules modulo the unoriented

ones. In this setting, 
riti
al pairs must now be 
omputed by equational uni�
ation,

i.e., modulo the unoriented identities, see, e.g., [Peterson and Sti
kel 1981, Jouan-

naud and Kir
hner 1986℄ and [Dershowitz and Plaisted 2001℄ (Chapter 9 of this

Handbook).

1.3. Approa
h

This 
hapter is not intended to give a 
omplete 
overage of all the results obtained in

uni�
ation theory (see the overview arti
les [Jouannaud and Kir
hner 1991, Baader

and Siekmann 1994℄ for this purpose). Instead we try to 
over a number of signi�
ant

topi
s in more detail. This should give a feeling for uni�
ation resear
h and its

methodology, provide the most important referen
es, and enable the reader to study

re
ent resear
h papers on the topi
.

Notational and typographi
 
onventions

We will try to keep as 
lose as possible to the typographi
 
onventions introdu
ed

by Dershowitz and Jouannaud [1991℄, whi
h they also used in their survey arti
le on

rewrite systems [Dershowitz and Jouannaud 1990℄. In parti
ular, substitutions are

written in suÆx notation (i.e., s� instead of �(s)), and 
onsequently 
omposition

of substitution should be read from left to right (i.e., �� means: �rst apply � and

then �).

Equational axioms (written s � t) that de�ne equational theories will be 
alled

\identities," whereas uni�
ation problems 
onsist of \equations" (written s=

?

t for

synta
ti
 uni�
ation and s=

?

E

t for uni�
ation modulo E). Thus, identities must

hold, whereas equations must be solved.

2. Synta
ti
 uni�
ation

As mentioned earlier, synta
ti
 uni�
ation of �rst-order terms was introdu
ed by

Post and Herbrand in the early part of this 
entury. Various resear
hers have studied

the problem further [Champeaux 1986, Corbin and Bidoit 1983, Huet 1976, Martelli

and Montanari 1982, Paterson and Wegman 1978, Robinson 1971, Venturini-

Zilli 1975℄ and, among other results, it was shown that linear time algorithms

for uni�
ation exist [Martelli and Montanari 1976, Paterson and Wegman 1978℄.

The 
orresponding lower 
omplexity bound was shown by Dwork, Kanellakis and

Mit
hell [1984℄: the uni�
ation problem is log-spa
e 
omplete for P , the 
lass of

polynomial-time solvable problems. In parti
ular, this implies that it is very un-

likely that an eÆ
ient parallel uni�
ation algorithm exists.

In this se
tion we review the major approa
hes to synta
ti
 uni�
ation.
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2.1. De�nitions

A signature is a (�nite or 
ountably in�nite) set of fun
tion symbols F . We assume

the reader is familiar with the term algebra T (F ;V) generated by a signature

fun
tion symbols F and a (
ountably) in�nite set of variables V ; we shall 
all these

F-terms , or simply terms when F is unimportant, and denote them by the letters

l, r, s, t, u, and v. Variables will be denoted by w, x, y, and z. The set of variables

o

urring in a term t will be denoted by Vars(t), and this will be extended to sets

of variables, equations, and sets of equations.

A substitution is a mapping from variables to terms whi
h is almost everywhere

equal to the identity, and will generally be represented by �, �, �, or �. The identity

substitution is represented by Id . The appli
ation of a substitution � to a term t,

denoted t�, is de�ned by indu
tion on the stru
ture of terms:

t� :=

(

x� if t = x,

f(t

1

�; : : : ; t

n

�) if t = f(t

1

; : : : ; t

n

).

In the se
ond 
ase of this de�nition, n = 0 is allowed: in this 
ase, f is a 
onstant

symbol and f� = f . Substitutions 
an also be applied to sets of terms, equations,

and sets of equations, in the obvious fashion.

For a substitution �, the domain is the set of variables

Dom(�) := fx jx� 6= x g;

the range is the set of terms

Ran(�) :=

[

x2Dom(�)

fx�g;

and the set of variables o

urring in the range is VRan(�) := Vars(Ran(�)):

A substitution 
an be represented expli
itly as a fun
tion by a set of bindings of

variables in its domain, e.g.,

fx

1

7! s

1

; : : : ; x

n

7! s

n

g:

The restri
tion of a substitution � to a set of variables X , denoted by �j

X

, is

the substitution whi
h is equal to the identity everywhere ex
ept over X \Dom(�),

where it is equal to �. Composition of two substitutions is written ��, and is de�ned

by

t�� = (t�)�:

An algorithm for 
onstru
ting the 
omposition �� of two substitutions represented

as sets of bindings is as follows:

1. Apply � to every term in Ran(�) to obtain �

1

;

2. Remove from � any binding x 7! t, where x 2 Dom(�), to obtain �

1

;

3. Remove from �

1

any trivial binding x 7! x, to obtain �

2

; and
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4. Take the union of the two sets of bindings �

2

and �

1

.

It is also useful to be able to represent substitutions in their triangular form as

a sequential list of bindings, e.g.,

[x

1

7! t

1

; x

2

7! t

2

; : : : ; x

n

7! t

n

℄;

whi
h represents the 
omposition of n substitutions ea
h 
onsisting of a single

binding:

fx

1

7! t

1

gfx

2

7! t

2

g : : : fx

n

7! t

n

g:

A substitution is idempotent if �� = �; it is easy to show that this is true i�

Dom(�) \ VRan(�) = ;.

A variable renaming substitution is de�ned as a substitution � su
h that

Dom(�) = Ran(�). (For example, fx 7! y; y 7! z; z 7! xg is a variable renam-

ing, whereas fx 7! yg and fy 7! z; x 7! zg are not.) For any su
h variable renaming

� = fx

1

7! y

1

; : : : ; x

n

7! y

n

g, we denote its inverse fy

1

7! x

1

; : : : ; y

n

7! x

n

g by �

�1

.

Two substitutions are equal, denoted � = �, if x� = x� for every variable x. We

say that � is more general than �, denoted � �

�

�, if there exists an � su
h that

� = ��. The relation�

�

is 
alled the instantiation quasi-ordering. The 
orresponding

equivalen
e relation (i.e., �

�

\

�

�) is denoted by

�

=; it 
an be shown [Lassez, Maher

and Mariott 1987℄ that �

�

= � i� there exists some variable renaming � su
h that

� = ��.

2.1. Definition. A substitution � is a uni�er of two terms s and t if s� = t�; it

is a most general uni�er (or mgu for short), if for every uni�er � of s and t, � �

�

�.

A uni�
ation problem for two terms s and t is represented by s=

?

t.

A multiset is an unordered 
olle
tion with possible dupli
ate elements. We denote

the number of o

urren
es of an obje
t x in a multiset M by M(x), and de�ne the

multiset union M [N as the multiset Q su
h that Q(x) =M(x) +N(x) for every

x.

2.2. Uni�
ation of terms

In this se
tion and the next, we present a series of algorithms for uni�
ation, ea
h

of whi
h returns an mgu for two uni�able terms. Our approa
h will be two-sided:

on the one hand we will present a series of pra
ti
al algorithms, from the \naive"

to the more sophisti
ated (and faster), in pseudo-
ode suitable for implementing in

a programming language; and on the other we will present a \rule-based" approa
h

whi
h serves to 
larify the essential properties of the pro
ess and also to prove the


orre
tness of some of the pra
ti
al algorithms.

2.2.1. A naive algorithm

The simplest algorithm for uni�
ation is perhaps one that is taught in many intro-

du
tory 
ourses in AI:
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Write down two terms and set markers (e.g., two index �ngers) at the begin-

ning of the terms. Then:

1. Move the markers together, one symbol at a time, until both move o� the end

of the term (su

ess!), or until they point to two di�erent symbols;

2. If the two symbols are both non-variables, then fail; otherwise, one is a variable

(
all it x) and the other is the �rst symbol of a subterm (
all it t):

(a) If x o

urs in t, then fail;

(b) Otherwise, write down \x 7! t" as part of the solution, repla
e x everywhere

by t (in
luding in the solution), and return to (1).

This simple algorithm methodi
ally �nds disagreements in the two terms to be

uni�ed, and attempts to repair them by binding variables to terms: it fails when

fun
tion symbols 
lash, or when an attempt is made to unify a variable with a

term 
ontaining that variable (whi
h is impossible). Already present in this simple

algorithm are several interesting issues:

Implementation: What data stru
tures should be used for terms and substitu-

tions? How should appli
ation of a substitution be implemented? What order

should the operations be performed in?

Corre
tness: Does the algorithm always terminate? Does it always produ
e an

mgu for two uni�able terms, and fail for non-uni�able terms? Do these answers

depend on the order of operations?

Complexity: How mu
h spa
e does this take, and how mu
h time?

In the remainder of this se
tion we will 
onsider these issues in detail while devel-

oping our sequen
e of algorithms.

2.2.2. Uni�
ation by re
ursive des
ent

If we take our naive algorithm and implement it as simply as possible in a pro-

gramming language, then we would represent terms using either expli
it pointer

stru
tures (as in C or Pas
al) or built-in re
ursive data types (as in ML and Lisp),

and represent substitutions as lists of pairs of terms. Appli
ation of a substitution

would involve 
onstru
ting a new term or repla
ing a variable with a new term.

The left-to-right sear
h for disagreements would then be implemented by re
ursive

des
ent through the terms as shown in Figure 1.

(In an a
tual implementation, the 
ase \Unify( t, s )" 
ould be moved up before

the �rst \else if" and simply swap s and t if the former is not a variable.) The

only detail that might 
ause some 
onfusion is the exa
t method for implementing

the 
omposition in the last line. This was des
ribed in se
tion 2.1; however, in

our naive uni�
ation algorithm, we omitted the se
ond and third steps from the

informal algorithm for 
omposition, and this may be done as well here, due to a

simple but important fa
t about these algorithms: when a binding x 7! t is 
reated

and applied, x will never appear in another term 
onsidered by the algorithm|x

has been \eliminated" and o

urs only on
e, in the solution.

This algorithm is essentially the one �rst des
ribed by Robinson [1965℄, and has

been almost universally used in symboli
 
omputation systems.
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global � : substitution; f Initialized to Id g

Unify( s : term; t : term )

begin

if s is a variable then f Instantiate variables g

s := s�;

if t is a variable then

t := t�;

if s is a variable and s = t then

f Do nothing g

else if s = f(s

1

; : : : ; s

n

) and t = g(t

1

; : : : ; t

m

) for n;m � 0 then begin

if f = g then

for i := 1 to n do

Unify( s

i

, t

i

);

else Exit with failure f Symbol 
lash g

end

else if s is not a variable then

Unify( t, s );

else if s o

urs in t then

Exit with failure; f O

urs 
he
k g

else � := �fs 7! tg;

end;

Figure 1: Uni�
ation by re
ursive des
ent

2.2.3. A rule-based approa
h U

In order to explore some of the logi
al properties of this algorithm, we now present

a simple inferen
e system for deriving solutions for uni�
ation problems.

An idempotent substitution fx

1

7! t

1

; : : : ; x

n

7! t

n

g may be represented by a set

of equations fx

1

� t

1

; : : : ; x

n

� t

n

g in solved form, i.e., where ea
h x

i

has a single

o

urren
e in the set. For any idempotent substitution �, the 
orresponding solved

form set will be denoted by [�℄, and for any set of equations S in solved form, the


orresponding substitution will be denoted by �

S

.

A system is either the symbol ? (representing failure) or a pair 
onsisting of a

multiset P of uni�
ation problems and a set S of equations in solved form. We

will use � to denote an arbitrary system. A substitution is said to be a uni�er (or

solution) of a system P ;S if it uni�es ea
h of the equations in P and S; the system

? has no uni�ers.

The inferen
e system U 
onsists of the following transformations on systems:

2

2

The symbol [ below when applied to P is multiset union.
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Trivial:

fs

?

= sg [ P

0

;S =) P

0

;S

De
omposition:

ff(s

1

; : : : ; s

n

)

?

= f(t

1

; : : : ; t

n

)g [ P

0

;S =) fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ P

0

;S

(Note that possibly n = 0.)

Symbol Clash:

ff(s

1

; : : : ; s

n

)

?

= g(t

1

; : : : ; t

m

)g [ P

0

;S =) ?

if f 6= g.

Orient:

ft

?

=xg [ P

0

;S =) fx

?

= tg [ P

0

;S

if t is not a variable.

O

urs Che
k:

fx

?

= tg [ P

0

;S =) ?

if x 2 Vars(t) but x 6= t.

Variable Elimination:

fx

?

= tg [ P

0

;S =) P

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x 62 Vars(t).

In order to unify s and t, we 
reate an initial system fs=

?

tg; ; and apply su

es-

sively rules from U ; we show below that su
h a pro
ess must terminate, produ
ing

a terminal system (i.e., to whi
h no rule applies) in the form of ? or ;;S, where S

is a solved form system representing the mgu of s and t.

The inferen
e system U is in essen
e the same algorithm for uni�
ation presented

by Herbrand (see Appendix 3 in [Herbrand 1971℄); more re
ently, this formulation

of the uni�
ation pro
ess was introdu
ed by Martelli and Montanari [1982℄ and has

gained wide 
urren
y as a formalism for representing uni�
ation algorithms (see,

for example, [Jouannaud and Kir
hner 1991, Snyder 1991℄).

Before 
onsidering U per se, let us 
onsider how this set of transformations might

simulate the a
tions of the re
ursive des
ent algorithm. Suppose we were to print

out a tra
e of the terms s and t, and the global substitution �, just before the third

if-statement in Unify, e.g.,
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s

1

t

1

Id

s

2

t

2

�

2

s

3

t

3

�

3

: : :

This sequen
e 
an be simulated by a sequen
e of transformations

fs

1

=

?

t

1

g; ;

=) fs

2

=

?

t

2

g [ P

2

;S

2

=) fs

3

=

?

t

3

g [ P

3

;S

3

=) : : :

where ea
h s

i

=

?

t

i

is the equation a
ted on by the rule, and ea
h �

i

is identi
al

to �

S

i

. Furthermore, if the 
all to Unify ends in failure, then the transformation

sequen
e ends in ?; and if the 
all to Unify terminates with su

ess, with a global

substitution �

n

, then the transformation sequen
e ends in a system ;;S where

�

S

= �

n

. This simulation 
an be a
hieved by treating the multiset P as a sta
k,

always applying a rule to the top equation, and only using Trivial when s is a

variable; there is only one possible rule to apply at ea
h step under this 
ontrol

strategy.

Therefore, U 
an be viewed as an abstra
t version of the re
ursive des
ent algo-

rithm, and 
an be used to prove its 
orre
tness. In fa
t, U has many interesting

features in its own right, as we now pro
eed to show.

2.2.4. Te
hni
al results about U

In this se
tion we present a number of results about U , adapted from Martelli and

Montanari [1982℄. Perhaps the simplest property to show is termination.

2.2. Lemma. For any �nite multiset of equations P , every sequen
e of transforma-

tions in U

P ; ; =) P

1

;S

1

=) P

2

;S

2

=) : : :

terminates either with ? or with ;;S, with S in solved form.

Proof. De�ne a 
omplexity measure hn

1

; n

2

; n

3

i on multisets of equations, ordered

by the (well-founded) lexi
ographi
 ordering on triples of natural numbers, where

n

1

= The number of distin
t variables in P ;

n

2

= The number of symbols in P ; and

n

3

= The number of equations in P of the form t=

?

x, with t not a variable.

Ea
h rule in U redu
es the 
omplexity of the problem P . Furthermore, any equation

must �t into one of the 
ases mentioned on the left-hand sides of the rules, so that

a rule 
an always be applied to a system with non-empty P . Thus, a system to

whi
h no rule applies must be in the form ? or ;;S. Sin
e whenever an equation is

added to S, the variable on the left-side is eliminated from the rest of the system,

ea
h of the systems S

1

; S

2

; : : : ; S must be in solved form.

Another interesting fa
t is that a solution � produ
ed by U is always idempotent.
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2.3. Corollary. If P ; ; =)

+

;;S, then �

S

is idempotent.

One of the most interesting features of U is that its rules do not 
hange the set of

uni�ers of a system. The main 
orre
tness results about U are essentially 
orollaries

of this fa
t.

2.4. Lemma. For any transformation P ;S =) �, a substitution � uni�es P ;S i�

it uni�es �.

Proof. The only non-trivial 
ases 
on
ern O

urs Che
k and Variable Elimination.

If x o

urs in, but is not equal to, t, then 
learly x 
ontains fewer symbols than t;

but then x� must also 
ontain fewer symbols than t�, so that x and t 
an have no

uni�er.

Regarding Variable Elimination, we know that x� = t�, from whi
h (by stru
tural

indu
tion) we 
an show that

u� = (ufx 7! tg)�

for any term u, or indeed for any equation or multiset of equations. But then

P

0

� = P

0

fx 7! tg� and S� = Sfx 7! tg�

from whi
h the result follows.

The �rst of our major results about U shows that it does indeed produ
e a uni�er.

2.5. Theorem. (Soundness) If P ; ; =)

+

;;S, then �

S

uni�es every equation in

P .

Proof. Note that �

S

uni�es S, be
ause it is idempotent; a simple indu
tion with

lemma 2.4 shows that �

S

must unify the equations in P .

Our se
ond major result shows that U is able to 
al
ulate anmgu for two uni�able

terms.

2.6. Theorem. (Completeness) If � uni�es every equation in P , then any maximal

sequen
e of transformations

P ; ; =) : : :

must end in some system ;;S su
h that �

S

�

�

�.

Proof. Lemmas 2.2 and 2.4 show that su
h a sequen
e must end in some terminal

system ;;S where � uni�es S. Now for every binding x 7! t in �

S

,

x�

S

� = t� = x�;

and for every x 62 Dom(�

S

), x�

S

� = x�, so that � = �

S

�.

An immediate 
onsequen
e of these two results is the following.
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2.7. Corollary. If P has no uni�er, then any maximal transformation sequen
e

from P ; ; must have the form

P ; ; =) : : : =) ?:

The most interesting feature of this proof (and the reason for the emphasis on the

word \any") is that the 
hoi
e of a rule to apply at any stage of the 
omputation is

don't 
are non-deterministi
, whi
h implies that any 
ontrol strategy will result in

an mgu for two uni�able terms, and failure for two non-uni�able terms. Thus, any

pra
ti
al uni�
ation algorithm whi
h pro
eeds by performing the atomi
 a
tions of

U , in any order, is sound and 
omplete, and in parti
ular it generates idempotent

mgus for uni�able terms. However, some sequen
es of these basi
 operations may

be longer than others, or 
reate larger terms, and not all sequen
es end in the same

exa
t mgu. Before 
onsidering the issue of 
omplexity in detail, we digress for a

moment to 
onsider this last point.

2.2.5. Some properties of MGU's

Theorem 2.6 shows that any substitution produ
ed by U (or any algorithm that U


an simulate) is a 
ompa
t representation of the (in�nite) set of all uni�ers, whi
h


ould be generated by 
omposing all possible substitutions with the mgu. This

means that no information is lost in symboli
 
omputation systems (su
h as �rst-

order theorem provers and logi
-programming interpreters) in solving a uni�
ation

subproblem and applying the solution to the rest of the 
omputation (this is what

happens, in fa
t, during the uni�
ation pro
ess itself).

The inferen
e system U , starting from a single pair of terms s and t, 
ould produ
e

(�nitely) many di�erent terminal forms, 
orresponding to distin
t mgus for s and t.

What is the relationship of these distin
t mgus? Are there other mgus than these?

Is there an in�nite number? The key to answering these questions lies in the 
on
ept

of a variable renaming, de�ned in se
tion 2.1: if � and � are both mgus of s and

t, then �

�

= �, i.e., they are instan
es of ea
h other, and hen
e � = �� for some

variable renaming � (for a proof, see [Lassez et al. 1987℄.)

This means that the set of mgus of two terms 
an be generated from a single mgu,

by 
omposition with variable renamings (whi
h is a spe
ial 
ase of the fa
t that the

set of all uni�ers 
an be generated by 
omposition with arbitrary substitutions). By

su
h an operation, it is possible to 
reate an in�nite number of idempotent mgus

and an in�nite number of non-idempotent mgus; the �nite sear
h tree generated by

U is not able to 
onstru
t any arbitrary mgu, nor even every idempotent mgu.

An oft-repeated phrase in the literature states that \mgus are unique up to

renaming"; the reader should now understand that this vague statement should

more properly be: \mgus are unique up to 
omposition with a variable renaming."

This brief exposition of some of the important properties of mgus should 
onvin
e

the reader that the 
olle
tion of all uni�ers of two terms has non-trivial properties;

later on in this 
hapter we shall examine the even more 
omplex 
ase of sets of

uni�ers for E-uni�
ation problems. For further 
hara
terizations of the set of mgus

produ
ed by U , and on uni�ers in general, see [Lassez et al. 1987, Eder 1985℄.
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2.2.6. Complexity of re
ursive des
ent

This se
tion will begin to 
onsider the 
omplexity of the uni�
ation pro
ess, a ques-

tion whi
h will motivate the 
onsideration of further, more sophisti
ated algorithms

for uni�
ation.

The approa
hes to uni�
ation so far 
onsidered, unfortunately, 
an take expo-

nential time and spa
e.

2.8. Example.

h(x

1

; x

2

; : : : ; x

n

; f(y

0

; y

0

); : : : ; f(y

n�1

; y

n�1

); y

n

)

and

h(f(x

0

; x

0

); f(x

1

; x

1

); : : : ; f(x

n�1

; x

n�1

); y

1

; : : : ; y

n

; x

n

)

Unifying these two terms will 
reate an mgu where ea
h x

i

and ea
h y

i

is bound to

a term with 2

i+1

�1 symbols. Clearly the problem is that the substitution 
ontains

many dupli
ate 
opies of the same subterms. One idea that might help here would

be to represent substitutions as \triangular forms." Thus,

[ y

0

7! x

0

; y

n

7! f(y

n�1

; y

n�1

); y

n�1

7! f(y

n�2

; y

n�2

); : : :℄

would be a triangular form uni�er of the two terms. Building up su
h a substitution

during uni�
ation 
onsists of simply 
olle
ting a list of bindings; no dupli
ate terms

are 
reated, and hen
e triangular form uni�ers 
an be no larger than the original

problem.

Unfortunately, this good idea is not suÆ
ient to res
ue the algorithm, as it ap-

pears that substitution, and hen
e the dupli
ation of subterms, is ne
essary in the

terms themselves: in the example, the 
all to Unify on the last arguments, x

n

and

y

n

, whi
h by then are bound to terms with 2

n+1

� 1 symbols, will lead to an expo-

nential number of re
ursive 
alls. The solution to this problem is to develop a more

subtle data stru
ture for terms, and a di�erent method for applying substitutions.

2.3. Uni�
ation of term dags

In this se
tion, we 
onsider two approa
hes to speeding up the uni�
ation pro
ess.

The �rst approa
h, whi
h we adapt from Corbin and Bidoit [1983℄, �xes the problem

of dupli
ation of subterms 
reated by substitution by using a graph representation of

terms whi
h 
an share stru
ture; this results in a quadrati
 algorithm. To develop an

asymptoti
ally faster algorithm, however, it is ne
essary to abandon the re
ursive

des
ent approa
h, and re
ast the problem of uni�
ation as the 
onstru
tion of a


ertain kind of equivalen
e relation on graphs. This se
ond approa
h is due to Huet

[1976℄.

2.3.1. Term dags and substitution

Con
erning example 2.8, it should be remarked that the explosion in the size of

the terms o

urred pre
isely be
ause there were dupli
ate o

urren
es of the same
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variables, whi
h 
ause a dupli
ation of ever larger and larger terms. In order to �x

this problem, it is ne
essary to 
onsider in detail how to represent terms as expli
it

graphs whi
h share subterms.

2.9. Definition. A term dag is a dire
ted, a
y
li
 graph whose nodes are labeled

with fun
tion symbols, 
onstants, or variables, whose outgoing edges from any node

are ordered, and where the outdegree of any node labelled with a symbol f is equal

to the arity of f (variables have outdegree 0).

In su
h a graph, ea
h node has a natural interpretation as a term, and we shall

speak of nodes and terms as if they were one and the same (e.g., a \node" f(a; x)

is one labeled with f and having ar
s to nodes a and x). The only di�eren
e be-

tween various dags representing a parti
ular term is the amount of stru
ture sharing

among the subterms. For example, we 
ould represent the term f(g(a; x); g(a; x))

by any of the following dags:

a

g g

a xx

f f

g g

a ax

f

g

a x

Assuming that names of symbols are strings of 
hara
ters, it is possible to 
reate a

dag with unique, shared o

urren
es of variables in O(n), where n is the number of

all 
hara
ters in the string representation of a uni�
ation problem. For example, one


an use a trie to store the variable names when parsing the terms, so that dupli
ate

o

urren
es of variables 
an be pointed to a unique, shared representation of the

variable. In the normal 
ase, names have a 
onstant size, and n just represents the

number of symbols in the term; we make this assumption in what follows.

Therefore, we assume that the input to our algorithm is a term dag representing

the two terms to be uni�ed, with unique, shared o

urren
es of all variables. We

also assume that ea
h node t has an attribute parents(t) whi
h is a list of all parents

of t in the graph (i.e., all nodes p whi
h point to t), but do not show these in the

diagrams below for simpli
ity. Parent pointers are ne
essary when sharing nodes in

the dag.

A substitution involving only the subterms of a term dag 
an be represented

dire
tly by a relation on the nodes of the dag , either stored expli
itly as a list

of pairs of pointers to nodes, or by storing a link (we will 
all these substitution

ar
s) in the graph itself, and maintaining a list of variables (nodes) bound by the

substitution. Appli
ation of su
h a substitution 
an be impli
it or expli
it, the latter

involving a
tual moving of subterm links. For example, two terms f(x; g(a)) and

f(g(y); g(y)), and their mgu fx 7! g(a); y 7! a g 
an be represented by the dag :
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x

g

g

g

f f

a

y

The impli
it appli
ation of a substitution identi�es two nodes 
onne
ted with a

substitution ar
, without a
tually moving any of the subterm links; the binding for

a variable 
an be determined by traversing the graph depth �rst, left to right. This

essentially represents the triangular form (e.g., [x 7! g(y); y 7! a ℄) in the dag . We

use this form of substitution in the algorithm of se
tion 2.3.3.

The expli
it appli
ation of a substitution expresses the substitution of binding

for variable by moving any ar
 (subterm or substitution) pointing to a variable to

point to the binding. For example,

x

g

g

g

f f

a

y

This represents the \fun
tional" form fx 7! g(a); y 7! a g of the substitution in a

dire
t way. We shall use this expli
it form of appli
ation in the next algorithm.

2.3.2. Re
ursive des
ent on term dags

In this se
tion we present the �rst algorithm whi
h uses term dags. If we think about

tra
ing the operation of the re
ursive des
ent algorithm on this new data stru
ture,

it might appear that the sour
e of exponential blowup has been removed, sin
e

substitution does not dupli
ate terms. However, it still may be possible to have

dupli
ate 
alls to the same term; in example 2.8, for instan
e, the terms bound to

x

n

and y

n

(see �g. 2) will be uni�ed when x

0

is bound to y

0

; however, the re
ursive

des
ent algorithm will then blithely explore every other path through the pair of

terms, resulting in an exponential number of re
ursive 
alls.

Clearly, we need to keep from revisiting already-solved problems in the graph.

The best solution is simply to do stru
ture sharing \on the 
y" by merging uni�ed

terms (whi
h are, after all, now identi
al), and then 
he
king for identity of nodes

in the �rst step. Merging two nodes s and t in a graph � 
an be implemented by

moving ar
s. Let parents(s) = fp

1

; : : : ; p

n

g; then

1. For ea
h p

i

, repla
e the subterm ar
 p

i

�! s by p

i

�! t;

2. Let parents(t) := parents(s) [ parents(t); and

3. Let parents(s) := ;.

This shares the stru
ture of t and isolates the node s. In the algorithm below, we

will denote by Repla
e(�, s, t) the new graph 
reated from a graph � by merging
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f

f

.

.

.

f

x

0

f

f

f

.

.

.

y

0

x

n

y

n

x

n�1

x

1

y

n�1

y

1

Figure 2: A dag representation of the terms bound to x

n

and y

n

in example 2.8.

s and t in this fashion.

The algorithm takes as input a term dag in whi
h all o

urren
es of variables

are shared (i.e., ea
h variable o

urs exa
tly on
e). Even with these additions, our

re
ursive des
ent algorithm is mostly un
hanged:

global � : termDag; f Term dag for s and t with shared variables g

global � : list of pairs of nodes; f Initialized to empty g

UnifyDag( s : node; t : node )

begin

if s and t are the same node then

f Do nothing g

else if s = f(s

1

; : : : ; s

n

) and t = g(t

1

; : : : ; t

m

) then begin

if f = g then

for i := 1 to n do

UnifyDag( s

i

, t

i

);

else Exit with failure f Symbol 
lash g

end

else if s is not a variable then

Unify( t, s );

else if s o

urs in t then

Exit with failure; f O

urs 
he
k g

else

Add (s; t) to the end of the list �;

� := Repla
e(�, s, t); f Sin
e they are now uni�ed g

end;

The o

urs 
he
k is implemented as a standard graph traversal to sear
h for the

given node s below t by following subterm ar
s.
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The 
orre
tness of the data stru
ture for this algorithm is dependent on the

following result from Corbin and Bidoit [1983℄, whi
h 
an be proved by indu
tion

on the dag .

2.10. Lemma. Let � be a term dag with nodes x and t su
h that there is no path

from t to x.

� Repla
e(�, x, t) is an a
y
li
 graph 
ontaining the same nodes (with the same

labels) as �.

� Consider a distinguished node in � 
orresponding to the term s, and let s

0

be

the term 
orresponding to the same node in Repla
e(�, x, t); then:

{ if s = x, then s

0

= x;

{ otherwise, s

0

= sfx 7! tg.

In order to prove soundness and 
ompleteness, we may again show that U 
an

\tra
e" the terms in ea
h 
all to UnifyDags, the only di�eren
e being that when

Trivial is used, s may not ne
essarily be a variable (i.e., when UnifyDag is 
alled on

two terms previously uni�ed, and hen
e shared as one node). From a logi
al point

of view (thinking in term of the symboli
 expressions being manipulated), nothing

has 
hanged|only the underlying data stru
ture for terms and substitutions.

Thus, the only thing that remains to be 
onsidered is the 
omplexity of UnifyDag.

Sin
e ea
h 
all to this fun
tion isolates a node, there 
an not be more than n 
alls

in toto (where n is the number of symbols o

urring in the original terms). Ea
h


all does a 
onstant amount of work ex
ept for the o

urs 
he
k (whi
h traverses no

more than n nodes) and the moving of no more than n pointers. Maintaining the

lists of parents 
osts O(n) at ea
h 
all. The original 
onstru
tion of the dag takes

O(n). This results in a time 
omplexity of O(n

2

); 
learly the spa
e used is O(n).

2.3.3. An almost-linear algorithm

It would be possible to speed up this algorithm by making 
hanges to the way

substitutions are represented (see [Baader and Siekmann 1994℄), however, we will

now 
onsider an alternate approa
h whi
h gives more insight into the nature of uni-

�
ation. This approa
h makes the following fundamental 
hanges to the approa
h


onsidered so far:

� instead of re
ursive 
alls to pairs of subterms whi
h must be uni�ed, we will

re
ast the problem as that of 
onstru
ting an equivalen
e relation whose 
lasses

are terms that must be uni�ed;

� substitution will (in some sense) be repla
ed by the union of equivalen
e 
lasses;

and

� the repeated 
alls to the o

urs 
he
k will be repla
ed by a single pass through

the graph to 
he
k for a
y
li
ity.

The term dag data stru
ture will be used for these algorithms as well, however, we

will not move pointers as in the last se
tion. Instead, we 
onsider the uni�
ation

problem as one involving the following relation on terms.
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2.11. Definition. A term relation is an equivalen
e relation on terms, and is ho-

mogeneous if no equivalen
e 
lass 
ontains f(: : :) and g(: : :) with f 6= g; it is a
y
li


if no term is equivalent to a proper subterm of itself.

A uni�
ation relation is a homogeneous, a
y
li
 term relation satisfying the uni-

�
ation axiom: For any f and terms s

i

and t

i

,

f(s

1

; : : : ; s

n

)

�

=

f(t

1

; : : : ; t

n

) �! s

1

�

=

t

1

^ : : : ^ s

n

�

=

t

n

:

The uni�
ation 
losure of s and t, when it exists, is the least uni�
ation relation

whi
h makes s and t equivalent.

The algorithm presented in this se
tion takes its starting point from the following

fa
t.

2.12. Lemma. If s and t are uni�able, then there exists a uni�
ation 
losure for s

and t.

Proof. For any uni�er � of s and t, de�ne the relation

u

�

=

�

v i� u� = v�:

Clearly this is a uni�
ation relation. Sin
e the interse
tion of two uni�
ation rela-

tions relating s and t is again a uni�
ation relation relating s and t, whenever s

and t are uni�able there is a least su
h relation

�

=

whi
h joins 
lasses only when

for
ed to apply the uni�
ation axiom to subterms of s and t.

The uni�
ation-
losure approa
h to uni�
ation, �rst presented in [Huet 1976℄,

attempts to 
onstru
t this relation on two terms, whi
h, as we shall show, 
orre-

sponds to �nding an mgu. However, before presenting the algorithm, we need a

number of an
illary notions.

2.13. Definition. For any term relation

�

=

, let a s
hema fun
tion be a fun
tion &

from equivalen
e 
lasses to terms su
h that for any 
lass C,

1. &(C) 2 C; and

2. &(C) is a variable only if C 
onsists entirely of variables.

The term &(C) will be 
alled the s
hema term for C.

The point here is that the s
hema term is a fun
tional form whenever su
h exists,

and will be used to propagate information downward using the uni�
ation axiom; it

is also used to de�ne substitutions. Note that s
hema fun
tions are not unique, but

there always exists at least one for any term relation; we assume in the following

that su
h a fun
tion has been 
hosen for any given uni�
ation 
losure.

Note that for any a
y
li
 term relation there exists a partial ordering � su
h that

for any term f(: : : s : : :), we have [f(: : : s : : :)℄ � [s℄.

2.14. Definition. For any uni�
ation 
losure

�

=

, de�ne �

�

=

by:

x�

�

=

=

(

y if &([x℄) = y

f(s

1

�

�

=

; : : : ; s

n

�

�

=

) if &([x℄) = f(s

1

; : : : ; s

n

)
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(This notion is well-de�ned by re
ursion on the partial order �; Dom(�

�

=

) is �nite

be
ause

�

=

has only a �nite number of non-trivial equivalen
e 
lasses.)

2.15. Theorem. Terms s and t are uni�able i� there is a uni�
ation 
losure for s

and t. In the aÆrmative 
ase, �

�

=

is an mgu for s and t.

Proof. The only if dire
tion has been proved in our previous lemma. For the other

dire
tion, let

�

=

be a uni�
ation 
losure for s and t. We 
laim that for every term u,

u�

�

=

= &([u℄)�

�

=

(thus, �

�

=

uni�es ea
h pair of equivalent terms, in parti
ular s and

t), and pro
eed by indu
tion on the size of u. For the base 
ase, if u is a 
onstant

or variable, then the result is trivial by the de�nition of �

�

=

. Now suppose that

u = f(s

1

; : : : ; s

n

) and &([u℄) = f(t

1

; : : : ; t

n

); sin
e

�

=

is 
losed under the uni�
ation

axiom, then for ea
h i, s

i

�

=

t

i

, and thus by the indu
tion hypothesis, s

i

�

�

=

= t

i

�

�

=

.

To prove that �

�

=

is an mgu in the aÆrmative 
ase, we show that for any uni�er

�, we have u�

�

=

� = u� for any term u, and pro
eed by indu
tion on �. Assume

that

�

=

�

is as de�ned in the previous lemma. (In the following, & refers to some

�xed s
hema fun
tion for �

�

=

.) First, note that if u

�

=

v, then u� = v�, sin
e

�

=

is


ontained in

�

=

�

. Now, for the base 
ase, if [u℄ 
ontains only 
onstants and variables,

then u�

�

=

= &([u℄)

�

=

u, from whi
h it follows that u�

�

=

� = u�. For the indu
tion

step, it must be the 
ase that &([u℄) equals some f(s

1

; : : : ; s

n

), and u is either a term

of the form f(t

1

; : : : ; t

n

), or is a variable x. In the �rst 
ase, u�

�

=

� = u� by a dire
t

use of the indu
tion hypothesis. In the se
ond 
ase, x�

�

=

= f(s

1

�

�

=

; : : : ; s

n

�

�

=

), and

x� = f(s

1

; : : : ; s

n

)� (sin
e

�

=

is 
ontained in

�

=

�

), so that

x� = f(s

1

�; : : : ; s

n

�) = f(s

1

�

�

=

�; : : : ; s

n

�

�

=

�) = f(s

1

�

�

=

; : : : ; s

n

�

�

=

)� = x�

�

=

�;

the se
ond step involving the indu
tion hypothesis.

This result motivates the design of an eÆ
ient uni�
ation algorithm whi
h at-

tempts to build a uni�
ation 
losure for two terms, and then extra
ts the mgu.

To do this, it is ne
essary to have some means for maintaining equivalen
e 
lasses

and for applying the uni�
ation axiom to 
lasses; the most eÆ
ient data stru
ture

represents 
lasses as trees of 
lass pointers (whi
h we represent by dashed lines)

with a 
lass representative at the root:

t

1

t

4

s

2

u

2

t

2

u

3

s

1

u

1

t

3

To determine whether two terms are equivalent, it is only ne
essary to �nd the

roots of the trees and 
he
k for identity; and to join two 
lasses, one 
lass is made
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a subtree of the other's root. To redu
e the height of the trees as mu
h as possible,

two subtle re�nements are made: (i) maintain a 
ount of the size of ea
h 
lass in

the representative, and when joining 
lasses, make the smaller one a subtree of the

larger; and (ii) when following paths to the root to determine equivalen
e, 
ompress

the paths by pointing all nodes en
ountered dire
tly at the root. For example, if

we wished to take the union of the two 
lasses [t

3

℄ and [u

3

℄, we would �nd the

representatives for the two 
lasses, 
ompressing the path from t

3

, and then add a


lass link from the representative of the smaller 
lass to the larger:

t

1

t

4

s

2

s

1

t

2

u

2

u

3

u

1

t

3

Su
h a data stru
ture 
an pro
ess a series of O(n) Unions and Finds in O(n�(n)),

where � is the fun
tional inverse of A
kermann's fun
tion, and whi
h, for all pra
-

ti
al purposes, may be 
onsidered as a small 
onstant fa
tor.

The term dag for this approa
h needs no parent pointers, as in the previous

algorithm, but does need

� 
lass pointers;

� a 
ounter of the size of the 
lass stored in the representative;

� a pointer from ea
h representative to the s
hema term for the 
lass;

� boolean 
ags visited and a
y
li
 in ea
h node used in 
y
le 
he
king (both

initialized to false);

� a pointer vars from ea
h representative to a list of all variables in the 
lass

(used when generating solutions).

Note that maintaining lists of parents of ea
h node is not ne
essary in this algorithm.

A representative is simply a node whose 
lass pointer points to itself. The algorithm

based on this approa
h may now be given. It is shown in Figures 3 and 4. The term

dag � for s and t is initialized to the identity relation, where ea
h 
lass 
ontains

a single term; thus for ea
h node the 
lass and s
hema pointers are initialized to

point to the same node, and the size is initialized to 1. The vars list is initialized

to empty for non-variable nodes, and to a singleton list for variable nodes.

If Unify(s, t) does not fail, then � 
ontains a triangular form solution. Find-

Solution attempts to �nd su
h a solution, and fails i� there exists a 
y
le in the

graph. (We are essentially traversing the 
ommon term s� by repla
ing s by its

s
hema term in the �rst line.) The �elds visited and a
y
li
 are both ne
essary, the

�rst to �nd a 
y
le in the 
urrent exploration path, and the se
ond to keep from

reexamining nodes whi
h have already been ex
luded from any possible 
y
les.

The 
orre
tness of this method depends on verifying that it implements 
orre
tly

the 
onstru
tion of an a
y
li
 uni�
ation 
losure. The essential points are that

� the equivalen
e is 
learly homogeneous;

� equivalen
e 
lasses are joined i� required by the uni�
ation axiom, hen
e the

relation is least ;
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global � : termDag; f Term dag for s and t with shared variables g

global � : list of bindings := nil; f Triangular form solution g

Unify( s : node; t : node )

begin

UnifClosure(s, t);

FindSolution(s);

end;

UnifClosure( s : node; t : node )

begin

s := Find(s); f Find representatives g

t := Find(t);

if s and t are the same node then

f Do nothing g

else begin

if &([s℄) = f(s

1

; : : : ; s

n

) and &([t℄) = g(t

1

; : : : ; t

m

) for n;m � 0

then begin

if f = g then begin

Union(s, t);

for i := 1 to n do

UnifClosure( s

i

, t

i

);

end

else Exit with failure f Symbol 
lash g

end

else Union(s, t);

end;

end;

Union( s : node; t : node ) f s and t are representatives g

begin

if size(s) � size(t) then begin

size(s) := size(s) + size(t);

vars(s) := 
on
atenation of lists vars(s) and vars(t);

if &([s℄) is a variable then

&([s℄) := &([t℄);


lass(t) := s;

end

else begin

size(t) := size(t) + size(s);

vars(t) := 
on
atenation of lists vars(t) and vars(s);

if &([t℄) is a variable then

&([t℄) := &([s℄);


lass(s) := t;

end;

end;

Figure 3: Uni�
ation algorithm
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Find( s : node ) f Returns representative for [s℄ and 
ompresses paths g

t : node;

begin

if 
lass(s) = s f s is a representative g then

Return s;

else begin

t := Find(
lass(s));


lass(s) := t;

return t;

end;

end;

FindSolution(s : node); f Fails if exists a 
y
le below s g

begin;

s := &(Find(s));

if a
y
li
(s) then

Return; f s is not part of a 
y
le g

if visited(s) then

Fail; f Exists a 
y
le g

if s = f(s

1

; : : : ; s

n

) for some n > 0 then begin

visited(s) := true;

for i := 1 to n do

FindSolution(s

i

);

visited(s) := false;

end;

a
y
li
(s) := true;

forea
h x 2 vars(Find(s)) do

if x 6= s then

Add [x 7! s℄ to front of �;

end;

Figure 4: Uni�
ation algorithm, 
ontinued

� FindSolution fails i� there is a 
y
le in the graph; and

� whenever a binding [x 7! s℄ is added to �, all relevant bindings for variables in

s already o

ur in �.

The 
omplexity of the algorithm is O(n�(n)), as, with the ex
eption of Find,

ea
h fun
tion 
an be 
alled at most n times for terms with n symbols, and ea
h 
all

performs a 
onstant amount of work (note that the work of 
on
atenating the vars

lists 
an be a

omplished in O(n) if pointers to the last 
ell in the list are kept,

and 
on
atenation is performed by moving pointers rather than by the standard

append operation). The dominating 
ost is therefore the 
alls to Find, whi
h, as

mentioned above, 
an 
ost O(n�(n)).

Linear-time algorithms for uni�
ation have been presented by Paterson and Weg-

man [1978℄ (
f. [Champeaux 1986℄) and Martelli and Montanari [1982℄, to whi
h
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we refer the reader for further study.

3. Equational uni�
ation

Like synta
ti
 uni�
ation, equational uni�
ation is 
on
erned with the problem of

making terms equal by applying a suitable substitution. The only di�eren
e is that

synta
ti
 equality is repla
ed by equality modulo an equational theory E. At �rst

sight, one might think that this is minor 
hange, and that the notions and ap-

proa
hes from synta
ti
 uni�
ation 
an easily be adapted to this new situation.

It turns out, however, that equational uni�
ation requires some non-trivial adjust-

ments of the basi
 notation. In parti
ular, the notion of a most general uni�er is

no longer suÆ
ient for the purpose of representing all uni�ers sin
e there may exist

E-uni�able terms that do not have a most general E-uni�er. In the �rst subse
tion,

we introdu
e the basi
 notions as they are 
urrently used in uni�
ation theory, and

in the subsequent subse
tion, we point out some di�eren
es to the 
ase of synta
ti


uni�
ation, and explain the reason for introdu
ing the notions in this modi�ed way.

The third subse
tion introdu
es order-theoreti
, logi
al, algebrai
, and 
ategory-

theoreti
 reformulations of some of these notions. We 
on
lude the se
tion with a

short survey of results in uni�
ation theory. Some of these results will be treated

in more detail in subsequent se
tions.

3.1. Basi
 notions

An equational theory is de�ned by a set of identities E, i.e., a subset of

T (F ;V)� T (F ;V) for a signature F and a (
ountably in�nite) set of variables

V . It is the least 
ongruen
e relation on the term algebra T (F ;V) that is 
losed un-

der substitution and 
ontains E, and it will be denoted by =

E

(see [Dershowitz and

Plaisted 2001, page 575℄ (Chapter 9 of this Handbook) for a more detailed de�ni-

tion of the relation =

E

). Identities are written in the form s � t. If s =

E

t, then we

say that the term s is equal modulo E to the term t. For example, let f be a binary

fun
tion symbol. The identity C := ff(x; y) � f(y; x)g says that f is 
ommuta-

tive, and the identity A := ff(f(x; y); z) � f(x; f(y; z))g expresses asso
iativity

of f . We have f(f(a; b); 
) =

C

f(
; f(b; a)), and f(a; f(x; b)) =

A

f(f(a; x); b). In

the following, we will often slightly abuse the notion of an equational theory by

also 
alling a set of de�ning identities E an equational theory. For a given set of

identities E, we denote by Sig(E) the set of all fun
tion symbols o

urring in E.

3.1. Definition. Let E be an equational theory and F a signature 
ontaining

Sig(E). An E-uni�
ation problem over F is a �nite set of equations

� = fs

1

?

=

E

t

1

; : : : ; s

n

?

=

E

t

n

g

between F-terms with variables in a (
ountably in�nite) set of variables V . An E-

uni�er of � is a substitution � su
h that s

1

� =

E

t

1

�; : : : ; s

n

� =

E

t

n

�. The set of
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all E-uni�ers of � is denoted by U

E

(�), and � is E-uni�able i� U

E

(�) 6= ;.

Obviously, synta
ti
 uni�
ation is the spe
ial 
ase of this de�nition where E = ;.

Any synta
ti
 uni�er of an E-uni�
ation problem � is also an E-uni�er, but for

E 6= ;, the set U

E

(�) may have additional elements. For example, if a and b are

distin
t 
onstant symbols, then the C-uni�
ation problem ff(a; x)=

?

C

f(b; y)g has

fx 7! b; y 7! ag as C-uni�er, whereas the terms f(a; x) and f(b; y) do not have a

synta
ti
 uni�er. For the A-uni�
ation problem � := ff(a; x)=

?

A

f(y; b)g, the set

U

A

(�) 
ontains the synta
ti
 uni�er fx 7! b; y 7! ag of f(a; x) and f(y; b), but also

additional A-uni�ers su
h as fx 7! f(z; b); y 7! f(a; z)g.

The instantiation quasi-ordering �

�

on substitutions is adapted to the 
ase of

equational uni�
ation as follows:

3.2. Definition. Let E be an equational theory and X a set of variables. The

substitution � is more general modulo E on X than the substitution � i� there

exists a substitution � su
h that x� =

E

x�� for all x 2 X . In this 
ase we write

� �

�

X

E

� and say that � is an E-instan
e of � on X .

It is easy to see that �

�

X

E

is a quasi-ordering, i.e., a re
exive and transitive binary

relation. The asso
iated equivalen
e is denoted by

�

=

X

E

, i.e., �

�

=

X

E

� i� � �

�

X

E

� and

� �

�

X

E

�.

When 
omparing E-uni�ers of a problem �, the set X is the set of all vari-

ables o

urring in �. Unlike the 
ase of synta
ti
 uni�
ation, uni�able E-uni�
ation

problems need not have a most general E-uni�er. For example, the C-uni�
ation

problem ff(x; y)=

?

C

f(a; b)g has the two C-uni�ers �

1

:= fx 7! a; y 7! bg and

�

2

:= fx 7! b; y 7! ag. On Var(�) = fx; yg, any C-uni�er of � is equal to either

�

1

or �

2

, and �

1

and �

2

are not 
omparable w.r.t the instantiation quasi-ordering

�

�

fx;yg

C

. Consequently, there 
annot be a most general C-uni�er of �. Thus, the rôle

of the most general uni�er must in general be taken on by a 
omplete set of uni�ers.

3.3. Definition. Let � be an E-uni�
ation problem over F and let X := Var(�)

be the set of all variables o

urring in �. A 
omplete set of E-uni�ers of � is a set

C of substitutions su
h that

1. C � U

E

(�), i.e., ea
h element of C is an E-uni�er of �,

2. for ea
h � 2 U

E

(�) there exists � 2 C su
h that � �

�

X

E

�.

The set C is a minimal 
omplete set of E-uni�ers of � i� it is a 
omplete set that

satis�es

3. two distin
t elements of C are in
omparable w.r.t. �

�

X

E

, i.e., for all �; �

0

2 C,

� �

�

X

E

�

0

implies � = �

0

.

The substitution � is a most general E-uni�er of � i� f�g is a (minimal) 
omplete

set of E-uni�ers of �.

If the uni�
ation problem � is not E-uni�able, then the empty set is a minimal


omplete set of E-uni�ers of �. Depending on the equational theory E, minimal


omplete sets of E-uni�ers need not always exist, and even if they do, they may be
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in�nite (see below). It is, however, easy to show that they are unique up to instan-

tiation equivalen
e

�

=

X

E

(see subse
tion 3.3.1). This makes sure that the following

de�nition of the uni�
ation type of an E-uni�
ation problem and of an equational

theory E is unambiguous.

3.4. Definition. Let E be an equational theory, and let � be an E-uni�
ation

problem over F . The problem � has type unitary (�nitary , in�nitary) i� it has

a minimal 
omplete set of E-uni�ers of 
ardinality 1 (�nite 
ardinality, in�nite


ardinality). If � does not have a minimal 
omplete set of E-uni�ers, then it is of

type zero. We abbreviate type unitary by 1, type �nitary by !, type in�nitary by

1, and type zero by 0, and order these types as follows: 1 < ! <1 < 0.

The uni�
ation type of E w.r.t. the signature F is the maximal type of an E-

uni�
ation problem over F .

A

ording to this de�nition, an equational theory that is unitary is not �nitary,

and a theory of type zero is not in�nitary. In the literature, these notion have

sometimes been de�ned su
h that unitary implies �nitary (i.e., unitary theories are a

spe
ial 
ase of �nitary theories) and type zero implies in�nitary. We prefer a stri
ter

separation between the types. In order to express that a theory is unitary or �nitary

(in the sense of de�nition 3.4) we say that it is at most �nitary . Analogously, to

express that a theory is in�nitary or of type zero we say that it is at least in�nitary .

It should also be noted that the uni�
ation type of an equational theory depends

not only on E, but also on the set of fun
tion symbols F that are allowed to o

ur

in the uni�
ation problems (see subse
tion 3.2.2 for more details). We provide an

example for ea
h of the four types.

3.5. Example (unitary). Sin
e any uni�able uni�
ation problem has a most gen-

eral synta
ti
 uni�er, the empty theory ; (whi
h obviously de�nes synta
ti
 equal-

ity) has uni�
ation type unitary w.r.t. any signature F .

3.6. Example (�nitary). Above, we have seen that 
ommutativity C is not unitary

sin
e the C-uni�
ation problem ff(x; y)=

?

C

f(a; b)g does not have a most general

C-uni�er. It is not hard to show that C is �nitary w.r.t. any signature F . In fa
t,

the C-equivalen
e 
lass [t℄

C

:= ft

0

j t=

C

t

0

g of a given term t is easily shown to be

�nite. For a given C-uni�
ation problem � = fs

1

=

?

C

t

1

; : : : ; s

n

=

?

C

t

n

g, we 
onsider

all possible synta
ti
 uni�
ation problems of the form �

0

= fs

0

1

=

?

t

0

1

; : : : ; s

0

n

=

?

t

0

n

g

where s

i

=

C

s

0

i

and t

i

=

C

t

0

i

for all i; 1 � i � n. There are only �nitely many

su
h sets �

0

, and it 
an be shown that the 
olle
tion of all the synta
ti
 most

general uni�ers of these sets is a 
omplete set of C-uni�ers of � [Siekmann 1979℄.

In most 
ases, this set is not minimal, but obviously a minimal 
omplete set 
an be

obtained by eliminating redundant elements, i.e., elements that are C-instan
es of

other elements of the set.

3.7. Example (in�nitary). Even though asso
iativity A is similar to C in that A-

equivalen
e 
lasses are �nite, the uni�
ation method outlined for C does not work
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for A. It is easy to see that the A-uni�
ation problem ff(a; x)=

?

A

f(x; a)g has an

in�nite minimal 
omplete set of A-uni�ers, namely f�

n

j n � 1g, where for ea
h

n the substitution �

n

:= fx 7! f(a; f(a; � � � ; f(a; a) � � �))g repla
es x by a term


ontaining n o

urren
es of the 
onstant a. Consequently, A 
annot be unitary or

�nitary. Plotkin [1972℄ des
ribes a pro
edure that generates a minimal 
omplete

set of A-uni�ers of a given A-uni�
ation problem over an arbitrary set of fun
tion

symbols F , whi
h shows that A is in fa
t in�nitary and not of type zero.

3.8. Example (zero). The �rst example of an equational theory of uni�
ation

type zero was des
ribed by Fages and Huet [1983℄ and [1986℄. In [Baader

1986℄ it is shown that the theory of idempotent semigroups, i.e., AI := A [

ff(x; x) � xg is of uni�
ation type zero sin
e the AI-uni�
ation problem

ff(x; f(y; x))=

?

AI

f(x; f(z; x))g does not have a minimal 
omplete set of AI-uni�ers.

This result was also shown by S
hmidt-S
hau� [1986b℄, but his example problem

ff(z; f(a; f(x; f(a; z))))=

?

AI

f(z; f(a; z))g 
ontains an additional 
onstant a.

For synta
ti
 uni�
ation, a \uni�
ation algorithm" is an algorithm that 
om-

putes a most general (synta
ti
) uni�er of a given uni�
ation problem if it exists,

and determines non-uni�ability otherwise. For equational uni�
ation, this notion

must be adapted. More pre
isely, we are interested in di�erent types of algorithms,

depending on what the equational theory allows and what is needed in appli
ations.

An E-uni�
ation algorithm (w.r.t. F) is an algorithm that 
omputes a �nite 
om-

plete set of E-uni�ers for all E-uni�
ation problems over F . Ideally, the 
omputed

sets should also be minimal. There are, however, theories for whi
h it is easier to


ompute a not ne
essarily minimal set (
ommutativity C is an example). We 
all

an E-uni�
ation algorithm minimal i� it 
omputes a �nite minimal 
omplete set

of E-uni�ers. As mentioned in example 3.6, an E-uni�
ation algorithm 
an always

be turned into a minimal one by eliminating redundant uni�ers, provided that the

E-instantiation quasi-ordering is de
idable.

In appli
ations su
h as 
onstraint-based approa
hes to automated dedu
tion

and rewriting (see [B�ur
kert 1991, Nieuwenhuis and Rubio 1994, Kir
hner and

Kir
hner 1989℄ and [Nieuwenhuis and Rubio 2001℄, Chapter 7 of this Handbook), it

is not ne
essary to 
ompute 
omplete sets of uni�ers. Instead, it is suÆ
ient to test

uni�
ation problems for uni�ability. An algorithm that is able to de
ide uni�ability

of E-uni�
ation problems (over F) is 
alled a de
ision pro
edure for E-uni�
ation

(w.r.t. F). Obviously, any E-uni�
ation algorithm yields a de
ision pro
edure for

E-uni�
ation sin
e a given E-uni�
ation problem � is uni�able i� the 
omputed

�nite 
omplete set is nonempty.

For theories that are not unitary or �nitary, the notion of an E-uni�
ation al-

gorithm, as introdu
ed above, is not appropriate. A (minimal) E-uni�
ation pro-


edure is a pro
edure that enumerates a possibly in�nite (minimal) 
omplete set

of E-uni�ers. The pro
edure by Plotkin [1972℄ mentioned in example 3.7 is a mini-

mal A-uni�
ation pro
edure. An E-uni�
ation pro
edure need not yield a de
ision

pro
edure for E-uni�
ation sin
e it need not terminate even if the input prob-

lem does not have E-uni�ers. This is, e.g., the 
ase for Plotkin's pro
edure. A-
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uni�
ation (more pre
isely, the question whether there exists an A-uni�er for a

given A-uni�
ation problem) is nevertheless de
idable, but this is a lot harder to

show [Makanin 1977℄ than designing a minimal A-uni�
ation pro
edure.

3.2. New issues

The notions introdu
ed above deviate in several respe
ts from the notions intro-

du
ed for synta
ti
 uni�
ation. In this subse
tion, we point out the reasons why

this was ne
essary.

3.2.1. The instantiation quasi-ordering

For synta
ti
 uni�
ation, the instantiation quasi-ordering�

�

was de�ned by � �

�

� i�

there exists � su
h that � = ��. In the de�nition of the instantiation quasi-ordering

for E-uni�
ation, synta
ti
 equality is (quite naturally) repla
ed by equality mod-

ulo E. What may seem less 
lear is why we have restri
ted this equality (modulo

E) to the variables o

urring in the uni�
ation problem. Obviously, the ordering

obtained this way is stronger than the one that requires equality on all variables

(i.e., more substitutions are 
omparable). In appli
ations in automated dedu
tion,

where substitutions generally have meaning only in the 
ontext of the expressions

(i.e., uni�
ation problems) that produ
ed them, it is admissible to use an ordering

that 
ompares alternate solutions only with respe
t to this small set of variables.

It is also advisable, as this stronger ordering allows for smaller minimal 
omplete

sets. For example, the theory ACU := AC [ ff(x; e) = xg is known to be uni-

tary w.r.t. F := ff; eg. If the weaker instantiation quasi-ordering (i.e., the one


omparing substitutions on all variables) were used, this would no longer be true

[Baader 1991℄.

Another di�eren
e between the equational 
ase and the synta
ti
 
ase 
on
erns

the 
hara
terization of the instantiation equivalen
e

�

=. For E = ;, two substitutions

are instantiation equivalent i� they are equal up to 
omposition with a variable

renaming. It should be noted that this need no longer be the 
ase for E 6= ;,

even if one repla
es \equal up to 
omposition with a variable renaming" by \equal

modulo E up to 
omposition with a variable renaming." For example, 
onsider the

equational theory I := ff(x; x) � xg, and the substitutions � := fx 7! yg and

� := fx 7! f(y; z)g. Using the substitutions �

1

:= fy 7! f(y; z)g and �

2

:= fy 7!

y; z 7! yg, it is easy to show that �

�

=

fxg

E

�. However, a variable renaming 
annot

identify y and z, and thus f(y; z)� 6=

I

y for every su
h renaming �.

3.2.2. The signature matters

In the de�nitions of E-uni�
ation problems, uni�
ation type, et
., we have always

expli
itly stated whi
h fun
tion symbols may o

ur in the uni�
ation problems. The

reason is that the uni�
ation properties of an equational theory (like de
idability,

uni�
ation type, et
.) may depend on this set of fun
tion symbols. In most 
ases,

however, a less �ne-grained distin
tion is suÆ
ient. Re
all that Sig(E) denotes the
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set of all fun
tion symbols o

urring in the equational theory E.

3.9. Definition. Let E be an equational theory and � an E-uni�
ation problem

over F .

� � is an elementary E-uni�
ation problem i� F = Sig(E).

� � is an E-uni�
ation problem with 
onstants i� F nSig(E) is a set of 
onstant

symbols.

� In a general E-uni�
ation problem, F nSig(E) may 
ontain arbitrary fun
tion

symbols.

Following this distin
tion, we 
an introdu
e three di�erent uni�
ation types for

an equational theory. The uni�
ation type of E w.r.t. elementary uni�
ation is

the maximal uni�
ation type of E w.r.t. all sets of fun
tion symbols F satisfying

F = Sig(E). A

ordingly, the uni�
ation type of E w.r.t. uni�
ation with 
onstants

is the maximal uni�
ation type of E w.r.t. all sets of fun
tion symbols F su
h that

F nSig(E) is a set of 
onstant symbols, and the uni�
ation type of E w.r.t. general

uni�
ation

3

is the maximal uni�
ation type of E w.r.t. all signatures F . Obviously,

the same distin
tion 
an be made for de
idability of E-uni�
ation, and for other

interesting properties of E-uni�
ation problems. Constant (fun
tion) symbols that

do not o

ur in E are 
alled free 
onstant (fun
tion) symbols w.r.t. E.

The theory ACU introdu
ed above is an example of a theory that is unitary

for elementary uni�
ation, but only �nitary for uni�
ation with 
onstants (see,

e.g., [Herold and Siekmann 1987℄). B�ur
kert [1989℄ has shown that there exists an

equational theory for whi
h elementary uni�
ation is de
idable, but uni�
ation with


onstants is unde
idable.

Appli
ations of equational uni�
ation in automated dedu
tion usually yield gen-

eral uni�
ation problems. For example, in resolution-based theorem proving, the

additional free fun
tion symbols are often generated by Skolemization.

From a stri
tly formal point of view, the de�nition of an E-uni�er (see de�ni-

tion 3.1) is ambiguous sin
e it does not spe
ify over whi
h signature the terms that

are substituted for the variables may be built. By default, we have assumed that

this set is the set F , whi
h 
ontains all fun
tion symbols o

urring in E or �. One

might ask whether there would be a signi�
ant di�eren
e if we allowed the substi-

tutions to introdu
e additional free fun
tion symbols. It is easy to show, however,

that there is no su
h di�eren
e sin
e any E-uni�er of � that introdu
es additional

free fun
tion symbols is an instan
e of an E-uni�er that uses only symbols from F :

this more general uni�er 
an, in prin
iple, be obtained by repla
ing subterms start-

ing with su
h additional fun
tion symbols by new variables, while taking 
are that

=

E

-equal subterms are repla
ed by the same variable. Thus, if we restri
t the set

of E-uni�ers to substitutions over F , we obtain a 
omplete set of E-uni�ers even

w.r.t. substitutions over larger signatures. This justi�es the (formally somewhat

sloppy) de�nition of the set of E-uni�ers given above.

3

It should be noted that this use of the term \general uni�
ation" is distin
t from the one

in [Gallier and Snyder 1989, Snyder 1991℄, where it refers to methods that provide uni�
ation

pro
edures for arbitrary equational theories (see se
tion 4.1).
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3.2.3. Single equations versus systems of equations

For synta
ti
 uni�
ation, solving a system of term equations 
an be redu
ed to

solving a single equation s=

?

t. For this reason, synta
ti
 uni�
ation is sometimes

only 
onsidered for single equations. For equational uni�
ation, the same holds if

one 
onsiders general uni�
ation. In fa
t, if f 2 F is an n-ary fun
tion symbol not


ontained in Sig(E), then the E-uni�
ation problem fs

1

=

?

E

t

1

; : : : ; s

n

=

?

E

t

n

g over

F has the same set of uni�ers as ff(s

1

; : : : ; s

n

)=

?

E

f(t

1

; : : : ; t

n

)g.

For elementary uni�
ation and for uni�
ation with 
onstants, however, there may

be signi�
ant di�eren
es. For example, there exists an equational theory E su
h

that all elementary E-uni�
ation problems of 
ardinality 1 (i.e., single equations)

have minimal 
omplete sets of E-uni�ers, but E is of type zero w.r.t. elementary

uni�
ation sin
e there exists an elementary E-uni�
ation problem of 
ardinality

2 that does not have a minimal 
omplete set of E-uni�ers [B�ur
kert, Herold and

S
hmidt-S
hau� 1989℄. Narendran and Otto [1990℄ give an example of a theory su
h

that uni�ability of elementary uni�
ation problems of 
ardinality 1 is de
idable, but

uni�ability is unde
idable for elementary uni�
ation problems of larger 
ardinality.

3.3. Reformulations

In this subse
tion, we 
onsider reformulations of (some of) the notions introdu
ed

above from an order-theoreti
, logi
al, algebrai
, and 
ategory-theoreti
 point of

view. This will shed a new light on the notions, and it allows us to utilize approa
hes

and results from the respe
tive areas in uni�
ation theory.

3.3.1. The order-theoreti
 point of view

Let E be an equational theory and � an E-uni�
ation problem with variables

X := Var(�). We know that the relation �

�

X

E

is a quasi-ordering on U

E

(�) with

asso
iated equivalen
e relation

�

=

X

E

. Thus, �

�

X

E

indu
es a partial ordering � on the

set U := f[�℄ j � 2 U

E

(�)g of all

�

=

X

E

-
lasses [�℄ := f� j �

�

=

X

E

�g:

[�℄ � [�℄ i� � �

�

X

E

�:

This allows us to investigate notions like 
omplete and minimal 
omplete sets of

E-uni�ers on the abstra
t order-theoreti
 level.

Thus, let (U;�) be an arbitrary partially ordered set. A subset C of U is 
alled


omplete i� for all u 2 U there exists 
 2 C su
h that su
h that 
 � u. A 
omplete

set C is 
alled minimal i� it is minimal with respe
t to set in
lusion.

3.10. Lemma. The 
omplete set C � U is minimal i� for all x; y 2 C, x � y

implies x = y.

Proof. If the elements x; y of the 
omplete set C satisfy x < y, then C nfyg is also


omplete, whi
h shows that C is not minimal. Conversely, if C

1

; C

2

are 
omplete

sets su
h that C

1

� C

2

, then there exists y 2 C

2

n C

1

. Sin
e C

1

is 
omplete, there

exists x 2 C

1

su
h that x � y, and sin
e y 62 C

1

, we have x 6= y.
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The following lemma des
ribes the 
onne
tion between minimal 
omplete sets

and minimal elements in partially ordered sets.

3.11. Lemma. Let M be the set of �-minimal elements of U .

1. If C � U is a minimal 
omplete set, then C =M .

2. If M is 
omplete, then it is minimal 
omplete.

Proof. The se
ond statement is obvious, sin
e di�erent �-minimal elements of U


annot be 
omparable w.r.t. �. To show the �rst statement, let C � U be a minimal


omplete set. Obviously, M � C sin
e any �-minimal element must be 
ontained

in a 
omplete set. To see the other in
lusion, assume that y 2 C is not minimal.

Thus, there exists an element y

0

2 U su
h that y

0

< y. Sin
e C is 
omplete, there

exists x 2 C su
h that x � y

0

. Thus, we have x; y 2 C with x < y, whi
h shows

that C 
annot be minimal.

Figure 5 shows (the Hasse diagrams of) two partially ordered sets. The left one


onsists of an in�nitely des
ending 
hain x

1

> x

2

> x

3

> � � �. Consequently, the

set of �-minimal elements is empty, and thus not 
omplete. The right one also


ontains an in�nitely des
ending 
hain (
onsisting of the elements y

1

; y

2

; : : :), but

the set of �-minimal elements (the elements z

1

; z

2

; : : :) is obviously 
omplete. If

x

1

x

2

x

3

x

5

.

.

.

x

4

y

1

y

2

y

3

y

5

.

.

.

y

4

z

1

z

2

z

3

z

5

z

4

.

.

.

Figure 5: Two partially ordered sets.

U = f[�℄ j � 2 U

E

(�)g is the set of

�

=

X

E

-
lasses of E-uni�ers of �, and � is the

partial ordering on U indu
ed by�

�

X

E

, then lemma 3.11 yields a ni
e 
hara
terization

of all minimal 
omplete sets of E-uni�ers. If M is a subset of U , then a set of

representatives of M is any subset of U

E

(�) that 
ontains for ea
h 
lass m 2 M

exa
tly one representative, i.e., a uni�er �

m

su
h that [�

m

℄ = m.

3.12. Theorem. LetM be the set of all �-minimal elements of U . If C is a minimal


omplete set of E-uni�ers of �, then M = f[�℄ j � 2 Cg. Conversely, if M is


omplete, then any set of representatives of M is a minimal 
omplete set of E-

uni�ers of �.
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As an immediate 
onsequen
e of this theorem we 
an dedu
e

3.13. Corollary. Let M be the set of all �-minimal elements of U .

1. A minimal 
omplete set of E-uni�ers of � exists i� M is 
omplete.

2. If a minimal 
omplete set of E-uni�ers of � exists, then it is unique up to the

equivalen
e

�

=

X

E

.

In [Baader 1989a℄, this order-theoreti
 point of view was used to derive di�erent


hara
terizations of uni�
ation type zero.

3.3.2. The algebrai
 and logi
al point of view

It is well known that the de
ision problems for elementary uni�
ation and for uni-

�
ation with 
onstants 
orrespond to natural 
lasses of logi
al de
ision problems

[Bo
kmayr 1992℄, and it turns out that the same is true for general uni�
ation.

Before stating these logi
al 
hara
terizations of E-uni�
ation, we re
all some

results from universal algebra about equationally de�ned 
lasses (see, e.g., [Cohn

1965, Mal'
ev 1971, Gr�atzer 1979℄ for more details). An equational theory E de�nes

a variety (or equational 
lass) V (E), i.e., the 
lass of all models of E. The theory

E is 
alled non-trivial if V (E) 
ontains algebras of 
ardinality > 1, and trivial

otherwise. Obviously, E is trivial i� x =

E

y for distin
t variables x; y. If E is

a non-trivial equational theory, then V (E) 
ontains free algebras over any set of

generators. In fa
t, let F

0

:= Sig(E), and let X be a set of variables of 
ardinality

�. Then the quotient term algebra T (F

0

;X )=

=

E

is a free algebra in V (E). Its set

of generators 
onsists of the =

E

-
lasses of the variables, and this set has 
ardinality

� sin
e E was assumed to be non-trivial. We 
all this algebra the E-free algebra

with generators X .

4

The fa
t that it is free in V (E) means that any mapping from

X into an algebra A 2 V (E) 
an uniquely be extended to a homomorphism of

T (F

0

;X )=

=

E

into A.

Now, we introdu
e the 
lasses of formulae that 
orrespond to equational uni�-


ation problems. Let E be an equational theory, and F

0

:= Sig(E) be the set of

fun
tion symbols o

urring in E. An atomi
 F

0

-formula is an equation s = t. A

positive F

0

-matrix is built from atomi
 F

0

-formulae using 
onjun
tion and disjun
-

tion. A positive F

0

-senten
e is a quanti�er-pre�x followed by a positive F

0

-matrix

that 
ontains only variables introdu
ed in the pre�x. Without loss of generality

we assume that the variables o

urring in the pre�x are all distin
t. A positive

existential F

0

-senten
e is a positive F

0

-senten
e whose pre�x 
ontains only exis-

tential quanti�ers, and a positive AE F

0

-senten
e has a pre�x 
onsisting of a blo
k

of universal quanti�ers, followed by a blo
k of existential quanti�ers. The positive

(positive existential, positive AE) fragment of the equational theory E 
onsists of

the set of all positive (positive existential, positive AE) F

0

-senten
es that are valid

in E, i.e., true in all models of E. A

ordingly, for an F

0

-algebra A, the positive

4

Stri
tly speaking, the generators are the =

E

-
lasses of the elements of X , but sin
e di�erent

variables belong to di�erent 
lasses, we slightly abuse the notation by identifying a variable x 2 X

with its =

E

-
lass.
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(positive existential, positive AE) theory of A is the set of all positive (positive

existential, positive AE) F

0

-senten
es that are true in A.

3.14. Theorem. Let E be a non-trivial equational theory, F

0

:= Sig(E), and V a


ountably in�nite set of variables.

1. Elementary E-uni�
ation is de
idable i� the positive existential fragment of E

is de
idable i� the positive existential theory of T (F

0

;V)=

=

E

is de
idable.

2. E-uni�
ation with 
onstants is de
idable i� the positive AE fragment of E is

de
idable i� the positive AE theory of T (F

0

;V)=

=

E

is de
idable.

Proof. (1.1) Let � := fs

1

=

?

E

t

1

; : : : ; s

n

=

?

E

t

n

g be an elementary E-uni�
ation

problem, and let Var(�) = fx

1

; : : : ; x

k

g. The terms s

1

; t

1

; : : : ; s

n

; t

n

are F

0

-terms

with variables in Var(�), whi
h implies that

�

�

:= 9x

1

: � � � 9x

k

: s

1

= t

1

^ : : : ^ s

n

= t

n

is a positive existential F

0

-senten
e. We 
laim that � is E-uni�able i� �

�

holds in

T (F

0

;V)=

=

E

i� �

�

is valid in E.

Assume that � is an E-uni�er of �, i.e., s

1

� =

E

t

1

�; : : : ; s

n

� =

E

t

n

�. Without

loss of generality we may assume that � introdu
es only variables from V . Thus, the

substitution � may also be 
onsidered as a valuation of the variables fx

1

; : : : ; x

k

g

by elements of T (F

0

;V)=

=

E

. Conversely, any su
h valuation 
an be seen as a sub-

stitution. This shows that � is E-uni�able i� �

�

holds in T (F

0

;V)=

=

E

.

If �

�

is valid in all models of E, it obviously holds in T (F

0

;V)=

=

E

2 V (E).

Conversely, assume that �

�

holds in T (F

0

;V)=

=

E

. If �

�

is not valid in E, then there

exists an algebra A 2 V (E) in whi
h �

�

does not hold. By the L�owenheim-Skolem

theorem, we may without loss of generality assume that A is 
ountable. Thus,

there exists a surje
tive homomorphism from T (F

0

;V)=

=

E

onto A (extending an

arbitrary surje
tion of X onto the 
arrier ofA). Sin
e validity of positive senten
es is

invariant under surje
tive homomorphisms,

5

validity of �

�

in T (F

0

;V)=

=

E

2 V (E)

implies validity of �

�

in A, whi
h is a 
ontradi
tion.

(1.2) Let � = 9x

1

: � � � 9x

n

:  be a positive existential F

0

-senten
e. Without loss

of generality we may assume that its matrix  is in disjun
tive normal form, i.e.,

 =  

1

_ : : : _  

n

where the formulae  

i

are 
onjun
tions of equations. Sin
e

existential quanti�er distribute over disjun
tion, � is valid in E (in T (F

0

;V)=

=

E

)

i� one of the formulae 9x

1

: � � � 9x

n

:  

i

is valid in E (in T (F

0

;V)=

=

E

). Obviously,

the formulae  

i


an be translated into uni�
ation problems �

i

, and as in part (1.1)

of the proof we 
an show that �

i

is uni�able i� 9x

1

: � � � 9x

n

:  

i

is valid in E (in

T (F

0

;V)=

=

E

).

(2) The se
ond equivalen
e 
an be shown as in part (1.1) of the proof (sin
e there

we have only used the fa
t that �

�

is a positive F

0

-senten
e).

To see the �rst equivalen
e, assume that � is a positive AE senten
e. Skolemizing

the universally quanti�ed variables

6

yields a positive existential (F

0

[F

1

)-senten
e

5

See [Mal'
ev 1973℄, pp. 143, 144 for a proof.

6

We must Skolemize the universally quanti�ed variables sin
e we are interested in validity

instead of satis�ability.
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�

0

su
h that F

1

is a set of 
onstants (not 
ontained in Sig(E)) and � is valid

in E i� �

0

is valid in E. As in (1.2) of the proof, �

0


an be translated into E-

uni�
ation problems �

 

0

i

su
h that �

0

is valid in E i� one of these uni�
ation

problems is uni�able. Obviously, the problems �

 

0

i

are E-uni�
ation problem with


onstants sin
e they 
ontains the additional Skolem 
onstants F

1

. Conversely, any

E-uni�
ation problem with 
onstants 
an be turned into a positive AE senten
e by

repla
ing its free 
onstants by universally quanti�ed variables.

The redu
tion des
ribed in part (1.2) of the proof is exponential in the worst 
ase

sin
e the disjun
tive normal form of the matrix  
an be exponential in the size of

 . For synta
ti
 equality (i.e., E = ;), it 
an be shown that the problem of de
iding

validity of positive existential senten
es is NP-
omplete, whereas the 
orresponding

uni�
ation problem is linear [Kozen 1981℄.

Before we state the analogous 
orresponden
e between general E-uni�
ation and

the (full) positive fragment of E, we introdu
e another 
lass of uni�
ation problems,

whi
h turns out to be equivalent to general E-uni�
ation.

3.15. Definition. An E-uni�
ation problem with linear 
onstant restri
tions (l
r)


onsists of an E-uni�
ation problem with 
onstants, �, and a linear ordering < on

the variables and free 
onstants o

urring in �. A substitution � is an E-uni�er of

(�; <) i� it is an E-uni�er of � that satis�es

x < 
 implies 
 does not o

ur in x�

for all variables x and free 
onstants 
 in �.

For example, the (synta
ti
) uni�
ation problem ff(x)=

?

f(
)g has fx 7! 
g as

most general uni�er. Under the restri
tion x < 
, this uni�er is not admissible.

3.16. Theorem. Let E be a non-trivial equational theory, F

0

:= Sig(E), and V a


ountably in�nite set of variables. Then the following statements are equivalent:

1. The positive theory of E is de
idable.

2. The positive theory of T (F

0

;V)=

=

E

is de
idable.

3. General E-uni�
ation is de
idable.

4. E-uni�
ation with linear 
onstant restri
tions is de
idable.

Proof.We only give a sket
h of the proof (see [Baader and S
hulz 1996℄ for details).

In order to show (1), (2), it is suÆ
ient to show that a positive F

0

-senten
e �

is valid in E i� it is true in T (F

0

;V)=

=

E

. This 
an be shown as in part (1.1) of the

proof of theorem 3.14.

A given positive senten
e � 
an be turned into a positive existential senten
e �

0

by Skolemization. As in part (2) of the proof of theorem 3.14, validity of �

0


an be

redu
ed to validity of several E-uni�
ation problems, whi
h are general sin
e they

may 
ontain Skolem fun
tions of arbitrary arity. This shows (3)) (1).

A given E-uni�
ation problem with linear 
onstant restri
tions (�; <) 
an be

transformed into a positive F

0

-senten
e �

<

�

as follows: the matrix of �

<

�

is simply
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the 
onjun
tion of all equations in �. However, the 
onstants in � are 
onsidered

as variables in this matrix. The quanti�er-pre�x 
ontains a universal quanti�er for

every free 
onstant in �, and an existential quanti�er for every variable in �. The

order of the quanti�ers is determined by the linear ordering <. It 
an be shown

that (�; <) is uni�able i� �

<

�

is valid in E. This proves (1)) (4).

Finally, (4)) (3) follows from the 
ombination result in [Baader and S
hulz 1996℄

(see se
tion 6).

The following example, in whi
h we assume E = ff(x) � f(x)g, illustrates the

transformation of an E-uni�
ation problem with linear 
onstant restri
tions into a

positive senten
es, and of this positive senten
e into a general E-uni�
ation problem

(by Skolemization).

uni�
ation with l
r positive senten
e general uni�
ation

fx=

?

E

f(
)g; x < 
 9x:8y: x = f(y) fx=

?

E

f(h(x))g

fx

:

= f(
)g; 
 < x 8y:9x: x = f(y) fx=

?

E

f(d)g

The problem fx=

?

E

f(
)g is not uni�able under the restri
tion x < 
, sin
e any

uni�er must repla
e x by f(
), whi
h 
ontains the forbidden 
onstant 
. The 
or-

responding positive senten
e 9x:8y: x = f(y) is not valid sin
e it says that f is

a 
onstant fun
tion, whi
h is not true in all models of E. Finally, the general E-

uni�
ation problem fx=

?

E

f(h(x))g, whi
h 
ontains the Skolem fun
tion h, is not

uni�able sin
e one obtains an o

urs 
he
k failure. Changing the linear ordering

to 
 < x leads to a uni�able uni�
ation problem with l
r, and the 
orresponding

positive senten
e is trivially valid.

3.3.3. The 
ategory-theoreti
 point of view

Let � := fs

i

=

?

E

t

i

j i = 1; : : : ; ng be an E-uni�
ation problem over F , and

X := Var(�) be the �nite set of variables o

urring in �. Sin
e all our 
al
u-

lations are done modulo E, we may 
onsider the terms s

i

and t

i

as elements

of T (F ;X )=

=

E

, the E-free algebra with generators X . For example, let F 
on-

sist of a binary fun
tion symbol f , and let A axiomatize asso
iativity of f , i.e.,

A := ff(x; f(y; z)) � f(f(x; y); z)g. The E-free algebra with generators X is the

free semigroup X

+

, whose elements are the nonempty words over the alphabet X .

Instead of writing terms like f(x; f(y; f(x; x))) in A-uni�
ation problems, we 
an

omit the parentheses and all o

urren
es of the letter f , and simply write words

like xyxx.

Also, sin
e the instantiation quasi-ordering 
ompares substitutions only on X and

modulo E, ea
h substitution 
an be seen as a homomorphism from T (F ;X )=

=

E

into

an E-free algebra T (F ;Y)=

=

E

, where Y is a suitable �nite set (of variables or gener-

ators). For example, modulo A, the substitution � := fx 7! f(x; f(y; f(x; x))); y 7!

f(y; z)g 
an be viewed as a homomorphism �: fx; yg

+

! fx; y; zg

+

that maps x to

the word xyxx and y to the word yz.



Unifi
ation Theory 481

The E-uni�
ation problem � itself 
an be represented as a pair of homomorphisms

between �nitely generated E-free algebras. Indeed, let I := fx

1

; : : : ; x

n

g be a set

of 
ardinality n. If we de�ne �; � : T (F ; I)=

=

E

! T (F ;X )=

=

E

by

x

i

� := s

i

and x

i

� := t

i

(i = 1; : : : ; n);

then Æ: T (F ;X )=

=

E

! T (F ;Y)=

=

E

is an E-uni�er of � i� x

i

�Æ = s

i

Æ = t

i

Æ =

x

i

�Æ,

7

that is, i� �Æ = �Æ. Consequently, any E-uni�
ation problem over F 
an be

represented as a parallel pair of morphisms in the following 
ategory:

8

3.17. Definition. Let E be an equational theory and F be a signature su
h that

Sig(E) � F . The 
ategory C

F

(E) is de�ned as follows:

1. The obje
ts of C

F

(E) are the �nitely generated E-free algebras T (F ;X )=

=

E

.

2. The morphisms of C

F

(E) are the homomorphisms between these algebras. For

a morphism Æ: T (F ;X )=

=

E

! T (F ;Y)=

=

E

, the algebra T (F ;X )=

=

E

is 
alled

its domain, and the algebra T (F ;Y)=

=

E

its 
odomain.

3. Composition �Æ of morphisms is the usual 
omposition of mappings, whi
h is

only de�ned if the 
odomain of � 
oin
ides with the domain of Æ.

A uni�
ation problem in C

F

(E) is a pair h�; �i of morphisms �; � : T (F ; I)=

=

E

!

T (F ;X )=

=

E

having the same domain and the same 
odomain. A uni�er of h�; �i

in C

F

(E) is a morphism Æ with domain T (F ;X )=

=

E

su
h that �Æ = �Æ.

The instantiation quasi-order, and the notions 
omplete and minimal 
omplete

set of uni�ers as well as most general uni�er 
an be adapted in an obvious way to

this view of E-uni�
ation as a problem in C

F

(E). For example, the morphism Æ is

a most general uni�er of h�; �i i� it is a uni�er of h�; �i su
h that, for all uni�ers �

of h�; �i, there exists a morphism � satisfying � = Æ�.

Readers familiar with basi
 notions from 
ategory theory may have noti
ed that

this de�nition of a most general uni�er of h�; �i strongly resembles the de�nition of

a 
oequalizer of a parallel pair of morphisms (i.e., a pair with the same domain and

the same 
odomain). The only di�eren
e is that for a most general uni�er of h�; �i

to be a 
oequalizer, the morphism � su
h that � = Æ� must always be unique.

It is easy to see that a most general uni�er of h�; �i need not be a 
oequalizer of

this parallel pair. For example, the most general (synta
ti
) uni�er Æ := fy 7! xg of

the equation f(x; y)=

?

f(y; x) 
an be viewed as a morphism Æ

Y

: T (ffg; fx; yg)!

T (ffg;Y) for any �nite set of variables Y 
ontaining x. All these morphisms are

most general uni�ers of the parallel pair 
orresponding to the uni�
ation problem

f(x; y)=

?

f(y; x), but only Æ

fxg

is a 
oequalizer. More generally, a most general

uni�er in C

F

(;) need not be a 
oequalizer, but it 
an always be transformed into

one by appropriately restri
ting the set of generators in its 
odomain.

For nonempty theories, su
h a transformation need not be possible, however. As

shown in [Baader 1991℄, there exists an equational theory, namely the theory ACU

7

Sin
e terms are now viewed as elements of E-free algebras (i.e., =

E

-equivalen
e 
lasses), we

may write equality (=) in pla
e of equality modulo E (=

E

).

8

See [Pier
e 1991℄ for basi
 de�nitions and results of 
ategory theory.
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that axiomatizes an asso
iative-
ommutative binary symbol f with a unit e, su
h

that all solvable uni�
ation problems in C

ff;eg

(ACU) have a most general uni�er,

but not all solvable uni�
ation problems in this 
ategory have a 
oequalizer. In the

appli
ations of E-uni�
ation in automated dedu
tion, the additional uniqueness

requirement in the de�nition of a 
oequalizer is not relevant. Thus, one should sti
k

with the de�nition of a most general uni�er as introdu
ed above, and not repla
e

it by the one of a 
oequalizer.

As su
h, the simple observation that E-uni�
ation has a 
ategory-theoreti
 in-

terpretation does not solve any problems: it just transforms them into a di�erent

representation. This new representation is only of interest if te
hniques and re-

sults from 
ategory theory 
an be used to solve new and interesting problems in

uni�
ation theory. Rydeheard and Burstall [1985℄ use the 
ategory-theoreti
 repre-

sentation of synta
ti
 uni�
ation to derive a uni�
ation algorithm based on 
olimit


onstru
tions in C

F

(;). In [Baader 1989b℄, results from 
ategory theory on so-
alled

semi-additive 
ategories are used to obtain results on uni�
ation modulo so-
alled


ommutative theories (see subse
tion 5.2 below).

Even though the 
onstru
tion of the 
ategory C

F

(E) is quite natural, there are

also other ways of representing uni�
ation problems in 
ategory-theoreti
 terms.

Whereas Goguen [1989℄ just introdu
es the dual 
ategory of C

F

(E) (where mor-

phisms are inverse homomorphisms), Ghilardi [1997℄ takes a quite di�erent ap-

proa
h: he 
onsiders the 
ategory of all algebras in V (E) (not only the �nitely

generated free ones), and represents uni�
ation problems as �nitely presented alge-

bras in this 
ategory. In this setting, the proof that uni�
ation in Boolean algebras

and in primal algebras is unitary [Nipkow 1990℄ be
omes trivial.

3.4. Survey of results for spe
i�
 theories

Resear
h in uni�
ation theory has produ
ed results on uni�
ation properties of a

great variety of equational theories. In this se
tion, we will brie
y review some of

these results, with an emphasis on the more re
ent ones that are not yet 
overed

by previous surveys of the area [Siekmann 1989, Jouannaud and Kir
hner 1991,

Kapur and Narendran 1992a, Baader and Siekmann 1994℄. For ea
h theory, we are

interested in the de
ision problem and its 
omplexity as well as its uni�
ation type

and the existen
e of uni�
ation algorithms and pro
edures. Depending on whi
h

kind of uni�
ation problems (elementary, with 
onstants, or general) is 
onsidered,

there may exist di�erent results for a given theory.

Asso
iativity

The theory A

f

:= ff(f(x; y); z) � f(x; f(y; z))g axiomatizes asso
iativity of the

binary fun
tion symbol f .

De
ision problem: This problem, whi
h is very hard and had been open for a long

time, was �nally solved by Makanin [1977℄, who proves de
idability of A

f

-

uni�
ation with 
onstants (see also [P�e
u
het 1981, Ja�ar 1990, Abdulrab and

P�e
u
het 1989, S
hulz 1993℄). Using general 
ombination te
hniques and an
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extension of Makanin's algorithm [S
hulz 1992℄, de
idability of general A

f

-

uni�
ation was shown in [Baader and S
hulz 1992, Baader and S
hulz 1996℄.

The de
ision problem for A

f

-uni�
ation is NP-hard [Benanav, Kapur and

Narendran 1985℄. The known upper bound is still higher, even though there has

re
ently been 
onsiderable progress in lowering the bound: the 3-NEXPTIME

result by Kos
ielski and Pa
holski [1990℄ was �rst improved to EXPSPACE

by Guti�errez [1998℄, then to NEXPTIME by Plandowski [1999a℄, and �nally

to PSPACE [Plandowski 1999b℄. Interestingly, the last two results no longer

need Makanin's algorithm, i.e., they yield a new de
ision pro
edure that is

independent of Makanin's result.

Uni�
ation type: in�nitary for all three kinds of uni�
ation problems [Plotkin 1972℄

(see also example 3.7).

Uni�
ation pro
edures: Plotkin [1972℄ des
ribes a minimal uni�
ation pro
edure for

general A

f

-uni�
ation, whi
h 
an even deal with several asso
iative fun
tion

symbols. In general, this pro
edure does not yield a de
ision pro
edure sin
e

it need not terminate even for non-solvable problems or problems having a

�nite minimal 
omplete set of A

f

-uni�ers. For 
ertain restri
ted types of A

f

-

uni�
ation problems, modi�
ations of Plotkin's pro
edure 
an be turned into

de
ision pro
edures that are simpler than Makanin's general pro
edure [Au�ray

and Enjalbert 1992, S
hmidt 1998℄.

Commutativity

The theory C

f

:= ff(x; y) � f(y; x))g, whi
h axiomatizes 
ommutativity of the

binary fun
tion symbol f , has already been 
onsidered in example 3.6.

De
ision problem: NP-
omplete for C

f

-uni�
ation with 
onstants and general C

f

-

uni�
ation. The hardness result for uni�
ation with 
onstants is mentioned in

[Garey and Johnson 1979℄, where it is attributed to Sethi (private 
ommuni-


ation, 1977). A simple NP-hardness proof due to Narendran (private 
om-

muni
ation, 1993) is sket
hed in [Baader and Siekmann 1994℄. It is easy to

see that this proof 
an also be used to show NP-hardness of elementary C

f

-

uni�
ation (private 
ommuni
ation by Narendran, 1997).

9

NP-de
ision pro
e-

dures for general C

f

-uni�
ation 
an easily be obtained from the simple uni�
a-

tion algorithm sket
hed in example 3.6: instead of testing all possible sets �

0

,

the non-deterministi
 de
ision pro
edure �rst guesses su
h a set �

0

, and then

tests whether this set has a synta
ti
 uni�er.

Uni�
ation type: �nitary for all three kinds of uni�
ation problems [Siekmann

1979℄.

Uni�
ation algorithms: In addition to Siekmann's simple (non-minimal) uni�
ation

algorithm for general C

f

-uni�
ation [Siekmann 1979℄, various other methods

have been proposed [Fages 1983, Kir
hner 1985, Herold 1987℄. However, none

of them dire
tly produ
es a minimal 
omplete set of C

f

-uni�ers.

9

In this proof, simply repla
e the 
onstants a; b by the terms t

a

:= f(x; f(x; x) and t

b

:= f(x; x)

and add for ea
h propositional variable q an equation f(x

q

; y

q

)=

?

C

f

f(t

a

; t

b

), whi
h makes sure

that x

q

is instantiated either by t

a

or by t

b

.
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Distributivity

The theories D

l

f;g

:= ff(x; g(y; z)) � g(f(x; y); f(x; z))g and D

r

f;g

:= ff(g(y; z); x)

� g(f(y; x); f(z; x))g axiomatize left-distributivity and right-distributivity of f over

g, and their union D

f;g

:= D

l

f;g

[ D

r

f;g

axiomatizes (both-sided) distributivity of

f over g. In addition, we 
onsider 
ombinations of these theories with A

g

and

U

f

:= ff(x; e) � x; f(e; x) � xg.

De
ision problem: D

l

f;g

-uni�
ation (and, by symmetry, D

r

f;g

-uni�
ation) with 
on-

stants is de
idable in polynomial time [Tid�en and Arnborg 1987℄.

If one adds a unit for f , i.e., 
onsiders D

l

f;g

[U

f

(or D

r

f;g

[U

f

), then the prob-

lem be
omes mu
h harder sin
e A

f

-uni�
ation 
an be redu
ed to (D

l

f;g

[ U

f

)-

uni�
ation. De
idability of (D

l

f;g

[U

f

)-uni�
ation with 
onstants was shown in

[S
hmidt-S
hau� 1996b℄. Sin
e this de
ision pro
edure 
an be extended to 
ope

with linear 
onstant restri
tions, general results on the 
ombination of de
ision

pro
edures [Baader and S
hulz 1996℄ imply that general (D

l

f;g

[U

f

)-uni�
ation

is de
idable.

For uni�
ation modulo both-sided distributivity, the de
ision problem was open

for quite a while. After some preliminary de
idability results for restri
ted


lasses of D

f;g

-uni�
ation problems [Contejean 1993, S
hmidt-S
hau� 1992℄,

de
idability of D

f;g

-uni�
ation with 
onstants was �nally shown by S
hmidt-

S
hau� [1996a℄. His non-deterministi
 algorithm redu
es solvability of D

f;g

-

uni�
ation problems with 
onstants to A

f

-uni�
ation with 
onstants and ACU-

uni�
ation with linear 
onstant restri
tions. Thus, the algorithm is of quite high


omplexity, 
ompared to the best known lower bound, whi
h is NP-hard [Tid�en

and Arnborg 1987℄.

Unde
idability of (D

f;g

[ A

g

)-uni�
ation with 
onstants was proved in [Szab�o

1982, Siekmann and Szab�o 1989℄. This negative result has been strengthened in

[Tid�en and Arnborg 1987℄: every equational theory that lies above (D

f;g

[A

g

)

or (D

l

f;g

[ U

f

[ A

g

) and is 
onsistent with Peano arithmeti
 (where f stands

for multipli
ation, g for addition, and e for 1) has an unde
idable uni�
ation

problem. De
idability of (D

f;g

[ U

f

)-uni�
ation is still an open problem.

Uni�
ation type: in�nitary for D

f;g

-uni�
ation problems with 
onstants and gen-

eral D

f;g

-uni�
ation problems. Szab�o [1982℄ gives an example of a D

f;g

-

uni�
ation problem with 
onstants whose minimal 
omplete set of uni�ers is

in�nite. The existen
e of minimal 
omplete sets of D

f;g

-uni�ers (for all three

kinds of uni�
ation problems) is a 
onsequen
e of the fa
t that the =

D

f;g

-
lass

of a given term is always �nite [Szab�o 1982℄, whi
h implies that the instan-

tiation quasi-ordering �

�

X

D

f;g

is Noetherian [Szab�o 1982, B�ur
kert et al. 1989℄.

D

l

f;g

-uni�
ation (and, by symmetry,D

r

f;g

-uni�
ation) with 
onstants is unitary,

and an mgu 
an be 
omputed in polynomial time [Tid�en and Arnborg 1987℄.

Asso
iativity-
ommutativity

The theories AC

f

:= A

f

[ C

f

and ACU

f

:= AC

f

[ U

f

will be 
onsidered in

more detail in subse
tion 5.1. Examples of operations satisfying theses identities

are addition and multipli
ation of (rational, real, et
.) numbers.
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De
ision problem: NP-
omplete for uni�
ation problems with 
onstants and general

uni�
ation problems both for AC

f

and ACU

f

[Kapur and Narendran 1992a℄.

Elementary ACU

f

-uni�
ation problems always have a trivial solution, and solv-

ability of elementary AC

f

-uni�
ation problems is de
idable in polynomial time

using linear programming [Domenjoud 1991℄.

Uni�
ation type: ACU

f

is unitary for elementary and �nitary for the two other

kinds of uni�
ation problems, and AC

f

is �nitary for all three kinds of uni�-


ation problems [Livesey and Siekmann 1975, Sti
kel 1981, Fages 1987℄. The

number of uni�ers in a minimal 
omplete set of AC

f

-uni�ers may be doubly-

exponential in the size of a given elementary AC

f

-uni�
ation problem [Kapur

and Narendran 1992b℄.

Uni�
ation algorithms: Be
ause uni�
ation modulo asso
iativity-
ommutativity

has many appli
ations in automated dedu
tion, a great variety of uni�
ation

algorithms has been developed for AC

f

and ACU

f

[Sti
kel 1975, Livesey and

Siekmann 1975, Kir
hner 1985, Fortenba
her 1985, B�uttner 1986a, Herold 1987,

Herold and Siekmann 1987, Lin
oln and Christian 1989, Boudet, Contejean and

Devie 1990℄ (see also subse
tion 5.1).

Asso
iativity-
ommutativity-idempoten
y

We 
onsider the theories ACI

f

:= AC

f

[ ff(x; x) � xg, its extension by a unit

e, ACUI

f

:= ACI

f

[ U

f

, and by a zero n, ACUZI

f

:= ACUI [ ff(x; n) � ng.

Examples of operations satisfying theses identities are union and interse
tion of

sets. The theory ACUI

f

will be 
onsidered in more detail in subse
tion 5.1.

De
ision problem: For all three theories, the de
ision problem is polynomial for

elementary uni�
ation and for uni�
ation with 
onstants, and NP-
omplete

for general uni�
ation [Kapur and Narendran 1992a, Narendran 1996b℄. Like

synta
ti
 uni�
ation, ACI

f

- and ACUI

f

-uni�
ation with 
onstants are not only

in P , but even P -
omplete [Hermann and Kolaitis 1997℄.

Uni�
ation type: ACUI

f

is unitary for elementary and �nitary for the two other

kinds of uni�
ation problems, and ACI

f

is �nitary for all three kinds of uni-

�
ation problems [Livesey and Siekmann 1975, B�uttner 1986b, Baader and

B�uttner 1988, Kapur and Narendran 1992b℄. As with AC

f

, the number of ACI

f

-

uni�ers in a minimal 
omplete set may be doubly-exponential in the size of a

given elementary ACI

f

-uni�
ation problem [Kapur and Narendran 1992b℄. Her-

mann and Kolaitis show that 
omputing the 
ardinality of a minimal 
omplete

set of uni�ers for given ACI

f

- or ACUI

f

-uni�
ation uni�
ation problems is

#P -hard, whi
h implies that this fun
tion 
annot be 
omputed in polynomial

time, unless P = NP [Hermann and Kolaitis 1997℄.

Uni�
ation algorithms: Baader and B�uttner [1988℄ des
ribe an algorithm for

ACUI

f

-uni�
ation problems with 
onstants 
onsisting of a single equation, and

Kapur and Narendran [1992b℄ sket
h an algorithm for general ACI

f

-uni�
ation.
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Abelian groups

The theory of Abelian groups is de�ned by the identities AG

f

:= ACU

f

[

ff(i(x); x) � eg.

De
ision problem: trivial for elementary uni�
ation, polynomial for uni�
ation with


onstants [Baader and Siekmann 1994℄, and NP-
omplete for general uni�
ation

[S
hulz 1997℄.

Uni�
ation type: unitary for elementary uni�
ation and for uni�
ation with 
on-

stants [Lankford, Butler and Brady 1984℄, and �nitary for general uni�
ation

[S
hmidt-S
hau� 1989b, Boudet, Jouannaud and S
hmidt-S
hau� 1989℄. Com-

puting the 
ardinality of a minimal 
omplete set of uni�ers for a given general

AG

f

-uni�
ation is again #P -hard [Hermann and Kolaitis 1996℄.

Uni�
ation algorithms: Lankford et al. [1984℄ des
ribe an algorithm for AG

f

-

uni�
ation with 
onstants, and S
hmidt-S
hau� [1989b℄ shows that this algo-

rithm 
an be 
ombined with an algorithm for synta
ti
 uni�
ation into an

algorithm for general AG

f

-uni�
ation.

Commutative and Boolean rings

Let CRU denote the well-known axioms for 
ommutative rings with a (multipli
a-

tive) unit, and BR the theory of Boolean rings.

De
ision problem: As sket
hed in [Baader and Siekmann 1994℄, unde
idability of

elementary CRU-uni�
ation is an easy 
onsequen
e of the fa
t that Hilbert's

10th problem is unde
idable [Matiyasevi
h 1971, Davis 1973℄.

For the theory BR, the de
ision problem is NP-
omplete for elementary uni�-


ation, �

p

2

-
omplete for uni�
ation with 
onstants, and PSPACE-
omplete for

general uni�
ation [Baader 1998℄.

Uni�
ation type: The uni�
ation type of CRU is at least in�nitary, even for ele-

mentary uni�
ation [Burris and Lawren
e 1990℄.

10

.

BR is unitary for elementary uni�
ation and for uni�
ation with 
onstants

[B�uttner and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow

1989a℄, and �nitary for general uni�
ation [S
hmidt-S
hau� 1989b℄. As with the

theory of Abelian groups, the problem of 
omputing the 
ardinality of a minimal


omplete set of uni�ers is #P -hard for general BR-uni�
ation [Hermann and

Kolaitis 1996℄.

Uni�
ation algorithms: Algorithms that 
ompute most general uni�ers for elemen-

tary BR-uni�
ation and BR-uni�
ation with 
onstants are des
ribed in [B�uttner

and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow 1989a℄. Gen-

eral 
ombination methods 
an be used to obtain algorithms for general BR-

uni�
ation [S
hmidt-S
hau� 1989b, Boudet et al. 1989℄.

Endomorphisms

The theory End

h;g

:= fh(g(x; y)) � g(h(x); h(y))g states that the unary fun
tion

symbol h behaves like an endomorphism for the binary fun
tion symbol g, and

10

The 
losely related theory of 
ommutative semirings is known to be of uni�
ation type zero

w.r.t. elementary uni�
ation [Franzen 1992℄
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End

h;e

:= fh(e) � eg states that h behaves like an endomorphism for the 
onstant

symbol e. We 
onsider these two theories in 
ombination with some of the theories

introdu
ed above:

De
ision problem: Solvability of End

h;g

-uni�
ation problems with 
onstants is de-


idable [Vogel 1978℄.

For the theories End

h;g

[AC

g

and End

h;g

[ End

h;e

[ACU

g

, solvability of uni-

�
ation problems with 
onstants is unde
idable [Narendran 1996a℄.

In 
ontrast, solvability of uni�
ation problems with 
onstants is de
idable for

the theory End

h;g

[End

h;e

[ACUI

g

. In [Baader and Narendran 1998℄ it shown

that this problem is EXPTIME-
omplete.

A similar result holds for End

h;g

[ACUI

g

: for this theory, the de
ision problem is

known to be 
o-NP-hard and in EXPTIME [Guo, Narendran and Shukla 1998℄.

Finally, for End

h;g

[ End

h;e

[ AG

g

, de
idability of uni�
ation with 
onstants

was shown in [Baader 1993℄. Sin
e this de
idability result 
an be extended to

uni�
ation with linear 
onstant restri
tions, general 
ombination results yield

de
idability for general uni�
ation modulo this theory [Baader and Nutt 1996℄.

Uni�
ation type: The theory End

h;g

is unitary for uni�
ation with 
onstants [Vogel

1978℄.

End

h;g

[ End

h;e

[ ACU

g

and End

h;g

[ End

h;e

[ ACUI

g

are of type zero, even

for elementary uni�
ation [Baader 1993, Baader 1989b℄.

End

h;g

[End

h;e

[AG

g

is unitary for elementary uni�
ation and for uni�
ation

with 
onstants [Nutt 1990, Baader 1993℄, and �nitary for general uni�
ation

[Baader and Nutt 1996℄.

In addition to investigating uni�
ation properties of spe
i�
 equational theories

of interest, uni�
ation theory also tries to develop more general methods, and thus

to obtain results for whole 
lasses of equational theories. Sin
e uni�
ation modulo

equational theories is in general unde
idable (as illustrated by some of the examples

above), and also uni�
ation properties su
h as the uni�
ation type of a given the-

ory are in general unde
idable [Nutt 1991℄, approa
hes that apply to all equational

theories are likely to yield very weak results. For example, the general E-uni�
ation

pro
edure introdu
ed in se
tion 4.1, whi
h 
an be used to enumerate a 
omplete

set of E-uni�ers, is very ineÆ
ient, and usually does not yield a de
ision pro
edure

or a (minimal) E-uni�
ation algorithm even for unitary or �nitary theories whose

uni�
ation problem is de
idable. In order to obtain more useful results, one 
an try

to develop methods that work for appropriately restri
ted 
lasses of theories. There

are basi
ally two di�erent ways of introdu
ing appropriate restri
tions on equa-

tional theories. Synta
ti
 approa
hes impose restri
tions on the synta
ti
 form of

the identities de�ning the equational theories. The uni�
ation methods produ
ed by

these approa
hes are usually also of a quite synta
ti
 nature: as with the rule-based

approa
h to synta
ti
 uni�
ation, they transform the given uni�
ation problem into

a problem in solved form (se
tion 4). In 
ontrast, semanti
 approa
hes depend on

properties of the (free) algebras de�ned by the equational theory. Uni�
ation prob-

lems are translated into equations over 
ertain algebrai
 stru
tures, whi
h (in some


ases) 
an be solved using known results from mathemati
s (se
tion 5).
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4. Synta
ti
 methods for E-uni�
ation

In this se
tion we dis
uss two synta
ti
 approa
hes to generating 
omplete sets of

E-uni�ers, using inferen
e systems extending the set U presented in se
tion 2.2.3.

We �rst 
onsider the general problem (E-uni�
ation in arbitrary theories) and

show how it 
an be solved by adding a single rule to introdu
e identities into the

transformation pro
ess; this simple method is proved to be 
omplete and some

restri
tions whi
h preserve 
ompleteness are dis
ussed. We then present the most

signi�
ant spe
ial 
ase of the general problem, when the equational theory 
an

be presented by a 
onvergent set of rewrite rules. This method, 
alled narrowing ,

has been thoroughly investigated, and we will present the major results in the

framework of transformation rules.

4.1. E-uni�
ation in arbitrary theories

In this se
tion, we present a rule for introdu
ing identities into inferen
e steps in U

in su
h a way that a 
omplete set of E-uni�ers for an arbitrary set E of equations

may be generated. By spe
ializing various aspe
ts of the resultant 
al
ulus (and its


ompleteness proof), we will obtain more pra
ti
al methods for the spe
ial 
ase of


onvergent sets of rewrite rules. The results of this se
tion are based on [Gallier

and Snyder 1989, Snyder 1991℄.

In this se
tion we assume that the reader is familiar with the basi
 
on
epts of

rewriting (espe
ially equational proofs, redu
tion orderings, ground 
onvergen
e,

and 
riti
al pairs) dis
ussed in [Dershowitz and Plaisted 2001℄ (Chapter 9 of this

Handbook). By rewrite proof we refer to a sequen
e of rewrite steps between two

terms of the form

s

�

�!u

�

 � t

where u is in normal form. We will use e[u℄ in the following to represent a equation

(or identity) with a distinguished o

urren
e of a subterm u in one of its terms; in

su
h a 
ontext e[r℄ will denote the result of repla
ing this subterm with the term r.

We will use systems P ;S, representing uni�
ation problems and sets of equations

in solved form, as before.

4.1. Definition. For any equational theory E, a substitution � is an E-solution

(or simply a solution when E is understood) of a system P ;S if it is an E-uni�er

of every equation in P , and a uni�er of every equation in S.

4.1.1. The 
al
ulus G

The set G of inferen
e rules 
onsists of the rules Trivial, De
omposition, Orientation,

and Variable Elimination from U , plus the following rule for introdu
ing identities:

Lazy Paramodulation (LP):

fe[u℄g [ P ;S =)

lp

fl

?

=u; e[r℄g [ P ;S
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for a fresh variant

11

of the identity l � r from E [ E

�1

, and where (i) u is not

a variable, and (ii) if l is not a variable, then the top symbols of l and u are

identi
al, and no other inferen
e rule may be applied to the equation l=

?

u before

it is subje
ted to a De
omposition step.

Computation in G pro
eeds as in U , starting with an initial system of the form

fs=

?

tg; ; and applying inferen
e rules in an attempt to �nd some terminal system

;;S representing an E-uni�er �

S

of s and t. Clearly, by the general 
hara
teristi
s

of E-uni�
ation dis
ussed above, su
h a pro
ess 
an not share the ni
e properties

of U whi
h we dis
ussed in se
tion 2.2.4. However, it is possible to say quite a lot

about how to restri
t the appli
ation of rules, as we shall see.

4.1.2. Completeness of G

It 
an be shown easily that the 
al
ulus G is sound in the sense that a solution it

produ
es is always an E-uni�er; however this proof does not give mu
h insight into

the properties of G and we refer the interested reader to [Gallier and Snyder 1989℄. It

is more interesting to 
onsider the issue of 
ompleteness, whi
h is 
onsiderably more


omplex than in the standard 
ase. What we want to show is that if we 
onsider

the (�nitely-bran
hing but in�nite) sear
h tree of every possible transformation

sequen
e starting from fs=

?

tg; ;, then the leaves form a 
omplete set of E-uni�ers

for s and t. However, it is simpler to state and prove this in the following \non-

deterministi
" form.

4.2. Theorem. Let E be a non-trivial equational theory and P be a set of uni�
a-

tion problems. If � is an E-solution of P ; ;, then there exists a sequen
e

P ; ;

�

=) ;;S

(with S in solved form) in the 
al
ulus G su
h that �

S

�

�

X

E

�, where X = Vars(P ).

There are three main stages to the proof. First we will prove the result given


ertain strong restri
tions on the equational theory E. Then we 
onstru
t a kind

of \abstra
t 
ompletion" of E whi
h has the requisite restri
tions; �nally, we show

that any transformation sequen
e using this abstra
t 
ompletion 
an be 
onverted

into one using simply E.

The major diÆ
ulty in proving 
ompleteness of equational inferen
e systems

is generally in dealing with the restri
tion that equational steps not take pla
e at

variable positions (hen
e, \u is not a variable" in LP). The solution, due to Peterson

[1983℄, is to work with a restri
ted form of substitution in the proof.

4.3. Definition. Given a rewrite system R, a substitution � is R-redu
ed (or just

redu
ed if R is unimportant) if for every x 2 Dom(�), x� is in R-normal form.

11

By a fresh variant we refer to an expression that has been renamed with fresh variables that

do not o

ur anywhere else in the previous 
omputation. Whenever we mention a rewrite rule or

identity used in an inferen
e step, we will assume that it has been so renamed.
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Note that it is always possible for any � and terminating set of rules R to �nd an R-

equivalent redu
ed substitution �

0

. This allows us to assume, when \lifting" rewrite

steps at the ground level to inferen
e steps, that the position is a non-variable.

Another essential ingredient in our proof is the notion of an \oriented ground

instan
e" of an identity.

4.4. Definition. Let E be a non-trivial equational theory and � be a redu
tion

ordering total on ground terms. The set of ground instan
es of E is

Gr(E) := f l� � r� j l� and r� are ground and l � r 2 E [ E

�1

g:

The set of oriented ground instan
es of E is

Gr

�

(E) := f l� �! r� j l� � r� 2 Gr(E) and l� � r� g:

A member l� �! r� of su
h a set is 
alled redu
ed if � is redu
ed with respe
t to

the entire set.

12

For any E, the set of redu
ed oriented ground instan
es is denoted

R

E

.

An important fa
t about Gr(E) is the following.

4.5. Proposition. For any two ground terms s and t, there exists an equational

proof s

�

 !

E

t i� there exists a proof s

�

 !

Gr(E)

t

This is easily proved by showing that equational steps are 
losed under instantiation,

and hen
e we 
an instantiate any \unbound variables" by ground terms so that only

ground instan
es of identities from E are used.

Another kind of restri
tion on proofs, whi
h will be essential in proving the

\no inferen
es into variable positions" restri
tion in our 
ompleteness result, is the

subje
t of the next de�nition and lemma.

4.6. Definition. Let u� be an instan
e of u, and R a set of rewrite rules. A

rewrite step u� �!

R

u

0

is based on u i� the redex is at a non-variable position in

u (equivalently, is not wholly 
ontained within a term introdu
ed by �). A rewrite

sequen
e s�

�

�!

R

t is based on s (or simply basi
) i� either s� = t (re
exive 
ase)

or it starts with a rewrite step based on s, e.g.,

s� �!

R

(s�)[r�℄ = s[r℄��

�

�!

R

t

and the remainder is based on s[r℄. A rewrite proof s�

�

�!

�

 � t� is basi
 if the left

side is based on s and the right side is based on t.

Intuitively, this means that no rewrite step 
an take pla
e at a term introdu
ed by

any substitution.

The relationship between redu
ed substitutions, redu
ed oriented ground in-

stan
es, ground 
onvergen
e, and basi
 rewrite sequen
es is now explored.

12

This notion is well-de�ned, as it 
ould more formally be de�ned by indu
tion on a suitable

ordering of rules, using the fa
t that l 
an not be a variable when E is non-trivial.
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4.7. Lemma. Let E be a non-trivial equational theory su
h that Gr

�

(E) is ground


onvergent, and s� be a ground term su
h that � is R

E

-redu
ed. Then for any rewrite

sequen
e s�

�

�! t using rules from Gr

�

(E) to redu
e s� to its normal form t, there

exists a basi
 rewrite sequen
e s�

�

�! t using rules only from R

E

.

Proof. Sin
e Gr

�

(E) is ground 
anoni
al, we may 
hoose any fair strategy for

redu
tion; in parti
ular, we may spe
ify that at ea
h step, among all the possible

rules that 
ould be used for redu
tion, we 
hoose one that is minimal in the lexi-


ographi
 extension of � to pairs of terms. But then for any l� �! r� used in the

sequen
e, � must be redu
ed, or else the rule would not be minimal. Thus, there

exists a rewrite sequen
e from s� to t using rules only from R

E

; 
learly, sin
e all

substitutions involved are redu
ed, this is also a basi
 sequen
e.

For our purposes we may summarize these results as follows.

4.8. Corollary. Let E be an equational theory su
h that Gr

�

(E) is ground 
on-

vergent. For any ground terms s� and t�, where � is redu
ed with respe
t to Gr

�

(E),

the following are equivalent:

1. s� and t� are E-equivalent.

2. There exists a basi
 rewrite proof for s� and t� using rules from Gr

�

(E).

We now prove our 
ompleteness result in the spe
ial 
ase we have been dis
ussing.

4.9. Lemma. Let E be a non-trivial equational theory su
h that Gr

�

(E) is ground


onvergent, and P be a set of uni�
ation problems. If � is a Gr

�

(E)-redu
ed solution

of P ; ;, then there exists a sequen
e

P ; ;

�

=) ;;S

(with S in solved form) in the 
al
ulus G su
h that �

S

�

�

X

� for X = Vars(P ).

Proof. We pro
eed by indu
tion, using the following measure. The 
omplexity of

a system P ;S and its solution � is a four-tuple hm;n

1

; n

2

; n

3

i, where

m = The total number of rewrite steps in all the minimal-length basi


rewrite proofs for equations in P�;

n

1

= The number of distin
t variables o

urring in equations u=

?

v 2 P

su
h that u� = v� and u� is in Gr

�

(E)-normal form;

n

2

= The number of symbols o

urring in equations u=

?

v 2 P su
h that

u� = v� and u� is in normal form;

n

3

= The number of equations in P of the form t=

?

x, where t is not a

variable, and su
h that t� = x� and t� is in normal form.

The asso
iated (well-founded) ordering is the lexi
ographi
 ordering using the

natural ordering on positive integers.

We show by indu
tion on this measure that if � is a solution of a system P ;S

0

,

with S

0

in solved form, there exists a transformation sequen
e

P ;S

0

�

=) ;;S
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where �

S

�

�

X

� for X = Vars(P; S

0

).

The base 
ase of the indu
tion 
onsists of a system ;;S and the result is trivial,

sin
e a fortiori �

S

�

�

�. For the indu
tion step, suppose P = fu=

?

vg [ P

0

. If

u� = v� with u� in normal form; then we pro
eed as before with the inferen
e

system U to generate a transformation step to a smaller system 
ontaining the

same set of variables, and with the same solution (
f. lemma 2.4). As with U , any

equation introdu
ed into S must keep this set in solved form. Completing this with

the indu
tion hypothesis, we have

P ;S

0

=)

U

P

00

;S

00

�

=) ;;S

su
h that �

S

�

�

X

� with X = Vars(P; S

0

).

Otherwise, without loss of generality, pi
k a rewrite step from the term u� in a

minimal-length basi
 rewrite proof u� �!

�

�!

�

 � v�, in whi
h a redu
ed ground

instan
e l� �! r� was used. If we let �

0

= ��, then this �rst step was in fa
t

u[u

0

℄�

0

= u[l℄�

0

�! u[r℄�

0

, where u

0


an not be a variable (sin
e � is redu
ed). In

addition, the top symbols of u

0

and l are identi
al if l is not a variable. Hen
e, there

exists some transformation step

fu[u

0

℄

?

= vg [ P

0

;S

0

=)

lp

fl

?

=u

0

; u[r℄

?

= vg [ P

0

;S

0

to a new system whi
h has a smaller 
omplexity with respe
t to its new solution

�

0

. (It also 
ontains additional variables, i.e., those in Vars(l; r)). By the indu
tion

hypothesis we 
an 
ontinue this with:

fl

?

=u

0

; u[r℄

?

= vg [ P

0

;S

0

�

=) ;;S

su
h that �

S

�

�

X

�

0

with X = Vars(l; r; P; S

0

). But, sin
e x� = x�

0

for every

x 2 Vars(P; S

0

), we are done.

The se
ond stage of our main 
ompleteness proof for G involves 
onstru
ting a

set of identities �tting the 
onditions of the previous lemma. We do this by a kind

of abstra
t 
ompletion of E:

4.10. Definition. Let Cr(E) be the set of 
riti
al pairs w.r.t. � of E, 
reated

from fresh variants of identities in E using the inferen
e system U to 
al
ulate the

requisite mgu's. Then, for ea
h i � 0, de�ne

E

0

= E

.

.

.

E

i+1

= E

i

[ Cr(E

i

)

.

.

.

E

!

=

S

n�0

E

n
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The entire point of this 
onstru
tion is 
ontained in the following lemma, whi
h


an be proved using te
hniques familiar from [Dershowitz and Plaisted 2001℄, Chap-

ter 9 of this Handbook (for a spe
i�
 proof, see Theorem 6.1.7 in [Snyder 1991℄).

4.11. Lemma. For any E, Gr

�

(E

!

) is ground 
onvergent and equivalent to E on

ground terms.

Thus, we 
an (
on
eptually, at least) use E

!

to 
onstru
t transformation se-

quen
es as just shown in lemma 4.9. The se
ond main lemma of our 
ompleteness

proof for G shows how to 
onvert su
h a transformation sequen
e into one using

only identities from E.

4.12. Lemma. For any sequen
e

P ; ;

�

=) ;;S

introdu
ing identities from E

!

, and su
h that �

S

is an E-uni�er for P , there exists

a sequen
e

P ; ;

�

=) ;;S

0

introdu
ing identities only from E, su
h that S � S

0

and x�

S

0

= x�

S

for every

x 2 Vars(P ).

Proof. The basi
 idea is to use the 
al
ulus G itself to 
onstru
t 
riti
al pairs. The


omplexity measure in our indu
tive proof is as follows. The depth of an identity

e 2 E

!

is the least k su
h that e 2 E

k

; the 
omplexity of a transformation sequen
e

is the (�nite) multiset of the depths of all identities from E

!

introdu
ed, with the

asso
iated (well-founded) multiset ordering.

The base 
ase being trivial, we pro
eed dire
tly to the indu
tion step. Suppose

the transformation sequen
e uses some identity r

1

� � l

1

[r

2

℄� of non-zero depth,

obtained by forming a 
riti
al pair from l

1

[l

0

℄ � r

1

and l

2

� r

2

(ea
h of smaller

depth) with � = mgu(l

0

; l

2

). We show how the original use of the 
riti
al pair in a

LP step 
an be simulated by two LP steps involving the 
omponent identities, plus

some number of U-transformations to simulate the 
onstru
tion of the 
riti
al pair.

There are two 
ases, depending on whi
h dire
tion the 
riti
al pair was used in.

Case One. Suppose the 
riti
al pair was r

1

� � l

1

[r

2

℄�, e.g.,

�

=) fe[u℄g [ P ;S

0

=)

lp

fr

1

�=

?

u; e[l

1

[r

2

℄�℄g [ P ;S

0

�

=) ;;S

where an additional De
omposition is possibly applied afterwards to r

1

�=

?

u (if

r

1

� is not a variable). This sequen
e 
an be 
onverted into:

�

=) fe[u℄g [ P ;S

0

=)

lp

fr

1

=

?

u; e[l

1

[l

0

1

℄℄g [ P ;S

0

=)

lp

fl

2

=

?

l

0

1

; r

1

=

?

u; e[l

1

[r

2

℄℄g [ P ;S

0

�

=) fr

1

�=

?

u; e[l

1

[r

2

℄�℄g [ P ;S [ [�℄

�

=) ;;S [ [�

0

℄
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(where by [�℄ we mean a set of equations representing the bindings in �). This

sequen
e has a smaller 
omplexity, as it repla
ed a 
riti
al pair by two identities of

stri
tly smaller depth. The se
ond line from the bottom represents the 
al
ulation

of the mgu; these bindings apply only to terms from the two equations, although as

they are 
arried along in the solution set they may 
hange as the result of additional

substitutions (hen
e the 
hange to �

0

). The (possible) De
omposition step after the

�rst LP step in the original is delayed until after the 
omputation of �.

Case Two. Suppose the 
riti
al pair was l

1

[r

2

℄� � r

1

�; in this 
ase, we may

assume that the overlap in this 
riti
al pair is not at the root, sin
e otherwise we


ould apply 
ase one. Our original sequen
e is thus:

�

=) fe[u℄g [ P ;S

0

=)

lp

fl

1

[r

2

℄�=

?

u; e[r

1

�℄g [ P ;S

0

�

=) ;;S

where De
omposition is applied to l

1

[r

1

℄� � u at some point after the LP step

(sin
e l

1

has at least one fun
tion symbol above the overlap position). This sequen
e

be
omes:

�

=) fe[u℄g [ P ;S

0

=)

lp

fl

1

[l

0

1

℄ =

?

u; e[r

1

℄g [ P ;S

0

=)

lp

fl

2

=

?

l

0

1

; l

1

[r

2

℄ =

?

u; e[r

1

℄g [ P ;S

0

�

=) fl

1

[r

2

℄�=

?

u; e[r

1

�℄g [ P ;S [ [�℄

�

=) ;;S [ [�

0

℄

The De
omposition step is delayed until after the 
omputation of �. This sequen
e

is, again, of smaller 
omplexity than the original.

Note in both 
ases that the variables in Dom(�) are (e�e
tively) fresh, as they

o

ur in the 
omponent identities but not in the 
riti
al pair; thus, x�

S

0

= x�

S

for

all x 2 Vars(P ) as required.

We may now present the proof of our main 
ompleteness result.

Proof of theorem 4.2. First, note that we may assume that P� 
ontains only

ground equations, using a straight-forward Skolemization argument (viz. [Snyder

1991℄, p.90). If � is an E-uni�er of P , we may 
onstru
t an Gr

�

(E)-redu
ed sub-

stitution �

0

su
h that � =

E

�

0

. We then apply lemma 4.9, using rules from E

!

, to

obtain a sequen
e

P ; ;

�

=) ;;S

where �

S

�

�

X

�

0

for X = Vars(P ). This is then 
onverted, using the te
hnique of

lemma 4.12 to a new sequen
e using rules only from E:

P ; ;

�

=) ;;S

0

where x�

S

= x�

S

0

for every x 2 Vars(P ). Thus, we may 
on
lude that �

S

�

�

X

E

�,

where X = Vars(P ), as required.
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4.2. Restri
tions on E-uni�
ation in arbitrary theories

In this se
tion we des
ribe two re�nements of the 
al
ulus G that have been sug-

gested:

� The restri
tion on a equation l=

?

u introdu
ed by LP, when l is not a variable,

that the top symbol of l and u must be the same, 
an be strengthened so

that the entire overlap of the non-variable positions in the two terms must be

identi
al.

� The restri
tion in LP that u not be a variable may be strengthened so that

u 
an not even be a term introdu
ed into P by substitution (i.e., Variable

Elimination) at any point in the sequen
e.

Both of these restri
tions in some sense extend the original restri
tions on G hered-

itarily , in the �rst 
ase inheriting the restri
tion on top symbols down into the

terms, and in the se
ond, inheriting the non-variable restri
tion throughout the

history of the equation, and regarding terms introdu
ed by variable elimination

as being se
ond-
lass 
itizens whi
h do not play a dire
t role in equational infer-

en
es, but only serve to 
onstrain the appli
ation of rules. This is 
alled the basi


restri
tion, as it rests on the existen
e of basi
 rewrite proofs as shown above.

For la
k of spa
e, we do not 
onsider these re�nements to G in detail here, al-

though the se
ond will form an essential part of the 
al
ulus in the next se
tion.

For the �rst, see [Dougherty and Johann 1992℄, and also [So
her-Ambrosius 1994℄

(where a further re�nement is presented); for the se
ond see [Moser 1993℄.

4.3. Narrowing

In this se
tion we 
onsider the most important spe
ial 
ase of the E-uni�
ation

problem, when the equational theory 
an be represented by a ground 
onvergent

set of rewrite rules. In this 
ase, the 
onversion of transformation sequen
es to

simulate 
riti
al pair generation is not ne
essary, and we 
an take a 
loser look at

the 
ompleteness proof and the restri
tions that 
an be imposed on the 
al
ulus.

In parti
ular, we shall from the start 
onsider the existen
e of basi
 rewrite proofs

as fundamental, and develop a new representation for problems whi
h prevents LP

inferen
es at terms introdu
ed by substitutions.

A 
onstraint system (or simply system in the rest of the se
tion) is either the

symbol ? (representing failure) or a triple 
onsisting of a multiset P of equations

(representing the s
hema of the problem, in a sense that will be
ome 
lear below),

a set C of equations (representing 
onstraints on variables in P ), and a set S of

equations (representing bindings in the solution). The set C plays a role similar

to the multiset P in se
tion 2.2.4, and rules from U will be applied to C;S as

before. The equational problems being worked on are in fa
t P�

S

, the separation

into the s
hema P and 
onstraints C;S serving to enfor
e the basi
 restri
tion on

the appli
ation of LP mentioned above. As expe
ted, a substitution � is said to be

a solution (or E-uni�er) of a system P ;C;S if it E-uni�es ea
h equation in P , and

uni�es ea
h of the equations in C and S; the system ? has no E-uni�ers.
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We assume that our rewrite system R (representing E) is ground 
onvergent with

respe
t to a redu
tion ordering �, and 
onsists of a numbered sequen
e of rules

fl

1

�! r

1

; l

2

�! r

2

; : : : ; l

n

�! r

n

g:

The index of a rule will be its number in this sequen
e, and will be used in a 
ertain

re�nement of our inferen
e system.

4.3.1. The 
al
ulus B

In this se
tion we present the rules whi
h are used in the 
al
ulus B for basi


narrowing . We will �rst 
onsider a simple set of rules and prove its 
ompleteness,

and then 
onsider re�nements and modi�
ations based on the details of the proof.

The set B 
onsists of the following six rules.

Trivial:

P ; fs

?

= sg [ C

0

;S =) P ;C

0

;S

De
omposition:

P ; ff(s

1

; : : : ; s

n

)

?

= f(t

1

; : : : ; t

n

)g [ C

0

;S =) P ; fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ C

0

;S

Orient:

P ; ft

?

=xg [ C

0

;S =) P ; fx

?

= tg [ C

0

;S

if t is not a variable.

Basi
 Variable Elimination:

P ; fx

?

= tg [ C

0

;S =) P ;C

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x does not o

ur in t. (Note that the substitution is not applied to the set P .)

(Modulo the 
hanges to Variable Elimination, these are just the non-failure rules

from U , adapted for 
onstraint systems; we shall denote these �rst four rules as S.)

Constrain:

feg [ P

0

;C;S =)


on

P

0

; fe�

S

g [ C;S

Lazy Paramodulation:

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl�

S

?

=u�

S

g [ C;S

(with the exa
t same restri
tions as given above in se
tion 4.1.1).
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Essentially, this 
al
ulus is no di�erent from G, ex
ept that it is designed to

enfor
e the basi
 restri
tion, by separating out the parts of terms that were intro-

du
ed into the problem by substitution (i.e., Variable Elimination) and those that

were not (the \s
hema"). The latter 
onstitute the only positions where equational

inferen
es may take pla
e in the basi
 strategy. The 
ompleteness proof is hen
e

very similar to lemma 4.9. We will add more restri
tions to the way that 
ertain


hoi
es are made, however, whi
h will give us the ability to restri
t our 
al
ulus


orrespondingly.

4.13. Theorem. Let R be a ground 
onvergent set of rewrite rules. If � is an R-

solution of P ; ;; ;, then there exists a sequen
e

P ; ;; ;

�

=)

B

;; ;;S

su
h that �

S

�

�

X

R

�, where X = Vars(P ).

Proof. As in our 
ompleteness proof for G, we may assume that P� is ground and

that � is R-redu
ed, sin
e the relation�

�

R

does not distinguish between R-equivalent

substitutions. Thus, we will prove a stronger result, that when � is R-redu
ed, then

in fa
t �

S

�

�

X

�.

The 
omplexity of a system P ;C;S and asso
iated solution � is hM;n

1

; n

2

; n

3

i,

where

M = The multiset of all terms o

urring in P�;

n

1

= The number of distin
t variables in C;

n

2

= The number of symbols in C;

n

3

= The number of equations in C of the form t=

?

x, where t is not a

variable.

The asso
iated ordering is the lexi
ographi
 ordering using the multiset extension

of the redu
tion ordering � for the �rst 
omponent, and the ordering on natural

numbers for the remaining 
omponents.

Our indu
tion shows that if � is a solution of a system P ;C;S

0

, with S

0

in solved

form, there exists a transformation sequen
e

P ;C;S

0

�

=) ;; ;;S

where �

S

�

�

X

�, where X = Vars(P;C; S

0

).

The base 
ase ;; ;;S is again trivial. For the indu
tion step, there are several

overlapping 
ases.

(1) If C = fu=

?

vg[C

0

, then u� = v� and we use S to generate a transformation

step to a smaller system 
ontaining the same set of variables, and with the same

solution (
f. lemma 2.4). Completing this with the indu
tion hypothesis, we have

P ;C;S

0

=)

S

P

00

;C

0

;S

00

�

=) ;; ;;S

su
h that �

S

�

�

X

� for X = Vars(P;C; S

0

).
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(2) If P = fu=

?

vg [ P

0

and u� = v�, then we may apply Constrain to obtain a

smaller system (redu
ing the 
omponent M) with the same solution and the same

set of variables, and we 
on
lude as in the previous 
ase.

(3) Suppose P = fu=

?

vg [ P

0

and there is some redex in either u� or v�;

without loss of generally, assume the former. We may also assume that the redex is

innermost, and that if more than one instan
e of a rule from R redu
es this redex,

we 
hoose the rule l� �! r� with the smallest index in the set R. Note that, sin
e

� is R-redu
ed, the redex must o

ur inside the non-variable positions of u; thus

we have the following transformation:

fu[u

0

℄

?

= vg [ P

0

;C;S

0

=)

lp

fu[r℄

?

= vg [ P

0

; fl�

S

0

?

=u

0

�

S

0

g [ C;S

0

to a system whi
h is smaller with respe
t to its new solution �

0

= �� (sin
e the new

equation introdu
ed into C is an identity modulo �

0

). Note that �

0

is still R-redu
ed.

By the indu
tion hypothesis we have

fu[r℄

?

= vg [ P

0

; fl�

S

0

?

=u

0

�

S

0

g [ C;S

0

�

=) ;; ;;S

su
h that �

S

�

�

X

�

0

with X = Vars(l; r; P; C; S

0

), and sin
e x� = x�

0

for every

x 2 Vars(P;C; S

0

), the indu
tion is 
omplete.

4.3.2. Standard narrowing

An interesting feature of this proof is that it also provides for the 
ompleteness

of an alternate (and histori
ally earlier) version of narrowing due to Fay [1979℄,

whi
h does not distinguish between substitution positions and other positions in

the problem.

Let us de�ne the 
al
ulus N for standard narrowing as the inferen
e system B

with the following 
hange: Basi
 Variable Elimination is repla
ed by the following

transformation:

Variable Elimination:

P ; fx

?

= tg [ C

0

;S =) Pfx 7! tg;C

0

fx 7! tg;Sfx 7! tg [ fx � tg

if x does not o

ur in t.

(The Constrain rule might also be 
hanged so that is does not instantiate an

equation when moving it from P to C, however, sin
e �

S

is always idempotent, the

existing rule would have the same e�e
t.)

The only di�eren
e is that the set P is kept instantiated with the substitution

de�ned by S during the transformation pro
ess, so that substitution positions 
an

be used for narrowing.

4.14. Corollary. Let R be a ground 
onvergent set of rewrite rules. If � is an

R-solution of P ; ;; ;, then there exists a sequen
e

P ; ;; ;

�

=)

N

;; ;;S

in the 
al
ulus N su
h that �

S

�

�

X

R

� with X = Vars(P ).
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The proof is essentially the same as the previous one, sin
e the same transforma-

tion sequen
e 
an be used in ea
h 
ase.

The di�eren
e between the two inferen
e systems is that B restri
ts the appli-


ation of inferen
e rules to a smaller set of positions than N does, and hen
e the

sear
h tree for solutions is narrower.

4.4. Strategies and re�nements of basi
 narrowing

There is a variety of strategies and re�nements that 
an be developed for the basi


narrowing 
al
ulus without destroying 
ompleteness. Most of these, in one way or

another, 
an be derived from a 
lose examination of the 
ompleteness proof just

given. In this se
tion we brie
y des
ribe the most important of these.

4.4.1. Composite rules for basi
 narrowing

The �rst observation that 
an be made is that it is not ne
essary to 
onsider all pos-

sible sequen
es of transformation rules, sin
e we either solve (standard) uni�
ation

problems (e.g., equations between two identi
al terms in P�) or simulate rewriting

at the ground level by unifying left-hand sides of rules with non-variable positions

in terms, at the non-ground level. Thus, we may use the following two 
omposite

rules as an alternate form of B:

Solve (=)

sol

):

feg [ P

0

;C;S =)


on

P

0

; fe�

S

g [ C;S

�

=)

S

P

0

;C�;S� [ [�℄

(i.e., � = mgu(e�

S

)).

Narrow (=)

nar

):

fe[u℄g[P ;C;S =)

lp

fe[r℄g[ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

(that is, � = mgu(l�

S

; u�

S

)), where l �! r is a fresh variant from R.

The 
ompleteness proof goes through with few 
hanges. Note that in this formu-

lation, no new equations remain in C after ea
h step. A similar set of 
omposite

rules 
ould be given for N .

4.4.2. Simpli�
ation

The inferen
e rules in S (like U) are signi�
ant in that they 
an be applied when-

ever we want during a transformation sequen
e without a�e
ting the out
ome; in

our indu
tive proof, we may observe that they make the problem smaller without


hanging the solution. Su
h rules are extremely important in redu
ing the sear
h

spa
e for a solution.
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4.15. Definition. A transformation � is 
alled a simpli�
ation rule for B if

whenever P ;C;S � P

0

;C

0

;S

0

, then � is an R-redu
ed solution of P

0

;C

0

;S

0

i�

�j

Vars(P;C;S)

is an R-redu
ed solution to P ;C;S, and P

0

;C

0

;S

0

is smaller in the

indu
tion ordering used in Theorem 4.13 with respe
t to � than P ;C;S w.r.t.

�j

Vars(P;C;S)

.

The restri
tions in this de�nition ensure that su
h a rule 
an be used any time

it applies in the indu
tion step to obtain a smaller system without 
hanging the

solution (w.r.t. the variables in the left side).

Thus, the rules in S are simpli�
ation rules in this respe
t. There are many other

ad-ho
 simpli�
ation rules that have been suggested for narrowing. For example,

we may perform a form of De
omposition within P when we know that this does

not remove a redex.

Problem De
omposition:

ff(s

1

; : : : ; s

n

?

= f(t

1

; : : : ; t

n

)g [ P

0

;C

0

;S =) fs

1

?

= t

1

; : : : ; s

n

?

= t

n

g [ P

0

;C;S

if the symbol f does not o

ur at the top of the left-side of a rule in R.

In the indu
tion in the 
ompleteness proof this rule de
reases the measure (spe
if-

i
ally, it redu
es the 
omponentM). Clearly it does not 
hange the set of solutions.

Therefore, we may apply this rule any time, in any 
ontext, without a�e
ting the


ompleteness properties of the 
al
ulus.

Su
h rules 
an be applied \eagerly" to produ
e smaller problems, hopefully re-

du
ing the sear
h spa
e.

4.16. Definition. If T is a subset of rules for some 
al
ulus C, then the eager T

strategy requires that a rule from CnT may only be applied if no rule from T applies

anywhere in the system.

Simpli�
ation rules 
an be performed eagerly.

4.17. Theorem. Let R be a ground 
onvergent set of rewrite rules, and A be a set

of simpli�
ation rules. If � is an R-solution of P ; ;; ;, then there exists a sequen
e

P ; ;; ;

�

=)

B[A

;; ;;S

under the eager A strategy su
h that �

S

�

�

X

R

�, where X = Vars(P ).

The proof pro
eeds as before, with the ex
eption that in the indu
tion step, we

must use a simpli�
ation step if one applies; as noted above, the 
onditions of a

simpli�
ation rule ensure that the indu
tion in the 
ompleteness proof goes through.

One of the most useful simpli�
ation rules is redu
ing the problem set by the set of

rules R. From an abstra
t point of view, we may motivate su
h equational inferen
es

as follows. If u�

�

 !

E

v� and u

0

�

 !

E

u, then, sin
e equational proofs are 
losed

under instantiation, we have u

0

�

�

 !

E

u�

�

 !

E

v�. Thus, we 
an not 
hange the set
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of solutions by performing equational inferen
es on the problem terms themselves,

for example, by redu
ing them.

From the point of view of our 
al
ulus, we might observe that in the rule Narrow

just introdu
ed, if no appli
ation of Variable Elimination is ever applied to a variable

from the system on the left side, then the set of solutions is un
hanged by this

transformation: the substitution generated must in this 
ase apply only to l and

r, and hen
e we have, at the ground level, repla
ed e[u℄�� = e[l℄�� = e[l�℄� with

e[r�℄�. Sin
e the properties of � were not involved, this means that e�e
tively we

have done a rewrite step u[l�℄ �!

R

u[r�℄. Alternately, we might say that if you end

up doing Variable Elimination on x=

?

t for x 2 Dom(�) for some solution �, then

you are assuming that x� = t�; this 
uts down on the number of possible solutions.

The resultant rule is:

Redu
e (=)

red

):

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl

?

=u�

S

g [ C;S

�

=) fe[r�℄g [ P ;C;S [ [�℄

where l �! r is a fresh variant from R (note that the variables in Dom(�) o

ur

only in r), and where the last line involves only Trivial, De
omposition, and Variable

Elimination applied to the variables from l (i.e., l� = u).

Note that in the 
ontext of B, we are losing some \basi
ness" by instantiating

fully the right-hand side r; below we shall 
onsider how to re
over some of the basi


restri
tion lost in this fashion.

4.18. Proposition. The Eager Redu
e Strategy is 
omplete for B and N .

Histori
ally, the narrowing 
al
ulus was the �rst to be invented, by Fay [1979℄;

the basi
 narrowing 
al
ulus was developed by Hullot [1980℄, and it was observed

by R�ety [1987℄ that redu
tion needed to be modi�ed in this setting. A study of

basi
 narrowing with redu
tion, to whi
h our treatment is heavily indebted, may be

found in [Nutt, R�ety and Smolka 1989℄. In the next two se
tions we present further

re�nements whi
h may also be found in [Bo
kmayr, Kris
her and Werner 1992℄ and

[Nutt et al. 1989℄. For a 
omprehensive study of basi
 inferen
e systems, the reader

is referred to [Ba
hmair, Ganzinger, Lyn
h and Snyder 1995℄ and to [Nieuwenhuis

and Rubio 2001℄ (Chapter 7 of this Handbook).

4.4.3. Redex orderings and variable abstra
tion

One of the useful properties of 
onvergent systems mentioned above is that any

strategy whi
h 
an �nd a redex in a redu
ible term is suÆ
ient for redu
ing terms

to normal form, and hen
e for generating rewrite proofs. For example, at the ground

level we might always look for redi
es in depth-�rst, left-to-right order. More gen-

erally, we may de�ne a redex ordering �

red

as an ordering on the positions in an

equation whi
h 
ontains the proper subterm ordering (i.e., for any u[u

0

℄ with u 6= u

0

,
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we have u

0

�

red

u). Before 
onsidering whether a term t is redu
ible at a position

� by some rule, we must 
onsider all positions �

0

�

red

�. The 
ompleteness proof


ould be sharpened by su
h an ordering simply by adding that we must 
hoose the

minimal redex a

ording to the redex ordering (su
h a redex must be innermost).

In su
h a 
ase, the positions less than this redex may be assumed to be irredu
ible.

No further narrowing steps need be performed at su
h positions, and in fa
t, we


ould remove these parts of the term and move them into the solved part of the

system to enfor
e this.

Variable Abstra
tion (=)

abst

):

fe[s℄g [ P ;C;S =) fe[x℄g [ P ; fx

?

= sg [ C;S

if x is a fresh variable.

A new version of the narrowing rule 
ould then be presented whi
h abstra
ts out

terms whi
h are known to be redu
ed.

Redex Ordered Narrow (=)

ron

):

fe[u℄g [ P ;C;S =)

lp

fe[r℄g [ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

�

=)

abst

fe

0

[r℄g [ P ;C� [ C

0

;S� [ [�℄

where u o

urs at position � in e, and Variable Abstra
tion is applied eagerly to

all positions �

0

�

red

� in e to obtain e

0

.

The substitution of this version of Narrow in N preserves 
ompleteness; the

fundamental idea is that whenever a term (at the ground level in our 
ompleteness

proof) may be assumed to be redu
ed, it may be moved into the 
onstraint part

of the system without losing 
ompleteness. This leads to a further use for Variable

Abstra
tion in propagating what is known about redu
ed terms: if a term o

urs

in S, then (at the ground level) it may be assumed to be redu
ed, and hen
e other

o

urren
es of this term may be abstra
ted out.

Propagation:

fe[u℄g [ P

0

;C; fx � t[s℄g [ S =)

prop

fe[y℄g [ P

0

;C; fx � t[s℄; y � sg [ S

if u�

S

= s is a non-variable and y is a fresh variable.

This rule is a simpli�
ation rule if we 
hange the 
omplexity measure in the proof

to

hM; i; n

1

; n

2

; n

3

i

where the additional 
omponent i is the number of non-variable symbols o

urring

in P . Clearly it 
hanges the solution � of a system to a new solution �fy 7! s�g

whi
h satis�es the 
ondition for a simpli�
ation rule.

Returning to our Redu
e rule, we observe that in the 
ontext of B, Redu
e may

instantiate terms into r that are known to be redu
ed; Propagation 
an remove these

again. The 
ombination of Redu
tion with Eager Propagation e�e
tively gives us

the more 
omplex form of \basi
 simpli�
ation" des
ribed for example in [Ba
hmair

et al. 1995℄ and [Nutt et al. 1989℄, see also [Nieuwenhuis and Rubio 2001℄ (Chapter 7

of this Handbook).
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4.4.4. Failure rules

Unlike our presentation of the 
al
ulus U , we have 
hosen here not to present failure

rules from the outset, in order to highlight the essential issues �rst. The 
onditions

under whi
h sequen
es may fail are of two kinds. First, the failure rules for U

(Symbol Clash and O

ur Che
k) may be applied to the sets C and S as before,

sin
e these represent uni�
ation problems; however, in this 
ase the 
orresponding

Solve, Narrow, or Redu
e would simply not be performed.

The se
ond 
lass of 
onditions basi
ally amount to 
he
king for violations of the

redu
ibility 
onditions in a system. At the ground level during the 
ompleteness

proof, the substitution � is kept redu
ed, and in addition, 
ertain assumptions 
an

be made about the existen
e of redi
es in terms. However, we have to be 
areful, as

our proof only allows us to assume that all substitutions are R-redu
ed, and that

no redex may be redu
ed below its root, or at the root by an equation of lower

index.

This leads to the following rule:

Blo
king (=)

blo
k

):

P ;C;S =) ?

if some term in S is R-redu
ible, or if some term in C is redu
ible below the root.

The Eager Blo
king Strategy is 
omplete, sin
e the 
ompleteness proof requires

the 
onverse of the 
ondition of this rule at all times. Note that this rule 
ould

be applied in the middle of a 
omposite rule, for example, just after moving the

equation into the set C in Narrow.

In order to a

ount for redu
tion at the top of equations in C, it is preferable to

add a further restri
tion to our Narrowing rule:

Narrow (=)

nar

):

fe[u℄g[P ;C;S =)

lp

fe[r℄g[ P ; fl�

S

?

=u�

S

g [C;S

�

=)

S

fe[r℄g [ P ;C�;S� [ [�℄

where l �! r is a fresh variant from R and l�

S

� is not the instan
e of the left-side

of any rule of lower index from R.

This rule is 
onsistent with Redex Orderings.

5. Semanti
 approa
hes to E-uni�
ation

The synta
ti
 approa
hes to E-uni�
ation introdu
ed above 
an be seen as exten-

sions of the rule-based approa
h to synta
ti
 uni�
ation, whi
h use the identities

de�ning the equational theory E to 
ome up with additional transformation rules.

In 
ontrast, semanti
 approa
hes to E-uni�
ation try to utilize algebrai
 properties

of the models of the equational theories. The two most prominent instan
es of the

approa
h are
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1. Uni�
ation in Boolean algebras and rings [B�uttner and Simonis 1987, Martin

and Nipkow 1989b, Martin and Nipkow 1989a℄, and its generalization to �nite

and to primal algebras [B�uttner 1988, B�uttner, Estenfeld, S
hmid, S
hneider

and Tid�en 1990, Nipkow 1990, Kir
hner and Ringeissen 1994℄, and

2. Uni�
ation modulo the theories ACU, ACUI, and AG (see subse
tion 3.4 for

referen
es to result on uni�
ation modulo these theories).

In the following, we 
on
entrate on the approa
h used in the se
ond 
ase sin
e it 
an

be generalized to a whole 
lass of equational theories, 
alled 
ommutative theories

in [Baader 1989b℄ and monoidal theories in [Nutt 1990℄. For su
h theories, uni�
a-

tion 
an be redu
ed to solving linear equations in a 
orresponding semiring.

13

In the

following, we introdu
e the 
lass of 
ommutative/monoidal theories, show how the


orresponding semiring is de�ned, and how uni�
ation in 
ommutative/monoidal

theories 
an be redu
ed to solving linear equations in this semiring. In 
ontrast to

the synta
ti
 approa
hes introdu
ed above, general uni�
ation problems 
annot be

solved dire
tly by the semanti
 approa
h des
ribed below. However, for 
ommuta-

tive/monoidal theories, the known te
hniques for 
ombining uni�
ation algorithms


an always be used to extend an algorithm for uni�
ation with 
onstants to an

algorithm for general uni�
ation [Baader and Nutt 1996℄.

The theories

ACU := ff(x; y) � f(y; x); f(f(x; y); z) � f(x; f(y; z)); f(x; e) � xg;

ACUI := ACU [ ff(x; x) � xg;

AG := ACU [ ff(x; i(x)) � eg

will be used as examples throughout this se
tion. The introdu
tion of the 
lass of


ommutative/monoidal theories was motivated by the observation that the known

algorithms for uni�
ation modulo these three theories have many 
ommon features.

5.1. Uni�
ation modulo ACU, ACUI, and AG: an example

We will �rst restri
t our attention to elementary uni�
ation, and then show how

the methods 
an be extended to uni�
ation with 
onstants.

Elementary uni�
ation

To illustrate how the algorithms for elementary uni�
ation modulo these three

theories work, let us 
onsider the problem of unifying the two terms f(x; f(x; y))

and f(z; f(z; z)).

Let us start with the theory ACU. Obviously, the substitution �

1

:= fx 7!

z

1

; y 7! z

1

; z 7! z

1

g is a synta
ti
 uni�er of this pair of terms, and thus also

an ACU-uni�er of �

ACU

:= ff(x; f(x; y))=

?

ACU

f(z; f(z; z))g. There are, however,

ACU-uni�ers of �

ACU

that are not synta
ti
 uni�ers of the two terms: �

2

:= fx 7!

13

A semiring is similar to a ring, with the only di�eren
e being that its addition is just required

to form an Abelian monoid, and not ne
essarily an Abelian group.
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e; y 7! f(z

2

; f(z

2

; z

2

)); z 7! z

2

g is an example of su
h a uni�er, and �

3

:= fx 7!

f(z

3

; f(z

3

; z

3

)); y 7! e; z 7! f(z

3

; z

3

)g is another one. None of these substitutions

is a most general ACU-uni�er of �

ACU

, but their \
ombination"

� := fx 7! f(x�

1

; f(x�

2

; x�

3

)); y 7! f(y�

1

; f(y�

2

; y�

3

));

z 7! f(z�

1

; f(z�

2

; z�

3

))g

=

ACU

fx 7! f(z

1

; f(z

3

; f(z

3

; z

3

))); y 7! f(z

1

; f(z

2

; f(z

2

; z

2

)));

z 7! f(z

1

; f(z

2

; f(z

3

; z

3

)))g

is. For example, �

2


an be obtained as an ACU-instan
e of � by applying the

substitution fz

1

7! e; z

3

7! eg. More generally, any �nite 
olle
tion �

1

; : : : ; �

n

of

ACU-uni�ers of a given ACU-uni�
ation problem 
an be 
ombined in this way to a

new ACU-uni�er �, whi
h has all the uni�ers �

i

as ACU-instan
es. In our example,

there still remains the question of how we have found the three uni�ers �

1

; �

2

; �

3

,

and why their 
ombination is a most general ACU-uni�er of the problem.

In order to explain how we 
ame up with these uni�ers, assume that � is an ACU-

uni�er of �

ACU

, and that z

0

is a variable introdu
ed by � , i.e., z

0

o

urs in (at least)

one of the terms x�; y�; z� . It is easy to see that f(x; f(x; y))� =

ACU

f(z; f(z; z))�

implies that the number of o

urren
es of z

0

in f(x; f(x; y))� 
oin
ides with the

number of o

urren
es of z

0

in f(z; f(z; z))� . Thus, if jx� j

z

0

; jy� j

z

0

; jz� j

z

0

respe
tively

denote the number of o

urren
es of z

0

in x�; y�; z� , then we have 2jx� j

z

0

+ jy� j

z

0

=

3jz� j

z

0

, i.e., the numbers jx� j

z

0

; jy� j

z

0

; jz� j

z

0

are nonnegative integer solutions of the

linear equation

2x+ y = 3z:

Thus, every variable introdu
ed by an ACU-uni�er of a given ACU-uni�
ation prob-

lem yields a non-trivial

14

solution of the linear equation 
orresponding to the prob-

lem in the semiring of all nonnegative integers (with addition and multipli
ation as

semiring operations). For the uni�er � introdu
ed above, the variable z

1

yields the

solution (1; 1; 1), z

2

yields (0; 3; 1), and z

3

yields (3; 0; 2). What makes these three

solutions spe
ial is that they are the minimal non-trivial solutions of 2x + y = 3z

(w.r.t. the 
omponent-wise �-ordering on triples). Consequently, any solution 
an

be obtained as a (nonnegative) linear 
ombination of these three solutions.

Conversely, a substitution that introdu
es only variables (or free 
onstants)


orresponding to solutions of the linear equation is an ACU-uni�er of the 
or-

responding ACU-uni�
ation problem. For example, the substitution � := fx 7!

f(z

0

f(z

00

; f(z

00

; z

00

))); y 7! f(z

0

; f(z

0

; f(z

0

; z

0

))); z 7! f(z

0

; f(z

0

f(z

00

; z

00

)))g is an

ACU-uni�er of �

ACU

sin
e 2 � 1 + 4 = 3 � 2 and 2 � 3 + 0 = 3 � 2. The solutions

(1; 4; 2) and (3; 0; 2) 
an be obtained as linear 
ombination of the minimal solu-

tions:

(1; 4; 2) = 1 � (1; 1; 1) + 1 � (0; 3; 1) + 0 � (3; 0; 2);

(3; 0; 2) = 0 � (1; 1; 1) + 0 � (0; 3; 1) + 1 � (3; 0; 2):

14

Variables not introdu
ed by the uni�er 
orrespond to the trivial solution (0; : : : ; 0).
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This fa
t 
an be used to obtain a substitution � su
h that u� =

ACU

u�� for all

u 2 fx; y; zg: � := fz

1

7! z

0

; z

2

7! z

0

; z

3

7! z

00

g.

To sum up, we have seen that a given elementary ACU-uni�
ation problem 
or-

responds to a system

15

of linear equations, whi
h must be solved in the semir-

ing N of all nonnegative integers. A most general ACU-uni�er of the problem

is obtained by 
ombining the uni�ers 
orresponding to the (�nitely many) min-

imal solutions of the system of linear equations. The important property of the

set of minimal solutions is that it generates all solutions as linear 
ombinations

in N . The fa
t that this set is always �nite is an easy 
onsequen
e of Di
kson's

Lemma [Di
kson 1913℄. Methods for 
omputing this set 
an, for example, be found

in [Huet and Lang 1978, Lambert 1987, Clausen and Fortenba
her 1989, Boudet

et al. 1990, Pottier 1991, Domenjoud 1991, Contejean and Devie 1994, Filgueira

and Tom�as 1995℄.

The theory ACUI 
an be treated similarly, with the only di�eren
e being that

the semiring N must be repla
ed by the Boolean semiring BS, whi
h 
onsists

of the truth values 0 and 1, and has 
onjun
tion as its multipli
ation and dis-

jun
tion as its addition operation. In fa
t, modulo ACUI it is no longer ne
-

essary that the numbers of o

urren
es of variables on the left-hand side and

the right-hand side of the equation 
oin
ide. It is suÆ
ient that ea
h variable

that o

urs on the right-hand side also o

urs on the left-hand side and vi
e

versa. Thus, the linear equation 
orresponding to the ACUI-uni�
ation problem

�

ACUI

:= ff(x; f(x; y))=

?

ACUI

f(z; f(z; z))g is x+ y = z, and it is easy to see that

all solutions in BS 
an be generated as linear 
ombinations in BS of the solutions

(1; 0; 1) and (0; 1; 1). The most general ACUI-uni�er obtained from this generating

set of solutions is �

0

:= fx 7! z

1

; y 7! z

2

; z 7! f(z

1

; z

2

)g. The ACU-uni�er �

1

from

above is also an ACUI-uni�er of �

ACUI

, and it 
an be obtained as an ACUI-instan
e

of �

0

via the substitution �

0

:= fz

1

7! z

1

; z

2

7! z

1

g. Sin
e the Boolean semiring BS

is �nite, there always exists a �nite set of solutions that generates all solutions as

linear 
ombinations in BS.

For the theory AG, the presen
e of the inverse operation leads to the fa
t

that both the 
oeÆ
ients and the solutions of the linear equations 
orre-

sponding to an AG-uni�
ation problem may also be negative integers. Thus,

the semiring to be 
onsidered here is an fa
t a ring, namely the ring Z of

all integers. The linear equation 
orresponding to the AG-uni�
ation problem

�

AG

:= ff(x; f(x; y))=

?

AG

f(z; f(z; z))g 
oin
ides with the one obtained from

�

ACU

, but in Z there exists a smaller set generating all solutions, 
onsist-

ing of (0; 3; 1) and (1; �2; 0). Thus, the substitution �

00

:= fx 7! z

2

; y 7!

f(z

1

; f(z

1

; f(z

1

; f(i(z

2

); i(z

2

))))); z 7! z

1

g is a most general AG-uni�er of �

AG

.

General methods for 
omputing su
h a �nite generating set of solutions of systems

of linear equations in Z 
an, for example, be found in [Knuth 1981, Kannan and

Ba
hem 1979, Iliopoulos 1989a, Iliopoulos 1989b℄.

15

Every equation in the uni�
ation problem yields one linear equation.
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Uni�
ation with 
onstants

For ACU-uni�
ation with 
onstants, there are two di�erent ways of extending the

approa
h for elementary uni�
ation to the 
ase of uni�
ation with 
onstants. The

approa
h originally proposed by Sti
kel [1975℄ and [1981℄ �rst solves an elementary

ACU-uni�
ation problem, whi
h is obtained by treating free 
onstants as variables,

and then modi�es the solutions of the elementary problem to obtain solutions of the

problem with 
onstants. The other approa
h, due to Livesey and Siekmann [1975℄

and des
ribed in more detail in [Herold and Siekmann 1987℄, handles free 
onstants

with the help of inhomogeneous linear equations. In the following, we restri
t our

attention to this se
ond method.

As an example, we slightly modify the ACU-uni�
ation problem from above. Let

�

0

ACU

:= ff(x; f(x; y))=

?

ACU

f(a; f(z; f(z; z)))g, where a is a (free) 
onstant. Of


ourse, the numbers of o

urren
es jx� j

z

0

; jy� j

z

0

; jz� j

z

0

of a variable z

0

introdu
ed by

an ACU-uni�er of this problem must still solve the (homogeneous) linear equation

2x+ y = 3z. For the free 
onstant a, however, one must also take into a

ount that

a already o

urs on
e on the right-hand side. Thus, the numbers jx� j

a

; jy� j

a

; jz� j

a

must solve the following inhomogeneous equation:

2x+ y = 3z + 1:

The minimal (non-trivial) nonnegative integer solutions of this equation are (0; 1; 0)

and (2; 0; 1). Every nonnegative integer solution of the equation 
an be obtained

as the sum of one of the minimal solution and a solution of the 
orresponding

homogeneous equation 2x + y = 3z. Consequently, ea
h of the minimal solutions

of the inhomogeneous equation together with the set of all minimal solutions of

the homogeneous equation gives rise to one element of the minimal 
omplete set of

ACU-uni�ers of the problem:

ffx 7! f(z

1

; f(z

3

; f(z

3

; z

3

))); y 7! f(a; f(z

1

; f(z

2

; f(z

2

; z

2

))));

z 7! f(z

1

; f(z

2

; f(z

3

; z

3

)))g;

fx 7! f(a; f(a; f(z

1

; f(z

3

; f(z

3

; z

3

))))); y 7! f(z

1

; f(z

2

; f(z

2

; z

2

)));

z 7! f(a; f(z

1

; f(z

2

; f(z

3

; z

3

))))g g:

In the general 
ase, one must solve one inhomogeneous equation for ea
h free 
on-

stant o

urring in the uni�
ation problem. The uni�ers in the minimal 
omplete

set then 
orrespond to all possible 
ombinations of the minimal solutions of these

inhomogeneous equations. For example, if the uni�
ation problem 
ontains the free


onstants a; b; 
, and if the sets of minimal solutions of the inhomogeneous equations

indu
ed by a; b, and 
, respe
tively, have 
ardinality 2; 3, and 5, then the minimal


omplete set is of 
ardinality 2 � 3 � 5 = 30.

Uni�
ation with 
onstants modulo the theories ACUI and AG 
an be treated a
-


ordingly. In both 
ases, one works in the semiring 
orresponding to the theory, and

�rst determines a generating set of solutions for the system of homogeneous equa-

tions 
orresponding to the uni�
ation problem. Then, one 
onsiders the systems of
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inhomogeneous equations indu
ed by the free 
onstants, and for ea
h system deter-

mines �nitely many solutions su
h that all solutions of this system of inhomogeneous

equations 
an be represented as the sum of one of these parti
ular solutions and

a solution of the homogeneous equation. From these sets of solutions, the minimal


omplete set of uni�ers 
an be 
omputed, as illustrated in the above example.

For AG, the fa
t that the 
orresponding semiring is a ring implies that taking

one parti
ular solution for ea
h system of inhomogeneous equations is suÆ
ient.

Consequently, AG is unitary both for elementary uni�
ation and for uni�
ation

with 
onstants, whereas the other two theories, though unitary for elementary uni-

�
ation, are only �nitary for uni�
ation with 
onstants.

5.2. The 
lass of 
ommutative/monoidal theories

In order to generalize this semanti
 approa
h to a whole 
lass of theories, let us try

to determine the relevant 
ommon features of the theories ACU, ACUI, and AG.

Using a rather synta
ti
 point of view, we may observe that all three theories are


on
erned with an asso
iative-
ommutative binary fun
tion symbol f with a unit e.

In addition, the signature of AG 
ontains a unary fun
tion symbol i, whi
h behaves

like an endomorphism for f and e, i.e., i(f(x; y)) =

AG

f(i(x); i(y)) and i(e) =

AG

e.

This observation motivates the following de�nition of monoidal theories [Nutt 1990℄:

5.1. Definition. An equational theory E is 
alled monoidal i� it satis�es the

following properties:

1. Sig(E) 
ontains a binary fun
tion symbol f and a 
onstant symbol e, and all

other fun
tion symbols in Sig(E) are unary.

2. The symbol f is asso
iative-
ommutative with unit e, i.e., f(f(x; y); z) =

E

f(x; f(y; z)), f(x; y) =

E

f(y; x), and f(x; e) =

E

x.

3. Every unary fun
tion symbol h 2 Sig(E) is an endomorphism for f and e, i.e.,

h(f(x; y)) =

E

f(h(x); h(y)) and h(e) =

E

e.

Obviously, the theories ACU, ACUI, and AG are monoidal. Other examples of

monoidal theories are the theories E

h;g

[ E

h;e

[ ACU

g

, E

h;g

[ E

h;e

[ ACUI

g

, and

E

h;g

[ E

h;e

[ AG

g

introdu
ed in subse
tion 3.4. The theory of Boolean rings and

the theory of 
ommutative rings are not monoidal sin
e their signatures 
ontain

two binary fun
tion symbols.

A drawba
k of the above de�nition of monoidal theories is that the signature and

the axioms de�ning a theory play an important rôle. In fa
t, the theory of Abelian

groups allows for many di�erent axiomatizations, some of whi
h do not satisfy the

de�nition of a monoidal theory. For example, let g be a binary fun
tion symbol and

e be a 
onstant symbol. The theory

AG

0

:= fg(x; x) � e; g(x; e) � e; g(g(x; g(e; y)); g(e; z)) � g(g(z; g(e; y)); g(e; x))g

is not monoidal sin
e g is neither asso
iative nor 
ommutative modulo AG

0

. Never-

theless, any model of AG

0

is an Abelian group, where the group operations f and

i are de�ned as f(x; y) := g(x; g(e; y)) and i(x) := g(e; x).
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In order to 
apture theories like AG

0

as well, one must take a more semanti


point of view. A 
ommon feature of the free algebras de�ned by ACU, ACUI,

and AG is that the �nitely generated free algebras are dire
t powers of the free

algebras in one generator. For example, it is well known that the free Abelian

group in one generator is just the additive group of the integers, and that the free

Abelian group in n generators is the n-fold dire
t produ
t of this group. As shown

in [Baader 1989b℄, this 
ommon feature 
an ni
ely be generalized in the 
ategori
al

setting introdu
ed in subse
tion 3.3.3:

5.2. Definition. Let E be an equational theory and F := Sig(E). Then E is a


ommutative theory i� C

F

(E) is a semi-additive 
ategory,

16

i.e.,

1. C

F

(E) has a zero obje
t.

2. For every pair of obje
ts in C

F

(E), their 
oprodu
t is also their produ
t.

In algebrai
 terms, the �rst 
ondition means that the initial algebra in V (E), i.e.,

T (F ; ;)=

=

E

, is of 
ardinality 1. Sin
e the 
oprodu
t of T (F ;X )=

=

E

and T (F ;Y)=

=

E

is simply T (F ;X ℄ Y)=

=

E

(where ℄ denotes disjoint union), the se
ond 
ondition

means that the free algebra T (F ;X ℄ Y)=

=

E

is isomorphi
 to the dire
t produ
t

T (F ;X )=

=

E

� T (F ;Y)=

=

E

. In parti
ular, this implies that the �nitely generated

E-free algebras are dire
t powers of the E-free algebra in one generator.

The theory of Abelian groups satis�es these properties (and thus is 
ommuta-

tive). The theory of Boolean rings and the theory of 
ommutative rings are not


ommutative in the sense of the above de�nition sin
e the initial algebras 
ontain

two elements (the 
onstants 0 and 1).

In order to obtain a more algebrai
 de�nition of 
ommutative theories, whi
h

also makes 
lear that all monoidal theories are 
ommutative, we need two more

notions from universal algebra. A 
onstant symbol e 2 F is 
alled idempotent in E

i� f(e; : : : ; e) =

E

e holds for all f 2 F . Any term t(x

1

; : : : ; x

n

) over the signature F

de�nes an n-ary impli
it operation o

t

in V (E): for an algebra A 2 V (E), the result

of applying o

t

to elements a

1

; : : : ; a

n

of the 
arrier of A is obtained by evaluating

t(a

1

; : : : ; a

n

) in A. For example, the terms g(x; g(e; y)) and g(e; x) de�ne a binary

and a unary impli
it operation, whi
h together with the 
onstant e satisfy the

axioms of Abelian groups in all models of AG

0

, i.e., all algebras in V (AG

0

).

5.3. Proposition. Let E be an equational theory and F := Sig(E). Then E is a


ommutative theory i�

1. The signature F 
ontains a 
onstant e that is idempotent in E.

2. There is a binary impli
it operation � in V (E) su
h that

(a) The 
onstant e is a unit for � in all algebras in V (E).

(b) For any n-ary fun
tion symbol h 2 F , the identity h(x

1

� y

1

; : : : ; x

n

� y

n

) �

h(x

1

; : : : ; x

n

) � h(y

1

; : : : ; y

n

) holds in all algebras in V (E).

16

See, e.g., [Herrli
h and Stre
ker 1973, Baader 1989b℄ for a more pre
ise de�nition of and more

information on semi-additive 
ategories.
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Although it is not expli
itly required by the proposition, the impli
it operation �

turns out to be asso
iative and 
ommutative. Using this proposition, it is easy to

show that the theory AG

0

is indeed 
ommutative: the impli
it operation � is de�ned

by the term g(x; g(e; y)).

Another easy 
onsequen
e of the proposition is that every monoidal theory is


ommutative: just take the expli
it asso
iative-
ommutative binary operation f in

the de�nition of monoidal theories as the impli
it operation �. The theory AG

0

is an example of a 
ommutative theory that is not monoidal. However, it 
an be

shown [Baader and Nutt 1996℄ that every 
ommutative theory 
an be turned into

an \equivalent" monoidal theory with the help of a signature transformation. For

this reason, one 
an in prin
iple use both notions synonymously.

5.3. The 
orresponding semiring

Let E be a 
ommutative theory with Sig(E) = F . The semiring S

E


orresponding

to E is obtained by 
onsidering the E-free algebra in one generator, say x, and then

taking the set of all endomorphisms of this algebra. Ea
h su
h endomorphism is

uniquely determined by the image of the generator x. The multipli
ation operation

\�" in S

E

is just 
omposition of morphisms, and the addition operation \+" is ob-

tained by argument-wise appli
ation of the impli
it operation � of the 
ommutative

theory E: (� + �)(x) := �(x) � �(x).

As an example, we 
onsider the 
ommutative theory ACUI, where the ex-

pli
it operation f serves as the impli
it operation �. Sin
e the ACUI-free alge-

bra generated by x 
onsists of two equivalen
e 
lasses, with representatives x

and e, respe
tively, there are two possible endomorphisms: 0, whi
h is de�ned

by x 7! e, and 1, whi
h is de�ned by x 7! x. It is easy to see that the op-

eration \+" in S

ACUI

behaves like disjun
tion and \�" like 
onjun
tion on the

truth values 0 and 1. For example, (0 � 1)(x) = 1(0(x)) = 1(e) = e = 0(x) and

(0 + 1)(x) = f(0(x); 1(x)) = f(e; x) =

ACUI

x = 1(x). Consequently, S

ACUI

is the

two-element Boolean semiring BS.

A well-known result for semi-additive 
ategories [Herrli
h and Stre
ker 1973℄ says

that morphisms � in the semi-additive 
ategory C

F

(E) 
an be represented as matri-


esM

�

over S

E

su
h that 
omposition of morphisms 
orresponds to matrix multipli-


ation, i.e.,M

��

=M

�

�M

�

. For example, the morphism �: T (F ; fx

1

; x

2

g)=

=

ACUI

!

T (F ; fy

1

; y

2

g)=

=

ACUI

de�ned by �(x

1

) := f(y

1

; y

2

); �(x

2

) := y

2


orresponds to the

matrix

M

�

=

 

fx

1

7! y

1

g fx

1

7! y

2

g

fx

2

7! eg fx

2

7! y

2

g

!

=

 

1 1

0 1

!

:

The se
ond equality depends on the fa
t that all E-free algebras in one generator

are isomorphi
, and thus a morphism �

ij

: T (F ; fx

i

g)=

=

E

! T (F ; fy

j

g)=

=

E


an be

seen as an endomorphism of T (Ffxg)=

=

E

, i.e., an element of S

E

.
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5.4. Results on uni�
ation in 
ommutative theories

Let E be a 
ommutative theory with Sig(E) = F . In subse
tion 3.3.3 we

have seen that any E-uni�
ation problem over F 
orresponds to a parallel pair

�; � : T (F ; I)=

=

E

! T (F ;X )=

=

E

of morphisms in C

F

(E), and that an E-uni�er


orresponds to a morphism Æ with domain T (F ;X )=

=

E

su
h that �Æ = �Æ holds in

C

F

(E).

If we translate the morphisms into matri
es over S

E

, this means that an E-

uni�er of the parallel pair h�; �i 
orresponds to a matrix M over S

E

su
h that

M

�

�M = M

�

�M . This 
orresponden
e is used in [Nutt 1990, Baader 1993℄ to


hara
terize the uni�
ation types of 
ommutative theories by algebrai
 properties

of the 
orresponding semirings. The rows of the matrix M are n-tuples of elements

of S

E

, written as row ve
tors. We will denote the set of all su
h n-dimensional row

ve
tors over S

E

by S

n

E

.

5.4. Theorem. A 
ommutative theory E is unitary w.r.t. elementary uni�
ation

i� the 
orresponding semiring S

E

satis�es the following 
ondition: for all m;n � 1

and all m� n-matri
es M

1

;M

2

over S

E

the set

U(M

1

;M

2

) := fv 2 S

n

E

jM

1

� v =M

2

� vg

is �nitely generated, i.e., there exist k � 0 and v

1

; : : : ; v

k

2 S

n

E

su
h that

U(M

1

;M

2

) = fv

1

� s

1

+ � � �+ v

k

� s

k

j s

1

; : : : ; s

k

2 S

E

g.

If fv

1

; : : : ; v

k

g is su
h a �nite generating set for U(M

�

;M

�

), then the matrix whose


olumns are the ve
tors v

1

; : : : ; v

k


orresponds to the most general E-uni�er of

h�; �i.

Uni�
ation with 
onstants 
an also be reformulated as a problem in C

F

(E) for

F = Sig(E). To this end we view 
onstants as spe
ial variables that must always

be substituted for themselves. Let C be a �nite set of free 
onstants. We say that

a morphism �: T (F ;X [ C)=

=

E

! T (F ;Y [ C)=

=

E

respe
ts the 
onstants in C i�


� = 
 for all 
 2 C. In this 
ase, the matrix M

�

has a spe
ial form:

M

�

=

 

M

h

�

M

i

�

0 U

!

;

whereM

h

�

is an jX j�jYj-matrix,M

i

�

is an jX j�jCj-matrix, 0 is the jCj�jYj-matrix

with all entries 0, and U is the jCj � jCj-unit matrix. The 0-submatrix is due to the

fa
t that � does not substitute terms with variables for 
onstants, and the unit

matrix expresses that � maps any 
onstant to itself.

An E-uni�
ation problem with 
onstants from a �nite set C 
orresponds to a

parallel pair h�; �i of morphisms respe
ting the 
onstants in C, and ea
h E-uni�er

Æ of this pair also 
orresponds to a morphism respe
ting C. For the 
omponents of

the 
orresponding matri
es, the fa
t that Æ is a uni�er of h�; �i, i.e., thatM

�

�M

Æ

=

M

�

�M

Æ

, leads to the following equations:

M

h

�

M

h

Æ

= M

h

�

M

h

Æ

;
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M

h

�

M

i

Æ

+M

i

�

= M

h

�

M

i

Æ

+M

i

�

:

The �rst equation is a system of homogeneous equations in S

E

, whereas the se
ond

is a system of inhomogeneous equations.

From these observations one 
an derive the following 
hara
terization of the type

\at most �nitary" for uni�
ation with 
onstants in 
ommutative theories:

17

5.5. Theorem. Let E be a 
ommutative theory that is unitary w.r.t. elementary

uni�
ation. Then E is at most �nitary w.r.t. uni�
ation with 
onstants i� the


orresponding semiring S

E

satis�es the following 
ondition: for all m;n � 1, all

m � n-matri
es M

1

;M

2

over S

E

, and all u

1

; u

2

2 S

m

E

, there exist �nitely many

v

1

; : : : ; v

k

2 S

n

E

su
h that

fw 2 S

n

E

jM

1

� w + u

1

=M

2

� w + u

2

g = fv

i

+ v j 1 � i � k; v 2 U(M

1

;M

2

)g:

This 
onditions means that �nitely many parti
ular solutions of the system of in-

homogeneous equations, M

1

� x + u

1

= M

2

� x + u

2

, together with the solutions

U(M

1

;M

2

) of the 
orresponding system of homogeneous equations,M

1

�x =M

2

�x,

generate all solutions of the system of inhomogeneous equations. The assumption

that E is unitary w.r.t. elementary uni�
ation implies that U(M

1

;M

2

) is �nitely

generated. The 
omplete set of E-uni�ers 
an now be built from the generating set

of U(M

1

;M

2

) and the �nitely many parti
ular solutions of the systems of inhomoge-

neous equations 
orresponding to the free 
onstants as illustrated in subse
tion 5.1.

We 
lose this se
tion by mentioning some additional results on uni�
ation in


ommutative theories. Let E be a 
ommutative theory.

1. For elementary uni�
ation, E is either unitary or of type zero.

2. If S

E

is �nite, then E is unitary for elementary uni�
ation and at most �nitary

for uni�
ation with 
onstants.

3. If S

E

is a ring and E is unitary for elementary uni�
ation, then E is also unitary

for uni�
ation with 
onstants.

4. If E is at most �nitary for uni�
ation with 
onstants, then E is also at most

�nitary for uni�
ation with linear 
onstant restri
tions, and thus also for general

uni�
ation.

Proofs of these and other interesting results on uni�
ation in 
ommutative/monoidal

theories 
an be found in [Baader 1989b, Nutt 1990, Baader 1993, Baader and

Nutt 1996℄.

Compared to synta
ti
 approa
hes to uni�
ation, the semanti
 approa
h intro-

du
ed here has the disadvantage that it 
annot treat general uni�
ation problems

dire
tly. In fa
t, for a 
ommutative theory E, we have 
onsidered the 
ategory

C

F

(E) for F = Sig(E), and have used the fa
t that this 
ategory is semi-additive.

For an extended signature F

1

� F , the 
ategory C

F

1

(E) would no longer be semi-

additive, and thus the presented approa
h to uni�
ation in 
ommutative theories


annot be applied dire
tly. For uni�
ation with 
onstants, we have shown that one


an still work within the 
ategory C

F

(E) by 
onsidering spe
ial morphisms. For

17

Re
all that \at most �nitary" means unitary or �nitary.
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arbitrary free fun
tion symbols su
h an approa
h does not appear to be possible.

The general methods for 
ombining uni�
ation algorithms des
ribed in the next

se
tion 
an, however, over
ome this problem (see result 4. from above).

6. Combination of uni�
ation algorithms

In appli
ations of equational uni�
ation in automated dedu
tion, one is often fa
ed

with the problem of unifying terms 
ontaining several fun
tion symbols whose prop-

erties are de�ned by equational theories. For example, asso
iative-
ommutative

fun
tion symbols often 
ome in pairs (e.g., the addition operation + and the multi-

pli
ation operation � of rings). However, a given AC- or ACU-uni�
ation algorithm


an only treat terms 
ontaining one of these two symbols, but not both. In pro-

gram veri�
ation one may en
ounter data stru
tures su
h as sets and lists, and their


ombination (e.g., sets of lists). Sin
e union of sets ([) is asso
iative, 
ommutative,

and idempotent, and the append operation for lists (app) is asso
iative, uni�
ation

of terms 
ontaining both ACI- and A-symbols is of interest in this setting. Thus,

the question arises whether we 
an use the known ACI

[

- and A

app

-uni�
ation al-

gorithms for unifying terms 
ontaining both [ and app modulo ACI

[

[A

app

. This

is an instan
e of the following 
ombination problem for uni�
ation algorithms:

Assume that E

1

; : : : ; E

n

are equational theories over pairwise disjoint sig-

natures. How 
an algorithms for uni�
ation modulo E

i

(i = 1; : : : ; n) be


ombined to an algorithm for uni�
ation modulo E

1

[ � � � [ E

n

?

To be more pre
ise, there are two variants of this problem: one 
an either try

to 
ombine algorithms 
omputing 
omplete sets of uni�ers or de
ision pro
edures.

It should also be noted that without the disjointness 
ondition there 
annot ex-

ist a general 
ombination method.

18

For example, as mentioned in se
tion 3.4,

D

l

f;g

-uni�
ation and D

r

f;g

-uni�
ation are unitary, whereas uni�
ation modulo their

union D

f;g

is in�nitary, whi
h shows that algorithms 
omputing �nite 
omplete sets

of uni�ers 
annot be 
ombined in the non-disjoint 
ase. Se
tion 3.4 also yields a

negative example for the 
ombination of de
ision pro
edures: D

f;g

-uni�
ation and

A

g

-uni�
ation are de
idable, whereas uni�
ation modulo their union is unde
idable.

The formulation of the 
ombination problem given above is still not quite pre
ise

sin
e it does not spe
ify whi
h kind of E

i

-uni�
ation problems (elementary, with


onstants, or general) the 
omponent algorithms must be able to handle. As we

shall see below, algorithms for uni�
ation with 
onstants are not quite suÆ
ient:

the 
ombination method requires algorithms for uni�
ation with linear 
onstant

restri
tions for the 
omponent theories E

i

. In parti
ular, algorithms for general E-

uni�
ation 
an be obtained from algorithms for E-uni�
ation with l
r by 
ombining

them with an algorithm for synta
ti
 uni�
ation (whi
h treats the free fun
tion

symbols).

18

There are some approa
hes that try to weaken the disjointness assumption, but the theories

to be 
ombined must satisfy rather strong 
onditions [Ringeissen 1992, Domenjoud, Klay and

Ringeissen 1994℄.
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The resear
h on the 
ombination problem was triggered by the sear
h for a

uni�
ation algorithm that 
an deal with terms 
ontaining several asso
iative-


ommutative fun
tion symbols and free symbols [Sti
kel 1975, Sti
kel 1981, Fages

1984, Fages 1987, Herold and Siekmann 1987℄. It turned out that the methods used

in this parti
ular instan
e of the 
ombination problem 
an easily be generalized to

other equational theories, provided that they satisfy 
ertain restri
tions (su
h as


ollapse-freeness or regularity

19

) on the synta
ti
 form of their de�ning identities,

whi
h make sure that the theories behave similarly to asso
iativity-
ommutativity

and synta
ti
 equality [Kir
hner 1985, Tid�en 1986, Herold 1986, Yeli
k 1987, Boudet

et al. 1989℄.

The problem of 
ombining algorithms 
omputing 
omplete sets of uni�ers was

solved in a very general form by S
hmidt-S
hau� [1989b℄. His approa
h imposes no

restri
tion on the synta
ti
 form of the identities. The only requirements on the


omponent theories E

i

are of an algorithmi
 nature: both E

i

-uni�
ation problems

with 
onstants and so-
alled \
onstant elimination problems" (see [S
hmidt-S
hau�

1989b℄ for a de�nition) must be �nitary solvable modulo E

i

. Boudet [1993℄ des
ribes

a more eÆ
ient 
ombination algorithm, whi
h depends on the same requirements

as the one by S
hmidt-S
hau�.

In the following, we will des
ribe the 
ombination method introdu
ed in [Baader

and S
hulz 1992, Baader and S
hulz 1996℄ in more detail, sin
e it 
an be used both

for 
ombining algorithms 
omputing 
omplete sets of uni�ers and for 
ombining de-


ision pro
edures. Instead of splitting the algorithmi
 problem to be solved for the


omponent theories E

i

into two parts (uni�
ation with 
onstants and 
onstant elim-

ination), this method requires algorithms (de
ision pro
edures) for E

i

-uni�
ation

with l
r. In this setting, S
hmidt-S
hau�'s 
ondition that 
onstant elimination prob-

lems must be �nitary solvable modulo E

i


an be seen as just one way of ensuring

that E

i

-uni�
ation with l
r is at most �nitary provided that E

i

-uni�
ation with


onstants is at most �nitary.

6.1. A general 
ombination method

Before des
ribing the 
ombination method of Baader and S
hulz [1992℄ and [1996℄

formally, we illustrate the underlying ideas by a simple example. Let g be a unary

and f be a binary fun
tion symbol. We 
onsider the theories A

f

and F

g

:= fg(x) �

g(x)g,

20

and the (elementary) uni�
ation problem

�

0

:= fg(f(y; y))

?

=

E

g(x); g(x)

?

=

E

g(y); x

?

=

E

f(y; y)g

modulo their union E := A

f

[F

g

. In a �rst step, we transform �

0

into an equivalent

uni�
ation problem in de
omposed form, i.e., into a union of an (elementary) A

f

-

19

A theory E is 
alled 
ollapse-free if it does not 
ontain an identity of the form x = t where x

is a variable and t is a non-variable term, and it is 
alled regular if the left- and right-hand sides

of the identities 
ontain the same variables.

20

Obviously, =

F

g

is just synta
ti
 equality. The \dummy" axiom g(x) � g(x) makes sure that

g belongs to Sig(F

g

).
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uni�
ation problem and an (elementary) F

g

-uni�
ation problem:

� := fz

?

=

A

f

f(y; y); x

?

=

A

f

f(y; y)g [ fg(z)

?

=

F

g

g(x); g(x)

?

=

F

g

g(y)g:

This has been a
hieved by repla
ing \alien" subterms (in the example, just the term

f(y; y) o

urring on the left-hand side of the �rst equation) by new variables and

introdu
ing appropriate new equations (see [Baader and S
hulz 1996℄ for a formal

de�nition of this de
omposition step).

Unfortunately, it is not suÆ
ient simply to test the \pure" uni�
ation problems

obtained this way for solvability. The problem is that these uni�
ation problems

still share variables, and the single solutions may instantiate these variables with

in
ompatible terms. For example, �

1

:= fx 7! f(y; y); z 7! f(y; y)g solves the

A

f

-subproblem, and �

2

:= fx 7! g(x); y 7! g(x); z 7! g(x)g is a solution of the

F

g

-subproblem, but these solutions repla
e both x and z by di�erent (even non-

uni�able) terms. In order to avoid su
h in
ompatible assignments, we 
hoose a

theory label for ea
h variable: in the subproblem 
orresponding to this theory, the

variable may be instantiated, whereas in the other subproblem the variable must

be treated as a 
onstant. For example, if we assign

L(x) := L(z) := A

f

and L(y) := F

g

;

then y must be treated as a 
onstant in the A

f

-subproblem, whereas x and z must

be treated as 
onstants in the F

g

-subproblem.

This avoids in
ompatible instantiations of shared variables, but also leads to

a new problem: in the example, the equation g(z)=

?

F

g

g(x) is no longer solvable

sin
e both z and x must be treated as (di�erent) 
onstants. This problem 
an be

over
ome by 
hoosing an appropriate variable identi�
ation. In the example, x must

be identi�ed with z, whi
h 
an be a
hieved by repla
ing every o

urren
e of z by

x:

�

0

:= fx

?

=

A

f

f(y; y)g [ fg(x)

?

=

F

g

g(x); g(x)

?

=

F

g

g(y)g:

Unfortunately, the solutions �

0

1

:= fx 7! f(y; y)g and �

0

2

:= fy 7! xg of the

pure subproblems still 
annot be 
ombined to a solution of their union, sin
e there

is a 
y
li
 dependen
y between the two substitutions: x is repla
ed by a term


ontaining y, and y is repla
ed by a term 
ontaining x. Su
h 
y
li
 dependen
ies

between solutions of the pure subproblems 
an �nally be avoided by 
hoosing a

linear ordering on the shared variables of the uni�
ation problem, whi
h indu
es

linear 
onstant restri
tions for the subproblems.

These ideas 
an be formalized as follows. Let E

1

; : : : ; E

n

be non-trivial equational

theories over disjoint signatures. An (E

1

[ � � � [ E

n

)-uni�
ation problem � is in

de
omposed form i� � = �

1

[� � �[�

n

where ea
h �

i

is an elementary E

i

-uni�
ation

problem. As illustrated in the example, it is easy to transform a given elementary

(E

1

[ � � �[E

n

)-uni�
ation problem into an equivalent problem in de
omposed form

(see [Baader and S
hulz 1996℄ for details). Thus, we may without loss of generality

assume that all our (E

1

[ � � � [ E

n

)-uni�
ation problems are in de
omposed form



516 Franz Baader and Wayne Snyder

� = �

1

[ � � � [ �

n

. A variable o

urring in � is 
alled a shared variable i� it o

urs

in at least two of the pure subproblems �

i

.

Let X be the set of shared variables of � = �

1

[� � �[�

n

. A variable identi�
ation


an be represented by a partition � = fP

1

; : : : ; P

k

g of X . For ea
h of the 
lasses

P

i

, let x

i

2 P

i

be a representative of this 
lass, and let X

�

:= fx

1

; : : : ; x

k

g be the

set of these representatives. The substitution that repla
es, for all i = 1; : : : ; k, ea
h

element of P

i

by its representative x

i

is denoted by �

�

. We denote the result of

applying �

�

to ea
h term in �

i

by �

i

�

�

. For a given partition � of the shared

variables of �, let L : X

�

! f1; : : : ; ng be a labelling fun
tion, whi
h assigns a

theory label to ea
h variable in X

�

, and let < be a linear ordering on X

�

. Using L

and <, ea
h of the elementary E

i

-uni�
ation problems �

i

�

�


an be turned into an

E

i

-uni�
ation problem with linear 
onstant restri
tions h�

i

�

�

; L;<i: the variables

x 2 X

�

with label L(x) 6= i are treated as (free) 
onstants in h�

i

�

�

; L;<i, whereas

the other variables are still treated as variables, and the linear 
onstant restri
tions

are indu
ed by <.

21

6.1. Proposition. Let � := �

1

[ � � �[�

n

be an (E

1

[ � � �[E

n

)-uni�
ation problem

in de
omposed form. Then the following statements are equivalent:

1. � is solvable, i.e., there exists an (E

1

[ � � � [ E

n

)-uni�er of �.

2. There exists a partition �, a labelling fun
tion L : X

�

! f1; : : : ; ng, and a

linear ordering < on X

�

su
h that, for all i = 1; : : : ; n, the E

i

-uni�
ation

problem with linear 
onstant restri
tions h�

i

�

�

; L;<i is solvable.

Assume that solvability of E

i

-uni�
ation problems with l
r is de
idable for i =

1; : : : ; n. For a given elementary (E

1

[ � � � [ E

n

)-uni�
ation problem �

0

one 
an


ompute an equivalent problem in de
omposed form � in polynomial time. For

�, there exist only �nitely many di�erent triples (�; L;<), whi
h means that it

is possible to 
ompute all possible su
h triples, and then test the obtained E

i

-

uni�
ation problems with l
r for solvability. Thus, proposition 6.1 implies that

solvability of elementary (E

1

[ � � � [ E

n

)-uni�
ation problems is de
idable. To be

more pre
ise, instead of deterministi
ally 
omputing all possible triples (�; L;<),

one 
an also employ a non-deterministi
 algorithm that \guesses the right tuple"

in polynomial time.

6.2. Theorem. Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint sig-

natures. If solvability of E

i

-uni�
ation problems with linear 
onstant restri
tions is

de
idable (in NP) for i = 1; : : : ; n, then solvability of elementary (E

1

[ � � � [ E

n

)-

uni�
ation problems is de
idable (in NP).

In general, it is not possible to avoid the non-determinism inherent in this 
ombi-

nation method [S
hulz 1997℄. For example, the de
ision problem is polynomial for

ACUI-uni�
ation with l
r, but NP-
omplete for general ACUI-uni�
ation [Baader

21

Non-shared variables are assumed to be larger than all shared variables, i.e., there are no

restri
tions for the images of these variables.
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and S
hulz 1993b, Kapur and Narendran 1992a℄. This shows that the 
ombina-

tion of an algorithm for synta
ti
 uni�
ation with a de
ision pro
edure for ACUI-

uni�
ation with l
r 
annot be a
hieved with the help of a polynomial 
ombination

method. For regular and 
ollapse-free theories for whi
h, in addition, it is possible

to 
ompute most general uni�ers in polynomial time, one 
an, however, design a

(deterministi
) polynomial 
ombination pro
edure [S
hulz 1999℄.

The naive 
ombination algorithm obtained by a dire
t appli
ation of proposi-

tion 6.1 is highly non-deterministi
, and thus does not lead to satisfa
tory results

in pra
ti
e. Optimizations of the 
ombination algorithm (whi
h avoid this unsatis-

fa
tory behavior in many 
ases) are des
ribed in [Kepser and Ri
hts 1999℄.

Proposition 6.1 
an also be used to obtain a method for 
ombining uni�
ation

algorithms, i.e., algorithms 
omputing �nite 
omplete sets of uni�ers. In fa
t, as we

shall see below, given solutions �

i

of the E

i

-uni�
ation problems with l
r indu
ed

by the triple (�; L;<) 
an e�e
tively be 
ombined into a solution �

1

�� � ���

n

of the

original (E

1

[ � � � [E

n

)-uni�
ation problem. For a given (E

1

[ � � � [E

n

)-uni�
ation

problem � in de
omposed form, let T

1

; : : : ; T

k

be all the triples 
onsisting of a

partition �, a labelling fun
tion L, and a linear ordering < on X

�

, and let C

i;j

be

a 
omplete set of E

i

-uni�ers of the E

i

-uni�
ation problem with l
r indu
ed by T

j

.

Then the set

k

[

j=1

f�

1

� � � � � �

n

j �

i

2 C

i;j

g

is a 
omplete set of (E

1

[ � � � [ E

n

)-uni�ers of � (see [Baader and S
hulz 1996℄ for

a proof).

6.3. Theorem. Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint sig-

natures that are at most �nitary for E

i

-uni�
ation with linear 
onstant restri
tions.

Then E

1

[ � � � [ E

n

is at most �nitary for elementary uni�
ation.

Although the 
ombination results (as formulated in theorem 6.2 and theorem 6.3)

only apply to elementary uni�
ation in the 
ombined theory, they 
an easily be

extended to general uni�
ation. In fa
t, it is easy to see that synta
ti
 uni�
ation

with l
r is de
idable and unitary: just 
ompute the mgu of the uni�
ation problem

without l
r, and then test whether it satis�es the 
onstant restri
tions. Thus, one


an simply take as one of the E

i

's a \free" theory F su
h that Sig(F ) 
ontains all

the free fun
tion symbols o

urring in the general uni�
ation problem and =

F

is

the synta
ti
 equality on Sig(F )-terms.

6.2. Proving 
orre
tness of the 
ombination method

In order to show soundness of the 
ombination method (i.e., (2) ! (1) of propo-

sition 6.1), it is suÆ
ient to show that given solutions �

i

of the E

i

-uni�
ation

problems with l
r indu
ed by the triple (�; L;<) 
an indeed be 
ombined into a
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solution �

1

� � � � � �

n

of the original (E

1

[ � � � [E

n

)-uni�
ation problem in de
om-

posed form � = �

1

[ � � � [ �

n

. First, we 
ombine �

1

; : : : ; �

n

into a solution � of

��

�

= �

1

�

�

[ � � � [ �

n

�

�

. Obviously, this implies that �

�

� is a solution of �.

Without loss of generality, we may assume that the substitution �

i

maps all

variables with label i to terms 
ontaining only variables with label j 6= i (whi
h are

treated as free 
onstants in �

i

�

�

) or new variables, i.e., variables not o

urring in

�. The 
ombined solution � of ��

�

is de�ned along the linear ordering <.

Let x be the least variable with respe
t to <, and let i be its label. Sin
e the

solution �

i

of �

i

�

�

satis�es the 
onstant restri
tions indu
ed by <, the term x�

i

does not 
ontain any variables with index j 6= i. Thus we 
an simply de�ne x� :=

x�

i

.

Now let x be an arbitrary variable with label i, and let y

1

; : : : ; y

m

be the variables

with labels di�erent from i o

urring in x�

i

. Sin
e �

i

satis�es the 
onstant restri
-

tions indu
ed by <, the variables y

1

; : : : ; y

m

(whi
h are treated as free 
onstants in

�

i

�

�

) must be smaller than x. This means that y

1

�; : : : ; y

m

� are already de�ned.

The term x� is now obtained from x�

i

by repla
ing ea
h y

k

by y

k

� (k = 1; : : : ;m).

It is easy to see that the substitution � obtained this way satis�es � = �

i

�

(i = 1; : : : ; n), i.e., � is an instan
e of all the substitutions �

i

. Sin
e �

i

is an

E

i

-uni�er of �

i

�

�

, this implies that � is also an E

i

-uni�er of �

i

�

�

, and thus an

E-uni�er of �

i

�

�

. Consequently, � is an E-uni�er of ��

�

= �

1

�

�

[ � � � [ �

n

�

�

.

Proving 
ompleteness of the 
ombination method (i.e, (1) ! (2) of proposi-

tion 6.1) turns out to be a bit more 
omplex. In the following, we only give a

sket
h of the proof. Assume that � is a solution of the (E

1

[ � � � [ E

n

)-uni�
ation

problem in de
omposed form � = �

1

[ � � � [�

n

. This solution 
an be used to de�ne

the 
orre
t triple (�; L;<):

1. Two shared variables x; y belong to the same 
lass of � i� x� =

E

y�.

2. If x� is not a variables, then L(x) = i i� the top symbol of x� belongs to

Sig(E

i

). Otherwise, L(x) := 1 (this is an arbitrary de
ision).

3. < is an arbitrary linear extension of the stri
t partial ordering � de�ned by

x � y i� x� is a stri
t subterm of y�.

It is easy to see that � is also a solution of ��

�

= �

1

�

�

[ � � � [ �

n

�

�

. For ea
h

i, the substitution � (whi
h is a substitution of the 
ombined signature Sig(E

1

) [

� � � [ Sig(E

n

)) 
an be turned into a Sig(E

i

)-substitution �

i

by repla
ing alien

subterms in x� (i.e., subterms starting with a symbol not belonging to Sig(E

i

))

by new variables in su
h a way that =

E

-equivalent subterms are repla
ed by the

same variable. Unfortunately, for an arbitrary E-uni�er � of �, the substitution

�

i

obtained this way need not be a solution of the E

i

-uni�
ation problem with

l
r h�

i

�

�

; L;<i. For this to be true, � must be normalized in a 
ertain way. One

possibility to obtain an appropriate notion of a normalized substitution is to apply

unfailing 
ompletion to the equational theory E

1

[ � � � [ E

n

, and normalize w.r.t.

the ordered rewrite system R obtained this way (see [Baader and S
hulz 1996℄

for details). Sin
e R may be in�nite, it is not ne
essarily possible to 
ompute the

normal form of a given term, but this is irrelevant for the proof of 
ompleteness.

Another possibility (whi
h has the advantage that normalization is e�e
tive) is to
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ompute a so-
alled \layer-redu
ed" form [S
hmidt-S
hau� 1989b, Kir
hner and

Ringeissen 1994℄. In prin
iples, this normal form is obtained by applying 
ollapse-

equations as mu
h as possible.

A di�erent way of proving soundness and 
ompleteness of the 
ombination

method des
ribed above was introdu
ed in [Baader and S
hulz 1995a℄: it depends

on a representation of the free algebra in V (E

1

[ � � � [ E

n

) over 
ountably many

generators as the so-
alled free amalgamated produ
t of the free algebras in V (E

i

)

in 
ountably many generators. This approa
h 
an also deal with the 
ombination

of 
onstraint solvers in free stru
tures (where the signature may also 
ontain pred-

i
ate symbols), and it has been generalized to stru
tures that are not ne
essarily

free [Baader and S
hulz 1995
, Baader and S
hulz 1998℄. The 
ombination method

has also been extended to disuni�
ation [Baader and S
hulz 1995b, Kepser 1999℄.

7. Further topi
s

In this arti
le we have 
on
entrated on uni�
ation of �rst-order terms, and have

mentioned only appli
ations in term rewriting and resolution-based theorem prov-

ing. However, uni�
ation is a broad paradigm with appli
ations in almost every

area of automated dedu
tion, and we would like to draw the reader's attention

in parti
ular to the two 
hapters of this handbook where varieties of uni�
ation

not 
overed here are treated: higher-order uni�
ation [Dowek 2001℄ and rigid E-

uni�
ation [Degtyarev and Voronkov 2001a℄ (Chapters 16 and 10 of this Handbook).

In addition, we brie
y mention in this �nal se
tion a number of important variants

of the uni�
ation problem that have been studied in the literature.

Mat
hing

Given a pair of terms s; t, the mat
hing problem asks for a substitution � su
h that

s� = t. Again, this synta
ti
 mat
hing problem 
an be generalized to mat
hing

modulo an equational theory E, where one asks for a substitution � satisfying

s� =

E

t.

If t does not 
ontain variables, then mat
hing and uni�
ation are obviously the

same problem. In general, one 
an turn a given mat
hing problem into an \equiva-

lent" uni�
ation problem by repla
ing the variables in t by new free 
onstants. This

transformation shows that mat
hing modulo E 
an be redu
ed to E-uni�
ation with


onstants . B�ur
kert [1989℄ has shown that there exists an equational theory for

whi
h elementary uni�
ation is de
idable, but mat
hing and uni�
ation with 
on-

stants is unde
idable. Also, if one is interested in 
omplete sets of E-mat
hers, then

one must be 
areful how to de�ne the instantiation quasi-ordering [B�ur
kert 1989℄.

Semiuni�
ation

Semiuni�
ation is a de
eptively simple 
ombination of synta
ti
 mat
hing and syn-

ta
ti
 uni�
ation on �rst-order terms.
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A semiuni�
ation problem 
onsists of a set of pairs of terms

fs

1

�

?

t

1

; : : : ; s

n

�

?

t

n

g

and is 
alled uniform if n = 1. A substitution � is a solution (a semiuni�er) of su
h

a problem i� there exist substitutions �

1

; : : : ; �

n

su
h that

s

1

��

1

= t

1

�; : : : ; s

n

��

n

= t

n

�:

This simple de�nition belies the broad variety of appli
ations of semiuni�
ation in

term rewriting, type 
he
king for programming languages, proof theory, and 
ompu-

tational linguisti
s; in addition, proving the properties of the problem turned out to

be extremely diÆ
ult. Although it is easy to show that so-
alled prin
ipal solutions

(analogous to mgus in synta
ti
 uni�
ation) always exist for solvable semiuni�
a-

tion problems, the proof that the non-uniform 
ase is unde
idable is ex
eedingly


omplex; the interested reader is referred to [Kfoury, Tiuryn and Urzy
zyn 1993℄,

where a review of the results on the non-uniform 
ase is presented.

The uniform 
ase is de
idable, but it took a long time to develop a 
orre
t,

eÆ
ient algorithm. A fast algorithm based on the uni�
ation-
losure method, as

well as a review of the various attempts to provide algorithms for the problem, may

be found in [Oliart and Snyder 1998℄. This paper shows that the uniform 
ase 
an

be de
ided in O(n

2

�(n)

2

), where n is the size of the two input terms, and � is

the fun
tional inverse of A
kermann's fun
tion; 
onstru
ting a prin
ipal solution is

somewhat more 
omplex.

Disuni�
ation

A disuni�
ation problem is of the form

fs

1

?

= t

1

; : : : ; s

n

?

= t

n

; s

n+1

?

6= t

n+1

; : : : ; s

n+m

?

6= t

n+m

g;

where s

1

; : : : ; t

n+m

are terms. A solution of su
h a problem is a substitution �

satisfying s

i

� = t

i

� (i = 1; : : : ; n) and s

n+j

� 6= t

n+j

� (j = 1; : : : ;m). Again, this

problem 
an be generalized to disuni�
ation modulo an equational theory E.

In 
ontrast to uni�
ation, one must distinguish between di�erent types of solv-

ability: for disuni�
ation it makes a di�eren
e whether solutions are required to

be ground substitutions (i.e., substitution introdu
ing only variable-free terms),

or whether they may be arbitrary substitutions. Both types of solvability have

been 
onsidered in the literature [Colmerauer 1984, Kir
hner and Les
anne 1987,

B�ur
kert 1988, Comon and Les
anne 1989, Comon 1988, Comon 1991, Buntine

and B�ur
kert 1994, Baader and S
hulz 1993a℄, but ground solvability appears to

be more interesting for most appli
ations. It should also be noted that sometimes

more general problems than the one introdu
ed above are still 
alled disuni�
ation

problems (see, e.g., [Comon 1991℄).

Sorted uni�
ation

In many appli
ations, the domain on whi
h the fun
tion symbols operate is not

one homogeneous set: it is divided into di�erent subsets, whi
h on the synta
ti
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level are represented as sorts. Sorted uni�
ation generalizes synta
ti
 uni�
ation

in that the domain of variables is restri
ted to 
ertain sorts. Uni�ers are then

required to be well-sorted in the sense that variables 
an only be repla
ed by

terms of a \
ompatible" sort. Results for sorted uni�
ation strongly depend on

the expressiveness of the sort language. An overview on sorted uni�
ation 
an,

for example, be found in [Weidenba
h 1998℄; other important referen
es on the

topi
 are [Walther 1983, Walther 1987, S
hmidt-S
hau� 1986a, S
hmidt-S
hau�

1989a, Comon 1989, Meseguer, Goguen and Smolka 1989, Tommasi 1991, Fris
h

and Cohn 1992, Weidenba
h 1996℄.
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