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Abstrat

For Desription Logis with existential restritions, the size of the least

ommon subsumer (ls) of onept desriptions may grow exponentially

in the size of the input desriptions. This paper investigates whether the

possibly exponentially large onept desription representing the ls an

always be represented in a more ompat way when using an appropriate

(ayli) TBox for de�ning this desription. This onjeture was sup-

ported by our experiene in a hemial proess engineering appliation.

Nevertheless, it turns out that, in general, TBoxes annot always be used

to obtain a polynomial size representation of the ls.

1 Introdution

In an appliation in hemial proess engineering

[

5; 9; 7

℄

, we support the

bottom-up onstrution of Desription Logi (DL) knowledge bases by om-

puting most spei� onepts (ms) of individuals and least ommon subsumers

(ls) of onepts: instead of diretly de�ning a new onept, the knowledge

engineer introdues several typial examples as individuals, whih are then gen-

eralized into a onept desription by using the ms and the ls operation

[

1; 3;

6

℄

. This desription is o�ered to the knowledge engineer as a possible andidate

for a de�nition of the onept.

Unfortunately, due to the nature of the algorithms for omputing the ls and

the ms proposed in

[

1; 3; 6

℄

, these algorithms yield onept desriptions that do

not ontain de�ned onept names, even if the desriptions of the individuals use

onepts de�ned in a TBox T . In addition, due to the inherent omplexity of the

ls and the ms operation, these desriptions may be quite large (exponentially

�
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large in the size of the unfolded input desriptions). To be more preise, in

[

3;

2

℄

we onsidered the ls in DLs with existential restritions. For the small DL

EL , whih allows for onjuntions (u), existential restritions (9r:C), and the

top onept (>), the binary ls operation is still polynomial, but the n-ary one is

already exponential. For the DL ALE , whih extends EL by value restritions

(8r:C), primitive negation (:A, where A is a name of a primitive onept), and

the bottom onept (?), already the binary ls operation is exponential in the

worst ase.

To overome the problem of large least ommon subsumers, we have em-

ployed rewriting of the omputed onept desription using the TBox T in

order to obtain a shorter and better readable desription

[

4

℄

. Informally, the

problem of rewriting a onept given a terminology an be stated as follows:

given a TBox T and a onept desription C that does not ontain onept

names de�ned in T , an this desription be rewritten into an equivalent smaller

desription D by using (some of) the names de�ned in T ? First results obtained

in our proess engineering appliation were quite enouraging: for a TBox with

about 65 de�ned and 55 primitive names, soure desriptions of size about 800

(obtained as results of the ls omputation) were rewritten into desriptions of

size about 10

[

7

℄

.

These positive empirial results led us to onjeture that maybe TBoxes an

always be used to yield a ompat representation of the ls. More formally, this

onjeture an be stated as follows. Let L be a DL for whih the ls operation

(binary or n-ary) is exponential (like EL or ALE ). Given input desriptions

C

1

; : : : ; C

n

with lsD, does there always exist a TBox T whose size is polynomial

in the size of C

1

; : : : ; C

n

and a de�ned onept name A in T suh that A �

T

D,

i.e., the TBox de�nes A suh that it is equivalent to the ls D of C

1

; : : : ; C

n

? A

loser look at the worst-ase examples for EL and ALE given in

[

2

℄

also supports

this onjeture: the exponentially large least ommon subsumers onstruted

there an easily be represented using polynomially large TBoxes.

The ontribution of the present paper is to prove that the onjeture is

nevertheless false, both for EL and for ALE . This shows that, in general,

rewriting annot overome the problem of large least ommon subsumers. Even

though these are just negative results, we think that it is worth publishing them,

if only to prevent other researhers from wasting their time on trying to prove

the (at �rst sight quite intuitive) onjeture.

2 The least ommon subsumer in EL and ALE

First, we introdue the DLs EL and ALE more formally. As usual, onept de-

sriptions are indutively de�ned using a set of onstrutors, starting with a set

N

C

of onept names and a set N

R

of role names. The onstrutors determine
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Construt name Syntax Semantis

primitive onept P 2 N

C

P P

I

� �

top-onept > �

onjuntion C uD C

I

\D

I

existential restr. for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restr. for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-onept ? ;

Table 1: Syntax and semantis of onept desriptions.

the expressive power of the DL. In this paper, we onsider onept desriptions

built from the onstrutors shown in Table 1. In EL , onept desriptions are

formed using the onstrutors top onept (>), onjuntion (CuD) and existen-

tial restrition (9r:C). The DL ALE allows for all the onstrutors introdued

in Table 1.

The semantis of a onept desription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation funtion �

I

maps eah onept name P 2 N

C

to a set P

I

� �

and eah role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third

olumn of Table 1.

A TBox is a �nite set of onept de�nitions of the form A

:

= C, where A is a

onept name and C a onept desription. In addition, we require that TBoxes

are ayli and do not ontain multiple de�nitions (see, e.g.,

[

8

℄

). In TBoxes of

the DL ALE , negation may only be applied to onept names not ourring on

the left-hand side of a onept de�nition. An interpretation I is a model of the

TBox T i� it satis�es all its onept de�nitions, i.e., A

I

= C

I

for all de�nitions

A

:

= C in T .

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C is

subsumed by the desription D w.r.t. the TBox T (C v

T

D) i� C

I

� D

I

holds

for all models I of T . The desription C is subsumed by D (C v D) i� it is

subsumed by D w.r.t. the empty TBox (whih has all interpretations as models).

The onept desriptions C and D are equivalent (w.r.t. T ) i� they subsume

eah other (w.r.t. T ). We write C �

T

D if C and D are equivalent w.r.t. T .

In this paper, we are interested in the non-standard inferene task of om-

puting the least ommon subsumer of onept desriptions.

De�nition 1 Let C

1

; : : : ; C

n

be onept desriptions in a DL L. The L-onept

desription C is a least ommon subsumer (ls) of C

1

; : : : ; C

n

in L i�

3



1. C

i

v C for all 1 � i � n, and

2. C is the least onept desription with this property, i.e., if D is a onept

desription satisfying C

i

v D for all 1 � i � n, then C v D.

In general (i.e., for an arbitrary DL L), a given olletion of n onept desrip-

tions need not have an ls. However, if an ls exists, then it is unique up to

equivalene. This justi�es to talk about the ls of C

1

; : : : ; C

n

in L.

In

[

3; 2

℄

it was shown that, for the DLs EL and ALE , the ls always exists.

The algorithms for omputing the ls are based on the produt of desription

trees, i.e., the input onept desriptions are �rst transformed into a tree repre-

sentation, and then the ls is onstruted by building the produt tree. In the

present paper, we annot give an exat de�nition of these algorithms (see

[

3;

2

℄

for details). Instead, we will illustrate them on two examples, whih are the

worst-ase examples demonstrating that the n-ary ls in EL and the binary ls

in ALE may lead to exponentially large onept desriptions.

2.1 The least ommon subsumer in EL

For the DL EL , a desription tree is merely a graphial representation of the

syntax of the onept desription. Its nodes are labeled with sets of onept

names (orresponding to onept names ourring in the desription) and its

edges are labeled with role names (orresponding to the existential restritions

ourring in the desription). We all a node w reahable from a node v by an

edge labeled with r an r-suessor of v.

For example, the trees depited in the upper half of Figure 1 were obtained

from the onept desriptions

C

3

1

:= 9r:(P u 9r:(P uQ u 9r:(P uQ))) u

9r:(Q u 9r:(P uQ u 9r:(P uQ)));

C

3

2

:= 9r:(P uQ u 9r:(P u 9r:(P uQ)) u 9r:(Q u 9r:(P uQ)));

C

3

3

:= 9r:(P uQ u 9r:(P uQ u 9r:P u 9r:Q))):

The produt G

1

� � � � � G

n

of n EL -desription trees G

1

; : : : ;G

n

is de�ned

by indution on the depth of the trees. Let v

0;1

; : : : ; v

0;n

respetively be the

roots of the trees G

1

; : : : ;G

n

with labels `

1

(v

0;1

); : : : ; `

n

(v

0;n

). Then the produt

G

1

� � � � � G

n

has the root (v

0;1

; : : : ; v

0;n

) with label `

1

(v

0;1

) \ : : : \ `

n

(v

0;n

). For

eah role r and for eah n-tuple v

1

; : : : ; v

n

of r-suessors of v

0;1

; : : : ; v

0;n

, the root

(v

0;1

; : : : ; v

0;n

) has an r-suessor (v

1

; : : : ; v

n

), whih is the root of the produt

of the subtrees of G

1

; : : : ;G

n

with roots v

1

; : : : ; v

n

. The lower half of Figure 1

depits the tree obtained as the produt of the desription trees orresponding

to the desriptions C

3

1

; C

3

2

; C

3

3

.
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Figure 1: Desription trees of C

3

1

; C

3

2

; C

3

3

and their produt.

This example an be generalized to an example that demonstrates that the

ls of n EL -onept desriptions of size linear in n may be exponential in n

[

2

℄

.

Example 2 We de�ne for eah n � 1 a sequene fC

n

1

; : : : ; C

n

n

g of EL -onept

desriptions. For n � 0 let

D

n

:=

(

>; n = 0

9r:(P uQ uD

n�1

); n > 0

and for n � 1 and 1 � i � n we de�ne

C

n

i

:=

(

9r:(P uD

n�1

) u 9r:(Q uD

n�1

); i = 1

9r:(P uQ u C

n�1

i�1

); 1 < i � n:

It is easy to see that eah C

n

i

is linear in the size of n. The produt of the

orresponding desription trees is a full binary tree of depth n, where the nodes

reahed by going to the left are labeled with P and the ones reahed by going to

the right are labeled with Q. Obviously, the size of this tree is exponential in n.

What is less obvious, but an also be shown (see

[

2

℄

), is that there is no smaller

desription tree representing the same onept (modulo equivalene).
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2.2 The least ommon subsumer in ALE

ALE -desription trees are very similar to EL -desription trees. The value re-

stritions just lead to another type of edges, whih are labeled by 8r instead

of simply r. However, the onept desriptions must �rst be normalized before

they an be transformed into desription trees. On the one hand, there are

normalization rules dealing with negation and the bottom onept. Here we

will ignore them sine neither negation nor bottom is used in our examples. On

the other hand, there are normalization rules dealing with value restritions and

their interation with existential restritions:

8r:E u 8r:F �! 8r:(E u F );

8r:E u 9r:F �! 8r:E u 9r:(E u F ):

The �rst rule onjoins all value restritions for the same role into a single value

restrition. The seond rule is problemati sine it dupliates subterms, and

thus may lead to an exponential blow-up of the desription. The following is a

well-known example that demonstrates this e�et.

Example 3 We de�ne the following sequene C

1

; C

2

; C

3

; : : : of ALE onept de-

sriptions:

C

n

:=

�

9r:P u 9r:Q; n = 1

9r:P u 9r:Q u 8r:C

n�1

; n > 1:

Obviously, the size of C

n

is linear in n. However, applying the seond normal-

ization rule to C

n

yields a desription of size exponential in n. If one ignores the

value restritions (and everything ourring below a value restrition), then the

desription tree orresponding to the normal form of C

n

is again a full binary

tree of depth n, where the nodes reahed by going to the left are labeled with P

and the ones reahed by going to the right are labeled with Q. Figure 2 shows

the ALE -desription tree of the normal form of C

3

.

Given the desription trees of normalizedALE -onept desriptions, one an

again obtain the ls as the produt of these trees. In this produt, the bottom

onept requires a speial treatment, but we ignore this issue sine it is irrelevant

for our examples.

For eah tuple of nodes, existential restritions and value restritions are

treated symmetrially, i.e., for a role r the r-suessors are ombined with r-

suessors in all possible ombinations (as before) and the (unique) 8r-suessors

are ombined with eah other. Note that r-suessor are not ombined with 8r-

suessors. The following example is taken from

[

2

℄

.

Example 4 For n � 1, we onsider the onept desriptions C

n

introdued in

Example 3 and the onept desriptions D

n

de�ned in Example 2. By building

6
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Figure 2: The ALE -desription tree of the normal form of C

3

from Example 3.

the produt of the desription trees orresponding to the normal forms of C

n

and

D

n

, one basially removes the value restritions from the normal form of C

n

.

Thus, one ends up with an ls that agrees with the one we obtained in Exam-

ple 2. Again, it an be shown that there is no smaller ALE -onept desription

equivalent to this ls.

3 Using TBoxes to ompress the ls

The exponentially larger ls E

n

onstruted in Examples 2 and 4 had as its

desription tree the full binary tree of depth n, where the nodes reahed by

going to the left were labeled with P and the ones reahed by going to the right

were labeled with Q. This onept an be de�ned in a TBox of size linear in n.

Example 5 Consider the following TBox T

n

:

fA

1

:

= 9r:P u 9r:Qg [

fA

i

:

= 9r:(P u A

i�1

) u 9r:(Q u A

i�1

) j 1 < i � ng:

It is easy to see that the size of T

n

is linear in n and that A

n

�

T

n

E

n

, i.e., the

TBox T

n

provides us with a ompat representation of E

n

.

In general, however, suh a ompat representation is not possible. We will

�rst give a ounterexample for the n-ary ls in EL , and then for the binary

ls in ALE . The main idea underlying both ounterexamples is to generate

desription trees having exponentially many leaves that are all labeled by sets

of onept names that are inomparable w.r.t. set inlusion. To this purpose,

we onsider the set of onept names N

n

:= fA

0

j

; A

1

j

j 1 � j � ng, and de�ne

A

i

:= A

i

1

1

u : : : u A

i

n

n

for eah n-tuple i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

.

7



3.1 The ounterexample for EL

For all n � 1 we de�ne a sequene C

1

; : : : ; C

n

of n EL -onept desriptions

whose size is linear in n:

C

j

:= 9r: u

B2N

n

nfA

0

j

g

B u 9r: u

B2N

n

nfA

1

j

g

B:

Sine eah of the onepts C

j

ontains two existential restritions, the ls of

C

1

; : : : ; C

n

ontains 2

n

existential restritions. The onept desriptions o-

urring under these restritions are obtained by interseting the orresponding

onept desriptions under the existential restritions of the onept desrip-

tions C

j

. It is easy to see that these are exatly the 2

n

onept desriptions

A

i

for i 2 f0; 1g

n

introdued above. Sine the desriptions A

i

are pairwise in-

omparable w.r.t. subsumption, it is lear that there is no smaller EL -onept

desription equivalent to this ls. We will show that a TBox annot be used to

obtain a smaller representation.

Reall that ayli TBoxes an be unfolded by replaing de�ned names by

their de�nitions until no more de�ned names our on the right-hand sides

[

8

℄

.

If the de�ned name A represents the ls of C

1

; : : : ; C

n

w.r.t. a TBox, then the

desription de�ning A in the unfolded TBox is equivalent to this ls.

Obviously, to get a more ompat representation of the ls using a TBox, one

needs dupliation of onept names on the right-hand side of the TBox. During

unfolding of the TBox, this would, however, lead to dupliation of subonepts.

Sine the (desription tree of the) ls we have onstruted here has 2

n

di�erent

leaves, suh dupliation does not help, sine it an only dupliate leaves with

the same label, but not generate leaves with di�erent labels.

3.2 The ounterexample for ALE

For n � 1 we de�ne onept desriptions C

n

of size quadrati in n. For n � 1,

let F

i

j

:= 8r: � � � 8r:A

i

j+1

be the onept desription onsisting of j nested value

restritions followed by the onept name A

i

j+1

. We de�ne

C

1

:= 9r:A

0

1

u 9r:A

1

1

,

C

n

:= 9r:F

0

n�1

u 9r:F

1

n�1

u 8r:C

n�1

for n > 1.

Figure 3 shows the desription tree orresponding to C

3

.

Applying the normalization rule 8r:E u 9r:F �! 8r:E u 9r:(E u F ) to C

n

yields a normalized onept desription whose size is exponential in n. If one

ignores the value restritions (and everything ourring below a value restri-

tion), then the desription tree orresponding to this normal form of C

n

is a full

binary tree of depth n whose 2

n

leaves are labeled by the 2

n

onept desriptions

A

i

for i 2 f0; 1g

n

.

8
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Figure 3: The ALE -desription tree orresponding to C

3

.

Let D

n

:= 9r: � � � 9r: u

B2N

n

B be the onept desription onsisting of n nested

existential restritions followed by the onjuntion of all onept names in N

n

.

Again, by building the produt of the desription trees orresponding to the

normal forms of C

n

and D

n

, one basially removes the value restritions from

the normal form of C

n

. Thus, the ls orresponds to the full binary tree of depth

n whose leaves are labeled by the onept desriptions A

i

for i 2 f0; 1g

n

.

By an argument similar to the one for EL one an show that there is no

smaller ALE -onept desription equivalent to this ls, and that a TBox annot

be used to obtain a smaller representation.

4 Conlusions and future work

The worst-ase examples presented in this paper are quite ontrived and not

likely to our in pratie. Nevertheless, they show that, in priniple, the expo-

nential blow-up inherent to the ls operation annot be avoided, even if one an

introdue \abbreviations" for subdesriptions. An intersting question for future

researh is to haraterize situations in whih this exponential blow-up annot

our, and to hek whether these situations are likely to our in pratie.

Another interesting question related to the ls and TBoxes is the following.

Let L

1

be a \large" DL possibly ontaining disjuntion (whih makes the ls

operation trivial), and let L

2

be a sublanguage not allowing for disjuntion. Now

assume that T is a TBox of L

1

and that C

1

; : : : ; C

n

are L

2

-onept desriptions

possibly using names de�ned in T . Can we ompute the most spei� L

2

-onept

desription (possibly ontaining names de�ned in T ) that subsumes C

1

; : : : ; C

n

w.r.t. T . This operation ould, for example, be useful if na��ve users of a DL

system based on the omplex DL L

1

use a simple frame-like interfae that only

allows them to write desriptions of L

2

, but these desriptions an use names

9



de�ned in a TBox of L

1

(whih has been designed by an expert user). The

ls operation modulo a TBox skethed above an now be used to support the

de�nition of new onepts by na��ve users.
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