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Abstra
t

For Des
ription Logi
s with existential restri
tions, the size of the least


ommon subsumer (l
s) of 
on
ept des
riptions may grow exponentially

in the size of the input des
riptions. This paper investigates whether the

possibly exponentially large 
on
ept des
ription representing the l
s 
an

always be represented in a more 
ompa
t way when using an appropriate

(a
y
li
) TBox for de�ning this des
ription. This 
onje
ture was sup-

ported by our experien
e in a 
hemi
al pro
ess engineering appli
ation.

Nevertheless, it turns out that, in general, TBoxes 
annot always be used

to obtain a polynomial size representation of the l
s.

1 Introdu
tion

In an appli
ation in 
hemi
al pro
ess engineering

[

5; 9; 7

℄

, we support the

bottom-up 
onstru
tion of Des
ription Logi
 (DL) knowledge bases by 
om-

puting most spe
i�
 
on
epts (ms
) of individuals and least 
ommon subsumers

(l
s) of 
on
epts: instead of dire
tly de�ning a new 
on
ept, the knowledge

engineer introdu
es several typi
al examples as individuals, whi
h are then gen-

eralized into a 
on
ept des
ription by using the ms
 and the l
s operation

[

1; 3;

6

℄

. This des
ription is o�ered to the knowledge engineer as a possible 
andidate

for a de�nition of the 
on
ept.

Unfortunately, due to the nature of the algorithms for 
omputing the l
s and

the ms
 proposed in

[

1; 3; 6

℄

, these algorithms yield 
on
ept des
riptions that do

not 
ontain de�ned 
on
ept names, even if the des
riptions of the individuals use


on
epts de�ned in a TBox T . In addition, due to the inherent 
omplexity of the

l
s and the ms
 operation, these des
riptions may be quite large (exponentially

�

Partially supported by the Deuts
he Fors
hungsgemeins
haft, DFG Proje
t BA 1122/4-1.
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large in the size of the unfolded input des
riptions). To be more pre
ise, in

[

3;

2

℄

we 
onsidered the l
s in DLs with existential restri
tions. For the small DL

EL , whi
h allows for 
onjun
tions (u), existential restri
tions (9r:C), and the

top 
on
ept (>), the binary l
s operation is still polynomial, but the n-ary one is

already exponential. For the DL ALE , whi
h extends EL by value restri
tions

(8r:C), primitive negation (:A, where A is a name of a primitive 
on
ept), and

the bottom 
on
ept (?), already the binary l
s operation is exponential in the

worst 
ase.

To over
ome the problem of large least 
ommon subsumers, we have em-

ployed rewriting of the 
omputed 
on
ept des
ription using the TBox T in

order to obtain a shorter and better readable des
ription

[

4

℄

. Informally, the

problem of rewriting a 
on
ept given a terminology 
an be stated as follows:

given a TBox T and a 
on
ept des
ription C that does not 
ontain 
on
ept

names de�ned in T , 
an this des
ription be rewritten into an equivalent smaller

des
ription D by using (some of) the names de�ned in T ? First results obtained

in our pro
ess engineering appli
ation were quite en
ouraging: for a TBox with

about 65 de�ned and 55 primitive names, sour
e des
riptions of size about 800

(obtained as results of the l
s 
omputation) were rewritten into des
riptions of

size about 10

[

7

℄

.

These positive empiri
al results led us to 
onje
ture that maybe TBoxes 
an

always be used to yield a 
ompa
t representation of the l
s. More formally, this


onje
ture 
an be stated as follows. Let L be a DL for whi
h the l
s operation

(binary or n-ary) is exponential (like EL or ALE ). Given input des
riptions

C

1

; : : : ; C

n

with l
sD, does there always exist a TBox T whose size is polynomial

in the size of C

1

; : : : ; C

n

and a de�ned 
on
ept name A in T su
h that A �

T

D,

i.e., the TBox de�nes A su
h that it is equivalent to the l
s D of C

1

; : : : ; C

n

? A


loser look at the worst-
ase examples for EL and ALE given in

[

2

℄

also supports

this 
onje
ture: the exponentially large least 
ommon subsumers 
onstru
ted

there 
an easily be represented using polynomially large TBoxes.

The 
ontribution of the present paper is to prove that the 
onje
ture is

nevertheless false, both for EL and for ALE . This shows that, in general,

rewriting 
annot over
ome the problem of large least 
ommon subsumers. Even

though these are just negative results, we think that it is worth publishing them,

if only to prevent other resear
hers from wasting their time on trying to prove

the (at �rst sight quite intuitive) 
onje
ture.

2 The least 
ommon subsumer in EL and ALE

First, we introdu
e the DLs EL and ALE more formally. As usual, 
on
ept de-

s
riptions are indu
tively de�ned using a set of 
onstru
tors, starting with a set

N

C

of 
on
ept names and a set N

R

of role names. The 
onstru
tors determine

2



Constru
t name Syntax Semanti
s

primitive 
on
ept P 2 N

C

P P

I

� �

top-
on
ept > �


onjun
tion C uD C

I

\D

I

existential restr. for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restr. for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-
on
ept ? ;

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

the expressive power of the DL. In this paper, we 
onsider 
on
ept des
riptions

built from the 
onstru
tors shown in Table 1. In EL , 
on
ept des
riptions are

formed using the 
onstru
tors top 
on
ept (>), 
onjun
tion (CuD) and existen-

tial restri
tion (9r:C). The DL ALE allows for all the 
onstru
tors introdu
ed

in Table 1.

The semanti
s of a 
on
ept des
ription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation fun
tion �

I

maps ea
h 
on
ept name P 2 N

C

to a set P

I

� �

and ea
h role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third


olumn of Table 1.

A TBox is a �nite set of 
on
ept de�nitions of the form A

:

= C, where A is a


on
ept name and C a 
on
ept des
ription. In addition, we require that TBoxes

are a
y
li
 and do not 
ontain multiple de�nitions (see, e.g.,

[

8

℄

). In TBoxes of

the DL ALE , negation may only be applied to 
on
ept names not o

urring on

the left-hand side of a 
on
ept de�nition. An interpretation I is a model of the

TBox T i� it satis�es all its 
on
ept de�nitions, i.e., A

I

= C

I

for all de�nitions

A

:

= C in T .

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C is

subsumed by the des
ription D w.r.t. the TBox T (C v

T

D) i� C

I

� D

I

holds

for all models I of T . The des
ription C is subsumed by D (C v D) i� it is

subsumed by D w.r.t. the empty TBox (whi
h has all interpretations as models).

The 
on
ept des
riptions C and D are equivalent (w.r.t. T ) i� they subsume

ea
h other (w.r.t. T ). We write C �

T

D if C and D are equivalent w.r.t. T .

In this paper, we are interested in the non-standard inferen
e task of 
om-

puting the least 
ommon subsumer of 
on
ept des
riptions.

De�nition 1 Let C

1

; : : : ; C

n

be 
on
ept des
riptions in a DL L. The L-
on
ept

des
ription C is a least 
ommon subsumer (l
s) of C

1

; : : : ; C

n

in L i�

3



1. C

i

v C for all 1 � i � n, and

2. C is the least 
on
ept des
ription with this property, i.e., if D is a 
on
ept

des
ription satisfying C

i

v D for all 1 � i � n, then C v D.

In general (i.e., for an arbitrary DL L), a given 
olle
tion of n 
on
ept des
rip-

tions need not have an l
s. However, if an l
s exists, then it is unique up to

equivalen
e. This justi�es to talk about the l
s of C

1

; : : : ; C

n

in L.

In

[

3; 2

℄

it was shown that, for the DLs EL and ALE , the l
s always exists.

The algorithms for 
omputing the l
s are based on the produ
t of des
ription

trees, i.e., the input 
on
ept des
riptions are �rst transformed into a tree repre-

sentation, and then the l
s is 
onstru
ted by building the produ
t tree. In the

present paper, we 
annot give an exa
t de�nition of these algorithms (see

[

3;

2

℄

for details). Instead, we will illustrate them on two examples, whi
h are the

worst-
ase examples demonstrating that the n-ary l
s in EL and the binary l
s

in ALE may lead to exponentially large 
on
ept des
riptions.

2.1 The least 
ommon subsumer in EL

For the DL EL , a des
ription tree is merely a graphi
al representation of the

syntax of the 
on
ept des
ription. Its nodes are labeled with sets of 
on
ept

names (
orresponding to 
on
ept names o

urring in the des
ription) and its

edges are labeled with role names (
orresponding to the existential restri
tions

o

urring in the des
ription). We 
all a node w rea
hable from a node v by an

edge labeled with r an r-su

essor of v.

For example, the trees depi
ted in the upper half of Figure 1 were obtained

from the 
on
ept des
riptions

C

3

1

:= 9r:(P u 9r:(P uQ u 9r:(P uQ))) u

9r:(Q u 9r:(P uQ u 9r:(P uQ)));

C

3

2

:= 9r:(P uQ u 9r:(P u 9r:(P uQ)) u 9r:(Q u 9r:(P uQ)));

C

3

3

:= 9r:(P uQ u 9r:(P uQ u 9r:P u 9r:Q))):

The produ
t G

1

� � � � � G

n

of n EL -des
ription trees G

1

; : : : ;G

n

is de�ned

by indu
tion on the depth of the trees. Let v

0;1

; : : : ; v

0;n

respe
tively be the

roots of the trees G

1

; : : : ;G

n

with labels `

1

(v

0;1

); : : : ; `

n

(v

0;n

). Then the produ
t

G

1

� � � � � G

n

has the root (v

0;1

; : : : ; v

0;n

) with label `

1

(v

0;1

) \ : : : \ `

n

(v

0;n

). For

ea
h role r and for ea
h n-tuple v

1

; : : : ; v

n

of r-su

essors of v

0;1

; : : : ; v

0;n

, the root

(v

0;1

; : : : ; v

0;n

) has an r-su

essor (v

1

; : : : ; v

n

), whi
h is the root of the produ
t

of the subtrees of G

1

; : : : ;G

n

with roots v

1

; : : : ; v

n

. The lower half of Figure 1

depi
ts the tree obtained as the produ
t of the des
ription trees 
orresponding

to the des
riptions C

3

1

; C

3

2

; C

3

3

.

4
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Figure 1: Des
ription trees of C

3

1

; C

3

2

; C

3

3

and their produ
t.

This example 
an be generalized to an example that demonstrates that the

l
s of n EL -
on
ept des
riptions of size linear in n may be exponential in n

[

2

℄

.

Example 2 We de�ne for ea
h n � 1 a sequen
e fC

n

1

; : : : ; C

n

n

g of EL -
on
ept

des
riptions. For n � 0 let

D

n

:=

(

>; n = 0

9r:(P uQ uD

n�1

); n > 0

and for n � 1 and 1 � i � n we de�ne

C

n

i

:=

(

9r:(P uD

n�1

) u 9r:(Q uD

n�1

); i = 1

9r:(P uQ u C

n�1

i�1

); 1 < i � n:

It is easy to see that ea
h C

n

i

is linear in the size of n. The produ
t of the


orresponding des
ription trees is a full binary tree of depth n, where the nodes

rea
hed by going to the left are labeled with P and the ones rea
hed by going to

the right are labeled with Q. Obviously, the size of this tree is exponential in n.

What is less obvious, but 
an also be shown (see

[

2

℄

), is that there is no smaller

des
ription tree representing the same 
on
ept (modulo equivalen
e).

5



2.2 The least 
ommon subsumer in ALE

ALE -des
ription trees are very similar to EL -des
ription trees. The value re-

stri
tions just lead to another type of edges, whi
h are labeled by 8r instead

of simply r. However, the 
on
ept des
riptions must �rst be normalized before

they 
an be transformed into des
ription trees. On the one hand, there are

normalization rules dealing with negation and the bottom 
on
ept. Here we

will ignore them sin
e neither negation nor bottom is used in our examples. On

the other hand, there are normalization rules dealing with value restri
tions and

their intera
tion with existential restri
tions:

8r:E u 8r:F �! 8r:(E u F );

8r:E u 9r:F �! 8r:E u 9r:(E u F ):

The �rst rule 
onjoins all value restri
tions for the same role into a single value

restri
tion. The se
ond rule is problemati
 sin
e it dupli
ates subterms, and

thus may lead to an exponential blow-up of the des
ription. The following is a

well-known example that demonstrates this e�e
t.

Example 3 We de�ne the following sequen
e C

1

; C

2

; C

3

; : : : of ALE 
on
ept de-

s
riptions:

C

n

:=

�

9r:P u 9r:Q; n = 1

9r:P u 9r:Q u 8r:C

n�1

; n > 1:

Obviously, the size of C

n

is linear in n. However, applying the se
ond normal-

ization rule to C

n

yields a des
ription of size exponential in n. If one ignores the

value restri
tions (and everything o

urring below a value restri
tion), then the

des
ription tree 
orresponding to the normal form of C

n

is again a full binary

tree of depth n, where the nodes rea
hed by going to the left are labeled with P

and the ones rea
hed by going to the right are labeled with Q. Figure 2 shows

the ALE -des
ription tree of the normal form of C

3

.

Given the des
ription trees of normalizedALE -
on
ept des
riptions, one 
an

again obtain the l
s as the produ
t of these trees. In this produ
t, the bottom


on
ept requires a spe
ial treatment, but we ignore this issue sin
e it is irrelevant

for our examples.

For ea
h tuple of nodes, existential restri
tions and value restri
tions are

treated symmetri
ally, i.e., for a role r the r-su

essors are 
ombined with r-

su

essors in all possible 
ombinations (as before) and the (unique) 8r-su

essors

are 
ombined with ea
h other. Note that r-su

essor are not 
ombined with 8r-

su

essors. The following example is taken from

[

2

℄

.

Example 4 For n � 1, we 
onsider the 
on
ept des
riptions C

n

introdu
ed in

Example 3 and the 
on
ept des
riptions D

n

de�ned in Example 2. By building

6
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Figure 2: The ALE -des
ription tree of the normal form of C

3

from Example 3.

the produ
t of the des
ription trees 
orresponding to the normal forms of C

n

and

D

n

, one basi
ally removes the value restri
tions from the normal form of C

n

.

Thus, one ends up with an l
s that agrees with the one we obtained in Exam-

ple 2. Again, it 
an be shown that there is no smaller ALE -
on
ept des
ription

equivalent to this l
s.

3 Using TBoxes to 
ompress the l
s

The exponentially larger l
s E

n


onstru
ted in Examples 2 and 4 had as its

des
ription tree the full binary tree of depth n, where the nodes rea
hed by

going to the left were labeled with P and the ones rea
hed by going to the right

were labeled with Q. This 
on
ept 
an be de�ned in a TBox of size linear in n.

Example 5 Consider the following TBox T

n

:

fA

1

:

= 9r:P u 9r:Qg [

fA

i

:

= 9r:(P u A

i�1

) u 9r:(Q u A

i�1

) j 1 < i � ng:

It is easy to see that the size of T

n

is linear in n and that A

n

�

T

n

E

n

, i.e., the

TBox T

n

provides us with a 
ompa
t representation of E

n

.

In general, however, su
h a 
ompa
t representation is not possible. We will

�rst give a 
ounterexample for the n-ary l
s in EL , and then for the binary

l
s in ALE . The main idea underlying both 
ounterexamples is to generate

des
ription trees having exponentially many leaves that are all labeled by sets

of 
on
ept names that are in
omparable w.r.t. set in
lusion. To this purpose,

we 
onsider the set of 
on
ept names N

n

:= fA

0

j

; A

1

j

j 1 � j � ng, and de�ne

A

i

:= A

i

1

1

u : : : u A

i

n

n

for ea
h n-tuple i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

.

7



3.1 The 
ounterexample for EL

For all n � 1 we de�ne a sequen
e C

1

; : : : ; C

n

of n EL -
on
ept des
riptions

whose size is linear in n:

C

j

:= 9r: u

B2N

n

nfA

0

j

g

B u 9r: u

B2N

n

nfA

1

j

g

B:

Sin
e ea
h of the 
on
epts C

j


ontains two existential restri
tions, the l
s of

C

1

; : : : ; C

n


ontains 2

n

existential restri
tions. The 
on
ept des
riptions o
-


urring under these restri
tions are obtained by interse
ting the 
orresponding


on
ept des
riptions under the existential restri
tions of the 
on
ept des
rip-

tions C

j

. It is easy to see that these are exa
tly the 2

n


on
ept des
riptions

A

i

for i 2 f0; 1g

n

introdu
ed above. Sin
e the des
riptions A

i

are pairwise in-


omparable w.r.t. subsumption, it is 
lear that there is no smaller EL -
on
ept

des
ription equivalent to this l
s. We will show that a TBox 
annot be used to

obtain a smaller representation.

Re
all that a
y
li
 TBoxes 
an be unfolded by repla
ing de�ned names by

their de�nitions until no more de�ned names o

ur on the right-hand sides

[

8

℄

.

If the de�ned name A represents the l
s of C

1

; : : : ; C

n

w.r.t. a TBox, then the

des
ription de�ning A in the unfolded TBox is equivalent to this l
s.

Obviously, to get a more 
ompa
t representation of the l
s using a TBox, one

needs dupli
ation of 
on
ept names on the right-hand side of the TBox. During

unfolding of the TBox, this would, however, lead to dupli
ation of sub
on
epts.

Sin
e the (des
ription tree of the) l
s we have 
onstru
ted here has 2

n

di�erent

leaves, su
h dupli
ation does not help, sin
e it 
an only dupli
ate leaves with

the same label, but not generate leaves with di�erent labels.

3.2 The 
ounterexample for ALE

For n � 1 we de�ne 
on
ept des
riptions C

n

of size quadrati
 in n. For n � 1,

let F

i

j

:= 8r: � � � 8r:A

i

j+1

be the 
on
ept des
ription 
onsisting of j nested value

restri
tions followed by the 
on
ept name A

i

j+1

. We de�ne

C

1

:= 9r:A

0

1

u 9r:A

1

1

,

C

n

:= 9r:F

0

n�1

u 9r:F

1

n�1

u 8r:C

n�1

for n > 1.

Figure 3 shows the des
ription tree 
orresponding to C

3

.

Applying the normalization rule 8r:E u 9r:F �! 8r:E u 9r:(E u F ) to C

n

yields a normalized 
on
ept des
ription whose size is exponential in n. If one

ignores the value restri
tions (and everything o

urring below a value restri
-

tion), then the des
ription tree 
orresponding to this normal form of C

n

is a full

binary tree of depth n whose 2

n

leaves are labeled by the 2

n


on
ept des
riptions

A

i

for i 2 f0; 1g

n

.

8
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Figure 3: The ALE -des
ription tree 
orresponding to C

3

.

Let D

n

:= 9r: � � � 9r: u

B2N

n

B be the 
on
ept des
ription 
onsisting of n nested

existential restri
tions followed by the 
onjun
tion of all 
on
ept names in N

n

.

Again, by building the produ
t of the des
ription trees 
orresponding to the

normal forms of C

n

and D

n

, one basi
ally removes the value restri
tions from

the normal form of C

n

. Thus, the l
s 
orresponds to the full binary tree of depth

n whose leaves are labeled by the 
on
ept des
riptions A

i

for i 2 f0; 1g

n

.

By an argument similar to the one for EL one 
an show that there is no

smaller ALE -
on
ept des
ription equivalent to this l
s, and that a TBox 
annot

be used to obtain a smaller representation.

4 Con
lusions and future work

The worst-
ase examples presented in this paper are quite 
ontrived and not

likely to o

ur in pra
ti
e. Nevertheless, they show that, in prin
iple, the expo-

nential blow-up inherent to the l
s operation 
annot be avoided, even if one 
an

introdu
e \abbreviations" for subdes
riptions. An intersting question for future

resear
h is to 
hara
terize situations in whi
h this exponential blow-up 
annot

o

ur, and to 
he
k whether these situations are likely to o

ur in pra
ti
e.

Another interesting question related to the l
s and TBoxes is the following.

Let L

1

be a \large" DL possibly 
ontaining disjun
tion (whi
h makes the l
s

operation trivial), and let L

2

be a sublanguage not allowing for disjun
tion. Now

assume that T is a TBox of L

1

and that C

1

; : : : ; C

n

are L

2

-
on
ept des
riptions

possibly using names de�ned in T . Can we 
ompute the most spe
i�
 L

2

-
on
ept

des
ription (possibly 
ontaining names de�ned in T ) that subsumes C

1

; : : : ; C

n

w.r.t. T . This operation 
ould, for example, be useful if na��ve users of a DL

system based on the 
omplex DL L

1

use a simple frame-like interfa
e that only

allows them to write des
riptions of L

2

, but these des
riptions 
an use names

9



de�ned in a TBox of L

1

(whi
h has been designed by an expert user). The

l
s operation modulo a TBox sket
hed above 
an now be used to support the

de�nition of new 
on
epts by na��ve users.
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