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Abstract

For Description Logics with existential restrictions, the size of the least
common subsumer (lcs) of concept descriptions may grow exponentially
in the size of the input descriptions. This paper investigates whether the
possibly exponentially large concept description representing the lcs can
always be represented in a more compact way when using an appropriate
(acyclic) TBox for defining this description. This conjecture was sup-
ported by our experience in a chemical process engineering application.
Nevertheless, it turns out that, in general, TBoxes cannot always be used
to obtain a polynomial size representation of the lcs.

1 Introduction

In an application in chemical process engineering [5; 9; 7], we support the
bottom-up construction of Description Logic (DL) knowledge bases by com-
puting most specific concepts (msc) of individuals and least common subsumers
(les) of concepts: instead of directly defining a new concept, the knowledge
engineer introduces several typical examples as individuals, which are then gen-
eralized into a concept description by using the msc and the lcs operation [1; 3;
6]. This description is offered to the knowledge engineer as a possible candidate
for a definition of the concept.

Unfortunately, due to the nature of the algorithms for computing the lcs and
the msc proposed in [1; 3; 6], these algorithms yield concept descriptions that do
not contain defined concept names, even if the descriptions of the individuals use
concepts defined in a TBox 7. In addition, due to the inherent complexity of the
les and the msc operation, these descriptions may be quite large (exponentially
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large in the size of the unfolded input descriptions). To be more precise, in [3;
2] we considered the lcs in DLs with existential restrictions. For the small DL
EL , which allows for conjunctions (M), existential restrictions (3r.C'), and the
top concept (T), the binary lcs operation is still polynomial, but the n-ary one is
already exponential. For the DL ALE , which extends EL by value restrictions
(Vr.C), primitive negation (—A, where A is a name of a primitive concept), and
the bottom concept (L), already the binary lcs operation is exponential in the
worst case.

To overcome the problem of large least common subsumers, we have em-
ployed rewriting of the computed concept description using the TBox 7T in
order to obtain a shorter and better readable description [4]. Informally, the
problem of rewriting a concept given a terminology can be stated as follows:
given a TBox 7 and a concept description C' that does not contain concept
names defined in 7, can this description be rewritten into an equivalent smaller
description D by using (some of) the names defined in 77 First results obtained
in our process engineering application were quite encouraging: for a TBox with
about 65 defined and 55 primitive names, source descriptions of size about 800
(obtained as results of the lcs computation) were rewritten into descriptions of
size about 10 [7].

These positive empirical results led us to conjecture that maybe TBoxes can
always be used to yield a compact representation of the lcs. More formally, this
conjecture can be stated as follows. Let £ be a DL for which the lcs operation
(binary or n-ary) is exponential (like E£ or ALE ). Given input descriptions
Ci,...,C, with lcs D, does there always exist a TBox 7 whose size is polynomial
in the size of C, ..., C, and a defined concept name A in 7 such that A =+ D,
i.e., the TBox defines A such that it is equivalent to the lcs D of C,...,C,7 A
closer look at the worst-case examples for &£ and ALE given in [2] also supports
this conjecture: the exponentially large least common subsumers constructed
there can easily be represented using polynomially large TBoxes.

The contribution of the present paper is to prove that the conjecture is
nevertheless false, both for &£ and for ALE. This shows that, in general,
rewriting cannot overcome the problem of large least common subsumers. Even
though these are just negative results, we think that it is worth publishing them,
if only to prevent other researchers from wasting their time on trying to prove
the (at first sight quite intuitive) conjecture.

2 The least common subsumer in &£ and ALE

First, we introduce the DLs EL and ALE more formally. As usual, concept de-
scriptions are inductively defined using a set of constructors, starting with a set
N¢of concept names and a set Ny of role names. The constructors determine



‘ Construct name ‘ Syntax ‘ Semantics

primitive concept P € N¢ P PTCA

top-concept, T A

conjunction cnbD CtnD*

existential restr. forr € Np | Ir.C | {zr € A|Ty: (z,y) erf Ay e C?}
value restr. for r € Np vr.C' | {z € A|Vy: (2,y) €rt - ye C?}
primitive negation, P € No | =P A\ P*
bottom-concept 1 0

Table 1: Syntax and semantics of concept descriptions.

the expressive power of the DL. In this paper, we consider concept descriptions
built from the constructors shown in Table 1. In L, concept descriptions are
formed using the constructors top concept (T), conjunction (C'MD) and existen-
tial restriction (3r.C). The DL ALE allows for all the constructors introduced
in Table 1.

The semantics of a concept description is defined in terms of an interpretation
T = (A,7). The domain A of Z is a non-empty set of individuals and the
interpretation function -Z maps each concept name P € Ng to a set PZ C A
and each role name r € N to a binary relation rZ C Ax A. The extension of
T to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A TBoz is a finite set of concept definitions of the form A = C, where A is a
concept name and C a concept description. In addition, we require that TBoxes
are acyclic and do not contain multiple definitions (see, e.g., [8]). In TBoxes of
the DL ALE , negation may only be applied to concept names not occurring on
the left-hand side of a concept definition. An interpretation Z is a model of the
TBox 7T iff it satisfies all its concept definitions, i.e., AT = C7 for all definitions
A=CinT.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C' is
subsumed by the description D w.r.t. the TBox 7 (C' Cs D) iff C* C DT holds
for all models Z of 7. The description C' is subsumed by D (C' C D) iff it is
subsumed by D w.r.t. the empty TBox (which has all interpretations as models).
The concept descriptions C' and D are equivalent (w.r.t. T) iff they subsume
each other (w.r.t. 7). We write C =7 D if C' and D are equivalent w.r.t. T.

In this paper, we are interested in the non-standard inference task of com-
puting the least common subsumer of concept descriptions.

Definition 1 Let C1,...,C, be concept descriptions in a DL L. The L-concept
description C' is a least common subsumer (lcs) of Cy,...,C, in L iff
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1. C;CC foralll <i<mn, and

2. C is the least concept description with this property, i.e., if D is a concept
description satisfying C; T D for all 1 <i <n, then C C D.

In general (i.e., for an arbitrary DL L), a given collection of n concept descrip-
tions need not have an lcs. However, if an lcs exists, then it is unique up to
equivalence. This justifies to talk about the lcs of C4,...,C, in L.

In [3; 2] it was shown that, for the DLs &€ and ALE, the lcs always exists.
The algorithms for computing the lcs are based on the product of description
trees, i.e., the input concept descriptions are first transformed into a tree repre-
sentation, and then the Ics is constructed by building the product tree. In the
present paper, we cannot give an exact definition of these algorithms (see [3;
2] for details). Instead, we will illustrate them on two examples, which are the
worst-case examples demonstrating that the n-ary les in &£ and the binary lcs
in ALE may lead to exponentially large concept descriptions.

2.1 The least common subsumer in &L

For the DL EL, a description tree is merely a graphical representation of the
syntax of the concept description. Its nodes are labeled with sets of concept
names (corresponding to concept names occurring in the description) and its
edges are labeled with role names (corresponding to the existential restrictions
occurring in the description). We call a node w reachable from a node v by an
edge labeled with r an r-successor of v.

For example, the trees depicted in the upper half of Figure 1 were obtained
from the concept descriptions

C} o= I (PNI(PNQRMIr(PNQ))) M
Ir.(QNIr(PNQNIr(PNQ))),

Cy = I (PNQNIr(PNIr(PNQ))NI(QNIr(PNQ))),

Cs Fr.(PNQMIr(PNQMNIr.PNIrQ))).

The product G; x --- x G, of n EL-description trees Gi,...,G, is defined
by induction on the depth of the trees. Let vgi,...,vo, respectively be the
roots of the trees Gy, ..., G, with labels ¢,(vo1),...,¢,(v0,). Then the product
g1 X - -+ x G, has the root (vg1,...,vy,) with label ;(vo1) N ... N ¢, (vg,). For
each role r and for each n-tuple vy, ..., v, of r-successors of vy 1, ..., vy n, the root
(vo,1,..-,v0,) has an r-successor (vy,...,v,), which is the root of the product
of the subtrees of Gy,...,G, with roots vy,...,v,. The lower half of Figure 1
depicts the tree obtained as the product of the description trees corresponding
to the descriptions C3, C3, C3.
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Figure 1: Description trees of C3?,C3, C3 and their product.

This example can be generalized to an example that demonstrates that the
lcs of n EL-concept descriptions of size linear in n may be exponential in n [2].

Example 2 We define for each n > 1 a sequence {C7,...,CI'} of ELC -concept
descriptions. Forn > 0 let

D T, n=>0
") I(PNQMND, ), n>0

and forn >1 and 1 < i <n we define

o r (PN D, ,1)N3r(QMND,), i=1
L) In(Pnner, 1<i<n.

It is easy to see that each C}' is linear in the size of n. The product of the
corresponding description trees is a full binary tree of depth n, where the nodes
reached by going to the left are labeled with P and the ones reached by going to
the right are labeled with (). Obuviously, the size of this tree is exponential in n.
What is less obvious, but can also be shown (see [2]), is that there is no smaller
description tree representing the same concept (modulo equivalence).



2.2 The least common subsumer in ALE

ALE -description trees are very similar to L -description trees. The value re-
strictions just lead to another type of edges, which are labeled by Vr instead
of simply r. However, the concept descriptions must first be normalized before
they can be transformed into description trees. On the one hand, there are
normalization rules dealing with negation and the bottom concept. Here we
will ignore them since neither negation nor bottom is used in our examples. On
the other hand, there are normalization rules dealing with value restrictions and
their interaction with existential restrictions:

Vr.EOVr.F — Vr(ENF),
VrEN3Ir.F — VYr.EN3Ir(ENF).

The first rule conjoins all value restrictions for the same role into a single value
restriction. The second rule is problematic since it duplicates subterms, and
thus may lead to an exponential blow-up of the description. The following is a
well-known example that demonstrates this effect.

Example 3 We define the following sequence Cy,Cy, Cs, . .. of ALE concept de-
scriptions:
C __{ Jr.P 1 3r.Q, n=1
"l IP 0 IQ N VrCu_y, n>1.

Obuviously, the size of C,, is linear in n. However, applying the second normal-
ization rule to C,, yields a description of size exponential in n. If one ignores the
value restrictions (and everything occurring below a value restriction), then the
description tree corresponding to the normal form of C), is again a full binary
tree of depth n, where the nodes reached by going to the left are labeled with P
and the ones reached by going to the right are labeled with (). Figure 2 shows
the ALE -description tree of the normal form of Cs.

Given the description trees of normalized ALE -concept descriptions, one can
again obtain the lcs as the product of these trees. In this product, the bottom
concept requires a special treatment, but we ignore this issue since it is irrelevant
for our examples.

For each tuple of nodes, existential restrictions and value restrictions are
treated symmetrically, i.e., for a role r the r-successors are combined with r-
successors in all possible combinations (as before) and the (unique) Vr-successors
are combined with each other. Note that r-successor are not combined with Vr-
successors. The following example is taken from [2].

Example 4 For n > 1, we consider the concept descriptions C,, introduced in
Example 3 and the concept descriptions D, defined in Example 2. By building
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Figure 2: The ALE -description tree of the normal form of C53 from Example 3.

the product of the description trees corresponding to the normal forms of C,, and
D,,, one basically removes the value restrictions from the normal form of C,.
Thus, one ends up with an lcs that agrees with the one we obtained in Fram-
ple 2. Again, it can be shown that there is no smaller ALE -concept description
equivalent to this lcs.

3 Using TBoxes to compress the lcs

The exponentially larger lcs E, constructed in Examples 2 and 4 had as its
description tree the full binary tree of depth n, where the nodes reached by
going to the left were labeled with P and the ones reached by going to the right
were labeled with (). This concept can be defined in a TBox of size linear in n.

Example 5 Consider the following TBox T, :

{A; =3I PN Ir.Q} U
{Az = EI’I“(P 1 Ai—l) 1 EI’I“(Q M Ai—l) | 1< < ’I’L}

It is easy to see that the size of T, is linear in n and that A, =1, E,, i.e., the
TBoz T, provides us with a compact representation of E,.

In general, however, such a compact representation is not possible. We will
first give a counterexample for the n-ary les in &£, and then for the binary
lcs in ALE. The main idea underlying both counterexamples is to generate
description trees having exponentially many leaves that are all labeled by sets
of concept names that are incomparable w.r.t. set inclusion. To this purpose,
we consider the set of concept names N, := {A}, A7 | 1 < j < n}, and define

A= Al'm... .1 A for each n-tuple i = (iy,...,i,) € {0,1}™
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3.1 The counterexample for £C

For all n > 1 we define a sequence C1,...,C, of n EL-concept descriptions
whose size is linear in n:

C; = dr. [ B 1 A [] B.

BEN\{A%} BeNy\{A}}

Since each of the concepts C; contains two existential restrictions, the lcs of
Ci,...,C, contains 2" existential restrictions. The concept descriptions oc-
curring under these restrictions are obtained by intersecting the corresponding
concept descriptions under the existential restrictions of the concept descrip-
tions C. It is easy to see that these are exactly the 2" concept descriptions
Al for i € {0,1}" introduced above. Since the descriptions A! are pairwise in-
comparable w.r.t. subsumption, it is clear that there is no smaller L -concept
description equivalent to this lcs. We will show that a TBox cannot be used to
obtain a smaller representation.

Recall that acyclic TBoxes can be unfolded by replacing defined names by
their definitions until no more defined names occur on the right-hand sides [8].
If the defined name A represents the Ics of C',...,C, w.r.t. a TBox, then the
description defining A in the unfolded TBox is equivalent to this lcs.

Obviously, to get a more compact representation of the lcs using a TBox, one
needs duplication of concept names on the right-hand side of the TBox. During
unfolding of the TBox, this would, however, lead to duplication of subconcepts.
Since the (description tree of the) lcs we have constructed here has 2™ different
leaves, such duplication does not help, since it can only duplicate leaves with
the same label, but not generate leaves with different labels.

3.2 The counterexample for ALE

For n > 1 we define concept descriptions C), of size quadratic in n. For n > 1,
let F; =Vr.-- -Vr.Aé-H be the concept description consisting of j nested value
restrictions followed by the concept name A; +1- We define

Cy =3I AV 3r.Aj,
C,:=34r.F° n3arF  nvC,, forn>1.

Figure 3 shows the description tree corresponding to Cf.

Applying the normalization rule Vr.E 1 3r.F — Vr.E N 3r.(E 1 F) to C,
yields a normalized concept description whose size is exponential in n. If one
ignores the value restrictions (and everything occurring below a value restric-
tion), then the description tree corresponding to this normal form of C,, is a full

binary tree of depth n whose 2" leaves are labeled by the 2" concept descriptions
Al for i€ {0,1}™
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Figure 3: The ALE -description tree corresponding to Cj.

Let D, :=dr.---dr. BI_]|V B be the concept description consisting of n nested
€Ny,

existential restrictions followed by the conjunction of all concept names in N,,.
Again, by building the product of the description trees corresponding to the
normal forms of C,, and D,,, one basically removes the value restrictions from
the normal form of C,,. Thus, the Ics corresponds to the full binary tree of depth
n whose leaves are labeled by the concept descriptions A! for i € {0, 1}

By an argument similar to the one for &£ one can show that there is no
smaller ALE -concept description equivalent to this lcs, and that a TBox cannot
be used to obtain a smaller representation.

4 Conclusions and future work

The worst-case examples presented in this paper are quite contrived and not
likely to occur in practice. Nevertheless, they show that, in principle, the expo-
nential blow-up inherent to the lcs operation cannot be avoided, even if one can
introduce “abbreviations” for subdescriptions. An intersting question for future
research is to characterize situations in which this exponential blow-up cannot
occur, and to check whether these situations are likely to occur in practice.
Another interesting question related to the lcs and TBoxes is the following.
Let £; be a “large” DL possibly containing disjunction (which makes the lcs
operation trivial), and let £, be a sublanguage not allowing for disjunction. Now
assume that 7 is a TBox of £; and that C,..., ), are Ly-concept descriptions
possibly using names defined in 7. Can we compute the most specific Lo-concept
description (possibly containing names defined in 7") that subsumes C1,...,C,
w.r.t. 7. This operation could, for example, be useful if naive users of a DL
system based on the complex DL £; use a simple frame-like interface that only
allows them to write descriptions of Ly, but these descriptions can use names



defined in a TBox of £; (which has been designed by an expert user). The
lcs operation modulo a TBox sketched above can now be used to support the
definition of new concepts by naive users.
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