Using Non-standard Inferences in Description
Logics—what does it buy me? *

Sebastian Brandt and Anni-Yasmin Turhan,
Theoretical Computer Science,
RWTH Aachen, Germany
Email: {sbrandt, turhan}@cs.rwth-aachen.de

Abstract

In knowledge representation systems based on Description Logics,
standard inference services such as consistency, subsumption, and in-
stance are well-investigated. In contrast, non-standard inferences like
most specific concept, least common subsumer, unification, and matching
are missing in most systems—or exist only as ad-hoc implementations.
We give an example of how these inferences can be applied successfully
in the domain of process engineering. The benefit gained in our example,
however, occurs in to many domains where knowledge bases are managed
by persons with little expertise in knowledge engineering.

1 Process Engineering

As an application domain for knowledge representation systems based on De-
scription Logics (DL-systems) in general, and certain non-standard inferences
in particular, we give a brief introduction to the basic notions of the field of
process engineering. In this context, a process is defined as a sequence of physi-
cal, chemical, biological, and informational operations intentionally executed to
change substances in respect to their nature, properties, and composition.

Process engineering is concerned with methods, tools, and their management
for the design and control of a process.! Here, models are used to represent, an-
alyze, and optimize processes and get a deeper understanding of their nature. In
general, a model is an abstraction of some object under consideration character-
ized by a lower level of complexity while retaining some of the original properties
of interest.

*This work has been supported by the DFG, Project BA 1122/4-1.
! Plant engineering in turn deals with the actual (chemical) plant performing the process
and its construction, which is abstracted from in process engineering.



In process engineering, exact equation-based mathematical models are partic-
ularly desirable because of their high predictive capabilities in numerical analysis
and simulation. Unfortunately, even for simple chemical processes, such models
are too complex for ad-hoc construction by hand. Nevertheless, adequate mod-
els can be obtained step by step, starting with other representation formalisms,
e.g., so-called block-oriented models. In such models, a process is represented
by an undirected graph with blocks as vertices and connections as edges. Each
block stands for a standardized sub-unit of the entire process with certain in-
terfaces and each connection for a flow of material, energy, or information. The
type of a connection linking two interfaces of blocks is determined by the in-
terface specifications. Typically, block-oriented modeling environments have a
block repository in which building blocks are stored.

During the life-cycle of a chemical process, several models on different levels
of detail are involved. In an early design stage, for instance, rather crude models
allow to consider alternative designs in minimal time. Once one of them proved
promising, more accurate models are used for further examination. With such
a cascade of models, however, it is not clear how to benefit from one modeling
stage when going into further detail on the next.

In answer to this, several requirements have been identified for block-oriented
models and appropriate modelling environments in process engineering [15]:

o Variable granularity: The model should allow composite building blocks,
i.e., blocks again comprising blocks and connections. These can be decom-
posed during the design phase until the desired level of detail is reached.

e Generic building blocks: A block in the repository should not be fully
specified but rather represent a class of some subunit. During the design
procedure, particular instances are obtained by specifying the relevant
variables, equations, and values abstracted from in the classes.

e Structured storage: To avoid unnecessary extensions of the block repository
and to facilitate browsing and searching, the existing blocks should be
arranged in an “is-specialization-of” hierarchy.

o Automatic classification: If the specialization order would be derivable
automatically, the system could additionally maintain consistency of new
building blocks during the design procedure and locate the correct posi-
tions for their storage in the repository.

e Re-use of submodels: It should be possible to store (abstractions of) sub-
units in existing models in the repository for later re-use.

e Maintenance support: As the block repository typically will be developed
over a long period of time by many people, detecting redundancies and
integrating additional repositories should be possible.



The challenge to meet these requirements has inspired a cooperation be-
tween the Institute for Process Systems Engineering at RWTH Aachen, where
a prototype modelling environment is being developed, and our research group,
where DL-systems are studied. It has already been shown that DL-systems can
successfully be employed for most of the above tasks [15]. Testing the devel-
oped prototype environment has provided additional insights. When designing
models by means of block-oriented modelling environments, process engineers
showed two characteristic strategies for the design of new (generic) blocks:

e Bottom-up design: From several existing process models, the process engi-
neer selects a certain collection of subunits deployed for a similar purpose.
She then introduces a new generic block as an abstraction of these units.

e Design by modification: Before assembling a new generic block from scratch,
the knowledge engineer tries to locate a structurally similar one in the
repository. She then modifies the existing block to suit the new require-
ments.

In this work, we will show how these design strategies can be supported
by non-standard inferences offered by DL-systems. In the following section,
we will introduce Description Logics formally and discuss their benefit for the
requirements mentioned above. Sections 3 and 4 describe the particular non-
standard inference services used to support the two design techniques.

2 Description Logics and Process Modelling

Description Logics (DL) form a category of knowledge representation (KR) for-
malisms used to represent terminological knowledge in a structured and well-
defined way. A DL-system consists of a knowledge base together with certain
inference services. The knowledge base comprises two components, the TBox
and the ABozx. Intuitively, the TBox defines the vocabulary by which a concrete
world (in this application a process model) is described in the ABox. Both are
defined by means of concepts, whose syntax and semantics is introduced next.

Concepts are inductively defined using a set of concept constructors, starting
from a set Ng of concept names and a set Ny of role names. The constructs
available in the DLs considered here are listed in Table 1. In £C, the top-concept
(T), conjunction (CT1D), and existential restriction (Ir.C') are allowed. ALE ad-
ditionally provides the bottom-concept (L) and primitive negation (-A). ACN
extends ALE with number restrictions (>nr) and (<nr), but does not provide
existential restrictions. A concept defined over the DL L (£ € {&L, ACE, ACN'})
is referred to as L£-concept.

The semantics of concepts is defined in terms of an interpretation T =
(AZ,-T). The domain AT is a non-empty set, and the interpretation function -*

3



| Syntax ‘ Semantics | &C | ALE | ACN |

T AT X x X
CnD cTnD? X | x | X
vr.C {z € AT |Vy: (z,y) € rt =y € CT} X b'e
ar.C {re AT |Jy: (z,y)erf myeCT}| x X

1 0 X X
—A, A€ N¢ AT\ AT X | X
(>nr),neN| {zeAT|#{y|(z,y) €rt} >n} X
(<nr),neN| {zeAT|#{y]|(z,y) €rt} <n} X

Table 1: Syntax and semantics of concepts.

maps every concept name A € N¢ to a set AT C AT and each role name r € Ny
to a binary relation 77 C AT x AZ. The second column of Table 1 shows how -Z
is extended to complex concepts.

Definition 1 (TBox) A TBox T is a finite set of concept definitions of the
form A = C, where A € Ng and C is a concept. Every concept name A may
occur only once on a left-hand side in T. If it does, then A is called defined,
otherwise primitive. In DLs providing primitive negation only primitive concepts
may be negated on the right-hand side of concept definitions. An interpretation

T is a model for T iff AT = C7T for every A=C € T.

To illustrate the introduced notions of concept, concept definition and TBox,
consider an example TBox.

Example 2 The ALE-TBox T., contains the following concept definitions in-
spired by the process engineering domain:

Liquid = =Solid M —Gas,
Container = Volume 1M (V contains. Substance),
FluidTank = Container M (¥ hasConnection. Port) 1
(d contains. Liquid) ,
Pipeline = Volume M Tube
(V hasConnection. (Port 11 (3 hasPart. Valve))) M
(V contains. Substance) M (3 contains.—Solid)

In the TBozx T., the concept Liquid s defined as something that is no Gas and no
Solid. A Container is defined as a Volume containing only Substances. Based on
these two defined concepts, a FluidTank is defined as a Container which contains
a Liquid and is only connected to Ports. Finally, a Pipeline is defined as a Volume
and a Tube and is only connected to Ports which in turn must have a Valve as
a part. Furthermore, a Pipeline must contain something, which is no Solid and
all it contains are Substances.



To represent knowledge about an actual instance of the application domain,
individuals and their interrelations are described in an ABox. Thus, in addition
to N¢ and Ng, we introduce a finite set N; of individual names. Formally, an
ABox can now be defined as follows:

Definition 3 (ABox) An ABox A is a finite set of concept assertions of the
form a: C' and role assertions of the form (b,c): r, where a,b,c € Ny, C is an
arbitrary concept, and r € Ng a role name. An interpretation T is a model
for A, iff af € CT and (b%,cF) € T for every a: C and every (b,c): r in A.
For every interpretation I, every a € Ny is mapped to some al € AT, such that
a # b implies al # b (unique name assumption,).

In our process engineering application, each of the individual blocks is rep-
resented by an individual in an ABox. The generic blocks from the repository
are represented by concepts defined in a TBox. Thus, TBox and ABox form
a knowledge base for all blocks constructed in the modelling environment as
illustrated in Figure 1.

To derive implicit knowledge from the explicit one given in the knowledge
base, there are three so-called standard inferences, namely consistency, subsump-
tion, and instance, as defined below.

Definition 4 (Standard inferences) A concept C is consistent iff there ex-
ists an interpretation I such that CT # 0. A concept C is subsumed by a
concept D (written C T D) iff C* C D?* holds for all interpretations Z. The
concepts C' and D are equivalent (written C' = D) iff they subsume each other.
An individual name a € Ny is an instance of C w.r.t. an ABox A and its TBox
T (written a €4 7 C) iff a¥ € CT for every model T of A and T.

These inferences are essential for almost all DL-systems. Especially, comput-
ing the so-called subsumption hierarchy of concepts yields the “is-specialization-
of”-hierarchy mentioned in Section 1. Algorithms deciding subsumption form
the basis for structured storage and the algorithms for computing the “instance-
of”-relation realize the automatic classification of objects. Not all of the tasks
mentioned in Section 1 can be accomplished by means of standard inferences,
e.g., they do not facilitate the previously mentioned design strategies utilized by
process engineers. This is where the non-standard inferences come into play.

3 Supporting the Bottom-up Approach

The bottom-up generation of a new block (i.e., concept) from a set of process
models (i.e., ABox individuals) selected by the domain expert is realized by non-
standard inferences in two steps. Firstly, the most specific concept is computed
for each of the selected ABox individuals, such that the individual is an instance



Process model ABox

ol =T
represent . o

“\‘abstmct \‘\‘abstmct

Block repository TBox

structure
s

Figure 1: Modelling environment and knowledge base

of the obtained concept which is most specific w.r.t. subsumption. Next, a
single concept is computed from all the obtained concepts, which subsumes
all the obtained concepts and is also the most specific concept to do so. The
resulting concept is then offered to the process engineer for inspection and further
processing and, if suitable, added to the generic block repository. The first step
is realized by the non-standard inference most specific concept (msc) which is
defined in the following way:

Definition 5 (msc) Let A be an L-ABoz, a an individual in A and C a concept
in L, then C is the most specific concept (msc) of a w.r.t. A (msc4(a)) iff
acy C, and for all L-concepts C', a €4 C' implies CC C".

Computing the msc of an individual yields an abstraction from a concrete
individual and from its interrelationships expressed in the ABox by generalizing
it into a concept.

Example 6 As an example inspired from the application domain, we want to
describe a distillation device which takes sea-water as an input and separates it
into water and salt. Such a device could be represented by an EL -ABox A., with
the following assertions:

device : MarineDistiller, seawater : solution M Liquid,
(device, seawater) : haslnput, (seawater, water) : contains,
(device, water) : hasOutput, (seawater, salt) : contains,
(device, salt) : hasOutput, water : Solvent M Liquid,

salt : Solute M Solid

Note that the individuals water and salt occur as role-successors for both of
the individuals device and seawater. The msc(device) w.r.t. the underlying ABox
A is now given by:



msc 4, (device) = MarineDistiller M
T haslnput. (Solution M Liquid M
d contains. (Solvent M Liquid) M
dcontains. (Solute M Solid))
dhasOutput. (Solvent M Liquid) M
JhasOutput. (Solute M Solid)

In the obtained concept the concept names from the ABox A., are preserved in
the msc concept and the interrelations are expressed by existential restrictions.
The co-references in A, to each of water and to salt can not be captured in the
concept, instead the concepts from A.. corresponding to these individuals are
duplicated.

Unfortunately, the msc need not always exist due to cyclic relationships
between ABox individuals such as {(a,b): r, (b,a): r} C A. An individual
from a cyclic ABox may be instance of all concepts from an infinite sequence
of concepts C, Cs, ...where each concept C; encodes one more traversal of
the cycle expressed in the ABox than C;_; and is thereby more specific than all
its predecessors in the infinite sequence of concepts. Since the individual is an
instance of all C;s, the most-specific concept would be M2, C;, which cannot
be expressed in every DL with existential restrictions. For further details, refer
to [2].

However, for DLs providing existential restrictions the msc for cyclic ABoxes
can be approximated by the so-called k-approzimation. The k-approximation is
a msc whose nesting depth of quantifiers is bounded by k& (k € IN). See [12] for
details. Once in our process engineering application the k-approximation or, if
possible, the msc of each selected individual block is attained, the subsuming
concept—the least common subsumer—of them is computed. It is defined as
follows:

Definition 7 (Ics) Let T be an L-concept and Cy, ..., C, concepts in L
from T, then Cis the least common subsumer (lcs) of Cy, ..., C, w.r.t.
T (lesr(Cyy..., Cn)) iff C; TF Cforall1l < i < n, and for all L-concepts
C', C; Ty C' forall1 <i<n impliesC T C'.

Thus, both the msc and the Ics generalize the input yielding the most specific
concept w.r.t. the underlying TBox; only that the msc refers to a single ABox
individual while the lcs refers to several concepts based on conccepts defined in
a TBox.

Example 8 Let us consider the Ics of the concepts FluidTank and Pipeline as
defined in the TBoz T., from Example 2. First, both concepts have to be un-
folded w.r.t. Toy, i.e., all names of defined conepts are replaced recursively by the
right-hand sides of their concept definitions. Next, the lcs concept of both input
concepts s computed. In this case we obtain:

7



lcs7., (FluidTank, Pipeline) =
Volume M (V hasConnection. Port) M
(V contains. Substance) M (3 contains. (Substance M —Solid)).

The lcs concept reflects that both input concepts are a Volume, because Volume
lies in the intersection of the concept names on top-level of both input concepts.
For the concept occurring in value restrictions, the Ics algorithm is applied recur-
swely for each role. The existential restrictions in the lcs concept are obtained
by conjoining the concepts in the existential restriction and those in their cor-
responding value restriction for each of the input concepts and then recursively
applying the lcs algorithm to the obtained conjunctions.

For the DLs introduced in Section 2, the lcs always exists. The lcs (as
well as the msc, if it exists) is uniquely determined up to equivalence. In our
research group, algorithms for the Ics have been developed for several DLs, see
[10, 5, 2, 11].

Equipped with the non-standard inferences msc and the Ics, the demand from
our application domain to construct knowledge bases in a bottom-up fashion can
be met. The knowledge engineer selects some fully specified blocks that should
form the new generic block for the repository. Then the blocks are automatically
translated into individuals in an ABox, representing the parts and properties of
each of the blocks. Next, the DL-system computes the msc of each of them and
then generalizes them into a single concept by computing the Ics. The resulting
concept is then translated back into the representation used in the modelling
environment and offered as a new block to the process engineer, see Figure 1.
Note that the domain expert is not involved in the “DL-part” of this process,
therefore our method is suitable for users with little KR expertise.

In our application, the Ics inference does not only support the bottom-up
approach for augmenting the repository. It may in addition be employed to
obtain a well-structured storage in the repository which in turn is necessary
for easily retrieving generic blocks for a possible re-use. So, if a generic block
in the repository has many specializations, say Bi,..., B, for a large number
n, and the process engineer searches for a building block to re-use, inspecting
all of the B;s to find a candidate may not be practical. New generic blocks
subsuming some of the B;s and thereby providing an intermediate level in the
specialization hierarchy facilitates browsing it. Such intermediate blocks can
be derived by computing the least common subsumers of some of the B;s and
adding them to the repository.

The lcs w.r.t. TBoxes has been implemented for the DL ALE. As seen in
Example 8, all input concepts have to be unfolded completely against the un-
derlying TBox before computing the actual Ics concept. It is well-known that
unfolding a concept can cause an exponential blow-up of the concept size [14].

8



Therefore, the concepts to be handled and—even worse—returned by the Ics al-
gorithm can become very large. This does not only slow down the computation
of the Ics, but also yields unreadable concepts. First empirical evaluations of our
Ics-implementation applied to TBoxes from the process engineering domain have
shown that the returned concepts fill several pages of output and are therefore
too big to be readable and comprehensible for a human reader, see [7, 16].

Thus, for assessment by domain experts, the resulting concepts have to be
represented more compactly. To this end, our research group investigates meth-
ods for finding a minimal rewriting of a concept w.r.t. the underlying TBox
[6]. In a minimal rewriting, parts of the concept are replaced by names de-
fined in the TBox. The effect of such a rewriting is somewhat inverse to un-
folding, e.g., in Example 8 the Ics can be represented in a more compact way
by using the definition in 7., and replacing the sub-term of the lcs concept
”Volume 1M (¥ contains. Substance)” by ”Container”.

For DLs with existential restrictions, the computations of a minimal rewriting
involves a high degree of non-determinism. Therefore, we have to resort to
heuristics yielding small but not always minimal rewritings. In the case of the
TBox used in our process engineering application, for instance, employing such
heuristics to concepts of size 800 yields concepts of size 10. Refer to [7, 16] for
details.

Moreover, rewritings can be used to “translate” concepts from one DL L4
into concepts from another, less expressive DL L5 by computing the best ap-
prozimation of the concept. This service is especially desirable if more inference
services are available in L,.

4 Supporting the Modification Approach

Another useful non-standard inference is matching, which was first proposed
in the DL-system CLASSIC [13, 9]. In order to define matching, we need to
introduce concept patterns.

Let £ be any of the DLs introduced in Section 2 together with the sets N¢,
Ng, and N;. Additionally, let Ny be a finite set of concept variables disjoint to
Nc U NgU Ny, L-concept patterns are L-concepts for which in addition concept
variables can be used in the place of concept names—except for the fact that the
primitive negation (=) may not occur in front of variables. A substitution o is a
mapping from Ny into the set of L-concepts. It is extended to concept patterns
P by replacing every occurrence of X € Ny in P by o(X). Thus, o(P) again
is an L-concept. With these preliminaries we can define matching problems as
follows:

Definition 9 (matching problems) An L-matching problem is of the form
C =" P, where C is an L-concept and P an L-concept pattern. A substitution



o is a matcher for C =" P iff C = o(P), i.e., o replaces the variables in P by
concepts in such a way that equivalence holds.

As a trivial example, consider the matching problem AMVr.B =" X MVr.Y.
An appropriate matcher would be, for instance, {X — AMVr.B,Y — B}.

Intuitively, if a concept can be matched against a pattern P, then their syntax
trees share the “upper part”, i.e., where P is fully specified, while deviations may
occur at leaves labelled with variables. Hence, the set of all concepts that can be
matched against P contains infinitely many concepts structurally similar to P to
some extent. In this sense, matching P against several concepts and returning
those which can be matched, can be seen as a search with the fully specified
part of P as search criterion.

Let us return to the process engineer designing a new generic block in a block-
oriented modelling environment as described in Section 1. For the strategy of
design by modification, the crucial step is to find a generic block in the repository
structurally similar to what the knowledge engineer intends to design. As an
example, assume a modelling task for a fluid tank equipped with a cooling system
and an equivalent backup cooling system, each with a thermostat controller. A
convenient starting point for the design could be a block comprising a fluid tank
combined with an arbitrary device controlled by some control units and a similar
backup device.

Example 10 With a matching algorithm at hand, relevant generic blocks could
be found by matching the following concept pattern against every concept in the
KB.

JhasPart.(Fluid Tank 1 JhasPart.(—~BackupDevice M X M JhasPart.Controller)
M JhasPart.(BackupDevice M X M JhasPart.Controller))

The pattern specifies blocks consisting of at least one fluid tank equipped with at
least two equivalent components one of which is a backup device and one not.
Both components must have a controller.

The query could thus also return blocks with two or more tanks or, for
instance, with duplicate heating systems or stirring devices. Nevertheless, by
additionally retrieving a block representing a single cooling device and another
for a single thermostat control unit, the engineer is well prepared to complete
the design task efficiently. Naturally, usability issues suggest to hide the formal
construction of patterns by user-friendly query front-ends.

Note that in all admissible concepts, both occurrences of X must be replaced
by the same concept. This structural constraint cannot be expressed by simple
“wildcards” familiar from ordinary search engines.

10



Formal means exist for further refinement of such pattern-driven searches.
For the DL ALN, so-called side conditions have been proposed to restrict the
concepts a variable may be replaced with [1]. In the above example, we may
want to restrict the query to duplicate devices with, say, temperature-related
functionality. To this end, we could use a side condition of the form

X C° ThermalDevice,

thus including only those devices represented by the concept ThermalDevice.

Apart from supporting the technique of design by modification, matching can
also help to provide maintenance support for the block repository, as described in
Section 1 [8]. Matching algorithms for deciding and solving matching problems
have been proposed in the DLs ACE and ACN [3, 4]. In ALE, the decision problem
is NP-complete, whereas the computation problem is EXPTIME-complete. In
ACN, the decision and computation problem are polynomial.

5 Conclusion and Future Work

We have presented an application where non-standard inference services can
significantly enhance the usability of DL-systems. Here these services were pro-
posed to assist process engineers in their practical techniques of designing process
models. These techniques, however, are not specific to this very domain but ap-
ply to any scenario where knowledge bases are managed by domain experts with
little expertise in knowledge representation.

With the DLs presented here, not all properties of the described models can
be represented sufficiently. The demand for more expressive DLs, however, also
necessitates to adapt the existing inference services to new language constructors
such as qualified number restrictions, transitive roles, and role hierarchies.

Approaches to capture the relevant extensions by appropriate algorithms
for non-standard inferences are currently studied by our research group. Addi-
tional language constructors can further increase the computational complexity
of such algorithms. Nevertheless, experience has shown that a high worst-case
complexity often can be tolerated as long as a moderate average-case complexity
is observed in practical applications.

A promising alternative might be to realize non-standard inferences for ex-
pressive description logics by approximating the input concepts in a less expres-
sive DL, where the desired inferences can be realized more efficiently.

References

[1] F. Baader, S. Brandt, and R. Kiisters. Matching under side conditions in descrip-
tion logics In B. Nebel, editor, Proc. of IJCAI-01, 2001.

11



[2] F. Baader and R. Kiisters. Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN -concept descriptions. In O. Herzog
and A. Giinter, editors, KI-98, volume 1504 of Lecture Notes in Computer Science,
pages 129-140, Bremen, Germany, 1998. Springer-Verlag.

[3] F. Baader and R. Kiisters. Matching in description logics with existential restric-
tions. In Proc. of KR2000, pp. 261-272, Morgan Kaufmann Publishers, 2000.

[4] F. Baader, R. Kiisters, A. Borgida, and D. McGuinness. Matching in description
logics. Journal of Logic and Computation, 9(3):411-447, 1999.

[5] F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumer in
description logics with existential restrictions. In T. Dean, editor, Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96-101, Stockholm,
Sweden, 1999. Morgan Kaufmann, Los Altos.

[6] F. Baader, R. Kiisters, and R. Molitor. Rewriting concepts using terminologies.
In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. of the 7th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-00), pages
297-308, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[7] F. Baader and R. Molitor. Building and structuring description logic knowledge
bases using least common subsumers and concept analysis. In B. Ganter and
G. Mineau, editors, ICCS-00, volume 1867 of Lecture Notes in Artificial Intelli-
gence, pages 290-303. SV, 2000.

[8] F. Baader and P. Narendran. Unification of Concept Terms in Description Logics.
In Proceedings of ECAI-98, pp. 331-335, John Wiley & Sons Ltd., 1998.

[9] A. Borgida and D. L. McGuinness. Asking Queries about Frames. In Proceedings
of KR’96, pp. 340-349, Morgan Kaufmann Publishers, 1996.

[10] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least common
subsumers in description logics. In William Swartout, editor, Proc. of the 10th
Nat. Conf. on Artificial Intelligence (AAAI-92), pages 754-760, San Jose, CA,
1992. AAAI Press/The MIT Press.

[11] R. Kiisters and A. Borgida. What's in an attribute? Consequences for the least
common subsumer. JAIR, 14:167-203, 2001.

[12] R. Kiisters and R. Molitor. Approximating most specifc concepts in description
logics with existential restrictions. In Proc. of the 24th German Annual Conf. on
Artificial Intelligence (KI1°01), 2001. to appear.

[13] D.L. McGuinness. FEzplaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, October, 1996.

[14] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence Journal, 43:235-249, 1990.

[15] U. Sattler. Terminological knowledge representation systems in a process engi-
neering application. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, 1998

[16] A.-Y. Turhan and R. Molitor. Using lazy unfolding for the computation of least
common subsumers. In DL-2001, 2001.

12



