
Using Non-standard Inferenes in Desription

Logis|what does it buy me?

�

Sebastian Brandt and Anni-Yasmin Turhan,

Theoretial Computer Siene,

RWTH Aahen, Germany

Email: fsbrandt, turhang�s.rwth-aahen.de

Abstrat

In knowledge representation systems based on Desription Logis,

standard inferene servies suh as onsisteny, subsumption, and in-

stane are well-investigated. In ontrast, non-standard inferenes like

most spei� onept, least ommon subsumer, uni�ation, and mathing

are missing in most systems|or exist only as ad-ho implementations.

We give an example of how these inferenes an be applied suessfully

in the domain of proess engineering. The bene�t gained in our example,

however, ours in to many domains where knowledge bases are managed

by persons with little expertise in knowledge engineering.

1 Proess Engineering

As an appliation domain for knowledge representation systems based on De-

sription Logis (DL-systems) in general, and ertain non-standard inferenes

in partiular, we give a brief introdution to the basi notions of the �eld of

proess engineering. In this ontext, a proess is de�ned as a sequene of physi-

al, hemial, biologial, and informational operations intentionally exeuted to

hange substanes in respet to their nature, properties, and omposition.

Proess engineering is onerned with methods, tools, and their management

for the design and ontrol of a proess.

1

Here, models are used to represent, an-

alyze, and optimize proesses and get a deeper understanding of their nature. In

general, a model is an abstration of some objet under onsideration harater-

ized by a lower level of omplexity while retaining some of the original properties

of interest.

�

This work has been supported by the DFG, Projet BA 1122/4-1.

1

Plant engineering in turn deals with the atual (hemial) plant performing the proess

and its onstrution, whih is abstrated from in proess engineering.

1

In proess engineering, exat equation-based mathematial models are parti-

ularly desirable beause of their high preditive apabilities in numerial analysis

and simulation. Unfortunately, even for simple hemial proesses, suh models

are too omplex for ad-ho onstrution by hand. Nevertheless, adequate mod-

els an be obtained step by step, starting with other representation formalisms,

e.g., so-alled blok-oriented models. In suh models, a proess is represented

by an undireted graph with bloks as verties and onnetions as edges. Eah

blok stands for a standardized sub-unit of the entire proess with ertain in-

terfaes and eah onnetion for a ow of material, energy, or information. The

type of a onnetion linking two interfaes of bloks is determined by the in-

terfae spei�ations. Typially, blok-oriented modeling environments have a

blok repository in whih building bloks are stored.

During the life-yle of a hemial proess, several models on di�erent levels

of detail are involved. In an early design stage, for instane, rather rude models

allow to onsider alternative designs in minimal time. One one of them proved

promising, more aurate models are used for further examination. With suh

a asade of models, however, it is not lear how to bene�t from one modeling

stage when going into further detail on the next.

In answer to this, several requirements have been identi�ed for blok-oriented

models and appropriate modelling environments in proess engineering [15℄:

� Variable granularity : The model should allow omposite building bloks,

i.e., bloks again omprising bloks and onnetions. These an be deom-

posed during the design phase until the desired level of detail is reahed.

� Generi building bloks: A blok in the repository should not be fully

spei�ed but rather represent a lass of some subunit. During the design

proedure, partiular instanes are obtained by speifying the relevant

variables, equations, and values abstrated from in the lasses.

� Strutured storage: To avoid unneessary extensions of the blok repository

and to failitate browsing and searhing, the existing bloks should be

arranged in an \is-speialization-of" hierarhy.

� Automati lassi�ation: If the speialization order would be derivable

automatially, the system ould additionally maintain onsisteny of new

building bloks during the design proedure and loate the orret posi-

tions for their storage in the repository.

� Re-use of submodels: It should be possible to store (abstrations of) sub-

units in existing models in the repository for later re-use.

� Maintenane support : As the blok repository typially will be developed

over a long period of time by many people, deteting redundanies and

integrating additional repositories should be possible.

2

The hallenge to meet these requirements has inspired a ooperation be-

tween the Institute for Proess Systems Engineering at RWTH Aahen, where

a prototype modelling environment is being developed, and our researh group,

where DL-systems are studied. It has already been shown that DL-systems an

suessfully be employed for most of the above tasks [15℄. Testing the devel-

oped prototype environment has provided additional insights. When designing

models by means of blok-oriented modelling environments, proess engineers

showed two harateristi strategies for the design of new (generi) bloks:

� Bottom-up design: From several existing proess models, the proess engi-

neer selets a ertain olletion of subunits deployed for a similar purpose.

She then introdues a new generi blok as an abstration of these units.

� Design by modi�ation: Before assembling a new generi blok from srath,

the knowledge engineer tries to loate a struturally similar one in the

repository. She then modi�es the existing blok to suit the new require-

ments.

In this work, we will show how these design strategies an be supported

by non-standard inferenes o�ered by DL-systems. In the following setion,

we will introdue Desription Logis formally and disuss their bene�t for the

requirements mentioned above. Setions 3 and 4 desribe the partiular non-

standard inferene servies used to support the two design tehniques.

2 Desription Logis and Proess Modelling

Desription Logis (DL) form a ategory of knowledge representation (KR) for-

malisms used to represent terminologial knowledge in a strutured and well-

de�ned way. A DL-system onsists of a knowledge base together with ertain

inferene servies. The knowledge base omprises two omponents, the TBox

and the ABox. Intuitively, the TBox de�nes the voabulary by whih a onrete

world (in this appliation a proess model) is desribed in the ABox. Both are

de�ned by means of onepts, whose syntax and semantis is introdued next.

Conepts are indutively de�ned using a set of onept onstrutors, starting

from a set N

C

of onept names and a set N

R

of role names. The onstruts

available in the DLs onsidered here are listed in Table 1. In EL, the top-onept

(>), onjuntion (CuD), and existential restrition (9r:C) are allowed. ALE ad-

ditionally provides the bottom-onept (?) and primitive negation (:A). ALN

extends ALE with number restritions (� n r) and (� n r), but does not provide

existential restritions. A onept de�ned over the DL L (L 2 fEL;ALE;ALNg)

is referred to as L-onept.

The semantis of onepts is de�ned in terms of an interpretation I =

(�

I

; �

I

). The domain �

I

is a non-empty set, and the interpretation funtion �

I

3

Syntax Semantis EL ALE ALN

> �

I

x x x

C uD C

I

\D

I

x x x

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

! y 2 C

I

g x x

? ; x x

:A, A 2 N

C

�

I

nA

I

x x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

Table 1: Syntax and semantis of onepts.

maps every onept name A 2 N

C

to a set A

I

� �

I

and eah role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The seond olumn of Table 1 shows how �

I

is extended to omplex onepts.

De�nition 1 (TBox) A TBox T is a �nite set of onept de�nitions of the

form A

:

= C, where A 2 N

C

and C is a onept. Every onept name A may

our only one on a left-hand side in T . If it does, then A is alled de�ned,

otherwise primitive. In DLs providing primitive negation only primitive onepts

may be negated on the right-hand side of onept de�nitions. An interpretation

I is a model for T i� A

I

= C

I

for every A

:

= C 2 T .

To illustrate the introdued notions of onept, onept de�nition and TBox,

onsider an example TBox.

Example 2 The ALE-TBox T

ex

ontains the following onept de�nitions in-

spired by the proess engineering domain:

Liquid

:

= :Solid u :Gas;

Container

:

= Volume u (8 ontains: Substane);

FluidTank

:

= Container u (8 hasConnetion:Port)u

(9 ontains: Liquid) ;

Pipeline

:

= Volume u Tube

(8 hasConnetion: (Port u (9 hasPart:Valve))) u

(8 ontains: Substane) u (9 ontains::Solid)

In the TBox T

ex

the onept Liquid is de�ned as something that is no Gas and no

Solid. A Container is de�ned as a Volume ontaining only Substanes. Based on

these two de�ned onepts, a FluidTank is de�ned as a Container whih ontains

a Liquid and is only onneted to Ports. Finally, a Pipeline is de�ned as a Volume

and a Tube and is only onneted to Ports whih in turn must have a Valve as

a part. Furthermore, a Pipeline must ontain something, whih is no Solid and

all it ontains are Substanes.

4

To represent knowledge about an atual instane of the appliation domain,

individuals and their interrelations are desribed in an ABox. Thus, in addition

to N

C

and N

R

, we introdue a �nite set N

I

of individual names. Formally, an

ABox an now be de�ned as follows:

De�nition 3 (ABox) An ABox A is a �nite set of onept assertions of the

form a : C and role assertions of the form (b;) : r, where a; b; 2 N

I

, C is an

arbitrary onept, and r 2 N

R

a role name. An interpretation I is a model

for A , i� a

I

2 C

I

and (b

I

;

I

) 2 r

I

for every a : C and every (b;) : r in A .

For every interpretation I, every a 2 N

I

is mapped to some a

I

2 �

I

, suh that

a 6= b implies a

I

6= b

I

(unique name assumption).

In our proess engineering appliation, eah of the individual bloks is rep-

resented by an individual in an ABox. The generi bloks from the repository

are represented by onepts de�ned in a TBox. Thus, TBox and ABox form

a knowledge base for all bloks onstruted in the modelling environment as

illustrated in Figure 1.

To derive impliit knowledge from the expliit one given in the knowledge

base, there are three so-alled standard inferenes, namely onsisteny, subsump-

tion, and instane, as de�ned below.

De�nition 4 (Standard inferenes) A onept C is onsistent i� there ex-

ists an interpretation I suh that C

I

6= ;. A onept C is subsumed by a

onept D (written C v D) i� C

I

� D

I

holds for all interpretations I. The

onepts C and D are equivalent (written C � D) i� they subsume eah other.

An individual name a 2 N

I

is an instane of C w.r.t. an ABox A and its TBox

T (written a 2

A ;T

C) i� a

I

2 C

I

for every model I of A and T .

These inferenes are essential for almost all DL-systems. Espeially, omput-

ing the so-alled subsumption hierarhy of onepts yields the \is-speialization-

of"-hierarhy mentioned in Setion 1. Algorithms deiding subsumption form

the basis for strutured storage and the algorithms for omputing the \instane-

of"-relation realize the automati lassi�ation of objets. Not all of the tasks

mentioned in Setion 1 an be aomplished by means of standard inferenes,

e.g., they do not failitate the previously mentioned design strategies utilized by

proess engineers. This is where the non-standard inferenes ome into play.

3 Supporting the Bottom-up Approah

The bottom-up generation of a new blok (i.e., onept) from a set of proess

models (i.e., ABox individuals) seleted by the domain expert is realized by non-

standard inferenes in two steps. Firstly, the most spei� onept is omputed

for eah of the seleted ABox individuals, suh that the individual is an instane

5

Proess model

Blok repository

represent

struture

TBox

ABox

abstrat abstrat

Figure 1: Modelling environment and knowledge base

of the obtained onept whih is most spei� w.r.t. subsumption. Next, a

single onept is omputed from all the obtained onepts, whih subsumes

all the obtained onepts and is also the most spei� onept to do so. The

resulting onept is then o�ered to the proess engineer for inspetion and further

proessing and, if suitable, added to the generi blok repository. The �rst step

is realized by the non-standard inferene most spei� onept (ms) whih is

de�ned in the following way:

De�nition 5 (ms) Let A be an L-ABox, a an individual in A and C a onept

in L, then C is the most spei� onept (ms) of a w.r.t. A (ms

A

(a)) i�

a 2

A

C , and for all L-onepts C

0

, a 2

A

C

0

implies Cv C

0

.

Computing the ms of an individual yields an abstration from a onrete

individual and from its interrelationships expressed in the ABox by generalizing

it into a onept.

Example 6 As an example inspired from the appliation domain, we want to

desribe a distillation devie whih takes sea-water as an input and separates it

into water and salt. Suh a devie ould be represented by an EL -ABox A

ex

with

the following assertions:

devie : MarineDistiller;

(devie; seawater) : hasInput;

(devie;water) : hasOutput;

(devie; salt) : hasOutput;

seawater : solution u Liquid;

(seawater;water) : ontains;

(seawater; salt) : ontains;

water : Solvent u Liquid;

salt : Solute u Solid

Note that the individuals water and salt our as role-suessors for both of

the individuals devie and seawater. The ms(devie) w.r.t. the underlying ABox

A

ex

is now given by:

6

ms

A

ex

(devie) = MarineDistiller u

9 hasInput: (Solution u Liquid u

9 ontains: (Solvent u Liquid) u

9 ontains: (Solute u Solid)) u

9 hasOutput: (Solvent u Liquid) u

9 hasOutput: (Solute u Solid)

In the obtained onept the onept names from the ABox A

ex

are preserved in

the ms onept and the interrelations are expressed by existential restritions.

The o-referenes in A

ex

to eah of water and to salt an not be aptured in the

onept, instead the onepts from A

ex

orresponding to these individuals are

dupliated.

Unfortunately, the ms need not always exist due to yli relationships

between ABox individuals suh as f(a; b) : r; (b; a) : rg � A . An individual

from a yli ABox may be instane of all onepts from an in�nite sequene

of onepts C

1

, C

2

, . . . where eah onept C

i

enodes one more traversal of

the yle expressed in the ABox than C

i�1

and is thereby more spei� than all

its predeessors in the in�nite sequene of onepts. Sine the individual is an

instane of all C

i

s, the most-spei� onept would be u

1

i=1

C

i

, whih annot

be expressed in every DL with existential restritions. For further details, refer

to [2℄.

However, for DLs providing existential restritions the ms for yli ABoxes

an be approximated by the so-alled k-approximation. The k-approximation is

a ms whose nesting depth of quanti�ers is bounded by k (k 2 N). See [12℄ for

details. One in our proess engineering appliation the k-approximation or, if

possible, the ms of eah seleted individual blok is attained, the subsuming

onept|the least ommon subsumer|of them is omputed. It is de�ned as

follows:

De�nition 7 (ls) Let T be an L-onept and C

1

, . . . , C

n

onepts in L

from T , then C is the least ommon subsumer (ls) of C

1

, . . . , C

n

w.r.t.

T (ls

T

(C

1

; : : : ; C

n

)) i� C

i

v

T

C for all 1 � i � n, and for all L-onepts

C

0

, C

i

v

T

C

0

for all 1 � i � n implies C v C

0

.

Thus, both the ms and the ls generalize the input yielding the most spei�

onept w.r.t. the underlying TBox; only that the ms refers to a single ABox

individual while the ls refers to several onepts based on onepts de�ned in

a TBox.

Example 8 Let us onsider the ls of the onepts FluidTank and Pipeline as

de�ned in the TBox T

ex

from Example 2. First, both onepts have to be un-

folded w.r.t. T

ex

, i.e., all names of de�ned onepts are replaed reursively by the

right-hand sides of their onept de�nitions. Next, the ls onept of both input

onepts is omputed. In this ase we obtain:

7

ls

T

ex

(FluidTank;Pipeline) =

Volume u (8 hasConnetion:Port) u

(8 ontains: Substane) u (9 ontains: (Substane u : Solid)):

The ls onept reets that both input onepts are a Volume, beause Volume

lies in the intersetion of the onept names on top-level of both input onepts.

For the onept ourring in value restritions, the ls algorithm is applied reur-

sively for eah role. The existential restritions in the ls onept are obtained

by onjoining the onepts in the existential restrition and those in their or-

responding value restrition for eah of the input onepts and then reursively

applying the ls algorithm to the obtained onjuntions.

For the DLs introdued in Setion 2, the ls always exists. The ls (as

well as the ms, if it exists) is uniquely determined up to equivalene. In our

researh group, algorithms for the ls have been developed for several DLs, see

[10, 5, 2, 11℄.

Equipped with the non-standard inferenes ms and the ls, the demand from

our appliation domain to onstrut knowledge bases in a bottom-up fashion an

be met. The knowledge engineer selets some fully spei�ed bloks that should

form the new generi blok for the repository. Then the bloks are automatially

translated into individuals in an ABox, representing the parts and properties of

eah of the bloks. Next, the DL-system omputes the ms of eah of them and

then generalizes them into a single onept by omputing the ls. The resulting

onept is then translated bak into the representation used in the modelling

environment and o�ered as a new blok to the proess engineer, see Figure 1.

Note that the domain expert is not involved in the \DL-part" of this proess,

therefore our method is suitable for users with little KR expertise.

In our appliation, the ls inferene does not only support the bottom-up

approah for augmenting the repository. It may in addition be employed to

obtain a well-strutured storage in the repository whih in turn is neessary

for easily retrieving generi bloks for a possible re-use. So, if a generi blok

in the repository has many speializations, say B

1

; : : : ; B

n

for a large number

n, and the proess engineer searhes for a building blok to re-use, inspeting

all of the B

i

s to �nd a andidate may not be pratial. New generi bloks

subsuming some of the B

i

s and thereby providing an intermediate level in the

speialization hierarhy failitates browsing it. Suh intermediate bloks an

be derived by omputing the least ommon subsumers of some of the B

i

s and

adding them to the repository.

The ls w.r.t. TBoxes has been implemented for the DL ALE. As seen in

Example 8, all input onepts have to be unfolded ompletely against the un-

derlying TBox before omputing the atual ls onept. It is well-known that

unfolding a onept an ause an exponential blow-up of the onept size [14℄.

8

Therefore, the onepts to be handled and|even worse|returned by the ls al-

gorithm an beome very large. This does not only slow down the omputation

of the ls, but also yields unreadable onepts. First empirial evaluations of our

ls-implementation applied to TBoxes from the proess engineering domain have

shown that the returned onepts �ll several pages of output and are therefore

too big to be readable and omprehensible for a human reader, see [7, 16℄.

Thus, for assessment by domain experts, the resulting onepts have to be

represented more ompatly. To this end, our researh group investigates meth-

ods for �nding a minimal rewriting of a onept w.r.t. the underlying TBox

[6℄. In a minimal rewriting, parts of the onept are replaed by names de-

�ned in the TBox. The e�et of suh a rewriting is somewhat inverse to un-

folding, e.g., in Example 8 the ls an be represented in a more ompat way

by using the de�nition in T

ex

and replaing the sub-term of the ls onept

"Volume u (8 ontains: Substane)" by "Container".

For DLs with existential restritions, the omputations of a minimal rewriting

involves a high degree of non-determinism. Therefore, we have to resort to

heuristis yielding small but not always minimal rewritings. In the ase of the

TBox used in our proess engineering appliation, for instane, employing suh

heuristis to onepts of size 800 yields onepts of size 10. Refer to [7, 16℄ for

details.

Moreover, rewritings an be used to \translate" onepts from one DL L

1

into onepts from another, less expressive DL L

2

by omputing the best ap-

proximation of the onept. This servie is espeially desirable if more inferene

servies are available in L

2

.

4 Supporting the Modi�ation Approah

Another useful non-standard inferene is mathing, whih was �rst proposed

in the DL-system CLASSIC [13, 9℄. In order to de�ne mathing, we need to

introdue onept patterns.

Let L be any of the DLs introdued in Setion 2 together with the sets N

C

,

N

R

, and N

I

. Additionally, let N

X

be a �nite set of onept variables disjoint to

N

C

[N

R

[N

I

. L-onept patterns are L-onepts for whih in addition onept

variables an be used in the plae of onept names|exept for the fat that the

primitive negation (:) may not our in front of variables. A substitution � is a

mapping from N

X

into the set of L-onepts. It is extended to onept patterns

P by replaing every ourrene of X 2 N

X

in P by �(X). Thus, �(P) again

is an L-onept. With these preliminaries we an de�ne mathing problems as

follows:

De�nition 9 (mathing problems) An L-mathing problem is of the form

C �

?

P , where C is an L-onept and P an L-onept pattern. A substitution

9

� is a mather for C �

?

P i� C � �(P), i.e., � replaes the variables in P by

onepts in suh a way that equivalene holds.

As a trivial example, onsider the mathing problem A u 8r:B �

?

X u 8r:Y .

An appropriate mather would be, for instane, fX 7! A u 8r:B; Y 7! Bg.

Intuitively, if a onept an be mathed against a pattern P , then their syntax

trees share the \upper part", i.e., where P is fully spei�ed, while deviations may

our at leaves labelled with variables. Hene, the set of all onepts that an be

mathed against P ontains in�nitely many onepts struturally similar to P to

some extent. In this sense, mathing P against several onepts and returning

those whih an be mathed, an be seen as a searh with the fully spei�ed

part of P as searh riterion.

Let us return to the proess engineer designing a new generi blok in a blok-

oriented modelling environment as desribed in Setion 1. For the strategy of

design by modi�ation, the ruial step is to �nd a generi blok in the repository

struturally similar to what the knowledge engineer intends to design. As an

example, assume a modelling task for a uid tank equipped with a ooling system

and an equivalent bakup ooling system, eah with a thermostat ontroller. A

onvenient starting point for the design ould be a blok omprising a uid tank

ombined with an arbitrary devie ontrolled by some ontrol units and a similar

bakup devie.

Example 10 With a mathing algorithm at hand, relevant generi bloks ould

be found by mathing the following onept pattern against every onept in the

KB.

9hasPart:(FluidTank u 9hasPart:(:BakupDevie uX u 9hasPart:Controller)

u 9hasPart:(BakupDevie uX u 9hasPart:Controller))

The pattern spei�es bloks onsisting of at least one uid tank equipped with at

least two equivalent omponents one of whih is a bakup devie and one not.

Both omponents must have a ontroller.

The query ould thus also return bloks with two or more tanks or, for

instane, with dupliate heating systems or stirring devies. Nevertheless, by

additionally retrieving a blok representing a single ooling devie and another

for a single thermostat ontrol unit, the engineer is well prepared to omplete

the design task eÆiently. Naturally, usability issues suggest to hide the formal

onstrution of patterns by user-friendly query front-ends.

Note that in all admissible onepts, both ourrenes of X must be replaed

by the same onept. This strutural onstraint annot be expressed by simple

\wildards" familiar from ordinary searh engines.

10

Formal means exist for further re�nement of suh pattern-driven searhes.

For the DL ALN , so-alled side onditions have been proposed to restrit the

onepts a variable may be replaed with [1℄. In the above example, we may

want to restrit the query to dupliate devies with, say, temperature-related

funtionality. To this end, we ould use a side ondition of the form

X v

?

ThermalDevie;

thus inluding only those devies represented by the onept ThermalDevie.

Apart from supporting the tehnique of design by modi�ation, mathing an

also help to provide maintenane support for the blok repository, as desribed in

Setion 1 [8℄. Mathing algorithms for deiding and solving mathing problems

have been proposed in the DLsALE andALN [3, 4℄. InALE , the deision problem

is NP-omplete, whereas the omputation problem is EXPTIME-omplete. In

ALN , the deision and omputation problem are polynomial.

5 Conlusion and Future Work

We have presented an appliation where non-standard inferene servies an

signi�antly enhane the usability of DL-systems. Here these servies were pro-

posed to assist proess engineers in their pratial tehniques of designing proess

models. These tehniques, however, are not spei� to this very domain but ap-

ply to any senario where knowledge bases are managed by domain experts with

little expertise in knowledge representation.

With the DLs presented here, not all properties of the desribed models an

be represented suÆiently. The demand for more expressive DLs, however, also

neessitates to adapt the existing inferene servies to new language onstrutors

suh as quali�ed number restritions, transitive roles, and role hierarhies.

Approahes to apture the relevant extensions by appropriate algorithms

for non-standard inferenes are urrently studied by our researh group. Addi-

tional language onstrutors an further inrease the omputational omplexity

of suh algorithms. Nevertheless, experiene has shown that a high worst-ase

omplexity often an be tolerated as long as a moderate average-ase omplexity

is observed in pratial appliations.

A promising alternative might be to realize non-standard inferenes for ex-

pressive desription logis by approximating the input onepts in a less expres-

sive DL, where the desired inferenes an be realized more eÆiently.

Referenes

[1℄ F. Baader, S. Brandt, and R. K�usters. Mathing under side onditions in desrip-

tion logis In B. Nebel, editor, Pro. of IJCAI-01, 2001.

11

[2℄ F. Baader and R. K�usters. Computing the least ommon subsumer and the most

spei� onept in the presene of yli ALN -onept desriptions. In O. Herzog

and A. G�unter, editors, KI-98, volume 1504 of Leture Notes in Computer Siene,

pages 129{140, Bremen, Germany, 1998. Springer-Verlag.

[3℄ F. Baader and R. K�usters. Mathing in desription logis with existential restri-

tions. In Pro. of KR2000, pp. 261{272, Morgan Kaufmann Publishers, 2000.

[4℄ F. Baader, R. K�usters, A. Borgida, and D. MGuinness. Mathing in desription

logis. Journal of Logi and Computation, 9(3):411{447, 1999.

[5℄ F. Baader, R. K�usters, and R. Molitor. Computing least ommon subsumer in

desription logis with existential restritions. In T. Dean, editor, Pro. of the 16th

Int. Joint Conf. on Arti�ial Intelligene (IJCAI-99), pages 96{101, Stokholm,

Sweden, 1999. Morgan Kaufmann, Los Altos.

[6℄ F. Baader, R. K�usters, and R. Molitor. Rewriting onepts using terminologies.

In A.G. Cohn, F. Giunhiglia, and B. Selman, editors, Pro. of the 7th Int. Conf.

on the Priniples of Knowledge Representation and Reasoning (KR-00), pages

297{308, San Franiso, CA, 2000. Morgan Kaufmann Publishers.

[7℄ F. Baader and R. Molitor. Building and struturing desription logi knowledge

bases using least ommon subsumers and onept analysis. In B. Ganter and

G. Mineau, editors, ICCS-00, volume 1867 of Leture Notes in Arti�ial Intelli-

gene, pages 290{303. SV, 2000.

[8℄ F. Baader and P. Narendran. Uni�ation of Conept Terms in Desription Logis.

In Proeedings of ECAI-98, pp. 331{335, John Wiley & Sons Ltd., 1998.

[9℄ A. Borgida and D. L. MGuinness. Asking Queries about Frames. In Proeedings

of KR'96, pp. 340{349, Morgan Kaufmann Publishers, 1996.

[10℄ William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least ommon

subsumers in desription logis. In William Swartout, editor, Pro. of the 10th

Nat. Conf. on Arti�ial Intelligene (AAAI-92), pages 754{760, San Jose, CA,

1992. AAAI Press/The MIT Press.

[11℄ R. K�usters and A. Borgida. What`s in an attribute? Consequenes for the least

ommon subsumer. JAIR, 14:167{203, 2001.

[12℄ R. K�usters and R. Molitor. Approximating most speif onepts in desription

logis with existential restritions. In Pro. of the 24th German Annual Conf. on

Arti�ial Intelligene (KI'01), 2001. to appear.

[13℄ D.L. MGuinness. Explaining Reasoning in Desription Logis. PhD thesis,

Department of Computer Siene, Rutgers University, Otober, 1996.

[14℄ Bernhard Nebel. Terminologial reasoning is inherently intratable. Arti�ial

Intelligene Journal, 43:235{249, 1990.

[15℄ U. Sattler. Terminologial knowledge representation systems in a proess engi-

neering appliation. PhD thesis, LuFG Theoretial Computer Siene, RWTH-

Aahen, 1998

[16℄ A.-Y. Turhan and R. Molitor. Using lazy unfolding for the omputation of least

ommon subsumers. In DL-2001, 2001.

12

