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Abstra
t

In knowledge representation systems based on Des
ription Logi
s,

standard inferen
e servi
es su
h as 
onsisten
y, subsumption, and in-

stan
e are well-investigated. In 
ontrast, non-standard inferen
es like

most spe
i�
 
on
ept, least 
ommon subsumer, uni�
ation, and mat
hing

are missing in most systems|or exist only as ad-ho
 implementations.

We give an example of how these inferen
es 
an be applied su

essfully

in the domain of pro
ess engineering. The bene�t gained in our example,

however, o

urs in to many domains where knowledge bases are managed

by persons with little expertise in knowledge engineering.

1 Pro
ess Engineering

As an appli
ation domain for knowledge representation systems based on De-

s
ription Logi
s (DL-systems) in general, and 
ertain non-standard inferen
es

in parti
ular, we give a brief introdu
tion to the basi
 notions of the �eld of

pro
ess engineering. In this 
ontext, a pro
ess is de�ned as a sequen
e of physi-


al, 
hemi
al, biologi
al, and informational operations intentionally exe
uted to


hange substan
es in respe
t to their nature, properties, and 
omposition.

Pro
ess engineering is 
on
erned with methods, tools, and their management

for the design and 
ontrol of a pro
ess.
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Here, models are used to represent, an-

alyze, and optimize pro
esses and get a deeper understanding of their nature. In

general, a model is an abstra
tion of some obje
t under 
onsideration 
hara
ter-

ized by a lower level of 
omplexity while retaining some of the original properties

of interest.

�

This work has been supported by the DFG, Proje
t BA 1122/4-1.
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Plant engineering in turn deals with the a
tual (
hemi
al) plant performing the pro
ess

and its 
onstru
tion, whi
h is abstra
ted from in pro
ess engineering.
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In pro
ess engineering, exa
t equation-based mathemati
al models are parti
-

ularly desirable be
ause of their high predi
tive 
apabilities in numeri
al analysis

and simulation. Unfortunately, even for simple 
hemi
al pro
esses, su
h models

are too 
omplex for ad-ho
 
onstru
tion by hand. Nevertheless, adequate mod-

els 
an be obtained step by step, starting with other representation formalisms,

e.g., so-
alled blo
k-oriented models. In su
h models, a pro
ess is represented

by an undire
ted graph with blo
ks as verti
es and 
onne
tions as edges. Ea
h

blo
k stands for a standardized sub-unit of the entire pro
ess with 
ertain in-

terfa
es and ea
h 
onne
tion for a 
ow of material, energy, or information. The

type of a 
onne
tion linking two interfa
es of blo
ks is determined by the in-

terfa
e spe
i�
ations. Typi
ally, blo
k-oriented modeling environments have a

blo
k repository in whi
h building blo
ks are stored.

During the life-
y
le of a 
hemi
al pro
ess, several models on di�erent levels

of detail are involved. In an early design stage, for instan
e, rather 
rude models

allow to 
onsider alternative designs in minimal time. On
e one of them proved

promising, more a

urate models are used for further examination. With su
h

a 
as
ade of models, however, it is not 
lear how to bene�t from one modeling

stage when going into further detail on the next.

In answer to this, several requirements have been identi�ed for blo
k-oriented

models and appropriate modelling environments in pro
ess engineering [15℄:

� Variable granularity : The model should allow 
omposite building blo
ks,

i.e., blo
ks again 
omprising blo
ks and 
onne
tions. These 
an be de
om-

posed during the design phase until the desired level of detail is rea
hed.

� Generi
 building blo
ks: A blo
k in the repository should not be fully

spe
i�ed but rather represent a 
lass of some subunit. During the design

pro
edure, parti
ular instan
es are obtained by spe
ifying the relevant

variables, equations, and values abstra
ted from in the 
lasses.

� Stru
tured storage: To avoid unne
essary extensions of the blo
k repository

and to fa
ilitate browsing and sear
hing, the existing blo
ks should be

arranged in an \is-spe
ialization-of" hierar
hy.

� Automati
 
lassi�
ation: If the spe
ialization order would be derivable

automati
ally, the system 
ould additionally maintain 
onsisten
y of new

building blo
ks during the design pro
edure and lo
ate the 
orre
t posi-

tions for their storage in the repository.

� Re-use of submodels: It should be possible to store (abstra
tions of) sub-

units in existing models in the repository for later re-use.

� Maintenan
e support : As the blo
k repository typi
ally will be developed

over a long period of time by many people, dete
ting redundan
ies and

integrating additional repositories should be possible.
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The 
hallenge to meet these requirements has inspired a 
ooperation be-

tween the Institute for Pro
ess Systems Engineering at RWTH Aa
hen, where

a prototype modelling environment is being developed, and our resear
h group,

where DL-systems are studied. It has already been shown that DL-systems 
an

su

essfully be employed for most of the above tasks [15℄. Testing the devel-

oped prototype environment has provided additional insights. When designing

models by means of blo
k-oriented modelling environments, pro
ess engineers

showed two 
hara
teristi
 strategies for the design of new (generi
) blo
ks:

� Bottom-up design: From several existing pro
ess models, the pro
ess engi-

neer sele
ts a 
ertain 
olle
tion of subunits deployed for a similar purpose.

She then introdu
es a new generi
 blo
k as an abstra
tion of these units.

� Design by modi�
ation: Before assembling a new generi
 blo
k from s
rat
h,

the knowledge engineer tries to lo
ate a stru
turally similar one in the

repository. She then modi�es the existing blo
k to suit the new require-

ments.

In this work, we will show how these design strategies 
an be supported

by non-standard inferen
es o�ered by DL-systems. In the following se
tion,

we will introdu
e Des
ription Logi
s formally and dis
uss their bene�t for the

requirements mentioned above. Se
tions 3 and 4 des
ribe the parti
ular non-

standard inferen
e servi
es used to support the two design te
hniques.

2 Des
ription Logi
s and Pro
ess Modelling

Des
ription Logi
s (DL) form a 
ategory of knowledge representation (KR) for-

malisms used to represent terminologi
al knowledge in a stru
tured and well-

de�ned way. A DL-system 
onsists of a knowledge base together with 
ertain

inferen
e servi
es. The knowledge base 
omprises two 
omponents, the TBox

and the ABox. Intuitively, the TBox de�nes the vo
abulary by whi
h a 
on
rete

world (in this appli
ation a pro
ess model) is des
ribed in the ABox. Both are

de�ned by means of 
on
epts, whose syntax and semanti
s is introdu
ed next.

Con
epts are indu
tively de�ned using a set of 
on
ept 
onstru
tors, starting

from a set N

C

of 
on
ept names and a set N

R

of role names. The 
onstru
ts

available in the DLs 
onsidered here are listed in Table 1. In EL, the top-
on
ept

(>), 
onjun
tion (CuD), and existential restri
tion (9r:C) are allowed. ALE ad-

ditionally provides the bottom-
on
ept (?) and primitive negation (:A). ALN

extends ALE with number restri
tions (� n r) and (� n r), but does not provide

existential restri
tions. A 
on
ept de�ned over the DL L (L 2 fEL;ALE;ALNg)

is referred to as L-
on
ept.

The semanti
s of 
on
epts is de�ned in terms of an interpretation I =

(�

I

; �

I

). The domain �

I

is a non-empty set, and the interpretation fun
tion �

I
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Syntax Semanti
s EL ALE ALN

> �

I

x x x

C uD C

I

\D

I

x x x

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

! y 2 C

I

g x x

? ; x x

:A, A 2 N

C

�

I

nA

I

x x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

Table 1: Syntax and semanti
s of 
on
epts.

maps every 
on
ept name A 2 N

C

to a set A

I

� �

I

and ea
h role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The se
ond 
olumn of Table 1 shows how �

I

is extended to 
omplex 
on
epts.

De�nition 1 (TBox) A TBox T is a �nite set of 
on
ept de�nitions of the

form A

:

= C, where A 2 N

C

and C is a 
on
ept. Every 
on
ept name A may

o

ur only on
e on a left-hand side in T . If it does, then A is 
alled de�ned,

otherwise primitive. In DLs providing primitive negation only primitive 
on
epts

may be negated on the right-hand side of 
on
ept de�nitions. An interpretation

I is a model for T i� A

I

= C

I

for every A

:

= C 2 T .

To illustrate the introdu
ed notions of 
on
ept, 
on
ept de�nition and TBox,


onsider an example TBox.

Example 2 The ALE-TBox T

ex


ontains the following 
on
ept de�nitions in-

spired by the pro
ess engineering domain:

Liquid

:

= :Solid u :Gas;

Container

:

= Volume u (8 
ontains: Substan
e);

FluidTank

:

= Container u (8 hasConne
tion:Port)u

(9 
ontains: Liquid) ;

Pipeline

:

= Volume u Tube

(8 hasConne
tion: (Port u (9 hasPart:Valve))) u

(8 
ontains: Substan
e) u (9 
ontains::Solid)

In the TBox T

ex

the 
on
ept Liquid is de�ned as something that is no Gas and no

Solid. A Container is de�ned as a Volume 
ontaining only Substan
es. Based on

these two de�ned 
on
epts, a FluidTank is de�ned as a Container whi
h 
ontains

a Liquid and is only 
onne
ted to Ports. Finally, a Pipeline is de�ned as a Volume

and a Tube and is only 
onne
ted to Ports whi
h in turn must have a Valve as

a part. Furthermore, a Pipeline must 
ontain something, whi
h is no Solid and

all it 
ontains are Substan
es.
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To represent knowledge about an a
tual instan
e of the appli
ation domain,

individuals and their interrelations are des
ribed in an ABox. Thus, in addition

to N

C

and N

R

, we introdu
e a �nite set N

I

of individual names. Formally, an

ABox 
an now be de�ned as follows:

De�nition 3 (ABox) An ABox A is a �nite set of 
on
ept assertions of the

form a : C and role assertions of the form (b; 
) : r, where a; b; 
 2 N

I

, C is an

arbitrary 
on
ept, and r 2 N

R

a role name. An interpretation I is a model

for A , i� a

I

2 C

I

and (b

I

; 


I

) 2 r

I

for every a : C and every (b; 
) : r in A .

For every interpretation I, every a 2 N

I

is mapped to some a

I

2 �

I

, su
h that

a 6= b implies a

I

6= b

I

(unique name assumption).

In our pro
ess engineering appli
ation, ea
h of the individual blo
ks is rep-

resented by an individual in an ABox. The generi
 blo
ks from the repository

are represented by 
on
epts de�ned in a TBox. Thus, TBox and ABox form

a knowledge base for all blo
ks 
onstru
ted in the modelling environment as

illustrated in Figure 1.

To derive impli
it knowledge from the expli
it one given in the knowledge

base, there are three so-
alled standard inferen
es, namely 
onsisten
y, subsump-

tion, and instan
e, as de�ned below.

De�nition 4 (Standard inferen
es) A 
on
ept C is 
onsistent i� there ex-

ists an interpretation I su
h that C

I

6= ;. A 
on
ept C is subsumed by a


on
ept D (written C v D) i� C

I

� D

I

holds for all interpretations I. The


on
epts C and D are equivalent (written C � D) i� they subsume ea
h other.

An individual name a 2 N

I

is an instan
e of C w.r.t. an ABox A and its TBox

T (written a 2

A ;T

C) i� a

I

2 C

I

for every model I of A and T .

These inferen
es are essential for almost all DL-systems. Espe
ially, 
omput-

ing the so-
alled subsumption hierar
hy of 
on
epts yields the \is-spe
ialization-

of"-hierar
hy mentioned in Se
tion 1. Algorithms de
iding subsumption form

the basis for stru
tured storage and the algorithms for 
omputing the \instan
e-

of"-relation realize the automati
 
lassi�
ation of obje
ts. Not all of the tasks

mentioned in Se
tion 1 
an be a

omplished by means of standard inferen
es,

e.g., they do not fa
ilitate the previously mentioned design strategies utilized by

pro
ess engineers. This is where the non-standard inferen
es 
ome into play.

3 Supporting the Bottom-up Approa
h

The bottom-up generation of a new blo
k (i.e., 
on
ept) from a set of pro
ess

models (i.e., ABox individuals) sele
ted by the domain expert is realized by non-

standard inferen
es in two steps. Firstly, the most spe
i�
 
on
ept is 
omputed

for ea
h of the sele
ted ABox individuals, su
h that the individual is an instan
e

5



Pro
ess model

Blo
k repository

represent

stru
ture

TBox

ABox

abstra
t abstra
t

Figure 1: Modelling environment and knowledge base

of the obtained 
on
ept whi
h is most spe
i�
 w.r.t. subsumption. Next, a

single 
on
ept is 
omputed from all the obtained 
on
epts, whi
h subsumes

all the obtained 
on
epts and is also the most spe
i�
 
on
ept to do so. The

resulting 
on
ept is then o�ered to the pro
ess engineer for inspe
tion and further

pro
essing and, if suitable, added to the generi
 blo
k repository. The �rst step

is realized by the non-standard inferen
e most spe
i�
 
on
ept (ms
) whi
h is

de�ned in the following way:

De�nition 5 (ms
) Let A be an L-ABox, a an individual in A and C a 
on
ept

in L, then C is the most spe
i�
 
on
ept (ms
) of a w.r.t. A (ms


A

(a)) i�

a 2

A

C , and for all L-
on
epts C

0

, a 2

A

C

0

implies Cv C

0

.

Computing the ms
 of an individual yields an abstra
tion from a 
on
rete

individual and from its interrelationships expressed in the ABox by generalizing

it into a 
on
ept.

Example 6 As an example inspired from the appli
ation domain, we want to

des
ribe a distillation devi
e whi
h takes sea-water as an input and separates it

into water and salt. Su
h a devi
e 
ould be represented by an EL -ABox A

ex

with

the following assertions:

devi
e : MarineDistiller;

(devi
e; seawater) : hasInput;

(devi
e;water) : hasOutput;

(devi
e; salt) : hasOutput;

seawater : solution u Liquid;

(seawater;water) : 
ontains;

(seawater; salt) : 
ontains;

water : Solvent u Liquid;

salt : Solute u Solid

Note that the individuals water and salt o

ur as role-su

essors for both of

the individuals devi
e and seawater. The ms
(devi
e) w.r.t. the underlying ABox

A

ex

is now given by:
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ms


A

ex

(devi
e) = MarineDistiller u

9 hasInput: (Solution u Liquid u

9 
ontains: (Solvent u Liquid) u

9 
ontains: (Solute u Solid)) u

9 hasOutput: (Solvent u Liquid) u

9 hasOutput: (Solute u Solid)

In the obtained 
on
ept the 
on
ept names from the ABox A

ex

are preserved in

the ms
 
on
ept and the interrelations are expressed by existential restri
tions.

The 
o-referen
es in A

ex

to ea
h of water and to salt 
an not be 
aptured in the


on
ept, instead the 
on
epts from A

ex


orresponding to these individuals are

dupli
ated.

Unfortunately, the ms
 need not always exist due to 
y
li
 relationships

between ABox individuals su
h as f(a; b) : r; (b; a) : rg � A . An individual

from a 
y
li
 ABox may be instan
e of all 
on
epts from an in�nite sequen
e

of 
on
epts C

1

, C

2

, . . . where ea
h 
on
ept C

i

en
odes one more traversal of

the 
y
le expressed in the ABox than C

i�1

and is thereby more spe
i�
 than all

its prede
essors in the in�nite sequen
e of 
on
epts. Sin
e the individual is an

instan
e of all C

i

s, the most-spe
i�
 
on
ept would be u

1

i=1

C

i

, whi
h 
annot

be expressed in every DL with existential restri
tions. For further details, refer

to [2℄.

However, for DLs providing existential restri
tions the ms
 for 
y
li
 ABoxes


an be approximated by the so-
alled k-approximation. The k-approximation is

a ms
 whose nesting depth of quanti�ers is bounded by k (k 2 N). See [12℄ for

details. On
e in our pro
ess engineering appli
ation the k-approximation or, if

possible, the ms
 of ea
h sele
ted individual blo
k is attained, the subsuming


on
ept|the least 
ommon subsumer|of them is 
omputed. It is de�ned as

follows:

De�nition 7 (l
s) Let T be an L-
on
ept and C

1

, . . . , C

n


on
epts in L

from T , then C is the least 
ommon subsumer (l
s) of C

1

, . . . , C

n

w.r.t.

T (l
s

T

(C

1

; : : : ; C

n

)) i� C

i

v

T

C for all 1 � i � n, and for all L-
on
epts

C

0

, C

i

v

T

C

0

for all 1 � i � n implies C v C

0

.

Thus, both the ms
 and the l
s generalize the input yielding the most spe
i�



on
ept w.r.t. the underlying TBox; only that the ms
 refers to a single ABox

individual while the l
s refers to several 
on
epts based on 
on

epts de�ned in

a TBox.

Example 8 Let us 
onsider the l
s of the 
on
epts FluidTank and Pipeline as

de�ned in the TBox T

ex

from Example 2. First, both 
on
epts have to be un-

folded w.r.t. T

ex

, i.e., all names of de�ned 
onepts are repla
ed re
ursively by the

right-hand sides of their 
on
ept de�nitions. Next, the l
s 
on
ept of both input


on
epts is 
omputed. In this 
ase we obtain:
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l
s

T

ex

(FluidTank;Pipeline) =

Volume u (8 hasConne
tion:Port) u

(8 
ontains: Substan
e) u (9 
ontains: (Substan
e u : Solid)):

The l
s 
on
ept re
e
ts that both input 
on
epts are a Volume, be
ause Volume

lies in the interse
tion of the 
on
ept names on top-level of both input 
on
epts.

For the 
on
ept o

urring in value restri
tions, the l
s algorithm is applied re
ur-

sively for ea
h role. The existential restri
tions in the l
s 
on
ept are obtained

by 
onjoining the 
on
epts in the existential restri
tion and those in their 
or-

responding value restri
tion for ea
h of the input 
on
epts and then re
ursively

applying the l
s algorithm to the obtained 
onjun
tions.

For the DLs introdu
ed in Se
tion 2, the l
s always exists. The l
s (as

well as the ms
, if it exists) is uniquely determined up to equivalen
e. In our

resear
h group, algorithms for the l
s have been developed for several DLs, see

[10, 5, 2, 11℄.

Equipped with the non-standard inferen
es ms
 and the l
s, the demand from

our appli
ation domain to 
onstru
t knowledge bases in a bottom-up fashion 
an

be met. The knowledge engineer sele
ts some fully spe
i�ed blo
ks that should

form the new generi
 blo
k for the repository. Then the blo
ks are automati
ally

translated into individuals in an ABox, representing the parts and properties of

ea
h of the blo
ks. Next, the DL-system 
omputes the ms
 of ea
h of them and

then generalizes them into a single 
on
ept by 
omputing the l
s. The resulting


on
ept is then translated ba
k into the representation used in the modelling

environment and o�ered as a new blo
k to the pro
ess engineer, see Figure 1.

Note that the domain expert is not involved in the \DL-part" of this pro
ess,

therefore our method is suitable for users with little KR expertise.

In our appli
ation, the l
s inferen
e does not only support the bottom-up

approa
h for augmenting the repository. It may in addition be employed to

obtain a well-stru
tured storage in the repository whi
h in turn is ne
essary

for easily retrieving generi
 blo
ks for a possible re-use. So, if a generi
 blo
k

in the repository has many spe
ializations, say B

1

; : : : ; B

n

for a large number

n, and the pro
ess engineer sear
hes for a building blo
k to re-use, inspe
ting

all of the B

i

s to �nd a 
andidate may not be pra
ti
al. New generi
 blo
ks

subsuming some of the B

i

s and thereby providing an intermediate level in the

spe
ialization hierar
hy fa
ilitates browsing it. Su
h intermediate blo
ks 
an

be derived by 
omputing the least 
ommon subsumers of some of the B

i

s and

adding them to the repository.

The l
s w.r.t. TBoxes has been implemented for the DL ALE. As seen in

Example 8, all input 
on
epts have to be unfolded 
ompletely against the un-

derlying TBox before 
omputing the a
tual l
s 
on
ept. It is well-known that

unfolding a 
on
ept 
an 
ause an exponential blow-up of the 
on
ept size [14℄.
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Therefore, the 
on
epts to be handled and|even worse|returned by the l
s al-

gorithm 
an be
ome very large. This does not only slow down the 
omputation

of the l
s, but also yields unreadable 
on
epts. First empiri
al evaluations of our

l
s-implementation applied to TBoxes from the pro
ess engineering domain have

shown that the returned 
on
epts �ll several pages of output and are therefore

too big to be readable and 
omprehensible for a human reader, see [7, 16℄.

Thus, for assessment by domain experts, the resulting 
on
epts have to be

represented more 
ompa
tly. To this end, our resear
h group investigates meth-

ods for �nding a minimal rewriting of a 
on
ept w.r.t. the underlying TBox

[6℄. In a minimal rewriting, parts of the 
on
ept are repla
ed by names de-

�ned in the TBox. The e�e
t of su
h a rewriting is somewhat inverse to un-

folding, e.g., in Example 8 the l
s 
an be represented in a more 
ompa
t way

by using the de�nition in T

ex

and repla
ing the sub-term of the l
s 
on
ept

"Volume u (8 
ontains: Substan
e)" by "Container".

For DLs with existential restri
tions, the 
omputations of a minimal rewriting

involves a high degree of non-determinism. Therefore, we have to resort to

heuristi
s yielding small but not always minimal rewritings. In the 
ase of the

TBox used in our pro
ess engineering appli
ation, for instan
e, employing su
h

heuristi
s to 
on
epts of size 800 yields 
on
epts of size 10. Refer to [7, 16℄ for

details.

Moreover, rewritings 
an be used to \translate" 
on
epts from one DL L

1

into 
on
epts from another, less expressive DL L

2

by 
omputing the best ap-

proximation of the 
on
ept. This servi
e is espe
ially desirable if more inferen
e

servi
es are available in L

2

.

4 Supporting the Modi�
ation Approa
h

Another useful non-standard inferen
e is mat
hing, whi
h was �rst proposed

in the DL-system CLASSIC [13, 9℄. In order to de�ne mat
hing, we need to

introdu
e 
on
ept patterns.

Let L be any of the DLs introdu
ed in Se
tion 2 together with the sets N

C

,

N

R

, and N

I

. Additionally, let N

X

be a �nite set of 
on
ept variables disjoint to

N

C

[N

R

[N

I

. L-
on
ept patterns are L-
on
epts for whi
h in addition 
on
ept

variables 
an be used in the pla
e of 
on
ept names|ex
ept for the fa
t that the

primitive negation (:) may not o

ur in front of variables. A substitution � is a

mapping from N

X

into the set of L-
on
epts. It is extended to 
on
ept patterns

P by repla
ing every o

urren
e of X 2 N

X

in P by �(X). Thus, �(P ) again

is an L-
on
ept. With these preliminaries we 
an de�ne mat
hing problems as

follows:

De�nition 9 (mat
hing problems) An L-mat
hing problem is of the form

C �

?

P , where C is an L-
on
ept and P an L-
on
ept pattern. A substitution

9



� is a mat
her for C �

?

P i� C � �(P ), i.e., � repla
es the variables in P by


on
epts in su
h a way that equivalen
e holds.

As a trivial example, 
onsider the mat
hing problem A u 8r:B �

?

X u 8r:Y .

An appropriate mat
her would be, for instan
e, fX 7! A u 8r:B; Y 7! Bg.

Intuitively, if a 
on
ept 
an be mat
hed against a pattern P , then their syntax

trees share the \upper part", i.e., where P is fully spe
i�ed, while deviations may

o

ur at leaves labelled with variables. Hen
e, the set of all 
on
epts that 
an be

mat
hed against P 
ontains in�nitely many 
on
epts stru
turally similar to P to

some extent. In this sense, mat
hing P against several 
on
epts and returning

those whi
h 
an be mat
hed, 
an be seen as a sear
h with the fully spe
i�ed

part of P as sear
h 
riterion.

Let us return to the pro
ess engineer designing a new generi
 blo
k in a blo
k-

oriented modelling environment as des
ribed in Se
tion 1. For the strategy of

design by modi�
ation, the 
ru
ial step is to �nd a generi
 blo
k in the repository

stru
turally similar to what the knowledge engineer intends to design. As an

example, assume a modelling task for a 
uid tank equipped with a 
ooling system

and an equivalent ba
kup 
ooling system, ea
h with a thermostat 
ontroller. A


onvenient starting point for the design 
ould be a blo
k 
omprising a 
uid tank


ombined with an arbitrary devi
e 
ontrolled by some 
ontrol units and a similar

ba
kup devi
e.

Example 10 With a mat
hing algorithm at hand, relevant generi
 blo
ks 
ould

be found by mat
hing the following 
on
ept pattern against every 
on
ept in the

KB.

9hasPart:(FluidTank u 9hasPart:(:Ba
kupDevi
e uX u 9hasPart:Controller)

u 9hasPart:(Ba
kupDevi
e uX u 9hasPart:Controller))

The pattern spe
i�es blo
ks 
onsisting of at least one 
uid tank equipped with at

least two equivalent 
omponents one of whi
h is a ba
kup devi
e and one not.

Both 
omponents must have a 
ontroller.

The query 
ould thus also return blo
ks with two or more tanks or, for

instan
e, with dupli
ate heating systems or stirring devi
es. Nevertheless, by

additionally retrieving a blo
k representing a single 
ooling devi
e and another

for a single thermostat 
ontrol unit, the engineer is well prepared to 
omplete

the design task eÆ
iently. Naturally, usability issues suggest to hide the formal


onstru
tion of patterns by user-friendly query front-ends.

Note that in all admissible 
on
epts, both o

urren
es of X must be repla
ed

by the same 
on
ept. This stru
tural 
onstraint 
annot be expressed by simple

\wild
ards" familiar from ordinary sear
h engines.

10



Formal means exist for further re�nement of su
h pattern-driven sear
hes.

For the DL ALN , so-
alled side 
onditions have been proposed to restri
t the


on
epts a variable may be repla
ed with [1℄. In the above example, we may

want to restri
t the query to dupli
ate devi
es with, say, temperature-related

fun
tionality. To this end, we 
ould use a side 
ondition of the form

X v

?

ThermalDevi
e;

thus in
luding only those devi
es represented by the 
on
ept ThermalDevi
e.

Apart from supporting the te
hnique of design by modi�
ation, mat
hing 
an

also help to provide maintenan
e support for the blo
k repository, as des
ribed in

Se
tion 1 [8℄. Mat
hing algorithms for de
iding and solving mat
hing problems

have been proposed in the DLsALE andALN [3, 4℄. InALE , the de
ision problem

is NP-
omplete, whereas the 
omputation problem is EXPTIME-
omplete. In

ALN , the de
ision and 
omputation problem are polynomial.

5 Con
lusion and Future Work

We have presented an appli
ation where non-standard inferen
e servi
es 
an

signi�
antly enhan
e the usability of DL-systems. Here these servi
es were pro-

posed to assist pro
ess engineers in their pra
ti
al te
hniques of designing pro
ess

models. These te
hniques, however, are not spe
i�
 to this very domain but ap-

ply to any s
enario where knowledge bases are managed by domain experts with

little expertise in knowledge representation.

With the DLs presented here, not all properties of the des
ribed models 
an

be represented suÆ
iently. The demand for more expressive DLs, however, also

ne
essitates to adapt the existing inferen
e servi
es to new language 
onstru
tors

su
h as quali�ed number restri
tions, transitive roles, and role hierar
hies.

Approa
hes to 
apture the relevant extensions by appropriate algorithms

for non-standard inferen
es are 
urrently studied by our resear
h group. Addi-

tional language 
onstru
tors 
an further in
rease the 
omputational 
omplexity

of su
h algorithms. Nevertheless, experien
e has shown that a high worst-
ase


omplexity often 
an be tolerated as long as a moderate average-
ase 
omplexity

is observed in pra
ti
al appli
ations.

A promising alternative might be to realize non-standard inferen
es for ex-

pressive des
ription logi
s by approximating the input 
on
epts in a less expres-

sive DL, where the desired inferen
es 
an be realized more eÆ
iently.
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