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A Tableau Algorithm for the Clique

Guarded Fragment

Colin Hirs
h and Stephan Tobies

abstra
t. We des
ribe a \modal style" tableau algorithm that

de
ides satis�ability for the 
lique guarded fragment. As a 
orol-

lary of 
onstru
tions used to prove the 
orre
tness of the algo-

rithm, we obtain a new proof for the generalised tree model prop-

erty of the 
lique guarded fragment.

1 Introdu
tion

The Guarded Fragment of �rst-order logi
, introdu
ed by Andr�eka, van

Benthem, and N�emeti (1998), has been a su

essful attempt to trans-

fer many good properties of modal, temporal, and des
ription logi
s to

a larger fragment of predi
ate logi
. Among these are de
idability, the

�nite model property, invarian
e under an appropriate variant of bisim-

ulation, and other ni
e model theoreti
 properties (Andr�eka et al. 1998,

Gr�adel 1999b).

The Guarded Fragment (GF) is obtained from full �rst-order logi


through relativisation of quanti�ers by so-
alled guard formulas. Every

appearan
e of a quanti�er in GF must be of the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is an atomi
 formula, the guard, that 
ontains all free vari-

ables of '. This generalises quanti�
ation in modal and temporal logi
s,

where quanti�
ation is restri
ted to those elements rea
hable via some

a

essibility relation.

By allowing for more general formulas as guards while preserving the

idea of quanti�
ation only over elements that are 
lose together in the

model, one obtains generalisations of GF whi
h are still well-behaved in
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the above sense. Most importantly, one 
an obtain the loosely guarded

fragment (LGF) (van Benthem 1997) and the 
lique guarded fragment

(CGF) (Gr�adel 1999a), for whi
h de
idability, invarian
e under 
lique

guarded bisimulation, and some other properties have been shown in

(Gr�adel 1999a). SuÆ
e to say that both LGF and CGF properly extend

GF, and, with respe
t to senten
es, CGF properly extends LGF, as

shown in (Gr�adel 1999b).

GF, LGF, and CGF are de
idable and known to be 2-ExpTime


omplete, whi
h is shown by Gr�adel (1999a, 1999b) using game and

automata-based approa
hes. While these approa
hes yield (worst-
ase)

optimal 
omplexity results for many logi
s, they appear to be unsuitable

as a starting point for an eÆ
ient implementation|their worst-
ase 
om-

plexity is a
tually their any-
ase 
omplexity. By 
ontrast many de
id-

ability results for modal or des
ription logi
s are based on tableau algo-

rithms (see Ladner 1977, Halpern and Moses 1992, Donini et al. 1997,

or Horro
ks et al. 1999 for examples) and some of the fastest imple-

mentations of modal satis�ability pro
edures are based on tableau 
al-


uli (Horro
ks et al. 2000). Unlike automata algorithms, the average-


ase behaviour in pra
ti
e is so good that �nding really hard problems

to test these implementations has be
ome a problem in itself.

In this paper, we generalise the prin
iples from tableau algorithms

for modal logi
s in order to develop a tableau algorithm for CGF. To

the best of our knowledge, this is the �rst algorithm for CGF that 
an

be used as the basis for an eÆ
ient implementation

1

Re
all the 
onje
ture by Vardi that the tree model property is the

main reason for the de
idability of many modal style logi
s (Vardi 1997).

As pointed out in (Gr�adel 1999b), the generalised tree model property

explains the similarly robust de
idability of guarded logi
s, and 
an

be seen as a strong indi
ation that guarded logi
s are a generalisation

of modal logi
s that retain the essen
e of modal logi
s. This be
omes

even more evident when regarding the respe
tive �xed-point extensions

(Gr�adel 1999a). The generalised tree model property of CGF is also

essential for our tableau algorithm. Indeed, as a 
orollary of the 
on-

stru
tions used to show the soundness of our algorithm, we obtain an

alternative proof for the fa
t that CGF has the generalised tree model

property.

1

There are resolution based de
ision pro
edures for GF and

LGF (Ganzinger and de Nivelle 1999) that are readily implemented using the

saturation theorem prover SPASS (Weidenba
h 1997). While CGF-SAT 
an be

easily redu
ed to LGF-SAT, we believe that dedi
ated CGF algorithms are more

eÆ
ient, 
.f. before De�nition 3.3.
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2 Preliminaries

For the de�nitions of GF and LGF we refer the reader to (Gr�adel 1999a).

The 
lique guarded fragment CGF of �rst-order logi
 
an be obtained in

two equivalent ways, by either semanti
ally or synta
ti
ally restri
ting

the range of the �rst-order quanti�ers. In the following we will use bold

letters to refer to tuples of elements of the universe (a;b; : : : ) resp. tuples

of variables (x;y; : : : ).

De�nition 2.1 (Semanti
 CGF) Let � be a relational vo
abulary.

For a � -stru
ture A with universe A, the Gaifman graph of A is de�ned

as the undire
ted graph G(A) = (A;E

A

) with

E

A

= f(a; a

0

) : a 6= a

0

; there exists R 2 � and

a 2 R

A

whi
h 
ontains both a and a

0

g:

Under 
lique guarded semanti
s we understand the modi�
ation of stan-

dard �rst order semanti
s, where, instead of ranging over all elements of

the universe, a quanti�er is restri
ted to elements that form a 
lique in

the Gaifman graph, in
luding the binding for the free variables of the

matrix formula. More pre
isely, let A be a � -stru
ture and � an environ-

ment mapping variables to elements of A. We de�ne the model relation

indu
tively over the stru
ture of formulas as the usual FO semanti
s

with the ex
eption

A; � j= 8y:'(x; y) i� for all a 2 A su
h that

�(x) [ fag forms a 
lique in G(A)

it is the 
ase that A; �[x 7! a℄ j= ' ,

and a similar de�nition for the existential 
ase. With CGF we denote

�rst order logi
 restri
ted to 
lique guarded semanti
s.

De�nition 2.2 (Synta
ti
 CGF) Let � be a relational vo
abulary. A

formula � is a 
lique-formula for a set x � free(�) if � is a (possibly

empty if x 
ontains only one variable) 
onjun
tion of atoms (ex
luding

equality statements) su
h that ea
h two distin
t elements from x 
oexist

in at least one atom, ea
h atom 
ontains at least an element from x, and

ea
h element from free(�) nx o

urs exa
tly on
e in �. In the following,

we will identify a 
lique-formula � with the set of its 
onjun
ts.

The synta
ti
 CGF is indu
tively de�ned as follows.

1. Every relational atomi
 formula Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to

CGF.

2. CGF is 
losed under boolean operations.
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3. If x;y; z are tuples of variables, �(x;y; z) is a 
lique-formula for

x [ y and '(x;y) is a formula in CGF su
h that free(') � x [ y,

then 9yz:(�(x;y; z) ^ '(x;y))

and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:�(x;y; z))'(x;y) and (8yz:�(x;y; z))'(x;y) as al-

ternative notations for 9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) !

'(x;y)), respe
tively. A formula of the form 8yz:(�(x;y; z) ! '(x;y))

is 
alled universally quanti�ed.

The following Lemma 
an be shown by elementary formula manipu-

lations that exploit that every z 2 z o

urs exa
tly on
e in �.

Lemma 2.3 Let �(x;y; z) be a 
lique-formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y))

� 8y:(9z:�(x;y; z) ! '(x;y)):

The use of the name CGF for both the semanti
 and the synta
ti



lique guarded fragment is justi�ed by the following Lemma.

Lemma 2.4 Over any �nite relational vo
abulary the synta
ti
 and se-

manti
 versions of the CGF are equally expressive.

Proof sket
h: By some elementary equivalen
e transformations, every

synta
ti
ally 
lique guarded formula 
an be brought into a form where

swit
hing from standard semanti
s to 
lique guarded semanti
s does not


hange its meaning. Conversely, for any �nite signature there is a �nite

disjun
tion 
lique(x; y; z) of 
lique-formulas for x; y su
h that a; b form

a 
lique in G(A) i� A j= 9z:
lique(a; b; z). By guarding every quanti�er

with su
h a formula and applying some elementary formula transforma-

tions and Lemma 2.3, we get, for every FO formula  , a synta
ti
ally


lique guarded formula that is equivalent to  under 
lique guarded se-

manti
s. If we �x a �nite relational vo
abulary, this transformation is

polynomial in the number of variables of the formula, or, more pre
isely,

the maximal number of free variables of all subformulas. a

In the following we will only 
onsider the synta
ti
 variant of the


lique guarded fragment.

De�nition 2.5 (NNF, Closure, Width) In the following, all formu-

las are assumed to be in negation normal form (NNF), where negation

o

urs only in front of atomi
 formulas. Every formula in CGF 
an be
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transformed into NNF in linear time by pushing negation inwards using

DeMorgan's law and the duality of the quanti�ers.

For a senten
e  2 CGF in NNF, let 
l( ) be the smallest set that


ontains  and is 
losed under sub-formulas. Let C be a set of 
onstants.

With 
l( ;C) we denote the set


l( ;C) = f'(a) : a � C;'(x) 2 
l( )g:

The width of a formula  2 CGF is de�ned by

width( ) := maxfjfree(')j : ' 2 
l( )g:

3 A Tableau Algorithm for CGF

For various modal and des
ription logi
s, de
idability 
an be shown

by means of tableau algorithms, where satis�ability of a formula  

is de
ided by a synta
ti
ally guided sear
h for a model for  . Exam-

ples for these kind of algorithms 
an be found, e.g., in (Ladner 1977,

Halpern and Moses 1992, Horro
ks et al. 1999). Models are usually rep-

resented by a graph in whi
h the nodes 
orrespond to worlds and the

edges 
orrespond to the a

essibility relations in the model. Ea
h node is

labeled with a set of formulas that this node must satisfy, and new edges

and nodes are 
reated as required by existential modalities. Sin
e many

modal and des
ription logi
s have the tree model property, the graphs

generated by these algorithms are trees, whi
h allows for simpler algo-

rithms and easier implementation and optimisation of these algorithms.

Indeed, some of the fastest implementations of modal or des
ription log-

i
s satis�ability algorithms use tableau 
al
uli (Horro
ks et al. 2000).

For many modal or des
ription logi
s, e.g. K or ALC, termination of

these algorithms is due to the fa
t that the modal depth of the formulas

appearing at a node stri
tly de
reases with every step from the root of

the tree. For other logi
s, e.g., K4, K with the universal modality, or the

expressive DL SHIQ, this is no longer true and termination has to be

enfor
ed by other means. One possibility for this is blo
king, i.e., stopping

the 
reation of new su

essor nodes below a node v if there already is an

an
estor node w that is labeled with similar formulas as v. Intuitively,

in this 
ase the model 
an fold ba
k from the prede
essor of v to w,


reating a 
y
le. Unraveling of these 
y
les re
overs an (in�nite) tree

model. Sin
e the algorithms guarantee that the formulas o

urring in

the label of the nodes stem from a �nite set (usually the sub-formulas of

the input formula), every growing path will eventually 
ontain a blo
ked

node, preventing further growth of this path and (together with a bound

on the degree of the tree) ensuring termination of the algorithm. All these

notions will also be en
ountered in our tableau algorithm for CGF, an

indi
ation for the \modal nature" of CGF, as it is amenable to the same
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te
hniques used su

essfully for modal logi
s.

Our investigation of a tableau algorithm for CGF starts with the

observation that CGF also has some kind of tree model property.

De�nition 3.1 Let � be a relational vo
abulary. A � -stru
ture A has

tree width k if k 2 N is minimal with the following property.

There exists a dire
ted tree T = (V;E) and a fun
tion f : V ! 2

A

su
h that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists v 2 V with a � f(v),

and

� for every a 2 A, the set V

a

= fv 2 V : a 2 f(v)g indu
es a

subtree of T .

Every node v of T indu
es a substru
ture F(v) � A of 
ardinality at

most k+1. The tuple hT; (F(v))

v2T

i is 
alled a tree de
omposition of A.

A logi
 L has the generalised tree model property if there exists a


omputable fun
tion t, assigning to every senten
e  2 L a natural

number t( ) su
h that, if  is satis�able, then  has a model of tree

width at most t( ).

Fa
t 3.2 (Tree Model Prop. for CGF) Every satis�able senten
e  

2 CGF of width k has a 
ountable model of tree width at most k � 1.

This is a simple 
orollary of (Gr�adel 1999a), Theorem 4, where the

same result is given for �CGF, that is CGF extended by a least �xed

point operator.

Fa
t 3.2 is the starting point for our de�nition of a 
ompletion tree

for a formula  2 CGF. A node v of su
h a tree no longer stands for

a single element of the model (as in the modal 
ase), but rather for a

substru
ture F(v) of a tree de
omposition of the model. To this purpose,

we label every node v with a set C(v) of 
onstants (the elements of the

substru
ture) and a subset of 
l( ;C(v)), re
e
ting the formulas that

must hold true for these elements.

To deal with auxiliary elements|elements helping to form a 
lique

in G(A) that are not part of this 
lique themselves|we will use the

auxiliary 
onstant symbol � as a pla
eholder for unspe
i�ed elements in

atoms. The intention is to keep the number of 
onstants at ea
h node

as small as possible. The � will be used for the extra elements o

uring

in 
lique formulas that are not part of the 
lique itself.

The following de�nitions are useful when dealing with these gener-

alised atoms.
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De�nition 3.3 Let K denote an in�nite set of 
onstants and � 62 K.

For any set of 
onstants C � K we set C

�

= C [ f�g. We use t

1

; t

2

; : : :

to range over elements of K

�

. The relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ng

either t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de�ne � 2

�

� i� there is a

�

0

2 � with � �

�

�

0

.

For a set of 
onstants C � K and an atom � = Rt

1

: : : t

n

, we de�ne

� �\ C = Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indi
ate that the tuple a

�

may 
ontain �'s.

Obviously, �

�

is transitive and re
exive, and � �\C �

�

� for all atoms �

and sets of 
onstants C.

While these are all synta
ti
 notions, they have a semanti
 
ounter-

part that 
lari�es the intuition of � standing for an unspe
i�ed element.

Let a

0

denote the tuple obtained from a tuple a

�

by repla
ing every o
-


urren
e of � in a

�

with a distin
t fresh variable, and let z be pre
isely

the variables used in this repla
ement. For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

be
ause, if a�

�

b, then b is obtained from a by repla
ing some � with


onstants, whi
h provide witnesses for the existential quanti�er.

We further write �j

C

to denote the subset of � 
ontaining all formu-

las that only use 
onstants in C.

De�nition 3.4 (Compl. Tree, Tableau) Let  2 CGF be a 
losed

formula in NNF. A 
ompletion tree T = (V;E;C;�;N) for  is a vertex

labeled tree (V;E) with the labeling fun
tion C labeling ea
h node

v 2 V with a subset of K, � labeling ea
h node v 2 V with a subset of


l( ;C(v)

�

) where all formulas �(x; �; : : : ; �) 2 �(v) using � are atoms

(ex
luding equality statements), and the fun
tion N : V ! N mapping

ea
h node to a distin
t natural number, with the additional property

that, if v is an an
estor of w, then N(v) < N(w).

A 
onstant 
 2 K is 
alled shared between two nodes v

1

; v

2

2 V,

if 
 2 C(v

1

) \ C(v

2

), and 
 2 C(w) for all nodes w on the (unique,

undire
ted, possibly empty) shortest path 
onne
ting v

1

to v

2

.



8 / Colin Hirs
h and Stephan Tobies

A node v 2 V is 
alled dire
tly blo
ked

2

by a node w 2 V, if w is not

blo
ked, N(w) < N(v), and there is an inje
tive mapping � from C(v)

into C(w) su
h that, for all 
onstants 
 2 C(v) that are shared between

v and w, �(
) = 
, and �(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the 
onvention �(�) = � for every fun
tion � that

veri�es a blo
king.

A node is 
alled blo
ked if it is dire
tly blo
ked or if its prede
essor

is blo
ked.

A 
ompletion tree T 
ontains a 
lash if there is a node v 2 V su
h

that

� for a 
onstant 
 2 C(v), 
 6= 
 2 �(v), or

� there is an atomi
 formula � and a tuple of 
onstants a � C(v)

su
h that f�(a);:�(a)g � �(v).

Otherwise, T is 
alled 
lash-free. A 
ompletion tree T is 
alled 
omplete

if none of the 
ompletion rules given in Figure 1 
an be applied to T. A


omplete and 
lash-free 
ompletion tree for  is 
alled a tableau for  .

To test  for satis�ability, the tableau algorithm 
reates an initial

tree with only a single node v

0

, �(v

0

) = f g and C(v

0

) = fa

0

g for an

arbitrary 
onstant a

0

. The rules from Figure 1 are applied until either

a 
lash o

urs, produ
ing output \ unsatisfiable", or the tree is


omplete, in whi
h 
ase \ satisfiable" is output.

The setC(v

0

) is initialised with a non-empty set of 
onstants to make

sure that empty stru
tures are ex
luded.

While our notion of tableaux has many similarities to the tableaux

appearing in (Gr�adel and Walukiewi
z 1999), there are two important

di�eren
es that make the version used here more suitable as basis for a

tableau algorithm.

We will see that every 
ompletion tree generated by the tableau algo-

rithm is �nite. Conversely, tableaux in (Gr�adel and Walukiewi
z 1999),

in general, 
an be in�nite.

Also, in (Gr�adel and Walukiewi
z 1999) every node is labeled with

a 
omplete ( ;C(v))-type, i.e., every formula ' 2 
l( ;C(v)) is expli
-

itly asserted true of false at v. Conversely, a 
ompletion tree 
ontains

only assertions about relevant formulas. This implies a lower degree of

non-determinism in the algorithm, whi
h is important for an eÆ
ient

implementation.

2

The de�nition of blo
king is re
ursive. This does not 
ause any problems be
ause

the status of a node v only depends on its label and the status of nodes w with

N(w) < N(v). The re
ursion terminates at the root node, where the N-value is

minimal.
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R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [ f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [ f�g for � 2 f'; #g (
hosen non-deterministi
ally)

R= : if a = b 2 �(v); a 6= b

then for all w that share a with v;

C(w) := (C(w) n fag) [ fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y) 2 �(v); there exists a b � C(v)

su
h that for all atoms �(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v);

and '(a;b) 62 �(v)

then �(v) := �(v) [ f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y) 2 �(v) and for every b; 
 � C(v);

f�(a;b; 
); '(a;b)g 6� �(v) and there is no 
hild w of v

with f�(a;b; 
); '(a;b)g � �(w) for some b; 
 � C(w)

and v is not blo
ked

then let b; 
 be sequen
es of distin
t and fresh 
onstants that

mat
h the lengths of y; z;


reate a 
hild w of v with C(w) := a [ b [ 
 and

�(w) := f�(a;b; 
); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi
; not an equality, w is a neighbour of v

with a

�

\C(w) 6= ;; and �(a

�

) �\C(w) 62 �(w)

then �(w) := �(w) [ f�(a

�

) �\C(w)g

Rl8 : if '(a) 2 �(v); '(a) is univ. quanti�ed; and w is a neighbour of v

with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [ f'(a)g

FIGURE 1 The Completion Rules for CGF

Theorem 3.5 The tableau algorithm is a (non-deterministi
) de
ision

pro
edure for CGF-satis�ability.

Proof: This is an immediate 
onsequen
e of the following fa
ts estab-

lished in the subsequent se
tions.

1. Every sequen
e of rule appli
ations terminates after a �nite num-

ber of steps. (Termination, Lemma 3.7)

2. If  is satis�able, then the rules 
an be applied to generate a

tableau for  . (Completeness, Lemma 3.8)

3. If the algorithm 
onstru
ts a tableau for  , then  is satis�able

(Soundness, Lemma 3.11). a

3.1 Termination

The following te
hni
al lemma is a 
onsequen
e of the 
ompletion rules

and the blo
king 
ondition.
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Lemma 3.6 Let  2 CGF be a senten
e in NNF with j j = n, width( )

= m, and T a 
ompletion tree generated for  by appli
ation of the rules

in Figure 1. For every node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distin
t nodes in T 
ontain a blo
ked node.

Proof: Nodes are only generated when intialising the tree (with a sin-

gleq 
onstant) and by the R9-rule and no 
onstants are added to a C(v)

on
e v has been generated (but some may be removed by appli
ation of

the R=-rule).

When triggered by the formula (9yz:�(a;y; z))'(a;y), the R9-rule

initializes C(w) su
h that it 
ontains a and another 
onstant for every

variable in x and y. Hen
e,

jC(w)j � ja [ y [ zj � jfree(�)j � width( ):

The set �(v) is a subset of 
l( ;C(v)

�

), for whi
h j
l( ;C(v))j �

n� (m+1)

m

holds be
ause there are at most n formulas in 
l( ), ea
h

of whi
h has at most m free variables. There are at most (jC(v)j + 1)

m

distin
t sequen
es of length m with 
onstants from C(v)

�

.

Let v

1

; : : : ; v

`

be ` > 2

n�(m+1)

m

distin
t nodes. For every v

i

, we will


onstru
t an inje
tive mapping �

i

: C(v

i

) ! f1; : : :mg su
h that, if a


onstant a is shared between two nodes v

i

; v

j

, then �

i

(a) = �

j

(a).

Let u

1

; � � � ; u

k

denote the nodes of a subtree of T that 
ontains every

node v

i

and that is rooted at u

1

. By indu
tion over the distan
e to

u

1

, we de�ne an inje
tive mapping �

i

: C(u

i

) ! f1; : : : ;mg for every

i 2 f1; : : : ; kg as follows. For �

1

we pi
k an arbitrary inje
tive fun
tion

from C(u

1

) to f1; : : : ;mg. For a node u

i

let u

j

be the prede
essor of u

i

in T and �

j

the 
orresponding fun
tion, whi
h has already been de�ned

be
ause u

j

has a smaller distan
e to u

1

than u

i

. For �

i

we 
hoose an

arbitrary inje
tive fun
tion su
h that �

i

(a) = �

j

(a) for all a 2 C(u

i

) \

C(u

j

).

All mappings �

i

are inje
tive. For any 
onstant a the set V

a

:= fv 2

V j a 2 C(v)g indu
es a subtree of T. If u

i

; u

j

2 V

a

are neighbours, the

de�nition above ensures �

i

(a) = �

j

(a). By indu
tion over the length of

the shortest 
onne
ting path we obtain the same for arbitrary u

i

; u

j

2

V

a

.

For every node v

i

there is a j

i

su
h that v

i

= u

j

i

and we set �

i

= �

j

i

.

There are at most 2

n�(m+1)

m

distin
t subsets of 
l( ; f1; : : : ;m; �g).

Hen
e, there must be two nodes v

i

; v

j

su
h that �

i

(�(v

i

)) = �

j

(�(v

j

))

and, w.l.o.g., N(v

i

) < N(v

j

). This implies that v

j

is blo
ked by v

i

via

� := �

�1

i

Æ�

j

. Note that for � to be well-de�ned, �

i

must be inje
tive. By
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onstru
tion, � preserves shared 
onstants. Sin
e �

i

(�(v

i

)) = �

j

(�(v

j

)),

�(�(v

j

)) = �(v

i

)j

�(C(v

j

))

holds. a

Lemma 3.7 (Termination) Let  2 CGF be a senten
e in NNF. Any

sequen
e of rule appli
ations of the tableau algorithm starting from the

initial tree terminates.

Proof: For any 
ompletion tree T generated by the tableau algorithm,

we de�ne k � k : V 7! N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) : ' triggers the R9-rule for vgj):

The lexi
ographi
 order � on N

3

is well-founded, i.e. it has no in�nite

de
reasing 
hains. Any rule appli
ation de
reases kvk w.r.t. � for at

least one node v, and never in
reases kvk w.r.t. � for an existing node

v. However it may 
reate new su

essors, one at a time. Sin
e � is well-

founded, there 
an only be a �nite number of appli
ations of rules to

every node in T and hen
e a �nite number of su

essors and an in�nite

sequen
e of rule appli
ations would generate a tree of in�nite depth.

Yet, as a 
orollary of Lemma 3.6, we have that the depth of T is

bounded by 2

n�(m+1)

m

. For assume that there is a path of length >

2

n�(m+1)

m

in T with deepest node v. By the time v has been 
reated

(by an appli
ation of the R9-rule to its prede
essor u), the path from the

root of T to u 
ontains at least 2

n�(m+1)

m

nodes, and hen
e a blo
ked

node. This implies that u is blo
ked too, and the R9-rule 
annot be

applied to 
reate v. a

3.2 Completeness

Lemma 3.8 Let  2 CGF be a 
losed formula in NNF. If  is sat-

is�able, then there is a sequen
e of rule appli
ations starting from the

initial tree that yields a tableau.

Proof: Sin
e  is satis�able, there is a model A of  . We will use A

to guide the appli
ation of the non-deterministi
 R_-rule. For this we

in
remently de�ne a fun
tion g :

S

fC(v) j v 2 Vg ! A su
h that

for all v 2 V : A j= g(�(v)). We refer to this property by (x).

The set �(v) 
an 
ontain atomi
 formulas �(a

�

), where � o

urs at

some positions of a

�

. The 
onstant � is not mapped to an element of A

by g. We deal with this as des
ribed just after De�nition 3.3 by setting

A j= g(�(a

�

)) i� A j= 9z:g(�(a

0

)):
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Claim 3.9 If, for a 
ompletion tree T, there exists a fun
tion g, su
h

that (x) holds and a rule is appli
able to T, then it 
an be applied in a

way that maintains (x).

� For the R^- and the R_-rule this is obvious.

� If the R=-rule is appli
able to v 2 V with a = b 2 �(v), then,

sin
e A j= g(a) = g(b), g(a) = g(b) must hold. Hen
e, for every

node w that shares a with v, g(�(w)) = g(�(w)[a 7! b℄) and the

rule 
an be applied without violating (x).

� If the R8-rule is appli
able to v 2 V with (8yz:�(a;y; z))'(a;y) 2

�(v) and b � C(v) with �(a;b; � � � � �) 2

�

�(v) for all atoms

�(x;y; z) 2 �, then, from the de�nition of 2

�

, there is a tuple 


�

�

C(v)

�

, su
h that �(a;b; � � � � �) �

�

�(a;b; 


�

) and �(a;b; 


�

) 2

�(v). From (x) we get that A j= 9z:�(g(a); g(b); z) and sin
e ev-

ery z 2 z appears exa
tly on
e in �, also A j= 9z:�(g(a); g(b); z).

Hen
e, we have

fA j= f8yz:�(g(a);y; z)) ! '(g(a);y);

9z:�(g(a); g(b); z)g

whi
h, by Lemma 2.3, implies A j= '(g(a); g(b)) and hen
e '(a;b)


an be added to �(v) without violating (x).

� If the R9-rule is appli
able to v 2 V with (9yz:�(a;y; z))'(a;y),

then this implies

A j= g((9yz:�(a;y; z))'(a;y)):

Hen
e, there are sequen
es b

0

; 


0

� A of elements su
h that A j=

f�(g(a);b

0

; 


0

); '(g(a);b

0

)g. If we de�ne g su
h that g(b) = b

0

and g(
) = 


0

, then obviously A j= fg(�(a;b; 
); g('(a;b))g. Note,

that this might involve setting g(b

1

) = g(b

2

) for some b

1

; b

2

2 b.

With this 
onstru
tion the resulting extended 
ompletion-tree T

and extended fun
tion g again satisfy (x).

� If the Rl-rule is appli
able to v 2 V with �(a

�

) 2 �(v) and a

neighbour w with a

�

\ C(w) 6= ;, then it adds �(a

�

) �\ C(w) to

�(w). From (x) we get that A j= �(g(a

�

)), and sin
e �(b

�

) :=

�(a

�

) �\C(w) �

�

�(a

�

), this implies A j= �(g(b

�

)). Hen
e, adding

�(a

�

) �\C(w) = �(b

�

) to �(w) does not violate (x).

� If the Rl8-rule is appli
able to a node v 2 V with a universally

quanti�ed formula '(a) 2 �(v) and a neighbour w whi
h shares a

with v, (x) yields A j= '(g(a)). Hen
e, adding '(a) to �(w) does

not violate (x).

Claim 3.10 A 
ompletion-tree T for whi
h a fun
tion g exists su
h that

(x) holds is 
lash free.
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Assume that T 
ontains a 
lash, namely, there is a node v 2 V

su
h that either a 6= a 2 V(v)|implying A j= g(a) 6= g(a)|, or

that there is a sequen
e a � C(v), and an atomi
 formula � su
h that

f�(a);:�(a)g � �(v). From (x), A j= f�(g(a));:�(g(a))g would follow,

also a 
ontradi
tion.

These 
laims yield Lemma 3.8 as follows. Let T be a tableau for

 . Sin
e A j=  , (x) is satis�ed for the initial tree together with the

fun
tion g mapping a

0

to an arbitrary element of the universe of A. By

Lemma 3.7, any sequen
e of appli
ations is �nite, and from Claim 3.9

we get that there is a sequen
e of rule-appli
ations that maintains (x).

By Claim 3.10, this sequen
e results in a tableau. This 
ompletes the

proof of Lemma 3.8. a

Lemma 3.8 involves two di�erent kinds of non-determinism, namely,

the 
hoi
e whi
h rule to apply to whi
h 
onstraint (as several rules might

be appli
able simultaneously), and whi
h disjun
t to 
hoose in an appli-


ation of the R_-rule. While the latter 
hoi
e is don't-know non-deter-

ministi
, i.e., for a satis�able formula only 
ertain 
hoi
es will lead to the

dis
overy of a tableau, the former 
hoi
e is don't-
are non-deterministi
.

This means that arbitrary 
hoi
es of whi
h rule to apply next will lead

to the dis
overy of a tableau for a satis�able formula. For an imple-

mentation of the tableau algorithm this has the following 
onsequen
es.

Exhaustive sear
h is ne
essary to deal with all possible expansions of

the R_-rule, but arbitrary strategies of 
hoosing whi
h rule to apply

next, and where to apply it, will lead to a 
orre
t implementation, al-

though the eÆ
ien
y of the implementation will strongly depend on a

sophisti
ated strategy.

3.3 Corre
tness

In order to prove the 
orre
tness of the tableau algorithm we have to

show that the existen
e of a tableau for  implies satis�ability of  .

To this purpose, we will 
onstru
t a model from a tableau. From the


onstru
tion employed in the proof we obtain an alternative proof of

Fa
t 3.2.

Lemma 3.11 Let  2 CGF[� ℄ with k = width( ) and let T be a tableau

for  generated by the tableau algorithm. Then  is satis�able and has

a model of tree width at most k � 1.

Proof: Let T = (V;E;C;�;N) a tableau for  . For every dire
t

blo
king situation we �x a mapping � verifying this blo
king. Using an

unraveling 
onstru
tion, we will 
onstru
t a model A for  of width

at most k � 1 from T. First, we \unravel" blo
king situations in T by
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su

essively repla
ing every blo
ked node with a 
opy of the subtree of T

rooted at the blo
king node. Formally, this is a
hieved by the following

path 
onstru
tion. We de�ne

V

u

= fv 2 V : v is not blo
ked or dire
tly blo
ked g:

Sin
e from now on we only deal with nodes from V

u

, every blo
king is

dire
t and we will no longer expli
itly mention this fa
t.

The set Paths(T) is indu
tively de�ned by

3

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

and w is not blo
ked,

then [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2 Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

blo
ked by the node

u 2 V, then [

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

being a su

essor of p if p

0

is

obtained from p by 
on
atenating one element

u

w

at the end. We de�ne

the auxiliary fun
tions Tail;Tail

0

by setting Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄.

Intuitively, for every node v of T, the paths p 2 Paths(T) with

v = Tail(p) stand for distin
t 
opies of v 
reated by the unraveling.

The universe of A 
onsists of (
lasses of) 
onstants labeling nodes in T

paired with the paths at whose Tail they appear to distinguish 
onstants

o

uring at di�erent 
opies of a node of T. Formally, we de�ne

C(T) = f(a; p) : p 2 Paths(T) ^ a 2 C(Tail(p))g:

Constants appearing at 
onse
utive nodes of T stand for the same ele-

ment and the same holds for 
onstants related by a mapping � verifying

a blo
k. Hen
e, to obtain the universe of A, we fa
toriseC(T) as follows.

Let � be the smallest symmetri
 relation on C(T) satisfying

� (a; p) � (a; q) if q is a su

essor of p in Paths(T), Tail

0

(q) is an

unblo
ked su

essor of Tail(p), and a 2 C(Tail(p)) \C(Tail

0

(q)),

� (a; p) � (b; q) if q is a su

essor of p in Paths(T), Tail

0

(q) is a

blo
ked su

essor of Tail(p), a 2 C(Tail(p)) \ C(Tail

0

(q)), and

�(a) = b for the fun
tion � that veri�es that Tail

0

(q) is blo
ked

by Tail(q).

With � we denote the re
exive, transitive 
losure of � and with [a; p℄

�

the 
lass of (a; p), i.e., the set f(b; q) 2 C(T) j (b; q) � (a; p)g. Sin
e

3

This 
ompli
ated form of unraveling, where we re
ord both blo
ked and blo
king

node is ne
essary be
ause there might be a situation where two su

essors v

1

; v

2

of

a node are dire
tly blo
ked by the same node w.
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(a; p) � (b; q) i� p; q are neighbours in Paths(T), for every (a; p), the set

Paths([a; p℄

�

) := fq j 9b:(b; q) 2 [a; p℄

�

g

is a subtree of Paths(T).

The 
lasses of C(T)= � will be the elements of the universe of A.

First we need to prove some te
hni
alities for this 
onstru
tion.

Claim 3.12 Let p 2 Paths(T) and a; b 2 C(Tail(p)). Then (a; p) � (b; p)

i� a = b.

Assume the 
laim does not hold and let a 6= b with (a; p) � (b; p). By

de�nition of �, (a; p) 6� (b; p) must hold. Hen
e, there must be a path

(


1

; p

1

) � � � � � (


k

; p

k

) su
h that a = 


1

, b = 


k

, and p = p

1

= p

k

.

W.l.o.g., assume we have pi
ked a; b; p su
h that this path has minimal

length k. Su
h a minimal path must be of length k = 3, for if we assume a

path of length k > 3, there must be 2 � i < j � k� 1 su
h that p

i

= p

j

,

be
ause the relation � is de�ned along paths in the tree Paths(T). If




i

= 


j

then we 
an shorten the path between position i and j and

obtain a shorter path. If 


i

6= 


j

, then the path (


i

; p

i

) � � � � � (


j

; p

j

)

is also a shorter path with the same properties. Hen
e, a minimal path

must be of the form (a; p) � (
; q) � (b; p). If Tail

0

(q) is not blo
ked, by

the de�nition of �, a = 
 = bmust hold. Hen
e, sin
e a 6= b, Tail

0

(q) must

be blo
ked by Tail(q). From the de�nition of � we have a; b 2 C(Tail

0

(q))

and �(a) = 
 = �(b) for the fun
tion � verifying that Tail

0

(q) is blo
ked

by Tail(q). Sin
e � must be inje
tive, this is a 
ontradi
tion.

Sin
e the set Paths(T) is a tree, and as a 
onsequen
e of Claim 3.12,

we get the following.

Claim 3.13 Let p; q 2 Paths(T) with p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄, q = [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄.

If, for a 2 C(v

n

); b 2 C(w), (a; p) � (b; q) then (a; p) � (b; q).

If (a; p) � (b; q) then there must be a path (


1

; p

1

) � � � � � (


k

; p

k

)

su
h that a = 


1

, b = 


k

, p = p

1

, and q = p

k

. Sin
e � is only de�ned

along paths in the tree Paths(T), there must be a step from p to q

(or, dually, from q to p) in this path, more pre
isely, there must be an

i 2 f1; : : : k � 1g su
h that p

i

= p and p

i+1

= q holds. Hen
e, we have

the situation

(a; p) � (


i

; p) � (


i+1

; q) � (b; q):

Claim 3.12 implies a = 


i

and b = 


i+1

and hen
e (a; p) � (b; q).

Using Claim 3.13, we 
an show that the blo
king 
ondition and the

Rl- and Rl8-rule work as desired.
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Claim 3.14 Let p; q 2 Paths(T), a � C(Tail(p));b � C(Tail(q)), a;b

non-empty tuples, and (a; p) � (b; q).

� For every atom �, �(a; � � � � �) 2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universally quanti�ed ', '(a) 2 �(Tail(p)) i� '(b) 2

�(Tail(q)).

Sin
e both propositions are symmetri
, we only need to prove one

dire
tion. If (a; p) � (b; q) with a = a

1

a

2

: : : a

m

and b = b

1

b

2

: : : b

m

,

then

fp; qg �

m

\

i=1

Paths([a

i

; p℄

�

)

and, as an interse
tion of subtrees of Paths(T),

T

m

i=1

Paths([a

i

; p℄

�

) is

itself a subtree of Paths(T). Hen
e, in Paths(T) there is a path p

1

; : : : ; p

k

for whi
h there exist tuples of 
onstants 


1

; : : : ; 


k

with (


1

; p

1

) � � � � �

(


k

; p

k

), p = p

1

, q = p

k

, a = 


1

, and b = 


k

. Sin
e a;b are non-empty, so

are the 


i

. From Claim 3.13, we get that for any two neighbours p

i

; p

i+1

in Paths(T), (


i

; p

i

) � (


i+1

; p

i+1

) implies (


i

; p

i

) � (


i+1

; p

i+1

).

By two similar indu
tions on i with 1 � i � k we show that if

�(a; � � � � �) 2

�

�(Tail(p)) then �(


i

; � � � � �) 2

�

�(Tail(p

i

)) and if '(a) 2

�(Tail(p)) then '(


i

) 2 �(Tail(


i

)).

For i = 1 in both 
ases nothing has to be shown. Now assume that

the we have shown these properties up to i. W.l.o.g., assume p

i+1

is a

su

essor of p

i

in the tree Paths(T). The other 
ase is handled dually.

There are two possibilities:

� Tail

0

(p

i+1

) is not blo
ked. Then Tail(p

i+1

) = Tail

0

(p

i+1

) and by

the de�nition of �, Tail(p

i+1

) is a su

essor of Tail(p

i

) in T and




i

= 


i+1

holds.

If �(a; � � � � �) 2

�

�(Tail(p)) then �(


i

; � � � � �) 2

�

�(Tail(p

i

)) holds

by indu
tion and due to the Rl-rule, this implies �(


i+1

; � � � � �)2

�

�(Tail(p

i+1

)). The Rl-rule is appli
able be
ause, for the the non-

empty tuple 


i

, 


i

= 


i+1

� C(Tail(p

i+1

)) holds.

If '(a) 2 �(Tail(p)) then by indu
tion '(


i

) 2 �(Tail(p

i

)) and

due to the Rl8-rule this implies '(


i+1

) 2 �(Tail(p

i+1

)).

� Tail

0

(p

i+1

) is blo
ked by Tail(p

i+1

) (with fun
tion �) and Tail

0

(p

i+1

)

is a su

essor of Tail(p

i

) in T. Then, by de�nition of � we have




i+1

= �(


i

) and 


i

� C(Tail(p

i

)) \C(Tail

0

(p

i+1

)).

If �(a; � � � � �) 2

�

�(Tail(p)) then �(


i

; � � � � �) 2

�

�(Tail(p

i

)) holds

by indu
tion and due to the Rl-rule this implies �(


i

; � � � � �) 2

�

�(Tail

0

(p

i+1

)). The Rl-rule is appli
able be
ause, for the non-

empty tuple 


i

, 


i

� C(Tail

0

(p

i+1

)) holds. The node Tail(p

i+1

)



A Tableau Algorithm for the Clique Guarded Fragment / 17

blo
ks Tail

0

(p

i+1

), whi
h implies

�(�(


i

; � � � � �)) = �(


i+1

; � � � � �) 2

�

�(Tail(p

i+1

)):

If '(a) 2 �(Tail(p)) then by indu
tion '(


i

) 2 �(Tail(p

i

)) and due

to the Rl8-rule this implies '(


i

) 2 �(Tail

0

(p

i+1

)). Sin
e Tail(p

i+1

)

blo
ks Tail

0

(p

i+1

), �('(


i

)) = '(


i+1

) 2 �(Tail(p

i+1

)) holds.

We now de�ne the stru
ture A over the universe A = C(T)=�. For

a relation R 2 � of arity m, R

A

is de�ned to be the set of tuples

([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) for whi
h there exists a path p 2 Paths(T)

and 
onstants 


1

; : : : 


m

su
h that (


i

; p) � (a

i

; p

i

) for all 1 � i � m, and

R


1

: : : 


m

2 �(Tail(p)).

It remains to show that this 
onstru
tion yields A j=  . This is a


onsequen
e of the following 
laim.

Claim 3.15 For every path p 2 Paths(T) and a � C(Tail(p)), if '(a) 2

�(Tail(p)), then A j= '([a; p℄

�

).

We show this 
laim by indu
tion on the stru
ture of '. If '(a) =

Ra

1

: : : a

m

2 �(Tail(p)), then the 
laim holds immediately by 
onstru
-

tion of A.

Assume '(a) = :Ra 2 �(Tail(p)), but [a; p℄

�

2 R

A

. Then, by the

de�nition of A, there must be a path p

0

and 
onstants 
 su
h that (a; p) �

(
; p

0

) and R
 2 �(Tail(p

0

)). From Claim 3.14 we have that (a; p) �

(
; p

0

) implies Ra2

�

�(Tail(p)) and, sin
e a 
ontains no o

urren
e of �,

Ra 2 �(Tail(p)). Hen
e T 
ontains the 
lash fRa;:Rag � �(Tail(p)),

a 
ontradi
tion to the fa
t that T is 
lash-free. Thus, [a; p℄

�

62 R

A

.

Assume '(a) = a 6= b 2 �(Tail(p)) but [a; p℄

�

= [b; p℄

�

. From

Claim 3.12 we get that this implies a = b and hen
e T 
ontains the


lash a 6= a 2 �(Tail(p)). Again, this is a 
ontradi
tion to the fa
t that

T is 
lash-free and [a; p℄

�

6= [b; p℄

�

must hold.

For positive Boolean 
ombinations the 
laim is immediate due to the

R^- and R_-rule.

Let '(a) = (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)) and b;p; 
;q arbi-

trarily 
hosen with

(1) A j= �([a; p℄

�

; [b;p℄

�

; [
;q℄

�

):

We need to show that also A j= �([a; p℄

�

; [b;p℄

�

) holds. In order to bring


ompleteness of T and the R8-rule into play, we show that information

about the fa
t that (1) holds is present at a single node in T where it

triggers the R8-rule. We rely on the fa
t that universal quanti�ers must

be guarded.

Every y

i

2 y 
oexists with every other variable y

j

2 y in at least

one atom �

(i;j)

2 �(a;y; z) and with every element a

`

2 a in at least



18 / Colin Hirs
h and Stephan Tobies

one atom 


(i;`)

2 �(a;y; z). For any two distin
t variables y

i

; y

j

, A j=

�

(i;j)

([a; p℄

�

; [b;p℄

�

; [
;q℄

�

) holds and this 
an only be the 
ase if there

is a path q

(i;j)

and 
onstants d

(i;j)

; e

(i;j)

su
h that (b

i

; p

i

) � (


(i;j)

; q

(i;j)

)

and (b

j

; p

j

) � (d

(i;j)

; q

(i;j)

).

Similarly, for every element [b

i

; p

i

℄

�

2 [b;p℄

�

and every element

(a

`

; p) there exists a path r

(i;`)

and 
onstants f

(i;`)

; g

(i;`)

su
h that

(b

i

; p

i

) � (f

(i;`)

; r

(i;`)

) and (a

`

; p) � (g

(i;`)

; r

(i;`)

). For every i and `,

Paths([b

i

; p

i

℄

�

) and Paths([a

`

; p℄

�

) are subtrees of Paths(T).

The tree Paths([b

i

; p

i

℄

�

) overlaps with the tree Paths([b

j

; p

j

℄

�

) at

q

(i;j)

and with the tree Paths([a

`

; p℄

�

) at r

(i;`)

. From this it follows

(Golumbi
 1980, Proposition 4.7) that there exists a 
ommon path

s 2

\

i

Paths([b

i

; p

i

℄

�

) \

\

`

Paths([a

`

; p℄

�

):

Thus, there are tuples a

0

, b

0

su
h that

(2) (a

0

; s) � (a; p) and (b

0

; s) � (b;p):

We now show that the pre
onditions of the R8-rule are satis�ed at

Tail(s) for the formula (8yz:�(a

0

;y; z))�(a

0

;y) and the tuple b

0

. First,

due to Claim 3.14, (8yz:�(a

0

;y; z))�(a

0

;y) 2 �(Tail(s)) holds be
ause

(a; p) � (a

0

; s) and (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)).

For every �(x;y; z) 2 �(x;y; z), �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)) holds

as follows: from (1,2) we get

A j= �([a

0

; s℄

�

; [b

0

; s℄

�

; [
;q℄

�

):

Sin
e � is an atom, this implies the existen
e of a path t and tuples

a

00

;b

00

; 


0

with

(3)

(a

0

; s) � (a

00

; t); (b

0

; s) � (b

00

; t); (
;q) � (


0

; t)

and �(a

00

;b

00

; 


0

) 2 �(Tail(t))

It holds that �(a

00

;b

00

; � � � � �) �

�

�(a

00

;b

00

; 


0

) and sin
e �(a

00

;b

00

; 


0

) 2

�(Tail(t)), �(a

00

;b

00

; � � � � �) 2

�

�(Tail(t)). Thus, by Claim 3.14 it holds

that �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)).

Sin
e this is true for every atom �, the pre
onditions of the R8-rule

are satis�ed and the 
ompleteness of T yields �(a

0

;b

0

) 2 �(Tail(s)). By

indu
tion, A j= �([a

0

; s℄

�

; [b

0

; s℄

�

) holds and together with (2) this im-

plies A j= �([a; p℄

�

; [b;p℄

�

). Sin
e a;p; 
;q have been 
hose arbitrarily,

A j= '([a; p℄

�

) holds.

If '(a) = (9yz:�(a;y; z))�(a;y) 2 �(Tail(p)), there are two possi-

bilities:

� there are b; 
 � C(Tail(p)) with f�(a;b; 
); �(a;b)g � �(Tail(p)).

Then, by indu
tion, we have

A j= f�([a; p℄

�

; [b; p℄

�

; [
; p℄

�

); �([a; p℄

�

; [b; p℄

�

)g
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and hen
e A j= '([a; p℄

�

).

� there are no su
h b; 
 � C(Tail(p)), then there is a su

essor w

of Tail(p) and b; 
 � C(w) with f�(a;b; 
); �(a;b)g � �(w). The

node w 
an be blo
ked or not.

If w is not blo
ked, then p

0

= [p;

w

w

℄ 2 Paths(T) and by indu
tion

A j= f�([a; p

0

℄

�

; [b; p

0

℄

�

; [
; p

0

℄

�

); �([a; p

0

℄

�

; [b; p

0

℄

�

)g:

From the de�nition of � we have, (a; p

0

) � (a; p) and hen
e A j=

'([a; p℄

�

).

If w is blo
ked by a node u (with fun
tion �) then p

0

= [p;

u

w

℄ 2

Paths(T). From the blo
king 
ondition, we have that u is unblo
ked

and �f�(a;b; 
); �(a;b)g) � �(u). Hen
e, by indu
tion

A j= f �([�(a); p

0

℄

�

; [�(b); p

0

℄

�

; [�(
); p

0

℄

�

);

�([�(a); p

0

℄

�

; [�(b); p

0

℄

�

) g;

and by de�nition of � we have that (a; p) � (�(a); p

0

) and hen
e,

A j= '([a; p℄

�

).

As a spe
ial instan
e of Claim 3.15 we get that A j=  . From

Lemma 3.6, we get that, for every node v 2 V, jC(v)j � width( )

and hen
e the tree Paths(T) together with the fun
tion f : Paths(T)!

C(T)=� with f(p) = C(Tail(p))=� provides a tree de
omposition of A

of width � width( )� 1. This 
ompletes the proof of Lemma 3.11. a

Corollary 3.16 CGF, and hen
e also LGF and GF have the generalised

tree model property.

Proof: Let  2 CGF[� ℄ be satis�able. Then, from Lemma 3.8 we get

that there is a tableau T for  . By Lemma 3.11, T indu
es a model for

 of tree width at most width( ) � 1. Note that we have never relied

on Fa
t 3.2 to obtain any of the results in this paper and hen
e have

indeed given an alternative proof for the generalised tree model property

of CGF. For LGF and GF, observe that the embedding of these logi
s

into CGF may in
rease the width of the senten
e but not by more than

a re
ursive amount. a

4 Con
lusion

We have developed a tableau algorithm for CGF, whi
h we hope 
an

serve as basis for an eÆ
ient implementation of a de
ision pro
edure for

CGF. This hope is justi�ed by the fa
t that some of the most eÆ
ient

implementations of modal or des
ription logi
 reasoners are based on

tableau 
al
uli similar to the one for CGF presented in this paper. As a


orollary from the 
onstru
tions used to prove the 
orre
tness we obtain
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a new proof of the fa
t that GF=LGF=CGF have the generalised tree

model property.
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