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A Tableau Algorithm for the Clique
Guarded Fragment

CoLIN HIRSCH AND STEPHAN TOBIES

ABSTRACT. We describe a “modal style” tableau algorithm that
decides satisfiability for the clique guarded fragment. As a corol-
lary of constructions used to prove the correctness of the algo-
rithm, we obtain a new proof for the generalised tree model prop-
erty of the clique guarded fragment.

1 Introduction

The Guarded Fragment of first-order logic, introduced by Andréka, van
Benthem, and Németi (1998), has been a successful attempt to trans-
fer many good properties of modal, temporal, and description logics to
a larger fragment of predicate logic. Among these are decidability, the
finite model property, invariance under an appropriate variant of bisim-
ulation, and other nice model theoretic properties (Andréka et al. 1998,
Gréadel 1999b).

The Guarded Fragment (GF) is obtained from full first-order logic
through relativisation of quantifiers by so-called guard formulas. Every
appearance of a quantifier in GF must be of the form

Jy(a(x,y) Ap(x,y)) or Vy(a(x,y) = ¢(x,y)),

where « is an atomic formula, the guard, that contains all free vari-
ables of ¢. This generalises quantification in modal and temporal logics,
where quantification is restricted to those elements reachable via some
accessibility relation.

By allowing for more general formulas as guards while preserving the
idea of quantification only over elements that are close together in the
model, one obtains generalisations of GF which are still well-behaved in
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the above sense. Most, importantly, one can obtain the loosely guarded
fragment (LGF) (van Benthem 1997) and the clique guarded fragment
(CGF) (Grédel 1999a), for which decidability, invariance under clique
guarded bisimulation, and some other properties have been shown in
(Gradel 1999a). Suffice to say that both LGF and CGF properly extend
GF, and, with respect to sentences, CGF properly extends LGF, as
shown in (Grédel 1999b).

GF, LGF, and CGF are decidable and known to be 2-EXPTIME
complete, which is shown by Gridel (1999a, 1999b) using game and
automata-based approaches. While these approaches yield (worst-case)
optimal complexity results for many logics, they appear to be unsuitable
as a starting point for an efficient implementation—their worst-case com-
plexity is actually their any-case complexity. By contrast many decid-
ability results for modal or description logics are based on tableau algo-
rithms (see Ladner 1977, Halpern and Moses 1992, Donini et al. 1997,
or Horrocks et al. 1999 for examples) and some of the fastest imple-
mentations of modal satisfiability procedures are based on tableau cal-
culi (Horrocks et al. 2000). Unlike automata algorithms, the average-
case behaviour in practice is so good that finding really hard problems
to test these implementations has become a problem in itself.

In this paper, we generalise the principles from tableau algorithms
for modal logics in order to develop a tableau algorithm for CGF. To
the best of our knowledge, this is the first algorithm for CGF that can
be used as the basis for an efficient implementation'

Recall the conjecture by Vardi that the tree model property is the
main reason for the decidability of many modal style logics (Vardi 1997).
As pointed out in (Gradel 1999b), the generalised tree model property
explains the similarly robust decidability of guarded logics, and can
be seen as a strong indication that guarded logics are a generalisation
of modal logics that retain the essence of modal logics. This becomes
even more evident when regarding the respective fixed-point extensions
(Grédel 1999a). The generalised tree model property of CGF is also
essential for our tableau algorithm. Indeed, as a corollary of the con-
structions used to show the soundness of our algorithm, we obtain an
alternative proof for the fact that CGF has the generalised tree model

property.

IThere are resolution based decision procedures for GF and
LGF (Ganzinger and de Nivelle 1999) that are readily implemented using the
saturation theorem prover SPASS (Weidenbach 1997). While CGF-SAT can be
easily reduced to LGF-SAT, we believe that dedicated CGF algorithms are more
efficient, c.f. before Definition 3.3.
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2 Preliminaries

For the definitions of GF and LGF we refer the reader to (Griadel 1999a).
The clique guarded fragment CGF of first-order logic can be obtained in
two equivalent ways, by either semantically or syntactically restricting
the range of the first-order quantifiers. In the following we will use bold
letters to refer to tuples of elements of the universe (a, b, ...) resp. tuples
of variables (x,y,...).

Definition 2.1 (Semantic CGF) Let 7 be a relational vocabulary.
For a T-structure 2l with universe A, the Gaifman graph of 2 is defined
as the undirected graph G() = (4, E*) with

E¥ ={(a,d') : a # d,there exists R € T and
a € R* which contains both a and a'}.

Under clique guarded semantics we understand the modification of stan-
dard first order semantics, where, instead of ranging over all elements of
the universe, a quantifier is restricted to elements that form a clique in
the Gaifman graph, including the binding for the free variables of the
matrix formula. More precisely, let 2 be a T-structure and p an environ-
ment mapping variables to elements of A. We define the model relation
inductively over the structure of formulas as the usual FO semantics
with the exception

2, p |= Vy.p(x,y) iff for all @ € A such that
p(x) U {a} forms a clique in G(2)
it is the case that 2, p[z — a] = ¢ ,

and a similar definition for the existential case. With CGF we denote
first order logic restricted to clique guarded semantics.

Definition 2.2 (Syntactic CGF) Let 7 be a relational vocabulary. A
formula « is a cliqgue-formula for a set x C free(a) if « is a (possibly
empty if x contains only one variable) conjunction of atoms (excluding
equality statements) such that each two distinct elements from x coexist
in at least one atom, each atom contains at least an element from x, and
each element from free(a) \ x occurs exactly once in . In the following,
we will identify a clique-formula o with the set of its conjuncts.
The syntactic CGF is inductively defined as follows.

1. Every relational atomic formula Rxz;, ...x;
CGF.

2. CGF is closed under boolean operations.

or z; = xj belongs to

m
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3. If x,y,z are tuples of variables, a(x,y,z) is a clique-formula for
x Uy and p(x,y) is a formula in CGF such that free(p) C x Uy,

then  Jyz.(a(x,y,2) Ap(x,y))
and  Vyz.(a(x,y,2z) = o(x,y))
belong to CGF.

We will use (Fyz.a(x,y,z))p(x,y) and (Vyz.a(x,y,z))p(x,y) as al-
ternative notations for Jyz.(a(x,y,z) A p(x,y)) and Vyz.(a(x,y,z) —
»(x,y)), respectively. A formula of the form Vyz.(a(x,y,z) = ¢(x,y))
is called universally quantified.

The following Lemma can be shown by elementary formula manipu-
lations that exploit that every z € z occurs exactly once in a.

Lemma 2.3 Let a(x,y,z) be a cligue-formula for x,y. Then
Vyz.(a(x,y,2) = ¢(x,y))
=Vy.(Fz.a(x,y,z) = ¢(x,y)).

The use of the name CGF for both the semantic and the syntactic
clique guarded fragment is justified by the following Lemma.

Lemma 2.4 Qver any finite relational vocabulary the syntactic and se-
mantic versions of the CGF are equally expressive.

Proof sketch: By some elementary equivalence transformations, every
syntactically clique guarded formula can be brought into a form where
switching from standard semantics to clique guarded semantics does not
change its meaning. Conversely, for any finite signature there is a finite
disjunction clique(x,y,z) of clique-formulas for x,y such that a,b form
a clique in G(2) iff A |= Jz.clique(a, b, z). By guarding every quantifier
with such a formula and applying some elementary formula transforma-
tions and Lemma 2.3, we get, for every FO formula v, a syntactically
clique guarded formula that is equivalent to v under clique guarded se-
mantics. If we fix a finite relational vocabulary, this transformation is
polynomial in the number of variables of the formula, or, more precisely,
the maximal number of free variables of all subformulas. 4

In the following we will only consider the syntactic variant of the
clique guarded fragment.

Definition 2.5 (NNF, Closure, Width) In the following, all formu-
las are assumed to be in negation normal form (NNF), where negation
occurs only in front of atomic formulas. Every formula in CGF can be
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transformed into NNF in linear time by pushing negation inwards using
DeMorgan’s law and the duality of the quantifiers.

For a sentence ¢ € CGF in NNF, let cl(+)) be the smallest set that
contains v and is closed under sub-formulas. Let C be a set of constants.
With cl(y, C') we denote the set

A, C) = {p(a) : aC C,p(x) € cl()}.
The width of a formula ¢ € CGF is defined by

width () := max{|free(¢)| : ¢ € cl(¢¥)}.
3 A Tableau Algorithm for CGF

For various modal and description logics, decidability can be shown
by means of tableau algorithms, where satisfiability of a formula
is decided by a syntactically guided search for a model for . Exam-
ples for these kind of algorithms can be found, e.g., in (Ladner 1977,
Halpern and Moses 1992, Horrocks et al. 1999). Models are usually rep-
resented by a graph in which the nodes correspond to worlds and the
edges correspond to the accessibility relations in the model. Each node is
labeled with a set of formulas that this node must satisfy, and new edges
and nodes are created as required by existential modalities. Since many
modal and description logics have the tree model property, the graphs
generated by these algorithms are trees, which allows for simpler algo-
rithms and easier implementation and optimisation of these algorithms.
Indeed, some of the fastest implementations of modal or description log-
ics satisfiability algorithms use tableau calculi (Horrocks et al. 2000).
For many modal or description logics, e.g. K or ALC, termination of
these algorithms is due to the fact that the modal depth of the formulas
appearing at a node strictly decreases with every step from the root of
the tree. For other logics, e.g., K4, K with the universal modality, or the
expressive DL SHZQ, this is no longer true and termination has to be
enforced by other means. One possibility for this is blocking, i.e., stopping
the creation of new successor nodes below a node v if there already is an
ancestor node w that is labeled with similar formulas as v. Intuitively,
in this case the model can fold back from the predecessor of v to w,
creating a cycle. Unraveling of these cycles recovers an (infinite) tree
model. Since the algorithms guarantee that the formulas occurring in
the label of the nodes stem from a finite set (usually the sub-formulas of
the input formula), every growing path will eventually contain a blocked
node, preventing further growth of this path and (together with a bound
on the degree of the tree) ensuring termination of the algorithm. All these
notions will also be encountered in our tableau algorithm for CGF, an
indication for the “modal nature” of CGF, as it is amenable to the same
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techniques used successfully for modal logics.
Our investigation of a tableau algorithm for CGF starts with the
observation that CGF also has some kind of tree model property.

Definition 3.1 Let 7 be a relational vocabulary. A 7-structure 2( has
tree width k if k € N is minimal with the following property.

There exists a directed tree T = (V, E) and a function f : V — 24
such that

o foreveryv eV, |f(v)| <k+1,

e for every R € 7 and a € R¥, there exists v € V with a C f(v),
and

o for every a € A, theset V, = {v € V : a € f(v)} induces a
subtree of T.

Every node v of T induces a substructure §(v) C 2 of cardinality at
most k + 1. The tuple (T, (F(v))ver) is called a tree decomposition of 2.

A logic £ has the generalised tree model property if there exists a
computable function ¢, assigning to every sentence ¢ € L a natural
number ¢(1) such that, if ¢ is satisfiable, then ¢ has a model of tree
width at most #(¢).

Fact 3.2 (Tree Model Prop. for CGF) Every satisfiable sentence
€ CGF of width k£ has a countable model of tree width at most k& — 1.

This is a simple corollary of (Griadel 1999a), Theorem 4, where the
same result is given for uCGF, that is CGF extended by a least fixed
point operator.

Fact 3.2 is the starting point for our definition of a completion tree
for a formula ¢y € CGF. A node v of such a tree no longer stands for
a single element of the model (as in the modal case), but rather for a
substructure §(v) of a tree decomposition of the model. To this purpose,
we label every node v with a set C(v) of constants (the elements of the
substructure) and a subset of cl(, C(v)), reflecting the formulas that
must hold true for these elements.

To deal with auziliary elements—elements helping to form a clique
in G(A) that are not part of this clique themselves—we will use the
auxiliary constant symbol * as a placeholder for unspecified elements in
atoms. The intention is to keep the number of constants at each node
as small as possible. The * will be used for the extra elements occuring
in clique formulas that are not part of the clique itself.

The following definitions are useful when dealing with these gener-
alised atoms.
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Definition 3.3 Let K denote an infinite set of constants and x ¢ K.
For any set of constants C' C K we set C* = C'U {*}. We use t1,ts,...
to range over elements of K*. The relation >* is defined by

Rty ...t >* Rt} ...t iff foralli e {1...n}
either ¢; = * or t; = t.

For an atom 3 and a set of formulas ® we define 5 €* ® iff there is a
B' € & with g3 >* '
For a set of constants C' C K and an atom 3 = Rty ...t,, we define

t; ift;eC

B®C =Rt ...t, where t;= _
*  otherwise

We use the notation a* to indicate that the tuple a* may contain x’s.
Obviously, >* is transitive and reflexive, and g ® C' >* 8 for all atoms 3
and sets of constants C.

While these are all syntactic notions, they have a semantic counter-
part that clarifies the intuition of * standing for an unspecified element.
Let a’ denote the tuple obtained from a tuple a* by replacing every oc-
currence of * in a* with a distinct fresh variable, and let z be precisely
the variables used in this replacement. For an atom 3, we define

2 E B(a*) iff A ETz.6(a).
It is easy to see that
B(a) >* B(b) implies B(b) = B(a)
B(a) €* ® implies @ = S(a)
because, if a >* b, then b is obtained from a by replacing some * with
constants, which provide witnesses for the existential quantifier.

We further write ®|¢ to denote the subset of ® containing all formu-
las that only use constants in C.

Definition 3.4 (Compl. Tree, Tableau) Let ¢ € CGF be a closed
formula in NNF. A completion tree T = (V,E, C, A, N) for ¢ is a vertex
labeled tree (V,E) with the labeling function C labeling each node
v € V with a subset of K, A labeling each node v € V with a subset of
cl(y, C(v)*) where all formulas B(x, *,...,*) € A(v) using * are atoms
(excluding equality statements), and the function N : V. — N mapping
each node to a distinct natural number, with the additional property
that, if v is an ancestor of w, then N(v) < N(w).

A constant ¢ € K is called shared between two nodes vy,v2 € V,
if ¢ € C(v1) N C(vy), and ¢ € C(w) for all nodes w on the (unique,
undirected, possibly empty) shortest path connecting vy to vs.
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A node v € V is called directly blocked? by a node w € V, if w is not
blocked, N(w) < N(v), and there is an injective mapping = from C(v)
into C(w) such that, for all constants ¢ € C(v) that are shared between
v and w, 7(c) = ¢, and (A(v)) = A(w)|r(c(v)+)- Here and throughout
this paper we use the convention m(x) = x for every function 7 that
verifies a blocking.

A node is called blocked if it is directly blocked or if its predecessor
is blocked.

A completion tree T contains a clash if there is a node v € V such
that

e for a constant ¢ € C(v), ¢ # ¢ € A(v), or

e there is an atomic formula 8 and a tuple of constants a C C(v)

such that {f(a),~8(a)} C A(v).

Otherwise, T is called clash-free. A completion tree T is called complete
if none of the completion rules given in Figure 1 can be applied to T. A
complete and clash-free completion tree for ¢ is called a tableau for .

To test v for satisfiability, the tableau algorithm creates an initial
tree with only a single node vy, A(vg) = {¢} and C(vg) = {ag} for an
arbitrary constant ag. The rules from Figure 1 are applied until either
a clash occurs, producing output “i) unsatisfiable”, or the tree is
complete, in which case “i) satisfiable” is output.

The set C(vp) is initialised with a non-empty set of constants to make
sure that empty structures are excluded.

While our notion of tableaux has many similarities to the tableaux
appearing in (Griadel and Walukiewicz 1999), there are two important
differences that make the version used here more suitable as basis for a
tableau algorithm.

We will see that every completion tree generated by the tableau algo-
rithm is finite. Conversely, tableaux in (Gridel and Walukiewicz 1999),
in general, can be infinite.

Also, in (Gradel and Walukiewicz 1999) every node is labeled with
a complete (¢, C(v))-type, i.e., every formula ¢ € cl(¢, C(v)) is explic-
itly asserted true of false at v. Conversely, a completion tree contains
only assertions about relevant formulas. This implies a lower degree of
non-determinism in the algorithm, which is important for an efficient
implementation.

2The definition of blocking is recursive. This does not cause any problems because
the status of a node v only depends on its label and the status of nodes w with
N(w) < N(v). The recursion terminates at the root node, where the N-value is
minimal.
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RA: if oAU EA

—~

v) and {p, 9} Z A(v)

then A(v) := A(v) U {, 0
Rv: if pVdeAw)and {p,9}NAw)=0
then A(v) := A(v) U {x} for x € {4, 9} (chosen non-deterministically)

R=:if a=beAW),a#b
then for all w that share a with v,
C(w) := (C(w) \ {a}) U {b} and A(w) := A(w)[a — b]
RY: if (Vyz.a(a,y,z))e(a,y) € A(v), there exists a b C C(v)
such that for all atoms 3(x,y,z) € a, B(a,b, *---*) €* A(v),
and p(a,b) ¢ A(v)
then A(v) := A(v) U {p(a,b)}
RI: if (Jyz.a(a,y,z))e(a,y) € A(v) and for every b,c C C(v),
{a(a,b,c),¢(a,b)} € A(v) and there is no child w of v
with {a(a, b, c), p(a,b)} C A(w) for some b,c C C(w)
and v is not blocked
then let b, ¢ be sequences of distinct and fresh constants that
match the lengths of y, z,
create a child w of v with C(w) :=aUbUc and
A(w) := {a(a,b,c),p(a,b)}, and
let N(w) =14 max{N(v) : v € V\{w}}
Ry: if pB(a*) € A(v),B atomic, not an equality, w is a neighbour of v
with a* N C(w) # 0, and B(a*) A C(w) € A(w)
then A(w) = Aw) U {B(a") @ C(w)}
RIV:if  p(a) € A(v),¢(a) is univ. quantified, and w is a neighbour of v
with a C C(w) and ¢(a) & A(w)
then A(w) := A(w) U {¢(a)}

FIGURE 1 The Completion Rules for CGF

Theorem 3.5 The tableau algorithm is a (non-deterministic) decision
procedure for CGF-satisfiability.

Proof: This is an immediate consequence of the following facts estab-
lished in the subsequent sections.

1. Every sequence of rule applications terminates after a finite num-
ber of steps. (Termination, Lemma 3.7)

2. If ¢ is satisfiable, then the rules can be applied to generate a
tableau for 1. (Completeness, Lemma 3.8)

3. If the algorithm constructs a tableau for ¢, then v is satisfiable
(Soundness, Lemma 3.11). 4

3.1 Termination

The following technical lemma is a consequence of the completion rules
and the blocking condition.
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Lemma 3.6 Let ) € CGF be a sentence in NNF with || = n, width(¢)
=m, and T a completion tree generated for 1 by application of the rules
in Figure 1. For every node v € T,

1. [C@)| < m
2 |A@)| <nx (m+1)"
3. Any € > 27"+ distinet nodes in T contain a blocked node.

Proof: Nodes are only generated when intialising the tree (with a sin-
gleq constant) and by the R3-rule and no constants are added to a C(v)
once v has been generated (but some may be removed by application of
the R=-rule).

When triggered by the formula (Jyz.a(a,y,z))¢(a,y), the R3-rule
initializes C(w) such that it contains a and another constant for every
variable in x and y. Hence,

IC(w)] <JaUy Usz| < [free(a)] < width(1)).

The set A(v) is a subset of ¢l(y, C(v)*), for which |cl(¢, C(v))| <
n X (m + 1)™ holds because there are at most n formulas in cl(¢), each
of which has at most m free variables. There are at most (|C(v)| + 1)™
distinct sequences of length m with constants from C(v)*.

Let vy, ...,ve be £ > 27*(m+1)™ distinct nodes. For every v;, we will
construct an injective mapping m; : C(v;) = {1,...m} such that, if a
constant a is shared between two nodes v;, v;, then m;(a) = 7;(a).

Let uy, -+, ux denote the nodes of a subtree of T that contains every
node v; and that is rooted at u;. By induction over the distance to
u1, we define an injective mapping v; : C(u;) — {1,...,m} for every
i € {1,...,k} as follows. For v; we pick an arbitrary injective function
from C(u;) to {1,...,m}. For a node u; let u; be the predecessor of u;
in T and v; the corresponding function, which has already been defined
because u; has a smaller distance to u; than u;. For v; we choose an
arbitrary injective function such that v;(a) = v;(a) for all a € C(u;) N
C(U])

All mappings v; are injective. For any constant a the set V, := {v €
V | a € C(v)} induces a subtree of T. If u;,u; € V, are neighbours, the
definition above ensures v;(a) = vj(a). By induction over the length of
the shortest connecting path we obtain the same for arbitrary u;,u; €
V..

For every node v; there is a j; such that v; = u;; and we set m; = v;;.
There are at most 2"*(™m+D™ distinct subsets of cl(v, {1,...,m,*}).
Hence, there must be two nodes v;,v; such that m;(A(v;)) = m;(A(v;))
and, w.lo.g., N(v;) < N(vj;). This implies that v; is blocked by v; via
7 :=m; 'om;. Note that for 7 to be well-defined, 7; must be injective. By
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construction, 7 preserves shared constants. Since m;(A(v;)) = m;(A(v;)),
m(A(v)) = A(vi)lr(c(v;)) holds.

Lemma 3.7 (Termination) Let ¢ € CGF be a sentence in NNF. Any
sequence of rule applications of the tableau algorithm starting from the
initial tree terminates.

Proof: For any completion tree T generated by the tableau algorithm,
we define || - || : V = N? by

ol == (IC(v)], nx (m+1)" —|A(v)],
[{e € A(v) : p triggers the R3-rule for v}|).

The lexicographic order < on N? is well-founded, i.e. it has no infinite
decreasing chains. Any rule application decreases ||v|| w.r.t. < for at
least one node v, and never increases ||v|| w.r.t. < for an existing node
v. However it may create new successors, one at a time. Since < is well-
founded, there can only be a finite number of applications of rules to
every node in T and hence a finite number of successors and an infinite
sequence of rule applications would generate a tree of infinite depth.

Yet, as a corollary of Lemma 3.6, we have that the depth of T is
bounded by 27*(m+D™ For assume that there is a path of length >
2> (m+1D™ in T with deepest node v. By the time v has been created
(by an application of the R3-rule to its predecessor u), the path from the
root of T to u contains at least 27%(m+1D™ nodes, and hence a blocked
node. This implies that w is blocked too, and the R3-rule cannot be
applied to create v. -

3.2 Completeness

Lemma 3.8 Let ¢y € CGF be a closed formula in NNF. If ¢ is sat-
isfiable, then there is a sequence of rule applications starting from the
initial tree that yields a tableau.

Proof: Since ® is satisfiable, there is a model 2 of ). We will use 2
to guide the application of the non-deterministic Rv-rule. For this we
incremently define a function g : J{C(v) | v € V} = A such that
forallv e V : A = g(A(v)). We refer to this property by (§).

The set A(v) can contain atomic formulas a(a*), where x occurs at
some positions of a*. The constant * is not mapped to an element of A
by g. We deal with this as described just after Definition 3.3 by setting

A g(a(a”) iff A= 3Tzg(a(a’)).
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Claim 3.9 If, for a completion tree T, there exists a function g, such
that (§) holds and a rule is applicable to T, then it can be applied in a
way that maintains (8).

e For the RA- and the RV-rule this is obvious.

e If the R=-rule is applicable to v € V with a = b € A(v), then,
since A = g(a) = g(b), g(a) = ¢g(b) must hold. Hence, for every
node w that shares a with v, g(A(w)) = g(A(w)[a — b]) and the
rule can be applied without violating (§).

e If the RV-rule is applicable to v € V with (Vyz.a(a,y,z))p(a,y) €
A(v) and b C C(v) with f(a,b,*---%) €* A(v) for all atoms
B(x,y,2) € a, then, from the definition of €*, there is a tuple c* C
C(v)*, such that B(a,b,*---x) >* B(a,b,c*) and [(a,b,c*) €
A(v). From (§) we get that 2 = 3z.8(g(a), g(b),z) and since ev-
ery z € z appears exactly once in «, also 2 = Jz.a(g(a), g(b), z).
Hence, we have

{A = {Vyz.a(g(a),y,2)) = ¢(9(a),y),
Iz.a(g(a), g(b), z)}
which, by Lemma 2.3, implies 2 |= p(g(a), g(b)) and hence ¢(a, b)
can be added to A(v ) without violating (§).
(

e If the R3-rule is applicable to v € V with (Jyz.a(a,y,z))p(a,y),
then this implies

A 9(@yz.a(ay,z)e(ay))-
Hence, there are sequences b’, ¢’ C A of elements such that 2 |=
{a(g(a),b’,c'),p(g(a),b')}. If we define g such that g(b) = b’
and g(c) = ¢', then obviously & = {g(a(a, b, c), g(p(a,b))}. Note,
that this might involve setting g(b;) = g(b2) for some by, by € b.
With this construction the resulting extended completion-tree T
and extended function g again satisfy (§).

o If the Ry-rule is applicable to v € V with f(a*) € A(v) and a
neighbour w with a* N C(w) # 0, then it adds B(a*) ® C(w) to
A(w). From (§) we get that % = S(g(a*)), and since S(b*) :=
B(a*) R C(w) >* B(a*), this implies A | S(g(b*)). Hence, adding
B(a*) ® C(w) = B(b*) to A(w) does not violate (§).

o If the RJV-rule is applicable to a node v € V with a universally
quantified formula ¢(a) € A(v) and a neighbour w which shares a
with v, (§) yields 2 |= p(g(a)). Hence, adding ¢(a) to A(w) does
not violate (§).

Claim 3.10 A completion-tree T for which a function g exists such that
(8) holds is clash free.
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Assume that T contains a clash, namely, there is a node v € V
such that either @ # a € V(v)—implying A = g(a) # g(a)—, or
that there is a sequence a C C(v), and an atomic formula 3 such that
{8(a),~B(a)} C A(v). From (§), 2 |- {8(g(a)), ~3(g(a))} would follow,
also a contradiction.

These claims yield Lemma 3.8 as follows. Let T be a tableau for
. Since A |= ¢, (§) is satisfied for the initial tree together with the
function g mapping ag to an arbitrary element of the universe of 2. By
Lemma 3.7, any sequence of applications is finite, and from Claim 3.9
we get that there is a sequence of rule-applications that maintains (§).
By Claim 3.10, this sequence results in a tableau. This completes the
proof of Lemma 3.8. -

Lemma 3.8 involves two different kinds of non-determinism, namely,
the choice which rule to apply to which constraint (as several rules might
be applicable simultaneously), and which disjunct to choose in an appli-
cation of the RV-rule. While the latter choice is don’t-know non-deter-
ministic, i.e., for a satisfiable formula only certain choices will lead to the
discovery of a tableau, the former choice is don’t-care non-deterministic.
This means that arbitrary choices of which rule to apply next will lead
to the discovery of a tableau for a satisfiable formula. For an imple-
mentation of the tableau algorithm this has the following consequences.
Exhaustive search is necessary to deal with all possible expansions of
the RV-rule, but arbitrary strategies of choosing which rule to apply
next, and where to apply it, will lead to a correct implementation, al-
though the efficiency of the implementation will strongly depend on a
sophisticated strategy.

3.3 Correctness

In order to prove the correctness of the tableau algorithm we have to
show that the existence of a tableau for 1 implies satisfiability of ).
To this purpose, we will construct a model from a tableau. From the
construction employed in the proof we obtain an alternative proof of
Fact 3.2.

Lemma 3.11 Let ¢ € CGF[r] with k = width(¢)) and let T be a tableau
for ¢ generated by the tableau algorithm. Then 1 is satisfiable and has
a model of tree width at most k — 1.

Proof: Let T = (V,E,C,A,N) a tableau for ¢. For every direct
blocking situation we fix a mapping = verifying this blocking. Using an
unraveling construction, we will construct a model 2 for ¢ of width
at most k — 1 from T. First, we “unravel” blocking situations in T by



14 / CoLIN HIRSCH AND STEPHAN TOBIES

successively replacing every blocked node with a copy of the subtree of T
rooted at the blocking node. Formally, this is achieved by the following
path construction. We define

V. ={v eV : visnot blocked or directly blocked }.

Since from now on we only deal with nodes from V,, every blocking is
direct and we will no longer explicitly mention this fact.
The set Paths(T) is inductively defined by?®

e [32] € Paths(T) for the root vg of T,
o if [:’)—i ... 7] € Paths(T), w is a successor of v, and w is not blocked,
then [f}—i ... 28] ¢ Paths(T),

o if [Z—i ... v+] € Paths(T), w is a successor of v, blocked by the node
u € V, then [Z_i ...t 2] ¢ Paths(T).

The set Paths(T) forms a tree, with p’ being a successor of p if p' is
obtained from p by concatenating one element ;- at the end. We define
the auxiliary functions Tail, Tail’ by setting Tail(p) = v,, and Tail'(p) = v/,
for every path p = [Z—i e Z—,: .

Intuitively, for every node v of T, the paths p € Paths(T) with
v = Tail(p) stand for distinct copies of v created by the unraveling.
The universe of 2 consists of (classes of) constants labeling nodes in T
paired with the paths at whose Tail they appear to distinguish constants
occuring at different copies of a node of T. Formally, we define

C(T) = {(a,p) : p € Paths(T) Aa € C(Tail(p))}.

Constants appearing at consecutive nodes of T stand for the same ele-
ment and the same holds for constants related by a mapping = verifying
a block. Hence, to obtain the universe of 2, we factorise C(T) as follows.
Let ~ be the smallest symmetric relation on C(T) satisfying

e (a,p) ~ (a,q) if q is a successor of p in Paths(T), Tail'(q) is an
unblocked successor of Tail(p), and a € C(Tail(p)) N C(Tail'(q)),

e (a,p) ~ (b,q) if ¢ is a successor of p in Paths(T), Tail'(¢) is a
blocked successor of Tail(p), a € C(Tail(p)) N C(Tail'(¢)), and
n(a) = b for the function 7 that verifies that Tail'(¢) is blocked
by Tail(q).

With ~ we denote the reflexive, transitive closure of ~ and with [a, p]~
the class of (a,p), i.e., the set {(b,q) € C(T) | (b,q) ~ (a,p)}. Since

3This complicated form of unraveling, where we record both blocked and blocking
node is necessary because there might be a situation where two successors vy, vy of
a node are directly blocked by the same node w.
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(a,p) ~ (b,q) iff p, ¢ are neighbours in Paths(T), for every (a,p), the set

Paths([a, pl~) := {q | 3b.(b, ) € [a,pl~}
is a subtree of Paths(T).

The classes of C(T)/ ~ will be the elements of the universe of 2.
First we need to prove some technicalities for this construction.

Claim 3.12 Letp € Paths(T) and a,b € C(Tail(p)). Then (a,p) =~ (b,p)
iff a =b.

Assume the claim does not hold and let a # b with (a,p) = (b, p). By
definition of ~, (a,p) # (b,p) must hold. Hence, there must be a path
(c1,p1) ~ -+ ~ (ck,pr) such that a = ¢1, b = ¢, and p = p1 = py.
W.lo.g., assume we have picked a, b, p such that this path has minimal
length k. Such a minimal path must be of length k& = 3, for if we assume a
path of length & > 3, there must be 2 <i < j < k— 1 such that p; = p;,
because the relation ~ is defined along paths in the tree Paths(T). If
ci = c; then we can shorten the path between position ¢ and j and
obtain a shorter path. If ¢; # ¢;, then the path (¢;,p;) ~ -+ ~ (¢, p;)
is also a shorter path with the same properties. Hence, a minimal path
must be of the form (a,p) ~ (¢,q) ~ (b,p). If Tail'(¢) is not blocked, by
the definition of ~, @ = ¢ = b must hold. Hence, since a # b, Tail'(¢) must
be blocked by Tail(¢q). From the definition of ~ we have a,b € C(Tail'(g))
and 7(a) = ¢ = w(b) for the function 7 verifying that Tail'(¢) is blocked
by Tail(g). Since © must be injective, this is a contradiction.

Since the set Paths(T) is a tree, and as a consequence of Claim 3.12,
we get the following.

Claim 3.13 Let p,q € Paths(T) with p = [z—i el g = [f}—i Lo B
If, for a € C(vp),b € C(w), (a,p) = (b,q) then (a,p) ~ (b,q).

If (a,p) =~ (b,q) then there must be a path (¢1,p1) ~ -+ ~ (¢, Pr)
such that a = ¢1, b = ¢, p = p1, and ¢ = pg. Since ~ is only defined
along paths in the tree Paths(T), there must be a step from p to ¢
(or, dually, from ¢ to p) in this path, more precisely, there must be an
i € {1,...k — 1} such that p; = p and p;+1 = ¢ holds. Hence, we have
the situation

(aap) ~ (Ci,p) ~ (Ci+1aq) ~ (ba q)
Claim 3.12 implies a = ¢; and b = ¢;1+1 and hence (a,p) ~ (b, q).

Using Claim 3.13, we can show that the blocking condition and the
RJ- and R}V-rule work as desired.
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Claim 3.14 Let p,q € Paths(T), a C C(Tail(p)),b C C(Tail(g)), a,b
non-empty tuples, and (a,p) ~ (b,q).

e For every atom B3, B(a,*---x) €* A(Tail(p)) iff B(b,*---%) €*
A(Tail(q)).

e For every universally quantified ¢, p(a) € A(Tail(p)) iff p(b) €
A(Tail(q)).

Since both propositions are symmetric, we only need to prove one
direction. If (a,p) ~ (b,q) with a = ajas...a, and b = biby... by,
then

m
{p,q} C ﬂ Paths([a;, p|~)

i=1
and, as an intersection of subtrees of Paths(T), (i, Paths([a;,p]~) is
itself a subtree of Paths(T). Hence, in Paths(T) there is a path py, ..., p
for which there exist tuples of constants ¢y, ..., ¢, with (c1,p1) ~ - =
(¢k,Pk), P =p1,q = pr,a = c1, and b = ¢i. Since a, b are non-empty, so
are the c;. From Claim 3.13, we get that for any two neighbours p;, p;+1
in Paths(T), (i, pi) & (Cit1,piy1) implies (i, p;) ~ (Cit1,Pit1)-

By two similar inductions on i with 1 < i < k we show that if
B(a,*---%) €* A(Tail(p)) then B(c;,*---x) €* A(Tail(p;)) and if p(a) €
A(Tail(p)) then ¢(c;) € A(Tail(c;)).

For ¢ = 1 in both cases nothing has to be shown. Now assume that
the we have shown these properties up to ¢. W.l.o.g., assume p;;1 is a
successor of p; in the tree Paths(T). The other case is handled dually.
There are two possibilities:

e Tail'(p;;11) is not blocked. Then Tail(p;;1) = Tail'(p;+1) and by
the definition of ~, Tail(p;+1) is a successor of Tail(p;) in T and
¢; = ¢;4+1 holds.

If B(a,*---x) €* A(Tail(p)) then S(c;,*---*) €* A(Tail(p;)) holds
by induction and due to the R}-rule, this implies S(c;y1, % - - - %) €*
A(Tail(pi+1)). The Rf-rule is applicable because, for the the non-
empty tuple ¢;, ¢; = ¢;41 C C(Tail(p;+1)) holds.

If p(a) € A(Tail(p)) then by induction ¢(c¢;) € A(Tail(p;)) and
due to the R}V-rule this implies ¢(c;+1) € A(Tail(pit1)).

e Tail'(p;11) is blocked by Tail(p;+1) (with function 7) and Tail' (p;11)
is a successor of Tail(p;) in T. Then, by definition of ~ we have
cit1 = m(c;) and ¢; C C(Tail(p;)) N C(Tail' (pis1))-

If B(a,*---x) €* A(Tail(p)) then B(c;,*---*) €* A(Tail(p;)) holds
by induction and due to the RJ-rule this implies 8(c;,*---x) €*
A(Tail'(piy1)). The R{-rule is applicable because, for the non-
empty tuple c;, ¢; C C(Tail'(pi+1)) holds. The node Tail(p;t1)
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blocks Tail'(p;+1), which implies

w(B(ci,* - %)) = Blcipr, *---x) € A(Tail(piy1))-
If p(a) € A(Tail(p)) then by induction p(c;) € A(Tail(p;)) and due
to the RJV-rule this implies ¢(c;) € A(Tail'(pi+1)). Since Tail(p;41)
blocks Tail' (pi+1), m(¢(c;)) = ¢(ciy1) € A(Tail(pit1)) holds.

We now define the structure 2 over the universe A = C(T)/~. For
a relation R € 7 of arity m, R¥ is defined to be the set of tuples
([a1,P1]asy - - - » [@ms Pm]~) for which there exists a path p € Paths(T)
and constants c¢i, . . . ¢y, such that (¢;, p) & (aq,p;) for all 1 < i < m, and
Ry ...cp € A(Tail(p)).

It remains to show that this construction yields 2 |= 4. This is a
consequence of the following claim.

Claim 3.15 For every path p € Paths(T) and a C C(Tail(p)), if o(a) €
A(Tail(p)), then A = ¢([a, plx)-

We show this claim by induction on the structure of ¢. If p(a) =
Ra; ...an € A(Tail(p)), then the claim holds immediately by construc-
tion of 2.

Assume ¢(a) = ~Ra € A(Tail(p)), but [a,p]~ € R*. Then, by the
definition of 2, there must be a path p’ and constants ¢ such that (a, p) ~
(e,p') and Rc € A(Tail(p')). From Claim 3.14 we have that (a,p) =
(c,p') implies Ra €* A(Tail(p)) and, since a contains no occurrence of #,
Ra € A(Tail(p)). Hence T contains the clash {Ra,—Ra} C A(Tail(p)),
a contradiction to the fact that T is clash-free. Thus, [a,p]~ & R¥.

Assume ¢(a) = a # b € A(Tail(p)) but [a,p]~ = [b,p]~. From
Claim 3.12 we get that this implies a = b and hence T contains the
clash a # a € A(Tail(p)). Again, this is a contradiction to the fact that
T is clash-free and [a, p|x, # [b, p|~ must hold.

For positive Boolean combinations the claim is immediate due to the
RA- and RV-rule.

Let ¢(a) = (Vyz.a(a,y,z))x(a,y) € A(Tail(p)) and b, p,c,q arbi-
trarily chosen with

(1) 2 = a([a, plx, [b, Pl [c, dlx).
We need to show that also 2 = x([a, p]~, [b, p]~) holds. In order to bring
completeness of T and the RV-rule into play, we show that information
about the fact that (1) holds is present at a single node in T where it
triggers the RV-rule. We rely on the fact that universal quantifiers must
be guarded.

Every y; € y coexists with every other variable y; € y in at least
one atom (") € a(a,y,z) and with every element a; € a in at least
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one atom v(»*) € a(a,y,z). For any two distinct variables vi, v, A =
B9 ([a, plx, [b, Pla, [¢, ql~) holds and this can only be the case if there
is a path ¢(7) and constants d(*7), e(i-)) such that (b;, p;) ~ (c(i), qli1))
and (bj,p;) = (d9), q(0D).

Similarly, for every element [b;,p;]~ € [b,p]~ and every element
(ae,p) there exists a path r(0 and constants (0, g0 such that
(biypi) ~ (F9,rEB0) and (ag,p) ~ (g9, rH0). For every i and ¢,
Paths([b;, pi]~) and Paths([as, p]x,) are subtrees of Paths(T).

The tree Paths([b;,p;]~) overlaps with the tree Paths([b;,p;]~) at
¢ and with the tree Paths([as,p]x) at (0. From this it follows
(Golumbic 1980, Proposition 4.7) that there exists a common path

s € (| Paths([b;, pil~) N [ ] Paths([ac, px).-
i 4

Thus, there are tuples a’, b’ such that
(2) (2’ s) = (a,p) and (b’ s) = (b, p).

We now show that the preconditions of the RV-rule are satisfied at
Tail(s) for the formula (Vyz.a(a',y,z))x(a’,y) and the tuple b’. First,
due to Claim 3.14, (Vyz.a(a',y,z))x(a’,y) € A(Tail(s)) holds because
(a,p) = (a’,5) and (Vyz.a(a,y,2))x(a,y) € A(Tail(p)).

For every 3(x,y,z) € a(x,y,z), B(a’,b’,x---x) €* A(Tail(s)) holds
as follows: from (1,2) we get

Q[ |: B([ala 5]%7 [b,a S]Na [C, Q]m)

Since @ is an atom, this implies the existence of a path ¢ and tuples
a”’, b" ¢ with
5 (al,5) ~ (", 1), (b,5) & (b7, 1), (e q) = (¢',1)

and ga",b", ") e A(Tail(t))
It holds that B(a”,b" x---x) >* B(a”,b",c') and since f(a”,b"”,c’) €
A(Tail(t)), f(a”,b",x---x) €* A(Tail(t)). Thus, by Claim 3.14 it holds
that B(a’,b’,x---%) €* A(Tail(s)).

Since this is true for every atom 3, the preconditions of the RV-rule
are satisfied and the completeness of T yields y(a’,b’) € A(Tail(s)). By
induction, A = x([a’, ], [b', s]~) holds and together with (2) this im-
plies 2 = x([a, pl~, [P, P]a). Since a, p, ¢, q have been chose arbitrarily,
2 |= ([, pl~) holds.

If p(a) = (yz.ala,y,z))x(a,y) € A(Tail(p)), there are two possi-
bilities:

e there are b, ¢ C C(Tail(p)) with {a(a,b,c), x(a,b)} C A(Tail(p)).

Then, by induction, we have

2 |: {a([a,p]z, [bvp]mv [Cap]m)ax([aap]m [b,p]m)}
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and hence 2 = ¢([a, plx).

e there are no such b,c C C(Tail(p)), then there is a successor w
of Tail(p) and b,c C C(w) with {a(a,b,c),x(a,b)} C A(w). The
node w can be blocked or not.

If w is not blocked, then p’ = [p, %] € Paths(T) and by induction

Q[ |: {a([a,p’]z, [bapl]za [C;pl]m)a X([aapl]ma [bapl]m)}
From the definition of ~ we have, (a,p’) =~ (a,p) and hence 2 =
([, pl~).-
If w is blocked by a node u (with function ) then p' = [p, 2] €

Paths(T). From the blocking condition, we have that u is unblocked
and 7{a(a,b,c), x(a,b)}) C A(u). Hence, by induction

AEA{ a([r(a),p']~, [7(b),']~, [7(c), P'lx),
X([ﬂ-(a)apl]%a[ﬂ-(b)apl]w) }7
and by definition of ~ we have that (a,p) ~ (7w(a),p’) and hence,
A = o([a, pl)-

As a special instance of Claim 3.15 we get that 2 | . From
Lemma 3.6, we get that, for every node v € V, |C(v)| < width(¢)
and hence the tree Paths(T) together with the function f : Paths(T) —
C(T)/~ with f(p) = C(Tail(p))/~ provides a tree decomposition of
of width < width(+)) — 1. This completes the proof of Lemma 3.11. -

Corollary 3.16 CGF, and hence also LGF and GF have the generalised
tree model property.

Proof: Let 1) € CGF[r] be satisfiable. Then, from Lemma 3.8 we get
that there is a tableau T for . By Lemma 3.11, T induces a model for
Y of tree width at most width(y)) — 1. Note that we have never relied
on Fact 3.2 to obtain any of the results in this paper and hence have
indeed given an alternative proof for the generalised tree model property
of CGF. For LGF and GF, observe that the embedding of these logics
into CGF may increase the width of the sentence but not by more than
a recursive amount.

4 Conclusion

We have developed a tableau algorithm for CGF, which we hope can
serve as basis for an efficient implementation of a decision procedure for
CGF. This hope is justified by the fact that some of the most efficient
implementations of modal or description logic reasoners are based on
tableau calculi similar to the one for CGF presented in this paper. As a
corollary from the constructions used to prove the correctness we obtain
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a new proof of the fact that GF/LGF/CGF have the generalised tree
model property.
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