
1

A Tableau Algorithm for the Clique

Guarded Fragment

Colin Hirsh and Stephan Tobies

abstrat. We desribe a \modal style" tableau algorithm that

deides satis�ability for the lique guarded fragment. As a orol-

lary of onstrutions used to prove the orretness of the algo-

rithm, we obtain a new proof for the generalised tree model prop-

erty of the lique guarded fragment.

1 Introdution

The Guarded Fragment of �rst-order logi, introdued by Andr�eka, van

Benthem, and N�emeti (1998), has been a suessful attempt to trans-

fer many good properties of modal, temporal, and desription logis to

a larger fragment of prediate logi. Among these are deidability, the

�nite model property, invariane under an appropriate variant of bisim-

ulation, and other nie model theoreti properties (Andr�eka et al. 1998,

Gr�adel 1999b).

The Guarded Fragment (GF) is obtained from full �rst-order logi

through relativisation of quanti�ers by so-alled guard formulas. Every

appearane of a quanti�er in GF must be of the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is an atomi formula, the guard, that ontains all free vari-

ables of '. This generalises quanti�ation in modal and temporal logis,

where quanti�ation is restrited to those elements reahable via some

aessibility relation.

By allowing for more general formulas as guards while preserving the

idea of quanti�ation only over elements that are lose together in the

model, one obtains generalisations of GF whih are still well-behaved in

1

Advanes in Modal Logi, Volume 3

F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev, eds.

Copyright

 2001, CSLI Publiations.

2 / Colin Hirsh and Stephan Tobies

the above sense. Most importantly, one an obtain the loosely guarded

fragment (LGF) (van Benthem 1997) and the lique guarded fragment

(CGF) (Gr�adel 1999a), for whih deidability, invariane under lique

guarded bisimulation, and some other properties have been shown in

(Gr�adel 1999a). SuÆe to say that both LGF and CGF properly extend

GF, and, with respet to sentenes, CGF properly extends LGF, as

shown in (Gr�adel 1999b).

GF, LGF, and CGF are deidable and known to be 2-ExpTime

omplete, whih is shown by Gr�adel (1999a, 1999b) using game and

automata-based approahes. While these approahes yield (worst-ase)

optimal omplexity results for many logis, they appear to be unsuitable

as a starting point for an eÆient implementation|their worst-ase om-

plexity is atually their any-ase omplexity. By ontrast many deid-

ability results for modal or desription logis are based on tableau algo-

rithms (see Ladner 1977, Halpern and Moses 1992, Donini et al. 1997,

or Horroks et al. 1999 for examples) and some of the fastest imple-

mentations of modal satis�ability proedures are based on tableau al-

uli (Horroks et al. 2000). Unlike automata algorithms, the average-

ase behaviour in pratie is so good that �nding really hard problems

to test these implementations has beome a problem in itself.

In this paper, we generalise the priniples from tableau algorithms

for modal logis in order to develop a tableau algorithm for CGF. To

the best of our knowledge, this is the �rst algorithm for CGF that an

be used as the basis for an eÆient implementation

1

Reall the onjeture by Vardi that the tree model property is the

main reason for the deidability of many modal style logis (Vardi 1997).

As pointed out in (Gr�adel 1999b), the generalised tree model property

explains the similarly robust deidability of guarded logis, and an

be seen as a strong indiation that guarded logis are a generalisation

of modal logis that retain the essene of modal logis. This beomes

even more evident when regarding the respetive �xed-point extensions

(Gr�adel 1999a). The generalised tree model property of CGF is also

essential for our tableau algorithm. Indeed, as a orollary of the on-

strutions used to show the soundness of our algorithm, we obtain an

alternative proof for the fat that CGF has the generalised tree model

property.

1

There are resolution based deision proedures for GF and

LGF (Ganzinger and de Nivelle 1999) that are readily implemented using the

saturation theorem prover SPASS (Weidenbah 1997). While CGF-SAT an be

easily redued to LGF-SAT, we believe that dediated CGF algorithms are more

eÆient, .f. before De�nition 3.3.

A Tableau Algorithm for the Clique Guarded Fragment / 3

2 Preliminaries

For the de�nitions of GF and LGF we refer the reader to (Gr�adel 1999a).

The lique guarded fragment CGF of �rst-order logi an be obtained in

two equivalent ways, by either semantially or syntatially restriting

the range of the �rst-order quanti�ers. In the following we will use bold

letters to refer to tuples of elements of the universe (a;b; : : :) resp. tuples

of variables (x;y; : : :).

De�nition 2.1 (Semanti CGF) Let � be a relational voabulary.

For a � -struture A with universe A, the Gaifman graph of A is de�ned

as the undireted graph G(A) = (A;E

A

) with

E

A

= f(a; a

0

) : a 6= a

0

; there exists R 2 � and

a 2 R

A

whih ontains both a and a

0

g:

Under lique guarded semantis we understand the modi�ation of stan-

dard �rst order semantis, where, instead of ranging over all elements of

the universe, a quanti�er is restrited to elements that form a lique in

the Gaifman graph, inluding the binding for the free variables of the

matrix formula. More preisely, let A be a � -struture and � an environ-

ment mapping variables to elements of A. We de�ne the model relation

indutively over the struture of formulas as the usual FO semantis

with the exeption

A; � j= 8y:'(x; y) i� for all a 2 A suh that

�(x) [fag forms a lique in G(A)

it is the ase that A; �[x 7! a℄ j= ' ,

and a similar de�nition for the existential ase. With CGF we denote

�rst order logi restrited to lique guarded semantis.

De�nition 2.2 (Syntati CGF) Let � be a relational voabulary. A

formula � is a lique-formula for a set x � free(�) if � is a (possibly

empty if x ontains only one variable) onjuntion of atoms (exluding

equality statements) suh that eah two distint elements from x oexist

in at least one atom, eah atom ontains at least an element from x, and

eah element from free(�) nx ours exatly one in �. In the following,

we will identify a lique-formula � with the set of its onjunts.

The syntati CGF is indutively de�ned as follows.

1. Every relational atomi formula Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to

CGF.

2. CGF is losed under boolean operations.

4 / Colin Hirsh and Stephan Tobies

3. If x;y; z are tuples of variables, �(x;y; z) is a lique-formula for

x [y and '(x;y) is a formula in CGF suh that free(') � x [y,

then 9yz:(�(x;y; z) ^ '(x;y))

and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:�(x;y; z))'(x;y) and (8yz:�(x;y; z))'(x;y) as al-

ternative notations for 9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) !

'(x;y)), respetively. A formula of the form 8yz:(�(x;y; z) ! '(x;y))

is alled universally quanti�ed.

The following Lemma an be shown by elementary formula manipu-

lations that exploit that every z 2 z ours exatly one in �.

Lemma 2.3 Let �(x;y; z) be a lique-formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y))

� 8y:(9z:�(x;y; z) ! '(x;y)):

The use of the name CGF for both the semanti and the syntati

lique guarded fragment is justi�ed by the following Lemma.

Lemma 2.4 Over any �nite relational voabulary the syntati and se-

manti versions of the CGF are equally expressive.

Proof sketh: By some elementary equivalene transformations, every

syntatially lique guarded formula an be brought into a form where

swithing from standard semantis to lique guarded semantis does not

hange its meaning. Conversely, for any �nite signature there is a �nite

disjuntion lique(x; y; z) of lique-formulas for x; y suh that a; b form

a lique in G(A) i� A j= 9z:lique(a; b; z). By guarding every quanti�er

with suh a formula and applying some elementary formula transforma-

tions and Lemma 2.3, we get, for every FO formula , a syntatially

lique guarded formula that is equivalent to under lique guarded se-

mantis. If we �x a �nite relational voabulary, this transformation is

polynomial in the number of variables of the formula, or, more preisely,

the maximal number of free variables of all subformulas. a

In the following we will only onsider the syntati variant of the

lique guarded fragment.

De�nition 2.5 (NNF, Closure, Width) In the following, all formu-

las are assumed to be in negation normal form (NNF), where negation

ours only in front of atomi formulas. Every formula in CGF an be

A Tableau Algorithm for the Clique Guarded Fragment / 5

transformed into NNF in linear time by pushing negation inwards using

DeMorgan's law and the duality of the quanti�ers.

For a sentene 2 CGF in NNF, let l() be the smallest set that

ontains and is losed under sub-formulas. Let C be a set of onstants.

With l(;C) we denote the set

l(;C) = f'(a) : a � C;'(x) 2 l()g:

The width of a formula 2 CGF is de�ned by

width() := maxfjfree(')j : ' 2 l()g:

3 A Tableau Algorithm for CGF

For various modal and desription logis, deidability an be shown

by means of tableau algorithms, where satis�ability of a formula

is deided by a syntatially guided searh for a model for . Exam-

ples for these kind of algorithms an be found, e.g., in (Ladner 1977,

Halpern and Moses 1992, Horroks et al. 1999). Models are usually rep-

resented by a graph in whih the nodes orrespond to worlds and the

edges orrespond to the aessibility relations in the model. Eah node is

labeled with a set of formulas that this node must satisfy, and new edges

and nodes are reated as required by existential modalities. Sine many

modal and desription logis have the tree model property, the graphs

generated by these algorithms are trees, whih allows for simpler algo-

rithms and easier implementation and optimisation of these algorithms.

Indeed, some of the fastest implementations of modal or desription log-

is satis�ability algorithms use tableau aluli (Horroks et al. 2000).

For many modal or desription logis, e.g. K or ALC, termination of

these algorithms is due to the fat that the modal depth of the formulas

appearing at a node stritly dereases with every step from the root of

the tree. For other logis, e.g., K4, K with the universal modality, or the

expressive DL SHIQ, this is no longer true and termination has to be

enfored by other means. One possibility for this is bloking, i.e., stopping

the reation of new suessor nodes below a node v if there already is an

anestor node w that is labeled with similar formulas as v. Intuitively,

in this ase the model an fold bak from the predeessor of v to w,

reating a yle. Unraveling of these yles reovers an (in�nite) tree

model. Sine the algorithms guarantee that the formulas ourring in

the label of the nodes stem from a �nite set (usually the sub-formulas of

the input formula), every growing path will eventually ontain a bloked

node, preventing further growth of this path and (together with a bound

on the degree of the tree) ensuring termination of the algorithm. All these

notions will also be enountered in our tableau algorithm for CGF, an

indiation for the \modal nature" of CGF, as it is amenable to the same

6 / Colin Hirsh and Stephan Tobies

tehniques used suessfully for modal logis.

Our investigation of a tableau algorithm for CGF starts with the

observation that CGF also has some kind of tree model property.

De�nition 3.1 Let � be a relational voabulary. A � -struture A has

tree width k if k 2 N is minimal with the following property.

There exists a direted tree T = (V;E) and a funtion f : V ! 2

A

suh that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists v 2 V with a � f(v),

and

� for every a 2 A, the set V

a

= fv 2 V : a 2 f(v)g indues a

subtree of T .

Every node v of T indues a substruture F(v) � A of ardinality at

most k+1. The tuple hT; (F(v))

v2T

i is alled a tree deomposition of A.

A logi L has the generalised tree model property if there exists a

omputable funtion t, assigning to every sentene 2 L a natural

number t() suh that, if is satis�able, then has a model of tree

width at most t().

Fat 3.2 (Tree Model Prop. for CGF) Every satis�able sentene

2 CGF of width k has a ountable model of tree width at most k � 1.

This is a simple orollary of (Gr�adel 1999a), Theorem 4, where the

same result is given for �CGF, that is CGF extended by a least �xed

point operator.

Fat 3.2 is the starting point for our de�nition of a ompletion tree

for a formula 2 CGF. A node v of suh a tree no longer stands for

a single element of the model (as in the modal ase), but rather for a

substruture F(v) of a tree deomposition of the model. To this purpose,

we label every node v with a set C(v) of onstants (the elements of the

substruture) and a subset of l(;C(v)), reeting the formulas that

must hold true for these elements.

To deal with auxiliary elements|elements helping to form a lique

in G(A) that are not part of this lique themselves|we will use the

auxiliary onstant symbol � as a plaeholder for unspei�ed elements in

atoms. The intention is to keep the number of onstants at eah node

as small as possible. The � will be used for the extra elements ouring

in lique formulas that are not part of the lique itself.

The following de�nitions are useful when dealing with these gener-

alised atoms.

A Tableau Algorithm for the Clique Guarded Fragment / 7

De�nition 3.3 Let K denote an in�nite set of onstants and � 62 K.

For any set of onstants C � K we set C

�

= C [f�g. We use t

1

; t

2

; : : :

to range over elements of K

�

. The relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ng

either t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de�ne � 2

�

� i� there is a

�

0

2 � with � �

�

�

0

.

For a set of onstants C � K and an atom � = Rt

1

: : : t

n

, we de�ne

� �\ C = Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indiate that the tuple a

�

may ontain �'s.

Obviously, �

�

is transitive and reexive, and � �\C �

�

� for all atoms �

and sets of onstants C.

While these are all syntati notions, they have a semanti ounter-

part that lari�es the intuition of � standing for an unspei�ed element.

Let a

0

denote the tuple obtained from a tuple a

�

by replaing every o-

urrene of � in a

�

with a distint fresh variable, and let z be preisely

the variables used in this replaement. For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

beause, if a�

�

b, then b is obtained from a by replaing some � with

onstants, whih provide witnesses for the existential quanti�er.

We further write �j

C

to denote the subset of � ontaining all formu-

las that only use onstants in C.

De�nition 3.4 (Compl. Tree, Tableau) Let 2 CGF be a losed

formula in NNF. A ompletion tree T = (V;E;C;�;N) for is a vertex

labeled tree (V;E) with the labeling funtion C labeling eah node

v 2 V with a subset of K, � labeling eah node v 2 V with a subset of

l(;C(v)

�

) where all formulas �(x; �; : : : ; �) 2 �(v) using � are atoms

(exluding equality statements), and the funtion N : V ! N mapping

eah node to a distint natural number, with the additional property

that, if v is an anestor of w, then N(v) < N(w).

A onstant 2 K is alled shared between two nodes v

1

; v

2

2 V,

if 2 C(v

1

) \ C(v

2

), and 2 C(w) for all nodes w on the (unique,

undireted, possibly empty) shortest path onneting v

1

to v

2

.

8 / Colin Hirsh and Stephan Tobies

A node v 2 V is alled diretly bloked

2

by a node w 2 V, if w is not

bloked, N(w) < N(v), and there is an injetive mapping � from C(v)

into C(w) suh that, for all onstants 2 C(v) that are shared between

v and w, �() = , and �(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the onvention �(�) = � for every funtion � that

veri�es a bloking.

A node is alled bloked if it is diretly bloked or if its predeessor

is bloked.

A ompletion tree T ontains a lash if there is a node v 2 V suh

that

� for a onstant 2 C(v), 6= 2 �(v), or

� there is an atomi formula � and a tuple of onstants a � C(v)

suh that f�(a);:�(a)g � �(v).

Otherwise, T is alled lash-free. A ompletion tree T is alled omplete

if none of the ompletion rules given in Figure 1 an be applied to T. A

omplete and lash-free ompletion tree for is alled a tableau for .

To test for satis�ability, the tableau algorithm reates an initial

tree with only a single node v

0

, �(v

0

) = f g and C(v

0

) = fa

0

g for an

arbitrary onstant a

0

. The rules from Figure 1 are applied until either

a lash ours, produing output \ unsatisfiable", or the tree is

omplete, in whih ase \ satisfiable" is output.

The setC(v

0

) is initialised with a non-empty set of onstants to make

sure that empty strutures are exluded.

While our notion of tableaux has many similarities to the tableaux

appearing in (Gr�adel and Walukiewiz 1999), there are two important

di�erenes that make the version used here more suitable as basis for a

tableau algorithm.

We will see that every ompletion tree generated by the tableau algo-

rithm is �nite. Conversely, tableaux in (Gr�adel and Walukiewiz 1999),

in general, an be in�nite.

Also, in (Gr�adel and Walukiewiz 1999) every node is labeled with

a omplete (;C(v))-type, i.e., every formula ' 2 l(;C(v)) is expli-

itly asserted true of false at v. Conversely, a ompletion tree ontains

only assertions about relevant formulas. This implies a lower degree of

non-determinism in the algorithm, whih is important for an eÆient

implementation.

2

The de�nition of bloking is reursive. This does not ause any problems beause

the status of a node v only depends on its label and the status of nodes w with

N(w) < N(v). The reursion terminates at the root node, where the N-value is

minimal.

A Tableau Algorithm for the Clique Guarded Fragment / 9

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [f�g for � 2 f'; #g (hosen non-deterministially)

R= : if a = b 2 �(v); a 6= b

then for all w that share a with v;

C(w) := (C(w) n fag) [fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y) 2 �(v); there exists a b � C(v)

suh that for all atoms �(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v);

and '(a;b) 62 �(v)

then �(v) := �(v) [f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y) 2 �(v) and for every b; � C(v);

f�(a;b;); '(a;b)g 6� �(v) and there is no hild w of v

with f�(a;b;); '(a;b)g � �(w) for some b; � C(w)

and v is not bloked

then let b; be sequenes of distint and fresh onstants that

math the lengths of y; z;

reate a hild w of v with C(w) := a [b [and

�(w) := f�(a;b;); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi; not an equality, w is a neighbour of v

with a

�

\C(w) 6= ;; and �(a

�

) �\C(w) 62 �(w)

then �(w) := �(w) [f�(a

�

) �\C(w)g

Rl8 : if '(a) 2 �(v); '(a) is univ. quanti�ed; and w is a neighbour of v

with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [f'(a)g

FIGURE 1 The Completion Rules for CGF

Theorem 3.5 The tableau algorithm is a (non-deterministi) deision

proedure for CGF-satis�ability.

Proof: This is an immediate onsequene of the following fats estab-

lished in the subsequent setions.

1. Every sequene of rule appliations terminates after a �nite num-

ber of steps. (Termination, Lemma 3.7)

2. If is satis�able, then the rules an be applied to generate a

tableau for . (Completeness, Lemma 3.8)

3. If the algorithm onstruts a tableau for , then is satis�able

(Soundness, Lemma 3.11). a

3.1 Termination

The following tehnial lemma is a onsequene of the ompletion rules

and the bloking ondition.

10 / Colin Hirsh and Stephan Tobies

Lemma 3.6 Let 2 CGF be a sentene in NNF with j j = n, width()

= m, and T a ompletion tree generated for by appliation of the rules

in Figure 1. For every node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distint nodes in T ontain a bloked node.

Proof: Nodes are only generated when intialising the tree (with a sin-

gleq onstant) and by the R9-rule and no onstants are added to a C(v)

one v has been generated (but some may be removed by appliation of

the R=-rule).

When triggered by the formula (9yz:�(a;y; z))'(a;y), the R9-rule

initializes C(w) suh that it ontains a and another onstant for every

variable in x and y. Hene,

jC(w)j � ja [y [zj � jfree(�)j � width():

The set �(v) is a subset of l(;C(v)

�

), for whih jl(;C(v))j �

n� (m+1)

m

holds beause there are at most n formulas in l(), eah

of whih has at most m free variables. There are at most (jC(v)j + 1)

m

distint sequenes of length m with onstants from C(v)

�

.

Let v

1

; : : : ; v

`

be ` > 2

n�(m+1)

m

distint nodes. For every v

i

, we will

onstrut an injetive mapping �

i

: C(v

i

) ! f1; : : :mg suh that, if a

onstant a is shared between two nodes v

i

; v

j

, then �

i

(a) = �

j

(a).

Let u

1

; � � � ; u

k

denote the nodes of a subtree of T that ontains every

node v

i

and that is rooted at u

1

. By indution over the distane to

u

1

, we de�ne an injetive mapping �

i

: C(u

i

) ! f1; : : : ;mg for every

i 2 f1; : : : ; kg as follows. For �

1

we pik an arbitrary injetive funtion

from C(u

1

) to f1; : : : ;mg. For a node u

i

let u

j

be the predeessor of u

i

in T and �

j

the orresponding funtion, whih has already been de�ned

beause u

j

has a smaller distane to u

1

than u

i

. For �

i

we hoose an

arbitrary injetive funtion suh that �

i

(a) = �

j

(a) for all a 2 C(u

i

) \

C(u

j

).

All mappings �

i

are injetive. For any onstant a the set V

a

:= fv 2

V j a 2 C(v)g indues a subtree of T. If u

i

; u

j

2 V

a

are neighbours, the

de�nition above ensures �

i

(a) = �

j

(a). By indution over the length of

the shortest onneting path we obtain the same for arbitrary u

i

; u

j

2

V

a

.

For every node v

i

there is a j

i

suh that v

i

= u

j

i

and we set �

i

= �

j

i

.

There are at most 2

n�(m+1)

m

distint subsets of l(; f1; : : : ;m; �g).

Hene, there must be two nodes v

i

; v

j

suh that �

i

(�(v

i

)) = �

j

(�(v

j

))

and, w.l.o.g., N(v

i

) < N(v

j

). This implies that v

j

is bloked by v

i

via

� := �

�1

i

Æ�

j

. Note that for � to be well-de�ned, �

i

must be injetive. By

A Tableau Algorithm for the Clique Guarded Fragment / 11

onstrution, � preserves shared onstants. Sine �

i

(�(v

i

)) = �

j

(�(v

j

)),

�(�(v

j

)) = �(v

i

)j

�(C(v

j

))

holds. a

Lemma 3.7 (Termination) Let 2 CGF be a sentene in NNF. Any

sequene of rule appliations of the tableau algorithm starting from the

initial tree terminates.

Proof: For any ompletion tree T generated by the tableau algorithm,

we de�ne k � k : V 7! N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) : ' triggers the R9-rule for vgj):

The lexiographi order � on N

3

is well-founded, i.e. it has no in�nite

dereasing hains. Any rule appliation dereases kvk w.r.t. � for at

least one node v, and never inreases kvk w.r.t. � for an existing node

v. However it may reate new suessors, one at a time. Sine � is well-

founded, there an only be a �nite number of appliations of rules to

every node in T and hene a �nite number of suessors and an in�nite

sequene of rule appliations would generate a tree of in�nite depth.

Yet, as a orollary of Lemma 3.6, we have that the depth of T is

bounded by 2

n�(m+1)

m

. For assume that there is a path of length >

2

n�(m+1)

m

in T with deepest node v. By the time v has been reated

(by an appliation of the R9-rule to its predeessor u), the path from the

root of T to u ontains at least 2

n�(m+1)

m

nodes, and hene a bloked

node. This implies that u is bloked too, and the R9-rule annot be

applied to reate v. a

3.2 Completeness

Lemma 3.8 Let 2 CGF be a losed formula in NNF. If is sat-

is�able, then there is a sequene of rule appliations starting from the

initial tree that yields a tableau.

Proof: Sine is satis�able, there is a model A of . We will use A

to guide the appliation of the non-deterministi R_-rule. For this we

inremently de�ne a funtion g :

S

fC(v) j v 2 Vg ! A suh that

for all v 2 V : A j= g(�(v)). We refer to this property by (x).

The set �(v) an ontain atomi formulas �(a

�

), where � ours at

some positions of a

�

. The onstant � is not mapped to an element of A

by g. We deal with this as desribed just after De�nition 3.3 by setting

A j= g(�(a

�

)) i� A j= 9z:g(�(a

0

)):

12 / Colin Hirsh and Stephan Tobies

Claim 3.9 If, for a ompletion tree T, there exists a funtion g, suh

that (x) holds and a rule is appliable to T, then it an be applied in a

way that maintains (x).

� For the R^- and the R_-rule this is obvious.

� If the R=-rule is appliable to v 2 V with a = b 2 �(v), then,

sine A j= g(a) = g(b), g(a) = g(b) must hold. Hene, for every

node w that shares a with v, g(�(w)) = g(�(w)[a 7! b℄) and the

rule an be applied without violating (x).

� If the R8-rule is appliable to v 2 V with (8yz:�(a;y; z))'(a;y) 2

�(v) and b � C(v) with �(a;b; � � � � �) 2

�

�(v) for all atoms

�(x;y; z) 2 �, then, from the de�nition of 2

�

, there is a tuple

�

�

C(v)

�

, suh that �(a;b; � � � � �) �

�

�(a;b;

�

) and �(a;b;

�

) 2

�(v). From (x) we get that A j= 9z:�(g(a); g(b); z) and sine ev-

ery z 2 z appears exatly one in �, also A j= 9z:�(g(a); g(b); z).

Hene, we have

fA j= f8yz:�(g(a);y; z)) ! '(g(a);y);

9z:�(g(a); g(b); z)g

whih, by Lemma 2.3, implies A j= '(g(a); g(b)) and hene '(a;b)

an be added to �(v) without violating (x).

� If the R9-rule is appliable to v 2 V with (9yz:�(a;y; z))'(a;y),

then this implies

A j= g((9yz:�(a;y; z))'(a;y)):

Hene, there are sequenes b

0

;

0

� A of elements suh that A j=

f�(g(a);b

0

;

0

); '(g(a);b

0

)g. If we de�ne g suh that g(b) = b

0

and g() =

0

, then obviously A j= fg(�(a;b;); g('(a;b))g. Note,

that this might involve setting g(b

1

) = g(b

2

) for some b

1

; b

2

2 b.

With this onstrution the resulting extended ompletion-tree T

and extended funtion g again satisfy (x).

� If the Rl-rule is appliable to v 2 V with �(a

�

) 2 �(v) and a

neighbour w with a

�

\ C(w) 6= ;, then it adds �(a

�

) �\ C(w) to

�(w). From (x) we get that A j= �(g(a

�

)), and sine �(b

�

) :=

�(a

�

) �\C(w) �

�

�(a

�

), this implies A j= �(g(b

�

)). Hene, adding

�(a

�

) �\C(w) = �(b

�

) to �(w) does not violate (x).

� If the Rl8-rule is appliable to a node v 2 V with a universally

quanti�ed formula '(a) 2 �(v) and a neighbour w whih shares a

with v, (x) yields A j= '(g(a)). Hene, adding '(a) to �(w) does

not violate (x).

Claim 3.10 A ompletion-tree T for whih a funtion g exists suh that

(x) holds is lash free.

A Tableau Algorithm for the Clique Guarded Fragment / 13

Assume that T ontains a lash, namely, there is a node v 2 V

suh that either a 6= a 2 V(v)|implying A j= g(a) 6= g(a)|, or

that there is a sequene a � C(v), and an atomi formula � suh that

f�(a);:�(a)g � �(v). From (x), A j= f�(g(a));:�(g(a))g would follow,

also a ontradition.

These laims yield Lemma 3.8 as follows. Let T be a tableau for

 . Sine A j= , (x) is satis�ed for the initial tree together with the

funtion g mapping a

0

to an arbitrary element of the universe of A. By

Lemma 3.7, any sequene of appliations is �nite, and from Claim 3.9

we get that there is a sequene of rule-appliations that maintains (x).

By Claim 3.10, this sequene results in a tableau. This ompletes the

proof of Lemma 3.8. a

Lemma 3.8 involves two di�erent kinds of non-determinism, namely,

the hoie whih rule to apply to whih onstraint (as several rules might

be appliable simultaneously), and whih disjunt to hoose in an appli-

ation of the R_-rule. While the latter hoie is don't-know non-deter-

ministi, i.e., for a satis�able formula only ertain hoies will lead to the

disovery of a tableau, the former hoie is don't-are non-deterministi.

This means that arbitrary hoies of whih rule to apply next will lead

to the disovery of a tableau for a satis�able formula. For an imple-

mentation of the tableau algorithm this has the following onsequenes.

Exhaustive searh is neessary to deal with all possible expansions of

the R_-rule, but arbitrary strategies of hoosing whih rule to apply

next, and where to apply it, will lead to a orret implementation, al-

though the eÆieny of the implementation will strongly depend on a

sophistiated strategy.

3.3 Corretness

In order to prove the orretness of the tableau algorithm we have to

show that the existene of a tableau for implies satis�ability of .

To this purpose, we will onstrut a model from a tableau. From the

onstrution employed in the proof we obtain an alternative proof of

Fat 3.2.

Lemma 3.11 Let 2 CGF[� ℄ with k = width() and let T be a tableau

for generated by the tableau algorithm. Then is satis�able and has

a model of tree width at most k � 1.

Proof: Let T = (V;E;C;�;N) a tableau for . For every diret

bloking situation we �x a mapping � verifying this bloking. Using an

unraveling onstrution, we will onstrut a model A for of width

at most k � 1 from T. First, we \unravel" bloking situations in T by

14 / Colin Hirsh and Stephan Tobies

suessively replaing every bloked node with a opy of the subtree of T

rooted at the bloking node. Formally, this is ahieved by the following

path onstrution. We de�ne

V

u

= fv 2 V : v is not bloked or diretly bloked g:

Sine from now on we only deal with nodes from V

u

, every bloking is

diret and we will no longer expliitly mention this fat.

The set Paths(T) is indutively de�ned by

3

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a suessor of v

n

and w is not bloked,

then [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2 Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a suessor of v

n

bloked by the node

u 2 V, then [

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

being a suessor of p if p

0

is

obtained from p by onatenating one element

u

w

at the end. We de�ne

the auxiliary funtions Tail;Tail

0

by setting Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄.

Intuitively, for every node v of T, the paths p 2 Paths(T) with

v = Tail(p) stand for distint opies of v reated by the unraveling.

The universe of A onsists of (lasses of) onstants labeling nodes in T

paired with the paths at whose Tail they appear to distinguish onstants

ouring at di�erent opies of a node of T. Formally, we de�ne

C(T) = f(a; p) : p 2 Paths(T) ^ a 2 C(Tail(p))g:

Constants appearing at onseutive nodes of T stand for the same ele-

ment and the same holds for onstants related by a mapping � verifying

a blok. Hene, to obtain the universe of A, we fatoriseC(T) as follows.

Let � be the smallest symmetri relation on C(T) satisfying

� (a; p) � (a; q) if q is a suessor of p in Paths(T), Tail

0

(q) is an

unbloked suessor of Tail(p), and a 2 C(Tail(p)) \C(Tail

0

(q)),

� (a; p) � (b; q) if q is a suessor of p in Paths(T), Tail

0

(q) is a

bloked suessor of Tail(p), a 2 C(Tail(p)) \ C(Tail

0

(q)), and

�(a) = b for the funtion � that veri�es that Tail

0

(q) is bloked

by Tail(q).

With � we denote the reexive, transitive losure of � and with [a; p℄

�

the lass of (a; p), i.e., the set f(b; q) 2 C(T) j (b; q) � (a; p)g. Sine

3

This ompliated form of unraveling, where we reord both bloked and bloking

node is neessary beause there might be a situation where two suessors v

1

; v

2

of

a node are diretly bloked by the same node w.

A Tableau Algorithm for the Clique Guarded Fragment / 15

(a; p) � (b; q) i� p; q are neighbours in Paths(T), for every (a; p), the set

Paths([a; p℄

�

) := fq j 9b:(b; q) 2 [a; p℄

�

g

is a subtree of Paths(T).

The lasses of C(T)= � will be the elements of the universe of A.

First we need to prove some tehnialities for this onstrution.

Claim 3.12 Let p 2 Paths(T) and a; b 2 C(Tail(p)). Then (a; p) � (b; p)

i� a = b.

Assume the laim does not hold and let a 6= b with (a; p) � (b; p). By

de�nition of �, (a; p) 6� (b; p) must hold. Hene, there must be a path

(

1

; p

1

) � � � � � (

k

; p

k

) suh that a =

1

, b =

k

, and p = p

1

= p

k

.

W.l.o.g., assume we have piked a; b; p suh that this path has minimal

length k. Suh a minimal path must be of length k = 3, for if we assume a

path of length k > 3, there must be 2 � i < j � k� 1 suh that p

i

= p

j

,

beause the relation � is de�ned along paths in the tree Paths(T). If

i

=

j

then we an shorten the path between position i and j and

obtain a shorter path. If

i

6=

j

, then the path (

i

; p

i

) � � � � � (

j

; p

j

)

is also a shorter path with the same properties. Hene, a minimal path

must be of the form (a; p) � (; q) � (b; p). If Tail

0

(q) is not bloked, by

the de�nition of �, a = = bmust hold. Hene, sine a 6= b, Tail

0

(q) must

be bloked by Tail(q). From the de�nition of � we have a; b 2 C(Tail

0

(q))

and �(a) = = �(b) for the funtion � verifying that Tail

0

(q) is bloked

by Tail(q). Sine � must be injetive, this is a ontradition.

Sine the set Paths(T) is a tree, and as a onsequene of Claim 3.12,

we get the following.

Claim 3.13 Let p; q 2 Paths(T) with p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄, q = [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄.

If, for a 2 C(v

n

); b 2 C(w), (a; p) � (b; q) then (a; p) � (b; q).

If (a; p) � (b; q) then there must be a path (

1

; p

1

) � � � � � (

k

; p

k

)

suh that a =

1

, b =

k

, p = p

1

, and q = p

k

. Sine � is only de�ned

along paths in the tree Paths(T), there must be a step from p to q

(or, dually, from q to p) in this path, more preisely, there must be an

i 2 f1; : : : k � 1g suh that p

i

= p and p

i+1

= q holds. Hene, we have

the situation

(a; p) � (

i

; p) � (

i+1

; q) � (b; q):

Claim 3.12 implies a =

i

and b =

i+1

and hene (a; p) � (b; q).

Using Claim 3.13, we an show that the bloking ondition and the

Rl- and Rl8-rule work as desired.

16 / Colin Hirsh and Stephan Tobies

Claim 3.14 Let p; q 2 Paths(T), a � C(Tail(p));b � C(Tail(q)), a;b

non-empty tuples, and (a; p) � (b; q).

� For every atom �, �(a; � � � � �) 2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universally quanti�ed ', '(a) 2 �(Tail(p)) i� '(b) 2

�(Tail(q)).

Sine both propositions are symmetri, we only need to prove one

diretion. If (a; p) � (b; q) with a = a

1

a

2

: : : a

m

and b = b

1

b

2

: : : b

m

,

then

fp; qg �

m

\

i=1

Paths([a

i

; p℄

�

)

and, as an intersetion of subtrees of Paths(T),

T

m

i=1

Paths([a

i

; p℄

�

) is

itself a subtree of Paths(T). Hene, in Paths(T) there is a path p

1

; : : : ; p

k

for whih there exist tuples of onstants

1

; : : : ;

k

with (

1

; p

1

) � � � � �

(

k

; p

k

), p = p

1

, q = p

k

, a =

1

, and b =

k

. Sine a;b are non-empty, so

are the

i

. From Claim 3.13, we get that for any two neighbours p

i

; p

i+1

in Paths(T), (

i

; p

i

) � (

i+1

; p

i+1

) implies (

i

; p

i

) � (

i+1

; p

i+1

).

By two similar indutions on i with 1 � i � k we show that if

�(a; � � � � �) 2

�

�(Tail(p)) then �(

i

; � � � � �) 2

�

�(Tail(p

i

)) and if '(a) 2

�(Tail(p)) then '(

i

) 2 �(Tail(

i

)).

For i = 1 in both ases nothing has to be shown. Now assume that

the we have shown these properties up to i. W.l.o.g., assume p

i+1

is a

suessor of p

i

in the tree Paths(T). The other ase is handled dually.

There are two possibilities:

� Tail

0

(p

i+1

) is not bloked. Then Tail(p

i+1

) = Tail

0

(p

i+1

) and by

the de�nition of �, Tail(p

i+1

) is a suessor of Tail(p

i

) in T and

i

=

i+1

holds.

If �(a; � � � � �) 2

�

�(Tail(p)) then �(

i

; � � � � �) 2

�

�(Tail(p

i

)) holds

by indution and due to the Rl-rule, this implies �(

i+1

; � � � � �)2

�

�(Tail(p

i+1

)). The Rl-rule is appliable beause, for the the non-

empty tuple

i

,

i

=

i+1

� C(Tail(p

i+1

)) holds.

If '(a) 2 �(Tail(p)) then by indution '(

i

) 2 �(Tail(p

i

)) and

due to the Rl8-rule this implies '(

i+1

) 2 �(Tail(p

i+1

)).

� Tail

0

(p

i+1

) is bloked by Tail(p

i+1

) (with funtion �) and Tail

0

(p

i+1

)

is a suessor of Tail(p

i

) in T. Then, by de�nition of � we have

i+1

= �(

i

) and

i

� C(Tail(p

i

)) \C(Tail

0

(p

i+1

)).

If �(a; � � � � �) 2

�

�(Tail(p)) then �(

i

; � � � � �) 2

�

�(Tail(p

i

)) holds

by indution and due to the Rl-rule this implies �(

i

; � � � � �) 2

�

�(Tail

0

(p

i+1

)). The Rl-rule is appliable beause, for the non-

empty tuple

i

,

i

� C(Tail

0

(p

i+1

)) holds. The node Tail(p

i+1

)

A Tableau Algorithm for the Clique Guarded Fragment / 17

bloks Tail

0

(p

i+1

), whih implies

�(�(

i

; � � � � �)) = �(

i+1

; � � � � �) 2

�

�(Tail(p

i+1

)):

If '(a) 2 �(Tail(p)) then by indution '(

i

) 2 �(Tail(p

i

)) and due

to the Rl8-rule this implies '(

i

) 2 �(Tail

0

(p

i+1

)). Sine Tail(p

i+1

)

bloks Tail

0

(p

i+1

), �('(

i

)) = '(

i+1

) 2 �(Tail(p

i+1

)) holds.

We now de�ne the struture A over the universe A = C(T)=�. For

a relation R 2 � of arity m, R

A

is de�ned to be the set of tuples

([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) for whih there exists a path p 2 Paths(T)

and onstants

1

; : : :

m

suh that (

i

; p) � (a

i

; p

i

) for all 1 � i � m, and

R

1

: : :

m

2 �(Tail(p)).

It remains to show that this onstrution yields A j= . This is a

onsequene of the following laim.

Claim 3.15 For every path p 2 Paths(T) and a � C(Tail(p)), if '(a) 2

�(Tail(p)), then A j= '([a; p℄

�

).

We show this laim by indution on the struture of '. If '(a) =

Ra

1

: : : a

m

2 �(Tail(p)), then the laim holds immediately by onstru-

tion of A.

Assume '(a) = :Ra 2 �(Tail(p)), but [a; p℄

�

2 R

A

. Then, by the

de�nition of A, there must be a path p

0

and onstants suh that (a; p) �

(; p

0

) and R 2 �(Tail(p

0

)). From Claim 3.14 we have that (a; p) �

(; p

0

) implies Ra2

�

�(Tail(p)) and, sine a ontains no ourrene of �,

Ra 2 �(Tail(p)). Hene T ontains the lash fRa;:Rag � �(Tail(p)),

a ontradition to the fat that T is lash-free. Thus, [a; p℄

�

62 R

A

.

Assume '(a) = a 6= b 2 �(Tail(p)) but [a; p℄

�

= [b; p℄

�

. From

Claim 3.12 we get that this implies a = b and hene T ontains the

lash a 6= a 2 �(Tail(p)). Again, this is a ontradition to the fat that

T is lash-free and [a; p℄

�

6= [b; p℄

�

must hold.

For positive Boolean ombinations the laim is immediate due to the

R^- and R_-rule.

Let '(a) = (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)) and b;p; ;q arbi-

trarily hosen with

(1) A j= �([a; p℄

�

; [b;p℄

�

; [;q℄

�

):

We need to show that also A j= �([a; p℄

�

; [b;p℄

�

) holds. In order to bring

ompleteness of T and the R8-rule into play, we show that information

about the fat that (1) holds is present at a single node in T where it

triggers the R8-rule. We rely on the fat that universal quanti�ers must

be guarded.

Every y

i

2 y oexists with every other variable y

j

2 y in at least

one atom �

(i;j)

2 �(a;y; z) and with every element a

`

2 a in at least

18 / Colin Hirsh and Stephan Tobies

one atom

(i;`)

2 �(a;y; z). For any two distint variables y

i

; y

j

, A j=

�

(i;j)

([a; p℄

�

; [b;p℄

�

; [;q℄

�

) holds and this an only be the ase if there

is a path q

(i;j)

and onstants d

(i;j)

; e

(i;j)

suh that (b

i

; p

i

) � (

(i;j)

; q

(i;j)

)

and (b

j

; p

j

) � (d

(i;j)

; q

(i;j)

).

Similarly, for every element [b

i

; p

i

℄

�

2 [b;p℄

�

and every element

(a

`

; p) there exists a path r

(i;`)

and onstants f

(i;`)

; g

(i;`)

suh that

(b

i

; p

i

) � (f

(i;`)

; r

(i;`)

) and (a

`

; p) � (g

(i;`)

; r

(i;`)

). For every i and `,

Paths([b

i

; p

i

℄

�

) and Paths([a

`

; p℄

�

) are subtrees of Paths(T).

The tree Paths([b

i

; p

i

℄

�

) overlaps with the tree Paths([b

j

; p

j

℄

�

) at

q

(i;j)

and with the tree Paths([a

`

; p℄

�

) at r

(i;`)

. From this it follows

(Golumbi 1980, Proposition 4.7) that there exists a ommon path

s 2

\

i

Paths([b

i

; p

i

℄

�

) \

\

`

Paths([a

`

; p℄

�

):

Thus, there are tuples a

0

, b

0

suh that

(2) (a

0

; s) � (a; p) and (b

0

; s) � (b;p):

We now show that the preonditions of the R8-rule are satis�ed at

Tail(s) for the formula (8yz:�(a

0

;y; z))�(a

0

;y) and the tuple b

0

. First,

due to Claim 3.14, (8yz:�(a

0

;y; z))�(a

0

;y) 2 �(Tail(s)) holds beause

(a; p) � (a

0

; s) and (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)).

For every �(x;y; z) 2 �(x;y; z), �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)) holds

as follows: from (1,2) we get

A j= �([a

0

; s℄

�

; [b

0

; s℄

�

; [;q℄

�

):

Sine � is an atom, this implies the existene of a path t and tuples

a

00

;b

00

;

0

with

(3)

(a

0

; s) � (a

00

; t); (b

0

; s) � (b

00

; t); (;q) � (

0

; t)

and �(a

00

;b

00

;

0

) 2 �(Tail(t))

It holds that �(a

00

;b

00

; � � � � �) �

�

�(a

00

;b

00

;

0

) and sine �(a

00

;b

00

;

0

) 2

�(Tail(t)), �(a

00

;b

00

; � � � � �) 2

�

�(Tail(t)). Thus, by Claim 3.14 it holds

that �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)).

Sine this is true for every atom �, the preonditions of the R8-rule

are satis�ed and the ompleteness of T yields �(a

0

;b

0

) 2 �(Tail(s)). By

indution, A j= �([a

0

; s℄

�

; [b

0

; s℄

�

) holds and together with (2) this im-

plies A j= �([a; p℄

�

; [b;p℄

�

). Sine a;p; ;q have been hose arbitrarily,

A j= '([a; p℄

�

) holds.

If '(a) = (9yz:�(a;y; z))�(a;y) 2 �(Tail(p)), there are two possi-

bilities:

� there are b; � C(Tail(p)) with f�(a;b;); �(a;b)g � �(Tail(p)).

Then, by indution, we have

A j= f�([a; p℄

�

; [b; p℄

�

; [; p℄

�

); �([a; p℄

�

; [b; p℄

�

)g

A Tableau Algorithm for the Clique Guarded Fragment / 19

and hene A j= '([a; p℄

�

).

� there are no suh b; � C(Tail(p)), then there is a suessor w

of Tail(p) and b; � C(w) with f�(a;b;); �(a;b)g � �(w). The

node w an be bloked or not.

If w is not bloked, then p

0

= [p;

w

w

℄ 2 Paths(T) and by indution

A j= f�([a; p

0

℄

�

; [b; p

0

℄

�

; [; p

0

℄

�

); �([a; p

0

℄

�

; [b; p

0

℄

�

)g:

From the de�nition of � we have, (a; p

0

) � (a; p) and hene A j=

'([a; p℄

�

).

If w is bloked by a node u (with funtion �) then p

0

= [p;

u

w

℄ 2

Paths(T). From the bloking ondition, we have that u is unbloked

and �f�(a;b;); �(a;b)g) � �(u). Hene, by indution

A j= f �([�(a); p

0

℄

�

; [�(b); p

0

℄

�

; [�(); p

0

℄

�

);

�([�(a); p

0

℄

�

; [�(b); p

0

℄

�

) g;

and by de�nition of � we have that (a; p) � (�(a); p

0

) and hene,

A j= '([a; p℄

�

).

As a speial instane of Claim 3.15 we get that A j= . From

Lemma 3.6, we get that, for every node v 2 V, jC(v)j � width()

and hene the tree Paths(T) together with the funtion f : Paths(T)!

C(T)=� with f(p) = C(Tail(p))=� provides a tree deomposition of A

of width � width()� 1. This ompletes the proof of Lemma 3.11. a

Corollary 3.16 CGF, and hene also LGF and GF have the generalised

tree model property.

Proof: Let 2 CGF[� ℄ be satis�able. Then, from Lemma 3.8 we get

that there is a tableau T for . By Lemma 3.11, T indues a model for

 of tree width at most width() � 1. Note that we have never relied

on Fat 3.2 to obtain any of the results in this paper and hene have

indeed given an alternative proof for the generalised tree model property

of CGF. For LGF and GF, observe that the embedding of these logis

into CGF may inrease the width of the sentene but not by more than

a reursive amount. a

4 Conlusion

We have developed a tableau algorithm for CGF, whih we hope an

serve as basis for an eÆient implementation of a deision proedure for

CGF. This hope is justi�ed by the fat that some of the most eÆient

implementations of modal or desription logi reasoners are based on

tableau aluli similar to the one for CGF presented in this paper. As a

orollary from the onstrutions used to prove the orretness we obtain

20 / Referenes

a new proof of the fat that GF=LGF=CGF have the generalised tree

model property.

Aknowledgements

We would like to thank Andrei Voronkov and an anonymous reviewer

for helpful suggestions. The seond author is supported by the DFG,

Projet No. GR 1324/3{1.

Referenes

Andr�eka, H., J. van Benthem, and I. N�emeti. 1998. Modal Languages and

Bounded Fragments of Prediate Logi. Journal of Philosophial Logi

27:217{274.

Donini, F. M., M. Lenzerini, D. Nardi, and W. Nutt. 1997. The Complexity

of Conept Languages. Information and Computation 134(1):1{58.

Ganzinger, H., and H. de Nivelle. 1999. A Superposition Deision Proedure

for the Guarded Fragment with Equality. In Pro. 14th IEEE Symp. on

Logi in Computer Siene, 295{303.

Golumbi, M. 1980. Algorithmi Graph Theory and Perfet Graphs. New

York, NY: Aademi Press.

Gr�adel, E. 1999a. Deision proedures for guarded logis. In Automated De-

dution - CADE16. Proeedings of 16th International Conferene on Au-

tomated Dedution, Trento, 1999. Leture Notes in Arti�ial Intelligene,

No. 1632. Springer-Verlag.

Gr�adel, E. 1999b. On the restraining power of guards. Journal of Symboli

Logi 64(4):1719{1742.

Gr�adel, E., and I. Walukiewiz. 1999. Guarded Fixed Point Logi. In Pro.

14th IEEE Symp. on Logi in Computer Siene, 45{54.

Halpern, J. Y., and Y. Moses. 1992. A Guide to Completeness and Complexity

for Model Logis of Knowledge and Belief. Arti�ial Intelligene 54(3):319{

379.

Horroks, I., P. F. Patel-Shneider, and R. Sebastiani. 2000. An Analysis of

Empirial Testing for Modal Deision Proedures. Logi Journal of the

IGPL 8(3):293{323.

Horroks, I., U. Sattler, and S. Tobies. 1999. Pratial Reasoning for Expres-

sive Desription Logis. In Proeedings of the 6th International Confer-

ene on Logi for Programming and Automated Reasoning (LPAR'99), ed.

H. Ganzinger, D. MAllester, and A .Voronkov, 161{180. Leture Notes

in Arti�ial Intelligene, No. 1705. Springer-Verlag, September.

Ladner, R. 1977. The omputational omplexity of provability in systems of

propositional modal logi. SIAM Journal on Computing 6:467{480.

van Benthem, J. 1997. Dynami bits and piees. ILLC Researh Report LP-

97-01. University of Amsterdam.

Referenes / 21

Vardi, M. 1997. Why is modal logi so robustly deidable? In Desriptive

Complexity and Finite Models, ed. N. Immerman and P. Kolaitis. DIMACS

Series in Disrete Mathematis and Theoretial Computer Siene, Vol. 31,

149{184. AMS.

Weidenbah, C. 1997. SPASS|Version 0.49. J. of Automated Reasoning

18(2):247{252.

Colin Hirsh

Mathematishe Grundlagen der Informatik, RWTH Aahen

Ahornstr. 55

52064 Aahen

Germany

E-mail: hirsh�s.rwth-aahen.de

URL: http://www-mgi.informatik.rwth-aahen.de/~hirsh/

Stephan Tobies

LuFG Theoretial Computer Siene, RWTH Aahen

Ahronstr. 55

52064 Aahen

Germany

E-mail: tobies�s.rwth-aahen.de

URL: http://www-lti.informatik.rwth-aahen.de/~tobies/

