
Tableaux for temporal desription logi with

onstant domains

Carsten Lutz,

1

Holger Sturm,

2

Frank Wolter,

3

and Mihael Zakharyashev

4

1

LuFG Theoretial Computer Siene, RWTH Aahen,

Ahornstra�e 55, 52074 Aahen, Germany

2

Fahbereih Philosophie, Universit�at Konstanz,

78457 Konstanz, Germany

3

Institut f�ur Informatik, Universit�at Leipzig,

Augustus-Platz 10-11, 04109 Leipzig, Germany

4

Department of Computer Siene, King's College,

Strand, London WC2R 2LS, U.K.

emails: lutz�s.rwth-aahen.de, holger.sturm�uni-konstanz.de,

wolter�informatik.uni-leipzig.de, mz�ds.kl.a.uk

Abstrat. We show how to ombine the standard tableau system for the

basi desription logi ALC and Wolper's tableau alulus for proposi-

tional temporal logi PTL (with the temporal operators `next-time' and

`until') in order to design a terminating sound and omplete tableau-

based satis�ability-heking algorithm for the temporal desription logi

PTL

ALC

of [20℄ interpreted in models with onstant domains. We use

the method of quasimodels [18, 16℄ to represent models with in�nite do-

mains, and the tehnique of minimal types [11℄ to maintain these domains

onstant. The ombination is exible and an be extended to more ex-

pressive desription logis or even to deidable fragments of �rst-order

temporal logis.

1 Introdution

Temporal desription logis (TDLs) are knowledge representation formalisms

intended for dealing with temporal oneptual knowledge. In other words, TDLs

ombine the ability of desription logis (DLs) to represent and reason about

oneptual knowledge with the ability of temporal logis (TLs) to reason about

time. A dozen TDLs designed in the last deade (see e.g. [15, 14, 2, 20, 3, 10℄

and survey [1℄) showed that the equation TDL = DL + TL may have di�erent,

often very omplex solutions, partly beause of the rih hoie of DLs and TLs,

but primarily beause of priniple diÆulties in ombining systems; see [7℄. With

rare exeptions, the work so far has been onentrated on theoretial foundations

of TDLs (deidability and undeidability, omputational omplexity, expressive

power). The investigation of `implementable' algorithms is still at the embryo

stage, espeially for the TDLs with non-trivial interations between their DL and

TL omponents. The problem we are faing is as follows: is it possible to ombine

the existing implementable reasoning proedures for the interating DL and TL

omponents into a reasonably eÆient (on `real world problems') algorithm for

their TDL hybrid? As the majority of the existing reasoning mehanisms for DLs

are based on the tableau approah, a �rst hallenging step would be to ombine

a tableau system for a DL with Wolper's tableaux [17℄ for the propositional

temporal logi PTL.

The �rst TDL tableau system was onstruted by Shild [14℄, who merged the

basi desription logi ALC with PTL by allowing appliations of the temporal

operator U (until) and its derivatives only to onepts. For example, he de�nes

a onept Mortal by taking

Mortal = Living being u (Living being U 2:Living being) ;

where 2 means `always in the future.' The resulting language is interpreted

in models based on the ow of time hN; <i and, for eah n 2 N, speifying

an ALC-model that desribes the state of the knowledge base at moment n.

Shild obtains his sound, omplete and terminating tableau system (for heking

onept satis�ability) simply by putting together the tableau rules of ALC and

PTL. The reason behind this `trivial' solution is that, in Shild's logi, there is no

atual interation between the temporal operators of PTL and the onstrutors

of ALC; the logi is the fusion or independent join of its omponents.

A more sophistiated ombination PTL

ALC

of ALC and PTL allowing appli-

ations of temporal and Boolean operators to both onepts and TBox axioms

was onstruted in [20℄. Using PTL

ALC

, one an express statements like `in all

times all living beings are mortal' or `living beings will never die out ompletely:'

2(Living being v Mortal); 23:(Living being = ?);

where 3 means `some time in the future.' The degree of interation between

the DL and TL omponents in PTL

ALC

depends on the `domain assumption'

the intended models omply with. A tableau system for PTL

ALC

interpreted

in models with expanding ALC domains (whih means that when moving from

earlier moments of time to later ones, the domains of ALC-models an get larger

and larger, but never shrink) was designed in [16℄. The interation between the

omponents beomes even stronger if we onsider models with onstant domains,

where an introdution of a domain element at moment n fores us to introdue

the same element at all previous moments as well. This makes the problem

of onstruting tableaux for PTL

ALC

with onstant domains onsiderably more

diÆult.

The hoie of the domain assumption|expanding, varying, dereasing, or

onstant|depends on the knowledge to be represented. One an argue, for in-

stane, whether the domain element representing a living being A in a model

exists before A's birth or after A's death. However, in many appliations suh

as reasoning about temporal entity relationship (ER) diagrams [2, 3℄, expanding

domains do not suÆe and must be replaed by onstant ones. Apart from being

appropriate for appliations, the onstant domain assumption is the most gen-

eral ase in the sense that reasoning with expanding (or varying) domains an

be redued to reasoning with onstant domains (see e.g. [20℄).

The main aim of this paper is to design a terminating, sound, and omplete

tableau system for heking satis�ability of PTL

ALC

-formulas in models with on-

stant domains.

This is ahieved by

{ ombining (in a modular way) the standard tableaux for ALC with Wolper's

[17℄ tableaux for PTL,

{ using so-alled quasimodel representations of onstraint systems, and

{ using so-alled minimal type representations of domain elements introdued

in subsequent states.

Quasimodels [18{20℄ are abstrations of models representing elements by their

types and the evolution of elements in time by ertain funtions alled runs. As

was shown in [16℄, quasimodels make it possible to ope with PTL

ALC

models

having in�nite ALC domains (an example showing that PTL

ALC

does not have

the �nite domain property an be found in Setion 2). The onept of `minimal

partial types' is the main new idea of this paper whih is used to maintain the

ALC domains onstant.

Although the formula-satis�ability problem for PTL

ALC

is rather omplex|

as is shown in [3℄, it is ExpSpae-omplete|we hope that the tableau system

onstruted in this paper will lead to a `reasonably eÆient' implementation of

the PTL

ALC

reasoning servies. However, in order to ahieve an aeptable run-

time behavior, it is still neessary to devise suitable optimization strategies for

the algorithm. We believe that suh strategies an be found, sine, as shown in

e.g. [9℄, related tableau algorithms are amenable to optimization.

It is to be noted that the developed approah an be used to design tableau

algorithms for other ombinations of desription and modal logis (in partiular,

temporal epistemi logis of [6℄). For instane, [11℄ gives a solution to the open

problem of Baader and Laux [4℄ by onstruting tableaux for their ombination

of the modal logi K with ALC interpreted in models with onstant domains.

The paper is aompanied by a tehnial report [12℄ ontaining full proofs of

all theorems.

2 Basi de�nitions

We begin by introduing the temporal desription logi PTL

ALC

of [20℄.

Let N

C

= fC

0

; C

1

; : : : g, N

R

= fR

0

; R

1

; : : : g, and N

O

= fa

0

; a

1

; : : : g be

ountably in�nite sets of onept names, role names, and objet names, respe-

tively. PTL

ALC

-onepts are de�ned indutively: all the C

i

as well as > are

onepts, and if C, D are onepts and R 2 N

R

, then C u D, :C, 9R:C, C,

and CUD are onepts.

PTL

ALC

-formulas are de�ned as follows: if C;D are onepts and a; b 2 N

O

,

then C = D, a : C, and aRb are atomi formulas; and if ' and are formulas,

then so are :', ' ^ , ', and 'U .

The intended models of PTL

ALC

are natural two-dimensional hybrids of

standard models of ALC and PTL. More preisely, a PTL

ALC

-model is a triple

M = hN; <; Ii, where < is the standard ordering of N and I a funtion assoiat-

ing with eah n 2 N an ALC-model I(n) =

D

�;R

I(n)

0

; : : : ; C

I(n)

0

; : : : ; a

I(n)

0

; : : :

E

,

in whih �, the (onstant) domain ofM, is a non-empty set, the R

I(n)

i

are binary

relations on �, the C

I(n)

i

subsets of �, and the a

I(n)

i

are elements of � suh that

a

I(n)

i

= a

I(m)

i

, for every n;m 2 N.

(Note that in the given de�nition, the objet names are assumed to be global,

while the onept names are interpreted loally. Neither of these assumptions is

essential; in partiular, global onepts an be de�ned via loal ones and U .)

The extension C

I(n)

of a onept C in M at a moment n is de�ned in the

following way:

>

I(n)

= �;

(C uD)

I(n)

= C

I(n)

\D

I(n)

;

(:C)

I(n)

= � n C

I(n)

;

(9R:C)

I(n)

= fd 2 � j 9d

0

2 C

I(n)

dR

I(n)

d

0

g;

(CUD)

I(n)

= fd 2 � j 9m � n (d 2 D

I(m)

&8k (n � k < m! d 2 C

I(k)

))g;

(C)

I(n)

= C

I(n+1)

:

The truth-relation M; n j= ' for the Boolean operators is standard and

M; n j= C = D i� C

I(n)

= D

I(n)

;

M; n j= a : C i� a

I(n)

2 C

I(n)

;

M; n j= aRb i� a

I(n)

R

I(n)

b

I(n)

;

M; n j= 'U i� 9m � n (M;m j= & 8k (n � k < m!M; k j= '));

M; n j=' i� M; n+ 1 j= ':

The only reasoning task we onsider in this paper is satis�ability of PTL

ALC

-

formulas, a formula ' being satis�able if there are a model M and a moment

n 2 N suh that M; n j= '. Other standard inferene problems for PTL

ALC

|

onept satis�ability, subsumption, ABox onsisteny, et.|an be easily re-

dued to satis�ability of formulas.

There are two main diÆulties in designing a tableau system for PTL

ALC

.

First, as was mentioned in the introdution, there exist formulas satis�able only

in models with in�nite domains. For example, suh is the onjuntion of the

formulas

2:

�

(C u:C) = ?

�

; 2

�

:C v 2:C

�

;

where 2C = :(>U:C) and ? = :>. To takle this diÆulty, we employ the

standard tableaux for ALC for onstruting �nite representations of in�nite

models and keep trak of the development of their elements in time by using

quasimodels as introdued in [18, 20, 16℄.

The seond diÆulty is that at moment n + 1 the ALC tableau algorithm

an introdue an element whih does not exists at moment n. To ensure that all

elements always have their immediate predeessors, at eah time point we reate

ertain `marked' elements satisfying as few onditions as possible, and use them

as those predeessors if neessary.

3 Constraint systems

In this setion, we introdue onstraint systems whih serve a two-fold purpose.

First, they form a basis for de�ning quasimodels, whih, in ontrast to [20℄, are

de�ned purely syntatially. Seond, onstraint systems are the underlying data

struture of the tableau algorithm to be devised. Intuitively, a onstraint system

desribes an ALC-model.

In what follows, without loss of generality we assume that all equalities are of

the form C = >. (C = D is learly equivalent to

�

:(Cu:D)u:(Du:C)

�

= >.)

Often we shall write C 6= > instead of :(C = >).

Constraint systems are formulated in the following language L

C

. Let V be a

�xed ountably in�nite set of (individual) variables. We assume V to be disjoint

from the set N

O

of objet names. Elements of V [N

O

are alled L

C

-terms. If

' is a PTL

ALC

-formula, C a onept, R a role, and x; y are L

C

-terms, then ',

x : C, and xRy are alled L

C

-formulas.

We assume that V omes equipped with a well-order <

V

. Let X be a non-

empty subset of V . Then min(X) denotes the �rst variable in X with respet

to <

V

. Variables may our in onstraint systems either marked or unmarked;

ertain formulas may our U-marked or U-unmarked. As we said above, marked

variables are used to deal with onstant domains. U-markedness will be explained

after the saturation rules have been introdued.

De�nition 1. A onstraint system S is a �nite (non-empty) set of L

C

-formulas

suh that

{ eah variable in S is either marked or unmarked,

{ eah formula in S of the form 'U or x : (CUD) is either U-marked or

U-unmarked,

{ S ontains min(V) : >.

We will say that a onstraint system S is saturated if it satis�es a number of

losure onditions. With a few exeptions, these onditions require that if S

ontains a formula ' of a ertain form, then S ontains some other formulas

omposed from subformulas and subonepts of ' (possibly using additional

negation and). For example, S is losed under onjuntion if whenever S

ontains

1

^

2

, then it ontains both onjunts

1

and

2

as well. We formulate

the losure onditions as the saturation rules in Fig. 1{3. Later these rules will

also be used as rules of our tableau algorithm. A onstraint system S is alled

saturated if none of the saturation rules an be applied to it.

A few remarks below will help the reader to understand the rules. As the

temporal part of our tableaux is based on Wolper's [17℄ algorithm for PTL,

the temporal saturation rules resemble those of Wolper's. Note also that the

ALC-rules for formulas

S �!

::

f'g [S if S �!

^

f'; g [S if

::' 2 S and ' 62 S ' ^ 2 S and f'; g 6� S

S �!

:^

f:�g [S if

:(' ^) 2 S, :' 62 S, and : 62 S

�

:

= ' or �

:

=

Temporal rules for formulas

S �!

:

f:'g [S if S �!

U

X [S if

:' 2 S and :' 62 S 'U appears U-unmarked in S

X = f g or X = f';('U)g

'U is U-marked in X [S

S �!

:U

X [S if

:('U) 2 S, f: ;:'g 6� S, and f: ;:('U)g 6� S

X = f: ;:'g or X = f: ;:('U)g

Fig. 1. Saturation rules for formulas.

saturation rules �!

:^

, �!

U

, �!

:U

, �!

:u

, �!

U

, and �!

:U

are disjuntive:

they have more than one possible outome. In this setion, it is onvenient to view

these rules as nondeterministi. Later, when the saturation rules are regarded

as tableau rules, we will apply them deterministially, i.e., onsider all of their

possible outomes. Unless otherwise stated, we assume rules to introdue U-

unmarked formulas. Intuitively, U-markedness is needed to ensure that the �!

U

and �!

U

rules are applied exatly one to eah formula 'U and x : CUD,

respetively. For example, we must ensure that the �!

U

rule is applied (one)

to 'U even if the onstraint system under onsideration already ontains '

and ('U). This is required to make the tableau algorithm omplete (see [17,

16℄ for an example and a more detailed disussion).

As was already noted, marked variables are needed to ope with onstant

domains. For now, we just observe that the disjuntive rules treat marked and

unmarked variables di�erently. Intuitively, in ase of marked variables it is not

suÆient to onsider only one of the possible outomes of the disjuntive rule

appliation per onstraint system, but we must additionally onsider both pos-

sible outomes together. For example, if we have S = fv : EUF; v : :(C uD)g

and v is marked in S, then we should onsider not only the obvious saturations

S

1

= S [fv : :Cg and S

2

= S [fv : :Dg, but also

S

3

= fv : EUF; v : :(C uD); v : :C; v

0

: EUF; v

0

: :(C uD); v

0

: :Dg;

where, v is marked in S

1

, S

2

, S

3

and v

0

is marked in S

3

. In S

3

, we reated a

`marked opy' v

0

of v and saturated v in one possible way and v

0

in the other.

In the formulation of the rules, opies are made by using opy(S; v; v

0

) whih

denotes the set fv

0

: C j v : C 2 Sg, where v is marked and v

0

is a fresh variable

ALC-rules for onepts

S �!

::

fx : Cg [S if

x : ::C 2 S and x : C 62 S

S �!

u

fx : C; x : Dg [S if

x : C uD 2 S and fx : C; x : Dg 6� S

S �!

:u

X [S if

x : :(C uD) 2 S, x : :C 62 S and x : :D 62 S

X = fx : :Cg or X = fx : :Dg or

x marked in S and X = (opy(S; x; v) [fx : :C; v : :Dg)

where v is marked in X [S and the �rst new variable from V

S �!

=

fx : Cg [S if

C = > 2 S, x ours in S, and x : C 62 S

S �!

:9

fy : :Cg [S if

x : :9R:C 2 S, xRy 2 S, and y : :C =2 S

Temporal rules for onepts

S �!

:

fx ::Cg [S if

x : :C 2 S and x ::C 62 S

S �!

U

X [S if

x : CUD appears U-unmarked in S

X = fx : Dg or X = fx : C; x :(CUD)g or

x marked in S and X = (opy(S; x; v) [fx : D; v : C; v :(CUD)g)

where v is marked in X [S and the �rst new variable from V

x : CUD and v : CUD (if introdued) are U-marked in X [S

S �!

:U

X [S if

x : :(CUD) 2 S, fx : :D; x : :Cg 6� S, and fx : :D; x ::(CUD)g 6� S

X = fx : :D; x : :Cg or X = fx : :D; x ::(CUD)g or

x marked in S and X = (opy(S; x; v) [fx : :D; x : :C; v : :D; v ::(CUD)g)

where v is marked in X [S and the �rst new variable from V

Fig. 2. Non-generating saturation rules for onepts.

S �!

6=

fv : :Cg [S if

C 6= > 2 S and there exists no y with y : :C 2 S

v is the �rst new variable from V

S �!

9

fv : C; xRvg [S if

x : 9R:C 2 S, there is no y suh that fxRy; y : Cg � S and x is not bloked in S

by an unmarked variable; v is unmarked and the �rst new variable from V

Fig. 3. Generating saturation rules.

(not used in S). Note that by de�nition of L

C

-formulas, marked variables do not

our in omplex formulas suh as x : C ^x : D and thus suh formulas need not

be onsidered for opy. We generally assume that opies preserve U-markedness:

in the example above, v

0

: EUF is U-marked in S

3

i� v : EUF is U-marked in S.

To ensure termination of repeated appliations of the saturation rules, we use

a `bloking' tehnique, .f. [5℄. Bloked variables are de�ned as follows. For now,

assume that eah onstraint system is equipped with a strit partial order� on

the set of terms. Say that a variable v in a onstraint system S is bloked by a

variable v

0

in S if v

0

� v and fC j v : C 2 Sg � fC j v

0

: C 2 Sg. Later, when we

onsider sequenes of onstraint systems obtained by repeated rule appliations,

� will denote the order of introdution of terms. Note that only variables, rather

than objet names, may blok terms. Also, only variables an be bloked.

A onstraint system S is said to be lash-free if it ontains no formulas :>

and x : :> and neither a pair of the form x : C, x : :C, nor a pair of the form

', :'. We write S �!

�

S

0

to say that the onstraint system S

0

an be obtained

from S by an appliation of the saturation rule �!

�

.

Let S

0

; : : : ; S

n

be a sequene of onstraint systems suh that, for every i < n,

there is a saturation rule �!

�

for whih S

i

�!

�

S

i+1

and in ase �!

�

is a

generating rule, no non-generating rule is appliable to S

i

(where non-generating

rules are from Fig. 1 and 2 while generating rules are from Fig. 3). Then we say

that S

0

; : : : ; S

n

is built aording to the saturation strategy. If this is the ase

and no saturation rule is appliable to S

n

, then we all S

n

a saturation of S

0

.

4 Quasimodels

As was already said, PTL

ALC

does not have the �nite domain property, and

so our tableau algorithm onstruts abstrations of models, alled quasimodels,

rather than models themselves.

Quasimodels are based on the idea of onept types. A onept type is simply

a set of onepts that are `relevant' to the tested formula and satis�ed by an

element of the domain. The `fragment' of relevant onepts and formulas is

de�ned as follows. Let � be a set of formulas. Denote by Sb(�) the set of all

subformulas of formulas in �, by ob(�) the set of all objet names that our

in �, by rol(�) the set of all roles in �, and by on(�) the set of all onepts

in �. If # is a unary operator, say, : or , then #(�) is the union of � and

f#' j' 2 �g. The fragment Fg(�) generated by � is de�ned as the union of the

following four sets: ob(�), rol(�), (:on(� [f>g)) and (:Sb(� [f>g)).

Roughly, a quasimodel is a sequene (S

n

jn 2 N) of saturated onstraint

systems that satis�es ertain onditions whih ontrol interations between the

S

n

and ensure that quasimodels an be reonstruted into real models. Unlike

standard tableaux, where a variable usually represents an element of a model, a

variable in a quasimodel represents a onept type. More preisely, if a onstraint

system ontains a variable v, then the orrespondingALC-models ontain at least

one|but potentially (in�nitely) many|elements of the type represented by v.

As our PTL

ALC

-models have onstant domains, we need some means to keep

trak of the types representing the same element at di�erent moments of time.

This an be done using a funtion r, alled a run, whih assoiates with eah

n 2 N a term r(n) from S

n

. Thus r(0); r(1); : : : are type representations of one

and the same element at moments 0; 1; : : : .

We are in a position now to give preise de�nitions. Fix a PTL

ALC

-formula #.

De�nition 2. A quasiworld for # is a saturated lash-free onstraint system S

satisfying the following onditions:

{ fa j 9C (a : C) 2 Sg = ob(#),

{ on(S) � Fg(#) and rol(S) � Fg(#),

{ for every formula ' 2 S, if ' is a PTL

ALC

-formula then ' 2 Fg(#),

{ all variables in S are unmarked.

One should not be onfused by that all variables in quasiworlds are unmarked.

Marked variables are|as we shall see later on|important for the onstrution of

a quasimodel. After the onstrution, marked variables an simply be `unmarked'

(note that this operation preserves saturatedness of onstraint systems).

De�nition 3. A sequene Q = (S

n

jn 2 N) of quasiworlds for # is alled a

#-sequene. A run in Q is a funtion r assoiating with eah n 2 N a term r(n)

from S

n

suh that

{ for every m 2 N and every onept C, if (r(m) : C) 2 S

m

then we have

(r(m + 1) : C) 2 S

m+1

,

{ for all m 2 N, if (r(m) : CUD) 2 S

m

then there is k � m suh that

(r(k) : D) 2 S

k

and (r(i) : C) 2 S

i

whenever m � i < k.

De�nition 4. A #-sequene Q is alled a quasimodel for # if the following hold:

{ for every objet name a in Q, the funtion r

a

de�ned by r

a

(n) = a, for all

n 2 N, is a run in Q,

{ for every n 2 N and every variable v in S

n

, there is a run r in Q suh that

r(n) = v,

{ for every n 2 N and every ' 2 S

n

, we have ' 2 S

n+1

,

{ for every n 2 N and every ('U) 2 S

n

, there is m � n suh that 2 S

m

and ' 2 S

k

whenever n � k < m.

We say that # is quasi-satis�able if there are a quasimodel Q = (S

n

jn 2 N) for

and n 2 N suh that # 2 S

n

.

Theorem 1. A PTL

ALC

-formula # is satis�able i� # is quasi-satis�able.

5 The tableau algorithm

In this setion, we present a tableau algorithm for heking satis�ability of

PTL

ALC

-formulas in models with onstant domains. Before going into tehni-

al details, we explain informally how quasimodels for an input formula # are

onstruted and, in partiular, how marked variables help to maintain onstant

domains.

Intuitively, marked variables represent so-alled `minimal types.' If a on-

straint system S ontains marked variables v

1

; : : : ; v

k

then every element of an

ALC-model orresponding to S is desribed by one of the v

i

. It should now be

lear why the disjuntive saturation rules must be applied in a speial way to

marked variables. Consider, for example, the �!

:u

rule and assume that there

is a single marked variable v

m

in S and that v

m

: :(C uD) 2 S. In the ontext

of minimal types, this means that every element in orresponding ALC-models

satis�es :(C u D). From this, however, it does not follow that every element

satis�es :C or that every element satis�es :D. Hene, the �!

:u

rule annot

be applied in the same way as for unmarked variables.

Here is a simple example illustrating the onstrution of quasimodels with

minimal types. Consider the formula

=

�

(:(C u:C)) = >

�

^ a :9R:C:

With this formula we assoiate the initial onstraint system S

#

= f#; v

m

: >g

ontaining # and a single marked variable v

m

. By applying saturation rules,

we obtain then the onstraint system S

0

= fa : 9R:C; v

m

: C; v

0

m

: :Cg

(slightly simpli�ed for brevity) that desribes the ALC-model for time moment 0.

The onstraint system for moment 1 is fa : 9R:C; v

1

: C; v

2

: :C; v

m

: >g (where

v

m

is the only marked variable) whih an then be extended to the system

S

1

= fa : 9R:C; v

m

: >; v

1

: C; v

2

: :C; aRv; v : Cg by the saturation rules.

Note that we introdued a new (unmarked) variable v. Every element d whih is

of type v at moment 1 must|aording to the onstant domain assumption|

also exist at moment 0. But what is the type of d at that moment (i.e., the

`predeessor type' of d at 1)? By the de�nition of minimal types, we must only

hoose among marked variables. So either d is of type v

m

at 0, whih means that

we must add v : C to S

1

, or d is of type v

0

m

at 0, and so we must add v : :C

to S

1

. The former hoie yields an (initial fragment of a) quasimodel, while the

latter leads to a lash. For a more detailed disussion we refer the reader to [11℄.

We an now de�ne the tableau algorithm. In general, tableau algorithms try

to onstrut a (quasi)model for the input formula by repeatedly applying tableau

rules to an appropriate data struture. Let us �rst introdue this data struture.

De�nition 5. A tableau for a PTL

ALC

-formula # is a triple G = (G;�; l), where

(G;�) is a �nite tree and l a labelling funtion assoiating with eah g 2 G a

onstraint system l(g) for # suh that S

#

= f#g [fmin(V) : >g [fa : > j a 2

ob(#)g is assoiated with the root of G, where min(V) is marked and # is U-

unmarked if it is of the form 'U or x : (CUD).

To deide whether # is satis�able, the tableau algorithm for PTL

ALC

goes through

two phases. In the �rst phase, the algorithm starts with an initial tableau G

#

and exhaustively applies the tableau rules to be de�ned below. Eventually we

obtain a tableau G to whih no more rule is appliable; it is alled a ompletion

of G

#

. In the seond phase, we eliminate those parts of G that ontain obvious

ontraditions or eventualities whih are not realized. After that we are in a

position to deliver a verdit: # is satis�able i� the resulting tableau G

0

is not

empty, i.e., i� the root of G has not been eliminated.

Let us �rst onentrate on phase 1. The initial tableau G

#

assoiated with #

is de�ned as (fg

r

g;�

r

; l), where �

r

= ; and l(g

r

) = S

#

. To de�ne the tableau

rules, we require a number of auxiliary notions. Let S be a onstraint system and

x a term ourring in S. Denote by A

x

(S) the set fC j (x :C) 2 Sg and de�ne

an equivalene relation �

S

on the set of variables (not terms) in S by taking

v �

S

u i� A

v

(S) = A

u

(S). The equivalene lass generated by v is denoted by

[v℄

S

. Finally, let [S℄

�

denote the set of all equivalene lasses [v℄

S

.

Similar to the loal bloking strategy on variables of onstraint systems, we

need a global bloking strategy on the nodes of tableaux. To de�ne this kind of

bloking, it is onvenient to abstrat from variable names.

Let S and S

0

be onstraint systems. S

0

is alled a variant of S if there

is a bijetive funtion � from the variables ourring in S onto the variables

ourring in S

0

whih respets markedness (i.e., unmarked variables are mapped

to unmarked variables and marked variables to marked variables) and S

0

is

obtained from S by replaing eah variable v from S with �(v). In this ase � is

alled a renaming.

Like onstraint systems, tableaux are equipped with a strit partial order�

on the set of nodes whih indiates the order in whih the nodes of the tableau

have been introdued. The tableau rules are shown in Fig. 4. Intuitively, the

=)

rule generates a new time point, while the other rules infer additional

knowledge about an already existing time point. For every saturation rule �!

s

we have a orresponding tableau rule =)

s

. The =)

#

and =)

#

0

rules deal with

onstant domains and use the notion of anestor whih is de�ned as follows.

Let G = (G;�; l) be a tableau for #. A node g 2 G is alled a state if only

the =)

rule is appliable to g. The node g is an anestor of a node g

0

2 G if

there is a sequene of nodes g

0

; : : : ; g

n

suh that g

0

= g, g

n

= g

0

, g

i

� g

i+1

for

i < n, and g

0

is the only state in the sequene.

As to the =)

rule, reall that variables represent types rather than ele-

ments. In view of this, when onstruting the next time point, we `merge' vari-

ables satisfying the same onepts (by using the equivalene lasses). Atually,

this idea is ruial for devising a terminating tableau algorithm despite the lak

of the �nite domain property. The =)

#

rule formalizes the hoie of a prede-

essor type as was skethed in the example above. Sine we have to hoose a

predeessor type, the rule behaves similar to a disjuntive saturation rule, whih

means that we must apply the rule in a di�erent way for marked variables.

That is why we need the =)

#

0

rule: for marked variables, it onsiders arbitrary

ombinations of hoies of predeessor types.

The tableau rules are applied until no further rule appliation is possible. To

ensure termination, we must follow a ertain strategy of rule appliations.

De�nition 6. A tableau is omplete if no tableau rule is appliable to it. Let

G

0

; : : : ;G

n

be a sequene of tableaux suh that the assoiated orders�

0

; : : : ;�

n

(G;�; l) =)

s

(G

0

;�

0

; l

0

)

if g is a leaf in G, the saturation rule �!

s

is appliable to l(g),

S

1

; : : : ; S

n

are the possible outomes of the appliation of �!

s

to l(g),

G

0

= G ℄ fg

1

; : : : ; g

n

g and, for 1 � i � n, �

0

= � [f(g; g

i

)g and l

0

(g

i

) = S

i

(G;�; l) =)

(G

0

;�

0

; l

0

)

if G

0

= G ℄ fg

0

g, �

0

= �[f(g; g

0

)g for some leaf g 2 G,

l

0

(g

0

) is the union of the following sets:

fa : >g [fa : C j (a :C) 2 l(g)g, for a 2 ob(l(g)),

f j 2 l(g)g,

fmin([v℄

l(g)

) : >g [fmin([v℄

l(g)

) : C j (min([v℄

l(g)

) :C) 2 l(g)g,

for [v℄

l(g)

2 [l(g)℄

�

,

fv

0

: >g,

where v

0

is the only marked variable in l(g

0

),

and there is no g

00

2 G with g

00

� g suh that l(g

00

) is a variant of l(g)

(i.e., the rule is not bloked)

(G;�; l) =)

#

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is an unmarked variable in l(g), g

0

is the anestor of g,

for no term x in l(g

0

) do we have

fC j (x :C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

v

1

; : : : ; v

n

are the marked variables in l(g

0

), G

0

= G ℄ fg

1

; : : : ; g

n

g, and,

for 1 � i � n, we have �

0

= � [f(g; g

i

)g and

l

0

(g

i

) := l(g) [fv : C j (v

i

:C) 2 l(g

0

)g:

(G;�; l) =)

#

0

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is a marked variable in l(g), g

0

is the anestor of g,

for no term x in l(g

0

) do we have

fC j (x :C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

X = fmin([v

0

℄

l(g

0

)

) j v

0

is a marked variable in l(g

0

)g,

Y

i

is the ith subset of X (for some ordering),

G

0

= G ℄ fg

1

; : : : ; g

2

jXj

g, and, for 1 � i � 2

jXj

, we have �

0

= � [f(g; g

i

)g and

l

0

(g

i

) is the union of l(g) and the following sets, where we assume Y

i

= fv

1

; : : : ; v

n

g:

fv : C j (v

1

:C) 2 l(g)g

opy(l(g); v; v

0

j

) for 1 < j � n

fv

0

j

: C j (v

j

:C) 2 l(g

0

)g for 1 < j � n

Here, all newly introdued variables v

0

j

are marked in l

0

(g

i

).

Note: For all rules, we assume that l

0

(g) = l(g) for all g 2 G. A ℄ B denotes the

disjoint union of A and B.

Fig. 4. Tableau rules.

desribe the order of node introdution and, for every i < n, there is a tableau

rule =)

�

suh that G

i

=)

�

G

i+1

and

{ if the rule is one of the generating rules =)

6=

or =)

9

, then no tableau rule

di�erent from =)

6=

, =)

9

, and =)

is appliable to G

i

,

{ if the rule is =)

, then no other tableau rule is appliable to G

i

.

Then G

0

; : : : ;G

n

is said to be built aording to the tableau strategy. If this is the

ase, G

0

= G

#

, and G

n

is omplete, then G

n

is alled a ompletion of #.

The following lemma laims that the tableau strategy ensures termination.

Theorem 2. If the tableau rules are applied aording to the tableau strategy,

then a ompletion is reahed after �nitely many steps.

Let us now turn to the seond phase of the algorithm, i.e., to the elimination

phase. We begin by de�ning whih nodes are bloked.

De�nition 7. Let G = (G;�; l) be a tableau for #. A state g 2 G is bloked by

a state g

0

2 G if g

0

� g and l(g

0

) is a variant of l(g). We de�ne a new relation

� by taking g� g

0

if either g � g

0

, or g has a suessor g

00

that is bloked by g

0

.

An important part of the elimination proess deals with so-alled eventualities.

An L

C

-formula � 2 S is alled an eventuality for a onstraint system S if �

is either of the form x : CUD or of the form 'U . An eventuality is said to

be unmarked if it is not of the form v : CUD for any marked variable v. All

eventualities ourring in the tableau have to be `realized' in the following sense.

De�nition 8. Let G = (G;�; l) be a tableau for #, g 2 G, and let � be an

eventuality for l(g). Then � is realized for g in G if there is a sequene of unbloked

nodes g

0

�g

1

: : :� g

n

in G with g = g

0

, n � 0, suh that the following holds:

(1) if � is 'U then 2 l(g

n

);

(2) if � is v : CUD, with v unmarked or marked variable, then there are variables

v

i

from l(g

i

), i � n, with v

0

= v, v

1

; : : : ; v

n

unmarked, (v

n

: D) 2 l(g

n

), and, for

all i, 0 < i � n, we have

{ if g

i�1

is a state, then fC j (v

i�1

:C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g,

{ if g

i�1

is not a state, then fC j (v

i�1

: C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g;

(3) if � is a : CUD, for some objet name a, then (a : D) 2 l(g

n

).

Intuitively, the variables v

0

; : : : ; v

n

in (2) desribe the same element at di�erent

moments of time. It should be lear that in a tableau representing a quasimodel,

all eventualities have to be realized. Apart from removing nodes that ontain

lashes, to remove nodes with non-realized eventualities is the main aim of the

elimination phase.

De�nition 9. Let G = (G;�; l) be a tableau for #. We use the following rules

to eliminate points in G:

(e

1

) if l(g) ontains a lash, eliminate g and all its �

�

-suessors

(where `�

�

-suessor' is the transitive losure of `�-suessor');

(e

2

) if all �-suessors of g have been eliminated, eliminate g as well;

(e

3

) if l(g) ontains an unmarked eventuality not realized for g, eliminate g and

all its �

�

-suessors.

1

The elimination proedure is as follows. Say that a tableau G

1

= (G

1

;�

1

; l

1

) is a

subtableau of G

2

= (G

2

;�

2

; l

2

) if G

2

� G

1

and G

1

is the restrition of G

2

to G

1

.

Obviously, if G

2

is a tableau for # and G

1

ontains the root of G

2

, then G

1

is a

tableau for #. Suppose now that G = (G;�; l) is a ompletion of #. We onstrut

a dereasing sequene of subtableaux G = G

0

;G

1

; : : : by iteratively eliminating

nodes from G aording to rules (e

1

){(e

3

), with (e

1

) being used only at the

�rst step. (The two other rules are used in turns.) Sine we start with a �nite

tableau, this proess stops after �nitely many steps, i.e., we reah a subtableau

G

0

= (G

0

;�

0

; l

0

) of G to whih none of the elimination rules an be applied. We

say that the root of G is not eliminated i� G

0

6= ;.

Theorem 3. A PTL

ALC

-formula # is satis�able i� there is a ompletion of #

of whih the root is not eliminated.

As a onsequene of Theorems 2 and 3 we obtain

Theorem 4. There is an e�etive tableau proedure whih, given a PTL

ALC

-

formula #, deides whether # is satis�able.

6 Conlusion

This paper|a ontinuation of the series [14, 4, 16, 11℄|develops a tableau rea-

soning proedure for the temporal desription logi PTL

ALC

interpreted in two-

dimensional models with onstant ALC domains. As shown in [12℄, the algorithm

runs in double exponential time|thus paralleling the omplexity of Wolper's

original PTL-algorithm [17℄ whih solves a PSpae-omplete problem using ex-

ponential time. Despite the high omplexity, we believe that the devised tableau

algorithm is an important �rst step towards the use of TDLs as KR&R tools.

A prototype implementation of the desribed algorithm is urrently underway.

Based on the experienes with this implementation, possible optimization starte-

gies will be investigated using the work in [9℄ as a starting point.

An important feature of the developed algorithm is that the DL omponent

an be made onsiderably more expressive, provided that the extension is also

supported by a reasonable tableau proedure. One idea we are working on now

is to extend this omponent to expressive fragments of �rst-order logi, thereby

obtaining tableau proedures for fragments of �rst-order temporal logi (f. [8℄)

having potential appliations in a growing number of �elds suh as spei�a-

tion and veri�ation of reative systems, model-heking, query languages for

temporal databases, et.

1

Of ourse, eventualities whih are marked also have to be realized. However, the

fat that all unmarked eventualities in a tableau are realized implies that all other

eventualities are also realized (see proofs).

Another interesting aspet of this paper is that, with minor modi�ations, the

onstruted tableaux an be used as a satis�ability heking proedure for the

Cartesian produt of S5 and PTL (f. [13℄), thus ontributing to a new exiting

�eld in modal logi studying the behavior of multi-dimensonal modal systems [7℄.

Referenes

1. A. Artale and E. Franoni. Temporal desription logis. In L. Vila et al. eds.,

Handbook of Time and Temporal Reasoning in AI. MIT Press, 2001. (To appear.)

2. A. Artale and E. Franoni. Temporal ER modeling with desription logis. In

Proeedings of ER'99, 1999. Springer{Verlag.

3. A. Artale, E. Franoni, M. Mosurovi, F. Wolter, and M. Zakharyashev. Temporal

desription logis for oneptual modelling: expressivity and omplexity. Submit-

ted, 2001.

4. F. Baader and A. Laux. Terminologial logis with modal operators. In Proeedings

of IJCAI'95, pp. 808{814, 1995. Morgan Kaufmann.

5. F. Baader and U. Sattler. Tableau algorithms for desription logis. In R. Dykho�,

ed., Proeedings of Tableaux 2000, vol. 1847 of LNAI, pp. 1{18, Springer, 2000.

6. R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT

Press, 1995.

7. D. Gabbay, A. Kuruz, F. Wolter, and M. Zakharyashev. Many-Dimensional

Modal Logis: Theory and Appliations. Elsevier, 2001. (To appear.)

8. I. Hodkinson, F. Wolter, and M. Zakharyashev. Deidable fragments of �rst-order

temporal logis. Annals of Pure and Applied Logi, 106:85{134, 2000.

9. I. Horroks and P. F. Patel-Shneider. Optimising desription logi subsumption.

Journal of Logi and Computation, 9(3):267{293, 1999.

10. C. Lutz. Interval-based temporal reasoning with general TBoxes. In Proeedings

of IJCAI'01, Morgan-Kaufmann, 2001.

11. C. Lutz, H. Sturm, F. Wolter, and M. Zakharyashev. A tableau deision algorithm

for modalized ALC with onstant domains. Submitted, 2000.

12. C. Lutz, H. Sturm, F. Wolter, and M. Zakharyashev. A tableau alulus for tempo-

ral desription logi: The onstant domain ase. See http://www-lti.informatik.rwth-

aahen.de/Forshung/Reports.html.

13. M. Marx, Sz. Mikulas, and S. Shlobah. Tableau alulus for loal ubi modal

logi and its implementation. Journal of the IGPL, 7:755{778, 1999.

14. K. Shild. Combining terminologial logis with tense logi. In Proeedings of the

6th Portuguese Conferene on AI, pp. 105{120, Porto, 1993.

15. A. Shmiedel. A temporal terminologial logi. In Proeedings AAAI'90, pp. 640{

645, 1990.

16. H. Sturm and F. Wolter. A tableau alulus for temporal desription logi: The

expanding domain ase. Journal of Logi and Computation, 2001. (In print.)

17. P. Wolper. The tableau method for temporal logi: An overview. Logique et

Analyse, 28:119{152, 1985.

18. F. Wolter and M. Zakharyashev. Satis�ability problem in desription logis with

modal operators. In A. Cohn, et al. eds., KR'98, pp. 512{523, 1998.

19. F. Wolter and M. Zakharyashev. Multi-dimensional desription logis. In

D. Thomas, ed., Proeedings of IJCAI'99, pp. 104{109, 1999.

20. F. Wolter and M. Zakharyashev. Temporalizing desription logi. In D. Gabbay

and M. de Rijke, eds., Frontiers of Combining Systems 2, pp. 379{402. Studies

Press/Wiley, 2000.

