
Interval-based Temporal Reasoning with General TBoxes

Carsten Lutz
LuFG Theoretical Computer Science

RWTH Aachen, Germany
lutz@cs.rwth-aachen.de

Abstract

Until now, interval-based temporal Description
Logics (DLs) did—if at all—only admit TBoxes of
a very restricted form, namely acyclic macro defini-
tions. In this paper, we present a temporal DL that
overcomes this deficieny and combines interval-
based temporal reasoning with general TBoxes. We
argue that this combination is very interesting for
many application domains. An automata-based de-
cision procedure is devised and a tight EXPTIME-
complexity bound is obtained. Since the presented
logic can be viewed as being equipped with a con-
crete domain, our results can be seen from a differ-
ent perspective: we show that there exist interesting
concrete domains for which reasoning with general
TBoxes is decidable.

1 Motivation
Description Logics (DLs) are a family of formalisms well-
suited for the representation of and reasoning about concep-
tual knowledge. Whereas most Description Logics represent
only static aspects of the application domain, recent research
resulted in the exploration of various Description Logics that
allow to, additionally, represent temporal information, see,
e.g., [Artale and Franconi,2000] for an overview. One ap-
proach for temporal reasoning with DLs is to use so-called
concrete domains. Concrete domains have been proposed
as an extension of Description Logics that allows reason-
ing about “concrete qualities” of entities of the application
domain such as sizes, weights or temperatures[Baader and
Hanschke,1991]. As was first described in[Lutz et al.,1997],
if a “temporal” concrete domain is employed, then Descrip-
tion Logics with concrete domains are a very useful tool for
temporal reasoning. Ontologically, temporal reasoning with
concrete domains is usually interval-based but may also be
point-based or even both.

In this paper, we define a temporal Description Logic based
on concrete domains which uses points as its basic temporal
entity, but which may also be used as a full-fledged interval-
based temporal DL. More precisely, the presented logicT DL

extends the basic Description LogicALC with a concrete do-
main that is based on the rationals and predicates< and=.
The well-known Allen relations can be defined in terms of

their endpoints[Allen,1983] thus allowing for (qualitative)
interval-based temporal reasoning. Since it is an impor-
tant feature of DLs that reasoning should be decidable, we
prove decidability of the standard reasoning tasks by usingan
automata-theoretic approach which also yields a tight EXP-
TIME complexity bound.

Most DLs allow for some kind of TBox formalism that is
used to represent terminological knowledge as well as back-
ground knowledge about the application domain. However,
there exist various flavours of TBoxes with vast differences
in expressivity. To the best of our knowledge, all interval-
based DLs and all DLs with concrete domains defined in
the literature admit only a very restricted form of TBox, i.e.,
sets of acyclic macro definitions. Compared to existing De-
scription Logics that are interval-based or include concrete
domains, the distinguishing feature of our logic is that it is
equipped with a very general form of TBoxes that allows ar-
bitrary equations over concepts. Thus, the presented work
overcomes a major limitation of both families of Description
Logics.

Our results can be viewed from the perspective of interval-
based temporal reasoning and from the perspective of con-
crete domains. For the temporal perspective, we claim that
the combination of general TBoxes and interval-based tempo-
ral reasoning is important for many application areas. In this
paper, we present process engineering as an example. From
the concrete domain perspective, our results can be viewed as
follows: in [Lutz,2001], it is shown that, even for very simple
concrete domains, reasoning with general TBoxes is undecid-
able. It was an open question whether there exist interesting
concrete domains for which reasoning with general TBoxes
is decidable. In this paper, we answer this question to the
affirmative. This paper is accompanied by a technical report
containing full proofs[Lutz,2000].

2 Syntax and Semantics
In this section, we introduce syntax and semantics of the De-
scription LogicT DL.

Definition 1. LetN
C

,N
R

, andN
F

be mutually disjoint and
countably infinite sets ofconcept names, roles, andconcrete
features. Furthermore, letN

aF

be a countably infinite sub-
set ofN

R

. The elements ofN
aF

are calledabstract features.
A pathu is a compositionf

1

� � � f

n

g of n � 0 abstract fea-

turesf
1

; : : : ; f

n

and one concrete featureg. The set ofT DL-
concepts is the smallest set such that

1. every concept name is a concept

2. if C andD are concepts,R is a role,g is a concrete fea-
ture,u

1

; u

2

are paths, andP 2 f<;=g, then the follow-
ing expressions are also concepts::C, C u D, C tD,
9R:C, 8R:C, 9u

1

; u

2

:P , andg".

A TBox axiomis an expression of the formC v D with C

andD are concepts. A finite set of TBox axioms is aTBox.

Throughout this paper, we will denote atomic concepts by the
letterA, (possibly complex) concepts by the lettersC;D;E,
roles by the letterR, abstract features by the letterf , concrete
features by the letterg, paths by the letteru, and elements of
the setf<;=g by the letterP . We will sometimes call the
TBox formalism introduced abovegeneral TBoxesto distin-
guish it from other, weaker formalisms such as the ones in
[Nebel,1990]. As most Description Logics,T DL is equipped
with a Tarski-style semantics.

Definition 2. An interpretationI is a pair(�
I

; �

I

), where
�

I

is a set called thedomainand �I is the interpretation
function mapping each concept nameC to a subsetCI of
�

I

, each role nameR to a subsetRI of �
I

� �

I

, each
abstract featuref to a partial functionfI from �

I

to �

I

,
and each concrete featureg to a partial functiongI from
�

I

to the rationalsQ. For pathsu = f

1

� � � f

n

g, we set
u

I

(a) := g

I

(f

I

n

(� � � (f

I

1

(a)) � � �)). The interpretation func-
tion is extended to arbitrary concepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; u

2

:P)

I

:= fa 2 �

I

j 9q

1

; q

2

2 Q : u

I

1

(a) = q

1

;

u

I

2

(a) = q

2

; q

1

Pq

2

g

(g")

I

:= fa 2 �

I

j g

I

(a) is undefinedg

An interpretationI is a modelof a TBox T iff it satisfies
CI � DI for all axiomsC v D in T . I is a modelof a
conceptC iff CI 6= ;.

If g(a) = x for someg 2 N

F

, a 2 �

I

, andx 2 Q, then we
call x aconcrete successorof a in I. We write> for At:A
and? for :>, whereA is a concept name. Moreover, we
write u" with u = f

1

� � � f

k

g for 8f
1

: � � � 8f

k

:g".

Definition 3 (Inference Problems). Let C and D be con-
cepts andT be a TBox. C subsumesD w.r.t. T (written
D v

T

C) iff DI

� C

I for all modelsI of T . C is satisfi-
able w.r.t.T iff there exists a model of bothT andC.

It is well-known that (un)satisfiability and subsumption can
be mutually reduced to each other:C v

T

D iff C u :D is
unsatisfiable w.r.t.T andC is satisfiable w.r.t.T iff C 6v

T

?.
We now discuss the relationship betweenT DL and De-

scription Logics with concrete domains.

Definition 4 (Concrete Domain). A concrete domainD is a
pair(�

D

;�

D

), where�
D

is a set called the domain, and�
D

is a set of predicate names. Each predicate nameP 2 �

D

is
associated with an arityn and ann-ary predicatePD � �

n

D

.

The concrete domain is usually integrated into the logic by a
concept constructor9u

1

; : : : ; u

n

:P , with semantics

(9u

1

; : : : ; u

n

:P)

I

:= fa 2 �

I

j u

I

i

(a) = q

i

for 1 � i � n

and(q
1

; : : : ; q

n

) 2 P

D

g:

It is obvious thatT DL can be viewed as being equipped with
the concrete domainD

<

:= (Q; f<;=g), where< and=
are binary predicates with the usual semantics. For most DLs
with concrete domains, it is required that the set of predi-
cates is closed under negation and contains a name>

D

for
�

D

. This property ensures that every concept can be con-
verted into an equivalent one in the so-called negation normal
form (NNF). The NNF of concepts, in turn, is used as a start-
ing point for devising satisfiability algorithms. It is not hard
to see thatD

<

is not admissible in this sense. However, as
we will see in Section 4, the conversion ofT DL-concepts
into equivalent ones in NNF is nevertheless possible.

3 Temporal Reasoning withT DL
AlthoughT DL does only provide the relations “=” and “<”
on time points, it is not hard to see that the remaining relations
can be defined by writing, e.g.,9u

2

; u

1

:< t 9u

1

; u

2

:= for
9u

1

; u

2

:�. However, we claim thatT DL cannot only be used
for point-based temporal reasoning but also as a full-fledged
interval-based temporal Description Logic. As observed by
Allen [1983], there are 13 possible relationships between two
intervals such as, for example, themeets relation: two inter-
valsi

1

andi
2

are related bymeets iff the right endpoint ofi
1

is identical to the left endpoint ofi
2

—see[Allen,1983] for an
exact definition of the other relations. As we shall see, these
13 Allen relations (as well as the additional relations from
the Allen algebra, see[Allen,1983]) can be defined inT DL.
In the following, we present a framework for mixed interval-
and point-based reasoning inT DL and apply this framework
in the application area of process engineering

The representation framework consists of several conven-
tions and abbreviations. We assume that each entity of the
application domain is either temporal or atemporal. If it is
temporal, its temporal extension may be either a time point
or an interval. Left endpoints of intervals are representedby
the concrete featurè, right endpoints of intervals are repre-
sented by the concrete featurer, and time-points not related
to intervals are represented by the concrete featuret. All this
can be expressed by the following TBoxT �:

Point

:

= 9t; t:= u `" u r" Interval

:

= 9`; r:< u t"

ATemporal

:

= t" u `" u r" Interval w 9`; `;= t 9r; r:=

Here,C
:

= D is an abbreviation forfC v D;D v Cg. Let
us now define the Allen relations as abbreviations. For exam-
ple, 9(F; F 0):ontains is an abbreviation for9F`; F 0`:< u

9F

0

r; F r:< whereF; F 0 2 (N

aF

)

�, i.e.,F andF 0 are words
over the alphabetN

aF

. Note that

9(F; F

0

):ontains v

T

�

9F:Interval u 9F

0

:Interval:

Similar abbreviations are introduced for the other Allen rela-
tions. We useself to denote the empty word. For example,

9(F; self):starts is an abbreviation for9F`; `:= u 9Fr; r:<:

Intuitively, self refers to the interval associated with the ab-
stract object at which the9(F; self):starts concept is “evalu-
ated”.

Since we have intervalsand points available, we should
also be able to talk about the relationship of points and in-
tervals. More precisely, there exist 5 possible relations be-
tween a point and an interval[Vilain,1982], one example be-
ing startsp that holds between a pointp and an intervali if
p is identical to the left endpoint ofi. Hence, we can define
9(Ft; F

0

):startsp as an abbreviation for9Ft; F 0`:= and sim-
ilar abbreviations forbeforep, duringp, �nishesp, andafterp.

This finishes the definition of the framework. We claim
that the combination of interval-based reasoning and general
TBoxes is important for many application areas such as rea-
soning about action and plans[Artale and Franconi,2000].
The examples presented here are from the area of process en-
gineering that was first considered by Sattler in a DL context
[Sattler,1998]. However, Sattler’s approach does not take into
account temporal aspects of the application domain. We show
how this can be done usingT DL thus refining Sattler’s pro-
posal.

Assume that our goal is to represent information about an
automated chemical production process that is carried out by
some complex technical device. The device operates each day
for some time depending on the number of orders. It needs a
complex startup and shutdown process before resp. after op-
eration. Moreover, some weekly maintenance is needed to
keep the device functional. Let us first represent the underly-
ing temporal structure that consists of weeks and days.

Week

:

= Interval u u

1�i�7

9day

i

:Day u

9(day

1

; self):starts u 9(day

7

; self):�nishes u

u

1�i<7

9(day

i

; day

i+1

):meets u

9next:Week u 9(self; next):meets

The axiom states that each week consists of seven days,
where thei’th day is accessible from the corresponding week
via the abstract featureday

i

. The temporal relationship be-
tween the days are as expected: Monday starts the week,
Sunday finishes it, and each day temporally meets the suc-
ceeding one. Note that this implies that days 2 to 6 are during
the corresponding week although this is not explicitly stated.
Moreover, each week has a successor week that it temporally
meets. We now describe the startup, operation, shutdown, and
maintenance phases.

Day

:

= Interval u

9start:Startup u 9op:Operation u 9shut:Shutdn u

9start Æ `; `:�u 9(start; op):meets u

9(op; shut):meets u 9shut Æ r; r:�

Week v 9maint:Maintenane u 9(self;maint):ontains

Herestart, op, shut, andmaint are abstract features and “Æ”
is used for better readability (i.e., pathsf

1

� � � f

k

g are written
asf

1

Æ � � � Æ f

k

Æ g). The TBox implies that phases are re-
lated to the corresponding day as follows: startup viastarts

or during, shutdown viaduring or �nishes, and operation via

during. Until now, we did not say anything about the tempo-
ral relationship of maintenance and operation. This may be
inadequate, if, for example, maintenance and operation are
mutually exclusive. We can take this into account by using
additional axioms

Week u t

1�i�7

9(maint; day

i

Æ op):OVLP v ? (�)

whereOVLP is replaced byequal, overlaps, overlapped-by,
during, ontains, starts, started-by, �nishes, or �nished-by
yielding 9 axioms.

Until now, we have modelled the very basic properties of
our production process. Let us define some more advanced
concepts to illustrate reasoning withT DL. For example, we
could define a busy week as

BusyWeek

:

=Week u u

1�i�7

�

9day

i

Æ start; day

i

:starts u

9day

i

Æ shut; day

i

:�nishes

�

i.e., each day, the startup process starts at the beginning of the
day and the shutdown finishes at the end of the day. Say now
that it is risky to do maintenance during startup and shutdown
phases and define

RiskyWeek

:

=Week u : u

1�i�7

�

9maint; day

i

Æ start:before t

9maint; day

i

Æ shut:after

�

expressing that, in a risky week, the maintenance phase is
not strictly separated from the startup and shutdown phases.
A T DL reasoner could be used to detect thatBusyWeek v

RiskyWeek, i.e., every busy week is a risky week: in a busy
week, the week is partitioned into startup, shutdown, and op-
eration phases. Since maintenance may not OVLP with op-
eration phases (see (�)), it must OVLP with startup and/or
shutdown phases which means that it is a risky week. We
can further refine this model by using mixed point-based and
interval-based reasoning, see[Lutz,2000] for examples.

4 The Decision Procedure
In this section, we prove satisfiability ofT DL-concepts w.r.t.
TBoxes to be decidable and obtain a tight EXPTIME com-
plexity bound. This is done using an automata-theoretic ap-
proach: first, we abstract models to so-called Hintikka-trees
such that there exists a model for a conceptC and a TBoxT
iff there exists a Hintikka-tree forC andT . Then, we build,
for eachT DL-conceptC and TBoxT , a looping automa-
tonA

(C;T)

that accepts exactly the Hintikka-trees for(C; T).
In particular, this implies thatA

(C;T)

accepts the empty lan-
guage iffC is unsatisfiable w.r.t.T .

Definition 5. Let M be a set andk � 1. A k-ary M -tree
is a mappingT : f1; : : : ; kg

�

! M that labels each node
� 2 f1; : : : ; kg

� with T (�) 2 M . Intuitively, the node�i
is the i-th child of �. We use� to denote the empty word
(corresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary
M -trees is defined by a setQ of states, an alphabetM ,
a subsetI � Q of initial states, and a transition rela-
tion � � Q � M � Q

k. A run of A on an M -tree
T is a mappingr : f1; : : : ; kg

�

! Q with r(�) 2 I

and (r(�); T (�); r(�1); : : : ; r(�k)) 2 � for each� 2

� � �

< <

<

<

<

<

<

v

1

v

2

Figure 1: A constraint graph containing no<-cycle that is
unsatisfiable overN.

f1; : : : ; kg

�

: A looping automaton accepts all thoseM -trees
for which a run exists, i.e., the languageL(A) of M -trees
accepted byA is

L(A) = fT j there is a run ofA onTg:

In [Vardi and Wolper,1986], it is proved that the emptiness
problem for looping automata is decidable in polynomial
time.

A Hintikka-tree forC andT corresponds to a canonical
model forC andT . Apart from describing the abstract do-
main�

I

of the corresponding canonical modelI together
with the interpretation of concepts and roles, each Hintikka-
tree induces a directed graph whose edges are labelled with
predicates fromf<;=g. These constraint graphs describe the
“concrete part” ofI (i.e., concrete successors of domain ob-
jects and their relationships).

Definition 6. A constraint graphis a pairG = (V;E), where
V is a countable set ofnodesandE � V �V �f=; <g a set of
edges. We generally assume that constraint graphs areequal-
ity closed, i.e., that(v

1

; v

2

;=) 2 E implies(v
2

; v

1

;=) 2 E.
A constraint graphG = (V;E) is calledsatisfiable overM ,
whereM is a set equipped with a total ordering<, iff there
exists a total mappingÆ fromV toM such thatÆ(v

1

)P Æ(v

2

)

for all (v
1

; v

2

; P) 2 E. In this case,Æ is called asolution
for G.

A <-cycleQ in G is a finite non-empty sequence of nodes
v

0

; : : : ; v

k�1

2 V such that (1) for alli with i < k, we have
(v

i

; v

i�

k

1

; P) 2 E, whereP 2 f<;=g and�
k

denotes ad-
dition modulok and (2)(v

i

; v

i�

k

1

; <) 2 E for somei < k.

The following theorem will be crucial for proving that, for
every Hintikka-tree, there exists a corresponding canonical
model. More precisely, it will be used to ensure that the con-
straint graph induced by a Hintikka-tree, which describes the
concrete part of the corresponding model, is satisfiable.

Theorem 7. A constraint graphG is satisfiable overM with
M 2 fQ;Rg iff G does not contain a<-cycle.

Note that Theorem 7 doesnot hold if satisfiability overN is
considered due to the absence of density: if there exist two
nodesv

1

andv
2

such that the length of<-paths (which are
defined in the obvious way) betweenv

1

andv
2

is unbounded,
a constraint graph is unsatisfiable overN even if it contains
no<-cycle, see Figure 1.

The decidability procedure works onT DL-concepts and
TBoxes that are in a certain syntactic form. To define this
normal form, we first introduce the well-known negation nor-
mal form.

Definition 8 (NNF). A conceptC is in negation normal form
(NNF) if negation occurs only in front of concept names. Ev-
ery concept can be transformed into an equivalent one in NNF
by eliminating double negation and using de Morgan’s law,
the duality between9 and8, and the following equivalences:

:(9u

1

; u

2

:P) � 9u

1

; u

2

:

e

P t 9u

2

; u

1

:< t u

1

" t u

2

"

:(g") � 9g; g:=

wheree� denotes the exchange of predicates, i.e.,e

< is = and
e= is<. With nnf(C), we denote the equivalent ofC in NNF.
A TBox T is in NNF iff all concepts inT are in NNF.
We can now extend NNF to the so-called path normal form.

Definition 9 (Path Normal Form). A T DL-conceptC is in
path normal form(PNF) iff it is in NNF, and, for all sub-
concepts9u

1

; u

2

:P of C, we have either (1)u
1

= g

1

and
u

2

= g

2

, (2) u
1

= fg

1

andu
2

= g

2

, or (3) u
1

= g

1

and
u

2

= fg

2

for somef 2 N

aF

andg
1

; g

2

2 N

F

. A T DL

TBox T is in path normal form iff it is in NNF and all con-
cepts appearing inT are in path normal form.

Lemma 10. Satisfiability of T DL-concepts w.r.t.T DL-
TBoxes can be reduced to satisfiability ofT DL-concepts in
PNF w.r.t.T DL-TBoxes in PNF.

Proof Let C be a T DL-concept. For every pathu =

f

1

� � � f

n

g inC, we assume that[g℄; [f
n

g℄; : : : ; [f

1

� � � f

n

g℄ are
concrete features. We inductively define a mapping� from
pathsu in C to concepts as follows:

�(g) = > �(fu) = (9[fu℄; f [u℄: =) u 9f:�(u)

For everyT DL-conceptC, the corresponding concept�(C)
is obtained by replacing all subconcepts9u

1

; u

2

:P of C with
9[u

1

℄; [u

2

℄:P u�(u

1

)u�(u

2

) andg"with [g℄". We extend the
mapping� to TBoxes in the obvious way. LetC be aT DL-
concept andT a T DL-TBox. By Definition 8, we may as-
sume bothC andT to be in NNF. It is now easy to check that
the translation is polynomial and thatC is satisfiable w.r.t.T
iff �(C) is satisfiable w.r.t.�(T) (see[Lutz,2000]). ❏

Hence, it suffices to prove that satisfiability of con-
cepts in PNF w.r.t. TBoxes in PNF is decidable. We
often refer to TBoxesT in their concept formC

T

:

C

T

= u

CvD2T

nnf(:C tD):

We now define Hintikka-trees for conceptsC and TBoxesT
(both in PNF) and show that there exists Hintikka-tree forC

andT iff there exists a model forC andT .
Let C be a concept andT a TBox. Withl(C; T), we de-

note the set of subconcepts ofC andC
T

. We assume that
existential concepts9R:D in l(C; T) with R 2 N

R

n N

aF

are linearly ordered, and that
E

(C; T ; i) yields thei-th ex-
istential concept inl(C; T). Furthermore, we assume the
abstract features used inl(C; T) to be linearly ordered and
use

F

(C; T ; i) to denote thei-th abstract feature inl(C; T).
The set of concrete features used inl(C; T) is denoted with
G

(C; T). Hintikka-pairs are used as labels of the nodes in
Hintikka-trees.

Definition 11 (Hintikka-set, Hintikka-pair). Let C be a
concept andT be a TBox. A set	 � l(C; T) is aHintikka-
set for(C; T) iff it satisfies the following conditions:

(H1) C

T

2 	,

(H2) if C
1

u C

2

2 	, thenfC
1

; C

2

g � 	,

(H3) if C
1

t C

2

2 	, thenfC
1

; C

2

g \	 6= ;,

(H4) fA;:Ag 6� 	 for all concept namesA 2 l(C; T),

(H5) if g" 2 	, then 9u
1

; u

2

:P =2 	 for all concepts
9u

1

; u

2

:P with u

1

= g or u
2

= g.

We say that f 2 N

aF

is enforced by a Hintikka-
set 	 iff either 9f:C 2 	 for some conceptC or
f9fg

1

; g

2

:P; 9g

1

; fg

2

:Pg \ 	 6= ; for someg
1

; g

2

2 N

F

andP 2 f<;=g. A Hintikka-pair(; �) for (C; T) consists
of a Hintikka-set	 for (C; T) and a set� of tuples(g

1

; g

2

; P)

with g

1

; g

2

2

G

(C; T) such that

(H6) if (g
1

; g

2

; P) 2 �, thenfg
1

"; g

2

"g \	 = ;.

With �

(C;T)

, we denote the set of all Hintikka-pairs for
(C; T). A pathu (of length 1 or 2) isenforcedby (; �)

iff eitheru is a node in� or f9u; u0:P; 9u0; u:Pg\	 6= ; for
some pathu0 andP 2 f<;=g.

Intuitively, each node� of a (yet to be defined) Hintikka-
treeT corresponds to a domain objecta of the corresponding
canonical modelI. The first component	

�

of the Hintikka-
pair labelling� is the set of concepts froml(C; T) satisfied
by a. The second component�

�

states restrictions on the
relationship between concrete successors ofa. If, for exam-
ple, (g

1

; g

2

; <) 2 �

�

, then we must havegI
1

(a) < g

I

2

(a).
Note that the restrictions in�

�

are independent from con-
cepts9g

1

; g

2

:P 2 	

�

. As will become clear when Hintikka-
trees are defined, the restrictions in�

�

are used to ensure that
the constraint graph induced by the Hintikka-treeT , which
describes the concrete part of the modelI, does not contain
a <-cycle, i.e., that it is satisfiable. This induced constraint
graph can be thought of as the union of smaller constraint
graphs, each one being described by a Hintikka-pair labelling
a node inT . These pair-graphs are defined next.

Definition 12 (Pair-graph). LetC be a concept,T a TBox,
andp = (; �) a Hintikka-pair for(C; T). Thepair-graph
G(p) = (V;E) of p is a constraint graph defined as follows:

1. V is the set of paths enforced byp

2. E = � [f(u

1

; u

2

; P) j 9u

1

; u

2

:P 2 	g.

An edge extensionofG(p) is a setE0 � V �V �f<;=g such
that for allfg

1

; fg

2

2 V , we have either(fg
2

; fg

1

; <) 2 E

0

or (fg
1

; fg

2

; P) 2 E

0 for someP 2 f<;=g. If E0 is an edge
extension ofG(p), then the graph(V;E[E0) is acompletion
of G(p).

Note that, due to path normal form and the definitions of
Hintikka-pairs and pair-graphs, we haveE0\E = ; for every
edge extensionE0 of a pair-graph(V;E).

We briefly comment on the connection of completions and
the�-component of Hintikka-pairs. Let� and� be nodes in
a Hintikka-treeT and leta andb be the corresponding do-
main objects in the corresponding canonical modelI. Edges
in Hintikka-trees represent role-relationships, i.e., if� is suc-
cessor of� in T , then there exists anR 2 N

R

such that
(a; b) 2 R

I . Assume� is successor of� and the edge be-
tween� and� represents relationship via the abstract fea-
turef , i.e., we havefI(a) = b. The second component�

�

of

the Hintikka-pair labelling� fixes the relationships between
all concrete successors ofb that “a talks about”. For exam-
ple, if (9fg

1

; g

2

:=) 2 	

�

and(9fg
3

; g

2

: <) 2 	

�

, where
	

�

is the first component of the Hintikka-pair labelling�,
then “a talks about” the concreteg

1

-successor and the con-
creteg

3

-successor ofb. Hence,�
�

either contains(g
3

; g

1

; <)

or (g
1

; g

3

; P) for someP 2 f<;=g. This is formalized by
demanding that the pair-graphG(T (�)) of the Hintikka-pair
labelling� together with all the edges from the�-components
of the successors of� are a completion ofG(T (�)). More-
over, this completion has to be satisfiable, which is necessary
to ensure that the constraint graph induced byT does not con-
tain a<-cycle. An appropriate way of thinking about the�-
components is as follows: at�, a completion ofG(T (�)) is
“guessed”. The additional edges are then “recorded” in the
�-components of the successor-nodes of�.

Definition 13 (Hintikka-tree). Let C be a concept,T be a
TBox, k the number of existential subconcepts inl(C; T),
and` be the number of abstract features inl(C; T). A 1+k+

`-tuple of Hintikka-pairs(p
0

; : : : ; p

k+`

) with p

i

= (

i

; �

i

)

andG(p
0

) = (V;E) is calledmatchingiff

(H7) if 9R:D 2 	

0

and
E

(C; T ; i) = 9R:D, thenD 2 	

i

(H8) if f9R:D;8R:Eg � 	

0

and
E

(C; T ; i) = 9R:D, then
E 2 	

i

(H9) if 9f:D 2 	

0

and
F

(C; T ; i) = f , thenD 2 	

k+i

.

(H10) if f is enforced by	
0

,
F

(C; T ; i) = f , and8f:D 2

	

0

, thenD 2 	

k+i

.

(H11) the constraint graph(V;E [E

0

) is a satisfiable com-
pletion ofG(p

0

), whereE0 is defined as
[

1�i�`

f(fg

1

; fg

2

; P) j F(C; T ; i) = f; (g

1

; g

2

; P) 2 �

k+i

g:

A k + `-ary �
(C;T)

-treeT is a Hintikka-tree for(C; T) iff
T (�) is a Hintikka-pair for(C; T) for each node� in T , and
T satisfies the following conditions:

(H12) C 2 	

�

, whereT (�) = (

�

; �

�

),

(H13) for all � 2 f1; : : : ; k + `g

�, the tuple
(T (�); T (�1); : : : ; T (�j)) with j = k + ` is matching.

For a Hintikka-treeT and node� 2 f1; : : : ; k + `g

� with
T (�) = (; �), we useT

�

(�) to denote	 andT
�

(�) to
denote�. Moreover, ifG(�) = (V;E), we usepl(T; �) to
denote the constraint graph(V;E [E

0

) as defined in(H11).
Whereas most properties of Hintikka-trees deal with con-
cepts, roles, and abstract features and are hardly surprising,
(H11) ensures that constraint graphs induced by Hintikka-
trees contain no<-cycle. By “guessing” a completion as ex-
plained above, possible<-cycles are anticipated and can be
detected locally, i.e., it suffices to check that the completions
pl(T; �) are satisfiable as demanded by(H11). Indeed, it is
crucial that the cycle detection is done by alocal condition
since we need to define an automaton which accepts exactly
Hintikka-trees and automata work locally. It is worth noting
that the localization of cycle detection as expressed by(H11)
crucially depends on path normal form.

The following two lemmas show that Hintikka-trees are ap-
propriate abstractions of models.

Lemma 14. A conceptC is satisfiable w.r.t. a TBoxT iff
there exists a Hintikka-tree for(C; T).

To prove decidability, it remains to define a looping automa-
tonA

(C;T)

for each conceptC and TBoxT such thatA
(C;T)

accepts exactly the Hintikka-trees for(C; T).

Definition 15. LetC be a concept,T be a TBox,k the num-
ber of existential subconcepts inl(C; T), and` be the num-
ber of abstract features inl(C; T). The looping automaton
A

(C;T)

= (Q;�

(C;T)

;�; I) is defined as follows:

� Q = �

(C;T)

, I = f(; �) 2 Q j C 2 	g, and

� ((; �); (

0

; �

0

); (

1

; �

1

); : : : ; (

k

; �

k+`

)) 2 � iff

(; �) = (

0

; �

0

) and
((; �); (

1

; �

1

); : : : ; (

k

; �

k+`

)) is matching.

Note that every state is an accepting state, and, hence, every
run is accepting. The following lemma is easily obtained.

Lemma 16. T is Hintikka-tree for(C; T) iff T 2 L(A

C;T

).

Since the size ofl(C; T) is linear in the size ofC andT , it is
straightforward to verify that the size ofA

(C;T)

is exponential
in the size ofC andT . This, together with Lemmas 10, 14,
and 16, and the polynomial decidability of the emptiness
problem of looping automata[Vardi and Wolper,1986], im-
plies the upper bound given in the following theorem which
states the main result of this paper. The lower bound is an
immediate consequence of the fact thatALC with general
TBoxes is EXPTIME-hard[Schild,1991].

Theorem 17. Satisfiability and subsumption ofT DL-
concepts w.r.t. TBoxes areEXPTIME-complete.

5 Conclusion
There are several perspectives for future work of which we
highlight three rather interesting ones: firstly, the presented
decision procedure is only valid if a dense strict linear order is
assumed as the underlying temporal structure. For example,
the concept> is satisfiable w.r.t. the TBox

T = f> v 9g

1

; g

2

; < u 9g

1

; fg

1

; < u 9fg

2

; g

2

; <g

over the temporal structuresQ andR (with the natural or-
derings) but not overN. To see this, note thatT induces a
constraint graph as in Figure 1. Hence, it would be interest-
ing to investigate if and how the presented algorithm can be
modified for reasoning with the temporal structureN.

Secondly,T DL does only allow forqualitative temporal
reasoning. It would be interesting to extend the logic to mixed
qualitative and quantitative reasoning by additionally admit-
ting unary predicates<

q

and=
q

for eachq 2 Q.
Thirdly, we plan to extendT DL to make it suitable

for reasoning about entity relationship (ER) diagrams. As
demonstrated in, e.g.,[Calvaneseet al.,1998; Artale and
Franconi,1999], Description Logics are well-suited for this
task. By using an appropriate extension ofT DL, one should
be able to capture a new kind of temporal reasoning with ER
diagrams, namely reasoning over ER diagrams with “tempo-
ral” integrity constraints. For example, a temporal integrity
constraint could state that employees birthdays should be be-
fore their employment date. An appropriate extension of

T DL for this task could be by (unqualified) number restric-
tions, inverse roles, and a generalized version of the concrete
domain constructor9u

1

; u

2

:P . An extension of the presented
automata-theoretic decision procedure to this more complex
logic seems possible.

Acknowledgements My thanks go to Franz Baader, Ulrike
Sattler, and Stephan Tobies for fruitful discussions. The au-
thor was supported by the DFG Project BA1122/3-1 “Com-
binations of Modal and Description Logics”.

References
[Allen, 1983] J. Allen. Maintaining knowledge about temporal in-

tervals.Communications of the ACM, 26(11), 1983.

[Artale and Franconi, 1998] A. Artale and E. Franconi. A temporal
description logic for reasoning about actions and plans.Journal
of Artificial Intelligence Research (JAIR), (9), 1998.

[Artale and Franconi, 1999] A. Artale and E. Franconi. Temporal
ER modeling with description logics. InProc. of ER’99, Paris,
France, 1999. Springer–Verlag.

[Artale and Franconi, 2000] A. Artale and E. Franconi. Temporal
description logics. InHandbook of Time and Temporal Reasoning
in Artificial Intelligence. MIT Press, To appear.

[Baader and Hanschke, 1991] F. Baader and P. Hanschke. A
scheme for integrating concrete domains into concept languages.
In Proc. of IJCAI-91, pages 452–457, Sydney, Australia, 1991.
Morgan Kaufmann Publ. Inc.

[Calvaneseet al., 1998] D. Calvanese, M, Lenzerini, and D. Nardi.
Description logics for conceptual data modeling. InLogics for
Databases and Information Systems, pages 229–263. Kluwer
Academic Publisher, 1998.

[Lutz et al., 1997] C. Lutz, V. Haarslev, and R. Möller. A concept
language with role-forming predicate restrictions. Technical Re-
port FBI-HH-M-276/97, University of Hamburg, Computer Sci-
ence Department, Hamburg, 1997.

[Lutz, 2000] C. Lutz Interval-based Temporal Reason-
ing with General TBoxes. LTCS-Report LTCS-00-06,
LuFG Theoretical Computer Science, RWTH Aachen,
Germany, 2000. See http://www-lti.informatik.rwth-
aachen.de/Forschung/Reports.html.

[Lutz, 2001] C. Lutz. NExpTime-complete description logics with
concrete domains. InProc. of IJCAR 2001, LNCS, Siena, Italy,
2001. Springer-Verlag.

[Nebel, 1990] B. Nebel. Terminological reasoning is inherently in-
tractable.Artificial Intelligence, 43:235–249, 1990.

[Sattler, 1998] U. Sattler.Terminological knowledge representation
systems in a process engineering application. PhD thesis, LuFG
Theoretical Computer Science, RWTH-Aachen, 1998.

[Schild, 1991] K. D. Schild. A correspondence theory for termi-
nological logics. InProc. of IJCAI-91, pages 466–471, Sidney,
Australia, 1991. Morgan Kaufmann Publ. Inc.

[Vardi and Wolper, 1986] M. Y. Vardi and P. Wolper. Automata-
theoretic techniques for modal logic of programs.Journal of
Computer and System Sciences, 32:183–221, 1986.

[Vilain, 1982] M. Vilain. A system for reasoning about time. In
Proceedings of the Second AAAI, pages 197–201, Pittsburgh,
Pennsylvania, 1982.

