Interval-based Temporal Reasoning with General TBoxes

Carsten Lutz
LUFG Theoretical Computer Science
RWTH Aachen, Germany
lutz@cs.rwth-aachen.de

Abstract their endpointdAllen,1983 thus allowing for (qualitative)
interval-based temporal reasoning. Since it is an impor-
tant feature of DLs that reasoning should be decidable, we
prove decidability of the standard reasoning tasks by usmg
automata-theoretic approach which also yields a tigke-E
TIME complexity bound.

Most DLs allow for some kind of TBox formalism that is
used to represent terminological knowledge as well as back-
ground knowledge about the application domain. However,
there exist various flavours of TBoxes with vast differences
in expressivity. To the best of our knowledge, all interval-
based DLs and all DLs with concrete domains defined in
the literature admit only a very restricted form of TBox, j.e
sets of acyclic macro definitions. Compared to existing De-
scription Logics that are interval-based or include cotecre
domains, the distinguishing feature of our logic is thasit i
equipped with a very general form of TBoxes that allows ar-
bitrary equations over concepts. Thus, the presented work
1 Motivation overcomes a major limitation of both families of Descriptio
Logics.

Our results can be viewed from the perspective of interval-

ased temporal reasoning and from the perspective of con-
crete domains. For the temporal perspective, we claim that
the combination of general TBoxes and interval-based tempo
ral reasoning is important for many application areas. i th
paper, we present process engineering as an example. From
he concrete domain perspective, our results can be viesved a

lows: in[Lutz,2001, it is shown that, even for very simple

concrete domains, reasoning with general TBoxes is unédecid

ing about “concrete qualities” of entities of the applioati able. It was an open question whether there exist integestin

domain such as sizes, weights or temperat{Besder and concrete domains for which reasoning Witr_\ generql TBoxes
Hanschke, 1991 As was first described ifLutz et al, 1997, IS decidable. In this paper, we answer this question to the
if a “temporal” concrete domain is employed, then Descrip-aﬁ'rm_at_'ve' This paper is accompanied by a technical report
tion Logics with concrete domains are a very useful tool forcontaining full proofdLutz,2000.

temporal reasoning. Ontologically, temporal reasoninip wi

concrete domains is usually interval-based but may also b8 Syntax and Semantics

point-based or even both.

In this paper, we define atemporal Description Logic base
on concrete domains which uses points as its basic tempor
entity, but which may also be used as a full-fledged intervalDefinition 1. Let N, Ng, andN.r be mutually disjoint and
based temporal DL. More precisely, the presented g countably infinite sets afoncept namesoles andconcrete
extends the basic Description LogitCC with a concrete do- features Furthermore, letV,r be a countably infinite sub-
main that is based on the rationals and predicatesd =. set of Ng. The elements oV, are calledabstract features
The well-known Allen relations can be defined in terms of A pathw is a compositiory; - - - f,g of n > 0 abstract fea-

Until now, interval-based temporal Description
Logics (DLs) did—if at all—only admit TBoxes of

a very restricted form, namely acyclic macro defini-
tions. In this paper, we present a temporal DL that
overcomes this deficieny and combines interval-
based temporal reasoning with general TBoxes. We
argue that this combination is very interesting for
many application domains. An automata-based de-
cision procedure is devised and a tightF/H IME-
complexity bound is obtained. Since the presented
logic can be viewed as being equipped with a con-
crete domain, our results can be seen from a differ-
ent perspective: we show that there exist interesting
concrete domains for which reasoning with general
TBoxes is decidable.

Description Logics (DLs) are a family of formalisms well-
suited for the representation of and reasoning about cence
tual knowledge. Whereas most Description Logics represe
only static aspects of the application domain, recent rebea
resulted in the exploration of various Description Logieatt
allow to, additionally, represent temporal informatioees
e.g.,[Artale and Franconi,20Q0Gor an overview. One ap-
proach for temporal reasoning with DLs is to use so-calle
concrete domains. Concrete domains have been propos
as an extension of Description Logics that allows reason

(Jjn this section, we introduce syntax and semantics of the De-
3-fription LogicTDL.



turesfi,..., f, and one concrete featuge The set off DL-
concepts is the smallest set such that

1. every concept name is a concept

2. if C'andD are conceptsR is a role,g is a concrete fea-
ture,u;,u» are paths, an®® € {<, =}, then the follow-
ing expressions are also concept&?, C M D, C U D,
JR.C,VR.C', Juy,us.P, andgt.

A TBox axiomis an expression of the forlf C D with C
andD are concepts. A finite set of TBox axioms iFBox

is a set of predicate names. Each predicate nBneed is
associated with an arity and amm-ary predicate®” C A%.

The concrete domain is usually integrated into the logic by a
concept constructatuy, . . ., u,.P, with semantics
(Fui, ..., un.P)F:={a€ Az |ul(a) =g for1 <i<n
and(qi,...,q) € PP}.

Itis obvious that/ DL can be viewed as being equipped with
the concrete domaif. := (Q, {<,=}), where< and=
are binary predicates with the usual semantics. For most DLs

Throughoutthis paper, we will denote atomic concepts by theyith concrete domains, it is required that the set of predi-

letter A, (possibly complex) concepts by the lettéfsD, E,
roles by the letteR, abstract features by the lettgrconcrete
features by the lettgy, paths by the lettet, and elements of
the set{<, =} by the letterP. We will sometimes call the
TBox formalism introduced abowgeneral TBoxe$o distin-

cates is closed under negation and contains a nagédor

Ap. This property ensures that every concept can be con-
verted into an equivalent one in the so-called negation abrm
form (NNF). The NNF of concepts, in turn, is used as a start-
ing point for devising satisfiability algorithms. It is noaid

guish it from other, weaker formalisms such as the ones ifg see thatD. is not admissible in this sense. However, as

[Nebel,1990. As most Description Logicg, DL is equipped
with a Tarski-style semantics.

Definition 2. An interpretationZ is a pair(Az, -Z), where
A7 is a set called thelomainand -” is the interpretation
function mapping each concept nanigto a subsetC” of
A7z, each role name to a subsetRZ of A7 x Az, each
abstract featurgf to a partial functionf” from Az to Az,
and each concrete featugeto a partial functiong” from
Az to the rationals. For pathsu = fi--- f.g, we set
ul(a) == g*(fX(---(fL(a))--+)). The interpretation func-
tion is extended to arbitrary concepts as follows:

(-C) .= Az \ C*
(cnbD)y:=c*np? (CubD)?:=cTuD’
(AR.C)Y :={aec Az | {b|(a,b) € RE}nCT # p}
(VR.C)? :={a € Az |{b] (a,b) € RT} C C*}
(Fu,us.P)F :={a € A7 | 31,02 € Q : uF(a) = q1,
uz(a) = q2,q1 Pg>}

(91T := {a € Az | g*(a) is undefined

An interpretationZ is a modelof a TBox 7 iff it satisfies

ct c D7 for all axiomsC C D in 7. T is amodelof a
concepiC iff CT # ().

If g(a) = x for someg € N.r, a € Az, andz € Q, then we
call z aconcrete successoif a in Z. We write T for AL -4

and L for =T, whereA is a concept name. Moreover, we

write ut withw = fy --- frgforVf..--Vfi.g7T.

Definition 3 (Inference Problems). Let C' and D be con-
cepts and/ be a TBox. C' subsumed w.rt. 7 (written
D Ty C)iff DT C C7 for all modelsZ of 7. C is satisfi-
able w.r.t.7 iff there exists a model of botfi andC.

It is well-known that (un)satisfiability and subsumptiomca

be mutually reduced to each oth&r: C+ D iff C' M =D is
unsatisfiable w.r.t7" andC is satisfiable w.r.t7 iff C' Z+ L.

We now discuss the relationship betweg® L and De-
scription Logics with concrete domains.

Definition 4 (Concrete Domain). A concrete domaim is a
pair (Ap, ®p), whereAp is a set called the domain, afd

we will see in Section 4, the conversion BfDL-concepts
into equivalent ones in NNF is nevertheless possible.

3 Temporal Reasoning with7DL

Although7 DL does only provide the relations=" and “<”
ontime points, it is not hard to see that the remaining reesti
can be defined by writing, e.QHus, u1.< U Juy, us.= for
Juq, us.>. However, we claim thaf DL cannotonly be used
for point-based temporal reasoning but also as a full-flddge
interval-based temporal Description Logic. As observed by
Allen [1984, there are 13 possible relationships between two
intervals such as, for example, theets relation: two inter-
valsiy andi, are related byneets iff the right endpoint ofi;
is identical to the left endpoint a§—see[Allen,1989 for an
exact definition of the other relations. As we shall see,ghes
13 Allen relations (as well as the additional relations from
the Allen algebra, selllen,1983) can be defined il DL.
In the following, we present a framework for mixed interval-
and point-based reasoningirD L and apply this framework
in the application area of process engineering

The representation framework consists of several conven-
tions and abbreviations. We assume that each entity of the
application domain is either temporal or atemporal. If it is
temporal, its temporal extension may be either a time point
or an interval. Left endpoints of intervals are represeted
the concrete featurg right endpoints of intervals are repre-
sented by the concrete featureand time-points not related
to intervals are represented by the concrete featudd this
can be expressed by the following TB®X:

Point = 3t,t.=N 4t N rt  Interval = 3¢, r.< M1
ATemporal = t1 11417t Interval 3 3¢, ¢, =01 3r,r.=
Here,C' = D is an abbreviation fofC C D, D C C}. Let
us now define the Allen relations as abbreviations. For exam-
ple, 3(F, F").contains is an abbreviation foBF/{, F'¢.< 1M

3F'r, Fr.< whereF, F' € (N,r)*,i.e.,F andF' are words
over the alphabe¥, ». Note that

3(F, F').contains Cy~ JF.Interval 11 3F" Interval.

Similar abbreviations are introduced for the other Allelare
tions. We useself to denote the empty word. For example,



3(F, self).starts is an abbreviation fofF'¢, £.= M 3Fr,r.<. during. Until now, we did not say anything about the tempo-

Intuitively, self refers to the interval associated with the ab-ral relationship of maintenance and operation. This may be

stract object at which the(F, self).starts concept is “evalu- inadequate, if, for example, maintenance and operation are

ated”. mutually exclusive. We can take this into account by using
Since we have intervaland points available, we should additional axioms

also be able to talk about the relationship of points and in- .

tervals. More precisely, there exist 5 pOSSib|£ relatioas b Week 1 1<|7|<7E|(ma|nt,dayi 00p).OVLPC L (x)

tween a point and an intervi¥ilain,1982, one example be- o

ing startsp that holds between a poiptand an intervai if ~ WhereOVLP is replaced byequal, overlaps, overlapped-by,

pis identical to the left endpoint af Hence, we can define during, contains, starts, started-by, finishes, or finished-by

3(Ft, F').startsp as an abbreviation fatF't, F'¢.= and sim-  Yielding 9 axioms. . .

ilar abbreviations fobeforep, duringp, finishesp, andafterp. Until now, we have modelled the very basic properties of
This finishes the definition of the framework. We claim OY' productlpn process. Let_ us define some more advanced

that the combination of interval-based reasoning and génerCONCePts to illustrate reasoning wilfDL. For example, we

TBoxes is important for many application areas such as re0uld define a busy week as

soning about action and plafartale and Franconi,2090 BusyWeek = Week 1 [1_(3day; o start, day;.starts

The examples presented here are from the area of process en- 1<i<7 Eldayl' o shut day.l finishes)

gineering that was first considered by Sattler in a DL context ! Y

[Sattler,1998 However, Sattler's approach does not take intoi.e., each day, the startup process starts at the beginfing o

account temporal aspects of the application domain. We shoday and the shutdown finishes at the end of the day. Say now

how this can be done usingDL thus refining Sattler's pro- that itis risky to do maintenance during startup and shutdow

posal. phases and define

Assume that our goal is to represent information about an. . . )
automated chemical production process that is carriedyut bri!a'SI‘yWeek = Week M = 1<|:|<7 (Hma!nt, day; o start.before LI
some complex technical device. The device operates each day == 3maint, day; o shut.after)

for some time depending on the number of orders. It needs @xpressing that, in a risky week, the maintenance phase is

complex startup and shutdown process before resp. after oy strictly separated from the startup and shutdown phases

eration. Moreover, some weekly maintenance is needed tg TDL reasoner could be used to detect tRasyWeek C

keep the device functional. Let us first represent the ugderl RiskyWeek, i.e., every busy week is a risky week: in a busy
ing temporal structure that consists of weeks and days. week, the week is partitioned into startup, shutdown, and op

Week = Interval M [ 1 3Jday,.Day 1 eration phases. Since maintenance may not OVLP with op-
1<i<? eration phases (see)j, it must OVLP with startup and/or
3(day,, self).starts M 3(day,, self).finishes M shutdown phases which means that it is a risky week. We

M 3(dav..dav...) meets M can further refine this _model by using mixed point-based and
1<i<7 (day;, day; ). meets interval-based reasoning, siaitz,200Q for examples.
Inext.Week M (self, next).meets

. . 4 The Decision Procedure
The axiom states that each week consists of seven days,

where the'th day is accessible from the corresponding week!n this section, we prove satisfiability §fDL-concepts w.r.t.

via the abstract featurday;. The temporal relationship be- TBoxes to be decidable and obtain a tightF IME com-
tween the days are as expected: Monday starts the weeRlexity bound. This is done using an automata-theoretic ap-
Sunday finishes it, and each day temporally meets the sugroach: first, we a}bstract models to so-called Hintikkagre
ceeding one. Note that this implies that days 2 to 6 are durin§uch that there exists a model for a cona@ind a TBox7

the corresponding week although this is not explicitlyeat 1f there exists a Hintikka-tree fof" and7". Then, we build,
Moreover, each week has a successor week that it temporalfpr €ach7DL-conceptC' and TBox 7, a looping automa-

meets. We now describe the startup, operation, shutdowin, aonAc, that accepts exactly the Hintikka-trees 6f, 7).
maintenance phases. In particular, this implies thatl - - accepts the empty lan-

guage iffC' is unsatisfiable w.r.t/".

. Definition 5. Let M be a set and: > 1. A k-ary M-tree
Jstart.Startup M Jop.Operation M Ishut.Shutdn M is a mappingl’ : {1,...,k}* — M that labels each node
Jstart o £, £.> M J(start, op).meets 1 a € {1,...,k}* with T(o) € M. Intuitively, the nodewi
3(op, shut).meets M Ishut o 7, 7.< is thei-th child of a. We usee to denote the empty word
(corresponding to the root of the tree).

A looping automaton A = (Q,M,I,A) for k-ary
Herestart, op, shut, andmaint are abstract features and’*  M-trees is defined by a sé& of states, an alphabet/,
is used for better readability (i.e., patfis: - - frg are written a subset/ C (@ of initial states, and a transition rela-
asfyo---o fr og). The TBox implies that phases are re-tion A C Q x M x Q*. A run of A on an M-tree
lated to the corresponding day as follows: startupswiats 7' is a mappingr : {1,...,k}* — Q with r(¢) € I
or during, shutdown viaduring or finishes, and operationvia and (r(«),T(a),r(al),...,r(ak)) € A for eacha €

Day = Interval 1

Week C Imaint.Maintenance M 3(self, maint).contains



v < < Definition 8 (NNF). A concept' is in negation normal form
(NNF) if negation occurs only in front of concept names. Ev-
ery concept can be transformed into an equivalent one in NNF

< < < s by eliminating double negation and using de Morgan’s law,
the duality betweed andV, and the following equivalences:

V2 < < _|(3’U,1,U,2.P) 3U1,u2.P L 3U2,U1.< L ’U,1T LJ 'U/QT

= g, g.=
Figure 1: A constraint graph containing ro-cycle that is _ (g1) 9.9 _ o
unsatisfiable oveN. where~ denotes the exchange of predicates, keis = and

= is <. With nnf(C), we denote the equivalent 6fin NNF.
A TBox T is in NNF iff all concepts ifl7” are in NNF.

{1,...,k}*. Alooping automaton accepts all thodé-trees e can now extend NNF to the so-called path normal form.

]:gc\é\/ht'gg k?yﬁg exists, i.e., the languagA) of M-trees Definition 9 (Path Normal Form). A 7T DL-concept' is in
P path normal form(PNF) iff it is in NNF, and, for all sub-
L(A) = {T | thereisarunofd onT}. conceptsiuy, us.P of C, we have either (1; = ¢ and
. . . uy = g2, (2)ur = fg1 anduy = g, or (3)u; = g and
In [Vardi and Wolper,1986 it is proved that the emptiness ¢, = fg» for somef € N,r andgi,g> € N.p. ATDL
problem for looping automata is decidable in polynomialTBox 7 is in path normal form iff it is in NNF and all con-
time. cepts appearing ifi are in path normal form.

A Hintikka-tree for " and 7" corresponds to a canonical | (..o 10 Satisfiability of TDL-concepts w.rt.7DL-

mo_deIAforCf‘ tz?]ndT. Apart f(;pm descnbln? thedglk:stratcht do- TBoxes can be reduced to satisfiability/oD L-concepts in
main Az of the corresponding canonical modeltogether o e 7 p r TBoxes in PNF.

with the interpretation of concepts and roles, each Hirtikk
tree induces a directed graph whose edges are labelled wifffoof Let C' be a7 DL-concept. For every path =

predicates fron{ <, =}. These constraint graphs describe the/f1 - - fngin C', we assume thdg], [fg], ..., [fi -~ fng] are
“concrete part” ofZ (i.e., concrete successors of domain ob-concrete features. We inductively define a mappinigom
jects and their relationships). pathsu in C'to concepts as follows:

Definition 6. A constraint graphs a pairG' = (V, E), where Mg) =T Afu) = (ful, flu]l. =) 7 IfA(v)
Visacountable setafodesandE C V xV x{=,<}asetof For every7DL-conceptC, the corresponding conceptC)
edges We generally assume that constraint graph®grel- s obtained by replacing all subconcepts , u».P of C' with

ity closed i.e., that(vi, v, =) € E'implies(v2,v1,=) € E.  J[u;], [us]. PMIA(uy ) A(uy) andg?t with [g]1. We extend the
A constraint graptt’ = (V, E) is calledsatisfiable oveiM/,  mappingp to TBoxes in the obvious way. L&t be a7 DL-
whereM is a set equipped with a total orderirg iff there  concept and™ a 7DL-TBox. By Definition 8, we may as-
exists a total mappingfrom V" to M such that(vi) Pé(v2)  sume bothC and7 to be in NNF. Itis now easy to check that
for all (vi,vs, P) € E. In this case is called asolution  the translation is polynomial and th@tis satisfiable w.r.t7”

for G. : : Cofi
. . - iff p(C) is satisfiable w.r. seelLutz,200Q). O
A <-cycle@ in G is a finite non-empty sequence of nodes p(C) i i t(7) (seel ) .(j). )
Vo, - -, vp—1 € V such that (1) for al with i < k, we have Hence, it suffices to prove that satisfiability of con-
(vi,vig1, P) € E, whereP € {<,=} anda, denotes ad- CEPtS in PNF w.r.t. TBoxes in PNF is decidable. We
2y Y1Drly 1 ) 3 . . .
dition modulok and (2)(v;, vie, 1, <) € E for somei < k. often refer to TBoxesT in their concept formC'r:

The following theorem will be crucial for proving that, for Cr = ngngnf(ﬂo U D).

every Hintikka-tree, there exists a corresponding carabnic , _
model. More precisely, it will be used to ensure that the con-vt\)/e tr;}o_w gﬁfl':ne Héntlkl](ka-irhe(?[irl:or congtatp’i’aa}ngk'll;Bc:xesé'o
straint graph induced by a Hintikka-tree, which descrites t (°0th in PNF) and show that there exists Hintikka-treedor

- : of andT iff there exists a model fof’ and7 .
concrete part of the corresponding model, is satisfiable. Let C' be a concept and a TBox. Withel(C, T), we de-

Theorem 7. A constraint graplG is satisfiable oved/ with  note the set of subconcepts 6fandC. We assume that
M € {Q, R} iff G does not contain a-cycle. existential concept3R.D in cl(C,T) with R € Ng \ Nor

Note that Theorem 7 doe®t hold if satisfiability overN is ~ are linearly ordered, and tha{(C, 7,4) yields thei-th ex-

considered due to the absence of density: if there exist twéstential concept irel(C, 7). Furthermore, we assume the

nodesv; andv, such that the length of-paths (which are ~abstract features used é(C', 7) to be linearly ordered and

defined in the obvious way) betweenandv, is unbounded, USeF(C, T, 1) to denote the-th abstract feature id(C', 7).

a constraint graph is unsatisfiable oRéreven if it contains ~ The set of concrete features usedlifC', 7) is denoted with

no <-cycle, see Figure 1. G(C,T). Hintikka-pairs are used as labels of the nodes in
The decidability procedure works GRDL-concepts and Hintikka-trees.

TBoxes that are in a certain syntactic form. To define thisDefinition 11 (Hintikka-set, Hintikka-pair). Let C' be a

normal form, we first introduce the well-known negation nor- concept and™ be a TBox. A sel C cl(C, T) is aHintikka-

mal form. set for(C, T) iff it satisfies the following conditions:



(H1) Cr € T,

(H2) if C, M Cy € T, then{C}, s} C T,

(H3) if C, LU Cy € T, then{Cy,Co} N T # 0,

(H4) {A,—~A} ¢ ¥ for all concept named € cl(C,T),

(H5) if gt € ¥, then3u;,us.P ¢ ¥ for all concepts
Fuy, us. P Withu; = gorus = g.

We say thatf € N,p is enforced by a Hintikka-
set U iff either 3f.C € ¥ for some conceptC or

{3fgl,g2.P, Hgl,fg2.P} nw 75 0 for somegi,gs € N.r

andP € {<,=}. A Hintikka-pair (¥, ) for (C, T") consists
of a Hintikka-set¥ for (C, T') and a sex of tuples(g;, g2, P)

with g1, ¢2 € G(C, T) such that

(H6) if (g1, 92, P) € x, then{g11, 21} N T = 0.

With T'c,7), we denote the set of all Hintikka-pairs for
(C,T). A pathu (of length 1 or 2) isenforcedby (¥, x)

iff either v is a node iny or {Ju,w'. P, Ju',u. P} N¥ # § for
some path/ andP € {<,=}.

Intuitively, each nodex of a (yet to be defined) Hintikka-
treeT corresponds to a domain objecof the corresponding
canonical model. The first componen¥ , of the Hintikka-
pair labellinga is the set of concepts frond(C, T) satisfied
by a. The second component, states restrictions on the
relationship between concrete successors. df, for exam-
ple, (g1,92,<) € Xa, then we must have? (a) < gZ(a).
Note that the restrictions iy, are independent from con-
ceptsdgs, g2.P € ¥,. As will become clear when Hintikka-
trees are defined, the restrictionsyin are used to ensure that
the constraint graph induced by the Hintikka-tfBewhich
describes the concrete part of the mad@lietloes not contain

the Hintikka-pair labelling? fixes the relationships between
all concrete successors bthat “a talks about”. For exam-
ple, if (3fg1,92.=) € ¥, and(3fgs3, g>. <) € ¥, where
¥, is the first component of the Hintikka-pair labellirg
then ‘e talks about” the concretg -successor and the con-
cretegs-successor of. Hence,x either containggs, g1, <)

or (g1, g3, P) for someP € {<,=}. This is formalized by
demanding that the pair-grajgh(7'(«)) of the Hintikka-pair
labellinga together with all the edges from tkecomponents
of the successors af are a completion off(7T'(«)). More-
over, this completion has to be satisfiable, which is necgssa
to ensure that the constraint graph inducedoes not con-
tain a<-cycle. An appropriate way of thinking about tiye
components is as follows: at, a completion of7(T'(«)) is
“guessed”. The additional edges are then “recorded” in the
x-components of the successor-nodes of

Definition 13 (Hintikka-tree). Let C be a concept] be a

TBox, k the number of existential subconceptscltC, T),

and/ be the number of abstract featureslifC, 7). A 1+k+

£-tuple of Hintikka-pairs(po, - - ., pra¢) With p; = (U, x3)

andG(po) = (V, E) is calledmatchingiff

(H7) if 3R.D € ¥y and&(C, T,i) =3R.D, thenD € ¥,

(H8) if {3R.D,VR.E} C ¥y andg(C, T,i) = IR.D, then
Eev,

(H9) if 3f.D € ¥gandF(C,T,i) = f,thenD € ¥y ,.

(H10) if f is enforced by®y, F(C,T,i) = f,andVf.D €
U,, thenD € \I’k—&-i-

(H11) the constraint grapll/, E U E') is a satisfiable com-
pletion of G(py), whereE' is defined as

a <-cycle, i.e., that it is satisfiable. This induced constrain U {(fg1,fg2,P) | F(C,T,i) = £,(91,92, P) € Xtri}-
graph can be thought of as the union of smaller constraint<;<,

graphs, each one being described by a Hintikka-pair latzelli
a node inl’. These pair-graphs are defined next.

Definition 12 (Pair-graph). Let C' be a concept] a TBox,
andp = (¥, x) a Hintikka-pair for(C, 7). Thepair-graph
G(p) = (V, E) of pis a constraint graph defined as follows:
1. V is the set of paths enforced py
2. E=xU{(u1,us, P) | Juy,us.P € T}.

An edge extensioof G(p) isasetE’ C V' xV x{<,=}such
that for all fg1, fg2 € V, we have eitheffgs, fg1,<) € E'
or(fgi, fge, P) € E' forsomeP € {<,=}. If E'isan edge
extension of7(p), then the grapkV, EU E") is acompletion
of G(p).

A k + L-ary T, -treeT is aHintikka-tree for (C, T) iff
T'(«) is a Hintikka-pair for(C, T') for each nodex in T', and
T satisfies the following conditions:
(H12) C € ., whereT'(e) = (T, xc),
(H13) foralla € {1,...,k + £}*, the tuple

(T(a), T(al),...,T(aj)) with j = k + £ is matching.
For a Hintikka-treel' and nodex € {1,...,%k + £}* with
T(a) = (T,x), we useT4(a) to denote? and T}, (a) to
denotey. Moreover, ifG(a) = (V, E), we usecpl(T, a) to
denote the constraint graph’, £ U E') as defined ifH11).

Whereas most properties of Hintikka-trees deal with con-
cepts, roles, and abstract features and are hardly sungyrisi

Note that, due to path normal form and the definitions of(H11) ensures that constraint graphs induced by Hintikka-

Hintikka-pairs and pair-graphs, we haién E = () for every
edge extensiolt’ of a pair-grapHV, E).

trees contain nec-cycle. By “guessing” a completion as ex-
plained above, possible-cycles are anticipated and can be

We briefly comment on the connection of completions anddetected locally, i.e., it suffices to check that the coniqhet

the y-component of Hintikka-pairs. Let and/ be nodes in
a Hintikka-treeT and leta andb be the corresponding do-
main objects in the corresponding canonical madeEdges
in Hintikka-trees represent role-relationships, i.eg i§ suc-
cessor ofa in T, then there exists al® € Npg such that
(a,b) € RT. Assumes is successor ofr and the edge be-

tweena and 8 represents relationship via the abstract fea-

turef, i.e., we havef” (a) = b. The second componeyt of

cpl(T, @) are satisfiable as demanded(bill). Indeed, it is
crucial that the cycle detection is done byoaal condition
since we need to define an automaton which accepts exactly
Hintikka-trees and automata work locally. It is worth natin
that the localization of cycle detection as expresse(Hiyi)
crucially depends on path normal form.

The following two lemmas show that Hintikka-trees are ap-
propriate abstractions of models.



Lemma 14. A conceptC' is satisfiable w.r.t. a TBo¥ iff T DL for this task could be by (unqualified) number restric-
there exists a Hintikka-tree fdiC, T'). tions, inverse roles, and a generalized version of the edacr
_domain constructofiuy , us.P. An extension of the presented
automata-theoretic decision procedure to this more cample
logic seems possible.

To prove decidability, it remains to define a looping automa
ton A (¢, for each concepf’ and TBox7 such that4 ¢ 1)
accepts exactly the Hintikka-trees f@r, 7).

Definition 15. Let C' be a concept]” be a TBox,k the num-
ber of existential subconceptsdi{C, 7'), and/ be the num-
ber of abstract features il(C, 7). The looping automaton
A,y = (@Q,Te,7), A, I) is defined as follows:

« Q=T@r, T={(¥,x)€Q|C e v}, and

o (%), (¥, X), (@1, X1), -, (Uh, X)) € Aiff References
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