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Abstrat. Conrete domains are an extension of Desription Logis

(DLs) allowing to integrate reasoning about oneptual knowledge with

reasoning about \onrete properties" of objets suh as sizes, weights,

and durations. It is known that reasoning with ALC(D), the basi DL

admitting onrete domains, is PSpae-omplete. In this paper, it is

shown that the upper bound is not robust: we give three examples for

seemingly harmless extensions of ALC(D)|namely ayli TBoxes, in-

verse roles, and a role-forming onrete domain onstrutor|that make

reasoning NExpTime-hard. As a orresponding upper bound, we show

that reasoning with all three extensions together is in NExpTime.

1 Introdution

Desription Logis (DLs) are a family of logial formalisms for the representation

of and reasoning about oneptual knowledge. The knowledge is represented on

an abstrat logial level, i.e., by means of onepts (unary prediates), roles (bi-

nary prediates), and logial onstrutors. This makes it diÆult to adequately

represent knowledge onerning \onrete properties" of real-world entities suh

as their sizes, weights, and durations. Sine, for many knowledge representation

appliations, it is essential to integrate reasoning about suh onrete properties

with reasoning about knowledge represented on an abstrat logial level, Baader

and Hanshke extended Desription Logis by so-alled onrete domains [1℄.

A onrete domain onsists of a set alled the domain and a set of prediates

with a �xed interpretation over this domain. For example, one ould use the real

numbers as the domain and then de�ne prediates suh as the unary =

23

, the

binary \<" and \=", and the ternary \+" and \�" [1℄. Or one ould use the set

of all intervals over, say, the rationals as the domain and then de�ne \temporal"

prediates suh as during, meets, and before [15℄. Baader and Hanshke propose

to extend the basi Desription Logi ALC with onrete domains whih yields

the logi ALC(D). The interfae between ALC and the onrete domain is pro-

vided by a onrete domain onept onstrutor. To illustrate the use of onrete

domains for knowledge representation, onsider the example ALC(D)-onept

8subproess:Drilling u 9workpiee:(9height:=

5m

u 9height; length:>)



whih desribes a proess all of whose subproesses are drilling proesses and

whih involves a workpiee with height 5m and hight stritly greater than its

length. Here, =

5m

is a unary prediate from the onrete domain and > is a

binary prediate. The subonept in brakets is a onjuntion of two onrete

domain onept onstrutors. Other DLs with onrete domains an be found in

[3, 8, 12℄, while appliations of suh logis are desribed in [2, 8℄.

In this paper, we are interested in the omplexity of reasoning with Desrip-

tion Logis providing for onrete domains. The omplexity of ALC(D) itself

is determined in [14℄, where reasoning with ALC(D) is proved to be PSpae-

omplete if reasoning with the onrete domain D is in PSpae. However, for

many appliations, the expressivity of ALC(D) is not suÆient whih makes it

quite natural to onsider extensions of this logi with additional means of ex-

pressivity. We onsider three suh extensions|all of them frequently used in

the area of Desription Logis|and show that, although all these extensions are

seemingly \harmless", reasoning in the extended logis is onsiderably harder

than in ALC(D) itself. Hene, the PSpae upper bound of ALC(D) annot be

onsidered robust.

More preisely, we onsider the extension of ALC(D) with (1) ayli TBoxes,

(2) inverse roles, and (3) a role-forming onrete domain onstrutor. TBoxes are

used for representing terminologial knowledge and bakground knowledge of ap-

pliation domains [5, 13℄, inverse roles are present in most expressive Desription

Logis [5, 10℄, and the role-forming onstrutor is a natural ounterpart to the

onept-forming onrete domain onstrutor [8℄. By introduing a NExpTime-

omplete variant of the Post Correspondene Problem [17, 9℄, we identify a large

lass of onrete domains D suh that reasoning with eah of the above three

extensions of ALC(D) (separately) is NExpTime-hard. This dramati inrease

in omplexity is rather surprising sine, from a omputational point of view, all

of the proposed extensions look harmless. For example, in [13℄, it is shown that

the extension of many PSpae Desription Logis with ayli TBoxes does

not inrease the omplexity of reasoning. Moreover, it is well-known that the

extension with inverse roles does usually not hange the omplexity lass. For

example, ALC extended with inverse roles is still in PSpae [11℄. As a orre-

sponding upper bound, we show that, if reasoning with a onrete domain D is

in NP, then reasoning with ALC(D) and all three above extensions (simultane-

ously) is in NExpTime. We argue that this upper bound aptures a large lass

of interesting onrete domains. This paper is aompanied by a tehnial report

ontaining full proofs [16℄.

2 Desription Logis with Conrete Domains

We introdue the Desription Logis we are onerned with in the remainder of

this paper. First, ALCI(D) is de�ned whih extends ALC(D) with inverse roles.

In a seond step, we add a role-forming onrete domain onstrutor and obtain

the logi ALCRPI(D). This two-step approah is pursued sine the de�nition of



ALCRPI(D) involves some rather unusual syntati restritions whih we like

to keep separated from the more straightforward syntax of ALCI(D).

De�nition 1 (Conrete Domain). A onrete domain D is a pair (�

D

; �

D

),

where �

D

is a set alled the domain, and �

D

is a set of prediate names. Eah

prediate name P 2 �

D

is assoiated with an arity n and an n-ary prediate

P

D

� �

n

D

.

With P , we denote the negation of the prediate P , i.e. P

D

= �

D

n P

D

. Based

on onrete domains, we introdue the syntax of ALCI(D).

De�nition 2 (Syntax). Let N

C

, N

R

, and N

F

be mutually disjoint sets of

onept names, role names, and onrete feature names, respetively, and let

N

aF

be a subset of N

R

. Elements of N

aF

are alled abstrat features. The set

of ALCI(D) roles

d

N

R

is N

R

[ fR

�

j R 2 N

R

g. An expression f

1

� � � f

n

g, where

f

1

; : : : ; f

n

2 N

aF

(n � 0) and g 2 N

F

, is alled a path. The set of ALCI(D)-

onepts is the smallest set suh that

1. every onept name is a onept

2. if C and D are onepts, R is a role, g is a onrete feature, P 2 � is

a prediate name with arity n, and u

1

; : : : ; u

n

are paths, then the following

expressions are also onepts: :C, CuD, CtD, 9R:C, 8R:C, 9u

1

; : : : ; u

n

:P ,

and g".

An ALCI(D)-onept whih uses only roles from N

R

is alled an ALC(D)-

onept. With sub(C), we denote the set of subonepts of a onept C whih

is de�ned in the obvious way. Throughout this paper, we denote onept names

with A and B, onepts with C and D, roles with R, abstrat features with f ,

onrete features with g, paths with u, and prediates with P . As usual, we write

> for A t :A, ? for A u :A (where A is some onept name), and 9f

1

� � � f

n

:C

(resp. 8f

1

� � � f

n

:C) for 9f

1

: � � � 9f

n

:C (resp. 8f

1

: � � � 8f

n

:C).

The syntatial part of a Desription Logi is usually given by a onept lan-

guage and a so-alled TBox formalism. The TBox formalism is used to represent

terminologial knowledge of the appliation domain.

De�nition 3 (TBoxes). Let A be a onept name and C be a onept. Then

A

:

= C is a onept de�nition. Let T be a �nite set of onept de�nitions.

A onept name A diretly uses a onept name B in T if there is a onept

de�nition A

:

= C in T suh that B appears in C. Let uses be the transitive

losure of \diretly uses". T is alled ayli if there is no onept name A suh

that A uses itself in T . If T is ayli, and the left-hand sides of all onept

de�nitions in T are unique, then T is alled a TBox.

TBoxes an be thought of as sets of maro de�nitions, i.e., the left-hand side of

every onept de�nition is an abbreviation for the right-hand side of the onept

de�nition. There also exist more general TBox formalisms allowing for arbitrary

equations over onepts [5, 10℄. However, we will see that admitting these general

TBoxes makes reasoning with ALC(D) (and hene also ALCI(D)) undeidable.



De�nition 4 (Semantis). An interpretation I is a pair (�

I

; �

I

), where �

I

is a set alled the domain and �

I

the interpretation funtion. The interpretation

funtion maps eah onept name C to a subset C

I

of �

I

, eah role name R to

a subset R

I

of �

I

��

I

, eah abstrat feature f to a partial funtion f

I

from

�

I

to �

I

, and eah onrete feature g to a partial funtion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a path, then u

I

(a) is de�ned as g

I

(f

I

n

� � � (f

I

1

(a)) � � � ). The

interpretation funtion is extended to arbitrary roles and onepts as follows:

(R

�

)

I

:= f(a; b) j (b; a) 2 R

I

g

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(:C)

I

:= �

I

n C

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P )

I

:= fa 2 �

I

j (u

I

1

(a); : : : ; u

I

n

(a)) 2 P

D

g

(g")

I

:= fa 2 �

I

j g

I

(a) unde�nedg

An interpretation I is alled a model for a onept C i� C

I

6= ; and a model

for a TBox T i� A

I

= C

I

for all A

:

= C 2 T .

We all elements from �

I

abstrat objets and elements from �

D

onrete ob-

jets. Our de�nition of ALC(D) di�ers slightly from the original version in [1℄:

Instead of separating onrete and abstrat features, Baader and Hanshke de-

�ne only one type of feature whih is interpreted as a partial funtion from �

I

to �

I

[ �

D

. We hoose the separated approah sine it allows learer proofs.

Moreover, it is not hard to see that the ombined features an be \simulated"

using pairs of onrete and abstrat features.

De�nition 5 (Inferene Problems). Let C and D be onepts. C subsumes D

w.r.t. a TBox T (written D v

T

C) i� D

I

� C

I

for all models I of T : C is

satis�able w.r.t. a TBox T i� there exists a model of both T and C.

Both inferenes are also onsidered without referene to TBoxes, i.e., with refer-

ene to the empty TBox. It is well-known that (un)satis�ability and subsumption

an be mutually redued to eah other: C v

T

D i� C u:D is unsatis�able w.r.t.

T , and C is satis�able w.r.t. T i� we do not have C v

T

?. We all two onepts

C and D equivalent i� C subsumes D and D subsumes C.

Let us now further extend ALCI(D) with a role-forming onrete domain

onstrutor, i.e., with a onstrutor that allows the de�nition of omplex roles

with referene to the onrete domain. Suh a onstrutor was �rst de�ned in [8℄,

where it is motivated as an appropriate tool for spatial reasoning.

De�nition 6 (ALCRPI(D) Syntax and Semantis). A prediate role is an

expression of the form 9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P where P is an n + m-ary

prediate. The semantis of prediate roles is

(9(u

1

; : : : ; u

n

); (v

1

; : : : ; v

m

):P )

I

: = f(a; b) 2 �

I

��

I

j

(u

I

1

(a); : : : ; u

I

n

(a); v

I

1

(b); : : : ; v

I

m

(b)) 2 P

D

g:



With R, we denote the set of prediate roles. The set of ALCRPI(D) roles

b

R

is de�ned as

d

N

R

[R [ fR

�

j R 2 Rg. A role whih is either a prediate role or

the inverse of a prediate role is alled omplex role. An ALCI(D)-onept with

roles from N

R

nN

aF

replaed with roles from

b

R is alled ALCRPI(D)-onept.

An ALCRPI(D)-onept not using the inverse role onstrutor is alled an

ALCRP(D)-onept. For example, the following is an ALCRPI(D)-onept

Error u 9time;next time:< u 8next:8(9(time); (time):<)

�

::Error

where Error is a onept, time is a onrete feature and next is an abstrat

feature. This onept is unsatis�able sine every domain objet satisfying it

would have to be both in Error and :Error whih is impossible. In [7℄, it is

proved that satis�ability of ALCRP(D)-onepts is undeidable. However, as

shown in [8℄, there exists a deidable fragment of ALCRP(D) that is still a useful

extension of ALC(D). In the following, we introdue an analogous fragment of

the logi ALCRPI(D). To do this, we �st need to de�ne the negation normal

form for onepts and desribe how onepts an be onverted into this form.

De�nition 7 (NNF). An ALCRPI(D)-onept is said to be in negation nor-

mal form (NNF) if negation ours in front of onept names, only. The following

rewrite rules preserve equivalene. Exhaustive rule appliation yields a onept

whih is in NNF.

:(C uD) =) :C t :D :(C tD) =) :C u :D ::C =) C

:(9R:C) =) (8R::C) :(8R:C) =) (9R::C)

:(9u

1

; : : : ; u

n

:P ) =) 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") =) 9g:>

D

We may now de�ne restrited onepts.

De�nition 8 (Restrited ALCRPI(D)-onept). Let C be an ALCRPI(D)-

onept, and sub(C) the set of subonepts of C. Then C is alled restrited i�

the result C

0

of onverting C to NNF satis�es the following onditions:

1. For any 8R:D 2 sub(C

0

), where R is a omplex role, sub(D) does not ontain

any onepts of the form 9u

1

; : : : ; u

n

:P or 9S:E, where S is a omplex role.

2. For any 9R:D 2 sub(C

0

), where R is a omplex role, sub(D) does not ontain

any onepts of the form 9u

1

; : : : ; u

n

:P or 8S:E, where S is a omplex role.

Intuitively, these restritions enfore the �nite model property whih leads to

deidability, see [8, 16℄ for details. In the remainder of this paper, we assume

all ALCRPI(D) onepts to be restrited without further notie. Note that the

set of restrited ALCRPI(D)-onepts is losed under negation, and, hene,

subsumption an be redued to satis�ability.



3 A NExpTime-omplete Variant of the PCP

The Post Correspondene Problem (PCP), as introdued 1946 by Emil Post [17℄,

is an undeidable problem frequently employed in undeidability proofs. In this

setion, we de�ne a NExpTime-omplete variant of the PCP together with a

onrete domain P that is suitable for reduing PCPs to the satis�ability problem

of Desription Logis with onrete domains.

De�nition 9 (PCP). A Post Correspondene Problem (PCP) P is given by a

�nite, non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of non-empty words over some

alphabet �. A sequene of integers i

1

; : : : ; i

m

, with m � 1, is alled a solution

for P i� `

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

: Let f(n) be a mapping from N to N and let jP j

denote the sum of the lengths of all words in the PCP P . A solution i

1

; : : : ; i

m

for P is alled an f(n)-solution i� m � f(jP j). With f(n)-PCP, we denote the

version of the PCP that admits only f(n)-solutions.

Analogous to the undeidability result for the general PCP given by Hoproft

and Ullman in [9℄, we may prove the following result.

Theorem 1. It is NExpTime-omplete to deide whether a 2

n

+ 1-PCP has a

solution.

Hene, a redution of the 2

n

+ 1-PCP is a andidate for proving NExpTime

lower bounds for Desription Logis with onrete domains. As we will see now,

the problem is in fat well-suited for this task sine it is possible to de�ne an

appropriate onrete domain. It follows from the proof of the above theorem

that it is suÆient to onsider some �xed, �nite alphabet �

U

whose ardinality

is the number of symbols needed to de�ne a universal Turing mahine.

De�nition 10 (Conrete Domain P). The onrete domain P is de�ned by

setting �

P

:= �

�

U

and de�ning �

P

as the smallest set ontaining the following

prediates:

{ unary prediates word and nword with word

P

= �

P

and nword

P

= ;,

{ unary prediates =

�

and 6=

�

with =

P

�

= f�g and 6=

P

�

= �

+

U

,

{ a binary equality prediate = and a binary inequality prediate 6=, and

{ for eah w 2 �

+

U

, two binary prediates on

w

and non

w

with

on

P

w

= f(u; v) j v = uwg and non

P

w

= f(u; v) j v 6= uwg:

The omplexity of reasoning with a Desription Logi providing a onrete do-

main D does obviously depend on the omplexity of reasoning with D. More

preisely, most satis�ability algorithms involve heking the satis�ability of �-

nite onjuntions of onrete domain prediates

^

1�i�k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where eah P

i

is an n

i

-ary prediate and the x

(i)

j

are variables from some �xed

set [1℄. This is also the ase for the tableau algorithm that used to prove the



upper bound in Setion 7. Hene, we are interested in the omplexity of this task

whih is alled D-satis�ability in what follows. By devising an algorithm that is

based on repeated normalization ombined with tests for obvious inonsistenies,

the following result an be obtained.

Proposition 1. P-satis�ability is deidable in deterministi polynomial time.

On �rst sight, the onrete domain P may look somewhat unnatural in the

ontext of knowledge representation. However, it is straightforward to enode

words as natural numbers and to de�ne the operations on words as rather simple

operations on the naturals [2℄: Words over the alphabet �

U

an be interpreted

as numbers written at base j�

U

j+1 (assuming that the empty word represents

0); the onatenation of two words v and w an then be expressed as vw =

v � (j�

U

j + 1)

jwj

+ w, where jwj denotes the length of the word w. Hene, eah

onrete domain (�;�), where � ontains the natural numbers and � ontains

prediates for (in)equality, (in)equality to zero, addition, and multipliation may

also be used for the redutions. A onrete domain with these properties is alled

arithmeti.

4 Satis�ability of ALC(P)-onepts w.r.t. TBoxes

In this setion, we show that the satis�ability of ALC(P)-onepts w.r.t. TBoxes

is NExpTime-hard. As already mentioned, this result is rather surprising sine

(1) satis�ability of ALC(D)-onepts without referene to TBoxes is known to

be PSpae-omplete if reasoning with the onrete domain D is in PSpae [14℄,

and (2) admitting ayli TBoxes does \usually" not inrease the omplexity of

reasoning [13℄.

The proof is by a redution of the 2

n

+ 1-PCP using the onrete domain P

introdued in the previous setion. Given a 2

n

+1-PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

),

we de�ne a TBox T

P

of size polynomial in jP j and a onept (name) C

P

suh that

C

P

is satis�able w.r.t. T

P

i� P has a solution. Figure 1 ontains the redution

TBox and Figure 2 an example model for jP j = 2. In the �gures, `, r, x, and

y denote abstrat features and g

`

and g

r

denote onrete features. The �rst

equality in Figure 1 is not a onept de�nition but an abbreviation: Replae

every ourrene of Ch[u

1

; u

2

; u

3

; u

4

℄ in the lower three onept de�nitions by

the right-hand side of the �rst identity substituting u

1

; : : : ; u

4

appropriately.

The idea behind the redution is to de�ne T

P

suh that models of C

P

and

T

P

have the form of a binary tree of depth jP j whose leaves are onneted by

two \hains" of on

w

prediates. Pairs of orresponding objets (x

i

; y

i

) on the

hains represent partial solutions of the PCP P . More preisely, the �rst line

of the de�nitions of the C

0

; : : : ; C

n�1

onepts ensures that models have the

form of a binary tree of depth n (with n = jP j) whose left edges are labeled

with the abstrat feature ` and whose right edges are labeled with the abstrat

feature r. Let the abstrat objets a

n;0

; : : : a

n;2

n

�1

be the leaves of this tree. By

the seond line of the de�nitions of the C

0

; : : : ; C

n�1

onepts, every a

n;i

has

a g

`

-suessor x

i

and a g

r

-suessor y

i

. These seond lines also ensure that the



Ch[u

1

; u

2

; u

3

; u

4

℄ = (9(u

1

; u

2

): = u 9(u

3

; u

4

): =)

t t

(`

i

;r

i

) in P

(9(u

1

; u

2

):on

`

i

u 9(u

3

; u

4

):on

r

i

)

C

0

:

= 9`:C

1

u 9r:C

1

u Ch[`r

n�1

g

`

; r`

n�1

g

`

; `r

n�1

g

r

; r`

n�1

g

r

℄

.

.

.

C

n�2

:

= 9`:C

n�1

u 9r:C

n�1

u Ch[`rg

`

; r`g

`

; `rg

r

; r`g

r

℄

C

n�1

:

= Ch[`g

`

; rg

`

; `g

r

; rg

r

℄

C

P

:

= C

0

u 9`

n

g

`

: =

�

u 9`

n

g

r

: =

�

u 9r

n

y:9g

`

; g

r

: = u 9r

n

yg

`

: 6=

�

u Ch[r

n

g

`

; r

n

xg

`

; r

n

g

r

; r

n
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Fig. 1. The ALC(P) redution TBox T

P

(n = jP j).

x

i

and y

i

objets are onneted via two prediate hains, where the prediates

on the hains are either equality or on

w

. More preisely, for 0 � i < 2

n

� 1,

either x

i

= x

i+1

and y

i

= y

i+1

, or there exists a j 2 f1; : : : ; kg suh that

(x

i

; x

i+1

) 2 on

P

`

j

and (y

i

; y

i+1

) 2 on

P

r

j

. Furthermore, by the seond line of

the de�nition of C

P

, we have x

1

= y

1

= �. Hene, pairs (x

i

; y

i

) are partial

solutions for P . Sine we must onsider solutions of a length up to 2

n

+1, the 2

n

objets on the fringe of the tree with their 2

n

� 1 onneting prediate edges are

not suÆient, and we need to \add" two more objets a

n;2

n

and a

n;2

n

+1

whih

behave analogously to the objets a

n;0

; : : : a

n;2

n

�1

. This is done by the last two

lines of the de�nition of C

P

. Finally, the third line of the de�nition of C

P

ensures

that x

2

n

+1

= y

2

n

+1

6= � and hene that (x

2

n

+1

; y

2

n

+1

) is in fat a full solution.

Obviously, the size of T

P

is polynomial in jP j and T

P

an be onstruted in

time polynomial in jP j whih, together with the fat that P may be replaed by

any arithmeti onrete domain, yields the following theorem.

Theorem 2. For every arithmeti onrete domain D, satis�ability of ALC(D)-

onepts w.r.t TBoxes is NExpTime-hard.

We also obtain a lower bound for subsumption sine satis�ability an be redued

to subsumption. With some slight modi�ations, the redution just presented

an also be applied to the Desription Logi ALCR(P), i.e., ALC(P) enrihed

with a role onjuntion onstrutor [6℄. Hene, reasoning with this logi is also

NExpTime-hard. The orresponding redution onept an be found in [16℄.

One may ask why we are interested in the relatively weak ayli TBoxes

instead of using a more general TBox formalism. The answer is that using general

TBoxes leads to undeidability.

De�nition 11 (General TBox). A general onept inlusion (GCI) has the

form C v D, where both C and D are onepts. An interpretation I is a model
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Fig. 2. An example model of C

P

and T

P

for n = 2.

for a GCI C v D i� C

I

� D

I

. Finite sets of GCIs are alled general TBoxes.

An interpretation I is a model for a general TBox T i� I is a model for all

GCIs in T .

Using the onrete domain P and a redution of the general PCP, the following

theorem an be obtained.

Theorem 3. For every arithmeti onrete domain D, satis�ability of ALC(D)-

onepts w.r.t. general TBoxes is undeidable.

Proof Let P be an instane of the PCP. De�ne a onept C

P

and a general

TBox T

P

as follows:

C

P

:= 9g: =

�

u 9fg: =

�

T

P

:=

�

9f:> v u

(`

i

;r

i

)2P

9g; f

i

g:on

`

i

u 9fg; f

i

fg:on

r

i

> v 9g: =

�

t :9g; fg:=

	

An example model of C

P

w.r.t. T

P

an be found in Figure 3. The �rst GCI

ensures that models of C

P

and T

P

represent all possible solutions of the PCP P .

Additionally, the last GCI ensures that no potential solution is a solution. It

is hene straightforward to prove that C

P

is satis�able w.r.t. T

P

i� P has no

solution, i.e., we have redued the general, undeidable PCP [17, 9℄ to the satis-

�ability of ALC(D)-onepts w.r.t. general TBoxes. ❏

5 Satis�ability of ALCI(P)-Conepts

We now show that satis�ability of ALCI(P)-onepts|without referene to

TBoxes|is NExpTime-hard. As in the previous setion, it is surprising that

a rather small hange in the logi, i.e., adding inverse roles, auses a dramati

inrease in omplexity.
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P

Fig. 4. Prediate hains in models of C

P

.

The redution is similar to the one used in the previous setion: it is a re-

dution of the 2

n

+1-PCP and uses the onrete domain P . However, we need a

slightly di�erent strategy sine, in the ase of inverse roles, it is not possible to

enfore hains of prediates onneting the leaves of the tree. Instead, the pred-

iate hains emulate the struture of the tree following the sheme indiated in

Figure 4. Given a PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we de�ne a onept C

P

of size

polynomial in jP j whih has a model i� P has a solution. The onept C

P

an be

found in Figure 5. In the �gure, h

`

; h

r

; x

`

; x

r

; y

`

; y

r

; z

`

, and z

r

are onrete fea-

tures. Note that the equalities are not onept de�nitions but abbreviations. As

in the previous setion, replae every ourrene of Ch[u

1

; u

2

; u

3

; u

4

℄ in the lower

three onept de�nitions by the right-hand side of the �rst identity substituting

u

1

; : : : ; u

4

appropriately and similarly for every ourrene of X .

Let us disuss the struture of models of C

P

. Due to the �rst line in the

de�nition of C

P

and the 9f

�

quanti�ers in the de�nition of X , models of C

P

have the form of a tree of depth jP j�1 in whih all edges are labeled with f

�

. This

edge labelling sheme is possible sine the inverse of an abstrat feature is not a

feature. Additionally, we establish two hains of onrete domain prediates as

indiated in Figure 4. Again, orresponding objets on the two hains represent

partial solutions of the PCP P . A more detailed lipping from a model of C

P

an be found in Figure 6. The existene of the hains is ensured by the de�nition
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):on
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�
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Fig. 5. The ALCI(P) redution onept C

P

(n = jP j � 1).
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r

g
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h

r
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h
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h

r

p

`

p

r

X

= equality

= equality or on

w

for some w

Fig. 6. A lipping from a model of C

P

.

of X and the seond line in the de�nition of C

P

: The onept X establishes the

edges of the prediate hains as depited in Figure 6 (in fat, Figure 6 is a model

of the onept X) while the seond line of C

P

establishes the edges \leading

around" the leaves. Edges of the latter type and the dotted edges in Figure 6 are

labeled with the equality prediate. To see why this is the ase, let us investigate

the length of the hains.

The length of the two prediate hains is twie the number of edges in the

tree plus the number of leaves, i.e., 2� (2

jP j

�2)+2

jP j�1

. To eliminate the fator

2 and the summand 2

jP j�1

, C

P

is de�ned suh that every edge in the prediate

hains leading \up" in the tree and every edge \leading around" a leaf is labeled

with the equality prediate. To extend the hains to length 2

jP j

+ 1, we need to

add three additional edges (de�nition of C

P

, lines three, four, and �ve). Finally,

the last two lines in the de�nition of C

P

ensure that the �rst onrete objet on

both hains represents the empty word and that the last objets on the hains

represent a (non-empty) solution for P .

Theorem 4. For every arithmeti onrete domain D, satis�ability of ALCI(D)-

onepts is NExpTime-hard.
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Fig. 7. The ALCRP(P) redution onept C

P

(n = jP j).

6 Satis�ability of ALCRP(P)-Conepts

In this setion, we prove that satis�ability of ALCRP(P)-onepts without ref-

erene to TBoxes is NExpTime-hard. Hene, adding the role-forming onrete

domain onstrutor yields another extension of ALC(D) in whih reasoning is

muh harder than in ALC(D) itself.

Given a PCP P = (`

1

; r

1

); : : : ; (`

k

; r

k

), we de�ne a onept C

P

of size polyno-

mial in jP j whih has a model i� P has a solution. The onept C

P

an be found

in Figure 7, where x and y denote abstrat features and p denotes a prediate

(written in lowerase to avoid onfusion with the PCP P ). Again, the equalities

in the �gure serve as abbreviations. Moreover, we use C ! D as an abbrevia-

tion for :C t D. Note that S[g; p℄ denotes a prediate role and not a onept,

i.e., S[g; p℄ is an abbreviation for the role-forming onrete domain onstrutor

9(g); (g):p.

Figure 8 ontains an example model of C

P

with jP j = n = 2. Obviously,

the models of C

P

are rather similar to the ones from the ALC(D) redution in

Setion 4: models have the form of a binary tree of depth n whose edges are
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Fig. 8. An example model of C

P

with jP j = 2.

labelled with the role R and whose leaves (together with two \extra" nodes) are

onneted by two prediate hains of length 2

n

+ 1. The Tree onept enfores

the existene of the binary tree. The onept names B

0

; : : : ; B

n�1

are used for

a binary numbering (from 0 to 2

n

� 1) of the leaves of the tree. More preisely,

for a domain objet a 2 �

I

, set

pos(a) = �

n�1

i=0

�

i

(a) � 2

i

where �

i

(a) =

�

1 if a 2 B

I

i

0 otherwise.

The Tree and DistB onepts ensure that, if two leaves a and a

0

are reahable

via di�erent paths from the root node, then we have pos(a) 6= pos(a

0

). Due to

the �rst line of the C

P

onept, every leaf has (onrete) g

`

- and g

r

-suessors.

The last two lines of C

P

guarantee the existene of the two extra nodes whih

are onneted by prediate edges due to the use of the Ch onepts. Hene, it

remains to desribe how the edges between the leaf nodes are established.

There are two main ideas underlying the establishment of these edges: (i)

use the role-forming prediate onstrutor to establish single edges and (ii) use

the position pos() of leaf nodes together with the fat that ounting modulo 2

n

an be expressed by ALC-onepts to do this with a onept of size polynomial

in jP j. We �rst illustrate Point (i) in an abstrat way. Assume that we have

two abstrat objets a and b, a has g

`

-suessor x and b has g

`

-suessor y.

Moreover, let b 2 X

I

for some onept X . We may then establish a p-edge (for

some binary prediate p 2 �

P

) between x and y as follows: we enfore that

a 2 (8S[g

`

; p℄::X)

I

; sine b 2 X

I

, it follows that (a; b) =2 S[g

`

; p℄

I

, i.e., (a; b) =2

(9(g

`

); (g

`

):p)

I

and thus (x; y) =2 p

P

, whih obviously implies that (x; y) 2 p

P

.

In the third line of the C

P

-onept, the DEdge onept is used to establish

edges between the leaf nodes. The DEdge onept itself is just a disjuntion over

the various edge types while the Edge onept atually establishes the edges. In

priniple, the Edge onept establishes the edges as desribed above. However,

it does this not only for two �xed nodes as in the desription above but for all

neighboring leaf nodes. To see how this is ahieved, note that Edge is essentially



the negation of the well-known propositional formula

n�1

^

k=0

(

k�1

^

j=0

x

j

= 1)! (x

k

= 1$ x

0

k

= 0) ^

n�1

^

k=0

(

k�1

_

j=0

x

j

= 0)! (x

k

= x

0

k

)

whih enodes inrementation modulo 2

n

, i.e., if t is the number (binarly) en-

oded by the propositional variables x

0

; : : : ; x

n�1

and t

0

is the number enoded

by the propositional variables x

0

0

; : : : ; x

0

n�1

, then we have t

0

= t+ 1 modulo 2

n

,

.f. [4℄. Assume a 2 (Edge[g

`

; p℄)

I

(where p is either \=" or on

`

i

) and let b

be the leaf with pos(b) = pos(a) + 1, x be the g

`

-suessor of a, and y be the

g

`

-suessor of b. The Edge onept ensures that, for eah S[g

`

; p℄-suessor 

of a, we have pos() 6= pos(a) + 1, i.e., there exists an i with 0 � i � n suh

that  di�ers from b in the interpretation of B

i

. It follows that (a; b) =2 S[g

`

; p℄

I

.

As desribed above, we an onlude (x; y) 2 p

I

. All remaining issues suh as,

e.g., ensuring that one of the partial solutions is in fat a solution, are as in the

redution given in Setion 4. Note that the redution onept is restrited in the

sense of Setion 2.

Theorem 5. For every arithmeti onrete domain D, satis�ability of ALCRP(D)-

onepts is NExpTime-hard.

7 Upper Bounds

Due to spae limitations, we an only give a short sketh of the proof of the upper

bound and refer to [16℄ for details. First, a tableau algorithm for deiding the

satis�ability of ALCRPI(D)-onepts without referene to TBoxes is devised.

This algorithm ombines tehniques from [8℄ for reasoning with ALCRP(D)

with tehniques from [10℄ for reasoning with inverse role. Seond, the tableau

algorithm is modi�ed to take into aount TBoxes by performing \on the y

unfolding" of the TBox as desribed in [13℄. A omplexity analysis yields the

following theorem.

Theorem 6. If D-satis�ability is in NP, satis�ability of ALCRPI(D)-onepts

w.r.t. TBoxes an be deided in nondeterministi exponential time.

This also gives an upper bound for subsumption sine, as mentioned in Se-

tion 2, subsumption an be redued to satis�ability. It should be noted that the

above theorem only applies to so-alled admissible onrete domains, where a

onrete domain D is admissible if the set �

D

if losed under negation and on-

tains a prediate name >

D

for �

D

[16℄. Nevertheless, the given theorem aptures

a large lass of interesting onrete domains suh as P itself and onrete do-

mains for temporal and spatial reasoning [8, 15℄. In ontrast to the upper bound

for ALC(D) established in [14℄, the above theorem if onerned with onrete

domains for whih D-satis�ability is in NP instead of in PSpae. For onrete

domains of this latter type, the tableau algorithm in [16℄ yields an ExpSpae

upper bound. A mathing lower bound, however, is yet to be proved.



8 Related and Future Work

We demonstrated that the PSpae upper bound for ALC(D)-onept satis-

�ability is not robust: omplexity shifts to NExpTime if seemingly harmless

onstrutors are added and is even undeidable if we admit general TBoxes.

However, the situation is not hopeless in all ases. Although the lass of arith-

meti onrete domains is quite large and aptures many interesting onrete

domains, there still exist non-trivial onrete domains for whih reasoning with

general TBoxes is deidable and the NExpTime lower bound obtained in this

paper do presumably not hold. An example is presented in [15℄, where a temporal

Desription Logi based on onrete domains is de�ned.

As future work, it would be interesting to extend the obtained logis by

additional means of expressivity suh as transitive roles and qualifying number

restritions [11℄. There are at least two ways to go: In [14℄ it is proved that reason-

ing with ALCF(D), i.e., the extension of ALC(D) with feature agreements and

disagreements, is PSpae-omplete (if reasoning with D is in PSpae). Hene,

one ould de�ne extensions of ALCF(D) trying to obtain an expressive logi for

whih reasoning is still in PSpae. The seond approah is to de�ne extensions of

ALCI(D) whih means that the obtained logis are at least NExpTime-hard.

Moreover, feature (dis)agreements|whih are very losely related to onrete

domains|annot be onsidered sine, in [16℄, we prove that the ombination of

inverse roles and feature (dis)agreements leads to undeidability.
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