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ABSTRACT. In this paper, we investigate the complexity of rea-
soning with various Boolean Modal Logics. The main results are
that (i) adding negation of modal parameters to (multi-modal)
K makes reasoning ExpTime-complete and (ii) adding atomic
negation and conjunction to K even yields a NExpTime-complete
logic. The last result is relativized by the fact that it depends
on an infinite number of modal parameters to be available. If
the number of modal parameters is bounded, full Boolean Modal
Logic becomes ExpTime-complete.

1 Motivation

Since Modal Logics are an extension of Propositional Logic, they provide
Boolean operators for constructing complex formulae. However, most
Modal Logics do not admit Boolean operators for constructing com-
plex modal parameters to be used in the box and diamond operators.
This asymmetry is not present in Boolean Modal Logics, in which box
and diamond quantify over arbitrary Boolean combinations of atomic
modal parameters; see Gargov and Passy 1987. Boolean Modal Logics
have been considered in various forms and contexts:

1. “Pure” Boolean Modal Logic has been studied in Gargov and Passy
1987. Negation and intersection of modal parameters occur in some vari-
ants of Propositional Dynamic Logic, see, e.g., Danecki 1984, Harel 1984,
Passy and Tinchev 1991.

2. The modal box operator can be thought of as expressing neces-
sity. More precisely, when employing the usual Kripke Semantics, Oy
holds at a world w iff w' being accessible from w implies that ¢ holds
at w'. Given this, it is obviously quite natural to define a symmetric
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operator M (sometimes called “window operator”) such that My holds
at a world w iff ¢ holding at a world w’ implies that w' is accessi-
ble from w. Obviously, the window operator can be thought of as ex-
pressing sufficiency. Logics with this operator were investigated from
different viewpoints by, e.g., Humberstone, Gargov et al., and Goranko
Humberstone 1983, Gargov et al. 1987, Goranko 1987, Goranko 1990. If
negation of modal parameters is available, the window operator comes
for free since we can write Mp ¢ as [~R]—.

3. There are several Description Logics that provide “negation of roles”
which corresponds to the negation of modal parameters, see, e.g. Hus-
tadt and Schmidt 2000. Union and intersection of modal parameters are
also considered in Description Logics and other KR formalisms, as is the
window operator; see Givan et al. 1991, Lutz and Sattler 2000a.

Although—as we just argued—logics involving Boolean operators on
modal parameters or the window operator are widely used, to the best of
our knowledge, complexity results for this class of logics have never been
obtained. In this paper, we close the gap and determine the complex-
ity of the satisfiability and validity problems for many Boolean Modal
Logics. In the first part of this paper (Sections 2 and 3), we investi-
gate the logic K, (K with a countably infinite number of accessibility
relations) enriched with negation of modal parameters and show that
the afore mentioned inference problems are ExpTime-complete using an
automata-theoretic approach. We then demonstrate the generality of
our approach by extending this result to the logic (K, ® K4,)7, i.e., to
the fusion of K, with K4, enriched with negation on relations. In the
second part of this paper (Sections 4 and 5), we add other Boolean oper-
ators on roles. In doing so, one has the choice to either restrict negation
to atomic relations or to allow for full negation of relations.

We give a complete list of complexity results for the logics obtained
in this way, the central result being that the combination of (atomic)
negation with intersection yields a logic whose inference problems are
NExpTime-complete. The lower bound is obtained by a reduction of
a NExpTime-complete variant of the domino problem. The mentioned
result obviously implies that full Boolean Modal Logic K ™" is also
NExpTime-complete. However, the lower bound crucially depends on
the number of relations to be unbounded. Inspired by this observation, in
Section 5, we supplement our result by showing that, for any fixed finite
number of relations, full Boolean Modal Logic is ExpTime-complete. The
upper bound is proved by a reduction to multi-modal K (with finitely
many relations) enriched with the universal modality.

To complete our investigation, in Section 6 we show that K, with
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union and intersection of roles and without negation is of the same
complexity as pure K, i.e., PSpace-complete. Summing up, we thus
have tight complexity bounds for K, extended with any combination of
Boolean operators on roles. This paper is accompanied by a technical
report which contains all proofs and technical details (Lutz and Sattler
2000b).

2 Preliminaries

We define syntax and semantics of K, introduce looping automata, and
discuss some model- and complexity-theoretic properties of K.

Definition 2.1 Given a countably infinite set of propositional variables
® and a countably infinite set of atomic modal parameters Ry, R», . . ., the
set of K -formulae is the smallest set that (i) contains the propositional
variables in @, (ii) is closed under Boolean connectives A, V, and —,
and (iii) if it contains ¢, then it also contains (R;) ¢, [Ri] ¢, (-R;) ¢,
and [-R;] ¢ for i > 1. The set of K -modal parameters is the smallest
set containing all atomic modal parameters and their negations (i.e.,
expressions of the form —R;).

K, semantics is given by Kripke structures M = (W, m, Ry,...),
where W is a set of worlds, 7w is a mapping from the set of propositional
variables into sets of worlds (i.e., for each p € ®, w(p) is the set of
worlds in which p holds), and R; is a binary relation on the worlds W,
the so-called accessibility relation for the atomic modal parameter R;.

The semantics is then given as follows, where, for a K -formula ¢, a
Kripke structure M, and a world w € W; the expression M,w = ¢ is
read as “p holds in M in world w”.

M,wEDp iff w e n(p) forpe ®

Maw'chl /\<P2 iff Maw'chl and M7w|:(p2

MwEp1 Vs iff MwlkEp or M,wE ¢

M,w E -y iff M,w @

M,wE(R)p iff Jw' €W with (w,w’") € R; and M,w' = ¢
M,w E [Ri]y iff vw' e W, if (w,w") € R;, then M,w' = ¢
M,wE (-R;)p iff Jw' € W with (w,w’) € R; and M,w' = ¢
M,w E [-Ri]e iff Yw' e W,if (w,w') € R;, then M,w' E ¢

A K -formula ¢ is satisfiable iff there is a Kripke structure M with a set
of worlds W and a world w € W such that M, w = ¢. Such a structure
is called a model of . Two K -formulae ¢ and ¢ are equivalent (written
p =) iff Myw = ¢ <= M,w [ ¢ for all Kripke structures M with
set of worlds W and all worlds w € W. Let R be a modal parameter. We
write M, (w,w") = R to express that (i) (w,w’) € R; if R is an atomic
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modal parameter R; and (i) (w,w’) ¢ R; if R = —R; for an atomic
modal parameter R;.

Throughout this paper, we denote modal parameters by R and S. For
the sake of brevity, we will often omit the word “modal” when talking
about modal parameters. As usual, we write ¢ — ¢ for —¢ V ¢ and
@ < for (¢ = ) A (¢p — ). The semantics of the window operator
discussed in the motivation can formally be defined as follows:

M,wETg, ¢ iff forallw € W,if M,w' |E ¢, then (w,w') € R;

It is easy to see that Mg, ¢ = [-R;]—¢, and, hence, the window operator
is expressible in K.

It is not hard to see that satisfiability of K -formulae is ExpTime-
hard and in NExpTime: (i) the logic K, i.e., uni-modal K enriched with
the universal modality, is a fragment of K : Just replace

e every occurrence of [u] ¢ by [R]¢ A [~R] ¢ and
e every occurrence of (u) ¢ by (R) oV (=R) ¢

where [u] and (u) denote the universal modality, and R is an arbitrary
atomic modal parameter. This translation may clearly lead to an expo-
nential blowup in the formula. However, in the class of formulae used
to prove the ExpTime-hardness of K* in Spaan 1993, [u] occurs only
once, and (u) does not occur. In this case, the translation is linear,
and, thus, satisfiability of K -concepts is ExpTime-hard; (ii) when us-
ing the standard translation of modal formulae into first order formulae
(see, e.g, Blackburn et al. 2001, van Benthem 1983), K_ -formulae are
translated to first-order formulae with at most 2 variables. Since L2,
the two-variable fragment of first-order logic, is decidable in NExpTime
(Gridel et al. 1997), this implies that satisfiability of K_-formulae is
also in NExpTime. However, these two complexity bounds are obviously
not tight. One main contribution of this paper is to give an ExpTime-
algorithm for the satisfiability of K j-formulae, thus tightening the com-
plexity bounds.

For devising a satisfiability algorithm, it is interesting to know what
kind of models need to be considered. In Gargov et al. 1987, it is proved
that K, has the finite model property. K does not have the tree model
property since, e.g., the formula p A [ZR]-p has no tree model. How-
ever, we will show that there exists a one-to-one correspondence between
models and so-called Hintikka-trees which we then use to decide satisfi-
ability (and thus validity) of K -formulae. We do this by building, for
each K_J-formula ¢, a looping automaton A, which accepts the empty
(tree-) language iff ¢ is unsatisfiable. Hence we introduce trees, looping
automata, and the language they accept here.



/5

Definition 2.2 Let M be aset and k > 1. A k-ary M -tree is a mapping
T:{1,...,k}* — M that labels each node o € {1,...,k}* with T'(a) €
M . Intuitively, the node ai is the i-th child of . We use € to denote the
empty word (corresponding to the root of the tree).

A looping automaton A= (Q,M,I,A) for k-ary M-trees is defined
by a set @ of states, an alphabet M, a subset I C @ of initial states, and
a transition relation A C Q x M x Q*. A run of A on an M-tree T is
a mapping 7 : {1,...,k}* — Q with (r(a),T(a),r(al),...,r(ak)) € A
for each v € {1,...,k}*.

A looping automaton accepts all those M-trees for which a run exists,
i.e., the language L(A) of M-trees accepted by A is

L(A) ={T | There is a run from A on T}.

Since looping automata are special Biichi automata, emptiness of their

language can effectively be tested using the well-known (quadratic) empti-
ness test for Biichi-automata Vardi and Wolper 1986. However, for loop-

ing automata, this algorithm can be specialized into a simpler (linear)

one.

3 Negation of Modal Parameters

We show that satisfiability of K -formulae is decidable in exponential
time. For this purpose, we first abstract from models of K -formulae
to Hintikka-trees, and then show how to construct a looping automaton
that accepts exactly Hintikka-trees.

Notation: We assume all formulae to be in negation normal form
(NNF), i.e., negation occurs only in front of atomic parameters and
propositional variables. Each formula can easily be transformed into an
equivalent one in NNF by pushing negation inwards, employing de Mor-
gan’s law and the duality between [R] and (R) and between [-R] and
(=R). We use @ to denote the NNF of —p.

Since we treat modalities with negated and unnegated modal param-
eters symmetrically, we introduce the notion

(R = (=R)¢ if R is atomic,
L (SY e if R =S for some atomic parameter S

and analogously [R] ¢. Let cl(¢) denote the set of (’s subformulae and
the NNFs of their negations, i.e.,

cl(e) :=={¢| ¢ is a subformula of ¢ or
@ = p for a subformula p of ¢}.

Obviously, the cardinality of cl(p) is linear in the length of . We assume
that diamond-formulae (R) v in cl(p) are linearly ordered, and that D(%)
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yields the i-th diamond-formula in cl(y).

Definition 3.1 Hintikka-set and Hintikka-tree

Let ¢ be a K -formula and k the number of diamond-formulae in
cl(p). A set U C cl(p) is a Hintikka-set iff it satisfies the following
conditions:

(H1) if 1 A2 € ¥, then {p1,p2} C U,
(H2) if o1 Vg € U, then {1, 02} NP £, and
(H3) {,¥} Z ¥ for all K -formulae .

A k-ary 29“)_tree T is a Hintikka-tree for o iff T(«) is a Hintikka-set
for each node « in T, and T satisfies, for all nodes a, 5 € {1,...,k}*,
the following conditions:
(H4) ¢ € T(e),
(H5) if {(R) v, [R] p1,...,[R] pm} C T(a) and D(i) = (R) ¥,

then {¢, p1,...,pm} C T (i)

(H6) if D(i) € T(a), then T(ai) =0,
(H7) if [R] p € T(a), then p € T(8), 5 € T(8), or T(B) = 0, and
(H8) if {[F] p, [R] v} C T(a) and p € T(8), then ¢ € T(5).

For (H5), (H7), and (H8), recall that R denotes an atomic parameter
or the negation of an atomic parameter. The following lemma shows the
connection between models and Hintikka trees.

Lemma 3.2 A K;-formula ¢ is satisfiable iff ¢ has a Hintikka-tree.

Thus, we have that Hintikka-trees are appropriate abstractions of models
of K -formulae. Hintikka-trees enjoy the nice property that they are
trees, and we can thus define, for a K -formula ¢, a tree-automaton A,
that accepts exactly the Hintikka-trees for ¢.

Definition 3.3 For a K_-formula ¢ with & diamond-formulae in cl(y),
the looping automaton A, = (@, 2¢(9) A T) is defined as follows:

o Let P {{[R]¥., [R] p} | [R] ¢, [R] p € cl(p)},

S {[Rlv | [R]v € cl(p)},
(@ is the set of all those elements (¥, p, s) of

U € 2909) | ¥ is a Hintikka-set) x 2F x 2°
{

satisfying the following conditions:
1. if {[R]p,[R]®} € pand p € ¥, then o) € U,
2. if [R]p € s, then U = or {p,p} N T # 0,
3. if [R]p € ¥, then [R]p € s, and
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4. if {[R] p,[R]¢} C U, then {[R] p,[R] 4} € p.
o I={(¥,p,s)|p €T}
e ((U,p,s), ¥ (Vi,p1,81),--, (Vk,pk,sk)) € Aiff

=0 p=p s;=sforalll<i<k, and
D(i) = (R)y1) € ¥ implies ¢» € ¥; and p € ¥; for each [R]p € ¥
D(i) = (R)y ¢ ¥ implies ¥; = 0.

Note that, since A, is a looping automata, every run is accepting. As
a consequence of the following lemma and Lemma 3.2, we can reduce
satisfiability of K j-formulae to the emptyness of the language accepted
by looping automata.

Lemma 3.4 T is a Hintikka-tree for a K -formula ¢ iff T € L(Ay).

Obviously, the cardinality of cl(y) is linear in the length of . Hence, by
definition of A, the cardinality of each component of A, is exponential
in the length of ¢, and thus the size of A, is also exponential in the length
of . This fact together with Lemma 3.2, Lemma 3.4, and the fact that
emptiness of the language accepted by a looping automaton .4, can be
tested in time linear in the size of A, (Vardi and Wolper 1986) implies
that satisfiability of K7 -concepts is in ExpTime. We already noted in
Section 2 that satisfiability of K -concepts is also ExpTime-hard and,
hence, we obtain the following theorem:

Theorem 3.5 Satisfiability of K} -formulae is Exp Time-complete.

Is our approach still of use if we replace K, by some logic with a re-
stricted class of frames? In the following, we perform a case study by
extending the presented algorithm to deal with (K, ® K4,,)™-formulae,
where (K, ®K4,,)™ denotes the fusion of K,, and K4, enriched with the
negation of modal parameters. More precisely, (K, ® K4,,)™ provides
two disjoint sets of atomic modal parameters Ry, R, ... and 51,55, ...,
where the latter are called transitive modal parameters. Moreover, ac-
cessibility relations corresponding to transitive modal parameters are
required to be transitive. Apart from demonstrating the generality of
our approach, the logic (K, ® K4,,)” is very natural if viewed as a
Description Logic (Lutz and Sattler 2000b, Sattler 1996).

To define Hintikka trees for (K, ®K4,,)”, we introduce counterparts
for (H5) and (H8) which deal with transitive modal parameters.

Definition 3.6 A (K, ® K4,) -Hintikka-tree is a Hintikka-tree as in
Definition 3.1 extended with the following two conditions:
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(H5b) if, for a trans. parameter S;, we have {(S;) ¢, [S;] p1,...,[Sj] pm} C
T(a) and D(i) = (S;) ¥, then {¢), p1, ..., pm, [Sj] p1, - -, [Sj] pm} C
T («i).

(H8b) if, for a trans. parameter S;, we have {[S;] ¢, [~S;] p} C T(a) and
p € T(B), then {[S;] 4,9} € T(B).

We can now “lift” Lemma 3.2 to the (K, ® K4,,)™ case.

Lemma 3.7 A (K, ®K4,)"-formula ¢ is satisfiable iff ¢ has a (K, ®
K4,,)"-Hintikka-tree.

It remains to construct a looping automaton that accepts exactly the
Hintikka-trees for a given (K, ® K4,,) -formula ¢. This construction is
the same as the one in Defintion 3.3, with an additional fifth condition
in the definition of @ as a translation of (H8b), and an additional
implication in the definition of A as a translation of (H5b).

Definition 3.8 Let A4, = (Q,29%) A, T) be the looping automaton
corresponding to a (K, ® K4,) -formula ¢ as defined in Lemma 3.3.
Define a new looping automaton A}, := (Q’, 2¢(9) A’ T) by setting

e (' to the maximal subset of @) such that, for all (¥,p,s) € Q',
it {[S;]v,[~S;]p} € p and p € ¥ for a transitive parameter Sj,

then {1, [S;] 1} € ¥.
e A’ to the maximal subset of @) such that, for all

((\I’apas)a \Illa (\I’laplasl)a ceey (\I’kapkask)) € AI’

it (i) = (S;)4 € T for a transitive parameter S, then [S;]p € ¥;
for each [S;]p € ©.

Proving an analogon to Lemma 3.4, we obtain the following theorem:

Theorem 3.9 Satisfiability of (K,®K4,)™ -formulae is Exp Time-comp-
lete.

4 Adding Intersection and Union of Modal Parameters

In this section, we investigate the complexity of adding intersection and
union of modal parameters to the logic K, . In doing this, one has the
choice to either restrict the applicability of negation to atomic modal
parameters or allowing for full negation w.r.t. modal parameters. In the
latter case, adding union is obviously equivalent to adding intersection
or both. We start with the smallest extension, i.e., we add either in-
tersection or union on modal parameters while restricting negation to
atomic parameters.
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Definition 4.1 A K{"“-formula (Kg,ﬁ)m—formula) is a K -formula
which, additionally, allows for modal parameters of the form S;U---USy
(S1N---NSk), where each S; is an atomic or a negated atomic parameter.
The semantics of the new modal operators is defined as follows:
M,w = (S;U---USk) e iff Fuw' € W with M, (w,w') = S; for
some i € {1,...,k} and M,w' E ¢
M,w =[S U---USile iff Vo' e W, if M, (w,w) ES; for
some i € {1,...,k}, then M,w' E ¢
Myw = (S N---NSkye iff Fw' € W with M, (w,w') = S;
forall 1 <i<kand M,w' =¢
Myw=[SiN---NSple iff V' e W, if M, (w,w') ES;
for all 1 <i <k, then M,w' = ¢

Let us first investigate the logic KL(;)’U. It is not hard to see that
[StU---USkle = [Si]pA---A[Sk] and
(S1U-USie = (S)eV--VISe,

i.e., satisfiability of K&,ﬁ)’u—formulae can be reduced to satisfiability of
K -formulae. However, this naive reduction might lead to an exponential
blow-up of the formula. In order to avoid this blow-up, we can proceed as
follows to transform a Kg,ﬁLU—formula ¥ into an equivalent K -formula
1Z whose length is linear in the length of 1): As the first step, recursively
apply the following substitutions to ¢ from the inside to the outside (i.e.,

no union on modal parameters occurs in )
[S1U---USkle ~ [Si]py A---A[Sk]p, and
(S1U---USk) e ~ (S1)pp V-V I[Sk]py

where p,, is a new propositional variable. Call the result of these substi-
tutions 1)’. Secondly, use a new modal parameter R and define

@Z = YA /\ [R](py <> @) A[2R](py > )
Py occurs in 3’

It can easily be seen that this gives the following result.

Theorem 4.2 Satisfiability of KL(;)’U—formulae is Exp Time-complete.

Next, we show that satisfiability of K" formulae is NExpTime-
hard. The proof is given by a reduction of a NExpTime-complete variant
of the well-known, undecidable domino problem.

A domino problem (Berger 1966, Knuth 1968) is given by a finite set
of domino types. All domino types are of the same size, each type has a
quadratic shape and colored edges. Of each type, an unlimited number
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of dominoe is available. The problem in the original domino problem is
to arrange these dominoe to cover the plane without holes or overlapping
such that adjacent dominoe have identical colors on their touching edges
(rotation of the dominoe is not allowed). In the NExpTime-complete
variant of the domino problem that we use, the task is not to tile the
whole plane, but to tile a 2"+ x 2" 1_torus, i.e., a 27! x 2"+ 1_rectangle
whose edges are “glued” together. See, e.g., Berger 1966, Knuth 1968 for
undecidable versions of the domino problem and Borger et al. 1997 for
bounded variants.

Definition 4.3 Let D = (D, H,V) be a domino system, where D is a
finite set of domino types and H,V C D x D represent the horizontal
and vertical matching conditions. For s,t € N, let U(s,t) be the torus
Zs % Ly, where Z,, denotes the set {0,...,n — 1}. Let a = ag,...,an_1
be an n-tuple of dominoe (with n < s). We say that D tiles U(s,t) with
initial condition a iff there exists a mapping 7 : U(s,t) — D such that,
for all (z,y) € U(s,t):

e if 7(z,y) =d and 7(x & 1,y) = d', then (d,d') € H

e if 7(z,y) =d and 7(x,y ¢ 1) = d', then (d,d') € V

e 7(i,0) = a; for 0 <i < n.
where @, denotes addition modulo n. Such a mapping 7 is called a
solution for D w.r.t. a.

The following is a consequence of Theorem 6.1.2 in Borger et al. 1997
(see also Lutz and Sattler 2000Db).

Theorem 4.4 There ezists a domino system D such that the following
is a NEzp Time-hard problem: Given an initial condition a = ag -+ - Gp_1
of length n, does D tile the torus U (2" 2"+ with initial condition a?

We reduce the NExpTime-complete variant of the domino problem from
Theorem 4.4 to the satisfiability of K&ﬁ)’ﬂ—formulae. Given a domino
system D = (D,H,V) and an initial condition a = aqg,...,an_1, we
define a reduction formula ¢(p ,) such that ¢(p . is satisfiable iff D
tiles the torus U(2"*!,2"*1) with initial condition a. The subformulae
of the reduction formula

¢(D,a) = Count, A Count, A Stable A Unique A Tiling A Init
can be found in Figure 1, where Count, is Count, with R, replaced
by Ry, x; by y;, and zp by yi. In this figure, [u]p is an abbreviation
for [R]¢ A [mR], where R is an arbitrary atomic modal parameter.
Obviously, in each model of [u]p, each world satisfies . In Init, we write
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n k—1

Count, = [u][ A (( z;) = (21 © [Ro] —-xk)) A
k=0 = j=0
n k—1
A ((V =25) = (@ [Re]z) A (R true |
k=0 j=0

Stable = [u][ A (@x = By ai) A N\ (~ax = [Ry] —ap) A
kz[) k’r?[)
A e = Ral ) A N un = [Ba] =)
k=0 k=0

Unigue = [ul| \ ((zr = R =20) A (2 = [Ri] 7)) A
k=0
A (= S8 =90 A (we = [SiTwe) ) A
k=0
N pi— [Rom---mansom---mSn]pd]
deD

Tiing = [[(\/ p0A A N\ ~aApe) A
deD deD d’eD\{d}
/\ pa — ([Ra] \/ par) A
deD (d,d"yeH
A pa— (R] \/ pa)]
deD (d,d")eG

Init = ]\ (=i A=i) A Puy A[Ral Puy A+ A[Ra]™ pus,_,
k=0
FIGURE 1 Sub-formulae of ¢(p o) for D = (D, H,V) and a = ao,...,an—1.

[R]™¢ to denote the n-fold nesting of [R]. The strategy of the reduction
is to define the reduction formula ¢ p 4) such that, for every model M
of 9(p,q) with set of worlds W,

1. there exists a propositional variable p; for every domino type d €
D such that each w € W is in the extension of p; for exactly one
d € D (first line of Tiling),

2. for each point (i, ) in the torus U(2"+!,27+1)  there exists a cor-
responding set of worlds {wy,...,w;} € W with & > 1 and a
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d € D such that all wy,...,wy are in the extension of py (Count,,
Count,, Stable, and Unique formulae),

3. the horizontal and vertical conditions V and H are satisfied w.r.t.
sets of worlds representing points in the plane (second and third
line of Tiling), and

4. the initial condition is satisfied (Init).

Properties 1, 3, and 4 are enforced in a standard way using K for-
mulae. Property 2, however, needs some explanation. Usually, domino-
reductions axiomatize a “grid” in order to capture the structure of the
torus. As Property 2 indicates, we employ a different strategy: Each
world in each model of ¢(p 4 corresponds to a point (7,) in the torus.
The number i is binarily encoded by the propositional variables zg, ..., z,
while the number j is encoded by the propositional variables yo, ..., Yn.
We use standard binary incrementation modulo 2"+! to ensure that, for
every world w corresponding to a position (i, ), there exists a world w;
such that wy corresponds to (i Pon+1 1,7) and M, (w,w1) E R,, and a
world ws such that ws corresponds to (7, j@®an+11) and M, (w,ws) = Ry.
The Count, and Count, formulae encode the incrementation of the one
dimension while the Stable formula ensures that the other dimension
does not change. It remains to guarantee that every two worlds corre-
sponding to the same position are labeled with the same domino. This
task is accomplished by the Unique formula which is the only one to use
conjunction of modal parameters and the only one to use negation for
a purpose different from expressing the universal modality. In order to
understand the Unique formula, it may be helpful to read subformulae
of the form [~R]—p as Ty .

Proposition 4.5 A domino system D tiles the torus U (2", 2"+1) with
initial condition a = ag,...,an—1 iff (p,q) is satisfiable.

Together with Theorem 4.4, we obtain a NExpTime lower bound for
Kgf)’ﬁ—formulae. The corresponding upper bound follows from the fact

that the translation of K -formulae to L?-formulae mentioned in Sec-

tion 2 can also be applied to Kh(;)’m—formulae.

Theorem 4.6 Satisfiability of Kg,ﬁ)m—formulae is NEzp Time-complete.

5 Full Boolean Modal Logic

In this section, we investigate the complexity of full Boolean Modal
Logic. Let us start with introducing this logic formally.
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Definition 5.1 A complex modal parameter is a Boolean formula of
atomic modal parameters. We use K_'™" to denote the extension of K,
with complex modal parameters. Let M = (W, 7, Rq,...) be a Kripke
structure, and S a (possibly complex) modal parameter. Then the ex-
tension £(S) is inductively defined as follows:

if S=R; (i.e., Sis atomic) then £(S) =R;

if S =-95' then £(S) = (W x W)\ £(5")
it S=251N85, then £(S) = £(S1)NE(S2)
itS=S5US, then £(S) = £(S1)UE(S2)

The semantics of formulae is extended as follows:
MywE(S)e iff Fw' e W with (w,w") € £(S) and M,w' E ¢
M,w =[Sy it Vw' e W, if (w,w') € £(S), then M,w' = ¢

We write M, (w,w') E S iff (w,w') € £(S).

From Theorem 4.6 and the standard tranlation of K™ into L%, we
easily obtain the following result:

Theorem 5.2 Satisfiability of K>V -formulae is NEzp Time-complete.

However, it is interesting to note that the NExpTime reduction used to
prove Theorem 4.6 crucially depends on the fact that an infinite number
of modal parameters is available: Since the size of the torus to be tiled is
not bounded, there exists no upper bound for the number of the R; and
S; parameters used for the reduction either. Although Boolean Modal
Logics usually provide an infinite number of modal parameters (see, e.g.,
Gargov and Passy 1987), the question whether NExpTime-hardness can
still be obtained if only a bounded number of modal parameters is avail-
able is natural. In the remainder of this section, we answer this question
by showing that satisfiability and validity of K;;™", i.e., full Boolean
Modal Logic with a fixed number m of modal parameters, is ExpTime-
complete. The upper bound is proved by a reduction to multi-modal K
enriched with the universal modality.

We show that satisfiability of K»™“-formulae can be reduced to
satisfiability of K¥-formulae (i.e., formulae of multi-modal K enriched
with the universal modality) by giving a series of polynomial reduction
steps. We do not introduce K} formally but refer the reader to, e.g.,
Spaan 1993. The following notions are central to several of the reduction
steps.

Definition 5.3 A Kripke structure M = (W, 7, R1,...Rp) is called
simple iff we have R; NR; = @ for all 1 < i < j < m. M is called
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complete iff, for all w,w’ € W, there exists a unique i with 1 <i < m
such that (w,w’) € R;. A formula (of any logic defined in this paper) is
called s-satisfiable iff it has a model which is a simple Kripke structure.
Similarly, a formula is called c-satisfiable iff it has a model which is a
complete Kripke structure.

Note that every complete Kripke structure is also simple. We now de-
scribe the reduction steps in detail. Let ¢ be a K;™"-formula whose
satisfiability is to be decided and let Ry, ..., R,, be the modal parame-
ters of K,;™".

Step 1. Convert, all modal parameters in ¢ to disjunctive normal form
using a truth table and one disjunct for each line in the truth table that
yields true. If the “empty disjunction” is obtained when converting a
modal parameter S, then replace every occurrence of (S)y with false
and every occurrence of [S]i) with true. Call the result of the conversion
1. The length of ¢y is linear in the length of ¢ since the number m
of atomic modal parameters is fixed (and the conversion can be done in
linear time). It is easy to see that ¢ is satisfiable iff ¢ is satisfiable.

Since the conversion to DNF was done using a truth table, each
disjunct occurring in a modal parameter in ¢; is a relational type, i.e.,
of the form

Slﬂ---ﬂSm WithSi:RiorSiz—-Riforlgigm.

Let T be the set of all relational types. As is easily seen, if M, (w,w") = S
for some Kripke structure M with set of worlds W, w,w’ € W, and
S € T, then, for every atomic modal parameters R;, this determines
whether M, (w,w’) = R; holds. Hence, for every w,w’ € W, we have
M, (w,w") |E S for exactly one S € T.

Step 2. We reduce satisfiability of K,>™“-formulae of the form of ¢; (i.e,
the modal parameters are in DNF and hence U does not appear nested
inside other operators) to the satisfiability of Kf; )N _formulae in which
all modal parameters are relational types. It is not hard to see that this
can be done as in Section 4, where KST)’U is reduced to K ;: In the
reduction, just replace the formula [R](p, <+ ¢) A [-R](p, <> @) with
AserlSl(py <> ¢).' The reduction can again be done in linear time since

m is fixed. The Kf; )" _formula obtained by converting ¢; is called .

Step 3. We reduce satisfiability of Kg,: )M _formulae of the form of P2 to
c-satisfiability of Kom-formulae. Set n := 2™ and let K,..., K, be the

I This reduction ensures that all modal parameters in the resulting formula are
relational types.
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atomic modal parameters of the logic K,,. Let r be some bijection be-
tween I and the set {K},..., K,}. The formula 3 is obtained from o
by replacing each element S of T in @5 with 7(S). Considering the special
syntactic form of ¢y and the definitions of I and of c-satisfiability, it is
easy to see that - is satisfiable iff @3 is c-satisfiable. Furthermore, the
reduction is obviously linear. Note that using 2™ instead of m modal
parameters does not spoil the reduction since, ultimately, our reduc-
tion goes to satisfiability of multi-modal K enriched with the universal
modality, and this logic is known to be in ExpTime for any fixed number
of modalities (Spaan 1993).

Step 4. We reduce c-satisfiability of K,-formulae to s-satisfiability of
K -formulae. Define ¢, as the conjunction of ¢3 with the formula

X = [u]( A (K11 A ALK ]bn — [u] (V- - Vb))

Y1,...,n subformulae of ¢3

Note that the length of ¢4 is polynomial in the length |p3]| of ¢3: The
number of subformulae of ¢3 is bounded by |p3]; hence, x consists of at
most 3|’ conjuncts, where £ is a constant since the number of modal pa-
rameters is fixed. Let us prove that 3 is c-satisfiable iff ¢, is s-satisfiable.
The “only if” direction is straightforward: Let M be a complete model
for 3. Obviously, M is also simple. Moreover, using the fact that M
is complete, it is straightforward to check that M is a model for ¢4. It
remains to prove the “if” direction. Let M = (W, m,Ky,...,K,) be a
simple model for ¢,. We first show that

Claim. For each w,w’ € W, there exists an £ with 1 < ¢ < n such that,
for all subformulae ¢ of ¢3, M,w = [K,J¢) implies M, w' = .

Assume to the contrary that, for some w,w’ € W, there exist no £ as in
the claim. Hence, for each i with 1 <14 < n, there exists a subformula p;
of 3 such that M, w = [K;]p; and M,w' [~ p;. Since M is a model for
X, we clearly have

M,w = [Kilpit A= AN[EKy)pn = [u](pr V-V pp).

This is obviously a contradiction to the fact that M,w £ p1 V---V py,
which proves the claim.

Extend the Kripke structure M to M' = (W, m,K},...,K]) as follows:
For any w,w' € W with (w,w") ¢ K; for all ¢ with 1 < i < n, augment
K¢ with the tuple (w,w'), where £ is as in the claim. Obviously, M’ is
complete. It is now a matter of routine to prove that M, w |= ¢ implies
M, w = ¢ for all subformulae v of ¢3. The proof is by induction over
the structure of ¢. The only interesting case is:
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Y = [K;J'. Let (w,w") € Ki. We need to show that M’ w' = ¢'.
First assume that (w,w’) € ;. Since M, w = 9, this implies M, w' |=
¢'. By induction, we have M',w’' | ¢' and are done. Now assume
(w,w") € K} \ K;. By definition of K}, we have that M,w | [K;]p
implies M, w' |= p for all subformulae p of y3. Since 1 is a subformula
of g3, we have M, w' |= ¢'. It remains to apply the induction hypothesis.

Since M is a model for ¢4, we have that M’ is a model for 3. 0

Step 5. It remains to prove that s-satisfiability of KJ-formulae is de-
cidable in ExpTime. This is, however, an easy consequence of the facts
that satisfiability of K!'-formulae is in ExpTime and that K} has the
tree model property: since every tree model is obviously simple, satisfi-
ability coincides with s-satisfiability.

The sequence of reductions given above yields an ExpTime upper bound
for the satisfiability of K,,""“-formulae. Since the lower bound for K
already holds if we have only a single modal parameter available (again,
see Spaan 1993), we obtain the following theorem.

Theorem 5.4 Satisfiability of K,;""-formulae (i.e., K™ with a
bounded bumber of modal parameters) is Exp Time-complete.

6 Boolean Modal Logics without Negation

So far, we have only considered logics with negation of modal parameters.
We will complete our investigation by showing that adding intersection
and union of modal parameters does not increase the complexity of K,
(and thus neither the complexity of K,, is increased by this extension).
The fact that the extension of K, with intersection of modal parame-
ters (i.e., K7)) is still in PSpace is an immediate consequence of PSpace-
completeness of the Description Logic ALCR (Donini et al. 1991) and
the fact that ALCR is a notational variant of K’} (Schild 1991). More-
over, it is folklore that K, extended with union of modal parameters
(i.e., KY) is also in PSpace (however, the reduction from Section 4 can-
not be applied since the universal modality is not available). For both
union and intersection, we go into more detail.

With K'Y, we denote the variant of K'™>" obtained by disallowing
the use of negation of modal parameters. In the following, we will present
a slight extension of the standard PSpace tableau algorithm for K, K-
World (Ladner 1977), to decide satisfiability of K{“~formulae. Please
note that we cannot adapt the reduction from the previous section since
the disjunctive normal form of a complex modal parameter can yield an
exponential blow-up if the number of boolean parameters is not bounded.
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When started with an input formula ¢, K-World decides ’s satisfiability
by recursively searching a finite tree-model of ¢ in a depth-first manner.
For each world w in this tree model, it checks whether the set A of
formulae that w must satisfy is not contradictory. Then, for each {4 in
A, K-World is called recursively with ¢ and all p with Op in A.

To extend K-World to KV, it is comfortable to view the semantics
of roles in a different way. For S a complex modal parameter and s a
set of atomic modal parameters, we say s E S iff s, when viewed as
the valuation that maps each R; € s to true and each R; ¢ s to false,
evaluates the Boolean expression S to true. Then (w,w') € £(S) iff there
is a set s of atomic modal parameters with s |= S and (w,w') € R; for
each R; € s. The only modifications to K-World concern the recursive
calls for diamond formulae which are more elaborate in the presence
of complex modal parameters. For each (S) 1 in the set A of formulae
currently considered, we guess an s with s = S, and then consider
together with all p where [S"]pisin A and s = S'.

For the sake of a succinct presentation, we assume the input formula
@ to contain no disjunction and no diamond-formulae. For A and S
sets of K)-Y-formulae where S is closed under subformulae and single
negations, K{"“~-World(A, S) returns true iff

e A is a maximally propositionally consistent subset of S, i.e.,
- ACS,
— for each «p € S, € Aiff ) ¢ A, and
— for each Y1 Apo € S, 1 A2 € Aiff ¢y € A and ¢y € A.
e For each subformula —[S]¢ € A, there exists a set s of modal
parameters with s |= .S and a set Ay s such that
- e A¢737
— for each S" and p, if [S'] p € A and s = S', then p € Ay 5,
— K{""—World(Ay 5, S') returns true, where S’ is the closure
under subformulae and single negation of {p | [S'] p € A and
s = STU{-v}.
Let cl(p) be the smallest set of formulae containing ¢ that is closed
under subformulae and single negation. The proof that a K):Y~-formula
 is satisfiable iff there exists a A C cl(y) with ¢ € A such that

K')"“-World(A, cl(p)})
returns true is analogous to the one for K-World. Just like K-World,
K')”-World runs in PSpace (since PSpace = NPSpace (Savitch 1970),
the additional non-deterministic guessing of the set of modal parameters

s does not matter). Moreover, K is known to be PSpace-hard (Ladner 1977),
and we thus have the following result.
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Theorem 6.1 Satisfiability of K'"'-formulae is PSpace-complete.

7 Conclusion

We have given a complete picture of the complexity of Boolean Modal
Logics, both with and without a bound on the number of modal pa-
rameters. The results for (fragments of) Boolean Modal Logic with an
unbounded number of modal parameters are summarised in Figure 2,
showing known results in grey.

NExpTime-hardness of Kff)’ﬁ was rather surprising since so far, in-
tersection of atomic modal parameters (not of chainings/composition of
modal parameters) is mostly considered to be “harmless” w.r.t. complex-
ity. Interestingly, we were able to show that, if a bound m is imposed
on the number of atomic modal parameters, then full Boolean Modal
Logic K»™Y becomes ExpTime-complete. For this proof, we did not
use the automata-based approach because we considered that extending
it to take care of complex modal parameters was more involved than the
reduction to K} that we used.

As future work, it may be interesting to extend our techniques to
more expressive logics. For example, one may consider arbitrary combi-
nations of the Boolean operators on modal parameters with composition
and converse. Several results for such logics are known from the area of
Propositional Dynamic Logics (PDL). For example, Harel proves that
PDL extended with negation of modal parameters is undecidable using
a reduction to the equivalence problem for relation algebra (Harel 1984).
It is not hard to see that a similar reduction (of the equivalence prob-
lem of boolean algebras of relations with composition only, see, e.g.,
Andreka et al. 2001) can be used to show that Boolean Modal Logic
extended with composition of modal parameters is undecidable. On
the contrary, it follows from Danecki’s results on PDL with intersec-
tion that K[Y extended with composition is decidable in double Ex-
pTime (Danecki 1984). As we demonstrated by extending our results
to (K, ® K4,)7, our automata-based approach to proving ExpTime-
bounds can be considered flexible. As a first step towards more expressive

no negation atomic negation | full negation
— PSpace-compl. ExpTime-compl.
U PSpace-compl. | ExpTime-compl. | NExpTime-compl.
N PSpace-compl. | NExpTime-compl. | NExpTime-compl.
N and U | PSpace-compl. | NExpTime-compl. | NExpTime-compl.

FIGURE 2 Complexity of K, extended with various role constructors.
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logics, we hope that our approach can be “married” with the standard
automata-based decidability procedure for PDL thus yielding a decid-
ability result for PDL extended with atomic negation of modal param-
eters.
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