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abstrat. In this paper, we investigate the omplexity of rea-

soning with various Boolean Modal Logis. The main results are

that (i) adding negation of modal parameters to (multi-modal)

K makes reasoning ExpTime-omplete and (ii) adding atomi

negation and onjuntion to K even yields a NExpTime-omplete

logi. The last result is relativized by the fat that it depends

on an in�nite number of modal parameters to be available. If

the number of modal parameters is bounded, full Boolean Modal

Logi beomes ExpTime-omplete.

1 Motivation

Sine Modal Logis are an extension of Propositional Logi, they provide

Boolean operators for onstruting omplex formulae. However, most

Modal Logis do not admit Boolean operators for onstruting om-

plex modal parameters to be used in the box and diamond operators.

This asymmetry is not present in Boolean Modal Logis, in whih box

and diamond quantify over arbitrary Boolean ombinations of atomi

modal parameters; see Gargov and Passy 1987. Boolean Modal Logis

have been onsidered in various forms and ontexts:

1. \Pure" Boolean Modal Logi has been studied in Gargov and Passy

1987. Negation and intersetion of modal parameters our in some vari-

ants of Propositional Dynami Logi, see, e.g., Daneki 1984, Harel 1984,

Passy and Tinhev 1991.

2. The modal box operator an be thought of as expressing nees-

sity. More preisely, when employing the usual Kripke Semantis, 2'

holds at a world w i� w

0

being aessible from w implies that ' holds

at w

0

. Given this, it is obviously quite natural to de�ne a symmetri
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operator (sometimes alled \window operator") suh that ' holds

at a world w i� ' holding at a world w

0

implies that w

0

is aessi-

ble from w. Obviously, the window operator an be thought of as ex-

pressing suÆieny. Logis with this operator were investigated from

di�erent viewpoints by, e.g., Humberstone, Gargov et al., and Goranko

Humberstone 1983, Gargov et al. 1987, Goranko 1987, Goranko 1990. If

negation of modal parameters is available, the window operator omes

for free sine we an write

R

' as [:R℄:'.

3. There are several Desription Logis that provide \negation of roles"

whih orresponds to the negation of modal parameters, see, e.g. Hus-

tadt and Shmidt 2000. Union and intersetion of modal parameters are

also onsidered in Desription Logis and other KR formalisms, as is the

window operator; see Givan et al. 1991, Lutz and Sattler 2000a.

Although|as we just argued|logis involving Boolean operators on

modal parameters or the window operator are widely used, to the best of

our knowledge, omplexity results for this lass of logis have never been

obtained. In this paper, we lose the gap and determine the omplex-

ity of the satis�ability and validity problems for many Boolean Modal

Logis. In the �rst part of this paper (Setions 2 and 3), we investi-

gate the logi K

!

(K with a ountably in�nite number of aessibility

relations) enrihed with negation of modal parameters and show that

the afore mentioned inferene problems are ExpTime-omplete using an

automata-theoreti approah. We then demonstrate the generality of

our approah by extending this result to the logi (K

!


K4

!

)

:

, i.e., to

the fusion of K

!

with K4

!

enrihed with negation on relations. In the

seond part of this paper (Setions 4 and 5), we add other Boolean oper-

ators on roles. In doing so, one has the hoie to either restrit negation

to atomi relations or to allow for full negation of relations.

We give a omplete list of omplexity results for the logis obtained

in this way, the entral result being that the ombination of (atomi)

negation with intersetion yields a logi whose inferene problems are

NExpTime-omplete. The lower bound is obtained by a redution of

a NExpTime-omplete variant of the domino problem. The mentioned

result obviously implies that full Boolean Modal Logi K

:;\;[

!

is also

NExpTime-omplete. However, the lower bound ruially depends on

the number of relations to be unbounded. Inspired by this observation, in

Setion 5, we supplement our result by showing that, for any �xed �nite

number of relations, full Boolean Modal Logi is ExpTime-omplete. The

upper bound is proved by a redution to multi-modal K (with �nitely

many relations) enrihed with the universal modality.

To omplete our investigation, in Setion 6 we show that K

!

with
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union and intersetion of roles and without negation is of the same

omplexity as pure K

!

, i.e., PSpae-omplete. Summing up, we thus

have tight omplexity bounds for K

!

extended with any ombination of

Boolean operators on roles. This paper is aompanied by a tehnial

report whih ontains all proofs and tehnial details (Lutz and Sattler

2000b).

2 Preliminaries

We de�ne syntax and semantis ofK

:

!

, introdue looping automata, and

disuss some model- and omplexity-theoreti properties of K

:

!

.

De�nition 2.1 Given a ountably in�nite set of propositional variables

� and a ountably in�nite set of atomi modal parameters R

1

; R

2

; : : :, the

set of K

:

!

-formulae is the smallest set that (i) ontains the propositional

variables in �, (ii) is losed under Boolean onnetives ^, _, and :,

and (iii) if it ontains ', then it also ontains hR

i

i', [R

i

℄', h:R

i

i',

and [:R

i

℄' for i � 1. The set of K

:

!

-modal parameters is the smallest

set ontaining all atomi modal parameters and their negations (i.e.,

expressions of the form :R

i

).

K

:

!

semantis is given by Kripke strutures M = hW;�;R

1

; : : :i;

where W is a set of worlds, � is a mapping from the set of propositional

variables into sets of worlds (i.e., for eah p 2 �, �(p) is the set of

worlds in whih p holds), and R

i

is a binary relation on the worlds W ,

the so-alled aessibility relation for the atomi modal parameter R

i

.

The semantis is then given as follows, where, for a K

:

!

-formula ', a

Kripke struture M, and a world w 2 W ; the expression M; w j= ' is

read as \' holds in M in world w".

M; w j= p i� w 2 �(p) for p 2 �

M; w j= '

1

^ '

2

i� M; w j= '

1

and M; w j= '

2

M; w j= '

1

_ '

2

i� M; w j= '

1

or M; w j= '

2

M; w j= :' i� M; w 6j= '

M; w j= hR

i

i' i� 9w

0

2 W with (w;w

0

) 2 R

i

and M; w

0

j= '

M; w j= [R

i

℄' i� 8w

0

2 W , if (w;w

0

) 2 R

i

; then M; w

0

j= '

M; w j= h:R

i

i' i� 9w

0

2 W with (w;w

0

) 62 R

i

and M; w

0

j= '

M; w j= [:R

i

℄' i� 8w

0

2 W , if (w;w

0

) 62 R

i

; then M; w

0

j= '

AK

:

!

-formula ' is satis�able i� there is a Kripke strutureM with a set

of worlds W and a world w 2W suh that M; w j= '. Suh a struture

is alled a model of '. TwoK

:

!

-formulae ' and  are equivalent (written

' �  ) i� M; w j= ' ()M; w j=  for all Kripke strutures M with

set of worldsW and all worlds w 2 W . Let R be a modal parameter. We

write M; (w;w

0

) j= R to express that (i) (w;w

0

) 2 R

i

if R is an atomi
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modal parameter R

i

and (ii) (w;w

0

) =2 R

i

if R = :R

i

for an atomi

modal parameter R

i

.

Throughout this paper, we denote modal parameters by R and S. For

the sake of brevity, we will often omit the word \modal" when talking

about modal parameters. As usual, we write ' !  for :' _  and

' $  for (' !  ) ^ ( ! '). The semantis of the window operator

disussed in the motivation an formally be de�ned as follows:

M; w j=

R

i

' i� for all w

0

2 W , if M; w

0

j= '; then (w;w

0

) 2 R

i

It is easy to see that

R

i

' � [:R

i

℄:', and, hene, the window operator

is expressible in K

:

!

.

It is not hard to see that satis�ability of K

:

!

-formulae is ExpTime-

hard and in NExpTime: (i) the logiK

u

, i.e., uni-modalK enrihed with

the universal modality, is a fragment of K

:

!

: Just replae

� every ourrene of [u℄' by [R℄' ^ [:R℄' and

� every ourrene of hui' by hRi' _ h:Ri'

where [u℄ and hui denote the universal modality, and R is an arbitrary

atomi modal parameter. This translation may learly lead to an expo-

nential blowup in the formula. However, in the lass of formulae used

to prove the ExpTime-hardness of K

u

in Spaan 1993, [u℄ ours only

one, and hui does not our. In this ase, the translation is linear,

and, thus, satis�ability of K

:

!

-onepts is ExpTime-hard; (ii) when us-

ing the standard translation of modal formulae into �rst order formulae

(see, e.g, Blakburn et al. 2001, van Benthem 1983), K

:

!

-formulae are

translated to �rst-order formulae with at most 2 variables. Sine L

2

,

the two-variable fragment of �rst-order logi, is deidable in NExpTime

(Gr�adel et al. 1997), this implies that satis�ability of K

:

!

-formulae is

also in NExpTime. However, these two omplexity bounds are obviously

not tight. One main ontribution of this paper is to give an ExpTime-

algorithm for the satis�ability of K

:

!

-formulae, thus tightening the om-

plexity bounds.

For devising a satis�ability algorithm, it is interesting to know what

kind of models need to be onsidered. In Gargov et al. 1987, it is proved

that K

:

!

has the �nite model property.K

:

!

does not have the tree model

property sine, e.g., the formula p ^ [:R℄:p has no tree model. How-

ever, we will show that there exists a one-to-one orrespondene between

models and so-alled Hintikka-trees whih we then use to deide satis�-

ability (and thus validity) of K

:

!

-formulae. We do this by building, for

eah K

:

!

-formula ', a looping automaton A

'

whih aepts the empty

(tree-) language i� ' is unsatis�able. Hene we introdue trees, looping

automata, and the language they aept here.
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De�nition 2.2 LetM be a set and k � 1. A k-aryM-tree is a mapping

T : f1; : : : ; kg

�

7!M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2

M . Intuitively, the node �i is the i-th hild of �. We use � to denote the

empty word (orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -trees is de�ned

by a set Q of states, an alphabetM , a subset I � Q of initial states, and

a transition relation � � Q �M �Q

k

. A run of A on an M -tree T is

a mapping r : f1; : : : ; kg

�

7! Q with (r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

:

A looping automaton aepts all thoseM -trees for whih a run exists,

i.e., the language L(A) of M -trees aepted by A is

L(A) = fT j There is a run from A on Tg:

Sine looping automata are speial B�uhi automata, emptiness of their

language an e�etively be tested using the well-known (quadrati) empti-

ness test for B�uhi-automata Vardi and Wolper 1986. However, for loop-

ing automata, this algorithm an be speialized into a simpler (linear)

one.

3 Negation of Modal Parameters

We show that satis�ability of K

:

!

-formulae is deidable in exponential

time. For this purpose, we �rst abstrat from models of K

:

!

-formulae

to Hintikka-trees, and then show how to onstrut a looping automaton

that aepts exatly Hintikka-trees.

Notation: We assume all formulae to be in negation normal form

(NNF), i.e., negation ours only in front of atomi parameters and

propositional variables. Eah formula an easily be transformed into an

equivalent one in NNF by pushing negation inwards, employing de Mor-

gan's law and the duality between [R℄ and hRi and between [:R℄ and

h:Ri. We use �' to denote the NNF of :'.

Sine we treat modalities with negated and unnegated modal param-

eters symmetrially, we introdue the notion

h

�

Ri' =

�

h:Ri' if R is atomi,

hSi' if R = :S for some atomi parameter S

and analogously [

�

R℄'. Let l(') denote the set of ''s subformulae and

the NNFs of their negations, i.e.,

l(') := f j  is a subformula of ' or

 = �� for a subformula � of 'g:

Obviously, the ardinality of l(') is linear in the length of '. We assume

that diamond-formulae hRi in l(') are linearly ordered, and that

D

(i)
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yields the i-th diamond-formula in l(').

De�nition 3.1 Hintikka-set and Hintikka-tree

Let ' be a K

:

!

-formula and k the number of diamond-formulae in

l('). A set 	 � l(') is a Hintikka-set i� it satis�es the following

onditions:

(H1) if '

1

^ '

2

2 	, then f'

1

; '

2

g � 	,

(H2) if '

1

_ '

2

2 	, then f'

1

; '

2

g \	 6= ;, and

(H3) f ;

�

 g 6� 	 for all K

:

!

-formulae  .

A k-ary 2

l(')

-tree T is a Hintikka-tree for ' i� T (�) is a Hintikka-set

for eah node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

,

the following onditions:

(H4) ' 2 T (�),

(H5) if fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi ,

then f ; �

1

; : : : ; �

m

g � T (�i)

(H6) if

D

(i) 62 T (�), then T (�i) = ;,

(H7) if [R℄ � 2 T (�), then � 2 T (�), �� 2 T (�), or T (�) = ;, and

(H8) if f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�), then  2 T (�).

For (H5), (H7), and (H8), reall that R denotes an atomi parameter

or the negation of an atomi parameter. The following lemma shows the

onnetion between models and Hintikka trees.

Lemma 3.2 A K

:

!

-formula ' is satis�able i� ' has a Hintikka-tree.

Thus, we have that Hintikka-trees are appropriate abstrations of models

of K

:

!

-formulae. Hintikka-trees enjoy the nie property that they are

trees, and we an thus de�ne, for a K

:

!

-formula ', a tree-automaton A

'

that aepts exatly the Hintikka-trees for '.

De�nition 3.3 For a K

:

!

-formula ' with k diamond-formulae in l('),

the looping automaton A

'

= (Q; 2

l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 l(')g;

S = f[R℄ j [R℄ 2 l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2

l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s, and
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4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

D

(i) = hRi 2 	 implies  2 	

i

and � 2 	

i

for eah [R℄ � 2 	

D

(i) = hRi 62 	 implies 	

i

= ;:

Note that, sine A

'

is a looping automata, every run is aepting. As

a onsequene of the following lemma and Lemma 3.2, we an redue

satis�ability of K

:

!

-formulae to the emptyness of the language aepted

by looping automata.

Lemma 3.4 T is a Hintikka-tree for a K

:

!

-formula ' i� T 2 L(A

'

).

Obviously, the ardinality of l(') is linear in the length of '. Hene, by

de�nition of A

'

, the ardinality of eah omponent of A

'

is exponential

in the length of ', and thus the size ofA

'

is also exponential in the length

of '. This fat together with Lemma 3.2, Lemma 3.4, and the fat that

emptiness of the language aepted by a looping automaton A

'

an be

tested in time linear in the size of A

'

(Vardi and Wolper 1986) implies

that satis�ability of K

:

!

-onepts is in ExpTime. We already noted in

Setion 2 that satis�ability of K

:

!

-onepts is also ExpTime-hard and,

hene, we obtain the following theorem:

Theorem 3.5 Satis�ability of K

:

!

-formulae is ExpTime-omplete.

Is our approah still of use if we replae K

!

by some logi with a re-

strited lass of frames? In the following, we perform a ase study by

extending the presented algorithm to deal with (K

!


K4

!

)

:

-formulae,

where (K

!


K4

!

)

:

denotes the fusion ofK

!

andK4

!

enrihed with the

negation of modal parameters. More preisely, (K

!


K4

!

)

:

provides

two disjoint sets of atomi modal parameters R

1

; R

2

; : : : and S

1

; S

2

; : : : ,

where the latter are alled transitive modal parameters. Moreover, a-

essibility relations orresponding to transitive modal parameters are

required to be transitive. Apart from demonstrating the generality of

our approah, the logi (K

!


 K4

!

)

:

is very natural if viewed as a

Desription Logi (Lutz and Sattler 2000b, Sattler 1996).

To de�ne Hintikka trees for (K

!


K4

!

)

:

, we introdue ounterparts

for (H5) and (H8) whih deal with transitive modal parameters.

De�nition 3.6 A (K

!


K4

!

)

:

-Hintikka-tree is a Hintikka-tree as in

De�nition 3.1 extended with the following two onditions:
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(H5b) if, for a trans. parameter S

j

, we have fhS

j

i ; [S

j

℄ �

1

; : : : ; [S

j

℄ �

m

g �

T (�) and

D

(i) = hS

j

i , then f ; �

1

; : : : ; �

m

; [S

j

℄ �

1

; : : : ; [S

j

℄ �

m

g �

T (�i).

(H8b) if, for a trans. parameter S

j

, we have f[S

j

℄ ; [:S

j

℄ �g � T (�) and

�� 2 T (�), then f[S

j

℄ ;  g � T (�).

We an now \lift" Lemma 3.2 to the (K

!


K4

!

)

:

ase.

Lemma 3.7 A (K

!


K4

!

)

:

-formula ' is satis�able i� ' has a (K

!




K4

!

)

:

-Hintikka-tree.

It remains to onstrut a looping automaton that aepts exatly the

Hintikka-trees for a given (K

!


K4

!

)

:

-formula '. This onstrution is

the same as the one in De�ntion 3.3, with an additional �fth ondition

in the de�nition of Q as a translation of (H8b), and an additional

impliation in the de�nition of � as a translation of (H5b).

De�nition 3.8 Let A

'

= (Q; 2

l(')

;�; I) be the looping automaton

orresponding to a (K

!


K4

!

)

:

-formula ' as de�ned in Lemma 3.3.

De�ne a new looping automaton A

0

'

:= (Q

0

; 2

l(')

;�

0

; I) by setting

� Q

0

to the maximal subset of Q suh that, for all (	; p; s) 2 Q

0

,

if f[S

j

℄ ; [:S

j

℄ �g 2 p and �� 2 	 for a transitive parameter S

j

,

then f ; [S

j

℄ g 2 	.

� �

0

to the maximal subset of Q suh that, for all

((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 �

0

;

if

D

(i) = hS

j

i 2 	 for a transitive parameter S, then [S

j

℄ � 2 	

i

for eah [S

j

℄ � 2 	.

Proving an analogon to Lemma 3.4, we obtain the following theorem:

Theorem 3.9 Satis�ability of (K

!


K4

!

)

:

-formulae is ExpTime-omp-

lete.

4 Adding Intersetion and Union of Modal Parameters

In this setion, we investigate the omplexity of adding intersetion and

union of modal parameters to the logi K

:

!

. In doing this, one has the

hoie to either restrit the appliability of negation to atomi modal

parameters or allowing for full negation w.r.t. modal parameters. In the

latter ase, adding union is obviously equivalent to adding intersetion

or both. We start with the smallest extension, i.e., we add either in-

tersetion or union on modal parameters while restriting negation to

atomi parameters.
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De�nition 4.1 A K

(:);[

!

-formula (K

(:);\

!

-formula) is a K

:

!

-formula

whih, additionally, allows for modal parameters of the form S

1

[� � �[S

k

(S

1

\� � �\S

k

), where eah S

i

is an atomi or a negated atomi parameter.

The semantis of the new modal operators is de�ned as follows:

M; w j= hS

1

[ � � � [ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg and M; w

0

j= '

M; w j= [S

1

[ � � � [ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg; then M; w

0

j= '

M; w j= hS

1

\ � � � \ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for all 1 � i � k and M; w

0

j= '

M; w j= [S

1

\ � � � \ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for all 1 � i � k; then M; w

0

j= '

Let us �rst investigate the logi K

(:);[

!

. It is not hard to see that

[S

1

[ � � � [ S

k

℄' � [S

1

℄' ^ � � � ^ [S

k

℄' and

hS

1

[ � � � [ S

k

i' � hS

1

i' _ � � � _ [S

k

℄';

i.e., satis�ability of K

(:);[

!

-formulae an be redued to satis�ability of

K

:

!

-formulae. However, this naive redution might lead to an exponential

blow-up of the formula. In order to avoid this blow-up, we an proeed as

follows to transform a K

(:);[

!

-formula  into an equivalent K

:

!

-formula

b

 whose length is linear in the length of  : As the �rst step, reursively

apply the following substitutions to  from the inside to the outside (i.e.,

no union on modal parameters ours in ')

[S

1

[ � � � [ S

k

℄' ; [S

1

℄ p

'

^ � � � ^ [S

k

℄ p

'

and

hS

1

[ � � � [ S

k

i' ; hS

1

i p

'

_ � � � _ [S

k

℄ p

'

where p

'

is a new propositional variable. Call the result of these substi-

tutions  

0

. Seondly, use a new modal parameter R and de�ne

b

 :=  

0

^

^

p

'

ours in  

0

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ')

It an easily be seen that this gives the following result.

Theorem 4.2 Satis�ability of K

(:);[

!

-formulae is ExpTime-omplete.

Next, we show that satis�ability of K

(:);\

!

-formulae is NExpTime-

hard. The proof is given by a redution of a NExpTime-omplete variant

of the well-known, undeidable domino problem.

A domino problem (Berger 1966, Knuth 1968) is given by a �nite set

of domino types. All domino types are of the same size, eah type has a

quadrati shape and olored edges. Of eah type, an unlimited number



10 /

of dominoe is available. The problem in the original domino problem is

to arrange these dominoe to over the plane without holes or overlapping

suh that adjaent dominoe have idential olors on their touhing edges

(rotation of the dominoe is not allowed). In the NExpTime-omplete

variant of the domino problem that we use, the task is not to tile the

whole plane, but to tile a 2

n+1

�2

n+1

-torus, i.e., a 2

n+1

�2

n+1

-retangle

whose edges are \glued" together. See, e.g., Berger 1966, Knuth 1968 for

undeidable versions of the domino problem and B�orger et al. 1997 for

bounded variants.

De�nition 4.3 Let D = (D;H; V ) be a domino system, where D is a

�nite set of domino types and H;V � D � D represent the horizontal

and vertial mathing onditions. For s; t 2 N, let U(s; t) be the torus

Z

s

� Z

t

, where Z

n

denotes the set f0; : : : ; n� 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe (with n � s). We say that D tiles U(s; t) with

initial ondition a i� there exists a mapping � : U(s; t)! D suh that,

for all (x; y) 2 U(s; t):

� if �(x; y) = d and �(x�

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Suh a mapping � is alled a

solution for D w.r.t. a.

The following is a onsequene of Theorem 6.1.2 in B�orger et al. 1997

(see also Lutz and Sattler 2000b).

Theorem 4.4 There exists a domino system D suh that the following

is a NExpTime-hard problem: Given an initial ondition a = a

0

� � � a

n�1

of length n, does D tile the torus U(2

n+1

; 2

n+1

) with initial ondition a?

We redue the NExpTime-omplete variant of the domino problem from

Theorem 4.4 to the satis�ability of K

(:);\

!

-formulae. Given a domino

system D = (D;H; V ) and an initial ondition a = a

0

; : : : ; a

n�1

, we

de�ne a redution formula '

(D;a)

suh that '

(D;a)

is satis�able i� D

tiles the torus U(2

n+1

; 2

n+1

) with initial ondition a. The subformulae

of the redution formula

'(D; a) = Count

x

^ Count

y

^ Stable ^Unique ^ Tiling ^ Init

an be found in Figure 1, where Count

y

is Count

x

with R

x

replaed

by R

y

, x

j

by y

j

, and x

k

by y

k

. In this �gure, [u℄' is an abbreviation

for [R℄' ^ [:R℄', where R is an arbitrary atomi modal parameter.

Obviously, in eah model of [u℄', eah world satis�es '. In Init, we write
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Count

x

= [u℄

h

n

^

k=0

�

(

k�1

^

j=0

x

j

)! (x

k

$ [R

x

℄:x

k

)

�

^

n

^

k=0

�

(

k�1

_

j=0

:x

j

)! (x

k

$ [R

x

℄x

k

)

�

^ hR

x

i true

i

Stable = [u℄

h

n

^

k=0

(x

k

! [R

y

℄x

k

) ^

n

^

k=0

(:x

k

! [R

y

℄:x

k

) ^

n

^

k=0

(y

k

! [R

x

℄ y

k

) ^

n

^

k=0

(:y

k

! [R

x

℄:y

k

)

i

Unique = [u℄

h

n

^

k=0

�

(x

k

! [:R

k

℄:x

k

) ^ (:x

k

! [:R

k

℄x

k

)

�

^

n

^

k=0

�

(y

k

! [:S

k

℄:y

k

) ^ (:y

k

! [:S

k

℄ y

k

)

�

^

^

d2D

p

d

! [R

0

\ � � � \R

n

\ S

0

\ � � � \ S

n

℄ p

d

i

Tiling = [u℄

h

(

_

d2D

p

d

) ^

^

d2D

^

d

0

2Dnfdg

:(p

d

^ p

d

0

) ^

^

d2D

p

d

!

�

[R

x

℄

_

(d;d

0

)2H

p

d

0

�

^

^

d2D

p

d

!

�

[R

y

℄

_

(d;d

0

)2G

p

d

0

��

Init =

n

^

k=0

(:x

i

^ :y

i

) ^ p

w

0

^ [R

x

℄ p

w

1

^ � � � ^ [R

x

℄

n�1

p

w

n�1

FIGURE 1 Sub-formulae of '

(D;a)

for D = (D;H;V ) and a = a

0

; : : : ; a

n�1

.

[R℄

n

' to denote the n-fold nesting of [R℄. The strategy of the redution

is to de�ne the redution formula '

(D;a)

suh that, for every model M

of '

(D;a)

with set of worlds W ,

1. there exists a propositional variable p

d

for every domino type d 2

D suh that eah w 2 W is in the extension of p

d

for exatly one

d 2 D (�rst line of Tiling),

2. for eah point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a or-

responding set of worlds fw

1

; : : : ; w

k

g � W with k � 1 and a
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d 2 D suh that all w

1

; : : : ; w

k

are in the extension of p

d

(Count

x

,

Count

y

, Stable, and Unique formulae),

3. the horizontal and vertial onditions V and H are satis�ed w.r.t.

sets of worlds representing points in the plane (seond and third

line of Tiling), and

4. the initial ondition is satis�ed (Init).

Properties 1, 3, and 4 are enfored in a standard way using K for-

mulae. Property 2, however, needs some explanation. Usually, domino-

redutions axiomatize a \grid" in order to apture the struture of the

torus. As Property 2 indiates, we employ a di�erent strategy: Eah

world in eah model of '

(D;a)

orresponds to a point (i; j) in the torus.

The number i is binarily enoded by the propositional variables x

0

; : : : ; x

n

while the number j is enoded by the propositional variables y

0

; : : : ; y

n

.

We use standard binary inrementation modulo 2

n+1

to ensure that, for

every world w orresponding to a position (i; j), there exists a world w

1

suh that w

1

orresponds to (i �

2

n+1
1; j) and M; (w;w

1

) j= R

x

, and a

world w

2

suh that w

2

orresponds to (i; j�

2

n+1
1) andM; (w;w

2

) j= R

y

.

The Count

x

and Count

y

formulae enode the inrementation of the one

dimension while the Stable formula ensures that the other dimension

does not hange. It remains to guarantee that every two worlds orre-

sponding to the same position are labeled with the same domino. This

task is aomplished by the Unique formula whih is the only one to use

onjuntion of modal parameters and the only one to use negation for

a purpose di�erent from expressing the universal modality. In order to

understand the Unique formula, it may be helpful to read subformulae

of the form [:R℄:' as

R

'.

Proposition 4.5 A domino system D tiles the torus U(2

n+1

; 2

n+1

) with

initial ondition a = a

0

; : : : ; a

n�1

i� '

(D;a)

is satis�able.

Together with Theorem 4.4, we obtain a NExpTime lower bound for

K

(:);\

!

-formulae. The orresponding upper bound follows from the fat

that the translation of K

:

!

-formulae to L

2

-formulae mentioned in Se-

tion 2 an also be applied to K

(:);\

!

-formulae.

Theorem 4.6 Satis�ability of K

(:);\

!

-formulae is NExpTime-omplete.

5 Full Boolean Modal Logi

In this setion, we investigate the omplexity of full Boolean Modal

Logi. Let us start with introduing this logi formally.



/ 13

De�nition 5.1 A omplex modal parameter is a Boolean formula of

atomi modal parameters. We use K

:;\;[

!

to denote the extension of K

!

with omplex modal parameters. Let M = hW;�;R

1

; : : :i be a Kripke

struture, and S a (possibly omplex) modal parameter. Then the ex-

tension E(S) is indutively de�ned as follows:

if S = R

i

(i.e., S is atomi) then E(S) = R

i

if S = :S

0

then E(S) = (W �W ) n E(S

0

)

if S = S

1

\ S

2

then E(S) = E(S

1

) \ E(S

2

)

if S = S

1

[ S

2

then E(S) = E(S

1

) [ E(S

2

)

The semantis of formulae is extended as follows:

M; w j= hSi' i� 9w

0

2W with (w;w

0

) 2 E(S) and M; w

0

j= '

M; w j= [S℄' i� 8w

0

2W , if (w;w

0

) 2 E(S), then M; w

0

j= '

We write M; (w;w

0

) j= S i� (w;w

0

) 2 E(S).

From Theorem 4.6 and the standard tranlation of K

:;\;[

!

into L

2

, we

easily obtain the following result:

Theorem 5.2 Satis�ability of K

:;\;[

!

-formulae is NExpTime-omplete.

However, it is interesting to note that the NExpTime redution used to

prove Theorem 4.6 ruially depends on the fat that an in�nite number

of modal parameters is available: Sine the size of the torus to be tiled is

not bounded, there exists no upper bound for the number of the R

i

and

S

i

parameters used for the redution either. Although Boolean Modal

Logis usually provide an in�nite number of modal parameters (see, e.g.,

Gargov and Passy 1987), the question whether NExpTime-hardness an

still be obtained if only a bounded number of modal parameters is avail-

able is natural. In the remainder of this setion, we answer this question

by showing that satis�ability and validity of K

:;\;[

m

, i.e., full Boolean

Modal Logi with a �xed number m of modal parameters, is ExpTime-

omplete. The upper bound is proved by a redution to multi-modal K

enrihed with the universal modality.

We show that satis�ability of K

:;\;[

m

-formulae an be redued to

satis�ability of K

u

n

-formulae (i.e., formulae of multi-modal K enrihed

with the universal modality) by giving a series of polynomial redution

steps. We do not introdue K

u

n

formally but refer the reader to, e.g.,

Spaan 1993. The following notions are entral to several of the redution

steps.

De�nition 5.3 A Kripke struture M = hW;�;R

1

; : : :R

m

i is alled

simple i� we have R

i

\ R

j

= ; for all 1 � i < j � m. M is alled
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omplete i�, for all w;w

0

2 W , there exists a unique i with 1 � i � m

suh that (w;w

0

) 2 R

i

. A formula (of any logi de�ned in this paper) is

alled s-satis�able i� it has a model whih is a simple Kripke struture.

Similarly, a formula is alled -satis�able i� it has a model whih is a

omplete Kripke struture.

Note that every omplete Kripke struture is also simple. We now de-

sribe the redution steps in detail. Let ' be a K

:;\;[

m

-formula whose

satis�ability is to be deided and let R

1

; : : : ; R

m

be the modal parame-

ters of K

:;\;[

m

.

Step 1. Convert all modal parameters in ' to disjuntive normal form

using a truth table and one disjunt for eah line in the truth table that

yields true. If the \empty disjuntion" is obtained when onverting a

modal parameter S, then replae every ourrene of hSi with false

and every ourrene of [S℄ with true. Call the result of the onversion

'

1

. The length of '

1

is linear in the length of ' sine the number m

of atomi modal parameters is �xed (and the onversion an be done in

linear time). It is easy to see that '

1

is satis�able i� ' is satis�able.

Sine the onversion to DNF was done using a truth table, eah

disjunt ourring in a modal parameter in '

1

is a relational type, i.e.,

of the form

S

1

\ � � � \ S

m

with S

i

= R

i

or S

i

= :R

i

for 1 � i � m:

Let � be the set of all relational types. As is easily seen, ifM; (w;w

0

) j= S

for some Kripke struture M with set of worlds W , w;w

0

2 W , and

S 2 �, then, for every atomi modal parameters R

i

, this determines

whether M; (w;w

0

) j= R

i

holds. Hene, for every w;w

0

2 W , we have

M; (w;w

0

) j= S for exatly one S 2 �.

Step 2. We redue satis�ability ofK

:;\;[

m

-formulae of the form of '

1

(i.e,

the modal parameters are in DNF and hene [ does not appear nested

inside other operators) to the satis�ability of K

(:);\

m

-formulae in whih

all modal parameters are relational types. It is not hard to see that this

an be done as in Setion 4, where K

(:);[

!

is redued to K

:

!

: In the

redution, just replae the formula [R℄(p

'

$ ') ^ [:R℄(p

'

$ ') with

V

S2�

[S℄(p

'

$ ').

1

The redution an again be done in linear time sine

m is �xed. The K

(:);\

m

-formula obtained by onverting '

1

is alled '

2

.

Step 3. We redue satis�ability of K

(:);\

m

-formulae of the form of '

2

to

-satis�ability of K

2

m

-formulae. Set n := 2

m

and let K

1

; : : : ;K

n

be the

1

This redution ensures that all modal parameters in the resulting formula are

relational types.
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atomi modal parameters of the logi K

n

. Let r be some bijetion be-

tween � and the set fK

1

; : : : ;K

n

g. The formula '

3

is obtained from '

2

by replaing eah element S of � in '

2

with r(S). Considering the speial

syntati form of '

2

and the de�nitions of � and of -satis�ability, it is

easy to see that '

2

is satis�able i� '

3

is -satis�able. Furthermore, the

redution is obviously linear. Note that using 2

m

instead of m modal

parameters does not spoil the redution sine, ultimately, our redu-

tion goes to satis�ability of multi-modal K enrihed with the universal

modality, and this logi is known to be in ExpTime for any �xed number

of modalities (Spaan 1993).

Step 4. We redue -satis�ability of K

n

-formulae to s-satis�ability of

K

u

n

-formulae. De�ne '

4

as the onjuntion of '

3

with the formula

� := [u℄

�

^

 

1

;:::; 

n

subformulae of '

3

[K

1

℄ 

1

^� � �^[K

n

℄ 

n

! [u℄( 

1

_� � �_ 

n

)

�

Note that the length of '

4

is polynomial in the length j'

3

j of '

3

: The

number of subformulae of '

3

is bounded by j'

3

j; hene, � onsists of at

most j'

3

j

`

onjunts, where ` is a onstant sine the number of modal pa-

rameters is �xed. Let us prove that '

3

is -satis�able i� '

4

is s-satis�able.

The \only if" diretion is straightforward: Let M be a omplete model

for '

3

. Obviously, M is also simple. Moreover, using the fat that M

is omplete, it is straightforward to hek that M is a model for '

4

. It

remains to prove the \if" diretion. Let M = hW;�;K

1

; : : : ;K

n

i be a

simple model for '

4

. We �rst show that

Claim. For eah w;w

0

2W , there exists an ` with 1 � ` � n suh that,

for all subformulae  of '

3

, M; w j= [K

`

℄ implies M; w

0

j=  .

Assume to the ontrary that, for some w;w

0

2 W , there exist no ` as in

the laim. Hene, for eah i with 1 � i � n, there exists a subformula �

i

of '

3

suh that M; w j= [K

i

℄�

i

and M; w

0

6j= �

i

. Sine M is a model for

�, we learly have

M; w j= [K

1

℄�

1

^ � � � ^ [K

n

℄�

n

! [u℄(�

1

_ � � � _ �

n

):

This is obviously a ontradition to the fat that M; w 6j= �

1

_ � � � _ �

n

whih proves the laim.

Extend the Kripke struture M to M

0

= hW;�;K

0

1

; : : : ;K

0

n

i as follows:

For any w;w

0

2 W with (w;w

0

) =2 K

i

for all i with 1 � i � n, augment

K

`

with the tuple (w;w

0

), where ` is as in the laim. Obviously, M

0

is

omplete. It is now a matter of routine to prove that M; w j=  implies

M

0

; w j=  for all subformulae  of '

3

. The proof is by indution over

the struture of  . The only interesting ase is:
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 = [K

i

℄ 

0

. Let (w;w

0

) 2 K

0

i

. We need to show that M

0

; w

0

j=  

0

.

First assume that (w;w

0

) 2 K

i

. Sine M; w j=  , this implies M; w

0

j=

 

0

. By indution, we have M

0

; w

0

j=  

0

and are done. Now assume

(w;w

0

) 2 K

0

i

n K

i

. By de�nition of K

0

i

, we have that M; w j= [K

i

℄�

implies M; w

0

j= � for all subformulae � of '

3

. Sine  is a subformula

of '

3

, we haveM; w

0

j=  

0

. It remains to apply the indution hypothesis.

SineM is a model for '

4

, we have thatM

0

is a model for '

3

. ❏

Step 5. It remains to prove that s-satis�ability of K

u

n

-formulae is de-

idable in ExpTime. This is, however, an easy onsequene of the fats

that satis�ability of K

u

n

-formulae is in ExpTime and that K

u

n

has the

tree model property: sine every tree model is obviously simple, satis�-

ability oinides with s-satis�ability.

The sequene of redutions given above yields an ExpTime upper bound

for the satis�ability of K

:;\;[

m

-formulae. Sine the lower bound for K

:

!

already holds if we have only a single modal parameter available (again,

see Spaan 1993), we obtain the following theorem.

Theorem 5.4 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-omplete.

6 Boolean Modal Logis without Negation

So far, we have only onsidered logis with negation of modal parameters.

We will omplete our investigation by showing that adding intersetion

and union of modal parameters does not inrease the omplexity of K

!

(and thus neither the omplexity of K

m

is inreased by this extension).

The fat that the extension of K

!

with intersetion of modal parame-

ters (i.e., K

\

!

) is still in PSpae is an immediate onsequene of PSpae-

ompleteness of the Desription Logi ALCR (Donini et al. 1991) and

the fat that ALCR is a notational variant of K

\

!

(Shild 1991). More-

over, it is folklore that K

!

extended with union of modal parameters

(i.e., K

[

!

) is also in PSpae (however, the redution from Setion 4 an-

not be applied sine the universal modality is not available). For both

union and intersetion, we go into more detail.

With K

\;[

!

, we denote the variant of K

:;\;[

!

obtained by disallowing

the use of negation of modal parameters. In the following, we will present

a slight extension of the standard PSpae tableau algorithm for K, K-

World (Ladner 1977), to deide satis�ability of K

\;[

!

-formulae. Please

note that we annot adapt the redution from the previous setion sine

the disjuntive normal form of a omplex modal parameter an yield an

exponential blow-up if the number of boolean parameters is not bounded.
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When started with an input formula ',K-World deides ''s satis�ability

by reursively searhing a �nite tree-model of ' in a depth-�rst manner.

For eah world w in this tree model, it heks whether the set � of

formulae that w must satisfy is not ontraditory. Then, for eah 3 in

�, K-World is alled reursively with  and all � with 2� in �.

To extend K-World to K

\;[

!

, it is omfortable to view the semantis

of roles in a di�erent way. For S a omplex modal parameter and s a

set of atomi modal parameters, we say s j= S i� s, when viewed as

the valuation that maps eah R

i

2 s to true and eah R

j

62 s to false,

evaluates the Boolean expression S to true. Then (w;w

0

) 2 E(S) i� there

is a set s of atomi modal parameters with s j= S and (w;w

0

) 2 R

i

for

eah R

i

2 s. The only modi�ations to K-World onern the reursive

alls for diamond formulae whih are more elaborate in the presene

of omplex modal parameters. For eah hSi in the set � of formulae

urrently onsidered, we guess an s with s j= S, and then onsider  

together with all � where [S

0

℄ � is in � and s j= S

0

.

For the sake of a suint presentation, we assume the input formula

' to ontain no disjuntion and no diamond-formulae. For � and S

sets of K

\;[

!

-formulae where S is losed under subformulae and single

negations, K

\;[

!

-World(�; S) returns true i�

� � is a maximally propositionally onsistent subset of S, i.e.,

{ � � S,

{ for eah : 2 S,  2 � i� : 62 �, and

{ for eah  

1

^  

2

2 S,  

1

^  

2

2 � i�  

1

2 � and  

2

2 �.

� For eah subformula : [S℄ 2 �, there exists a set s of modal

parameters with s j= S and a set �

 ;s

suh that

{ : 2 �

 ;s

,

{ for eah S

0

and �, if [S

0

℄ � 2 � and s j= S

0

, then � 2 �

 ;s

,

{ K

\;[

!

�World(�

 ;s

; S

0

) returns true, where S

0

is the losure

under subformulae and single negation of f� j [S

0

℄ � 2 � and

s j= S

0

g [ f: g.

Let l(') be the smallest set of formulae ontaining ' that is losed

under subformulae and single negation. The proof that a K

\;[

!

-formula

' is satis�able i� there exists a � � l(') with ' 2 � suh that

K

\;[

!

-World(�; l(')g)

returns true is analogous to the one for K-World. Just like K-World,

K

\;[

!

-World runs in PSpae (sine PSpae = NPSpae (Savith 1970),

the additional non-deterministi guessing of the set of modal parameters

s does not matter). Moreover,K is known to be PSpae-hard (Ladner 1977),

and we thus have the following result.
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Theorem 6.1 Satis�ability of K

[;\

!

-formulae is PSpae-omplete.

7 Conlusion

We have given a omplete piture of the omplexity of Boolean Modal

Logis, both with and without a bound on the number of modal pa-

rameters. The results for (fragments of) Boolean Modal Logi with an

unbounded number of modal parameters are summarised in Figure 2,

showing known results in grey.

NExpTime-hardness of K

(:);\

!

was rather surprising sine so far, in-

tersetion of atomi modal parameters (not of hainings/omposition of

modal parameters) is mostly onsidered to be \harmless" w.r.t. omplex-

ity. Interestingly, we were able to show that, if a bound m is imposed

on the number of atomi modal parameters, then full Boolean Modal

Logi K

:;\;[

m

beomes ExpTime-omplete. For this proof, we did not

use the automata-based approah beause we onsidered that extending

it to take are of omplex modal parameters was more involved than the

redution to K

u

n

that we used.

As future work, it may be interesting to extend our tehniques to

more expressive logis. For example, one may onsider arbitrary ombi-

nations of the Boolean operators on modal parameters with omposition

and onverse. Several results for suh logis are known from the area of

Propositional Dynami Logis (PDL). For example, Harel proves that

PDL extended with negation of modal parameters is undeidable using

a redution to the equivalene problem for relation algebra (Harel 1984).

It is not hard to see that a similar redution (of the equivalene prob-

lem of boolean algebras of relations with omposition only, see, e.g.,

Andreka et al. 2001) an be used to show that Boolean Modal Logi

extended with omposition of modal parameters is undeidable. On

the ontrary, it follows from Daneki's results on PDL with interse-

tion that K

\;[

!

extended with omposition is deidable in double Ex-

pTime (Daneki 1984). As we demonstrated by extending our results

to (K

!


K4

!

)

:

, our automata-based approah to proving ExpTime-

bounds an be onsidered exible. As a �rst step towards more expressive

no negation atomi negation full negation

� PSpae-ompl. ExpTime-ompl.

[ PSpae-ompl. ExpTime-ompl. NExpTime-ompl.

\ PSpae-ompl. NExpTime-ompl. NExpTime-ompl.

\ and [ PSpae-ompl. NExpTime-ompl. NExpTime-ompl.

FIGURE 2 Complexity of K

!

extended with various role onstrutors.
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logis, we hope that our approah an be \married" with the standard

automata-based deidability proedure for PDL thus yielding a deid-

ability result for PDL extended with atomi negation of modal param-

eters.

Aknowledgement

The authors would like to thank Franz Baader, Stephane Demri, Marus

Kraht, Agnes Kuruz, and Maarten Marx for fruitful disussions. The

�rst author was supported by the DFG Projet BA1122/3-1 \Combina-

tions of Modal and Desription Logis".

Referenes

Andreka, H., I. Nemeti, and I. Sain. 2001. Algebrai Logi. In Handbook of

Philosophial Logi. D. Reidel Publishing Co., 2 edition. Forthoming.

Berger, R. 1966. The undeidability of the dominoe problem. Mem. Amer.

Math. So. 66.

Blakburn, P., M. de Rijke, and Y. Venema. 2001. Modal Logi. Cam-

bridge: Cambridge University Press. Forthoming. Preprint available at

http://www.mlbook.org/.

B�orger, E., E. Gr�adel, and Y. Gurevih. 1997. The Classial Deision Problem.

Perspetives in Mathematial Logi. Springer-Verlag.

Daneki, S. 1984. Nondeterministi Propositional Dynami Logi with inter-

setion is deidable. In Pro. of the 5th Symp. on Computation Theory,

LNCS, Vol. 208, 34{53. Springer-Verlag.

Donini, F., M. Lenzerini, D. Nardi, and W. Nutt. 1991. The Complexity of

Conept Languages. In Pro. of KR-91. Boston, MA, USA.

Gargov, G., and S. Passy. 1987. A note on Boolean modal logi. In Mathe-

matial Logi and Appliations. Plenum Press.

Gargov, G., S. Passy, and T. Tinhev. 1987. Modal Environment for Boolean

Speulations. In Mathematial Logi and Appliations. Plenum Press.

Givan, R., D. MAllester, and S. Shalaby. 1991. Natural Language Based

Inferene Proedures Applied to Shubert's Steamroller. In Pro. of the

9th Nat. Conf. on Arti�ial Intelligene. MIT Press.

Goranko, V. 1987. Completeness and inompleteness in the bimodal base

L(R;�R). In Pro. of the Conf. on Mathematial Logi \Heyting '88",

Chaika, Bulgaria. Plenum Press.

Goranko, V. 1990. Modal De�nability in Enrihed Languages. Notre Dame

Journal of Formal Logi 31(1):81{105.

Gr�adel, E., P. Kolaitis, and M. Vardi. 1997. On the Deision Problem for

Two-Variable First-Order Logi. Bulletin of Symboli Logi 3:53{69.

Harel, D. 1984. Dynami Logi. In Handbook of Philosophial Logi, Volume

II. D. Reidel Publishers.



20 / Referenes

Humberstone, I. L. 1983. Inaessible Worlds. Notre Dame Journal of Formal

Logi 24(3):346{352.

Hustadt, U., and R. A. Shmidt. 2000. Issues of Deidability for Desription

Logis in the Framework of Resolution. In Automated Dedution in las-

sial and non-lassial logi, LNAI, Vol. 1761, 191{205. Springer-Verlag.

Knuth, D.E. 1968. The Art of omputer programming. Addison Wesley Publ.

Co., Reading, Massahussetts.

Ladner, R. E. 1977. The omputational omplexity of provability in systems

of modal propositional logi. SIAM J. of Computing 6(3):467{480.

Lutz, C., and U. Sattler. 2000a. Mary likes all Cats. In Pro. of

DL2000. CEUR-WS, No. 33. Proeedings online available from

http://SunSITE.Informatik.RWTH-Aahen.DE/Publiations/CEUR-

WS/Vol-33/.

Lutz, C., and U. Sattler. 2000b. The Complexity of Reasoning with

Boolean Modal Logis. LTCS-Report 00-02. Germany: LuFG Theoretial

Computer Siene, RWTH Aahen. See http://www-lti.informatik.rwth-

aahen.de/Forshung/Reports.html.

Passy, S., and T. Tinhev. 1991. An Essay in Combinatory Dynami Logi.

Information and Computation 93(2).

Sattler, U. 1996. A Conept Language Extended with Di�erent Kinds of

Transitive Roles. In 20. Deutshe Jahrestagung f�ur K�unstlihe Intelligenz,

ed. G. G�orz and S. H�olldobler, LNAI, Vol. 1137. Springer Verlag.

Savith, W. J. 1970. Relationsship between nondeterministi and deterministi

tape omplexities. J. of Computer and System Siene 4:177{192.

Shild, K. 1991. A Correspondene Theory for Terminologial Logis: Prelim-

inary Report. In Pro. of IJCAI-91, 466{471. Sydney.

Spaan, E. 1993. Complexity of Modal Logis. Dotoral dissertation, University

of Amsterdam.

van Benthem, J. F. A. K. 1983. Modal Logi and Classial Logi. Naples:

Bibliopolis.

Vardi, M. Y., and P. Wolper. 1986. Automata-theoreti tehniques for modal

logi of programs. Journal of Computer and System Sienes 32:183{221.

Carsten Lutz and Ulrike Sattler

LuFG Theoretial Computer Siene, RWTH Aahen

Ahornstr. 55, 52074 Aahen, Germany

flutz,sattlerg�s.rwth-aahen.de

http://www-lti.informatik.rwth-aahen.de/~lu/

http://www-lti.informatik.rwth-aahen.de/ti/uli-en.html


