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abstra
t. In this paper, we investigate the 
omplexity of rea-

soning with various Boolean Modal Logi
s. The main results are

that (i) adding negation of modal parameters to (multi-modal)

K makes reasoning ExpTime-
omplete and (ii) adding atomi


negation and 
onjun
tion to K even yields a NExpTime-
omplete

logi
. The last result is relativized by the fa
t that it depends

on an in�nite number of modal parameters to be available. If

the number of modal parameters is bounded, full Boolean Modal

Logi
 be
omes ExpTime-
omplete.

1 Motivation

Sin
e Modal Logi
s are an extension of Propositional Logi
, they provide

Boolean operators for 
onstru
ting 
omplex formulae. However, most

Modal Logi
s do not admit Boolean operators for 
onstru
ting 
om-

plex modal parameters to be used in the box and diamond operators.

This asymmetry is not present in Boolean Modal Logi
s, in whi
h box

and diamond quantify over arbitrary Boolean 
ombinations of atomi


modal parameters; see Gargov and Passy 1987. Boolean Modal Logi
s

have been 
onsidered in various forms and 
ontexts:

1. \Pure" Boolean Modal Logi
 has been studied in Gargov and Passy

1987. Negation and interse
tion of modal parameters o

ur in some vari-

ants of Propositional Dynami
 Logi
, see, e.g., Dane
ki 1984, Harel 1984,

Passy and Tin
hev 1991.

2. The modal box operator 
an be thought of as expressing ne
es-

sity. More pre
isely, when employing the usual Kripke Semanti
s, 2'

holds at a world w i� w

0

being a

essible from w implies that ' holds

at w

0

. Given this, it is obviously quite natural to de�ne a symmetri
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operator (sometimes 
alled \window operator") su
h that ' holds

at a world w i� ' holding at a world w

0

implies that w

0

is a

essi-

ble from w. Obviously, the window operator 
an be thought of as ex-

pressing suÆ
ien
y. Logi
s with this operator were investigated from

di�erent viewpoints by, e.g., Humberstone, Gargov et al., and Goranko

Humberstone 1983, Gargov et al. 1987, Goranko 1987, Goranko 1990. If

negation of modal parameters is available, the window operator 
omes

for free sin
e we 
an write

R

' as [:R℄:'.

3. There are several Des
ription Logi
s that provide \negation of roles"

whi
h 
orresponds to the negation of modal parameters, see, e.g. Hus-

tadt and S
hmidt 2000. Union and interse
tion of modal parameters are

also 
onsidered in Des
ription Logi
s and other KR formalisms, as is the

window operator; see Givan et al. 1991, Lutz and Sattler 2000a.

Although|as we just argued|logi
s involving Boolean operators on

modal parameters or the window operator are widely used, to the best of

our knowledge, 
omplexity results for this 
lass of logi
s have never been

obtained. In this paper, we 
lose the gap and determine the 
omplex-

ity of the satis�ability and validity problems for many Boolean Modal

Logi
s. In the �rst part of this paper (Se
tions 2 and 3), we investi-

gate the logi
 K

!

(K with a 
ountably in�nite number of a

essibility

relations) enri
hed with negation of modal parameters and show that

the afore mentioned inferen
e problems are ExpTime-
omplete using an

automata-theoreti
 approa
h. We then demonstrate the generality of

our approa
h by extending this result to the logi
 (K

!


K4

!

)

:

, i.e., to

the fusion of K

!

with K4

!

enri
hed with negation on relations. In the

se
ond part of this paper (Se
tions 4 and 5), we add other Boolean oper-

ators on roles. In doing so, one has the 
hoi
e to either restri
t negation

to atomi
 relations or to allow for full negation of relations.

We give a 
omplete list of 
omplexity results for the logi
s obtained

in this way, the 
entral result being that the 
ombination of (atomi
)

negation with interse
tion yields a logi
 whose inferen
e problems are

NExpTime-
omplete. The lower bound is obtained by a redu
tion of

a NExpTime-
omplete variant of the domino problem. The mentioned

result obviously implies that full Boolean Modal Logi
 K

:;\;[

!

is also

NExpTime-
omplete. However, the lower bound 
ru
ially depends on

the number of relations to be unbounded. Inspired by this observation, in

Se
tion 5, we supplement our result by showing that, for any �xed �nite

number of relations, full Boolean Modal Logi
 is ExpTime-
omplete. The

upper bound is proved by a redu
tion to multi-modal K (with �nitely

many relations) enri
hed with the universal modality.

To 
omplete our investigation, in Se
tion 6 we show that K

!

with
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union and interse
tion of roles and without negation is of the same


omplexity as pure K

!

, i.e., PSpa
e-
omplete. Summing up, we thus

have tight 
omplexity bounds for K

!

extended with any 
ombination of

Boolean operators on roles. This paper is a

ompanied by a te
hni
al

report whi
h 
ontains all proofs and te
hni
al details (Lutz and Sattler

2000b).

2 Preliminaries

We de�ne syntax and semanti
s ofK

:

!

, introdu
e looping automata, and

dis
uss some model- and 
omplexity-theoreti
 properties of K

:

!

.

De�nition 2.1 Given a 
ountably in�nite set of propositional variables

� and a 
ountably in�nite set of atomi
 modal parameters R

1

; R

2

; : : :, the

set of K

:

!

-formulae is the smallest set that (i) 
ontains the propositional

variables in �, (ii) is 
losed under Boolean 
onne
tives ^, _, and :,

and (iii) if it 
ontains ', then it also 
ontains hR

i

i', [R

i

℄', h:R

i

i',

and [:R

i

℄' for i � 1. The set of K

:

!

-modal parameters is the smallest

set 
ontaining all atomi
 modal parameters and their negations (i.e.,

expressions of the form :R

i

).

K

:

!

semanti
s is given by Kripke stru
tures M = hW;�;R

1

; : : :i;

where W is a set of worlds, � is a mapping from the set of propositional

variables into sets of worlds (i.e., for ea
h p 2 �, �(p) is the set of

worlds in whi
h p holds), and R

i

is a binary relation on the worlds W ,

the so-
alled a

essibility relation for the atomi
 modal parameter R

i

.

The semanti
s is then given as follows, where, for a K

:

!

-formula ', a

Kripke stru
ture M, and a world w 2 W ; the expression M; w j= ' is

read as \' holds in M in world w".

M; w j= p i� w 2 �(p) for p 2 �

M; w j= '

1

^ '

2

i� M; w j= '

1

and M; w j= '

2

M; w j= '

1

_ '

2

i� M; w j= '

1

or M; w j= '

2

M; w j= :' i� M; w 6j= '

M; w j= hR

i

i' i� 9w

0

2 W with (w;w

0

) 2 R

i

and M; w

0

j= '

M; w j= [R

i

℄' i� 8w

0

2 W , if (w;w

0

) 2 R

i

; then M; w

0

j= '

M; w j= h:R

i

i' i� 9w

0

2 W with (w;w

0

) 62 R

i

and M; w

0

j= '

M; w j= [:R

i

℄' i� 8w

0

2 W , if (w;w

0

) 62 R

i

; then M; w

0

j= '

AK

:

!

-formula ' is satis�able i� there is a Kripke stru
tureM with a set

of worlds W and a world w 2W su
h that M; w j= '. Su
h a stru
ture

is 
alled a model of '. TwoK

:

!

-formulae ' and  are equivalent (written

' �  ) i� M; w j= ' ()M; w j=  for all Kripke stru
tures M with

set of worldsW and all worlds w 2 W . Let R be a modal parameter. We

write M; (w;w

0

) j= R to express that (i) (w;w

0

) 2 R

i

if R is an atomi
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modal parameter R

i

and (ii) (w;w

0

) =2 R

i

if R = :R

i

for an atomi


modal parameter R

i

.

Throughout this paper, we denote modal parameters by R and S. For

the sake of brevity, we will often omit the word \modal" when talking

about modal parameters. As usual, we write ' !  for :' _  and

' $  for (' !  ) ^ ( ! '). The semanti
s of the window operator

dis
ussed in the motivation 
an formally be de�ned as follows:

M; w j=

R

i

' i� for all w

0

2 W , if M; w

0

j= '; then (w;w

0

) 2 R

i

It is easy to see that

R

i

' � [:R

i

℄:', and, hen
e, the window operator

is expressible in K

:

!

.

It is not hard to see that satis�ability of K

:

!

-formulae is ExpTime-

hard and in NExpTime: (i) the logi
K

u

, i.e., uni-modalK enri
hed with

the universal modality, is a fragment of K

:

!

: Just repla
e

� every o

urren
e of [u℄' by [R℄' ^ [:R℄' and

� every o

urren
e of hui' by hRi' _ h:Ri'

where [u℄ and hui denote the universal modality, and R is an arbitrary

atomi
 modal parameter. This translation may 
learly lead to an expo-

nential blowup in the formula. However, in the 
lass of formulae used

to prove the ExpTime-hardness of K

u

in Spaan 1993, [u℄ o

urs only

on
e, and hui does not o

ur. In this 
ase, the translation is linear,

and, thus, satis�ability of K

:

!

-
on
epts is ExpTime-hard; (ii) when us-

ing the standard translation of modal formulae into �rst order formulae

(see, e.g, Bla
kburn et al. 2001, van Benthem 1983), K

:

!

-formulae are

translated to �rst-order formulae with at most 2 variables. Sin
e L

2

,

the two-variable fragment of �rst-order logi
, is de
idable in NExpTime

(Gr�adel et al. 1997), this implies that satis�ability of K

:

!

-formulae is

also in NExpTime. However, these two 
omplexity bounds are obviously

not tight. One main 
ontribution of this paper is to give an ExpTime-

algorithm for the satis�ability of K

:

!

-formulae, thus tightening the 
om-

plexity bounds.

For devising a satis�ability algorithm, it is interesting to know what

kind of models need to be 
onsidered. In Gargov et al. 1987, it is proved

that K

:

!

has the �nite model property.K

:

!

does not have the tree model

property sin
e, e.g., the formula p ^ [:R℄:p has no tree model. How-

ever, we will show that there exists a one-to-one 
orresponden
e between

models and so-
alled Hintikka-trees whi
h we then use to de
ide satis�-

ability (and thus validity) of K

:

!

-formulae. We do this by building, for

ea
h K

:

!

-formula ', a looping automaton A

'

whi
h a

epts the empty

(tree-) language i� ' is unsatis�able. Hen
e we introdu
e trees, looping

automata, and the language they a

ept here.
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De�nition 2.2 LetM be a set and k � 1. A k-aryM-tree is a mapping

T : f1; : : : ; kg

�

7!M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2

M . Intuitively, the node �i is the i-th 
hild of �. We use � to denote the

empty word (
orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -trees is de�ned

by a set Q of states, an alphabetM , a subset I � Q of initial states, and

a transition relation � � Q �M �Q

k

. A run of A on an M -tree T is

a mapping r : f1; : : : ; kg

�

7! Q with (r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

:

A looping automaton a

epts all thoseM -trees for whi
h a run exists,

i.e., the language L(A) of M -trees a

epted by A is

L(A) = fT j There is a run from A on Tg:

Sin
e looping automata are spe
ial B�u
hi automata, emptiness of their

language 
an e�e
tively be tested using the well-known (quadrati
) empti-

ness test for B�u
hi-automata Vardi and Wolper 1986. However, for loop-

ing automata, this algorithm 
an be spe
ialized into a simpler (linear)

one.

3 Negation of Modal Parameters

We show that satis�ability of K

:

!

-formulae is de
idable in exponential

time. For this purpose, we �rst abstra
t from models of K

:

!

-formulae

to Hintikka-trees, and then show how to 
onstru
t a looping automaton

that a

epts exa
tly Hintikka-trees.

Notation: We assume all formulae to be in negation normal form

(NNF), i.e., negation o

urs only in front of atomi
 parameters and

propositional variables. Ea
h formula 
an easily be transformed into an

equivalent one in NNF by pushing negation inwards, employing de Mor-

gan's law and the duality between [R℄ and hRi and between [:R℄ and

h:Ri. We use �' to denote the NNF of :'.

Sin
e we treat modalities with negated and unnegated modal param-

eters symmetri
ally, we introdu
e the notion

h

�

Ri' =

�

h:Ri' if R is atomi
,

hSi' if R = :S for some atomi
 parameter S

and analogously [

�

R℄'. Let 
l(') denote the set of ''s subformulae and

the NNFs of their negations, i.e.,


l(') := f j  is a subformula of ' or

 = �� for a subformula � of 'g:

Obviously, the 
ardinality of 
l(') is linear in the length of '. We assume

that diamond-formulae hRi in 
l(') are linearly ordered, and that

D

(i)
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yields the i-th diamond-formula in 
l(').

De�nition 3.1 Hintikka-set and Hintikka-tree

Let ' be a K

:

!

-formula and k the number of diamond-formulae in


l('). A set 	 � 
l(') is a Hintikka-set i� it satis�es the following


onditions:

(H1) if '

1

^ '

2

2 	, then f'

1

; '

2

g � 	,

(H2) if '

1

_ '

2

2 	, then f'

1

; '

2

g \	 6= ;, and

(H3) f ;

�

 g 6� 	 for all K

:

!

-formulae  .

A k-ary 2


l(')

-tree T is a Hintikka-tree for ' i� T (�) is a Hintikka-set

for ea
h node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

,

the following 
onditions:

(H4) ' 2 T (�),

(H5) if fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi ,

then f ; �

1

; : : : ; �

m

g � T (�i)

(H6) if

D

(i) 62 T (�), then T (�i) = ;,

(H7) if [R℄ � 2 T (�), then � 2 T (�), �� 2 T (�), or T (�) = ;, and

(H8) if f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�), then  2 T (�).

For (H5), (H7), and (H8), re
all that R denotes an atomi
 parameter

or the negation of an atomi
 parameter. The following lemma shows the


onne
tion between models and Hintikka trees.

Lemma 3.2 A K

:

!

-formula ' is satis�able i� ' has a Hintikka-tree.

Thus, we have that Hintikka-trees are appropriate abstra
tions of models

of K

:

!

-formulae. Hintikka-trees enjoy the ni
e property that they are

trees, and we 
an thus de�ne, for a K

:

!

-formula ', a tree-automaton A

'

that a

epts exa
tly the Hintikka-trees for '.

De�nition 3.3 For a K

:

!

-formula ' with k diamond-formulae in 
l('),

the looping automaton A

'

= (Q; 2


l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 
l(')g;

S = f[R℄ j [R℄ 2 
l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2


l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following 
onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s, and
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4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

D

(i) = hRi 2 	 implies  2 	

i

and � 2 	

i

for ea
h [R℄ � 2 	

D

(i) = hRi 62 	 implies 	

i

= ;:

Note that, sin
e A

'

is a looping automata, every run is a

epting. As

a 
onsequen
e of the following lemma and Lemma 3.2, we 
an redu
e

satis�ability of K

:

!

-formulae to the emptyness of the language a

epted

by looping automata.

Lemma 3.4 T is a Hintikka-tree for a K

:

!

-formula ' i� T 2 L(A

'

).

Obviously, the 
ardinality of 
l(') is linear in the length of '. Hen
e, by

de�nition of A

'

, the 
ardinality of ea
h 
omponent of A

'

is exponential

in the length of ', and thus the size ofA

'

is also exponential in the length

of '. This fa
t together with Lemma 3.2, Lemma 3.4, and the fa
t that

emptiness of the language a

epted by a looping automaton A

'


an be

tested in time linear in the size of A

'

(Vardi and Wolper 1986) implies

that satis�ability of K

:

!

-
on
epts is in ExpTime. We already noted in

Se
tion 2 that satis�ability of K

:

!

-
on
epts is also ExpTime-hard and,

hen
e, we obtain the following theorem:

Theorem 3.5 Satis�ability of K

:

!

-formulae is ExpTime-
omplete.

Is our approa
h still of use if we repla
e K

!

by some logi
 with a re-

stri
ted 
lass of frames? In the following, we perform a 
ase study by

extending the presented algorithm to deal with (K

!


K4

!

)

:

-formulae,

where (K

!


K4

!

)

:

denotes the fusion ofK

!

andK4

!

enri
hed with the

negation of modal parameters. More pre
isely, (K

!


K4

!

)

:

provides

two disjoint sets of atomi
 modal parameters R

1

; R

2

; : : : and S

1

; S

2

; : : : ,

where the latter are 
alled transitive modal parameters. Moreover, a
-


essibility relations 
orresponding to transitive modal parameters are

required to be transitive. Apart from demonstrating the generality of

our approa
h, the logi
 (K

!


 K4

!

)

:

is very natural if viewed as a

Des
ription Logi
 (Lutz and Sattler 2000b, Sattler 1996).

To de�ne Hintikka trees for (K

!


K4

!

)

:

, we introdu
e 
ounterparts

for (H5) and (H8) whi
h deal with transitive modal parameters.

De�nition 3.6 A (K

!


K4

!

)

:

-Hintikka-tree is a Hintikka-tree as in

De�nition 3.1 extended with the following two 
onditions:
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(H5b) if, for a trans. parameter S

j

, we have fhS

j

i ; [S

j

℄ �

1

; : : : ; [S

j

℄ �

m

g �

T (�) and

D

(i) = hS

j

i , then f ; �

1

; : : : ; �

m

; [S

j

℄ �

1

; : : : ; [S

j

℄ �

m

g �

T (�i).

(H8b) if, for a trans. parameter S

j

, we have f[S

j

℄ ; [:S

j

℄ �g � T (�) and

�� 2 T (�), then f[S

j

℄ ;  g � T (�).

We 
an now \lift" Lemma 3.2 to the (K

!


K4

!

)

:


ase.

Lemma 3.7 A (K

!


K4

!

)

:

-formula ' is satis�able i� ' has a (K

!




K4

!

)

:

-Hintikka-tree.

It remains to 
onstru
t a looping automaton that a

epts exa
tly the

Hintikka-trees for a given (K

!


K4

!

)

:

-formula '. This 
onstru
tion is

the same as the one in De�ntion 3.3, with an additional �fth 
ondition

in the de�nition of Q as a translation of (H8b), and an additional

impli
ation in the de�nition of � as a translation of (H5b).

De�nition 3.8 Let A

'

= (Q; 2


l(')

;�; I) be the looping automaton


orresponding to a (K

!


K4

!

)

:

-formula ' as de�ned in Lemma 3.3.

De�ne a new looping automaton A

0

'

:= (Q

0

; 2


l(')

;�

0

; I) by setting

� Q

0

to the maximal subset of Q su
h that, for all (	; p; s) 2 Q

0

,

if f[S

j

℄ ; [:S

j

℄ �g 2 p and �� 2 	 for a transitive parameter S

j

,

then f ; [S

j

℄ g 2 	.

� �

0

to the maximal subset of Q su
h that, for all

((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 �

0

;

if

D

(i) = hS

j

i 2 	 for a transitive parameter S, then [S

j

℄ � 2 	

i

for ea
h [S

j

℄ � 2 	.

Proving an analogon to Lemma 3.4, we obtain the following theorem:

Theorem 3.9 Satis�ability of (K

!


K4

!

)

:

-formulae is ExpTime-
omp-

lete.

4 Adding Interse
tion and Union of Modal Parameters

In this se
tion, we investigate the 
omplexity of adding interse
tion and

union of modal parameters to the logi
 K

:

!

. In doing this, one has the


hoi
e to either restri
t the appli
ability of negation to atomi
 modal

parameters or allowing for full negation w.r.t. modal parameters. In the

latter 
ase, adding union is obviously equivalent to adding interse
tion

or both. We start with the smallest extension, i.e., we add either in-

terse
tion or union on modal parameters while restri
ting negation to

atomi
 parameters.
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De�nition 4.1 A K

(:);[

!

-formula (K

(:);\

!

-formula) is a K

:

!

-formula

whi
h, additionally, allows for modal parameters of the form S

1

[� � �[S

k

(S

1

\� � �\S

k

), where ea
h S

i

is an atomi
 or a negated atomi
 parameter.

The semanti
s of the new modal operators is de�ned as follows:

M; w j= hS

1

[ � � � [ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg and M; w

0

j= '

M; w j= [S

1

[ � � � [ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg; then M; w

0

j= '

M; w j= hS

1

\ � � � \ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for all 1 � i � k and M; w

0

j= '

M; w j= [S

1

\ � � � \ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for all 1 � i � k; then M; w

0

j= '

Let us �rst investigate the logi
 K

(:);[

!

. It is not hard to see that

[S

1

[ � � � [ S

k

℄' � [S

1

℄' ^ � � � ^ [S

k

℄' and

hS

1

[ � � � [ S

k

i' � hS

1

i' _ � � � _ [S

k

℄';

i.e., satis�ability of K

(:);[

!

-formulae 
an be redu
ed to satis�ability of

K

:

!

-formulae. However, this naive redu
tion might lead to an exponential

blow-up of the formula. In order to avoid this blow-up, we 
an pro
eed as

follows to transform a K

(:);[

!

-formula  into an equivalent K

:

!

-formula

b

 whose length is linear in the length of  : As the �rst step, re
ursively

apply the following substitutions to  from the inside to the outside (i.e.,

no union on modal parameters o

urs in ')

[S

1

[ � � � [ S

k

℄' ; [S

1

℄ p

'

^ � � � ^ [S

k

℄ p

'

and

hS

1

[ � � � [ S

k

i' ; hS

1

i p

'

_ � � � _ [S

k

℄ p

'

where p

'

is a new propositional variable. Call the result of these substi-

tutions  

0

. Se
ondly, use a new modal parameter R and de�ne

b

 :=  

0

^

^

p

'

o

urs in  

0

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ')

It 
an easily be seen that this gives the following result.

Theorem 4.2 Satis�ability of K

(:);[

!

-formulae is ExpTime-
omplete.

Next, we show that satis�ability of K

(:);\

!

-formulae is NExpTime-

hard. The proof is given by a redu
tion of a NExpTime-
omplete variant

of the well-known, unde
idable domino problem.

A domino problem (Berger 1966, Knuth 1968) is given by a �nite set

of domino types. All domino types are of the same size, ea
h type has a

quadrati
 shape and 
olored edges. Of ea
h type, an unlimited number
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of dominoe is available. The problem in the original domino problem is

to arrange these dominoe to 
over the plane without holes or overlapping

su
h that adja
ent dominoe have identi
al 
olors on their tou
hing edges

(rotation of the dominoe is not allowed). In the NExpTime-
omplete

variant of the domino problem that we use, the task is not to tile the

whole plane, but to tile a 2

n+1

�2

n+1

-torus, i.e., a 2

n+1

�2

n+1

-re
tangle

whose edges are \glued" together. See, e.g., Berger 1966, Knuth 1968 for

unde
idable versions of the domino problem and B�orger et al. 1997 for

bounded variants.

De�nition 4.3 Let D = (D;H; V ) be a domino system, where D is a

�nite set of domino types and H;V � D � D represent the horizontal

and verti
al mat
hing 
onditions. For s; t 2 N, let U(s; t) be the torus

Z

s

� Z

t

, where Z

n

denotes the set f0; : : : ; n� 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe (with n � s). We say that D tiles U(s; t) with

initial 
ondition a i� there exists a mapping � : U(s; t)! D su
h that,

for all (x; y) 2 U(s; t):

� if �(x; y) = d and �(x�

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Su
h a mapping � is 
alled a

solution for D w.r.t. a.

The following is a 
onsequen
e of Theorem 6.1.2 in B�orger et al. 1997

(see also Lutz and Sattler 2000b).

Theorem 4.4 There exists a domino system D su
h that the following

is a NExpTime-hard problem: Given an initial 
ondition a = a

0

� � � a

n�1

of length n, does D tile the torus U(2

n+1

; 2

n+1

) with initial 
ondition a?

We redu
e the NExpTime-
omplete variant of the domino problem from

Theorem 4.4 to the satis�ability of K

(:);\

!

-formulae. Given a domino

system D = (D;H; V ) and an initial 
ondition a = a

0

; : : : ; a

n�1

, we

de�ne a redu
tion formula '

(D;a)

su
h that '

(D;a)

is satis�able i� D

tiles the torus U(2

n+1

; 2

n+1

) with initial 
ondition a. The subformulae

of the redu
tion formula

'(D; a) = Count

x

^ Count

y

^ Stable ^Unique ^ Tiling ^ Init


an be found in Figure 1, where Count

y

is Count

x

with R

x

repla
ed

by R

y

, x

j

by y

j

, and x

k

by y

k

. In this �gure, [u℄' is an abbreviation

for [R℄' ^ [:R℄', where R is an arbitrary atomi
 modal parameter.

Obviously, in ea
h model of [u℄', ea
h world satis�es '. In Init, we write
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Count

x

= [u℄

h

n

^

k=0

�

(

k�1

^

j=0

x

j

)! (x

k

$ [R

x

℄:x

k

)

�

^

n

^

k=0

�

(

k�1

_

j=0

:x

j

)! (x

k

$ [R

x

℄x

k

)

�

^ hR

x

i true

i

Stable = [u℄

h

n

^

k=0

(x

k

! [R

y

℄x

k

) ^

n

^

k=0

(:x

k

! [R

y

℄:x

k

) ^

n

^

k=0

(y

k

! [R

x

℄ y

k

) ^

n

^

k=0

(:y

k

! [R

x

℄:y

k

)

i

Unique = [u℄

h

n

^

k=0

�

(x

k

! [:R

k

℄:x

k

) ^ (:x

k

! [:R

k

℄x

k

)

�

^

n

^

k=0

�

(y

k

! [:S

k

℄:y

k

) ^ (:y

k

! [:S

k

℄ y

k

)

�

^

^

d2D

p

d

! [R

0

\ � � � \R

n

\ S

0

\ � � � \ S

n

℄ p

d

i

Tiling = [u℄

h

(

_

d2D

p

d

) ^

^

d2D

^

d

0

2Dnfdg

:(p

d

^ p

d

0

) ^

^

d2D

p

d

!

�

[R

x

℄

_

(d;d

0

)2H

p

d

0

�

^

^

d2D

p

d

!

�

[R

y

℄

_

(d;d

0

)2G

p

d

0

��

Init =

n

^

k=0

(:x

i

^ :y

i

) ^ p

w

0

^ [R

x

℄ p

w

1

^ � � � ^ [R

x

℄

n�1

p

w

n�1

FIGURE 1 Sub-formulae of '

(D;a)

for D = (D;H;V ) and a = a

0

; : : : ; a

n�1

.

[R℄

n

' to denote the n-fold nesting of [R℄. The strategy of the redu
tion

is to de�ne the redu
tion formula '

(D;a)

su
h that, for every model M

of '

(D;a)

with set of worlds W ,

1. there exists a propositional variable p

d

for every domino type d 2

D su
h that ea
h w 2 W is in the extension of p

d

for exa
tly one

d 2 D (�rst line of Tiling),

2. for ea
h point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a 
or-

responding set of worlds fw

1

; : : : ; w

k

g � W with k � 1 and a



12 /

d 2 D su
h that all w

1

; : : : ; w

k

are in the extension of p

d

(Count

x

,

Count

y

, Stable, and Unique formulae),

3. the horizontal and verti
al 
onditions V and H are satis�ed w.r.t.

sets of worlds representing points in the plane (se
ond and third

line of Tiling), and

4. the initial 
ondition is satis�ed (Init).

Properties 1, 3, and 4 are enfor
ed in a standard way using K for-

mulae. Property 2, however, needs some explanation. Usually, domino-

redu
tions axiomatize a \grid" in order to 
apture the stru
ture of the

torus. As Property 2 indi
ates, we employ a di�erent strategy: Ea
h

world in ea
h model of '

(D;a)


orresponds to a point (i; j) in the torus.

The number i is binarily en
oded by the propositional variables x

0

; : : : ; x

n

while the number j is en
oded by the propositional variables y

0

; : : : ; y

n

.

We use standard binary in
rementation modulo 2

n+1

to ensure that, for

every world w 
orresponding to a position (i; j), there exists a world w

1

su
h that w

1


orresponds to (i �

2

n+1
1; j) and M; (w;w

1

) j= R

x

, and a

world w

2

su
h that w

2


orresponds to (i; j�

2

n+1
1) andM; (w;w

2

) j= R

y

.

The Count

x

and Count

y

formulae en
ode the in
rementation of the one

dimension while the Stable formula ensures that the other dimension

does not 
hange. It remains to guarantee that every two worlds 
orre-

sponding to the same position are labeled with the same domino. This

task is a

omplished by the Unique formula whi
h is the only one to use


onjun
tion of modal parameters and the only one to use negation for

a purpose di�erent from expressing the universal modality. In order to

understand the Unique formula, it may be helpful to read subformulae

of the form [:R℄:' as

R

'.

Proposition 4.5 A domino system D tiles the torus U(2

n+1

; 2

n+1

) with

initial 
ondition a = a

0

; : : : ; a

n�1

i� '

(D;a)

is satis�able.

Together with Theorem 4.4, we obtain a NExpTime lower bound for

K

(:);\

!

-formulae. The 
orresponding upper bound follows from the fa
t

that the translation of K

:

!

-formulae to L

2

-formulae mentioned in Se
-

tion 2 
an also be applied to K

(:);\

!

-formulae.

Theorem 4.6 Satis�ability of K

(:);\

!

-formulae is NExpTime-
omplete.

5 Full Boolean Modal Logi


In this se
tion, we investigate the 
omplexity of full Boolean Modal

Logi
. Let us start with introdu
ing this logi
 formally.
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De�nition 5.1 A 
omplex modal parameter is a Boolean formula of

atomi
 modal parameters. We use K

:;\;[

!

to denote the extension of K

!

with 
omplex modal parameters. Let M = hW;�;R

1

; : : :i be a Kripke

stru
ture, and S a (possibly 
omplex) modal parameter. Then the ex-

tension E(S) is indu
tively de�ned as follows:

if S = R

i

(i.e., S is atomi
) then E(S) = R

i

if S = :S

0

then E(S) = (W �W ) n E(S

0

)

if S = S

1

\ S

2

then E(S) = E(S

1

) \ E(S

2

)

if S = S

1

[ S

2

then E(S) = E(S

1

) [ E(S

2

)

The semanti
s of formulae is extended as follows:

M; w j= hSi' i� 9w

0

2W with (w;w

0

) 2 E(S) and M; w

0

j= '

M; w j= [S℄' i� 8w

0

2W , if (w;w

0

) 2 E(S), then M; w

0

j= '

We write M; (w;w

0

) j= S i� (w;w

0

) 2 E(S).

From Theorem 4.6 and the standard tranlation of K

:;\;[

!

into L

2

, we

easily obtain the following result:

Theorem 5.2 Satis�ability of K

:;\;[

!

-formulae is NExpTime-
omplete.

However, it is interesting to note that the NExpTime redu
tion used to

prove Theorem 4.6 
ru
ially depends on the fa
t that an in�nite number

of modal parameters is available: Sin
e the size of the torus to be tiled is

not bounded, there exists no upper bound for the number of the R

i

and

S

i

parameters used for the redu
tion either. Although Boolean Modal

Logi
s usually provide an in�nite number of modal parameters (see, e.g.,

Gargov and Passy 1987), the question whether NExpTime-hardness 
an

still be obtained if only a bounded number of modal parameters is avail-

able is natural. In the remainder of this se
tion, we answer this question

by showing that satis�ability and validity of K

:;\;[

m

, i.e., full Boolean

Modal Logi
 with a �xed number m of modal parameters, is ExpTime-


omplete. The upper bound is proved by a redu
tion to multi-modal K

enri
hed with the universal modality.

We show that satis�ability of K

:;\;[

m

-formulae 
an be redu
ed to

satis�ability of K

u

n

-formulae (i.e., formulae of multi-modal K enri
hed

with the universal modality) by giving a series of polynomial redu
tion

steps. We do not introdu
e K

u

n

formally but refer the reader to, e.g.,

Spaan 1993. The following notions are 
entral to several of the redu
tion

steps.

De�nition 5.3 A Kripke stru
ture M = hW;�;R

1

; : : :R

m

i is 
alled

simple i� we have R

i

\ R

j

= ; for all 1 � i < j � m. M is 
alled
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omplete i�, for all w;w

0

2 W , there exists a unique i with 1 � i � m

su
h that (w;w

0

) 2 R

i

. A formula (of any logi
 de�ned in this paper) is


alled s-satis�able i� it has a model whi
h is a simple Kripke stru
ture.

Similarly, a formula is 
alled 
-satis�able i� it has a model whi
h is a


omplete Kripke stru
ture.

Note that every 
omplete Kripke stru
ture is also simple. We now de-

s
ribe the redu
tion steps in detail. Let ' be a K

:;\;[

m

-formula whose

satis�ability is to be de
ided and let R

1

; : : : ; R

m

be the modal parame-

ters of K

:;\;[

m

.

Step 1. Convert all modal parameters in ' to disjun
tive normal form

using a truth table and one disjun
t for ea
h line in the truth table that

yields true. If the \empty disjun
tion" is obtained when 
onverting a

modal parameter S, then repla
e every o

urren
e of hSi with false

and every o

urren
e of [S℄ with true. Call the result of the 
onversion

'

1

. The length of '

1

is linear in the length of ' sin
e the number m

of atomi
 modal parameters is �xed (and the 
onversion 
an be done in

linear time). It is easy to see that '

1

is satis�able i� ' is satis�able.

Sin
e the 
onversion to DNF was done using a truth table, ea
h

disjun
t o

urring in a modal parameter in '

1

is a relational type, i.e.,

of the form

S

1

\ � � � \ S

m

with S

i

= R

i

or S

i

= :R

i

for 1 � i � m:

Let � be the set of all relational types. As is easily seen, ifM; (w;w

0

) j= S

for some Kripke stru
ture M with set of worlds W , w;w

0

2 W , and

S 2 �, then, for every atomi
 modal parameters R

i

, this determines

whether M; (w;w

0

) j= R

i

holds. Hen
e, for every w;w

0

2 W , we have

M; (w;w

0

) j= S for exa
tly one S 2 �.

Step 2. We redu
e satis�ability ofK

:;\;[

m

-formulae of the form of '

1

(i.e,

the modal parameters are in DNF and hen
e [ does not appear nested

inside other operators) to the satis�ability of K

(:);\

m

-formulae in whi
h

all modal parameters are relational types. It is not hard to see that this


an be done as in Se
tion 4, where K

(:);[

!

is redu
ed to K

:

!

: In the

redu
tion, just repla
e the formula [R℄(p

'

$ ') ^ [:R℄(p

'

$ ') with

V

S2�

[S℄(p

'

$ ').

1

The redu
tion 
an again be done in linear time sin
e

m is �xed. The K

(:);\

m

-formula obtained by 
onverting '

1

is 
alled '

2

.

Step 3. We redu
e satis�ability of K

(:);\

m

-formulae of the form of '

2

to


-satis�ability of K

2

m

-formulae. Set n := 2

m

and let K

1

; : : : ;K

n

be the

1

This redu
tion ensures that all modal parameters in the resulting formula are

relational types.
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atomi
 modal parameters of the logi
 K

n

. Let r be some bije
tion be-

tween � and the set fK

1

; : : : ;K

n

g. The formula '

3

is obtained from '

2

by repla
ing ea
h element S of � in '

2

with r(S). Considering the spe
ial

synta
ti
 form of '

2

and the de�nitions of � and of 
-satis�ability, it is

easy to see that '

2

is satis�able i� '

3

is 
-satis�able. Furthermore, the

redu
tion is obviously linear. Note that using 2

m

instead of m modal

parameters does not spoil the redu
tion sin
e, ultimately, our redu
-

tion goes to satis�ability of multi-modal K enri
hed with the universal

modality, and this logi
 is known to be in ExpTime for any �xed number

of modalities (Spaan 1993).

Step 4. We redu
e 
-satis�ability of K

n

-formulae to s-satis�ability of

K

u

n

-formulae. De�ne '

4

as the 
onjun
tion of '

3

with the formula

� := [u℄

�

^

 

1

;:::; 

n

subformulae of '

3

[K

1

℄ 

1

^� � �^[K

n

℄ 

n

! [u℄( 

1

_� � �_ 

n

)

�

Note that the length of '

4

is polynomial in the length j'

3

j of '

3

: The

number of subformulae of '

3

is bounded by j'

3

j; hen
e, � 
onsists of at

most j'

3

j

`


onjun
ts, where ` is a 
onstant sin
e the number of modal pa-

rameters is �xed. Let us prove that '

3

is 
-satis�able i� '

4

is s-satis�able.

The \only if" dire
tion is straightforward: Let M be a 
omplete model

for '

3

. Obviously, M is also simple. Moreover, using the fa
t that M

is 
omplete, it is straightforward to 
he
k that M is a model for '

4

. It

remains to prove the \if" dire
tion. Let M = hW;�;K

1

; : : : ;K

n

i be a

simple model for '

4

. We �rst show that

Claim. For ea
h w;w

0

2W , there exists an ` with 1 � ` � n su
h that,

for all subformulae  of '

3

, M; w j= [K

`

℄ implies M; w

0

j=  .

Assume to the 
ontrary that, for some w;w

0

2 W , there exist no ` as in

the 
laim. Hen
e, for ea
h i with 1 � i � n, there exists a subformula �

i

of '

3

su
h that M; w j= [K

i

℄�

i

and M; w

0

6j= �

i

. Sin
e M is a model for

�, we 
learly have

M; w j= [K

1

℄�

1

^ � � � ^ [K

n

℄�

n

! [u℄(�

1

_ � � � _ �

n

):

This is obviously a 
ontradi
tion to the fa
t that M; w 6j= �

1

_ � � � _ �

n

whi
h proves the 
laim.

Extend the Kripke stru
ture M to M

0

= hW;�;K

0

1

; : : : ;K

0

n

i as follows:

For any w;w

0

2 W with (w;w

0

) =2 K

i

for all i with 1 � i � n, augment

K

`

with the tuple (w;w

0

), where ` is as in the 
laim. Obviously, M

0

is


omplete. It is now a matter of routine to prove that M; w j=  implies

M

0

; w j=  for all subformulae  of '

3

. The proof is by indu
tion over

the stru
ture of  . The only interesting 
ase is:
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 = [K

i

℄ 

0

. Let (w;w

0

) 2 K

0

i

. We need to show that M

0

; w

0

j=  

0

.

First assume that (w;w

0

) 2 K

i

. Sin
e M; w j=  , this implies M; w

0

j=

 

0

. By indu
tion, we have M

0

; w

0

j=  

0

and are done. Now assume

(w;w

0

) 2 K

0

i

n K

i

. By de�nition of K

0

i

, we have that M; w j= [K

i

℄�

implies M; w

0

j= � for all subformulae � of '

3

. Sin
e  is a subformula

of '

3

, we haveM; w

0

j=  

0

. It remains to apply the indu
tion hypothesis.

Sin
eM is a model for '

4

, we have thatM

0

is a model for '

3

. ❏

Step 5. It remains to prove that s-satis�ability of K

u

n

-formulae is de-


idable in ExpTime. This is, however, an easy 
onsequen
e of the fa
ts

that satis�ability of K

u

n

-formulae is in ExpTime and that K

u

n

has the

tree model property: sin
e every tree model is obviously simple, satis�-

ability 
oin
ides with s-satis�ability.

The sequen
e of redu
tions given above yields an ExpTime upper bound

for the satis�ability of K

:;\;[

m

-formulae. Sin
e the lower bound for K

:

!

already holds if we have only a single modal parameter available (again,

see Spaan 1993), we obtain the following theorem.

Theorem 5.4 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-
omplete.

6 Boolean Modal Logi
s without Negation

So far, we have only 
onsidered logi
s with negation of modal parameters.

We will 
omplete our investigation by showing that adding interse
tion

and union of modal parameters does not in
rease the 
omplexity of K

!

(and thus neither the 
omplexity of K

m

is in
reased by this extension).

The fa
t that the extension of K

!

with interse
tion of modal parame-

ters (i.e., K

\

!

) is still in PSpa
e is an immediate 
onsequen
e of PSpa
e-


ompleteness of the Des
ription Logi
 ALCR (Donini et al. 1991) and

the fa
t that ALCR is a notational variant of K

\

!

(S
hild 1991). More-

over, it is folklore that K

!

extended with union of modal parameters

(i.e., K

[

!

) is also in PSpa
e (however, the redu
tion from Se
tion 4 
an-

not be applied sin
e the universal modality is not available). For both

union and interse
tion, we go into more detail.

With K

\;[

!

, we denote the variant of K

:;\;[

!

obtained by disallowing

the use of negation of modal parameters. In the following, we will present

a slight extension of the standard PSpa
e tableau algorithm for K, K-

World (Ladner 1977), to de
ide satis�ability of K

\;[

!

-formulae. Please

note that we 
annot adapt the redu
tion from the previous se
tion sin
e

the disjun
tive normal form of a 
omplex modal parameter 
an yield an

exponential blow-up if the number of boolean parameters is not bounded.
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When started with an input formula ',K-World de
ides ''s satis�ability

by re
ursively sear
hing a �nite tree-model of ' in a depth-�rst manner.

For ea
h world w in this tree model, it 
he
ks whether the set � of

formulae that w must satisfy is not 
ontradi
tory. Then, for ea
h 3 in

�, K-World is 
alled re
ursively with  and all � with 2� in �.

To extend K-World to K

\;[

!

, it is 
omfortable to view the semanti
s

of roles in a di�erent way. For S a 
omplex modal parameter and s a

set of atomi
 modal parameters, we say s j= S i� s, when viewed as

the valuation that maps ea
h R

i

2 s to true and ea
h R

j

62 s to false,

evaluates the Boolean expression S to true. Then (w;w

0

) 2 E(S) i� there

is a set s of atomi
 modal parameters with s j= S and (w;w

0

) 2 R

i

for

ea
h R

i

2 s. The only modi�
ations to K-World 
on
ern the re
ursive


alls for diamond formulae whi
h are more elaborate in the presen
e

of 
omplex modal parameters. For ea
h hSi in the set � of formulae


urrently 
onsidered, we guess an s with s j= S, and then 
onsider  

together with all � where [S

0

℄ � is in � and s j= S

0

.

For the sake of a su

in
t presentation, we assume the input formula

' to 
ontain no disjun
tion and no diamond-formulae. For � and S

sets of K

\;[

!

-formulae where S is 
losed under subformulae and single

negations, K

\;[

!

-World(�; S) returns true i�

� � is a maximally propositionally 
onsistent subset of S, i.e.,

{ � � S,

{ for ea
h : 2 S,  2 � i� : 62 �, and

{ for ea
h  

1

^  

2

2 S,  

1

^  

2

2 � i�  

1

2 � and  

2

2 �.

� For ea
h subformula : [S℄ 2 �, there exists a set s of modal

parameters with s j= S and a set �

 ;s

su
h that

{ : 2 �

 ;s

,

{ for ea
h S

0

and �, if [S

0

℄ � 2 � and s j= S

0

, then � 2 �

 ;s

,

{ K

\;[

!

�World(�

 ;s

; S

0

) returns true, where S

0

is the 
losure

under subformulae and single negation of f� j [S

0

℄ � 2 � and

s j= S

0

g [ f: g.

Let 
l(') be the smallest set of formulae 
ontaining ' that is 
losed

under subformulae and single negation. The proof that a K

\;[

!

-formula

' is satis�able i� there exists a � � 
l(') with ' 2 � su
h that

K

\;[

!

-World(�; 
l(')g)

returns true is analogous to the one for K-World. Just like K-World,

K

\;[

!

-World runs in PSpa
e (sin
e PSpa
e = NPSpa
e (Savit
h 1970),

the additional non-deterministi
 guessing of the set of modal parameters

s does not matter). Moreover,K is known to be PSpa
e-hard (Ladner 1977),

and we thus have the following result.
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Theorem 6.1 Satis�ability of K

[;\

!

-formulae is PSpa
e-
omplete.

7 Con
lusion

We have given a 
omplete pi
ture of the 
omplexity of Boolean Modal

Logi
s, both with and without a bound on the number of modal pa-

rameters. The results for (fragments of) Boolean Modal Logi
 with an

unbounded number of modal parameters are summarised in Figure 2,

showing known results in grey.

NExpTime-hardness of K

(:);\

!

was rather surprising sin
e so far, in-

terse
tion of atomi
 modal parameters (not of 
hainings/
omposition of

modal parameters) is mostly 
onsidered to be \harmless" w.r.t. 
omplex-

ity. Interestingly, we were able to show that, if a bound m is imposed

on the number of atomi
 modal parameters, then full Boolean Modal

Logi
 K

:;\;[

m

be
omes ExpTime-
omplete. For this proof, we did not

use the automata-based approa
h be
ause we 
onsidered that extending

it to take 
are of 
omplex modal parameters was more involved than the

redu
tion to K

u

n

that we used.

As future work, it may be interesting to extend our te
hniques to

more expressive logi
s. For example, one may 
onsider arbitrary 
ombi-

nations of the Boolean operators on modal parameters with 
omposition

and 
onverse. Several results for su
h logi
s are known from the area of

Propositional Dynami
 Logi
s (PDL). For example, Harel proves that

PDL extended with negation of modal parameters is unde
idable using

a redu
tion to the equivalen
e problem for relation algebra (Harel 1984).

It is not hard to see that a similar redu
tion (of the equivalen
e prob-

lem of boolean algebras of relations with 
omposition only, see, e.g.,

Andreka et al. 2001) 
an be used to show that Boolean Modal Logi


extended with 
omposition of modal parameters is unde
idable. On

the 
ontrary, it follows from Dane
ki's results on PDL with interse
-

tion that K

\;[

!

extended with 
omposition is de
idable in double Ex-

pTime (Dane
ki 1984). As we demonstrated by extending our results

to (K

!


K4

!

)

:

, our automata-based approa
h to proving ExpTime-

bounds 
an be 
onsidered 
exible. As a �rst step towards more expressive

no negation atomi
 negation full negation

� PSpa
e-
ompl. ExpTime-
ompl.

[ PSpa
e-
ompl. ExpTime-
ompl. NExpTime-
ompl.

\ PSpa
e-
ompl. NExpTime-
ompl. NExpTime-
ompl.

\ and [ PSpa
e-
ompl. NExpTime-
ompl. NExpTime-
ompl.

FIGURE 2 Complexity of K

!

extended with various role 
onstru
tors.
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logi
s, we hope that our approa
h 
an be \married" with the standard

automata-based de
idability pro
edure for PDL thus yielding a de
id-

ability result for PDL extended with atomi
 negation of modal param-

eters.
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