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Abstra
t

We present a des
ription logi
 L that is as expressive as the two-

variable fragment of �rst-order logi
 and di�ers from other logi
s with

this property in that it en
ompasses solely standard role- and 
on
ept-

forming operators. The des
ription logi
 L is obtained from ALC by

adding full Boolean operators on roles, the inverse operator on roles and

an identity role. It is proved that L has the same expressive power as the

two-variable fragment FO

2

of �rst-order logi
 by presenting a translation

from FO

2

-formulae into equivalent L-
on
epts (and ba
k). Additionally,

we dis
uss an interesting 
omplexity phenomenon: both L and FO

2

are

NExpTime-
omplete and so is the restri
tion of FO

2

to �nitely many

relation symbols; astonishingly, the restri
tion of L to a bounded number

of role names is in ExpTime.

1 Introdu
tion

It is well-known that many des
ription and modal logi
s 
an be regarded as frag-

ments of �rst-order logi
s. In modal logi
, the relationship between modal and

�rst-order logi
 has been a major resear
h topi
: Kamp's result [17℄ that modal

logi
 with binary operators Sin
e and Until has the same expressive power as

monadi
 �rst-order logi
 over stru
tures like hN; <i and hR; <i was the starting

point. Van Benthem [24℄ provided a systemati
 model theoreti
 analysis of the

relation between families of modal logi
s and predi
ate logi
s, and Gabbay [10℄

extended Kamp's result to a systemati
 investigation of the possibilities of de-

signing expressively 
omplete modal logi
s. As part of his investigation, Gabbay

made the basi
 observation that often modal logi
s are 
ontained in �nite vari-

able fragments of �rst-order logi
s. Like many des
ription logi
s, the basi
 modal
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logi
s lie embedded in the two-variable fragment FO

2

(i.e., those �rst-order for-

mulae that 
an be written using only variables x and y, possibly re-quantifying

a variable) of �rst-order logi
. In the early 90's, this observation was regarded

as an explanation for the de
idability of many modal logi
s: the de
idability of

FO

2

(
.f. [21, 22, 14℄) explains the de
idability of standard modal logi
s simply

be
ause the latter are fragments of the former. In 
ontrast, more re
ently, it has

been argued that some \modal phenomena" are better explained by their tree-

model-property [25℄ (i.e., they are determined by tree-like stru
tures) and/or by

embedding them in bounded (or guarded) fragments of �rst-order logi
 [1, 13℄.

Many of the above observations apply to standard des
ription logi
s as well.

The relationship between �rst-order logi
 and des
ription logi
s was �rst inves-

tigated by Borgida who identi�es several DLs that are fragments of FO

2

and

even presents a des
ription logi
 D that is as expressive as FO

2

itself. More

pre
isely, Borgida gives a linear translation from FO

2

-formulae into equivalent

D-
on
epts (and ba
k). However, D uses a role-forming produ
t operator whi
h

is, to the best of our knowledge, not present in any standard des
ription logi
.

This operator allows to form, from two 
on
epts C

1

, C

2

, the role C

1

�C

2

relating

all instan
es of C

1

to all instan
es of C

2

and thus 
orresponds to a simultaneous

range- and domain-restri
tion of the universal role. As will be dis
ussed in more

detail later, the presen
e of the produ
t role 
onstru
tor makes the translation

from FO

2

into D rather straightforward.

In the light of these 
onsiderations, it is an interesting question whether

there exists a des
ription logi
 using only standard role- and 
on
ept-forming

operators that has the same expressive power as FO

2

. In this paper, we present

a des
ription logi
 L and give a translation from FO

2

-formulae into equivalent

L-
on
epts (and ba
k). Roughly speaking, L is ALC extended with full Boolean

operators on roles, the inverse operator on roles, and an identity role relating

ea
h individual to itself. We argue that all operators present in L are standard

des
ription logi
 operators: see, e.g., [8, 5, 18℄ for Boolean operators on roles,

[16℄ for Boolean operators on roles and inverse roles, and [6℄ for (some) Boolean

operators on roles, inverse, and the identity role. Moreover, the modal-logi


equivalent of L is also a standard modal logi
; see, e.g., [11, 15, 19℄ for Boolean

operators on modal parameters, [4, 12, 26℄ for 
onverse, and [7℄ for the identity

relation. Thus L is the positive answer to the above question for des
ription

and modal logi
s.

What kind of des
ription logi
 is L? The expressive power provided by

the strong role-forming operators in L is demonstrated by the following three

examples:

1. L 
an express the universal role: for a role name R, R t :R is always

interpreted as the universal relation, and hen
e 8(R t :R):C admits only

models where ea
h individual is an instan
e of C. As a 
onsequen
e,

general 
on
ept in
lusion axioms 
an be internalised, and thus reasoning

2



w.r.t. to the most general form of TBoxes 
an be linearly redu
ed to 
on-


ept satis�ability.

2. Sin
e L 
ontains the identity role id , we 
an express the di�eren
e role: an

individual is related to all other individuals but itself via :id , and hen
e

8:id :C expresses that C holds \everywhere else".

3. Using the di�eren
e role :id and the universal role Rt:R, we 
an express

nominals, i.e., 
on
epts N whi
h have at most one instan
e in ea
h model:

(8(R t :R)::N) t 9(R t :R):(N u 8:id ::N):

The �rst disjun
t is for the 
ase that no instan
e of N exists, and the

se
ond one guarantees that, if there is an instan
e of N somewhere in the

model, then all other individuals are not instan
es of N .

In 
ontrast to the linear translation of FO

2

into Borgida's logi
 D, our trans-

lation of FO

2

-formulae into L-
on
epts involves an exponential blow-up in for-

mula size. Have we been to lazy to �nd a linear redu
tion? Fortunately, we 
an

argue that the blow-up 
an (presumably) not be 
ir
umvented: by analyzing the


omplexity of the involved logi
s, we show that the existen
e of a polynomial

translation of FO

2

-formulae into L-
on
epts would imply that NExpTime =

ExpTime.

2 Preliminaries

We start with pre
ise de�nitions of the languages under 
onsideration. FO

2


om-

prises exa
tly those �rst-order formulas without 
onstants and fun
tion symbols

but with equality whose only variables are x and y and whose relation symbols

have arity � 2. We use A

i

for unary predi
ates and R

i

for binary relations. If

we write '(x), '(y) for formulas, we assume that at most the displayed variable

o

urs free in '.

FO

2

is interpreted in the standard manner in interpretations of the form

I =




�

I

;A

1

; : : : ;R

1

; : : :

�

in whi
h �

I

is the interpretation domain, the A

i

interpret the A

i

, and the R

i

interpret the R

i

. For an interpretation I, some

a 2 �

I

, and a formula '(x), we write I j= '[a℄ if I; v j= '(x) for the assignment

v that maps x to a.

Note that not admitting 
onstants is not 
ru
ial. In fa
t, in our version

of FO

2


onstants 
an be \simulated" through unary predi
ates similar to the

simulation of nominals in L des
ribed in the introdu
tion. To the 
ontrary,

fun
tion symbols 
annot be admitted without loosing de
idability [2℄.

The des
ription logi
 L is ALC extended with Boolean operators on roles,

the inverse operator on roles, and the identity role. Here is the formal de�nition:
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De�nition 1 Let N

R

= fR

1

; R

2

; : : :g and N

C

= fA

1

; A

2

; : : :g be disjoint sets

of role names and 
on
ept names, respe
tively. The set of L-roles is de�ned

indu
tively as follows:

� atomi
 roles and id are L-roles, and

� if R and S are L-roles, then R u S, R t S, :R, and R

�

are L-roles.

L-
on
epts are also de�ned indu
tively:

� ea
h 
on
ept name is an L-
on
ept, and

� if R is a role and C and D are L-
on
epts, then C uD, C tD, :C, 8R:C,

and 9R:C are L-
on
epts.

We abbreviate > = A

i

t :A

i

and ? = :> for some 
on
ept name A

i

. The

bi-impli
ation \," is de�ned as an abbreviation in the standard manner.

The semanti
s of L is a straightforward extension of the standardALC-semanti
s.

De�nition 2 An L-interpretation I = (�

I

; �

I

) 
onsists of a non-empty set �

I

,

the domain, and a fun
tion �

I

that maps

� 
on
ept names A

i

to subsets A

I

i

� �

I

of the domain and

� role names R

i

to binary relations R

I

i

� �

I

��

I

on the domain.

This mapping is extended to 
omplex roles R, S and 
omplex 
on
epts C, D as

follows:

id

I

= f(x; x) j x 2 �

I

g

(R

�

)

I

= f(y; x) j (x; y) 2 R

I

g

(:R)

I

= �

I

��

I

nR

I

(R u S)

I

= R

I

\ S

I

(R t S)

I

= R

I

[ S

I

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(9R:C)

I

= fx 2 �

I

j there exists y 2 C

I

with (x; y) 2 R

I

g

(8R:C)

I

= fx 2 �

I

j for all y; if (x; y) 2 R

I

, then y 2 C

I

g:

A 
on
ept C is 
alled satis�able if, for some interpretation I, C

I

6= ;. Su
h an

interpretation is 
alled a model of C.
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Obviously, there is a 1{1 
orresponden
e between �rst-order interpretations

and L-interpretations: setting A

I

i

= A

i

and R

I

i

= R

i

, ea
h �rst-order interpre-

tation




�

I

;A

1

; : : : ;R

1

; : : :

�


an be viewed as an L-interpretation (�

I

; �

I

) and

vi
e versa. Hen
e we do not distinguish between both kinds of interpretations.

3 The 
orresponden
e between FO

2

and L

In this se
tion, we show that FO

2

and L are equally expressive. The main

diÆ
ulty is to devise a translation that maps ea
h FO

2

-formula to an equivalent

L-
on
ept.

Theorem 1 For every C 2 L there exists a formula '

C

(x) 2 FO

2

whose length

is linear in the length of C su
h that, for all interpretations I and all a 2 �

I

,

a 2 C

I

i� I j= '

C

[a℄:

Conversely, given '(x) 2 FO

2

there exists an L-
on
ept C

'

whose length

is exponential in the length of '(x) su
h that, for all interpretations I and all

a 2 �

I

, a 2 C

I

'

i� I j= '[a℄:

Proof: The proof of the �rst 
laim is standard (see, e.g., [3℄), so we 
on
entrate

on the se
ond one. It is rather similar to the proof provided in [9℄ for temporal

logi
s.

An FO

2

-formula �(x; y) is 
alled a binary atom if it is an atom of the form

R

i

(x; y), R

i

(y; x), or x = y. A binary type t for a formula  is a set of FO

2

-

formulas 
ontaining (i) either � or :� for ea
h binary atom � o

urring in  ,

(ii) either x = y or x 6= y, and (iii) no other formulas than these. The set of

binary types for  is denoted by R

 

. A formula � is 
alled a unary atom if it is

of the form R

i

(x; x), R

i

(y; y), A

i

(x), or A

i

(y).

Let '(x) 2 FO

2

. Without loss of generality, we assume '(x) is built using

9, ^, and : only. We indu
tively de�ne two mappings �

�

x

and �

�

y

where the

former one takes FO

2

-formulas '(x) to the 
orresponding L-
on
epts '

�

x

and

the latter does the same for FO

2

-formulas '(y). We only give the details of �

�

x

sin
e �

�

y

is de�ned analogously by swit
hing the roles of x and y.

Case 1. If '(x) = A

i

(x), then put ('(x))

�

x

= A

i

.

Case 2. If '(x) = R

i

(x; x), then put ('(x))

�

x

= 9(id u R

i

):>.

Case 3. If '(x) = �

1

^ �

2

, then put, re
ursively, ('(x))

�

x

= �

�

x

1

^ �

�

x

2

.

Case 4. If '(x) = :�, then put, re
ursively, ('(x))

�

x

= :(�)

�

x

.

Case 5. If '(x) = 9y�(x; y), then �(x; y) 
an 
learly be written as

�(x; y) = 
[�

1

; : : : ; �

r

; 


1

(x); : : : ; 


`

(x); �

1

(y); : : : ; �

s

(y)℄;
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i.e., as a Boolean 
ombination 
 of �

i

, 


i

(x), and �

i

(y); the �

i

are binary atoms;

the 


i

(x) are unary atoms or of the form 9y


0

i

; and the �

i

(y) are unary atoms

or of the form 9x�

0

i

. We may assume that x o

urs free in '(x). Our �rst

step is to move all formulas without a free variable y out of the s
ope of 9: for

~w = hw

1

; : : : ; w

`

i, '(x) is equivalent to

_

~w2f>;?g

`

(

^

1�i�`

(


i

, w

i

) ^ 9y
(�

1

; : : : ; �

r

; w

1

; : : : ; w

`

; �

1

; : : : ; �

s

)): (1)

For every binary type t 2 R

'

and binary atom �

i

from ', we have t j= �

i

or

t j= :�

i

|hen
e we 
an \guess" a binary type t and then repla
e all binary atoms

by either true or false. For t 2 R

'

, let �

t

i

= > if t j= �

i

, and �

t

i

= ?, otherwise.

Then '(x) is equivalent to

W

~w2f>;?g

`

(

V

1�i�`

(


i

, w

i

) ^

W

t2R

'

9y((

V

�2t

�) ^ 
(�

t

1

; : : : ; �

t

r

; w

1

; : : : ; w

`

; �

1

; : : : ; �

s

))):

(2)

De�ne, for every negated and unnegated binary atom �, a role �

�

x

as follows:

(x = y)

�

x

= id (:(x = y))

�

x

= :id

(R

i

(x; y))

�

x

= R

i

(:R

i

(x; y))

�

x

= :R

i

(R

i

(y; x))

�

x

= R

�

i

(:R

i

(y; x))

�

x

= :R

�

i

:

Put, for every binary type t 2 R

'

, t

�

x

= u

�2t

�

�

x

. Now 
ompute, re
ursively,




�

x

i

and �

�

y

i

, and de�ne '(x)

�

x

= C

'

as

t

~w2f>;?g

`

( u

1�i�`

(


�

x

i

, w

i

) u t

t2R

'

9t

�

x

:
(�

t

1

; : : : ; �

t

r

; w

1

; : : : ; w

`

; �

�

y

1

; : : : ; �

�

y

s

)):

❏

Note that C

'


an be 
omputed in time polynomial in the length of C

'

. It

is easily seen that there exist formulas C whose translation yields an L-
on
ept

C

'

with length exponential in the length of '.

Let us 
ompare the above translation with the one presented in [3℄. Borgida's

logi
 D o�ers the same 
on
ept and role operators provided by L with two

ex
eptions:

1. instead of the identity role, D provides for nominals. As already argued

in the introdu
tion, nominals are impli
itly available in L. The 
onverse

does not hold, i.e., the identity role 
annot be \simulated" in D. It is

thus not surprising that Borgida translates FO

2

without equality but with


onstants;

6



2. the logi
 D provides for an additional role operator that allows to build


omplex roles from 
on
epts C

1

, C

2

as their produ
t C

1

�C

2

, where (C

1

�

C

2

)

I

= C

I

1

� C

I

2

.

While the �rst di�eren
e is more of a te
hni
al nature, the se
ond one makes

the translation of FO

2

-formulae into D-
on
epts almost trivial: the main dif-

�
ulty in the translation to L-
on
epts des
ribed above 
onsists in �nding, for

the sub-formula in two variables �(x; y) of 9y:�(x; y) in Case 5, an equivalent

re-writing as 9y:(G(x; y)^�

0

(y)) su
h that G(x; y) 
an be translated into a 
om-

plex role. The translation of �

0


an then be done re
ursively. In 
ontrast, the

translation given in [3℄ translates the whole formula �(x; y) as a (
omplex) role,

i.e., translating 9y:�(x; y) yields 9R

�

:>, where R

�

is de�ned re
ursively. This

is only possible sin
e, for example, subformulae �(x) ^ �

0

(y) of �(x; y) 
an be

translated as the role C

�

� C

�

0

using the produ
t operator. Intuitively, this op-

erator allows to freely swit
h ba
k and forth between roles and 
on
epts during

the translation. Hen
e the presen
e of the (non-standard) produ
t operator is

the reason why Borgida is able to �nd a linear translation of FO

2

into his logi
.

In the following, we will see that su
h a translation does (presumably) not exist

for the des
ription logi
 L.

4 Complexity

Let us analyze the 
omputational 
omplexity of the logi
s 
onsidered in the

previous se
tions. The fundamental result is proved in [14℄, where it is shown

that satis�ability of FO

2

-formulae is NExpTime-
omplete.

1

Con
erning the

Des
ription Logi
 L, the following 
orollary to Theorem 1 is easily obtained:

Corollary 1 Satis�ability of L-
on
epts is NExpTime-
omplete.

Proof: In [19℄, it is proved that ALC extended with interse
tion and (primitive)

negation of roles is already NExpTime-hard. Hen
e, it remains to prove the

upper bound: it is an immediate 
onsequen
e of Theorem 1 (together with the

fa
t that that formulae '

C


orresponding to L-
on
epts C 
an be 
omputed

in linear time) and NExpTime-
ompleteness of FO

2

that satis�ability of L-


on
epts is in NExpTime. ❏

Finally, NExpTime-
ompleteness of Borgida's logi
 D is an easy 
onsequen
e of

the above mentioned hardness result in [19℄ together with the linear translation

of D-
on
epts to FO

2

-formula provided in [3℄.

These results may seem strange on �rst sight: we have presented an exponen-

tial translation from one NExpTime-
omplete logi
 into another one. Hen
e,

1

We assume that ExpTime is de�ned as DTIME(2

n

k

) and NExpTime as NTIME(2

n

k

).
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it is natural to ask whether there exists a polynomial su
h translation. This

question 
an be answered negatively using the following observations:

1. Let L

m

denote the variant of L obtained by admitting only m (i.e., �nitely

many) role names. In [20℄, we show that, for all m 2 N, satis�ability of L

m

-

formulae is ExpTime-
omplete. The lower bound is a dire
t 
onsequen
e of

the fa
ts that (1) for m � 1, L

m


an express the universal role, and (2) ALC

extended with the universal role is known to be ExpTime-hard [23℄. The upper

bound is proved in two steps: �rstly, L

m

-satis�ability is polynomially redu
ed to

the satis�ability of a 
ertain modal logi
 L

0

in a spe
ial form of models. Then this

latter problem is de
ided in exponential time by, roughly speaking, enumerating

(exponentially many) 
andidates for type-based abstra
tions of models and, for

ea
h su
h 
andidate, 
he
king (in exponential time) whether it does represent a

model by using a type elimination te
hnique.

2. In 
ontrast to L, FO

2

restri
ted to m binary relations (FO

2

m

) is still NExp-

Time-hard [14℄.

3. Every translation of FO

2

-formulas ' into L-
on
epts C satisfying the 
ondi-

tions from Theorem 1 indu
es, for ea
h m 2 N, a polynomial translation from

FO

2

m

into L

m

that also satis�es the 
onditions from Theorem 1: just repla
e

every role R in C that does not o

ur as a binary predi
ate in ' by id .

Taking together the above three points, it is obvious that the existen
e

of a polynomial translation from FO

2

into L would imply that ExpTime =

NExpTime. A 
onvenient way to view this result is that FO

2

speaks about

relational stru
tures stri
tly more su

in
tly than L does.
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