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Abstrat

We present a desription logi L that is as expressive as the two-

variable fragment of �rst-order logi and di�ers from other logis with

this property in that it enompasses solely standard role- and onept-

forming operators. The desription logi L is obtained from ALC by

adding full Boolean operators on roles, the inverse operator on roles and

an identity role. It is proved that L has the same expressive power as the

two-variable fragment FO

2

of �rst-order logi by presenting a translation

from FO

2

-formulae into equivalent L-onepts (and bak). Additionally,

we disuss an interesting omplexity phenomenon: both L and FO

2

are

NExpTime-omplete and so is the restrition of FO

2

to �nitely many

relation symbols; astonishingly, the restrition of L to a bounded number

of role names is in ExpTime.

1 Introdution

It is well-known that many desription and modal logis an be regarded as frag-

ments of �rst-order logis. In modal logi, the relationship between modal and

�rst-order logi has been a major researh topi: Kamp's result [17℄ that modal

logi with binary operators Sine and Until has the same expressive power as

monadi �rst-order logi over strutures like hN; <i and hR; <i was the starting

point. Van Benthem [24℄ provided a systemati model theoreti analysis of the

relation between families of modal logis and prediate logis, and Gabbay [10℄

extended Kamp's result to a systemati investigation of the possibilities of de-

signing expressively omplete modal logis. As part of his investigation, Gabbay

made the basi observation that often modal logis are ontained in �nite vari-

able fragments of �rst-order logis. Like many desription logis, the basi modal
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logis lie embedded in the two-variable fragment FO

2

(i.e., those �rst-order for-

mulae that an be written using only variables x and y, possibly re-quantifying

a variable) of �rst-order logi. In the early 90's, this observation was regarded

as an explanation for the deidability of many modal logis: the deidability of

FO

2

(.f. [21, 22, 14℄) explains the deidability of standard modal logis simply

beause the latter are fragments of the former. In ontrast, more reently, it has

been argued that some \modal phenomena" are better explained by their tree-

model-property [25℄ (i.e., they are determined by tree-like strutures) and/or by

embedding them in bounded (or guarded) fragments of �rst-order logi [1, 13℄.

Many of the above observations apply to standard desription logis as well.

The relationship between �rst-order logi and desription logis was �rst inves-

tigated by Borgida who identi�es several DLs that are fragments of FO

2

and

even presents a desription logi D that is as expressive as FO

2

itself. More

preisely, Borgida gives a linear translation from FO

2

-formulae into equivalent

D-onepts (and bak). However, D uses a role-forming produt operator whih

is, to the best of our knowledge, not present in any standard desription logi.

This operator allows to form, from two onepts C

1

, C

2

, the role C

1

�C

2

relating

all instanes of C

1

to all instanes of C

2

and thus orresponds to a simultaneous

range- and domain-restrition of the universal role. As will be disussed in more

detail later, the presene of the produt role onstrutor makes the translation

from FO

2

into D rather straightforward.

In the light of these onsiderations, it is an interesting question whether

there exists a desription logi using only standard role- and onept-forming

operators that has the same expressive power as FO

2

. In this paper, we present

a desription logi L and give a translation from FO

2

-formulae into equivalent

L-onepts (and bak). Roughly speaking, L is ALC extended with full Boolean

operators on roles, the inverse operator on roles, and an identity role relating

eah individual to itself. We argue that all operators present in L are standard

desription logi operators: see, e.g., [8, 5, 18℄ for Boolean operators on roles,

[16℄ for Boolean operators on roles and inverse roles, and [6℄ for (some) Boolean

operators on roles, inverse, and the identity role. Moreover, the modal-logi

equivalent of L is also a standard modal logi; see, e.g., [11, 15, 19℄ for Boolean

operators on modal parameters, [4, 12, 26℄ for onverse, and [7℄ for the identity

relation. Thus L is the positive answer to the above question for desription

and modal logis.

What kind of desription logi is L? The expressive power provided by

the strong role-forming operators in L is demonstrated by the following three

examples:

1. L an express the universal role: for a role name R, R t :R is always

interpreted as the universal relation, and hene 8(R t :R):C admits only

models where eah individual is an instane of C. As a onsequene,

general onept inlusion axioms an be internalised, and thus reasoning
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w.r.t. to the most general form of TBoxes an be linearly redued to on-

ept satis�ability.

2. Sine L ontains the identity role id , we an express the di�erene role: an

individual is related to all other individuals but itself via :id , and hene

8:id :C expresses that C holds \everywhere else".

3. Using the di�erene role :id and the universal role Rt:R, we an express

nominals, i.e., onepts N whih have at most one instane in eah model:

(8(R t :R)::N) t 9(R t :R):(N u 8:id ::N):

The �rst disjunt is for the ase that no instane of N exists, and the

seond one guarantees that, if there is an instane of N somewhere in the

model, then all other individuals are not instanes of N .

In ontrast to the linear translation of FO

2

into Borgida's logi D, our trans-

lation of FO

2

-formulae into L-onepts involves an exponential blow-up in for-

mula size. Have we been to lazy to �nd a linear redution? Fortunately, we an

argue that the blow-up an (presumably) not be irumvented: by analyzing the

omplexity of the involved logis, we show that the existene of a polynomial

translation of FO

2

-formulae into L-onepts would imply that NExpTime =

ExpTime.

2 Preliminaries

We start with preise de�nitions of the languages under onsideration. FO

2

om-

prises exatly those �rst-order formulas without onstants and funtion symbols

but with equality whose only variables are x and y and whose relation symbols

have arity � 2. We use A

i

for unary prediates and R

i

for binary relations. If

we write '(x), '(y) for formulas, we assume that at most the displayed variable

ours free in '.

FO

2

is interpreted in the standard manner in interpretations of the form

I =




�

I

;A

1

; : : : ;R

1

; : : :

�

in whih �

I

is the interpretation domain, the A

i

interpret the A

i

, and the R

i

interpret the R

i

. For an interpretation I, some

a 2 �

I

, and a formula '(x), we write I j= '[a℄ if I; v j= '(x) for the assignment

v that maps x to a.

Note that not admitting onstants is not ruial. In fat, in our version

of FO

2

onstants an be \simulated" through unary prediates similar to the

simulation of nominals in L desribed in the introdution. To the ontrary,

funtion symbols annot be admitted without loosing deidability [2℄.

The desription logi L is ALC extended with Boolean operators on roles,

the inverse operator on roles, and the identity role. Here is the formal de�nition:
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De�nition 1 Let N

R

= fR

1

; R

2

; : : :g and N

C

= fA

1

; A

2

; : : :g be disjoint sets

of role names and onept names, respetively. The set of L-roles is de�ned

indutively as follows:

� atomi roles and id are L-roles, and

� if R and S are L-roles, then R u S, R t S, :R, and R

�

are L-roles.

L-onepts are also de�ned indutively:

� eah onept name is an L-onept, and

� if R is a role and C and D are L-onepts, then C uD, C tD, :C, 8R:C,

and 9R:C are L-onepts.

We abbreviate > = A

i

t :A

i

and ? = :> for some onept name A

i

. The

bi-impliation \," is de�ned as an abbreviation in the standard manner.

The semantis of L is a straightforward extension of the standardALC-semantis.

De�nition 2 An L-interpretation I = (�

I

; �

I

) onsists of a non-empty set �

I

,

the domain, and a funtion �

I

that maps

� onept names A

i

to subsets A

I

i

� �

I

of the domain and

� role names R

i

to binary relations R

I

i

� �

I

��

I

on the domain.

This mapping is extended to omplex roles R, S and omplex onepts C, D as

follows:

id

I

= f(x; x) j x 2 �

I

g

(R

�

)

I

= f(y; x) j (x; y) 2 R

I

g

(:R)

I

= �

I

��

I

nR

I

(R u S)

I

= R

I

\ S

I

(R t S)

I

= R

I

[ S

I

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(9R:C)

I

= fx 2 �

I

j there exists y 2 C

I

with (x; y) 2 R

I

g

(8R:C)

I

= fx 2 �

I

j for all y; if (x; y) 2 R

I

, then y 2 C

I

g:

A onept C is alled satis�able if, for some interpretation I, C

I

6= ;. Suh an

interpretation is alled a model of C.
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Obviously, there is a 1{1 orrespondene between �rst-order interpretations

and L-interpretations: setting A

I

i

= A

i

and R

I

i

= R

i

, eah �rst-order interpre-

tation




�

I

;A

1

; : : : ;R

1

; : : :

�

an be viewed as an L-interpretation (�

I

; �

I

) and

vie versa. Hene we do not distinguish between both kinds of interpretations.

3 The orrespondene between FO

2

and L

In this setion, we show that FO

2

and L are equally expressive. The main

diÆulty is to devise a translation that maps eah FO

2

-formula to an equivalent

L-onept.

Theorem 1 For every C 2 L there exists a formula '

C

(x) 2 FO

2

whose length

is linear in the length of C suh that, for all interpretations I and all a 2 �

I

,

a 2 C

I

i� I j= '

C

[a℄:

Conversely, given '(x) 2 FO

2

there exists an L-onept C

'

whose length

is exponential in the length of '(x) suh that, for all interpretations I and all

a 2 �

I

, a 2 C

I

'

i� I j= '[a℄:

Proof: The proof of the �rst laim is standard (see, e.g., [3℄), so we onentrate

on the seond one. It is rather similar to the proof provided in [9℄ for temporal

logis.

An FO

2

-formula �(x; y) is alled a binary atom if it is an atom of the form

R

i

(x; y), R

i

(y; x), or x = y. A binary type t for a formula  is a set of FO

2

-

formulas ontaining (i) either � or :� for eah binary atom � ourring in  ,

(ii) either x = y or x 6= y, and (iii) no other formulas than these. The set of

binary types for  is denoted by R

 

. A formula � is alled a unary atom if it is

of the form R

i

(x; x), R

i

(y; y), A

i

(x), or A

i

(y).

Let '(x) 2 FO

2

. Without loss of generality, we assume '(x) is built using

9, ^, and : only. We indutively de�ne two mappings �

�

x

and �

�

y

where the

former one takes FO

2

-formulas '(x) to the orresponding L-onepts '

�

x

and

the latter does the same for FO

2

-formulas '(y). We only give the details of �

�

x

sine �

�

y

is de�ned analogously by swithing the roles of x and y.

Case 1. If '(x) = A

i

(x), then put ('(x))

�

x

= A

i

.

Case 2. If '(x) = R

i

(x; x), then put ('(x))

�

x

= 9(id u R

i

):>.

Case 3. If '(x) = �

1

^ �

2

, then put, reursively, ('(x))

�

x

= �

�

x

1

^ �

�

x

2

.

Case 4. If '(x) = :�, then put, reursively, ('(x))

�

x

= :(�)

�

x

.

Case 5. If '(x) = 9y�(x; y), then �(x; y) an learly be written as

�(x; y) = [�

1

; : : : ; �

r

; 

1

(x); : : : ; 

`

(x); �

1

(y); : : : ; �

s

(y)℄;
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i.e., as a Boolean ombination  of �

i

, 

i

(x), and �

i

(y); the �

i

are binary atoms;

the 

i

(x) are unary atoms or of the form 9y

0

i

; and the �

i

(y) are unary atoms

or of the form 9x�

0

i

. We may assume that x ours free in '(x). Our �rst

step is to move all formulas without a free variable y out of the sope of 9: for

~w = hw

1

; : : : ; w

`

i, '(x) is equivalent to

_

~w2f>;?g

`

(

^

1�i�`

(

i

, w

i

) ^ 9y(�

1

; : : : ; �

r

; w

1

; : : : ; w

`

; �

1

; : : : ; �

s

)): (1)

For every binary type t 2 R

'

and binary atom �

i

from ', we have t j= �

i

or

t j= :�

i

|hene we an \guess" a binary type t and then replae all binary atoms

by either true or false. For t 2 R

'

, let �

t

i

= > if t j= �

i

, and �

t

i

= ?, otherwise.

Then '(x) is equivalent to

W

~w2f>;?g

`

(

V

1�i�`

(

i

, w

i

) ^

W

t2R

'

9y((

V

�2t

�) ^ (�

t

1

; : : : ; �

t

r

; w

1

; : : : ; w

`

; �

1

; : : : ; �

s

))):

(2)

De�ne, for every negated and unnegated binary atom �, a role �

�

x

as follows:

(x = y)

�

x

= id (:(x = y))

�

x

= :id

(R

i

(x; y))

�

x

= R

i

(:R

i

(x; y))

�

x

= :R

i

(R

i

(y; x))

�

x

= R

�

i

(:R

i

(y; x))

�

x

= :R

�

i

:

Put, for every binary type t 2 R

'

, t

�

x

= u

�2t

�

�

x

. Now ompute, reursively,



�

x

i

and �

�

y

i

, and de�ne '(x)

�

x

= C

'

as

t

~w2f>;?g

`

( u

1�i�`

(

�

x

i

, w

i

) u t

t2R

'

9t

�

x

:(�

t

1

; : : : ; �

t

r

; w

1

; : : : ; w

`

; �

�

y

1

; : : : ; �

�

y

s

)):

❏

Note that C

'

an be omputed in time polynomial in the length of C

'

. It

is easily seen that there exist formulas C whose translation yields an L-onept

C

'

with length exponential in the length of '.

Let us ompare the above translation with the one presented in [3℄. Borgida's

logi D o�ers the same onept and role operators provided by L with two

exeptions:

1. instead of the identity role, D provides for nominals. As already argued

in the introdution, nominals are impliitly available in L. The onverse

does not hold, i.e., the identity role annot be \simulated" in D. It is

thus not surprising that Borgida translates FO

2

without equality but with

onstants;
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2. the logi D provides for an additional role operator that allows to build

omplex roles from onepts C

1

, C

2

as their produt C

1

�C

2

, where (C

1

�

C

2

)

I

= C

I

1

� C

I

2

.

While the �rst di�erene is more of a tehnial nature, the seond one makes

the translation of FO

2

-formulae into D-onepts almost trivial: the main dif-

�ulty in the translation to L-onepts desribed above onsists in �nding, for

the sub-formula in two variables �(x; y) of 9y:�(x; y) in Case 5, an equivalent

re-writing as 9y:(G(x; y)^�

0

(y)) suh that G(x; y) an be translated into a om-

plex role. The translation of �

0

an then be done reursively. In ontrast, the

translation given in [3℄ translates the whole formula �(x; y) as a (omplex) role,

i.e., translating 9y:�(x; y) yields 9R

�

:>, where R

�

is de�ned reursively. This

is only possible sine, for example, subformulae �(x) ^ �

0

(y) of �(x; y) an be

translated as the role C

�

� C

�

0

using the produt operator. Intuitively, this op-

erator allows to freely swith bak and forth between roles and onepts during

the translation. Hene the presene of the (non-standard) produt operator is

the reason why Borgida is able to �nd a linear translation of FO

2

into his logi.

In the following, we will see that suh a translation does (presumably) not exist

for the desription logi L.

4 Complexity

Let us analyze the omputational omplexity of the logis onsidered in the

previous setions. The fundamental result is proved in [14℄, where it is shown

that satis�ability of FO

2

-formulae is NExpTime-omplete.

1

Conerning the

Desription Logi L, the following orollary to Theorem 1 is easily obtained:

Corollary 1 Satis�ability of L-onepts is NExpTime-omplete.

Proof: In [19℄, it is proved that ALC extended with intersetion and (primitive)

negation of roles is already NExpTime-hard. Hene, it remains to prove the

upper bound: it is an immediate onsequene of Theorem 1 (together with the

fat that that formulae '

C

orresponding to L-onepts C an be omputed

in linear time) and NExpTime-ompleteness of FO

2

that satis�ability of L-

onepts is in NExpTime. ❏

Finally, NExpTime-ompleteness of Borgida's logi D is an easy onsequene of

the above mentioned hardness result in [19℄ together with the linear translation

of D-onepts to FO

2

-formula provided in [3℄.

These results may seem strange on �rst sight: we have presented an exponen-

tial translation from one NExpTime-omplete logi into another one. Hene,

1

We assume that ExpTime is de�ned as DTIME(2

n

k

) and NExpTime as NTIME(2

n

k

).
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it is natural to ask whether there exists a polynomial suh translation. This

question an be answered negatively using the following observations:

1. Let L

m

denote the variant of L obtained by admitting only m (i.e., �nitely

many) role names. In [20℄, we show that, for all m 2 N, satis�ability of L

m

-

formulae is ExpTime-omplete. The lower bound is a diret onsequene of

the fats that (1) for m � 1, L

m

an express the universal role, and (2) ALC

extended with the universal role is known to be ExpTime-hard [23℄. The upper

bound is proved in two steps: �rstly, L

m

-satis�ability is polynomially redued to

the satis�ability of a ertain modal logi L

0

in a speial form of models. Then this

latter problem is deided in exponential time by, roughly speaking, enumerating

(exponentially many) andidates for type-based abstrations of models and, for

eah suh andidate, heking (in exponential time) whether it does represent a

model by using a type elimination tehnique.

2. In ontrast to L, FO

2

restrited to m binary relations (FO

2

m

) is still NExp-

Time-hard [14℄.

3. Every translation of FO

2

-formulas ' into L-onepts C satisfying the ondi-

tions from Theorem 1 indues, for eah m 2 N, a polynomial translation from

FO

2

m

into L

m

that also satis�es the onditions from Theorem 1: just replae

every role R in C that does not our as a binary prediate in ' by id .

Taking together the above three points, it is obvious that the existene

of a polynomial translation from FO

2

into L would imply that ExpTime =

NExpTime. A onvenient way to view this result is that FO

2

speaks about

relational strutures stritly more suintly than L does.
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