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Abstract

We present a description logic £ that is as expressive as the two-
variable fragment of first-order logic and differs from other logics with
this property in that it encompasses solely standard role- and concept-
forming operators. The description logic £ is obtained from ALC by
adding full Boolean operators on roles, the inverse operator on roles and
an identity role. It is proved that £ has the same expressive power as the
two-variable fragment FO? of first-order logic by presenting a translation
from FO2-formulae into equivalent £-concepts (and back). Additionally,
we discuss an interesting complexity phenomenon: both £ and FO? are
NEXPTIME-complete and so is the restriction of FO? to finitely many
relation symbols; astonishingly, the restriction of £ to a bounded number
of role names is in EXPTIME.

1 Introduction

It is well-known that many description and modal logics can be regarded as frag-
ments of first-order logics. In modal logic, the relationship between modal and
first-order logic has been a major research topic: Kamp’s result [17] that modal
logic with binary operators Since and Until has the same expressive power as
monadic first-order logic over structures like (N, <) and (R, <) was the starting
point. Van Benthem [24] provided a systematic model theoretic analysis of the
relation between families of modal logics and predicate logics, and Gabbay [10]
extended Kamp’s result to a systematic investigation of the possibilities of de-
signing expressively complete modal logics. As part of his investigation, Gabbay
made the basic observation that often modal logics are contained in finite vari-
able fragments of first-order logics. Like many description logics, the basic modal



logics lie embedded in the two-variable fragment FO? (i.e., those first-order for-
mulae that can be written using only variables x and y, possibly re-quantifying
a variable) of first-order logic. In the early 90’s, this observation was regarded
as an explanation for the decidability of many modal logics: the decidability of
FO? (c.f. [21, 22, 14]) explains the decidability of standard modal logics simply
because the latter are fragments of the former. In contrast, more recently, it has
been argued that some “modal phenomena” are better explained by their tree-
model-property [25] (i.e., they are determined by tree-like structures) and/or by
embedding them in bounded (or guarded) fragments of first-order logic [1, 13].

Many of the above observations apply to standard description logics as well.
The relationship between first-order logic and description logics was first inves-
tigated by Borgida who identifies several DLs that are fragments of FO? and
even presents a description logic D that is as expressive as F'O? itself. More
precisely, Borgida gives a linear translation from FO?-formulae into equivalent
D-concepts (and back). However, D uses a role-forming product operator which
is, to the best of our knowledge, not present in any standard description logic.
This operator allows to form, from two concepts C, Cs, the role C; x C relating
all instances of C'; to all instances of C'y and thus corresponds to a simultaneous
range- and domain-restriction of the universal role. As will be discussed in more
detail later, the presence of the product role constructor makes the translation
from FO? into D rather straightforward.

In the light of these considerations, it is an interesting question whether
there exists a description logic using only standard role- and concept-forming
operators that has the same expressive power as FO?. In this paper, we present
a description logic £ and give a translation from FO?-formulae into equivalent
L-concepts (and back). Roughly speaking, £ is ALC extended with full Boolean
operators on roles, the inverse operator on roles, and an identity role relating
each individual to itself. We argue that all operators present in £ are standard
description logic operators: see, e.g., [8, 5, 18] for Boolean operators on roles,
[16] for Boolean operators on roles and inverse roles, and [6] for (some) Boolean
operators on roles, inverse, and the identity role. Moreover, the modal-logic
equivalent of £ is also a standard modal logic; see, e.g., [11, 15, 19] for Boolean
operators on modal parameters, [4, 12, 26] for converse, and [7] for the identity
relation. Thus L is the positive answer to the above question for description
and modal logics.

What kind of description logic is £? The expressive power provided by
the strong role-forming operators in £ is demonstrated by the following three
examples:

1. £ can express the universal role: for a role name R, R U —R is always
interpreted as the universal relation, and hence V(R L —R).C admits only
models where each individual is an instance of C'. As a consequence,
general concept inclusion axioms can be internalised, and thus reasoning



w.r.t. to the most general form of TBoxes can be linearly reduced to con-
cept satisfiability.

2. Since L contains the identity role id, we can express the difference role: an
individual is related to all other individuals but itself via —id, and hence
V—id.C' expresses that C' holds “everywhere else”.

3. Using the difference role —id and the universal role RLI-R, we can express
nominals, i.e., concepts N which have at most one instance in each model:

(V(RU—=R).~N)U3I(RU=R).(N MVY-id.~N).

The first disjunct is for the case that no instance of N exists, and the
second one guarantees that, if there is an instance of N somewhere in the
model, then all other individuals are not instances of V.

In contrast to the linear translation of FO? into Borgida’s logic D, our trans-
lation of FO2-formulae into £-concepts involves an exponential blow-up in for-
mula size. Have we been to lazy to find a linear reduction? Fortunately, we can
argue that the blow-up can (presumably) not be circumvented: by analyzing the
complexity of the involved logics, we show that the existence of a polynomial
translation of FO?formulae into £-concepts would imply that NEXPTIME =
EXPTIME.

2 Preliminaries

We start with precise definitions of the languages under consideration. FO? com-
prises exactly those first-order formulas without constants and function symbols
but with equality whose only variables are z and y and whose relation symbols
have arity < 2. We use A; for unary predicates and R; for binary relations. If
we write p(z), p(y) for formulas, we assume that at most the displayed variable
occurs free in ¢.

FO? is interpreted in the standard manner in interpretations of the form
T = (AT, A,...,Rq,...) in which AT is the interpretation domain, the A;
interpret the A;, and the R; interpret the R;. For an interpretation Z, some
a € AT, and a formula (), we write Z |= pla] if Z,v = o(z) for the assignment
v that maps z to a.

Note that not admitting constants is not crucial. In fact, in our version
of FO? constants can be “simulated” through unary predicates similar to the
simulation of nominals in £ described in the introduction. To the contrary,
function symbols cannot be admitted without loosing decidability [2].

The description logic £ is ALC extended with Boolean operators on roles,
the inverse operator on roles, and the identity role. Here is the formal definition:



Definition 1 Let Np = {Ry, Ry, ...} and N¢ = {A1, Ay, ...} be disjoint sets
of role names and concept names, respectively. The set of L-roles is defined
inductively as follows:

e atomic roles and id are L-roles, and

e if R and S are L-roles, then RS, RU S, -R, and R~ are L-roles.
L-concepts are also defined inductively:

e cach concept name is an L-concept, and

e if Ris aroleand C' and D are L-concepts, then CM D, CUD, =C, VR.C,
and dR.C are L-concepts.

We abbreviate T = A; LI =A; and L = =T for some concept name A;. The
bi-implication “<” is defined as an abbreviation in the standard manner.

The semantics of L is a straightforward extension of the standard ALC-semantics.

Definition 2 An L-interpretation T = (AT, -T) consists of a non-empty set A7,
the domain, and a function - that maps

e concept names A; to subsets A7 C A of the domain and
e role names R; to binary relations R C A” x A” on the domain.

This mapping is extended to complex roles R, S and complex concepts C, D as
follows:

id" = {(z,2) |z € AT}
o= {,2) | (z,y) € R}
(-R)T = AT x AT\ R?

' = RTNST

' = RTUST

)T = AT\ (T
(CnDy} = CctnD*
(CuD)yt = CctuD*
(AR.CVY = {x e AT | there exists y € CT with (z,y) € RT}
(VR.C)E! = {xe AT | forally, if (z,y) € RZ, then y € CT}.

A concept C'is called satisfiable if, for some interpretation Z, C* # (). Such an
interpretation is called a model of C'.



Obviously, there is a 1-1 correspondence between first-order interpretations
and L-interpretations: setting A7 = A; and Rf = R;, each first-order interpre-
tation <AI,A1, LR > can be viewed as an L-interpretation (AZ,-) and
vice versa. Hence we do not distinguish between both kinds of interpretations.

3 The correspondence between FO? and £

In this section, we show that FO? and L are equally expressive. The main
difficulty is to devise a translation that maps each FO?-formula to an equivalent
L-concept.

Theorem 1 For every C' € L there exists a formula oo (x) € FO? whose length
is linear in the length of C such that, for all interpretations Z and all a € AZ,
a€Criff T = ¢clal.

Conversely, given p(z) € FO? there exists an L-concept C, whose length
is exponential in the length of ¢(x) such that, for all interpretations Z and all
a€ A aeCLiff Tk olal.

Proof: The proof of the first claim is standard (see, e.g., [3]), so we concentrate
on the second one. It is rather similar to the proof provided in [9] for temporal
logics.

An FO>formula p(x,y) is called a binary atom if it is an atom of the form
Ri(7,y), Ri(y,x), or * = y. A binary type t for a formula 1 is a set of FO?-
formulas containing (i) either y or —y for each binary atom x occurring in ),
(ii) either x = y or x # y, and (iii) no other formulas than these. The set of
binary types for 1 is denoted by R,. A formula ¢ is called a unary atom if it is
of the form R;(z,z), Ri(y,y), Ai(z), or A;(y).

Let p(z) € FO? Without loss of generality, we assume ¢(z) is built using
4, A, and = only. We inductively define two mappings :°* and -?¢ where the
former one takes FO?-formulas ¢(x) to the corresponding L-concepts ¢’ and
the latter does the same for FO?-formulas ¢(y). We only give the details of o=
since -?v is defined analogously by switching the roles of x and y.

Case 1. If p(z) = A;(z), then put (p(x))" = A;.

Case 2. If p(z) = R;(x, x), then put (¢(x))’ = 3(id T R;).T.

Case 3. If p(z) = x1 A X2, then put, recursively, (¢(x))7 = x7" A x5°.
Case 4. If o(x) = =y, then put, recursively, (¢(z))7 = —(x)7".

Case 5. It o(x) = Fyx(x,y), then x(x,y) can clearly be written as

X(«T,y) = f}/[pla s :pr:’)/l(x)ﬂ e 77€(x)7§1(y)7 s '755(3/)]7
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i.e., as a Boolean combination 7 of p;, v;(x), and &(y); the p; are binary atoms;
the v;(z) are unary atoms or of the form Jy~}; and the &;(y) are unary atoms
or of the form Jz¢,. We may assume that x occurs free in ¢(z). Our first
step is to move all formulas without a free variable y out of the scope of 3: for
W= (wy, ..., we), ¢(x) is equivalent to

\/ ( /\ (f)/’t <:>wz) /\Elyr)/(pla"'Jprawla"'waafla"'ags))' (1)

we{T, L}t 1<i<l

For every binary type ¢ € R, and binary atom p; from ¢, we have ¢ = p; or
t = —p;—hence we can “guess” a binary type ¢t and then replace all binary atoms
by either true or false. For t € R, let pf = T if t = p;, and pf = L, otherwise.
Then p(z) is equivalent to

Vaerr, i3t (Nicice (i & wi) A

2
Vthw E‘y((/\aet O[) A f}/(ptla R Pi; Wiy .- 7w17517 s 755))) ( )

Define, for every negated and unnegated binary atom «, a role a?* as follows:

(r=y) = id (=(x=y)™ = -id
(Ri(z,9)) = R; (=Ri(z,y))™ = -R;
(Ri(y, ) = Ry (=Ri(y,»))™ = =R;.

Put, for every binary type t € R, t°* = [lo¢; @’*. Now compute, recursively,
7= and &7, and define p(z)7 = C, as

Oz . ox t t Oy Oy
zﬁe{T,L}f(lgl?gé(% & w;) l_lt€|7|3w = (P, Pl wr, e we, Y ESY)).
N

Note that C, can be computed in time polynomial in the length of C,. It
is easily seen that there exist formulas C' whose translation yields an L£-concept
C, with length exponential in the length of ¢.

Let us compare the above translation with the one presented in [3]. Borgida’s
logic D offers the same concept and role operators provided by £ with two
exceptions:

1. instead of the identity role, D provides for nominals. As already argued
in the introduction, nominals are implicitly available in £. The converse
does not hold, i.e., the identity role cannot be “simulated” in D. It is
thus not surprising that Borgida translates FO? without equality but with
constants;



2. the logic D provides for an additional role operator that allows to build

complex roles from concepts C, Cs as their product Cy x Cy, where (C X
CQ)I = C% X CQI

While the first difference is more of a technical nature, the second one makes
the translation of FO2-formulae into D-concepts almost trivial: the main dif-
ficulty in the translation to L-concepts described above consists in finding, for
the sub-formula in two variables y(z,y) of Jy.x(x,y) in Case 5, an equivalent
re-writing as Jy.(G(x,y) AX'(y)) such that G(z,y) can be translated into a com-
plex role. The translation of x' can then be done recursively. In contrast, the
translation given in [3] translates the whole formula x(z,y) as a (complex) role,
i.e., translating Jy.x(z,y) yields 3R,.T, where R, is defined recursively. This
is only possible since, for example, subformulae p(z) A p/(y) of x(x,y) can be
translated as the role C, x C, using the product operator. Intuitively, this op-
erator allows to freely switch back and forth between roles and concepts during
the translation. Hence the presence of the (non-standard) product operator is
the reason why Borgida is able to find a linear translation of £'O? into his logic.
In the following, we will see that such a translation does (presumably) not exist
for the description logic L.

4 Complexity

Let us analyze the computational complexity of the logics considered in the
previous sections. The fundamental result is proved in [14], where it is shown
that satisfiability of FO?formulae is NEXPTIME-complete.! Concerning the
Description Logic L, the following corollary to Theorem 1 is easily obtained:

Corollary 1 Satisfiability of L£-concepts is NEXPTIME-complete.

Proof: In [19], it is proved that ALC extended with intersection and (primitive)
negation of roles is already NEXPTIME-hard. Hence, it remains to prove the
upper bound: it is an immediate consequence of Theorem 1 (together with the
fact that that formulae o corresponding to L-concepts C' can be computed
in linear time) and NEXPTIME-completeness of FO? that satisfiability of £-
concepts is in NEXPTIME. U

Finally, NExPT1ME-completeness of Borgida’s logic D is an easy consequence of
the above mentioned hardness result in [19] together with the linear translation
of D-concepts to FO?*-formula provided in [3].

These results may seem strange on first sight: we have presented an exponen-
tial translation from one NEXPTIME-complete logic into another one. Hence,

'We assume that ExpTIME is defined as DTIME(2"") and NExpTiME as NTIME(2"").
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it is natural to ask whether there exists a polynomial such translation. This
question can be answered negatively using the following observations:

1. Let £,, denote the variant of £ obtained by admitting only m (i.e., finitely
many) role names. In [20], we show that, for all m € N, satisfiability of L£,,-
formulae is EXPTIME-complete. The lower bound is a direct consequence of
the facts that (1) for m > 1, £,, can express the universal role, and (2) ALC
extended with the universal role is known to be ExpTiME-hard [23]. The upper
bound is proved in two steps: firstly, £,,-satisfiability is polynomially reduced to
the satisfiability of a certain modal logic £’ in a special form of models. Then this
latter problem is decided in exponential time by, roughly speaking, enumerating
(exponentially many) candidates for type-based abstractions of models and, for
each such candidate, checking (in exponential time) whether it does represent a
model by using a type elimination technique.

2. In contrast to £, FO? restricted to m binary relations (FO?) is still NExp-
TiME-hard [14].

3. Every translation of FFO2-formulas ¢ into £-concepts C satisfying the condi-
tions from Theorem 1 induces, for each m € N, a polynomial translation from
FO? into L,, that also satisfies the conditions from Theorem 1: just replace
every role R in C' that does not occur as a binary predicate in ¢ by d.

Taking together the above three points, it is obvious that the existence
of a polynomial translation from FO? into £ would imply that EXPTIME =
NEXPTIME. A convenient way to view this result is that FO? speaks about
relational structures strictly more succinctly than £ does.
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