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1 Introdution

Desription Logis (DLs) are a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologial knowl-

edge [34, 28, 2℄. Over the last years, they turned out to be also well-suited for

the representation of and reasoning about, e.g., ontologies [31, 16℄ and database

shemata, where they an support shema design, evolution, and query optimi-

sation [7℄, soure integration in heterogeneous databases/data warehouses [6℄,

and oneptual modeling of multidimensional aggregation [18℄.

The basi notions of DLs are onepts (lasses, unary prediates) and roles

(binary prediates). A spei� DL is mainly haraterised by a set of onstrutors

that allow to form omplex onepts and roles from atomi ones. A standard

DL knowledge base onsists of two parts: in the TBox, the voabulary of a

given appliation domain is �xed. For example, the following onept de�nition

de�nes ooled mixer-reators as those material objets having a part that is a

ooler, having a part that is a mixer, and that only ontain homogeneous or

inhomogeneous phases:

CMReator

:

= Mat-Objetu (9has-part:Cooler) u (9has-part:Mixer) u

(8ontains:(homog-phaset inhomog-phase))

The DL used in this onept de�nition is the well-known DL alled ALC [34℄.

Some TBoxes also allow to state general axioms suh as C

:

= D or C

_

vD for two

(possibly omplex) onepts [11, 22℄. The seond part of a DL knowledge base,

the ABox, states fats onerning onrete individuals. Using the voabulary

�xed in the TBox, we an state in an ABox that the individual a is an instane

of, e.g., the onept CMReator, and that it is related via the role has-part to

an individual b. Given suh a \hybrid" knowledge base, interesting reasoning

problems inlude the omputation of the taxonomy (i.e., the hierarhy w.r.t. the

subsumption relation) of those onepts de�ned in the TBox, �nding inonsistent

onepts de�ned in the TBox, and �nding, for an individual a in the ABox, the

most spei� onepts de�ned in the TBox that a is an instane of.

To be of use in a spei� appliation, a DL must provide the means to de-

sribe properties of objets that are relevant for this appliation. Unsurprisingly,

the more expressive power a DL provides, the more omplex the reasoning al-

gorithms for this DL are. As a onsequene, a variety of DLs were introdued
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together with investigations of the omplexity of the orresponding reasoning

algorithms/problems (see, e.g., [26, 34, 13℄).

In 1991, Shild desribed the lose relationship between DLs and modal log-

is or dynami logis [32℄. For example, it turned out that ALC is a notational

variant of multi modal K. Following that, numerous new DLs with orrespond-

ing omplexity results emerged by (extensions of) translations into modal and

dynami logis [9, 33, 10℄. Due to its high expressive power, the full �-alulus

(i.e., propositional �-alulus extended with onverse programs) an be viewed

as (one of) the \queens" of ExpTime modal/dynami/temporal logis [23, 35,

40℄. It is able to apture, for example, onverse-PDL, CTL

�

, and other highly

expressive modal/dynami/temporal logis, and thus also highly expressive DLs

[5℄. Unfortunately, the �-alulus laks two features that are of great importane

for it being also a \queen" for DLs: it does not provide an analogon for onept

de�nition/general axioms that are provided by TBoxes, and it has no equiva-

lent to ABox individuals. The �rst point is not a serious one sine we ould

\internalise" general axioms using a greatest �xpoint formula even though the

�-alulus does not provide (onstrutors to build) a universal program [32℄. The

seond one is more serious sine, for example, the extension of the �-alulus with

individuals no longer has the tree model property. Moreover, in the presene of

individuals, internalisation beomes more subtle.

In this paper, we extend the �-alulus with a universal role/program to en-

able diret internalisation of TBoxes [32℄, and with a generalised form of ABox

individuals, namely nominals. In ontrast to ABox individuals, nominals an be

used inside omplex onepts/formulae in the same plae as atomi propositions.

We are able to show that the omplexity of the full �-alulus, when extended

with a universal program and nominals, does not inrease, but remains in Ex-

pTime. To prove this upper bound, we redue satis�ability to the emptiness of

alternating automata on in�nite trees|a family of automata that an be viewed

as abstrations of tableau algorithms. This tehnique is rather elegant in that it

separates the logi from the algorithmis [39℄. For example, a tableau-based algo-

rithm might require sophistiated bloking tehniques to guarantee termination

[22℄. Using the automata-theoreti tehnique, termination is not an issue sine

we an work on in�nite trees. Moreover, this tehnique makes expliit whih

problems arise when reasoning in the presene of nominals and universal roles,

and how to deal with them. We have hosen to deal with nominals by expliitly

guessing most of the relevant information onerning nominals|a hoie that

will be explained in the sequel.

Besides being of interest by itself and, one again, showing the power of

the automata-theoreti approah, the omplexity result presented here broadens

the range desription/modal/dynami logis that have ExpTime deision pro-

edures. Over the last few years, it was shown that tableau-based algorithms

for ertain ExpTime-omplete reasoning problems are amenable to optimisation

and behave quite nie in pratise [21, 29, 19, 22℄. Thus, establishing an ExpTime

upper bound is a �rst step in developing a pratial deision proedure for the

hybrid �-alulus. We return to the pratiality issue at the end of the paper.



Unfortunately, this new \queen" logi is still not \the queen" sine it is

missing a prominent feature, namely number restritions/graded modalities [17,

12, 38℄. This is due to the fat that, in the presene of onverse roles and universal

programs/roles (or any other means to internalise axioms), nominals and number

restritions/graded modalities lead to NExpTime-hardness [37℄.

From the tense logi perspetive [4℄, the hybrid full �-alulus an also be

viewed as one of the \queen" hybrid logis with ExpTime-omplete reasoning

problems: our result extends ExpTime-ompleteness results for, e.g., Priorean

tense logi over transitive frames (whih an be viewed as a notational variant

of multi-modal K4 with onverse modalities) or onverse-PDL with nominals in

[1℄.

2 Preliminaries

In this setion, we introdue syntax and semantis of the hybrid full �-alulus

as well as two-way automata. It is the extension of the propositional �-alulus

with onverse programs [40℄, a universal role, and nominals [30, 1℄, i.e., atomi

formulae to refer to single worlds.

De�nition 1. Let AP be a set of atomi propositions, Var a set of propositional

variables, Nom a set of nominals, and Prog a set of atomi programs with the

universal program o 2 Prog. A program is either an atomi program or the

onverse a

�

of an atomi program a 2 Prog. The set of formulae of the hybrid

full �-alulus is the smallest set suh that

{ true, false, p and :p are formulae for p 2 AP [ Nom,

{ x 2 Var is a formula,

{ if '

1

and '

2

are formulae, � is a program, and x is a propositional variable,

then '

1

^ '

2

, '

1

_ '

2

, h�i'

1

, [�℄'

1

, �y:'

1

(y) and �y:'

1

(y) are formulae.

A propositional variable x 2 Var is said to our free in a formula if it ours

outside the sope of a �xpoint operator. A sentene is formula that ontains no

free propositional variable, i.e., eah ourrene of a variable x is in the sope of

a �xpoint operator � or �. We use � to denote a �xpoint operator � or �. For a

�-formula �x:'(x), we write '(�x:'(x)) to denote the formula that is obtained

by replaing eah free ourrene of x in ' with �x:'(x).

Semantis is de�ned by means of a Kripke struture and, in the presene

of variables and �xpoints, a valuation that assoiates a set of points with eah

variable. Readers not familiar with �xpoints might want to look at [23, 35℄ for

instrutive examples and explanations of the semantis of the �-alulus.

De�nition 2. Semantis of the hybrid full �-alulus is given by means of a

Kripke struture K = (W;R;L), where

{ W is a set of points,

{ R : Prog �! 2

W�W

assigns to an atomi program a binary relation on W ,



{ R(o) =W �W , and

{ L : AP [ Nom �! 2

W

assigns to eah atomi proposition or nominal the set

of points in whih it holds, suh that L(n) is a singleton for eah nominal n.

R is extended to onverse programs as follows: R(a

�

) = f(v; u) j (u; v) 2 R(a)g.

Given a Kripke struture K = (W;R;L) and variables x

1

; : : : ; x

2

, a valuation

V

: fx

1

; : : : ; x

2

g �! 2

W

maps eah variable to a subset of W . For a valuation

V

, a variable x, and a set of points W

0

� W ,

V

[x=W

0

℄ is the valuation that is

obtained from

V

by assigning W

0

to x.

A formula ' with free variables among x

1

; : : : ; x

2

is interpreted over a Kripke

struture K = (W;R;L) as a mapping '

K

that assoiates, with eah valuation

V

, a subset '

K

(

V

) of W . This mapping is de�ned indutively as follows:

{ true

K

(

V

) =W , false

K

(

V

) = ;,

{ for p 2 AP [ Nom, we have p

K

(

V

) = L(p) and (:p)

K

(

V

) =W n L(p)

{ ('

1

^ '

2

)

K

(

V

) = ('

1

)

K

(

V

) \ ('

2

)

K

(

V

);

('

1

_ '

2

)

K

(

V

) = ('

1

)

K

(

V

) [ ('

2

)

K

(

V

);

(h�i')

K

(

V

) = fu 2 W j there is a v with (u; v) 2 R(�) and v 2 '

K

(

V

)g;

([�℄')

K

(

V

) = fu 2 W j for all v, (u; v) 2 R(�) implies v 2 '

K

(

V

)g;

{ (�y:'(y))

K

(

V

) =

T

fW

0

�W j '

K

(

V

[x=W

0

℄) �W

0

g

(�y:'(y))

K

(

V

) =

S

fW

0

�W j '

K

(

V

[x=W

0

℄) �W

0

g

For a sentene  , a Kripke struture K = (W;R;L), and w 2 W , we write

K;w j=  i� w 2  

K

, and all K a model of  .

1

A sentene that has a model

is alled satis�able.

Remark 1. All formulae are by de�nition in negation normal form, i.e., negation

ours only in front of atomi propositions or nominals.

In the following, we will sometimes write  (n

1

; : : : ; n

`

) to emphasize that

n

1

; : : : ; n

`

are exatly the nominals ourring in  .

Sine we will treat atomi programs and their onverse symmetrially, we

will use � to denote a

�

if � = a for some atomi program a, and b if � = b

�

for

some atomi program b. We use Prog

 

to denote all (possibly negated) programs

ourring in  .

In many deidable hybrid logis, we �nd formulae of the form '�n (to be

read as \ the formula ' holds at the nominal n") with the semantis

('�n)

K

(

V

) =

�

W if n 2 '

K

(

V

)

; otherwise :

We did not provide this operator sine, in the presene of the universal role o,

we an make use of the equivalene '�n � [o℄(:n _ '):

Finally, we introdue two-way alternating automata on in�nite trees. This

family of automata generalises non-deterministi tree automata in two ways:

�rstly, they allow for the rather elegant and suint alternation. Alternating

automata on in�nite trees were �rst introdued in [27℄, and allow for transitions

1

The interpretation of a sentene is independent of valuations.



suh as \being in state q and seeing letter �, the automaton either has an a-

epting run with q

1

from the left suessor and an aepting run with q

2

from

the right suessor, or it has an aepting run with q

0

from the left suessor."

To express this kind of transitions, the transition funtions involves positive

boolean formulae instead of, e.g., sets of tuples of states as for non-deterministi

automata. Seondly, being two-way allows runs to go up and down the input

tree|in a similar way as having onverse programs allows to follow programs in

both diretions. When running on a k-ary tree, a two-way automaton an have

transitions going to the ith hild and swithing to state q

0

(denoted (i; q

0

) with

1 � i � k), staying at the same node swithing to state q

0

(denoted (0; q

0

)), or

going to its (unique) predeessor and swithing to state q

0

(denoted (�1; q

0

)).

For an introdution to two-way alternating automata and their appliation to

the full �-alulus, see [40℄.

De�nition 3. For k � 1 an integer, (f1; : : : ; kg

�

; V ) is a k-ary �-labelled tree

if V is a mapping that assoiates, with eah node x 2 f1; : : : ; kg

�

, its label

V (x) 2 �. Intuitively, for 1 � i � k, x � i is the ith hild of x.

Let B

+

(X) be the set of positive Boolean formulae (i.e., formulae built using

^ and _ only) over the set X. For X

0

� X, we say that X

0

satis�es a formula

� 2 B

+

(X) i� assigning true to all elements in X

0

and false to all elements in

X nX

0

makes � true.

Let [k℄ = f�1; 0; 1; : : : ; kg. A two-way alternating automaton on k-ary �-

labelled trees is a tuple A = (�;Q; Æ; q

0

; F ), where Q is a �nite set of states,

q

0

2 Q is the initial state, Æ : Q � � ! B

+

([k℄ � Q) is the transition relation,

and F is the aeptane ondition.

A run of A on a �-labelled k-ary tree (T; V ) is a (T �Q)-labelled tree (T

r

; r)

that satis�es the following onditions:

{ � 2 T

r

and r(�) = (�; q

0

),

{ If y 2 T

r

with r(y) = (x; q) and Æ(q; V (x)) = �, then there is a (possibly

empty) set S � [k℄�Q that satis�es � suh that, for eah (; q

0

) 2 S, there

is a node y � i 2 T

r

satisfying the following onditions:

� If  = �, then r(y � i) = (x; q

0

).

� If  � 1, then r(y � i) = (x � ; q

0

).

� If  = �1, then x = x

0

� i for some 1 � i � k, and r(y � i) = (x

0

; q

0

).

A run (T

r

; r) is aepting i� all its in�nite paths satisfy the aeptane ondition.

Sine we use tree automata for the �-alulus, we onsider the parity ondition

[36℄. A parity ondition is given by an asending hain of states of sets F =

(F

0

; : : : ; F

k

) with F

i

� F

i+1

. Given a path P in (T

r

; r), let inf(P ) denote the

states that are in�nitely often visited by P . Then P is aepted i� the minimal

i with inf(P ) \ F

i

6= ; is even.

For two-way alternating automata, the emptiness problem is the following

question: given a two-way alternating automaton A, is there a tree (T; V ) suh

that A has an aepting run on (T; V )? It was shown in [40℄ that this problem

is solvable in time that is exponential in the number of A's state, where the

exponent is a polynomial in the length of the parity ondition.



3 Hybrid full �-alulus has a tree model property

As usual, when proving a tree model property for the hybrid full �-alulus, we

want to \unravel" a given model to a tree model. In the presene of nominals,

this is learly not possible sine, for example, the formula n ^ h�i(m ^ h�in)

with n;m 2 Nom has no model in the form of a tree. However, we will show

that we an unravel eah model to a forest, i.e., a olletion of trees. When

unravelling, we must hoose \good" points that witness diamond formulae (i.e.,

a point y with y 2 '

K

and (x; y) 2 R(�) for x 2 (h�i')

K

)|where being \good"

is rather triky in the presene of �xpoints. To this purpose, we de�ne a hoie

funtion that hooses the \good" witnesses. Essentially, this hoie funtion is

a memoryless strategy whose existene is guaranteed for parity games [14℄.

De�nition 4. The losure l( ) of a sentene  is the smallest set of sentenes

that satis�es the following:

{  2 l( ),

{ if '

1

^ '

2

2 l( ) or '

1

_ '

2

2 l( ), then f'

1

; '

2

g � l( ),

{ if h�i' 2 l( ) or [�℄' 2 l( ), then ' 2 l( ), and

{ if �x:'(x) 2 l( ), then '(�x:'(x)) 2 l( ).

An atom A of  is a set of formulae in l( ) that satis�es the following prop-

erties:

{ if p 2 AP [ Nom ours in  , then, exlusively, either p 2 A or :p 2 A,

{ if '

1

^ '

2

2 l( ), then '

1

^ '

2

2 A i� f'

1

; '

2

g � A,

{ if '

1

_ '

2

2 l( ), then '

1

_ '

2

2 A i� f'

1

; '

2

g \A 6= ;, and

{ if �x:'(x) 2 l( ), then �x:'(x) 2 A i� '(�x:'(x)) 2 A.

The set of atoms of  is denoted at( ).

A pre-model (K;�) for a sentene  onsists of a Kripke struture K =

(W;R;L) and a mapping � : W �! at( ) that satis�es the following properties:

{ there is a u

0

2 W with  2 �(u

0

),

{ for p 2 AP [ Nom, if p 2 �(u), then u 2 L(p), and if :p 2 �(u), then

u 62 L(p),

2

{ if h�i' 2 �(u), then there is a v 2W with (u; v) 2 R(�) and ' 2 �(v), and

{ if [�℄' 2 �(u), then ' 2 �(v) for eah v 2 W with (u; v) 2 R(�).

A hoie funtion h : W � l( ) �! l( ) [W for a pre-model (K;�) of  

is a partial funtion that, for eah u 2 W ,

(i) if '

1

_ '

2

2 �(u), then h(u; '

1

_ '

2

) 2 f'

1

; '

2

g \ �(u) and

(ii) if h�i' 2 �(u), then h(u; h�i') = v for some v with (u; v) 2 R(�) and

' 2 �(v).

2

Hene if a nominal n is in �(u), then L(n) = fug.



An adorned pre-model (K;�; h) onsists of a pre-model (K;�) and a hoie

funtion h.

For an adorned pre-model (W;R;L; �; h) of  , the derivation relation  �

(l( );W )

2

is de�ned as follows:

{ if '

1

_ '

2

2 �(u), then ('

1

_ '

2

; u) (h('

1

_ '

2

); u)

{ if '

1

^ '

2

2 �(u), then ('

1

^ '

2

; u) ('

i

; u) for eah i 2 f1; 2g,

{ if h�i' 2 �(u), then (h�i'; u) ('; h(h�i'; u))

{ if [�℄' 2 �(u), then ([�℄'; u) ('; v) for eah v with (u; v) 2 R(�)

(for � = o, that means that ([o℄'; u) ('; v) for eah v 2 W )

{ if �x:'(x) 2 �(u), then (�x:'(x); u)  ('(�x:'(x)); u)

A least-�xpoint sentene �x:'(x) is said to be regenerated from point u to point

v in an adorned pre-model (K;�; h) if there is a sequene (�

1

; u

1

); : : : ; (�

k

; u

k

)

with k � 1 suh that �

1

= �

k

= �x:'(x), u = u

1

and v = u

k

, for eah 1 �

i < k, we have (�

i

; u

i

)  (�

i+1

; u

i+1

), and �x:'(x) is a sub-sentene of eah

�

i

. We say that (K;�; h) is well-founded if there is no least �xpoint sentene

�x:'(x) 2 l( ) and an in�nite sequene u

0

; u

1

; : : : suh that, for eah i � 0,

�x:'(x) is regenerated from u

i

to u

i+1

.

Lemma 1. A sentene  has a model K i�  has a well-founded adorned pre-

model (K;�; h).

Proof. The onstrution of a model from a well-founded adorned pre-model and,

vie versa, of a well-founded adorned pre-model from a model, are analogous to

the onstrutions that an be found in [35℄. These onstrutions are, as men-

tioned in [40℄, insensitive to onverse programs, and|due to the aording mod-

i�ations of the tehnial details|also insensitive to nominals. Indeed, nominals

behave simply like atomi propositions provided that L(n) is guaranteed to be

interpreted as a singleton. ut

De�nition 5. The relaxation of a pre-model (W;R;L; �) of a sentene  (n

1

;

: : : ; n

`

) onsists of mappings R

r

and �

r

, where

R

r

: Prog!W �W and

R

r

: � 7! R(�) n f(u; v) j for some 1 � i � `; L(n

i

) = fvgg

�

r

:W ! fG j G = G

1

[G

2

; G

1

2 at( ); and

G

2

� f

�

!n

i

j � ours in  ; � 6= o, and 1 � i � `gg

�

r

: u 7! �(u) [ f

�

!n j (u; v) 2 R(�); � 6= o; and L(n) = fvgg

A relaxation is a forest if R

r

forms a forest.

Lemma 2. If a sentene  is satis�able, then it has a well-founded adorned

pre-model whose relaxation is a forest and has  in the label of one of its roots.

Proof. Let  be satis�able. Hene there is a well-founded adorned pre-model

(K;�; h) with K = (W;R;L) for  due to Lemma 1. Using a tehnique similar

to the one in [40℄, we onstrut from (K;�; h) a well-founded adorned pre-model

(K

0

; �

0

; h

0

) whose relaxation is a forest. Please note that, due to the presene



of onverse programs, we annot simply unravel K. However, we an use the

hoie funtion to do something similar that yields the desired result also in the

presene of onverse programs.

Let  =  (n

1

; : : : ; n

`

) and w

0

2 W suh that w

0

2  

K

. Let j j = n, let

h�

1

i'

1

; : : : ; h�

k

i'

k

0

be all diamond formulae in l( ), and let k be the maximum

of k

0

and `+ 1. Hene we have k � n. We de�ne a mapping � : f1; : : : ; kg

+

�!

W [ f?g indutively, together with an adorned pre-model (K

0

; �

0

; h

0

) where

K

0

= (W

0

; R

0

; L

0

), W

0

= dom(�) n fx j �(x) = ?g, and

{ for p 2 AP [ Nom, x 2 L

0

(p) i� �(x) 2 L(p),

{ �

0

(x) = �(�(x)),

{ h

0

(x; '

1

_ '

2

) = h(�(x); '

1

_ '

2

), and

{ R

0

and h

0

(x; ') for diamond formulae ' are de�ned indutively together

with � ,

We are now ready to present the indutive de�nition of � and (K

0

; �

0

; h

0

).

(Fix the �rst level) For j with 1 � j � `, let v

f(1)

; : : : ; v

f(`)

2 W be suh

that L(n

j

) = fv

f(j)

g and f(1) � � � � � f(`) � `|sine it is possible that

L(n) = L(n

0

) for nominals n 6= n

0

, f need not be injetive. For 1 � j � `,

set �(f(j)) = v

f(j)

.

For w

0

2W with w

0

2  

K

, if w

0

62 fv

f(1)

; : : : ; v

f(`)

g, then set �(f(`) + 1) =

w

0

. Set �(j) = ? for eah 1 � j � k not yet de�ned.

(Fix the rest) For the indution, let i be suh that �(x) is already de�ned for

eah x 2 f1; : : : ; kg

i

, and j with 1 � j � k suh that �(x1); : : : ; �(x(j � 1))

is already de�ned for eah x 2 f1; : : : ; kg

i

. Then, for eah x 2 f1; : : : ; kg

i

,

do the following:

(1) if h�

j

i'

j

62 �

0

(x) or �(x) = ?, then de�ne �(xj) = ?.

(2) if h�

j

i'

j

2 �

0

(x), then (sine (K;�; h) is a pre-model and �

0

(x) =

�(�(x))), there is some v 2 W with h(�(x); h�

j

i'

j

) = v and (�(x); v) 2

R(�

j

).

{ If fvg = L(n

`

0

) for some 1 � `

0

� `, then (sine we have already �xed

the �rst level) there is some r with 1 � r � ` with �(r) = v. Add (x; r)

to R

0

(�

j

), and set h

0

(x; h�

j

i'

j

) = r and �(xj) = ?.

{ Otherwise, add (x; xj) to R

0

(�

j

), set �(xj) = v and h

0

(x; h�

j

i'

j

) = xj.

Sine we started from an adorned pre-model, (K

0

; �

0

; h

0

) is obviously an adorned

pre-model. Moreover, if a sentene �x:'(x) is regenerated from x to y in (K

0

; �

0

; h

0

),

then �x:'(x) is also regenerated from �(x) to �(y) in (K;�; h). Sine the latter

is well-founded, we thus have that (K

0

; �

0

; h

0

) is well-founded. Next, its relax-

ation R

0

r

is a forest (onsisting of trees starting at the �rst level) sine the only

edges in R

0

that \go bak", i.e., that are not of the form (x; xi), are exatly those

that are eliminated in R

0

r

. Finally,  is satis�ed in one of the root nodes sine,

by de�nition of (K

0

; �

0

; h

0

), we have j 2  

K

0

for some 1 � j � f(`) + 1. ut

Remark 2. Please note that in this onstrution, if x satis�es a diamond formula

h�i', then either a suessor xj of x or one of the �rst level nodes representing

nominals satis�es '.



4 Deiding existene of forest models

It remains to devise a proedure that deides, for a sentene  , whether it has

a well-founded adorned pre-model whose relaxation is a forest. To this purpose,

we de�ne a two-way alternating tree automaton that aepts exatly the forest-

relaxations of  's pre-models|provided that we added a new dummy node whose

suessors are the root nodes of the forest relaxation.

The automaton depends on a guess whih ontains relevant information on-

erning the interpretation of nominals. The guess makes sure that the following

kind of situation is handled orretly: suppose a nominal nmust satisfy a formula

of the form [�℄', and we have a point x with (x; n) 2 R(�), but this relationship

is only impliit sine we work on relaxations of pre-models, i.e., (x; n) 62 R

r

(�)

and

�

! n 2 �

r

(x). In that ase, the guess makes sure that x satis�es ' sine it

determines whih box formulae are satis�ed by nominals. Moreover, the guess de-

termines whih nominals are interpreted as the same objets, and how nominals

are related to eah other by programs.

It is possible to refer all this \guessing" diretly to the automaton|hene we

had only one automaton instead of one per guess. We have hosen, however, to

work with expliit guesses sine, on the one hand, it makes expliit the additional

non-determinism one has to ope with in the presene of nominals and how it an

be dealt with. On the other hand and more importantly, referring the guessing

into the automaton would yield a quadrati blow-up of the state spae. Let n

be the number of states and m be the length of the aeptane ondition of

a two-way alternating tree automaton. When deiding emptiness of a two-way

alternating tree automaton [40℄, it is transformed into a non-deterministi (one-

way) parity tree automaton whose state spae is of size (nm

2

)

nm

2

, and whose

aeptane ondition is of length nm

2

. Emptiness of the latter automaton an

be deided in time 2

O((n

2

m

4

)(logn+2 logm))

[25℄. Hene a (quadrati) blow-up of

the state spae of our initial two-way alternating tree automaton would further

inrease the degree of the polynomial in the exponent of the runtime, and thus

be rather expensive.

Formally, a guess onsists of three omponents, the �rst one onsisting, for

eah nominal n, of a set  of formulae satis�ed by a point u with L(n) = fug.

Sine one point may represent several nominals, we use a seond omponent f to

relate a nominal n

i

to \its" set of formulae 

f(i)

. The third omponent desribes

how two points representing nominals are interrelated via (interpretations of)

programs, making sure that, if one is an �-suessor of the other, then the other

is an �-suessor of the �rst one.

De�nition 6. A guess G = (G; f; C) for a hybrid full �-alulus sentene  (n

1

;

: : : ; n

`

) onsists of a guess list G = (

1

; : : : ; 

`

) together with onnetions C �

Nom� Prog

 

� Nom and a guess mapping f : f1; : : : ; `g �! f1; : : : ; `g, where,

for eah 1 � i; j � `, we have ; ( 

i

� l( ) or 

i

= ?, n

i

2 

f(i)

, n

i

62 

j

for

all j 6= f(i), Nom\

i

= ; implies 

i

= ?, and (n

i

; �; n

j

) 2 C i� (n

j

; �; n

i

) 2 C.

Theorem 1. Let  be a hybrid full �-alulus sentene. For eah guess G for

 , we de�ne a two-way alternating tree automaton B( ;G), suh that



1. if  is satis�able, then there exists a guess G

0

for  suh that the language

aepted by B( ;G

0

) is non-empty,

2. if a tree is aepted by B( ;G), then eliminating its root node yields a forest

relaxation of a well-founded adorned pre-model of  , and

3. the number of B( ;G)'s states is linear in j j.

Proof. For ease of presentation, we assume that all input trees are full trees, i.e.,

all non-leaf nodes have the same number of hildren. As we have seen in the

proof of Lemma 2, we an simply \�ll" a tree with additional nodes labelled ?

to make it a full tree. Moreover, we assume a \dummy" root node whose diret

suessors are exatly the root nodes of trees in the forest relaxation.

For a sentene  (n

1

; : : : ; n

`

) with k

0

diamond subformulae in l( ) as spei�ed

in the proof of Lemma 2 and a guess G, we de�ne two alternating automata,

A( ;G) and

~

A( ;G), and then de�ne B( ;G) as the intersetion of A( ;G) and

~

A( ;G). For alternating automata, intersetion is trivial (basially, we introdue

a new initial states ~q with Æ(~q; �) = (0; q

0

) ^ (0; q

0

0

) for the former initial states

q

0

; q

0

0

), and the size of B( ;G) is the sum of the sizes of A( ;G) and

~

A( ;G).

The automaton

~

A( ;G) is rather simple and guarantees that the struture of

the input tree is as required, whereas A( ;G) really makes sure that the input

tree (more preisely, the sub-forest of the input tree obtained by eliminating the

root and all nodes labelled with ?) is a relaxation of a well-founded adorned

pre-model.

Both automata work on the same alphabet �, whih is de�ned as follows:

For Prog

+

= fp

�

; p

�

; p

�

; p

�

j � is a program in  di�erent from og,

� = f?; rootg[f� j � � AP [ Nom [ Prog

+

[ f

�

j

!n

i

j 1 � j � m and 1 � i � `g;

� ontains, for eah �; exlusively, either p

�

or p

�

, and,

exlusively, either p

�

or p

�

g

The intuition of the additional symbols are as follows: Nodes not representing

points in a Kripke struture are labelled root and ?, where root labels the root

node. Nodes having n

i

(i.e., the node labelled with the orresponding guess 

f(i)

)

as an �-suessor are marked

�

!n

i

, just like in relaxations. A node label ontains

p

�

(p

�

) if this node is an �-suessor (�-suessor) of its (unique) predeessor.

We do allow that a node is both an �- and a �-suessor, or that no program

an be assoiated to the edge between two nodes. Analogously, p

�

(p

�

) are used

to mark those nodes that are not �-suessors (�-suessors).

The \simple" automaton

~

A( ;G) guarantees that root is only found at the

root label, the nominals in 

i

are only found at the ith suessors of the root, the

�rst level nodes ontain no p

�

or p

�

and that, if a nominal n

i

has another nominal

n

j

as its �-suessor (i.e., if

�

!n

j

is in the label of the node representing n

i

), then

n

j

has n

i

as its �-suessor (i.e.,

�

! n

i

is in the label of the node representing

n

j

). More preisely,

~

A( ;G) = (�; fq

0

; q

1

; : : : ; q

`

; q

0

; qg; Æ

0

; q

0

) is a safety one-

way alternating automaton (i.e., eah state is aepting and thus every run is



an aepting run), and Æ

0

is de�ned as follows for � 2 �:

Æ

0

(q

0

; �) =

�

V

`

i=1

(i; q

i

) ^

V

k

i=`+1

(i; q) ^

V

k

i=1

(i; q

0

) if root = �

false otherwise

Æ

0

(q

0

; �) =

�

true if p

�

62 � and p

�

62 � for eah � 6= o in  

false otherwise

for 1 � i � ` :

Æ

0

(q

i

; �) =

8

<

:

V

k

i=1

(i; q) if 

i

\ (Nom [ AP) = � \ (Nom [ AP); root 6= �, and,

for eah n 2 Nom \ � and (n; �; n

0

) 2 C;

�

!n

0

2 �

false otherwise

Æ

0

(q; �) =

�

V

k

i=1

(i; q) if � \ Nom = ; and root 6= �

false otherwise

Due to the symmetry in the de�nition of the onnetion omponent in a guess

and the way Æ

0

(q

i

; �) is de�ned, if

~

A( ;G) aepts a tree, fn

i

;

�

! n

j

g � �, and

n

j

2 �

0

, then

�

!n

i

2 �

0

, and �; �

0

label diret suessors of the root node.

The two-way alternating tree automaton A( ;G) veri�es that the input tree

is indeed a relaxation of a well-founded adorned pre-model. To this purpose,

(most of) its states orrespond to formulae in l( ), and the transition relation

basially follows the semantis. The �rst onjunt in the de�nition of Æ(q

0

0

; �)

guarantees that the ith suessor of the root node indeed satis�es all formulae

in 

i

, and that one of the root node suessors satis�es  . An additional state

q

0

that \travels" one through the whole input tree makes sure that, whenever a

node has a nominal n

i

as its impliit �-suessor (i.e., its label ontains

�

!n

i

),

then this node satis�es indeed all formulae ' with [�℄' 2 

f(i)

. Finally, the

diamond and box formulae on the universal role are treated separately sine

they apply to all but the root node, regardless of marks p

�

or p

�

. Please note

that, sine the root node does not represent any point of a Kripke struture,

Æ([o℄'; root) is de�ned suh that only all root suessors satisfy [o℄', but not

the root node itself. More preisely, we have

A( ;G) = (�;Q; Æ; q

0

0

; F ); with

Q = f?; q

0

0

; q

0

g [ l( ) [ Prog

+

:

The transition relation Æ is de�ned as follows: �rstly, for q 2 Q and � 2 � let

Æ(q;?) =

�

true if q = ?

false otherwise

Æ(?; �) =

�

true if � = ?

false otherwise

Seondly, for 1 � i � ` and � 2 �, let

� (i) =

�

(i;?) if 

i

= ?

V

'2

i

(i; ') if 

i

� l( )

N(�) =

V

�

!n

i

2 � and

[�℄' 2 

f(i)

(0; ')

Thirdly, for � 2 �, � 6= ?, and � a program, we de�ne Æ as follows:

Æ(q

0

0

; �) =

V

`

i=1

� (i) ^

W

k

i=1

(i;  ) ^

V

k

i=1

((i; q

0

) _ (i;?))

Æ(q

0

; �) = N(�) ^

V

k

i=1

((i; q

0

) _ (i;?))



for p 2 AP [ Nom [ Prog

+

:

Æ(p; �) =

�

true if p 2 �

false otherwise

for p 2 AP [ Nom :

Æ(:p; �) =

�

true if p 62 � and � 6= root

false otherwise

Æ('

1

^ '

2

; �) = (0; '

1

) ^ (0; '

2

)

Æ('

1

_ '

2

; �) = (0; '

1

) _ (0; '

2

)

Æ(�x:'(x); �) = (0; '(�x:'(x)))

for � 62 fo; o

�

g :

Æ(h�i'; �) =

(

true if

�

!n

i

2 � and ' 2 

f(i)

W

k

j=1

((j; ') ^ (j; p

�

)) otherwise

for � 62 fo; o

�

g :

Æ([�℄'; �) =

8

>

<

>

:

false if

�

!n

i

2 � and ' 62 

f(i)

((�1; ') _ (0; p

�

)) ^ otherwise

V

k

j=1

((j; ') _ (j; p

�

) _ (j;?))

for � 2 fo; o

�

g :

Æ(h�i'; �) =

(

true if ' 2 

f(i)

W

k

j=1

(j; ') otherwise

for � 2 fo; o

�

g :

Æ([�℄'; �) =

8

>

<

>

:

(0; ') ^ (�1; [�℄') ^ if root 6= �

V

k

j=1

((j; [�℄') _ (j;?))

V

k

j=1

((j; [�℄') _ (j;?)) otherwise

Please note that, following the onstrution in the proof of Lemma 2, satis-

fation of diamond formulae (inluding those on the universal program) needs

to be tested for only in diret suessors and in the nodes representing nominals.

Moreover, sine  =  (n

1

; : : : ; n

`

) and due to the de�nition of Æ(q

0

0

; �) and � (i),

Æ heks whether the node representing n

i

satis�es indeed all formulae in 

f(i)

.

The aeptane ondition F is de�ned analogously to the one in [15, 24℄, and

given here for the sake of ompleteness. Firstly, for a �xpoint formula ' 2 l( ),

de�ne the alternation level of ' to be the number of alternating �xpoint formulae

one has to \wrap ' with" to reah a sub-sentene of  . More preisely, the

alternation level al

 

(') of ' = �x:'

0

(x) 2 l( ) is de�ned as follows [3℄: if '

is a sentene, then al

 

(') = 1. Otherwise, let � = �

0

y:�

0

(y) be the innermost

�xpoint formula in l( ) that ontains ' as a proper sub-formula. If � = �

0

, then

al

 

(') = al

 

(�), otherwise al

 

(') = al

 

(�)+1. Let d be the maximal alternation

level of (�xpoint) subformulae of  , and de�ne

G

i

= f�x:'(x) 2 l( ) j al

 

(�x:'(x)) = ig

L

i

= f�x:'(x) 2 l( ) j al

 

(�x:'(x)) � ig:



Now we are ready to de�ne the aeptane ondition F = fF

1

; : : : ; F

2d

g with

F

i

=

8

<

:

; if i = 0;

F

i�1

[ L

i

if i � 1 is odd;

F

i�1

[G

i

if i � 1 is even:

Obviously, F

i

� F

i+1

for eah 1 � i � 2d. As mentioned in De�nition 3, a

path r

p

of a run r is aepting if the minimal i with inf(r

p

) \ F

i

6= ; is even|

this i orresponds to the outermost �xpoint formula that was in�nitely often

visited/postponed. A run r is aepting if eah of its paths are aepting. In-

tuitively, the aeptane ondition makes sure that, if a �xpoint formula was

visited in�nitely often, then this was a greatest �xpoint formulae, and that all

of its least �xpoint super-formulae were visited only �nitely many times.

It remains to verify the three laims in Theorem 1. The proof of the �rst

one uses Lemma 1 and a straightforward onstrution of a guess G from a forest

relaxation of a well-founded adorned pre-model, and then shows how an input

forest similar to the one onstruted in the proof of Lemma 1 is aepted by

B( ;G). The seond laim an be proved by taking an aepting run of B( ;G)

on some input tree, and verifying that the input tree indeed satis�es all properties

of relaxations of well-founded adorned pre-models. Finally, the third laim is by

de�nition of B( ;G). ut

Theorem 2. Satis�ability of hybrid full �-alulus an be deided in exponential

time.

Proof. As we have mentioned in the beginning of Setion 4, emptiness of B( ;G)

an be deided in time 2

O(n

6

log n)

for n = j j. Let ` be the number of nominals

and m the number of programs di�erent from o in  . Sine, for a guess G =

(G; f; C), the mapping f is determined by G, the number of guesses is bound by

the number of onnetions and guess lists, i.e., by 2

`

2

m

�2

`n

. Hene we have to test

at most an exponential number of automata B( ;G) for emptiness. Combining

these results with Lemma 1, Lemma 2, and Theorem 1 onludes the proof. ut

5 Conlusion

We have shown that satis�ability of hybrid full �-alulus an be deided in

exponential time, thus partially answering an open question in [5℄. Deiding

satis�ability of a logi that laks the tree model property using tree automata

was possible using a ertain abstration of models, relaxations, and involved an

additional non-determinism, guesses. Then, we were able to use the emptiness

algorithm in [40℄ as a sub-routine. For an input sentene, the algorithm presented

onstruts a family of tree automata, eah of whih depends on a guess that

determines relevant information onerning the interpretation of nominals. We

have hosen this expliit guess sine, on the one hand, it diretly shows how

nominals an be dealt with. On the other hand, when referring the guessing into

the automaton, we would blow up its state spae quadratially. Sine deiding



emptiness of this family of automata is exponential in the size of its state spae,

it is learly preferable to avoid even suh a polynomial blow-up.

The omplexity of the hybrid full �-alulus with number restritions/graded

modalities/deterministi programs remains an interesting open problem. As a

onsequene of NExpTime-hardness results in [37℄, this extension would lead to

NExpTime-hardness.

Another interesting researh problem is the development of pratial deision

proedures for the �-alulus. To the best of our knowledge, automata-theoreti

methods are the only known methods for the �-alulus, and, so far, they have

been implemented suessfully only for temporal logi, see, e.g., [8, 20℄.
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