
The Hybrid �-Cal
ulus

Ulrike Sattler

1?

and Moshe Y. Vardi

2

1

LuFG Theor. Informatik, RWTH Aa
hen, Germany, sattler�
s.rwth-aa
hen.de

2

Department of Computer S
ien
e, Ri
e University, Houston, TX, vardi�ri
e.edu

1 Introdu
tion

Des
ription Logi
s (DLs) are a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologi
al knowl-

edge [34, 28, 2℄. Over the last years, they turned out to be also well-suited for

the representation of and reasoning about, e.g., ontologies [31, 16℄ and database

s
hemata, where they
an support s
hema design, evolution, and query optimi-

sation [7℄, sour
e integration in heterogeneous databases/data warehouses [6℄,

and
on
eptual modeling of multidimensional aggregation [18℄.

The basi
 notions of DLs are
on
epts (
lasses, unary predi
ates) and roles

(binary predi
ates). A spe
i�
 DL is mainly
hara
terised by a set of
onstru
tors

that allow to form
omplex
on
epts and roles from atomi
 ones. A standard

DL knowledge base
onsists of two parts: in the TBox, the vo
abulary of a

given appli
ation domain is �xed. For example, the following
on
ept de�nition

de�nes
ooled mixer-rea
tors as those material obje
ts having a part that is a

ooler, having a part that is a mixer, and that only
ontain homogeneous or

inhomogeneous phases:

CMRea
tor

:

= Mat-Obje
tu (9has-part:Cooler) u (9has-part:Mixer) u

(8
ontains:(homog-phaset inhomog-phase))

The DL used in this
on
ept de�nition is the well-known DL
alled ALC [34℄.

Some TBoxes also allow to state general axioms su
h as C

:

= D or C

_

vD for two

(possibly
omplex)
on
epts [11, 22℄. The se
ond part of a DL knowledge base,

the ABox, states fa
ts
on
erning
on
rete individuals. Using the vo
abulary

�xed in the TBox, we
an state in an ABox that the individual a is an instan
e

of, e.g., the
on
ept CMRea
tor, and that it is related via the role has-part to

an individual b. Given su
h a \hybrid" knowledge base, interesting reasoning

problems in
lude the
omputation of the taxonomy (i.e., the hierar
hy w.r.t. the

subsumption relation) of those
on
epts de�ned in the TBox, �nding in
onsistent

on
epts de�ned in the TBox, and �nding, for an individual a in the ABox, the

most spe
i�

on
epts de�ned in the TBox that a is an instan
e of.

To be of use in a spe
i�
 appli
ation, a DL must provide the means to de-

s
ribe properties of obje
ts that are relevant for this appli
ation. Unsurprisingly,

the more expressive power a DL provides, the more
omplex the reasoning al-

gorithms for this DL are. As a
onsequen
e, a variety of DLs were introdu
ed

?

Part of this work was
arried out while the se
ond author was visiting Ri
e University

on a DAAD Grant.

together with investigations of the
omplexity of the
orresponding reasoning

algorithms/problems (see, e.g., [26, 34, 13℄).

In 1991, S
hild des
ribed the
lose relationship between DLs and modal log-

i
s or dynami
 logi
s [32℄. For example, it turned out that ALC is a notational

variant of multi modal K. Following that, numerous new DLs with
orrespond-

ing
omplexity results emerged by (extensions of) translations into modal and

dynami
 logi
s [9, 33, 10℄. Due to its high expressive power, the full �-
al
ulus

(i.e., propositional �-
al
ulus extended with
onverse programs)
an be viewed

as (one of) the \queens" of ExpTime modal/dynami
/temporal logi
s [23, 35,

40℄. It is able to
apture, for example,
onverse-PDL, CTL

�

, and other highly

expressive modal/dynami
/temporal logi
s, and thus also highly expressive DLs

[5℄. Unfortunately, the �-
al
ulus la
ks two features that are of great importan
e

for it being also a \queen" for DLs: it does not provide an analogon for
on
ept

de�nition/general axioms that are provided by TBoxes, and it has no equiva-

lent to ABox individuals. The �rst point is not a serious one sin
e we
ould

\internalise" general axioms using a greatest �xpoint formula even though the

�-
al
ulus does not provide (
onstru
tors to build) a universal program [32℄. The

se
ond one is more serious sin
e, for example, the extension of the �-
al
ulus with

individuals no longer has the tree model property. Moreover, in the presen
e of

individuals, internalisation be
omes more subtle.

In this paper, we extend the �-
al
ulus with a universal role/program to en-

able dire
t internalisation of TBoxes [32℄, and with a generalised form of ABox

individuals, namely nominals. In
ontrast to ABox individuals, nominals
an be

used inside
omplex
on
epts/formulae in the same pla
e as atomi
 propositions.

We are able to show that the
omplexity of the full �-
al
ulus, when extended

with a universal program and nominals, does not in
rease, but remains in Ex-

pTime. To prove this upper bound, we redu
e satis�ability to the emptiness of

alternating automata on in�nite trees|a family of automata that
an be viewed

as abstra
tions of tableau algorithms. This te
hnique is rather elegant in that it

separates the logi
 from the algorithmi
s [39℄. For example, a tableau-based algo-

rithm might require sophisti
ated blo
king te
hniques to guarantee termination

[22℄. Using the automata-theoreti
 te
hnique, termination is not an issue sin
e

we
an work on in�nite trees. Moreover, this te
hnique makes expli
it whi
h

problems arise when reasoning in the presen
e of nominals and universal roles,

and how to deal with them. We have
hosen to deal with nominals by expli
itly

guessing most of the relevant information
on
erning nominals|a
hoi
e that

will be explained in the sequel.

Besides being of interest by itself and, on
e again, showing the power of

the automata-theoreti
 approa
h, the
omplexity result presented here broadens

the range des
ription/modal/dynami
 logi
s that have ExpTime de
ision pro-

edures. Over the last few years, it was shown that tableau-based algorithms

for
ertain ExpTime-
omplete reasoning problems are amenable to optimisation

and behave quite ni
e in pra
tise [21, 29, 19, 22℄. Thus, establishing an ExpTime

upper bound is a �rst step in developing a pra
ti
al de
ision pro
edure for the

hybrid �-
al
ulus. We return to the pra
ti
ality issue at the end of the paper.

Unfortunately, this new \queen" logi
 is still not \the queen" sin
e it is

missing a prominent feature, namely number restri
tions/graded modalities [17,

12, 38℄. This is due to the fa
t that, in the presen
e of
onverse roles and universal

programs/roles (or any other means to internalise axioms), nominals and number

restri
tions/graded modalities lead to NExpTime-hardness [37℄.

From the tense logi
 perspe
tive [4℄, the hybrid full �-
al
ulus
an also be

viewed as one of the \queen" hybrid logi
s with ExpTime-
omplete reasoning

problems: our result extends ExpTime-
ompleteness results for, e.g., Priorean

tense logi
 over transitive frames (whi
h
an be viewed as a notational variant

of multi-modal K4 with
onverse modalities) or
onverse-PDL with nominals in

[1℄.

2 Preliminaries

In this se
tion, we introdu
e syntax and semanti
s of the hybrid full �-
al
ulus

as well as two-way automata. It is the extension of the propositional �-
al
ulus

with
onverse programs [40℄, a universal role, and nominals [30, 1℄, i.e., atomi

formulae to refer to single worlds.

De�nition 1. Let AP be a set of atomi
 propositions, Var a set of propositional

variables, Nom a set of nominals, and Prog a set of atomi
 programs with the

universal program o 2 Prog. A program is either an atomi
 program or the

onverse a

�

of an atomi
 program a 2 Prog. The set of formulae of the hybrid

full �-
al
ulus is the smallest set su
h that

{ true, false, p and :p are formulae for p 2 AP [Nom,

{ x 2 Var is a formula,

{ if '

1

and '

2

are formulae, � is a program, and x is a propositional variable,

then '

1

^ '

2

, '

1

_ '

2

, h�i'

1

, [�℄'

1

, �y:'

1

(y) and �y:'

1

(y) are formulae.

A propositional variable x 2 Var is said to o

ur free in a formula if it o

urs

outside the s
ope of a �xpoint operator. A senten
e is formula that
ontains no

free propositional variable, i.e., ea
h o

urren
e of a variable x is in the s
ope of

a �xpoint operator � or �. We use � to denote a �xpoint operator � or �. For a

�-formula �x:'(x), we write '(�x:'(x)) to denote the formula that is obtained

by repla
ing ea
h free o

urren
e of x in ' with �x:'(x).

Semanti
s is de�ned by means of a Kripke stru
ture and, in the presen
e

of variables and �xpoints, a valuation that asso
iates a set of points with ea
h

variable. Readers not familiar with �xpoints might want to look at [23, 35℄ for

instru
tive examples and explanations of the semanti
s of the �-
al
ulus.

De�nition 2. Semanti
s of the hybrid full �-
al
ulus is given by means of a

Kripke stru
ture K = (W;R;L), where

{ W is a set of points,

{ R : Prog �! 2

W�W

assigns to an atomi
 program a binary relation on W ,

{ R(o) =W �W , and

{ L : AP [Nom �! 2

W

assigns to ea
h atomi
 proposition or nominal the set

of points in whi
h it holds, su
h that L(n) is a singleton for ea
h nominal n.

R is extended to
onverse programs as follows: R(a

�

) = f(v; u) j (u; v) 2 R(a)g.

Given a Kripke stru
ture K = (W;R;L) and variables x

1

; : : : ; x

2

, a valuation

V

: fx

1

; : : : ; x

2

g �! 2

W

maps ea
h variable to a subset of W . For a valuation

V

, a variable x, and a set of points W

0

� W ,

V

[x=W

0

℄ is the valuation that is

obtained from

V

by assigning W

0

to x.

A formula ' with free variables among x

1

; : : : ; x

2

is interpreted over a Kripke

stru
ture K = (W;R;L) as a mapping '

K

that asso
iates, with ea
h valuation

V

, a subset '

K

(

V

) of W . This mapping is de�ned indu
tively as follows:

{ true

K

(

V

) =W , false

K

(

V

) = ;,

{ for p 2 AP [Nom, we have p

K

(

V

) = L(p) and (:p)

K

(

V

) =W n L(p)

{ ('

1

^ '

2

)

K

(

V

) = ('

1

)

K

(

V

) \ ('

2

)

K

(

V

);

('

1

_ '

2

)

K

(

V

) = ('

1

)

K

(

V

) [('

2

)

K

(

V

);

(h�i')

K

(

V

) = fu 2 W j there is a v with (u; v) 2 R(�) and v 2 '

K

(

V

)g;

([�℄')

K

(

V

) = fu 2 W j for all v, (u; v) 2 R(�) implies v 2 '

K

(

V

)g;

{ (�y:'(y))

K

(

V

) =

T

fW

0

�W j '

K

(

V

[x=W

0

℄) �W

0

g

(�y:'(y))

K

(

V

) =

S

fW

0

�W j '

K

(

V

[x=W

0

℄) �W

0

g

For a senten
e , a Kripke stru
ture K = (W;R;L), and w 2 W , we write

K;w j= i� w 2

K

, and
all K a model of .

1

A senten
e that has a model

is
alled satis�able.

Remark 1. All formulae are by de�nition in negation normal form, i.e., negation

o

urs only in front of atomi
 propositions or nominals.

In the following, we will sometimes write (n

1

; : : : ; n

`

) to emphasize that

n

1

; : : : ; n

`

are exa
tly the nominals o

urring in .

Sin
e we will treat atomi
 programs and their
onverse symmetri
ally, we

will use � to denote a

�

if � = a for some atomi
 program a, and b if � = b

�

for

some atomi
 program b. We use Prog

to denote all (possibly negated) programs

o

urring in .

In many de
idable hybrid logi
s, we �nd formulae of the form '�n (to be

read as \ the formula ' holds at the nominal n") with the semanti
s

('�n)

K

(

V

) =

�

W if n 2 '

K

(

V

)

; otherwise :

We did not provide this operator sin
e, in the presen
e of the universal role o,

we
an make use of the equivalen
e '�n � [o℄(:n _ '):

Finally, we introdu
e two-way alternating automata on in�nite trees. This

family of automata generalises non-deterministi
 tree automata in two ways:

�rstly, they allow for the rather elegant and su

in
t alternation. Alternating

automata on in�nite trees were �rst introdu
ed in [27℄, and allow for transitions

1

The interpretation of a senten
e is independent of valuations.

su
h as \being in state q and seeing letter �, the automaton either has an a
-

epting run with q

1

from the left su

essor and an a

epting run with q

2

from

the right su

essor, or it has an a

epting run with q

0

from the left su

essor."

To express this kind of transitions, the transition fun
tions involves positive

boolean formulae instead of, e.g., sets of tuples of states as for non-deterministi

automata. Se
ondly, being two-way allows runs to go up and down the input

tree|in a similar way as having
onverse programs allows to follow programs in

both dire
tions. When running on a k-ary tree, a two-way automaton
an have

transitions going to the ith
hild and swit
hing to state q

0

(denoted (i; q

0

) with

1 � i � k), staying at the same node swit
hing to state q

0

(denoted (0; q

0

)), or

going to its (unique) prede
essor and swit
hing to state q

0

(denoted (�1; q

0

)).

For an introdu
tion to two-way alternating automata and their appli
ation to

the full �-
al
ulus, see [40℄.

De�nition 3. For k � 1 an integer, (f1; : : : ; kg

�

; V) is a k-ary �-labelled tree

if V is a mapping that asso
iates, with ea
h node x 2 f1; : : : ; kg

�

, its label

V (x) 2 �. Intuitively, for 1 � i � k, x � i is the ith
hild of x.

Let B

+

(X) be the set of positive Boolean formulae (i.e., formulae built using

^ and _ only) over the set X. For X

0

� X, we say that X

0

satis�es a formula

� 2 B

+

(X) i� assigning true to all elements in X

0

and false to all elements in

X nX

0

makes � true.

Let [k℄ = f�1; 0; 1; : : : ; kg. A two-way alternating automaton on k-ary �-

labelled trees is a tuple A = (�;Q; Æ; q

0

; F), where Q is a �nite set of states,

q

0

2 Q is the initial state, Æ : Q � � ! B

+

([k℄ � Q) is the transition relation,

and F is the a

eptan
e
ondition.

A run of A on a �-labelled k-ary tree (T; V) is a (T �Q)-labelled tree (T

r

; r)

that satis�es the following
onditions:

{ � 2 T

r

and r(�) = (�; q

0

),

{ If y 2 T

r

with r(y) = (x; q) and Æ(q; V (x)) = �, then there is a (possibly

empty) set S � [k℄�Q that satis�es � su
h that, for ea
h (
; q

0

) 2 S, there

is a node y � i 2 T

r

satisfying the following
onditions:

� If
 = �, then r(y � i) = (x; q

0

).

� If
 � 1, then r(y � i) = (x �
; q

0

).

� If
 = �1, then x = x

0

� i for some 1 � i � k, and r(y � i) = (x

0

; q

0

).

A run (T

r

; r) is a

epting i� all its in�nite paths satisfy the a

eptan
e
ondition.

Sin
e we use tree automata for the �-
al
ulus, we
onsider the parity
ondition

[36℄. A parity
ondition is given by an as
ending
hain of states of sets F =

(F

0

; : : : ; F

k

) with F

i

� F

i+1

. Given a path P in (T

r

; r), let inf(P) denote the

states that are in�nitely often visited by P . Then P is a

epted i� the minimal

i with inf(P) \ F

i

6= ; is even.

For two-way alternating automata, the emptiness problem is the following

question: given a two-way alternating automaton A, is there a tree (T; V) su
h

that A has an a

epting run on (T; V)? It was shown in [40℄ that this problem

is solvable in time that is exponential in the number of A's state, where the

exponent is a polynomial in the length of the parity
ondition.

3 Hybrid full �-
al
ulus has a tree model property

As usual, when proving a tree model property for the hybrid full �-
al
ulus, we

want to \unravel" a given model to a tree model. In the presen
e of nominals,

this is
learly not possible sin
e, for example, the formula n ^ h�i(m ^ h�in)

with n;m 2 Nom has no model in the form of a tree. However, we will show

that we
an unravel ea
h model to a forest, i.e., a
olle
tion of trees. When

unravelling, we must
hoose \good" points that witness diamond formulae (i.e.,

a point y with y 2 '

K

and (x; y) 2 R(�) for x 2 (h�i')

K

)|where being \good"

is rather tri
ky in the presen
e of �xpoints. To this purpose, we de�ne a
hoi
e

fun
tion that
hooses the \good" witnesses. Essentially, this
hoi
e fun
tion is

a memoryless strategy whose existen
e is guaranteed for parity games [14℄.

De�nition 4. The
losure
l() of a senten
e is the smallest set of senten
es

that satis�es the following:

{ 2
l(),

{ if '

1

^ '

2

2
l() or '

1

_ '

2

2
l(), then f'

1

; '

2

g �
l(),

{ if h�i' 2
l() or [�℄' 2
l(), then ' 2
l(), and

{ if �x:'(x) 2
l(), then '(�x:'(x)) 2
l().

An atom A of is a set of formulae in
l() that satis�es the following prop-

erties:

{ if p 2 AP [Nom o

urs in , then, ex
lusively, either p 2 A or :p 2 A,

{ if '

1

^ '

2

2
l(), then '

1

^ '

2

2 A i� f'

1

; '

2

g � A,

{ if '

1

_ '

2

2
l(), then '

1

_ '

2

2 A i� f'

1

; '

2

g \A 6= ;, and

{ if �x:'(x) 2
l(), then �x:'(x) 2 A i� '(�x:'(x)) 2 A.

The set of atoms of is denoted at().

A pre-model (K;�) for a senten
e
onsists of a Kripke stru
ture K =

(W;R;L) and a mapping � : W �! at() that satis�es the following properties:

{ there is a u

0

2 W with 2 �(u

0

),

{ for p 2 AP [Nom, if p 2 �(u), then u 2 L(p), and if :p 2 �(u), then

u 62 L(p),

2

{ if h�i' 2 �(u), then there is a v 2W with (u; v) 2 R(�) and ' 2 �(v), and

{ if [�℄' 2 �(u), then ' 2 �(v) for ea
h v 2 W with (u; v) 2 R(�).

A
hoi
e fun
tion
h : W �
l() �!
l() [W for a pre-model (K;�) of

is a partial fun
tion that, for ea
h u 2 W ,

(i) if '

1

_ '

2

2 �(u), then
h(u; '

1

_ '

2

) 2 f'

1

; '

2

g \ �(u) and

(ii) if h�i' 2 �(u), then
h(u; h�i') = v for some v with (u; v) 2 R(�) and

' 2 �(v).

2

Hen
e if a nominal n is in �(u), then L(n) = fug.

An adorned pre-model (K;�;
h)
onsists of a pre-model (K;�) and a
hoi
e

fun
tion
h.

For an adorned pre-model (W;R;L; �;
h) of , the derivation relation �

(
l();W)

2

is de�ned as follows:

{ if '

1

_ '

2

2 �(u), then ('

1

_ '

2

; u) (
h('

1

_ '

2

); u)

{ if '

1

^ '

2

2 �(u), then ('

1

^ '

2

; u) ('

i

; u) for ea
h i 2 f1; 2g,

{ if h�i' 2 �(u), then (h�i'; u) (';
h(h�i'; u))

{ if [�℄' 2 �(u), then ([�℄'; u) ('; v) for ea
h v with (u; v) 2 R(�)

(for � = o, that means that ([o℄'; u) ('; v) for ea
h v 2 W)

{ if �x:'(x) 2 �(u), then (�x:'(x); u) ('(�x:'(x)); u)

A least-�xpoint senten
e �x:'(x) is said to be regenerated from point u to point

v in an adorned pre-model (K;�;
h) if there is a sequen
e (�

1

; u

1

); : : : ; (�

k

; u

k

)

with k � 1 su
h that �

1

= �

k

= �x:'(x), u = u

1

and v = u

k

, for ea
h 1 �

i < k, we have (�

i

; u

i

) (�

i+1

; u

i+1

), and �x:'(x) is a sub-senten
e of ea
h

�

i

. We say that (K;�;
h) is well-founded if there is no least �xpoint senten
e

�x:'(x) 2
l() and an in�nite sequen
e u

0

; u

1

; : : : su
h that, for ea
h i � 0,

�x:'(x) is regenerated from u

i

to u

i+1

.

Lemma 1. A senten
e has a model K i� has a well-founded adorned pre-

model (K;�;
h).

Proof. The
onstru
tion of a model from a well-founded adorned pre-model and,

vi
e versa, of a well-founded adorned pre-model from a model, are analogous to

the
onstru
tions that
an be found in [35℄. These
onstru
tions are, as men-

tioned in [40℄, insensitive to
onverse programs, and|due to the a

ording mod-

i�
ations of the te
hni
al details|also insensitive to nominals. Indeed, nominals

behave simply like atomi
 propositions provided that L(n) is guaranteed to be

interpreted as a singleton. ut

De�nition 5. The relaxation of a pre-model (W;R;L; �) of a senten
e (n

1

;

: : : ; n

`

)
onsists of mappings R

r

and �

r

, where

R

r

: Prog!W �W and

R

r

: � 7! R(�) n f(u; v) j for some 1 � i � `; L(n

i

) = fvgg

�

r

:W ! fG j G = G

1

[G

2

; G

1

2 at(); and

G

2

� f

�

!n

i

j � o

urs in ; � 6= o, and 1 � i � `gg

�

r

: u 7! �(u) [f

�

!n j (u; v) 2 R(�); � 6= o; and L(n) = fvgg

A relaxation is a forest if R

r

forms a forest.

Lemma 2. If a senten
e is satis�able, then it has a well-founded adorned

pre-model whose relaxation is a forest and has in the label of one of its roots.

Proof. Let be satis�able. Hen
e there is a well-founded adorned pre-model

(K;�;
h) with K = (W;R;L) for due to Lemma 1. Using a te
hnique similar

to the one in [40℄, we
onstru
t from (K;�;
h) a well-founded adorned pre-model

(K

0

; �

0

;
h

0

) whose relaxation is a forest. Please note that, due to the presen
e

of
onverse programs, we
annot simply unravel K. However, we
an use the

hoi
e fun
tion to do something similar that yields the desired result also in the

presen
e of
onverse programs.

Let = (n

1

; : : : ; n

`

) and w

0

2 W su
h that w

0

2

K

. Let j j = n, let

h�

1

i'

1

; : : : ; h�

k

i'

k

0

be all diamond formulae in
l(), and let k be the maximum

of k

0

and `+ 1. Hen
e we have k � n. We de�ne a mapping � : f1; : : : ; kg

+

�!

W [f?g indu
tively, together with an adorned pre-model (K

0

; �

0

;
h

0

) where

K

0

= (W

0

; R

0

; L

0

), W

0

= dom(�) n fx j �(x) = ?g, and

{ for p 2 AP [Nom, x 2 L

0

(p) i� �(x) 2 L(p),

{ �

0

(x) = �(�(x)),

{
h

0

(x; '

1

_ '

2

) =
h(�(x); '

1

_ '

2

), and

{ R

0

and
h

0

(x; ') for diamond formulae ' are de�ned indu
tively together

with � ,

We are now ready to present the indu
tive de�nition of � and (K

0

; �

0

;
h

0

).

(Fix the �rst level) For j with 1 � j � `, let v

f(1)

; : : : ; v

f(`)

2 W be su
h

that L(n

j

) = fv

f(j)

g and f(1) � � � � � f(`) � `|sin
e it is possible that

L(n) = L(n

0

) for nominals n 6= n

0

, f need not be inje
tive. For 1 � j � `,

set �(f(j)) = v

f(j)

.

For w

0

2W with w

0

2

K

, if w

0

62 fv

f(1)

; : : : ; v

f(`)

g, then set �(f(`) + 1) =

w

0

. Set �(j) = ? for ea
h 1 � j � k not yet de�ned.

(Fix the rest) For the indu
tion, let i be su
h that �(x) is already de�ned for

ea
h x 2 f1; : : : ; kg

i

, and j with 1 � j � k su
h that �(x1); : : : ; �(x(j � 1))

is already de�ned for ea
h x 2 f1; : : : ; kg

i

. Then, for ea
h x 2 f1; : : : ; kg

i

,

do the following:

(1) if h�

j

i'

j

62 �

0

(x) or �(x) = ?, then de�ne �(xj) = ?.

(2) if h�

j

i'

j

2 �

0

(x), then (sin
e (K;�;
h) is a pre-model and �

0

(x) =

�(�(x))), there is some v 2 W with
h(�(x); h�

j

i'

j

) = v and (�(x); v) 2

R(�

j

).

{ If fvg = L(n

`

0

) for some 1 � `

0

� `, then (sin
e we have already �xed

the �rst level) there is some r with 1 � r � ` with �(r) = v. Add (x; r)

to R

0

(�

j

), and set
h

0

(x; h�

j

i'

j

) = r and �(xj) = ?.

{ Otherwise, add (x; xj) to R

0

(�

j

), set �(xj) = v and
h

0

(x; h�

j

i'

j

) = xj.

Sin
e we started from an adorned pre-model, (K

0

; �

0

;
h

0

) is obviously an adorned

pre-model. Moreover, if a senten
e �x:'(x) is regenerated from x to y in (K

0

; �

0

;
h

0

),

then �x:'(x) is also regenerated from �(x) to �(y) in (K;�;
h). Sin
e the latter

is well-founded, we thus have that (K

0

; �

0

;
h

0

) is well-founded. Next, its relax-

ation R

0

r

is a forest (
onsisting of trees starting at the �rst level) sin
e the only

edges in R

0

that \go ba
k", i.e., that are not of the form (x; xi), are exa
tly those

that are eliminated in R

0

r

. Finally, is satis�ed in one of the root nodes sin
e,

by de�nition of (K

0

; �

0

;
h

0

), we have j 2

K

0

for some 1 � j � f(`) + 1. ut

Remark 2. Please note that in this
onstru
tion, if x satis�es a diamond formula

h�i', then either a su

essor xj of x or one of the �rst level nodes representing

nominals satis�es '.

4 De
iding existen
e of forest models

It remains to devise a pro
edure that de
ides, for a senten
e , whether it has

a well-founded adorned pre-model whose relaxation is a forest. To this purpose,

we de�ne a two-way alternating tree automaton that a

epts exa
tly the forest-

relaxations of 's pre-models|provided that we added a new dummy node whose

su

essors are the root nodes of the forest relaxation.

The automaton depends on a guess whi
h
ontains relevant information
on-

erning the interpretation of nominals. The guess makes sure that the following

kind of situation is handled
orre
tly: suppose a nominal nmust satisfy a formula

of the form [�℄', and we have a point x with (x; n) 2 R(�), but this relationship

is only impli
it sin
e we work on relaxations of pre-models, i.e., (x; n) 62 R

r

(�)

and

�

! n 2 �

r

(x). In that
ase, the guess makes sure that x satis�es ' sin
e it

determines whi
h box formulae are satis�ed by nominals. Moreover, the guess de-

termines whi
h nominals are interpreted as the same obje
ts, and how nominals

are related to ea
h other by programs.

It is possible to refer all this \guessing" dire
tly to the automaton|hen
e we

had only one automaton instead of one per guess. We have
hosen, however, to

work with expli
it guesses sin
e, on the one hand, it makes expli
it the additional

non-determinism one has to
ope with in the presen
e of nominals and how it
an

be dealt with. On the other hand and more importantly, referring the guessing

into the automaton would yield a quadrati
 blow-up of the state spa
e. Let n

be the number of states and m be the length of the a

eptan
e
ondition of

a two-way alternating tree automaton. When de
iding emptiness of a two-way

alternating tree automaton [40℄, it is transformed into a non-deterministi
 (one-

way) parity tree automaton whose state spa
e is of size (nm

2

)

nm

2

, and whose

a

eptan
e
ondition is of length nm

2

. Emptiness of the latter automaton
an

be de
ided in time 2

O((n

2

m

4

)(logn+2 logm))

[25℄. Hen
e a (quadrati
) blow-up of

the state spa
e of our initial two-way alternating tree automaton would further

in
rease the degree of the polynomial in the exponent of the runtime, and thus

be rather expensive.

Formally, a guess
onsists of three
omponents, the �rst one
onsisting, for

ea
h nominal n, of a set
 of formulae satis�ed by a point u with L(n) = fug.

Sin
e one point may represent several nominals, we use a se
ond
omponent f to

relate a nominal n

i

to \its" set of formulae

f(i)

. The third
omponent des
ribes

how two points representing nominals are interrelated via (interpretations of)

programs, making sure that, if one is an �-su

essor of the other, then the other

is an �-su

essor of the �rst one.

De�nition 6. A guess G = (G; f; C) for a hybrid full �-
al
ulus senten
e (n

1

;

: : : ; n

`

)
onsists of a guess list G = (

1

; : : : ;

`

) together with
onne
tions C �

Nom� Prog

� Nom and a guess mapping f : f1; : : : ; `g �! f1; : : : ; `g, where,

for ea
h 1 � i; j � `, we have ; (

i

�
l() or

i

= ?, n

i

2

f(i)

, n

i

62

j

for

all j 6= f(i), Nom\

i

= ; implies

i

= ?, and (n

i

; �; n

j

) 2 C i� (n

j

; �; n

i

) 2 C.

Theorem 1. Let be a hybrid full �-
al
ulus senten
e. For ea
h guess G for

 , we de�ne a two-way alternating tree automaton B(;G), su
h that

1. if is satis�able, then there exists a guess G

0

for su
h that the language

a

epted by B(;G

0

) is non-empty,

2. if a tree is a

epted by B(;G), then eliminating its root node yields a forest

relaxation of a well-founded adorned pre-model of , and

3. the number of B(;G)'s states is linear in j j.

Proof. For ease of presentation, we assume that all input trees are full trees, i.e.,

all non-leaf nodes have the same number of
hildren. As we have seen in the

proof of Lemma 2, we
an simply \�ll" a tree with additional nodes labelled ?

to make it a full tree. Moreover, we assume a \dummy" root node whose dire
t

su

essors are exa
tly the root nodes of trees in the forest relaxation.

For a senten
e (n

1

; : : : ; n

`

) with k

0

diamond subformulae in
l() as spe
i�ed

in the proof of Lemma 2 and a guess G, we de�ne two alternating automata,

A(;G) and

~

A(;G), and then de�ne B(;G) as the interse
tion of A(;G) and

~

A(;G). For alternating automata, interse
tion is trivial (basi
ally, we introdu
e

a new initial states ~q with Æ(~q; �) = (0; q

0

) ^ (0; q

0

0

) for the former initial states

q

0

; q

0

0

), and the size of B(;G) is the sum of the sizes of A(;G) and

~

A(;G).

The automaton

~

A(;G) is rather simple and guarantees that the stru
ture of

the input tree is as required, whereas A(;G) really makes sure that the input

tree (more pre
isely, the sub-forest of the input tree obtained by eliminating the

root and all nodes labelled with ?) is a relaxation of a well-founded adorned

pre-model.

Both automata work on the same alphabet �, whi
h is de�ned as follows:

For Prog

+

= fp

�

; p

�

; p

�

; p

�

j � is a program in di�erent from og,

� = f?; rootg[f� j � � AP [Nom [Prog

+

[f

�

j

!n

i

j 1 � j � m and 1 � i � `g;

�
ontains, for ea
h �; ex
lusively, either p

�

or p

�

, and,

ex
lusively, either p

�

or p

�

g

The intuition of the additional symbols are as follows: Nodes not representing

points in a Kripke stru
ture are labelled root and ?, where root labels the root

node. Nodes having n

i

(i.e., the node labelled with the
orresponding guess

f(i)

)

as an �-su

essor are marked

�

!n

i

, just like in relaxations. A node label
ontains

p

�

(p

�

) if this node is an �-su

essor (�-su

essor) of its (unique) prede
essor.

We do allow that a node is both an �- and a �-su

essor, or that no program

an be asso
iated to the edge between two nodes. Analogously, p

�

(p

�

) are used

to mark those nodes that are not �-su

essors (�-su

essors).

The \simple" automaton

~

A(;G) guarantees that root is only found at the

root label, the nominals in

i

are only found at the ith su

essors of the root, the

�rst level nodes
ontain no p

�

or p

�

and that, if a nominal n

i

has another nominal

n

j

as its �-su

essor (i.e., if

�

!n

j

is in the label of the node representing n

i

), then

n

j

has n

i

as its �-su

essor (i.e.,

�

! n

i

is in the label of the node representing

n

j

). More pre
isely,

~

A(;G) = (�; fq

0

; q

1

; : : : ; q

`

; q

0

; qg; Æ

0

; q

0

) is a safety one-

way alternating automaton (i.e., ea
h state is a

epting and thus every run is

an a

epting run), and Æ

0

is de�ned as follows for � 2 �:

Æ

0

(q

0

; �) =

�

V

`

i=1

(i; q

i

) ^

V

k

i=`+1

(i; q) ^

V

k

i=1

(i; q

0

) if root = �

false otherwise

Æ

0

(q

0

; �) =

�

true if p

�

62 � and p

�

62 � for ea
h � 6= o in

false otherwise

for 1 � i � ` :

Æ

0

(q

i

; �) =

8

<

:

V

k

i=1

(i; q) if

i

\ (Nom [AP) = � \ (Nom [AP); root 6= �, and,

for ea
h n 2 Nom \ � and (n; �; n

0

) 2 C;

�

!n

0

2 �

false otherwise

Æ

0

(q; �) =

�

V

k

i=1

(i; q) if � \ Nom = ; and root 6= �

false otherwise

Due to the symmetry in the de�nition of the
onne
tion
omponent in a guess

and the way Æ

0

(q

i

; �) is de�ned, if

~

A(;G) a

epts a tree, fn

i

;

�

! n

j

g � �, and

n

j

2 �

0

, then

�

!n

i

2 �

0

, and �; �

0

label dire
t su

essors of the root node.

The two-way alternating tree automaton A(;G) veri�es that the input tree

is indeed a relaxation of a well-founded adorned pre-model. To this purpose,

(most of) its states
orrespond to formulae in
l(), and the transition relation

basi
ally follows the semanti
s. The �rst
onjun
t in the de�nition of Æ(q

0

0

; �)

guarantees that the ith su

essor of the root node indeed satis�es all formulae

in

i

, and that one of the root node su

essors satis�es . An additional state

q

0

that \travels" on
e through the whole input tree makes sure that, whenever a

node has a nominal n

i

as its impli
it �-su

essor (i.e., its label
ontains

�

!n

i

),

then this node satis�es indeed all formulae ' with [�℄' 2

f(i)

. Finally, the

diamond and box formulae on the universal role are treated separately sin
e

they apply to all but the root node, regardless of marks p

�

or p

�

. Please note

that, sin
e the root node does not represent any point of a Kripke stru
ture,

Æ([o℄'; root) is de�ned su
h that only all root su

essors satisfy [o℄', but not

the root node itself. More pre
isely, we have

A(;G) = (�;Q; Æ; q

0

0

; F); with

Q = f?; q

0

0

; q

0

g [
l() [Prog

+

:

The transition relation Æ is de�ned as follows: �rstly, for q 2 Q and � 2 � let

Æ(q;?) =

�

true if q = ?

false otherwise

Æ(?; �) =

�

true if � = ?

false otherwise

Se
ondly, for 1 � i � ` and � 2 �, let

� (i) =

�

(i;?) if

i

= ?

V

'2

i

(i; ') if

i

�
l()

N(�) =

V

�

!n

i

2 � and

[�℄' 2

f(i)

(0; ')

Thirdly, for � 2 �, � 6= ?, and � a program, we de�ne Æ as follows:

Æ(q

0

0

; �) =

V

`

i=1

� (i) ^

W

k

i=1

(i;) ^

V

k

i=1

((i; q

0

) _ (i;?))

Æ(q

0

; �) = N(�) ^

V

k

i=1

((i; q

0

) _ (i;?))

for p 2 AP [Nom [Prog

+

:

Æ(p; �) =

�

true if p 2 �

false otherwise

for p 2 AP [Nom :

Æ(:p; �) =

�

true if p 62 � and � 6= root

false otherwise

Æ('

1

^ '

2

; �) = (0; '

1

) ^ (0; '

2

)

Æ('

1

_ '

2

; �) = (0; '

1

) _ (0; '

2

)

Æ(�x:'(x); �) = (0; '(�x:'(x)))

for � 62 fo; o

�

g :

Æ(h�i'; �) =

(

true if

�

!n

i

2 � and ' 2

f(i)

W

k

j=1

((j; ') ^ (j; p

�

)) otherwise

for � 62 fo; o

�

g :

Æ([�℄'; �) =

8

>

<

>

:

false if

�

!n

i

2 � and ' 62

f(i)

((�1; ') _ (0; p

�

)) ^ otherwise

V

k

j=1

((j; ') _ (j; p

�

) _ (j;?))

for � 2 fo; o

�

g :

Æ(h�i'; �) =

(

true if ' 2

f(i)

W

k

j=1

(j; ') otherwise

for � 2 fo; o

�

g :

Æ([�℄'; �) =

8

>

<

>

:

(0; ') ^ (�1; [�℄') ^ if root 6= �

V

k

j=1

((j; [�℄') _ (j;?))

V

k

j=1

((j; [�℄') _ (j;?)) otherwise

Please note that, following the
onstru
tion in the proof of Lemma 2, satis-

fa
tion of diamond formulae (in
luding those on the universal program) needs

to be tested for only in dire
t su

essors and in the nodes representing nominals.

Moreover, sin
e = (n

1

; : : : ; n

`

) and due to the de�nition of Æ(q

0

0

; �) and � (i),

Æ
he
ks whether the node representing n

i

satis�es indeed all formulae in

f(i)

.

The a

eptan
e
ondition F is de�ned analogously to the one in [15, 24℄, and

given here for the sake of
ompleteness. Firstly, for a �xpoint formula ' 2
l(),

de�ne the alternation level of ' to be the number of alternating �xpoint formulae

one has to \wrap ' with" to rea
h a sub-senten
e of . More pre
isely, the

alternation level al

(') of ' = �x:'

0

(x) 2
l() is de�ned as follows [3℄: if '

is a senten
e, then al

(') = 1. Otherwise, let � = �

0

y:�

0

(y) be the innermost

�xpoint formula in
l() that
ontains ' as a proper sub-formula. If � = �

0

, then

al

(') = al

(�), otherwise al

(') = al

(�)+1. Let d be the maximal alternation

level of (�xpoint) subformulae of , and de�ne

G

i

= f�x:'(x) 2
l() j al

(�x:'(x)) = ig

L

i

= f�x:'(x) 2
l() j al

(�x:'(x)) � ig:

Now we are ready to de�ne the a

eptan
e
ondition F = fF

1

; : : : ; F

2d

g with

F

i

=

8

<

:

; if i = 0;

F

i�1

[L

i

if i � 1 is odd;

F

i�1

[G

i

if i � 1 is even:

Obviously, F

i

� F

i+1

for ea
h 1 � i � 2d. As mentioned in De�nition 3, a

path r

p

of a run r is a

epting if the minimal i with inf(r

p

) \ F

i

6= ; is even|

this i
orresponds to the outermost �xpoint formula that was in�nitely often

visited/postponed. A run r is a

epting if ea
h of its paths are a

epting. In-

tuitively, the a

eptan
e
ondition makes sure that, if a �xpoint formula was

visited in�nitely often, then this was a greatest �xpoint formulae, and that all

of its least �xpoint super-formulae were visited only �nitely many times.

It remains to verify the three
laims in Theorem 1. The proof of the �rst

one uses Lemma 1 and a straightforward
onstru
tion of a guess G from a forest

relaxation of a well-founded adorned pre-model, and then shows how an input

forest similar to the one
onstru
ted in the proof of Lemma 1 is a

epted by

B(;G). The se
ond
laim
an be proved by taking an a

epting run of B(;G)

on some input tree, and verifying that the input tree indeed satis�es all properties

of relaxations of well-founded adorned pre-models. Finally, the third
laim is by

de�nition of B(;G). ut

Theorem 2. Satis�ability of hybrid full �-
al
ulus
an be de
ided in exponential

time.

Proof. As we have mentioned in the beginning of Se
tion 4, emptiness of B(;G)

an be de
ided in time 2

O(n

6

log n)

for n = j j. Let ` be the number of nominals

and m the number of programs di�erent from o in . Sin
e, for a guess G =

(G; f; C), the mapping f is determined by G, the number of guesses is bound by

the number of
onne
tions and guess lists, i.e., by 2

`

2

m

�2

`n

. Hen
e we have to test

at most an exponential number of automata B(;G) for emptiness. Combining

these results with Lemma 1, Lemma 2, and Theorem 1
on
ludes the proof. ut

5 Con
lusion

We have shown that satis�ability of hybrid full �-
al
ulus
an be de
ided in

exponential time, thus partially answering an open question in [5℄. De
iding

satis�ability of a logi
 that la
ks the tree model property using tree automata

was possible using a
ertain abstra
tion of models, relaxations, and involved an

additional non-determinism, guesses. Then, we were able to use the emptiness

algorithm in [40℄ as a sub-routine. For an input senten
e, the algorithm presented

onstru
ts a family of tree automata, ea
h of whi
h depends on a guess that

determines relevant information
on
erning the interpretation of nominals. We

have
hosen this expli
it guess sin
e, on the one hand, it dire
tly shows how

nominals
an be dealt with. On the other hand, when referring the guessing into

the automaton, we would blow up its state spa
e quadrati
ally. Sin
e de
iding

emptiness of this family of automata is exponential in the size of its state spa
e,

it is
learly preferable to avoid even su
h a polynomial blow-up.

The
omplexity of the hybrid full �-
al
ulus with number restri
tions/graded

modalities/deterministi
 programs remains an interesting open problem. As a

onsequen
e of NExpTime-hardness results in [37℄, this extension would lead to

NExpTime-hardness.

Another interesting resear
h problem is the development of pra
ti
al de
ision

pro
edures for the �-
al
ulus. To the best of our knowledge, automata-theoreti

methods are the only known methods for the �-
al
ulus, and, so far, they have

been implemented su

essfully only for temporal logi
, see, e.g., [8, 20℄.

Referen
es

1. C. Are
es, P. Bla
kburn, and M. Marx. The
omputational
omplexity of hybrid

temporal logi
s. Logi
 Journal of the IGPL, 2000. To appear.

2. F. Baader and B. Hollunder. A terminologi
al knowledge representation system

with
omplete inferen
e algorithm. In Pro
. of PDK-91, vol. 567 of LNAI. Springer-

Verlag, 1991.

3. G. Bhat and R. Cleaveland. EÆ
ient lo
al model-
he
king for fragments of the

modal mu-
al
ulus. In Pro
. of TACAS, vol. 1055 of LNCS. Springer-Verlag, 1996.

4. P. Bla
kburn. Nominal tense logi
. Notre Dame Journal of Formal Logi
, 34, 1993.

5. D. Calvanese, G. De Gia
omo, and M. Lenzerini. Reasoning in expressive des
rip-

tion logi
s with �xpoints based on automata on in�nite trees. In Pro
. of IJCAI'99,

1999.

6. D. Calvanese, G. De Gia
omo, M. Lenzerini, D. Nardi, and R. Rosati. Des
ription

logi
 framework for information integration. In Pro
. of KR-98, 1998.

7. D. Calvanese, M. Lenzerini, and D. Nardi. Des
ription logi
s for
on
eptual data

modeling. In J. Chomi
ki and G. Saake, editors, Logi
s for Databases and Infor-

mation Systems. Kluwer A
ademi
 Publisher, 1998.

8. E.M. Clarke, O. Grumberg, and K. Hamagu
hi. Another look at LTL model
he
k-

ing. In Pro
. of CAV'94, vol. 818 of LNCS, pages 415{427. Springer-Verlag, 1994.

9. G. De Gia
omo and M. Lenzerini. Boosting the
orresponden
e between des
ription

logi
s and propositional dynami
 logi
s. In Pro
. of AAAI-94, 1994.

10. G. De Gia
omo and M. Lenzerini. Con
ept language with number restri
tions and

�xpoints, and its relationship with mu-
al
ulus. In Pro
. of ECAI-94, 1994.

11. G. De Gia
omo and M. Lenzerini. Tbox and Abox reasoning in expressive des
rip-

tion logi
s. In Pro
. of KR-96. Morgan Kaufmann, 1996.

12. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
omplexity of
on
ept

languages. In Pro
. of KR-91. Morgan Kaufmann, 1991.

13. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
omplexity of
on
ept

languages. Information and Computation, 134, 1997.

14. E. A. Emerson and C. S. Jutla. Tree automata, mu-
al
ulus, and determina
y. In

Pro
. of FOCS-91. IEEE, 1991.

15. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model
he
king for fragments of

the mu-
al
ulus. In C. Cour
oubetis, editor, Pro
. of CAV'93, vol. 697 of LNCS.

Springer-Verlag, 1993.

16. D. Fensel, I. Horro
ks, F. van Harmelen, S. De
ker, M. Erdmann, and M. Klein.

OIL in a nutshell. In Pro
. EKAW-2000, LNAI. Springer-Verlag, 2000. To appear.

17. K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logi
s, 13,

1972.

18. E. Fran
oni and U. Sattler. A data warehouse
on
eptual data model for multidi-

mensional aggregation: a preliminary report. AI*IA Notizie, 1, 1999.

19. V. Haarslev and R. M�oller. Expressive abox reasoning with number restri
tions,

role hierar
hies, and transitively
losed roles. In Pro
. of KR-00, 2000.

20. Gerard J. Holzmann. The spin model
he
ker. IEEE Trans. on Software Engineer-

ing, 23(5), 1997.

21. I. Horro
ks. Using an Expressive Des
ription Logi
: FaCT or Fi
tion? In Pro
. of

KR-98, 1998.

22. I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for very expressive

des
ription logi
s. Logi
 Journal of the IGPL, 8(3), May 2000.

23. D. Kozen. Results on the propositional �-
al
ulus. In M. Nielsen and E. M.

S
hmidt, editors, Pro
. of ICALP'82, vol. 140 of LNCS. Springer-Verlag, 1982.

24. O. Kupferman and M. Y. Vardi. �-
al
ulus synthesis. In Pro
. MFCS'00, LNCS.

Springer-Verlag, 2000.

25. O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata

emptiness. In Pro
. of STOC-98, 1998.

26. H. Levesque and R. J. Bra
hman. Expressiveness and tra
tability in knowledge

representation and reasoning. Computational Intelligen
e, 3, 1987.

27. D. E. Muller and P. E. S
hupp. Alternating automata on in�nite trees. Theoreti
al

Computer S
ien
e, 54(1-2), 1987.

28. B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LNAI.

Springer-Verlag, 1990.

29. P. F. Patel-S
hneider and I. Horro
ks. DLP and FaCT. In Pro
. TABLEAUX-99,

vol. 1397 of LNAI. Springer-Verlag, 1999.

30. A. Prior. Past, Present and Future. Oxford University Press, 1967.

31. A. Re
tor and I. Horro
ks. Experien
e building a large, re-usable medi
al ontology

using a des
ription logi
 with transitivity and
on
ept in
lusions. In Pro
. of the

AAAI Spring Symposium on Ontologi
al Engineering. AAAI Press, 1997.

32. K. S
hild. A
orresponden
e theory for terminologi
al logi
s: Preliminary report.

In Pro
. of IJCAI-91, 1991.

33. K. S
hild. Terminologi
al
y
les and the propositional �-
al
ulus. In J. Doyle,

E. Sandewall, and P. Torasso, editors, Pro
. of KR-94, 1994. Morgan Kaufmann.

34. M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
riptions with
omple-

ments. Arti�
ial Intelligen
e, 48(1), 1991.

35. R. S. Streett and E. A. Emerson. An automata theoreti
 de
ision pro
edure for

the propositional mu-
al
ulus. Information and Computation, 81(3), 1989.

36. W. Thomas. Languages, automata, and logi
. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Language Theory, vol 1. Springer-Verlag, 1997.

37. S. Tobies. The
omplexity of reasoning with
ardinality restri
tions and nominals

in expressive des
ription logi
s. J. of Arti�
ial Intelligen
e Resear
h, 12, 2000.

38. S. Tobies. PSPACE reasoning for graded modal logi
s. J. of Logi
 and Computa-

tion, 2000. To appear.

39. M. Y. Vardi. What makes modal logi
 so robustly de
idable? In N. Immerman

and Ph.G. Kolaitis, editors, Des
riptive Complexity and Finite Models, Ameri
an

Mathemati
al So
iety, 1997.

40. M. Y. Vardi. Reasoning about the past with two-way automata. In Pro
. of

ICALP'98, vol. 1443 of LNCS, 1998. Springer-Verlag.

