The Hybrid pu-Calculus

Ulrike Sattler'* and Moshe Y. Vardi?

! LuFG Theor. Informatik, RWTH Aachen, Germany, sattler@cs.rwth-aachen.de
2 Department of Computer Science, Rice University, Houston, TX, vardi@rice.edu

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms
designed for the representation of and reasoning about terminological knowl-
edge [34,28,2]. Over the last years, they turned out to be also well-suited for
the representation of and reasoning about, e.g., ontologies [31, 16] and database
schemata, where they can support schema design, evolution, and query optimi-
sation [7], source integration in heterogeneous databases/data warehouses [6],
and conceptual modeling of multidimensional aggregation [18].

The basic notions of DLs are concepts (classes, unary predicates) and roles
(binary predicates). A specific DL is mainly characterised by a set of constructors
that allow to form complex concepts and roles from atomic ones. A standard
DL knowledge base consists of two parts: in the TBoz, the vocabulary of a
given application domain is fixed. For example, the following concept definition
defines cooled mixer-reactors as those material objects having a part that is a
cooler, having a part that is a mixer, and that only contain homogeneous or
inhomogeneous phases:

CMReactor = Mat-Object I (Jhas-part.Cooler) 1 (Jhas-part.Mixer) 1
(Vcontains.(homog-phase LI inhomog-phase))

The DL used in this concept definition is the well-known DL called AL [34].
Some TBoxes also allow to state general axioms such as C' = D or CCD for two
(possibly complex) concepts [11,22]. The second part of a DL knowledge base,
the ABor, states facts concerning concrete individuals. Using the vocabulary
fixed in the TBox, we can state in an ABox that the individual a is an instance
of, e.g., the concept CMReactor, and that it is related via the role has-part to
an individual b. Given such a “hybrid” knowledge base, interesting reasoning
problems include the computation of the taxonomy (i.e., the hierarchy w.r.t. the
subsumption relation) of those concepts defined in the TBox, finding inconsistent
concepts defined in the TBox, and finding, for an individual a in the ABox, the
most specific concepts defined in the TBox that « is an instance of.

To be of use in a specific application, a DL must provide the means to de-
scribe properties of objects that are relevant for this application. Unsurprisingly,
the more expressive power a DL provides, the more complex the reasoning al-
gorithms for this DL are. As a consequence, a variety of DLs were introduced

* Part of this work was carried out while the second author was visiting Rice University
on a DAAD Grant.

together with investigations of the complexity of the corresponding reasoning
algorithms/problems (see, e.g., [26,34,13]).

In 1991, Schild described the close relationship between DLs and modal log-
ics or dynamic logics [32]. For example, it turned out that AL is a notational
variant of multi modal K. Following that, numerous new DLs with correspond-
ing complexity results emerged by (extensions of) translations into modal and
dynamic logics [9,33,10]. Due to its high expressive power, the full p-calculus
(i.e., propositional p-calculus extended with converse programs) can be viewed
as (one of) the “queens” of ExpTime modal/dynamic/temporal logics [23, 35,
40]. Tt is able to capture, for example, converse-PDL, CTL*, and other highly
expressive modal/dynamic/temporal logics, and thus also highly expressive DLs
[5]. Unfortunately, the u-calculus lacks two features that are of great importance
for it being also a “queen” for DLs: it does not provide an analogon for concept
definition/general axioms that are provided by TBoxes, and it has no equiva-
lent to ABox individuals. The first point is not a serious one since we could
“internalise” general axioms using a greatest fixpoint formula even though the
p-calculus does not provide (constructors to build) a universal program [32]. The
second one is more serious since, for example, the extension of the p-calculus with
individuals no longer has the tree model property. Moreover, in the presence of
individuals, internalisation becomes more subtle.

In this paper, we extend the p-calculus with a universal role/program to en-
able direct internalisation of TBoxes [32], and with a generalised form of ABox
individuals, namely nominals. In contrast to ABox individuals, nominals can be
used inside complex concepts/formulae in the same place as atomic propositions.
We are able to show that the complexity of the full p-calculus, when extended
with a universal program and nominals, does not increase, but remains in Ex-
pTime. To prove this upper bound, we reduce satisfiability to the emptiness of
alternating automata on infinite trees—a family of automata that can be viewed
as abstractions of tableau algorithms. This technique is rather elegant in that it
separates the logic from the algorithmics [39]. For example, a tableau-based algo-
rithm might require sophisticated blocking techniques to guarantee termination
[22]. Using the automata-theoretic technique, termination is not an issue since
we can work on infinite trees. Moreover, this technique makes explicit which
problems arise when reasoning in the presence of nominals and universal roles,
and how to deal with them. We have chosen to deal with nominals by explicitly
guessing most of the relevant information concerning nominals—a choice that
will be explained in the sequel.

Besides being of interest by itself and, once again, showing the power of
the automata-theoretic approach, the complexity result presented here broadens
the range description/modal/dynamic logics that have ExpTime decision pro-
cedures. Over the last few years, it was shown that tableau-based algorithms
for certain ExpTime-complete reasoning problems are amenable to optimisation
and behave quite nice in practise [21, 29, 19, 22]. Thus, establishing an ExpTime
upper bound is a first step in developing a practical decision procedure for the
hybrid p-calculus. We return to the practicality issue at the end of the paper.

Unfortunately, this new “queen” logic is still not “the queen” since it is
missing a prominent feature, namely number restrictions/graded modalities [17,
12, 38]. This is due to the fact that, in the presence of converse roles and universal
programs/roles (or any other means to internalise axioms), nominals and number
restrictions/graded modalities lead to NExpTime-hardness [37].

From the tense logic perspective [4], the hybrid full u-calculus can also be
viewed as one of the “queen” hybrid logics with ExpTime-complete reasoning
problems: our result extends ExpTime-completeness results for, e.g., Priorean
tense logic over transitive frames (which can be viewed as a notational variant
of multi-modal K4 with converse modalities) or converse-PDL with nominals in

[1].

2 Preliminaries

In this section, we introduce syntax and semantics of the hybrid full u-calculus
as well as two-way automata. It is the extension of the propositional p-calculus
with converse programs [40], a universal role, and nominals [30, 1], i.e., atomic
formulae to refer to single worlds.

Definition 1. Let AP be a set of atomic propositions, Var a set of propositional
variables, Nom a set of nominals, and Prog a set of atomic programs with the
universal program o € Prog. A program is either an atomic program or the
converse a~ of an atomic program a € Prog. The set of formulae of the hybrid
full p-calculus is the smallest set such that

— true, false, p and —p are formulae for p € AP U Nom,
— x € Var is a formula,
— if o1 and p2 are formulae, a is a program, and x is a propositional variable,

then o1 A @2, @1V 2, (@) o1, [a] o1, py.p1(y) and vy.p1(y) are formulae.

A propositional variable x € Var is said to occur free in a formula if it occurs
outside the scope of a fixpoint operator. A sentence is formula that contains no
free propositional variable, i.e., each occurrence of a variable x is in the scope of
a fizpoint operator p or v. We use X\ to denote a fixpoint operator u or v. For a
A-formula A\x.p(x), we write (Ax.(x)) to denote the formula that is obtained
by replacing each free occurrence of x in ¢ with Azx.p(x).

Semantics is defined by means of a Kripke structure and, in the presence
of variables and fixpoints, a valuation that associates a set of points with each
variable. Readers not familiar with fixpoints might want to look at [23,35] for
instructive examples and explanations of the semantics of the p-calculus.

Definition 2. Semantics of the hybrid full p-calculus is given by means of a
Kripke structure K = (W, R, L), where

— W is a set of points,
— R : Prog — 2W>XW ussigns to an atomic program a binary relation on W,

— R(o) =W x W, and
— L : AP UNom — 2W assigns to each atomic proposition or nominal the set
of points in which it holds, such that L(n) is a singleton for each nominal n.

R is extended to converse programs as follows: R(a™) = {(v,u) | (u,v) € R(a)}.

Given o Kripke structure K = (W, R, L) and variables 1, ..., z2, a valuation
V{21, w2} — 2V maps each variable to a subset of W. For a valuation
V, a variable x, and a set of points W' C W, V[xz/W'] is the valuation that is
obtained from V by assigning W' to x.

A formula @ with free variables among x1, .. ., o is interpreted over a Kripke
structure K = (W, R, L) as a mapping @~ that associates, with each valuation
V, a subset o (V) of W. This mapping is defined inductively as follows:

— true’ (V) = W, false™ (V) =0,
— for p € AP UNom, we have pEV) = L(p) and (=p)5(v) =W\ L(p)
(o1 Ag2)™ (V) = (1) (V) N (302)370})7
(b1 V2 ()" (V) U (92)"(V), .
({) {ue W there is a v with (u,v) € R(@) and v € " (W)},
{ue W | forall v, (u,v) € R(a) implies v € p(V)},
N

>‘>‘*>“

)E(V) =
)" (V)
%)
y)"* (V)
() =

(o] =
= ()= (V) = {W'CWISO([x/W])CW}
(vy.o(y)~ Uw’' cw | " (Vz/W']) 2 W'}

For a sentence v, a Kripke structure K = (W,R,L), and w € W, we write
K,wkE v iff w € ¢, and call K a model of).! A sentence that has a model
1s called satisfiable.

Remark 1. All formulae are by definition in negation normal form, i.e., negation
occurs only in front of atomic propositions or nominals.

In the following, we will sometimes write ¢)(n,...,n,) to emphasize that
ni,...,ny are exactly the nominals occurring in .

Since we will treat atomic programs and their converse symmetrically, we
will use @ to denote a™ if @ = a for some atomic program a, and b if « = b~ for
some atomic program b. We use Prog,, to denote all (possibly negated) programs
occurring in .

In many decidable hybrid logics, we find formulae of the form ¢@n (to be
read as “ the formula ¢ holds at the nominal n”) with the semantics

Kon W ifnepf(V)
(p@n)™ (V) = {Q) otherwise .

We did not provide this operator since, in the presence of the universal role o,
we can make use of the equivalence ¢@n = [o](-—n V ¢).

Finally, we introduce two-way alternating automata on infinite trees. This
family of automata generalises non-deterministic tree automata in two ways:
firstly, they allow for the rather elegant and succinct alternation. Alternating
automata on infinite trees were first introduced in [27], and allow for transitions

! The interpretation of a sentence is independent of valuations.

such as “being in state ¢ and seeing letter o, the automaton either has an ac-
cepting run with ¢; from the left successor and an accepting run with ¢, from
the right successor, or it has an accepting run with ¢’ from the left successor.”
To express this kind of transitions, the transition functions involves positive
boolean formulae instead of, e.g., sets of tuples of states as for non-deterministic
automata. Secondly, being two-way allows runs to go up and down the input
tree—in a similar way as having converse programs allows to follow programs in
both directions. When running on a k-ary tree, a two-way automaton can have
transitions going to the ith child and switching to state ¢’ (denoted (i,q') with
1 < ¢ < k), staying at the same node switching to state ¢’ (denoted (0,¢’)), or
going to its (unique) predecessor and switching to state ¢’ (denoted (—1,¢")).
For an introduction to two-way alternating automata and their application to
the full p-calculus, see [40].

Definition 3. For k > 1 an integer, ({1,...,k}*,V) is a k-ary X-labelled tree
if V is a mapping that associates, with each node x € {1,...,k}*, its label
V(z) € X. Intuitively, for 1 <i <k, x-1i is the ith child of x.

Let BT(X) be the set of positive Boolean formulae (i.e., formulae built using
A and V only) over the set X. For X' C X, we say that X' satisfies a formula
O € BT (X) iff assigning true to all elements in X' and false to all elements in
X \ X' makes O true.

Let [k] = {-1,0,1,...,k}. A two-way alternating automaton on k-ary X-
labelled trees is a tuple A = (X,Q,0,qo, F), where @ is a finite set of states,
qo € Q is the initial state, § : Q x ¥ — BV ([k] x Q) is the transition relation,
and F' is the acceptance condition.

A run of A on a X-labelled k-ary tree (T, V) is a (T x Q)-labelled tree (T, r)
that satisfies the following conditions:

— e €T, and r(e) = (¢,q),

— Ify € T, with r(y) = (z,q) and 6(¢q,V(x)) = O, then there is a (possibly
empty) set S C [k] X Q that satisfies © such that, for each (c,q") € S, there
is a node y -1 € T} satisfying the following conditions:

o Ifc=c¢, thenr(y-i) = (z,q').
o Ifc>1, thenr(y-i) = (z-¢,¢).
o Ifc=—1,thenx=2x"-1 for somel1<i<k, andr(y-i)=(2',q¢").

A run (T,,r) is accepting iff all its infinite paths satisfy the acceptance condition.
Since we use tree automata for the p-calculus, we consider the parity condition
[36]. A parity condition is given by an ascending chain of states of sets F' =
(Fo, ..., Fy) with F; C Fyy1. Given a path P in (Ty,r), let inf(P) denote the
states that are infinitely often visited by P. Then P is accepted iff the minimal
i with inf(P) N F; # 0 is even.

For two-way alternating automata, the emptiness problem is the following
question: given a two-way alternating automaton A, is there a tree (T, V') such
that A has an accepting run on (7, V)? It was shown in [40] that this problem
is solvable in time that is exponential in the number of A’s state, where the
exponent is a polynomial in the length of the parity condition.

3 Hybrid full pg-calculus has a tree model property

As usual, when proving a tree model property for the hybrid full p-calculus, we
want to “unravel” a given model to a tree model. In the presence of nominals,
this is clearly not possible since, for example, the formula n A (a)(m A (8)n)
with n,m € Nom has no model in the form of a tree. However, we will show
that we can unravel each model to a forest, i.e., a collection of trees. When
unravelling, we must choose “good” points that witness diamond formulae (i.e.,
a point y with y € ™ and (2,y) € R(a) for z € ({a) ¢)*)—where being “good”
is rather tricky in the presence of fixpoints. To this purpose, we define a choice
function that chooses the “good” witnesses. Essentially, this choice function is
a memoryless strategy whose existence is guaranteed for parity games [14].

Definition 4. The closure cl(¢)) of a sentence ¢ is the smallest set of sentences
that satisfies the following:

¥ ed),

— if o1 Npa €cl(h) or o1 Vo € cl(), then {p1, 2} C cl(¥),
— if (@) ¢ € cl(¥) or [a] ¢ € cl(x)), then ¢ € cl(¢), and

— if Ax.p(x) € cl(v), then p(Ax.p(x)) € cl().

An atom A of ¢ is a set of formulae in cl(¢) that satisfies the following prop-
erties:

— if p € AP UNom occurs in 1, then, exclusively, either p € A or —p € A,
— if p1 A s € cl(¥), then p1 A w2 € A iff {p1, 02} C A,

— if p1 Vo €cl(¥)), then ©1 V @2 € A iff {o1,02} NA #D, and
— if Mv.p(x) € cl(v), then Ax.p(x) € A iff o(Az.p(x)) € A.

The set of atoms of ¢ is denoted at(v)).
A pre-model (K, 7) for a sentence ¢ consists of a Kripke structure K =
(W,R,L) and a mapping = : W — at(v) that satisfies the following properties:

— there is a ug € W with ¢ € m(ug),

— for p € APUNom, if p € w(u), then u € L(p), and if -p € w(u), then
u ¢ L(p),?

if (a) ¢ € w(u), then there is a v € W with (u,v) € R(a) and ¢ € w(v), and
— if [a]p € w(u), then p € w(v) for each v € W with (u,v) € R(«).

A choice function ch : W x cl(¢)) — cl(¢) UW for a pre-model (K,7) of ¢
18 a partial function that, for each u € W,

(1) if o1 V v € w(u), then ch(u, 1 V p2) € {p1, 02} N7(u) and
(i) if {(a) ¢ € w(u), then ch(u,(a)@) = v for some v with (u,v) € R(a) and
v em(v).

2 Hence if a nominal n is in 7(u), then L(n) = {u}.

An adorned pre-model (K, 7, ch) consists of a pre-model (K,7) and a choice
function ch.

For an adorned pre-model (W, R, L, 7, ch) of ¢, the derivation relation ~» C
(cl(¥), W)? is defined as follows:

— if o1 V 2 € m(u), then (o1 V p2,u) ~ (ch(p1 V p2),u)

— if o1 A g € (u), then (1 A pa,u) ~ (@;,u) for each i € {1,2},

— if (@) p € w(u), then ((@) @,u) ~ (p,ch({a) p,u))

— if [a]p € 7(u), then ([a] @, u) ~ (p,v) for each v with (u,v) € R(«a)
(for a = o, that means that ([o] p,u) ~ (p,v) for each v € W)

— i Araple) € (), then (\r-p(x),u) ~ ($(\a-p(2)), 1)

A least-fizpoint sentence px.p(z) is said to be regenerated from point u to point
v in an adorned pre-model (K, ch) if there is a sequence (p1,u1), ..., (pr, ug)
with k > 1 such that p1 = pr = pr.p(x), v = uy and v = uy, for each 1 <
i < k, we have (pi,u;) ~ (pir1,uir1), and px.p(x) is a sub-sentence of each
pi. We say that (K, m,ch) is well-founded if there is no least fizpoint sentence
ux.p(x) € c(y) and an infinite sequence ug,uy, ... such that, for each i > 0,
ux.o(x) is regenerated from w; to wiyq.

Lemma 1. A sentence ¢ has a model K iff ¢ has a well-founded adorned pre-
model (K,m,ch).

Proof. The construction of a model from a well-founded adorned pre-model and,
vice versa, of a well-founded adorned pre-model from a model, are analogous to
the constructions that can be found in [35]. These constructions are, as men-
tioned in [40], insensitive to converse programs, and—due to the according mod-
ifications of the technical details—also insensitive to nominals. Indeed, nominals
behave simply like atomic propositions provided that L(n) is guaranteed to be
interpreted as a singleton. O

Definition 5. The relaxation of a pre-model (W, R, L,) of a sentence (n,
...,ng) consists of mappings R" and 7", where
R" : Prog = W x W and
R":a — R(a)\ {(u,v) | for some 1 <i </{, L(n;) = {v}}
W —){G| G = G1 UGs, G1€at(l/1), and
Gy C{3n; | a occurs inh,a # o0, and 1 <i < (}}
cu = () U{Sn | (u,v) € R(a), a#o, and L(n) = {v}}

A relazation is a forest if R" forms a forest.

ﬂ.’f‘

Lemma 2. If a sentence v is satisfiable, then it has a well-founded adorned
pre-model whose relazation is a forest and has v in the label of one of its roots.

Proof. Let v be satisfiable. Hence there is a well-founded adorned pre-model
(K, m,ch) with K = (W, R, L) for ¢ due to Lemma 1. Using a technique similar
to the one in [40], we construct from (K, 7, ch) a well-founded adorned pre-model
(K',n',ch") whose relaxation is a forest. Please note that, due to the presence

of converse programs, we cannot simply unravel K. However, we can use the
choice function to do something similar that yields the desired result also in the
presence of converse programs.

Let ¢ = (ny,...,ng) and wy € W such that wy € ¥X. Let || = n, let
(1) @1, .., {ar) v be all diamond formulae in cl(y)), and let k£ be the maximum
of k" and ¢ + 1. Hence we have k < n. We define a mapping 7: {1,...,k}*T —
W U {L} inductively, together with an adorned pre-model (K’ 7’ ch’) where
K' =W'" R, L"), W =dom(r) \ {z | 7(x) = L}, and

— for p € APUNom, z € L'(p) iff 7(z) € L(p),

— (1) = n(r(2)),

ch'(2,¢1 V @2) = ch(7(z), 1 V ¢2), and

R' and ch'(z,) for diamond formulae ¢ are defined inductively together
with 7,

We are now ready to present the inductive definition of 7 and (K, 7, ch’).

(Fix the first level) For j with 1 < j < (, let vyq,...,vpp) € W be such
that L(n;) = {vs)} and f(1) < --- < f(£) < {—since it is possible that
L(n) = L(n') for nominals n # n', f need not be injective. For 1 < j < ¢,
set 7(f (7)) = vs(j)- §

For wo € W with wo € ¥, if wo & {vs(1),..., v}, then set 7(f(0) +1) =
wp. Set 7(j) = L for each 1 < 7 < k not yet defined.

(Fix the rest) For the induction, let i be such that 7(z) is already defined for
each z € {1,...,k}!, and j with 1 < j < k such that 7(x1),...,7(z(j — 1))
is already defined for each x € {1,...,k}". Then, for each z € {1,...,k}?,
do the following:

(1) if {a;) ¢; & () or 7(x) = L, then define 7(zj) = L.
(2) if (aj)p; € 7'(x), then (since (K,m,ch) is a pre-model and 7'(z) =
m(r(z))), there is some v € W with ch(r(z),(o;)¢;) = v and (r(x),v) €
R(aj).
— If {v} = L(ny) for some 1 < ¢' < ¢, then (since we have already fixed
the first level) there is some r with 1 < r < ¢ with 7(r) = v. Add (z,7)
to R'(a), and set ch'(z, (a;) ¢;) = r and 7(zj) = L.
— Otherwise, add (z,zj) to R'(a;), set 7(zj) = v and ch’(z, (a;) p;) = zj.

Since we started from an adorned pre-model, (K', 7', ch’) is obviously an adorned
pre-model. Moreover, if a sentence px.¢(z) is regenerated from x to y in (K', 7', ch’),
then pz.p(x) is also regenerated from 7(z) to 7(y) in (K, m,ch). Since the latter
is well-founded, we thus have that (K', 7', ch’) is well-founded. Next, its relax-
ation R'" is a forest (consisting of trees starting at the first level) since the only
edges in R’ that “go back”, i.e., that are not of the form (z, xi), are exactly those
that are eliminated in R'". Finally, ¢ is satisfied in one of the root nodes since,
by definition of (K’,7’,ch’), we have j € /X" for some 1 < j < f(¢) + 1. O

Remark 2. Please note that in this construction, if x satisfies a diamond formula
() @, then either a successor xj of x or one of the first level nodes representing
nominals satisfies .

4 Deciding existence of forest models

It remains to devise a procedure that decides, for a sentence v, whether it has
a well-founded adorned pre-model whose relaxation is a forest. To this purpose,
we define a two-way alternating tree automaton that accepts exactly the forest-
relaxations of ¢’s pre-models—provided that we added a new dummy node whose
successors are the root nodes of the forest relaxation.

The automaton depends on a guess which contains relevant information con-
cerning the interpretation of nominals. The guess makes sure that the following
kind of situation is handled correctly: suppose a nominal n must satisfy a formula
of the form [a] ¢, and we have a point « with (z,n) € R(@), but this relationship
is only implicit since we work on relaxations of pre-models, i.e., (z,n) € R"(Q)

and 3 n € 7"(x). In that case, the guess makes sure that = satisfies ¢ since it
determines which box formulae are satisfied by nominals. Moreover, the guess de-
termines which nominals are interpreted as the same objects, and how nominals
are related to each other by programs.

It is possible to refer all this “guessing” directly to the automaton—hence we
had only one automaton instead of one per guess. We have chosen, however, to
work with explicit guesses since, on the one hand, it makes explicit the additional
non-determinism one has to cope with in the presence of nominals and how it can
be dealt with. On the other hand and more importantly, referring the guessing
into the automaton would yield a quadratic blow-up of the state space. Let n
be the number of states and m be the length of the acceptance condition of
a two-way alternating tree automaton. When deciding emptiness of a two-way
alternating tree automaton [40], it is transformed into a non-deterministic (one-
way) parity tree automaton whose state space is of size (117712)’””27 and whose
acceptance condition is of length nm?. Emptiness of the latter automaton can
be decided in time 20((n*m*)(log n+2logm)) [25]. Hence a (quadratic) blow-up of
the state space of our initial two-way alternating tree automaton would further
increase the degree of the polynomial in the exponent of the runtime, and thus
be rather expensive.

Formally, a guess consists of three components, the first one consisting, for
each nominal n, of a set vy of formulae satisfied by a point u with L(n) = {u}.
Since one point may represent several nominals, we use a second component, f to
relate a nominal n; to “its” set of formulae 7;(;). The third component describes
how two points representing nominals are interrelated via (interpretations of)
programs, making sure that, if one is an a-successor of the other, then the other
is an @-successor of the first one.

Definition 6. A guess G = (G, f,C) for a hybrid full u-calculus sentence p(ny,
..., ng) consists of a guess list G = (y1,...,7¢) together with connections C' C
Nom x Prog,, x Nom and a guess mapping f : {1,...,0} — {1,...,(}, where,
for each 1 <i,j < {, we have B C ~; Ccl(v) orvi = L, ng € vpiy, ni & 5 for
all j # f(i), NomnN~y; = 0 implies v; = L, and (n;,a,n;) € C iff (nj,@,n;) € C.

Theorem 1. Let ¢ be a hybrid full p-calculus sentence. For each gquess G for
Y, we define a two-way alternating tree automaton B(y,G), such that

1. if ¢ is satisfiable, then there exists a guess G' for 1 such that the language
accepted by B(,G') is non-empty,

2. if a tree is accepted by B(v,G), then eliminating its root node yields a forest
relazation of a well-founded adorned pre-model of 1, and

3. the number of B(v,G)’s states is linear in |].

Proof. For ease of presentation, we assume that all input trees are full trees, i.e.,
all non-leaf nodes have the same number of children. As we have seen in the
proof of Lemma 2, we can simply “fill” a tree with additional nodes labelled L
to make it a full tree. Moreover, we assume a “dummy” root node whose direct
successors are exactly the root nodes of trees in the forest relaxation.

For a sentence ¢ (n1, ..., ny) with k" diamond subformulae in cl(¢)) as specified
in the proof of Lemma 2 and a guess G, we define two alternating automata,
A, G) and A(¢,G), and then define B(¢),G) as the intersection of A(1, G) and
A(l/), G). For alternating automata, intersection is trivial (basically, we introduce
a new initial states ¢ with 6(¢, o) = (0,q0) A (0,¢p) for the former initial states
0, q}), and the size of B(¢,G) is the sum of the sizes of A(1), G) and A(¢),G).

The automaton ./i(l/l, G) is rather simple and guarantees that the structure of
the input tree is as required, whereas A(1, G) really makes sure that the input
tree (more precisely, the sub-forest of the input tree obtained by eliminating the
root and all nodes labelled with L) is a relaxation of a well-founded adorned
pre-model.

Both automata work on the same alphabet X, which is defined as follows:
For Prog™ = {pa, pa, P, P= | is a program in 1 different from o},

Y ={1,root}U{c | ¢ CAPUNomUProgt U{Hn, |1 <j<mand1<i</(},
o contains, for each a, exclusively, either p, or p,, and,
exclusively, either pg or P}

The intuition of the additional symbols are as follows: Nodes not representing
points in a Kripke structure are labelled root and 1, where root labels the root
node. Nodes having n; (i.e., the node labelled with the corresponding guess vy ;)

as an a-successor are marked < n;, just like in relaxations. A node label contains
Do (pz) if this node is an a-successor (a@-successor) of its (unique) predecessor.
We do allow that a node is both an a- and a f-successor, or that no program
can be associated to the edge between two nodes. Analogously, B, (Pg) are used
to mark those nodes that are not a-successors (@-successors).

The “simple” automaton fi(w, G) guarantees that root is only found at the
root label, the nominals in v; are only found at the ith successors of the root, the
first level nodes contain no p, or pgz and that, if a nominal n; has another nominal
n; as its a-successor (i.e., if 2 n; is in the label of the node representing n;), then
n; has n; as its @-successor (i.e., = n; is in the label of the node representing

n;). More precisely, A(%,G) = (2, {q,q1, --,2,4'q},0,q0) is a safety one-
way alternating automaton (i.e., each state is accepting and thus every run is

an accepting run), and ¢’ is defined as follows for o € X:
4 . k . k . .
8 (qo,0) = Niz1 (6 a:) A /\i:£+1(lvq) A Ni=i (i, q") if root =
’ false otherwise

true if p, € 0 and pg & o for each a # o0 in ¢
false otherwise

sito- |

for1 <i</{:
/\le(i, q) if v; N (Nom U AP) = o N (Nom U AP), root # o, and,
8'(gi,0) = for each n € NomNo and (n,a,n’) € 0, 3n' €
false otherwise
5'(q,0) = {/\le(i,q) if oN Nom = and root # o
false otherwise

Due to the symmetry in the definition of the connection component in a guess
and the way &'(g;,0) is defined, if A(¢), G) accepts a tree, {n;,—>n;} C o, and
n; € o', then Sn; € o, and o, 0" label direct successors of the root node.

The two-way alternating tree automaton A(1), G) verifies that the input tree
is indeed a relaxation of a well-founded adorned pre-model. To this purpose,
(most of) its states correspond to formulae in cl(¢), and the transition relation
basically follows the semantics. The first conjunct in the definition of §(qf, o)
guarantees that the ith successor of the root node indeed satisfies all formulae
in 7;, and that one of the root node successors satisfies 1. An additional state
¢' that “travels” once through the whole input tree makes sure that, whenever a
node has a nominal n; as its implicit @-successor (i.e., its label contains = n;),
then this node satisfies indeed all formulae ¢ with [a] ¢ € vf(;. Finally, the
diamond and box formulae on the universal role are treated separately since
they apply to all but the root node, regardless of marks p, or p,. Please note
that, since the root node does not represent any point of a Kripke structure,
0([o] ¢, root) is defined such that only all root successors satisfy [0] ¢, but not
the root node itself. More precisely, we have

A(W,G) = (X,Q,0,q0, F), with
Q= {L,a,q'}yUcl(®)UProg".
The transition relation ¢ is defined as follows: firstly, for ¢ € @ and o € X' let

_ Jtrue ifg=1 _ Jtrue ifo=1
o(g, L) = {false otherwise o(L,0) = {false otherwise

Secondly, for 1 <i¢ < { and o € X, let
. (i, J_) if Yi = 1
i) = . . N(o) = 0,
=1 Apen(ing) if 5 C cl(¥) e)=_ A 09
—n; € 0 and
[€ 700
Thirdly, for 0 € X, 0 # 1, and a a program, we define § as follows:
5(dh,0) = Niey F(i)kA Vs, (i, ¥) A Ay (') V (G, 1))
6(¢',0) = N(o) A \izy ((6¢") V (4, 1))

for p € AP U Nom U Prog*
__Jtrueifpeo
6(p,0) = {false otherwise
for p € AP U Nom :

5(=p,) = true if p € o and o # root
P false otherwise
6(p1 A p2,0) = (0,¢1) A (0,2)
6(p1 V @2,0) = (0,¢1) V (0,2)
6(Az.p(x),0) = (0, (M ¢(z)))
for a & {0,07 }:
true if 3n;€o0andpe Y1)
A (j, pa)) otherwise
for a & {0,07}:
6([e]p,0 (0,p5)) A otherwise

V(4:Pa) V (4, 1))
for a € {0,07 }:
true if o € ()

{false if 3n;€o0and ¢ Vf(5)

) otherwise
for a € {0,07 }:
(0,0) A (—=1,[a]p) A ifroot # 0o
5] o, 0) = { Ni=i (Gl) v (5 1))

1
/\521((]’7 [a]) V (j, L)) otherwise

—~~

7

Please note that, following the construction in the proof of Lemma 2, satis-
faction of diamond formulae (including those on the universal program) needs
to be tested for only in direct successors and in the nodes representing nominals.
Moreover, since ¢ = ¥(nq,...,n,) and due to the definition of §(¢qy, o) and I'(z),
0 checks whether the node representing n; satisfies indeed all formulae in ;).

The acceptance condition F is defined analogously to the one in [15,24], and
given here for the sake of completeness. Firstly, for a fixpoint formula ¢ € cl(+)),
define the alternation level of ¢ to be the number of alternating fixpoint formulae
one has to “wrap ¢ with” to reach a sub-sentence of . More precisely, the
alternation level aly(p) of ¢ = Ax.¢'(z) € cl(v) is defined as follows [3]: if ¢
is a sentence, then aly(p) = 1. Otherwise, let p = A'y.p'(y) be the innermost
fixpoint formula in cl(¢) that contains ¢ as a proper sub-formula. If A = A’, then
aly (@) = aly(p), otherwise aly (@) = aly(p) +1. Let d be the maximal alternation
level of (fixpoint) subformulae of ¥, and define

Gi = {va.p(z) € () | aly(va.p(z)) = i}
Li = {pz.p(z) € cl(y) | aly(uz.p(z)) <}

Now we are ready to define the acceptance condition F = {F},..., Foq} with
0 if i =0,
Fi = Fi—l ULZ' if ¢ Z 1is Odd,
F,_ 1 UG; ifi >1is even.

Obviously, F; C Fjyq for each 1 < i < 2d. As mentioned in Definition 3, a
path r, of a run r is accepting if the minimal ¢ with inf(r,) N F; # 0 is even—
this i corresponds to the outermost fixpoint formula that was infinitely often
visited /postponed. A run r is accepting if each of its paths are accepting. In-
tuitively, the acceptance condition makes sure that, if a fixpoint formula was
visited infinitely often, then this was a greatest fixpoint formulae, and that all
of its least fixpoint super-formulae were visited only finitely many times.

It remains to verify the three claims in Theorem 1. The proof of the first
one uses Lemma 1 and a straightforward construction of a guess G from a forest
relaxation of a well-founded adorned pre-model, and then shows how an input
forest similar to the one constructed in the proof of Lemma 1 is accepted by
B(¢,G). The second claim can be proved by taking an accepting run of B(v, G)
on some input tree, and verifying that the input tree indeed satisfies all properties
of relaxations of well-founded adorned pre-models. Finally, the third claim is by
definition of B(v, G). O

Theorem 2. Satisfiability of hybrid full p-calculus can be decided in exponential
time.

Proof. As we have mentioned in the beginning of Section 4, emptiness of B(¢, G)
can be decided in time 2°(""1°8) for p = [)|. Let ¢ be the number of nominals
and m the number of programs different from o in . Since, for a guess G =
(G, f,C), the mapping f is determined by G, the number of guesses is bound by
the number of connections and guess lists, i.e., by 20°m .2t Hence we have to test
at most an exponential number of automata B(v,G) for emptiness. Combining
these results with Lemma 1, Lemma 2, and Theorem 1 concludes the proof. 0O

5 Conclusion

We have shown that satisfiability of hybrid full u-calculus can be decided in
exponential time, thus partially answering an open question in [5]. Deciding
satisfiability of a logic that lacks the tree model property using tree automata
was possible using a certain abstraction of models, relazations, and involved an
additional non-determinism, guesses. Then, we were able to use the emptiness
algorithm in [40] as a sub-routine. For an input sentence, the algorithm presented
constructs a family of tree automata, each of which depends on a guess that
determines relevant information concerning the interpretation of nominals. We
have chosen this explicit guess since, on the one hand, it directly shows how
nominals can be dealt with. On the other hand, when referring the guessing into
the automaton, we would blow up its state space quadratically. Since deciding

emptiness of this family of automata is exponential in the size of its state space,
it is clearly preferable to avoid even such a polynomial blow-up.

The complexity of the hybrid full u-calculus with number restrictions/graded
modalities/deterministic programs remains an interesting open problem. As a
consequence of NExpTime-hardness results in [37], this extension would lead to
NExpTime-hardness.

Another interesting research problem is the development of practical decision
procedures for the p-calculus. To the best of our knowledge, automata-theoretic
methods are the only known methods for the u-calculus, and, so far, they have
been implemented successfully only for temporal logic, see, e.g., [8, 20].

References

1. C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL, 2000. To appear.

2. F. Baader and B. Hollunder. A terminological knowledge representation system
with complete inference algorithm. In Proc. of PDK-91, vol. 567 of LNAI Springer-
Verlag, 1991.

3. G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the
modal mu-calculus. In Proc. of TACAS, vol. 1055 of LNCS. Springer-Verlag, 1996.

4. P. Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic, 34, 1993.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive descrip-
tion logics with fixpoints based on automata on infinite trees. In Proc. of IJCAT’99,
1999.

6. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proc. of KR-98, 1998.

7. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Infor-
mation Systems. Kluwer Academic Publisher, 1998.

8. E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-
ing. In Proc. of CAV’9/, vol. 818 of LNCS, pages 415-427. Springer-Verlag, 1994.

9. G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. In Proc. of AAAI-94, 1994.

10. G. De Giacomo and M. Lenzerini. Concept language with number restrictions and
fixpoints, and its relationship with mu-calculus. In Proc. of ECAI-9/, 1994.

11. G. De Giacomo and M. Lenzerini. Thox and Abox reasoning in expressive descrip-
tion logics. In Proc. of KR-96. Morgan Kaufmann, 1996.

12. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. of KR-91. Morgan Kaufmann, 1991.

13. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134, 1997.

14. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus, and determinacy. In
Proc. of FOCS-91. IEEE, 1991.

15. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for fragments of
the mu-calculus. In C. Courcoubetis, editor, Proc. of CAV’93, vol. 697 of LNCS.
Springer-Verlag, 1993.

16. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a nutshell. In Proc. EKAW-2000, LNAI. Springer-Verlag, 2000. To appear.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logics, 13,
1972.

E. Franconi and U. Sattler. A data warehouse conceptual data model for multidi-
mensional aggregation: a preliminary report. AI*IA Notizie, 1, 1999.

V. Haarslev and R. Moller. Expressive abox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In Proc. of KR-00, 2000.

Gerard J. Holzmann. The spin model checker. IEEE Trans. on Software Engineer-
ing, 23(5), 1997.

I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of
KR-98, 1998.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3), May 2000.

D. Kozen. Results on the propositional p-calculus. In M. Nielsen and E. M.
Schmidt, editors, Proc. of ICALP’82, vol. 140 of LNCS. Springer-Verlag, 1982.
O. Kupferman and M. Y. Vardi. p-calculus synthesis. In Proc. MFCS’00, LNCS.
Springer-Verlag, 2000.

O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata
emptiness. In Proc. of STOC-98, 1998.

H. Levesque and R. J. Brachman. Expressiveness and tractability in knowledge
representation and reasoning. Computational Intelligence, 3, 1987.

D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54(1-2), 1987.

B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LNAI
Springer-Verlag, 1990.

P. F. Patel-Schneider and I. Horrocks. DLP and FaCT. In Proc. TABLEAUX-99,
vol. 1397 of LNAI Springer-Verlag, 1999.

A. Prior. Past, Present and Future. Oxford University Press, 1967.

A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proc. of the
AAAT Spring Symposium on Ontological Engineering. AAAT Press, 1997.

K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91, 1991.

K. Schild. Terminological cycles and the propositional p-calculus. In J. Doyle,
E. Sandewall, and P. Torasso, editors, Proc. of KR-94, 1994. Morgan Kaufmann.
M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1), 1991.

R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for
the propositional mu-calculus. Information and Computation, 81(3), 1989.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Language Theory, vol 1. Springer-Verlag, 1997.

S. Tobies. The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. of Artificial Intelligence Research, 12, 2000.

S. Tobies. PSPACE reasoning for graded modal logics. J. of Logic and Computa-
tion, 2000. To appear.

M. Y. Vardi. What makes modal logic so robustly decidable? In N. Immerman
and Ph.G. Kolaitis, editors, Descriptive Complexity and Finite Models, American
Mathematical Society, 1997.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, vol. 1443 of LNCS, 1998. Springer-Verlag.

