Distributed Splicing of RE with 6 Test Tubes

Monika Sturm and Thomas Hinze

Dresden University of Technology, Germany
Department of Theoretical Computer Science
e-mail: {sturm,hinze}@tcs .inf.tu-dresden.de
www: http://wwwtcs.inf.tu-dresden.de/dnacomp

February 26, 2001

Abstract

This paper introduces a functional approach to distributed splicing sys-
tems for generation of recursive enumerable languages with 6 test tubes. The
specification of this system serves both, the formal mathematical and the
lab-experimental aspect. The implementation of the splicing system using a
functional description of laboratory operations supports particularly the last-
mentioned aspect. Advantages of this approach consist in large experimental
practicability as well as in the independence of certain Chomsky type 0 grammar
parameters.

1 Introduction

Fast solutions of combinatorial problems have both, large economical and theoretical
importance. Starting from the consideration of different approaches to tackle NP-
complete problems, several unconventional ideas for their solutions emerge. These
ideas can be divided into four raw categories: neural, quantum, heuristic, and
molecular computing, particularly using the data carrier DNA.

An interdisciplinary collaboration between computer scientists and molecular bi-
ologists developed a DNA based algorithm to solve the NP-complete knapsack prob-
lem with natural object weights and implemented it repetitively in the laboratory.
In parallel to these experimental studies the laboratory-like DNA computing model
DNA-HASKELL[7] was developed based on biochemical processes observed in detail
including some side effects that can occur indeed. DNA computing models feature by
their computational completeness. DNA-HASKELL also owns this property proved by
simulation of selected conventional universal models for computation.

Some DNA computing models are characterized by a high abstraction level and
by a clear formal model specification. Between these models and an according im-
plementation in the laboratory a gap exists that has to be discussed. Simulating
those DNA computing models using the laboratory-like DNA-HASKELL could be a

promising approach to fill this gap and to combine the advantages of different models.
The minimization of the number of used test tubes necessary for the execution of DNA
based algorithms acts as a significant criterion to optimize DNA computing models.
A one pot architecture embodies the ideal case. The splicing model is closed to this
ideal. The splicing operation forms the principal item of this model. It is possible
to simulate the splicing operation in DNA-HASKELL. Splicing systems were estab-
lished to reach universal computational power[4]. They require either an infinite set
of axioms or an infinite set of splicing rules to generate recursively enumerable lan-
guages (class RE). A further approach based on multisets leads to the necessary
to determine the number of strand duplicates with high accuracy. The recent state
of the art in molecular bioengineering can not meet these requirements completely.
Therefore other extensions of splicing systems were sought for a practicable possibility
to generate RE. The introduction of distributed splicing systems with n test tubes
seems to be a successful way. A functional approach to distributed splicing of RE
with 6 test tubes is proposed below. The arisen distributed splicing system, named
TT6 for short, owns a simulation in DNA-HASKELL and performs a distribution of
test tube contents after each splicing operation. Further the TT6 uses compact sets
of filter patterns resulting in a comparable low exchange of DNA strands between test
tubes supporting a lab-implementation.

2 On the Basic Operation in Splicing Systems

The splicing operation forms the core of all types of splicing systems and embodies
an abstract formal emulation of DNA recombinant techniques cut with restriction
enzymes (digestion) and ligation [4]. It is based on elements of mostly infinite sets
that express DNA strands, further named words of formal languages. The description
of the splicing operation on words of formal languages also leads to a generalization
of the effect that is caused by digestion and ligation. The generalization suppresses
certain DNA strands resp. words that can really additional occur during the ligation
process as side effects. Here, we propose a sequence of DNA-HASKELL operations
that simulate the splicing operation on linear data structures defined by a splicing
rule in [6].

Consider an alphabet X, and two symbols $ and # not in X. A splicing rule over
Y is a string r = a1 # 51 S$as# Py, where a;, 3; € 8%, 1 < i < 2.
For each such rule r and strings z,y, w, z € ¥* we define

(z,y) Fr (2, w) if and only if r=xi1f129, Y= yrasfays,

z=z10102y2, w =1y

A wet splicing system and its experimental implementation was introduced in [9].
The results of this approach encourage the assumption that the splicing operation can
be performed practically. This fact represents the first step to establish a universal
DNA computer based on splicing.

Unfortunately the ligation as enzymatic process can suppress expected DNA frag-
ments and also produce unwanted DNA fragments (e.g. strand combinations with
reverse inserted fragments or additional compositions like z11a2y1 and ya B2 F1 29, iff
the single stranded overhangs resulting from the digestion are half-sided antiparallel
complementary to itself with dyadic symmetry). These side effects can influence the
final result of iterated executions of splicing operations, often used to generate a for-
mal language by applying splicing rules of a splicing system. The following figure 1
proposes an idea how to overcome this insufficiency. Let z and y be encoded by DNA
double strands.

xy_pool :: Tube
| | aify :: Dnastrand
T
apBp:: Dnastrand
%F a1By hﬁ a2B2 asB, :: Dnastrand
| Extraction | | Extraction 0GB :: Dnastrand
maxl ength :: Int

)
N

y rest.enzym 0'1\31 y_ rest.enzym ay

conbine :: Tube -> Tube

[cu || cu

conbine t =1lig
(un
(lab
(cut
(extr t oqBy)
"restriction enzymal‘Bl')
L
5)
(cut
(extr t ayB2)
"restriction enzymay;'))
max| engt h

splicingop :: Tube -> Tube

| Extraction | | Extraction S
splicingop t = un
(un
- (extr
(combine 1)
a;B2)
- (extr
(conine 1)
azBy))

t

| P VP by P |

application of the function:

splicingop xy_pool

Figure 1: splicing operation as a flowchart (left) and using the DNA-HASKELL syntax
(right)

We are able to describe the splicing operation in a experimental convincing way.
DNA computing should lead to a unconventional universal model for computations.
Splicing systems based on the splicing operation represent an exact mathematical
model according to this aim [8]. A practical execution of different splicing systems
can contain the scenario from figure 2 as the central part. The challenge consists in
finding a way how to adapt the real molecular biological processes in the laboratory
to the formal definition of the splicing operation. The focus lies in the laboratory-
like modelling of splicing systems to generate regular, context free, and recursive
enumerable languages.

3 Splicing Systems for RE — Comparison and Clas-
sification

The sets FIN, REG, CF, CS, RE are used to denote the classes of finite, regular
(Chomsky type 3), context free (2), context sensitive (1), and recursive enumerable
(0) languages. These classes form the Chomsky hierarchy.

To describe and characterize these classes of languages, different formal systems
like Chomsky grammars of a certain type were developed. Each of these language
denotation systems is able to generate exactly those words the language is composed
of. Language denotation systems represent in general models for computation: Since
a language can be considered as a set (finite or infinite) consisting of its words as
elements, generating a language by producing its words and testing whether or not
a given string is a word of the described language can be assumed as computational
process. From FZN to RE the computational power increases and descriptions of RE
are said to be computational universal. Therefore, the generation of RE by splicing
systems based on an appropriate language denotation system will be focussed.

Some extended splicing systems EH (Fi, Fa), Fi: set of axioms, Fy: set of splicing
rules, can produce RE, see table 1 [4]:

[71/7:, [FIN [REG [CF [CS [RE |
FIN REG | RE RE | RE | RE
REG REG | RE RE | RE | RE
CF CF RE RE | RE | RE
CS RE RE RE | RE | RE
RE RE RE RE | RE | RE

Table 1: computational power of EH systems

Weakest preconditions are required by EH(FIN,REG) and EH(CS,FIN).
These systems need either a regular language to describe the splicing rules or a context
sensitive language to describe the axioms. Both, REG and CS, are infinite sets result-
ing in an infinite number of DNA strands and/or restriction enzymes for simulating
the work of these splicing systems. To overcome this insufficiency, three different ideas
leading to special types of extended splicing systems were pursued:

e introduction of multisets
e extension of the basic data structure ”finite linear string”

e introduction of distributed splicing systems usually with more than one test
tube and control mechanisms for the resulting test tube systems

Table 2 illustrates extended splicing systems able to generate the class of recur-
sive enumerable languages together with a short characterization of some properties.
Further considerations focus on classes FZN, REG, and RE.

SQ%’E‘HSH’E‘[d[qelsWnNuUa SAISINIAI 9[]’[?191198 03 9|q®e SHIQE]S.'{S EU!C)HCIS Jo uoryedyissed g7 9[qe],

12
=) =
L £
K I
1] b~ =
= 2 =
n = 0 w
% ol <] o] =]
P ” & B=t
= 2 o = Q [
+ g o - o0 =
S < S] B
5 E e = E % :
it] = & % <) =
2 e e e < s g
s o o o S R "
) < e = = < 9 -
= = @ @ @ ° @ =
B @ 2 Q2 Q2 o e
) 3} = Q = a
0 o= O g g g ‘n =%
= = T| Z = = g g 5
©) = = = = o] = w
Elementary Formal System (EFS)
A 3 ‘ EFS = (D,=, M),
Multiple [12] 1 O(|M]) o(|D|?) linear Post Normal System (PNS) no
G=(V,X,P A

S . Chomsky type 0 grammar
distributed TT system [2] |O(|1Zal) O(|Pa| + |Zc]) O(|Pa| + |Zal) linear G = (Vo. 56, P, 56) yes

[10] . Chomsky type 0 grammar
CDEH system [11] 3 O(|Pa| + Vel + |Zc])| O(Pa| + |Val + |Zs]) | linear G = (V. S, Pa, Sa) yes
TT6 system here 6 O(|Pa| + |1Za]) O(|Ps| + |Za]) linear C}éozls(kg;?/gz ?Pg;“?r;l;n)ar yes

. . . Chomsky type 0 grammar
infinite set EH(FIN,REG) |[10] 1 O(|Pa| + Vsl + |Za]) oo linear G = (Vo. 56, P, 56) no

extended . . Post Normal System

data structure Circular [13] 1 O(|P] + |A]) O(|P]) circular G=(V,5,P,A) no

. 5 . Chomsky type 0 grammar
m| 1 |oUPal+val+1Zal) [00Pal - (el + 156" | tincar | CEPmSEY WEE O grammar Ty,

; 2 2 4 : deterministic Turing Machine

multiset EH(mFIN,FIN)| [5] 1 o(v|?|1el + 1el?Iv]) o(v|*el) linear TM = (Q,V,%,{L, R}, F. g0, ¢,) no
B 1 o(s|- |P]) o(s|- |P]) linear Post Normal System no

G=(V,X,P A

Table 2 shows that T'T6 as a model for distributed splicing is characterized by a linear
complexity of the number of axioms and splicing rules depending on the number of
grammar rules and terminal symbols of the language. Further the T'T'6 uses 6 test
tubes in any case working on a linear DNA data structure.

4 A Test Tube 6 Distributed Splicing System I' for
Chomsky Type 0 Grammars

The definition of I' uses the components of Chomsky type 0 grammars that have to
be given for the construction of a concrete T'.

Let G = (Vg,Xq,Pg, Sg) be a Chomsky type 0 grammar in Kuroda normal form
with

Ve: finite set of nonterminal symbols
Yg: finite set of terminal symbols g = {01,09,...,0,}, VaNIg=10

Pg: finite set of productions Pa C (Ve x (Va®@Va))U (Vg x Zg) U
(Va x {e}) U((Va @ Va) x (Va @ Va))
Sg: start symbol Sa € Vg

All words € L£(G) have to be strictly generated in a right associative way to apply the
productions of the grammar to the intermediate derivation results € (Vg UXg)* \ XF.
That means, the rightmost part is always replaced by the next production. Otherwise
the set of splicing rules and axioms has to be extended.

Let T' = (V,T1,T%,T5,T4,T5,Ts) be a Test Tube Distributed Extended Head System
of degree 6 (TT6 for short) based on G with

V: finite set of alphabet symbols V = Vg U Xg U
{B7a?ﬂJX’XIJYJYIJYOI{JY/@IJZ’ ZIJZII}
T;: test tube 4,4 =1,...,6 with T; = (4;,R;, F)
A;: finite set of axioms A; C V*
R;: finite set of splicing rules R; C V* @ {#}oV* @ {$} o V* @ {#} o V*
F;: finite set of filter patterns F; C (V U {@})*, with an ambiguous
letter @, {@}* = {@}, that stands
for any finite word € V*
g: empty word

Each test tube T; is called a component of T. Any A; can be represented as finite
languages over V, and any R; can be represented as finite languages over VU{#}U{$}.
and $ are auxiliary symbols not in V. For simplicity, the operation * on an arbitrary
set U is defined as Ut := U* @ U. Tt excludes ¢ from the result of the *-operation.
The components of T' are defined as follows:

T = (A1,R1,.7:1)
Al = {XBSgY}U{ZvY' | Fue (VaUXs)T.(u,v) € Ps}

Ri = {ri1}
r11 = e#uYS$Z#0Y'; (u,v) € Pg
F1 = {XxXay}

T2 = (-’42;7\)’2)?2)'
Ay = {ZBaiBY', XoiZ | i =1,...,n} ULZYL, 2V}, X' 2,2)
Ro = {ra1, 722,723, 724,725, T26 }
ro1 = e Y'SZH#BaBY'; i=1,...,n
ros = e#PY'SZH#Y;

23 = 6;‘%0(Y’$Z:}§IEYO/Z
P94 = X#6$X’#Z
ros = XPa B#eS Xy # 7, i=1,....n

Tog = E#YI$Z#Y
Fy = {XQY’,X@Y}, XQY}, Xf@, Xo@}

Ty = (A3,R3,f3)
Ay = {2V, XaZ)
Rs = {rai, r32}
r31 = E#YOIK$Z#Y/
r39 = X/#6$XQ#Z
Fy = {X'av})

Ty = (As, R4, Fa)
A = {2V XBZ)
R4 = {ra1,ra2}
r41 = 6#Yé$Z#Y’
r40 = XI#€$Xﬁ#Z
Fo = {X'@y})

Ty = (As,Rs,fs)
A5 — {Z/ZI’ZIIZII}
Rs = {rs1,r50}
rs1 = et BYS$7' 7' 4ke
res = XheSesh 7 71

Fs = {@BY}
TG = (-AGJRG)J:G)

Ag =0

Re =10

Fo =3k

The work of T' can be described as an iterated loop in each of the test tubes T;,
¢ = 1,...,5. The iterated loop consists of the consecutive executed steps splicing,
filtering, and distributing. The test tube T has the function of a final tube and

stores the resulting words € £(G). The current contents of test tube 7; is denoted as
L;. Initially, £; = A; with ¢ =1,...,6.

The iterated loop in each test tube 7;, i = 1,...,5 starts with the according sets of
axioms A;. Subsequently, any executable splicing rule has been selected and applied.
If there is no applicable splicing rule, no splicing will be performed and the set of
strings in the relevant test tube remains unchanged. The application of a splicing
operation in a test tube T; with the contents £; C V* is defined by the function o:

o(L;):={z€V" | (z,y) Fr (z,w) or (z,y) Fr (w,z), for some z,y € L;,r € R;}

During the splicing step of the iterated loop the splicing operation is performed
at most once in 7}. In consequence, the k-fold iterated splicing o*(£;) is defined by

Uo(ﬁi) = ,CZ
oFTUL) = dF(Li)Uo(a® (L)) for k>0, 1<i<5h

with

During one pass of the iterated loop the splicing operation is executed at most
once 1n each test tube 77 until T5.

After splicing, the filtering step prepares copies of those strings that have to be
distributed. Every test tube T;, i = 1,...,5 provides separately exactly those strings
that will be moved into other test tubes. To do so, T; evaluates all filter pattern F,,
j=1,...,5,j #i. Those strands that are transmitted into other tubes are removed
from the producing tube T; if they do not match its own filter pattern F;. Each F;
describes those strings that are moved from other test tubes into 7;.

The subsequent distributing step exchanges the strings prepared by filtering be-
tween the test tubes.

The test tube Ty receives copies of all strings produced by splicing in 77 until
Ts during each iterated loop and collects those strings that describe words of the
language £(G), implemented by its filter pattern Fg. All other arriving strings are
eliminated. T does not practise a splicing operation itself, it evaluates the produced
words from all other test tubes. Because of this behavior 7§ carries the meaning of a
final tube (master tube).

The steps splicing, filtering, and distributing forming the iterated loop are
executed consecutively. After distributing, the next round of splicing starts. All test
tubes T until T5 perform iterated loops in parallel. The number of iterated loops
is not limited by T'. One pass of the iterated loop transforms stepwise the contents

. 1
(L1, La, ..., Ls) into (LY, L5, ..., LE), denoted by the —ppg operator

(‘Claﬁ?a . --a£6) L>TT6 ('Clla I2a e a'Cg’)

with

6 6
ci=| U |nruldw)N| U F|| kefor} 1<i<e
T =
The contents of each T; is composed by the result of the own splicing minus those
strings that move to other test tubes plus those strings that arrive from other test
tubes.
Therefore, the language £ generated by T is described by

L) = {wEEg AN wéeLg| (A1,...,Ag) ELEVI ([:1,...,[:6)},

where — 3776 is the reflexive and transitive closure of L>TT6.
Each of the splicing test tubes assumes a special task in the whole behavior of T,
listed in table 3.

|test tube| task |

T e apply a production of the grammar G

e encode the rightmost completing terminal symbol o; € Xg into
the sequence ol 3 if existing

e prepare the rightmost-leftmost rotation of the completing o or 3

o decode the leftmost complete rotated fa’ 3 into the terminal sym-
bol o

e enable consecutive applications of productions without rotation in
between

e rightmost-leftmost rotation of one symbol «a

T,

e rightmost-leftmost rotation of one symbol 3

T e extract a ready generated word of the language £(G) from the

terminating auxiliary symbols X and BY

Table 3: tasks of the splicing test tubes

axionms :: [[Char]] -> Tube f_sense :: [Char] -> [Char]

axionms [[]] =[] f_antisense :: [Char] -> [Char] .
axioms | = un :
(ann . !
all elements from A , each encoded by (un head "A[[Chfr]] -> [Char] .
complementary sense and antisense sSDNA (syn (f_sense (head 1))) head (x:xs) = x .
n ¢ # ! (syn (f_antisense (head 1)))) E
£ [Swrms [eee[Smm] | "®xIength) tail :: [[Char]] -> [Char] |
< (axions (tail 1)) tail (x:xs) = xs H
] e |
o v distr_tl :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube
£ Ddistr_t1t1t2t3t41t5=tt6
5 H
o (un
8 (un
Ll (un
o (un
c
5 (spl bl
=2 (ann
7] (
ﬂ 7777777777777 for Tg (nel
| (lab
: FU mod 5)+1 F((.+3) mod 5)+1 ‘ (un
B e ettt Heie il Eeiieie b (un
for T, (un
(fmod 5)+1 (filter_f2 (splicingop t1))
for T, (filter_f3 (splicingop t1)))
(@+1) mod 5)+1 (filter_f4 (splicingop t1)))

(filter_f5 (splicingop t1)))
4B
5)
(nel (splicingop t1)))
max| engt h)

for T42) mod 5)+1

for T((i+3) mod 5)+1

5)
(filter_f1 (splicingop t2)))
(filter_f1 (splicingop t3)))
(filter_f1 (splicingop t4)))
(filter_f1 (splicingop t5)))
-- functions distr_t2 until distr_t5 anal ogue

| Filtering

from T(I mod 5)+1

from T 41y mod 5)+1

from Ti42) mod 5)+1

from T43) mod 5)+1

R .

| Distributing

application of the function: H 1
tt6 (axioms [* XBGY', ...]) inext_loop :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube -> Tube '
(axions [' XZ', ..., 'ZY¥']) inext_loop t1 t2 t3 t4 t5 [] =tt6 '
(axions [' 2V, " XaZ']) (distr_t1t1t2t3t4t5) :
(axioms [' 2. ' XBZ']) : (distr_t2 t1t2 t3 t4 t5) :
(axions [' 2Z", ' 22"]) ! (distr_t3 t1t2 t3 t4t5) H

' (distr_t4 t1t2t3 t4t5) 1

: (distr_t5tl1t2 t3 t4 t5) :

xt_loop t1 t2 t3 t4 t5t6

Figure 2: iterated loop for T;, i = 1,...,5; flowchart and DNA-HASKELL syntax [7]

10

x)

) W) W) Y fxa) I 1xB)

[Bxtraction] [Extraction | [Bxtraction | [Bxtraction | [Bxtraction

v filter_f1 :: Tube -> Tube
pofilter_f1t = extr

(extr t (f X))
(fy

w1 F3={X'@Y;
| [ovmn] | 3 =1 al

: 1(Ye) : filter_f2 :: Tube -> Tube
! [Exweion] filter_f2 t = un

L (un
. (un
filter_f3 :: Tube -> Tube (un
filter_f3 t = extr (extr
(?X:(’f t (f X)) (extr t (f X))
(f Yo (f Yy)
(extr
-- A (extr t (f X))
(fr Yg)

(extr t (f XB)))
(extr t (f X))

(extr
: (extr t (f X))
from T, all elements from (f¥))
VeU{B,a,B, X, X, Y, Y, Yy ’Yf" 2,2,7, i .
; : b e e
from Ty} Moen each encoded by complementary sense and ! !
— antisense ssDNA ' '
from T, T ! !
| | ! —_ L]]
PR— (S [] ... [] | PRy = {X @YB}
4 B e Y ! '
B +B' +B +B' i H
o e e [.
from Tg 4 [union |[twsing |[taeing | T '
v filter_f4 :: Tube -> Tube
E filter_f4 t = extr
! (extr t (f X))
H fy,
: ([3)
filter_f6 :: Tube -> Tube -> Tube -> Tube -> Tube -> Tube [PP
filter_f6 t1t2 t3 t4 t5 = splbl H
(ann H
(un E
(un H
(un '
(lab (syn (f_antisense B)) '+B 5)
(lab (syn (f_sense B)) '+B 5)) H
(lab (syn (f_sense Z'')) '+B 5)) H
(el b
(un .
(un e A
(un H .
(un t1 t2) v filter_f5 :: Tube -> Tube
t3) v filter_f5t =extr t (f BY)
t4) H
t5))) E
nmax| engt h) !
g :
) 11 :
H

Figure 3: filter patterns F; until Fg and implementation of filtering processes includ-
ing collection of words € £(G) in Tg; flowchart and DNA-HASKELL syntax

Figure 2 shows the general iterated loop practised in 77 until 75. Each iterated
loop in T, ¢ = 1,...,5 has been initialized with the axioms from the according set
A; encoded by appropriate unique DNA double strands. The encoding is done by
two one to one functions f_sense and f_antisense that produce complementary
single stranded DNA strings from any € A4; and from any € V. The body of each
iterated loop is composed by steps splicing, filtering, and distributing. Each splicing
step executes the splicing operation according to R; at most once. The subsequent
filtering step prepares in each T; copies of those DNA strands according to filter
patterns Fj;, j # i separately. All prepared DNA strands matching F; are distributed
to Tj. Fg extracts those DNA strands representing an arbitrary word € £(G) and
collects it in 7g. The iterated loops of T'T6 terminate as soon as an arbitrary word
€ L(G) exists in Tg. The case L(G) = () leads to a nonterminating process. This
consequence coincides to a terminating property of programs with mutual recursion.

5 Conclusions

This paper implies a proposal to the discussion about distributed splicing systems.
The objectives leading to the development of TT6 include the compliance with RE
by a constant number of test tubes (6), by a nonextended DNA structure, and by
an efficient derivation of complexity theoretical relevant system parameters directly
from the grammar. Let X be the set of terminal symbols and Pg the set of grammar
productions, then TT6 requires O(|Pg|+|X¢|) axioms and splicing rules independent
of the number of nonterminal grammar symbols.

T'T6 is constructed with regard to a practicable implementation in the laboratory.
The distribution of DNA strands between test tubes is organized in a way that min-
imizes the number of transferred DNA strands. Beyond only few strand duplicates
are necessary to perform all filtering and distributing processes. The number of DNA
double strands that have to be available initially is equal to the number of axioms.
The operations defined in the specification of DNA-HASKELL are based on observable
processes in the laboratory. The experimental practicability of each single operation
was shown.

References

[1] E. Csuhaj-Varju, R. Freund, L. Kari, G. Pdun. DNA computing based on splic-
ing: universality results. Proc. of First Annual Pacific Symp. on Biocomputing,
Hawaii, 1996 (L. Hunter, T. E. Klein, eds.), World Sci. Publ., Singapore, p.
179-190, 1996

[2] E. Csuhaj-Varj, L. Kari, G. Pdun. Test tube distributed systems based on splic-
ing. Computers and Al vol. 15(2-3), p. 211-232, 1996

[3] C. Ferretti, G. Mauri, S. Kobayashi, T. Yokomori. On the universality of Post
and splicing systems. Proc. Second Intern. Coll. Universal Machines and Compu-

12

[10]

[11]

[12]

[13]

[14]

tations, vol. 11, p. 12-28, Metz, 1998, and Theoretical Computer Sci., vol. 231(2),
p. 157-170, 2000

R. Freund, L. Kari, G. Paun. DNA computing based on splicing: the existence
of universal computers. Theory of Computing Systems, vol. 32, p. 69-112, 1999

P. Frisco, G. Mauri, C. Ferretti. Simulating Turing machines through extended
mH systems, Computing with Bio-Molecules. Theory and Ezperiments (G. Paun,
ed.), Springer-Verlag, Singapore, p. 221-238, 1998

T. Head. Formal language theory and DNA: an analysis of the generative capac-
ity of specific recombinant behaviors. Bulletin of the Mathematical Biology, vol.
49(6), p. 737-759, 1987

T. Hinze, M. Sturm. A universal functional approach to DNA computing and
its experimental practicability. PreProceedings 6th DIMACS Workshop on DNA
Based Computers, University of Leiden, Leiden, The Netherlands, p. 257, 2000

L. Kari. DNA computing: the arrival of biological mathematics. The mathemat-
ical Intelligencer, vol. 19(2), 1997

E. Laun, K. J. Reddy. Wet splicing systems. Proceedings of the 3rd DIMACS
Workshop on DNA Based Computers, University of Pennsylvania, p. 115-126,
1997

C. Martin-Vide, G. Paun. Cooperating distributed splicing systems. J. Automata
Languages and Combinatorics, vol. 4(1), p. 3-16, 1999

G. Paun, G. Rozenberg, A. Salomaa. DNA Computing. New Computing
Paradigms, Springer-Verlag, 1998

Y. Sakakibara. Splicing, tree splicing, and multiple splicing, Workshop on Molec-
ular Computing, Chennai, India, (K. Krithivasan, R. Rama, eds.), p. 76-95, De-
cember 1998

T. Yokomori, S. Kobayashi, C. Ferretti. On the power of circular splicing sys-
tems and DNA computability, IEEE Intern. Conf. on Evolutionary Computing,
Indianapolis, p. 219-224, 1997

C. Zandron, C. Ferretti, G. Mauri. A reduced distributed splicing system for
RE languages. In G. Paun and A. Salomaa, editors, Lecture Notes in Computer
Science, vol. 1218, p. 346-366. Springer Verlag, Berlin, Heidelberg, New York,
1997

13

