
Using lazy unfolding for the omputation of least ommon

subsumers

�

Anni-Yasmin Turhan

?

and Ralf Molitor

??

?

RWTH Aahen

LuFG Theoretial Computer Siene

52074 Aahen, Germany

turhan�s.rwth-aahen.de

??

Swiss Life

IT Researh and Development Group

8022 Z�urih, Switzerland

ralf.molitor�swisslife.h

Abstrat

For desription logis with existential restritions, the size of the least ommon sub-

sumer (ls) of onept desriptions may grow exponentially in the size of the onept

desriptions. To redue the size of the output desriptions and the run-time of the ls

algorithm we present an optimized algorithm for omputing the ls in ALE using lazy

unfolding. A �rst evaluation of the performane of the naive algorithm in omparison to

the performane of the algorithm using lazy unfolding indiates a performane gain for

both onept sizes as well as run-times.

1 Motivation

In our appliation of hemial proess engineering we support the onstrution of desription

logi (DL) knowledge bases in a bottom-up fashion: instead of diretly de�ning a new onept,

the knowledge engineer introdues several typial examples as objets (individuals), whih are

then automatially generalized into a onept desription by the system. This desription is

then o�ered to the knowledge engineer as a possible andidate for a de�nition of a onept.

The task of automatially omputing suh a onept desription an be ahieved by using

two non-standard inferenes: (1) omputing the most spei� onept (ms) of eah of the

introdued objets, and (2) omputing the least ommon subsumer (ls) of these onepts.

The most spei� onept of an objet o (the least ommon subsumer of onept desriptions

C

1

; : : : ; C

n

) is the most spei� onept desription C expressible in the given DL language

that has o as an instane (that subsumes C

1

; : : : ; C

n

). Algorithms for omputing the ms are

given in

[

1; 9

℄

.

Another appliation for the ls is the struturing of DL knowledge bases. DL knowledge

bases enountered in appliations often have a rather at onept hierarhy. Deeper hierarhies

are more onvenient for browsing the knowledge base, and make searhing more eÆient. Given

a onept C with diret sub-onepts fC

1

; : : : ; C

n

g, one ould use least ommon subsumer

of seleted subsets to insert additional layers between C and its sub-onepts C

1

; : : : ; C

n

.

Computing the hierarhy of all least ommon subsumer of subsets of fC

1

; : : : ; C

n

g the system

an support the knowledge engineer in hoosing an appropriate onept desription.

The algorithm for omputing the ls of a set of ALE -onept desriptions as developed in

[

6

℄

works on onept desriptions unfolded w.r.t. the TBox. In the worst ase this algorithm

may yield desriptions exponentially large in the size of the unfolded input desriptions (also

�

This work was partially supported by the Deutshe Forshungsgemeinshaft, DFG Projet BA 1122/4-1.

1

disussed in

[

6

℄

). This inherent omplexity is an obstale for pratial appliations of the ls.

To employ the ls in pratial appliations there are several requirements to ful�ll. Besides or-

retness, the runtime of a ls omputation should be low and furthermore the size of the output

onept desriptions must be small in order to be readable and omprehensible by a human

reader. The latter is important for most non-standard inferenes (e.g. ms), beause in on-

trast to standard inferenes (suh as subsumption, whih are deision proedures) they return

onept desriptions. These desriptions are then examined and assessed whether they should

be added to the knowledge base by the knowledge engineer. To meet all these requirements we

devise an optimized algorithm whih omputes the ls, but avoids omplete unfolding by lazy

unfolding. Lazy unfolding is a standard optimization tehnique for terminologial reasoning

[

5;

7

℄

. It unfolds (sub-)onept desriptions only if examination of that part of the onept de-

sription is neessary. Thus, using lazy unfolding for the omputation of the ls should not only

result in better average ase run-times, moreover it should yield smaller onept desriptions.

A well known approah to redue the onept size of a result onept desriptions is to

ompute (minimal) rewritings of the ls onept desription in a subsequent step. Intuitively,

a minimal rewriting of a onept desription C is the onept desription with the smallest

onept size equivalent to C w.r.t. the underlying TBox. A heuristi algorithm for omputing

small (but not always minimal) rewritings is given in

[

2

℄

.

In the mentioned appliations of the ls it is neessary to avoid the omputation of all (in

worst ase exponentially many) least ommon subsumers of all possible subsets of a seleted set

of onept desriptions. To �lter out some of the subsets we employ the attribute exploration

algorithm

[

3

℄

, whih omputes a onept lattie isomorphi to the subsumption hierarhy of

all least ommon subsumers of all subsets of fC

1

; : : : ; C

n

g. Only least ommon subsumers

from that onept lattie are omputed to obtain andidates for new onepts to be added to

the knowledge base.

The rest of the paper is strutured as follows. In the next setion we outline the basi ls

algorithm and disuss the ls algorithm using lazy-unfolding for the desription logi ALE .

Then we give some details about our implementations of both algorithms and present an

evaluation of them w.r.t. to run-time and onept size.

2 Computing the ls for ALE

The desription logi ALE provides onjuntion, existential restrition (9 r: C), value restri-

tions (8 r: C) and atomi negation in onept desriptions. Only unfoldable TBoxes are ap-

propriate for the ls, so the set of onept de�nitions ourring in a TBox have to be ayli

and onept names may appear only one on the left-hand side of a de�nition. The set of all

roles appearing in the TBox is denoted N

R

and the set of all primitive onepts (i.e., onepts

without a de�nition in the TBox) is denoted N

C

.

De�nition 1 (Least Common Subsumer) Let C

1

; : : : ; C

n

be onept desriptions in a DL

L. The L-onept desription C is a least ommon subsumer (ls) of C

1

; : : : ; C

n

in L i�

1. C

i

v C for all 1 � i � n, and

2. C is the least onept desription with this property, i.e., if D is a onept desription

satisfying C

i

v D for all 1 � i � n, then C v D.

The ls does always exist for ALE -onept desriptions. If a ls exists for a DL L, then it is

unique up to equivalene. This justi�es to refer to the ls of C

1

; : : : ; C

n

in L.

Before turning to the ls algorithm we need the notion of onept size and role-level. The

onept size jCj of a onept desription C is inreased by 1 for eah ourrene of a role name

or a onept name in C (with j>j = j?j = 0). A role-level of a (sub-)onept desription

2

refers to the number of exists or value restritions it is nested in. If a onept desription has

role-level 0 it is on top-level. For example the onept desription A u (9 r: (8 r: (B u C)))

has onept size 5 and the role-level of sub-onept desription (B u C) in this desription is

2, while A is on top-level.

We outline the ls algorithm as given in

[

6

℄

. It operates on desription trees a representation

of onept desriptions whih are unfolded w.r.t. the TBox. The basi ls algorithm is given

as a binary operation, sine the n-ary ls an be redued to the binary operation. So if a ls of

n (with 2 � n) onept desriptions is omputed, n� 1 suessive ls omputations are made.

The basi ls algorithm onsists of the following steps:

1. unfold all input onept desriptions

2. normalize all unfolded desriptions

3. ompute the produt of the normalized onept desriptions.

Thus, in order to ompute the ls of a set of onept desriptions C

1

, . . . ,C

n

de�ned in a TBox

T , the onept desriptions are ompletely unfolded w.r.t. T . To unfold a onept desription

ompletely all de�ned onepts appearing in the onept desription are reursively replaed

by their de�nitions in the TBox, until only primitive onepts remain in the desription. The

proess of unfolding a desription may already ause an exponential blow-up of the onept

desription, see

[

11

℄

. In the seond step of the ls algorithm theALE -normal form is omputed.

To this end the ALE -normalization rules remove onept desriptions equivalent to > , replae

inonsistent onept desriptions by ? , join value restritions, and propagate value restritions

into existential restritions on all role-levels. This last step of the normalization is yet another

soure of an exponential blow-up (see

[

6; 4

℄

for details). The third step omputes the produt of

two desription trees, where eah tree orresponds to a onept desription. Eah of the three

steps of the ls algorithm traverses the whole struture of the onept desription reursively.

We illustrate this basi algorithm and its drawbaks by means of the following example.

Example 2 (ls) Given the following TBox T with

T = f C

1

:= A

1

u 9 r:D

1

; C

2

:= A

2

u 9 r:D

1

;

D

1

:= (8 s:B

1

) u (9 s:D

2

) u (9 s:D

3

);

D

2

:= B

2

u B

3

; D

3

:= B

3

uB

4

g

we ompute the ls of C

1

and C

2

. After the �rst and seond step { unfolding and the appliation

of the ALE -normalization rules { we have

C

i

=A

i

u (9 r: (8 s:B

1

u

9 s: (B

1

u B

2

u B

3

) u

9 s: (B

1

u B

3

u B

4

))

for i 2 f1; 2g . Then in the third step the algorithm determines the onept names appearing

on the top-level of the ls { in this ase none (fA

1

g \ fA

2

g = ;). Then the algorithm makes

a reursive all to ompute the ls of the r-suessors of C

1

and C

2

, whih in turn makes

reursive alls for the pair of value restritions and for all four pairs of exists restritions for

the s-suessors. The algorithm yields

LCS(C

1

; C

2

) = 9 r: (8 s:B

1

u

9 s: (B

1

u B

2

uB

3

) u

9 s: (B

1

u B

3

) u

9 s: (B

1

u B

3

) u

9 s: (B

1

u B

3

uB

4

)) with jLCS(C

1

; C

2

)j = 17.

3

So, the result is omputed by three reursive traversals of the input desriptions and its size

results from the atually unneessary unfolding of D

1

. Even if the redundant seond and third

existential restrition are eliminated from the result, the onept size of the returned ls onept

desription is still quite big in omparison to the equivalent and obviously smaller ls onept

desription 9 r:D

1

.

In general the size of the ls of two ALE -onept desriptions may be exponential in the

size of the (unfolded) input desriptions in the worst ase, see

[

6

℄

. To redue the size of the

ls onept desriptions in the average ase when omputing the ls w.r.t. a non-empty TBox,

we now introdue an algorithm for the ls using lazy unfolding.

2.1 Computing the ls using lazy unfolding

The idea of lazy unfolding is to replae a part of a desription only if examination of that

part is neessary. Lazy unfolding unfolds onept names appearing on top-level of a onept

desription. It leaves de�ned onept names on deeper role-levels unhanged. In the following

let C be an ALE -onept desription and let r be a role name.

De�nition 3 (8-Normal form) An ALE -onept desription C is in 8-normalform i� ev-

ery onjuntion in C ontains at most one value restrition for eah role name r 2 N

R

.

The algorithm for omputing the ls with lazy unfolding as shown in Figure 1 is based on

the 8-normalform and the following sets:

� prim(C) (:prim(C)) denotes the set of all (negated) primitive names ourring on the

top-level of C.

� val

r

(C) denotes the onept desription ourring in the unique value restrition on

the top-level of the 8-normal form of C, where val

r

(C) := > if there is no suh value

restrition.

� exr

r

(C) denotes the set fC

1

; : : : ; C

n

g of onept desriptions ourring in existential

restritions of the form 9r:C

i

on the top-level of C.

The algorithm as given in Figure 1 uses the funtion lazy�unfold(), whih unfolds the top-

level of its input onept desription w.r.t. the ALE -TBox T . The LCS

lu

algorithm �rst tests

on eah reursion, if an input onept is equivalent to > or ? , in this ase the ls onept

an immediately be returned. Next, the top-level of the input onepts is unfolded and the

auxiliary sets and onept desriptions are omputed. The returned ls onept desription is

a onjuntion of four omponents:

1. a onjuntion of all positive onept names appearing on top-level C

0

and D

0

,

2. a onjuntion of all negative onept names appearing on top-level C

0

and D

0

,

3. a onjuntion of value restritions derived from reursive LCS

lu

alls for eah role whih

has a value restrition on top-level of C

0

and D

0

,

4. a onjuntion of existential restritions derived from reursive LCS

lu

alls. Where a all

is made for eah pair of existential restritions (in ombination with the appropriate

value restritions) for all roles appearing on top-level of C

0

and D

0

.

In ontrast to the three independent reursions in the basi algorithm the LCS

lu

algorithm

traverses the struture of the onept desription reursively only one. The three steps

of the basi algorithm are now interwoven on eah role-level, e.g., the propagation of the

4

Input: Two ALE -onept desriptions C;D and an ALE -TBox T

Algorithm: LCS

lu

(C;D)

if C v

T

D then LCS

lu

(C;D) = D

if D v

T

C then LCS

lu

(C;D) = C

else

C

0

= lazy�unfold(C; T),

prim(C

0

) = fP

1

; : : : ; P

n

g ,

:prim(C

0

)= fQ

1

; : : : ; Q

n

g ,

for all r 2 N

R

:

val

r

(C

0

) =C

0

,

exr

r

(C

0

)= fC

1

; : : : ; C

n

g ;

end for

D

0

= lazy�unfold(D; T),

prim(D

0

) = fP

1

; : : : ; P

n

g ,

:prim(D

0

)= fQ

1

; : : : ; Q

n

g ,

for all r 2 N

R

:

val

r

(D

0

) =D

0

,

exr

r

(D

0

)= fD

1

; : : : ; D

n

g ;

end for

LCS

lu

(C;D) = (u

P2prim(C

0

)\prim(D

0

)

P u

u

P2:prim(C

0

)\:prim(D

0

)

:P u

u

r2N

R

(8 r: LCS

lu

(val

r

(C

0

); val

r

(D

0

))) u

u

r2N

R

(u

C

i

2 exr

r

(C

0

)

D

j

2 exr

r

(D

0

)

9 r: LCS

lu

(C

i

u val

r

(C

0

); D

j

u val

r

(D

0

))))

Figure 1: The ls algorithm LCS

lu

for ALE using lazy unfolding.

value restritions is here realized role-level-wise by inluding the onjunt val

r

(C

0

) (val

r

(D

0

)

respetively) in the reursive alls for the existential restritions.

Lazy unfolding does not only save time (and storage) by avoiding omplete unfolding of

a onept desription, but it may also require lesser reursion depth for omputation of the

ls. If names of onepts de�ned in the TBox appear in the input desriptions on the same

role-level, these names may be diretly used in the ls onept desription without unfolding

them. In this ase lazy unfolding redues the size of the desriptions to be handled by the

algorithm and thereby the size of the resulting onept desription. Let us return to Example 2

to illustrate this e�et.

Example 4 (ls using lazy unfolding) Assume we want to ompute the same ls as before

w.r.t. the TBox T and apply the LCS

lu

(C

1

, C

2

) algorithm. In the �rst step none of the two

onditions hold and the algorithm alls lazy�unfold(C

1

, C

2

), but there is no de�ned onept to

replae on top-level. Then the algorithm alls LCS

lu

reursively for the existential restrition.

This all diretly yields D

1

by the omparison at the beginning of the proedure. The returned

onept desription is LCS

lu

(C

1

; C

2

) = 9 r:D

1

, with jLCS

lu

(C

1

; C

2

)j = 2.

So omparing Example 2 to the result obtained here, it shows that LCS

lu

needs less reursions

with lesser reursion depth and furthermore the onept desription returned by LCS

lu

is muh

smaller.

5

In general the appliation of lazy unfolding is a bene�t in most ases of omputing a ls w.r.t.

a TBox, but there may of ourse still be ombinations of input onept desriptions where an

exponential growth of the ls onept desription is unavoidable.

Our ls implementations atually support the DL ALEf , whih is ALE extended by fea-

tures (i.e., funtional roles). Features may be used in existential or value restritions. The

extension to features of the ls algorithms is straightforward. Features are treated like roles,

with the exeption that there may only be a single feature suessor per role-level or feature-

level, respetively. This is guaranteed by ombining all existential restritions for a feature f

(together with the value restritions for f) in one single onjuntion for eah input desription.

These two onjuntions are then used as arguments for the reursive all.

3 Implementations of the ls

We have implemented both, the basi and the lazy unfolding ls algorithms. Both implemen-

tations are done in Lisp and use the FaCT system

[

8

℄

for the lassi�ation of the TBox and

for the subsumption tests. Both implement a binary ls funtion wrapped by a funtion that

makes suessive alls for the binary LCS funtion.

The \old ls" is a straightforward implementation of the fundamental algorithm presented

in Setion 2 and disussed in

[

6

℄

. The old implementation further inludes some of the methods

needed in our appliation framework mentioned in Setion 1. It ontains the implementation

of the heuristi rewriting algorithm for omputing small (but not always minimal) rewritings

of ALE -onept desriptions mentioned earlier (see

[

2

℄

), whih we use in our evaluation.

The \new ls" implements the algorithm introdued in Setion 2.1. It is also a straightfor-

ward implementation and does not use speial enoding triks to improve the performane. In

ontrast to the old ls implementation the new ls may be oupled to di�erent DL reasoner.

3.1 A �rst evaluation of the implementations

To ompare the implementations of both algorithms we use an ayli variant of a TBox de-

veloped for our appliation in hemial proess engineering. It ontains 52 primitive onepts,

67 de�ned onepts, 23 roles and 20 features. It has a deep onept hierarhy, what makes

it likely that least ommon subsumers omputed for onept desriptions from this TBox will

not ollapse to > .

The input onept desriptions we used for the evaluation are the least ommon subsumers

of seven REACTOR onepts de�ned in the appliation TBox. To ompute the ls of all

ombinations of least ommon subsumers, we started from the hierarhy of least ommon

subsumers as shown in Figure 2. This hierarhy is omputed by the earlier mentioned attribute

exploration algorithm as desribed in

[

3; 10

℄

.

Our test suite inluded 22 di�erent ls alls, starting from binary ls alls. For eah

omputation of these least ommon subsumers we measured run-times and sizes of the output

onept desriptions of four settings:

1. old LCS : Computation of the ls using the old ls implementation,

2. old LCS + Rew.: Computation of the ls using the old ls implementation followed by

rewriting the ls onept desription,

3. new LCS : Computation of the ls using the new ls implementation,

4. new LCS + Rew.: Computation of the ls using the new ls implementation followed by

rewriting the ls onept desription.

6

LCS(1 2 3 4 5 6 7)

LCS(1 2 3 4 5 6)

LCS(1 2 3 4 5)

LCS(1 2 3 5)

LCS(1 2 3)

LCS(1 2 4 5 6)

LCS(1 2 4 5) LCS(1 2 4 6)

LCS(1 2 4)LCS(1 2 5)

LCS(1 2)

LCS(1 3 4 5 6)

LCS(1 3 4 5)

LCS(1 3 5)

LCS(1 3)

LCS(1 4 5 6)

LCS(1 4 5) LCS(1 4 6)

LCS(1 4)LCS(1 5)

LCS(1)

LCS(2 5)

LCS(2)

LCS(3 5)

LCS(3) LCS(4)LCS(5) LCS(6) LCS(7)

LCS()

REACTOR1 REACTOR2 REACTOR3 REACTOR4REACTOR5 REACTOR6 REACTOR7

Figure 2: The hierarhy of least ommon subsumers of seven reator desriptions.

The seond and the fourth setting use the same rewriting implementation of the heuristi

algorithm. In ontrast to our appliation framework, where the omputation of ls with

n input onept desriptions uses the resulting desription of the ls with n-1 input onept

desriptions, all least ommon subsumers are omputed from srath. To obtain representative

run-times we did run eah LCS in eah setting 100 times.

The results for the average onept size is displayed in Figure 3. Note the use of a loga-

rithmi sale. The measured values indiate that a ls using lazy unfolding returns onept

desriptions that are about an order of magnitude smaller than the onept desriptions re-

turned by the basi algorithm. Rewriting the ls onept desriptions is resulting in terms

that are two (one) orders of magnitude smaller than the ls onept desription returned by

the ls (ls using lazy unfolding). Comparing the onept sizes yielded by both settings inlud-

ing rewriting shows that starting from a smaller onept desription does not yield a smaller

rewritten onept by the heuristi algorithm.

The absolute values for the onept sizes show that rewriting is still neessary, even if lazy

unfolding is employed to ompute the onept desription of the ls. The average onept

desription obtained from the new LCS has a onept size of about 100. Therefore these on-

ept desriptions are still too big to be omprehensible for a human reader. In our appliation

framework, a knowledge engineer has to hose an appropriate desription from a set of ls

onept desriptions to be added to the terminology. Therefore, rewriting remains neessary

7

10

100

1000

old LCS old LCS + Rew. new LCS new LCS + Rew.

C

o

n

e

p

t

s

i

z

e

Figure 3: Average onept sizes obtained from the four settings.

as an additional step for this appliation.

The run-times in Figure 4 show the added run-times of omputing the ls (grey retangles)

and of rewriting the obtained ls onept desription (white retangles). The omparison of

run-times for the ls implementations indiate a speed-up of fator 3:5. Thus, the appliation

of lazy unfolding provides only a moderate speed-up for the ls alone. However, in ombination

with rewriting a bigger enhanement is obtained. The run-time for rewriting a ls onept

desription is shorter for the smaller desriptions returned from the new ls implementation.

In ase of our appliation the run-time is roughly halved.

1000

2000

3000

4000

5000

6000

7000

8000

old LCS + Rew. new LCS + Rew.

R

u

n

-

t

i

m

e

i

n

m

s

Figure 4: Average run-times needed by the di�erent settings.

4 Conlusion and Future Work

In general the performane of the ls algorithm using lazy unfolding depends very muh on

the struture of the TBox in use. If the onept desriptions in the onept de�nitions of the

TBox do not make use of de�ned onepts, lazy unfolding will not be able to inrease the

performane of the ls signi�antly.

8

The �rst evaluation of the ls implementations in our appliation framework indiates that

using lazy unfolding an be a substantial gain for the size of the resulting onept desriptions.

On the other hand our results also indiate that it is still neessary to perform rewriting after

omputing the ls in order to obtain readable onept desriptions. With lazy unfolding in

use we expet the run-times to derease for the rewriting step.

We plan to implement further optimizations of the ls. To speed-up a single all of the

binary ls funtion it may be advantageous to minimize the exr

r

list and the onjuntion val

r

w.r.t. subsumption to avoid redundant reursive alls. So before starting a reursive all all

elements that are subsuming another element of the list are removed. This method would

make heavy use of the underlying DL reasoner and it has to be evaluated if the overhead from

the subsumption tests does not outweigh the bene�ts.

To ompute the ls of many input onept desriptions several suessive alls to the

binary ls funtion are made. In order to speed-up the omputation for the whole set of input

desriptions (not only one run of the binary ls proedure), a sorting for the input desriptions

seems to be a good idea. If a \general" ls onept desription is omputed by the �rst few

alls of the binary ls funtion, it is likely that the general ls subsumes the remaining input

terms. As a onsequene the remaining alls of the binary ls funtion will yield the result

already after the subsumption test at the beginning of the ls algorithm without any reursive

alls at all. Therefore sorting the list of input desriptions aording their \generality" may

be a useful preproessing step. Another method to further optimize the ls implementation

is of ourse a ahing strategy for already omputed least ommon subsumers, but this also

remains to be future work.

Referenes

[

1

℄

F. Baader and R. K�usters. Computing the least ommon subsumer and the most spei�

onept in the presene of yli ALN -onept desriptions. In O. Herzog and A. G�unter,

editors, KI-98, volume 1504 of Leture Notes in Computer Siene, pages 129{140, Bre-

men, Germany, 1998. Springer-Verlag.

[

2

℄

F. Baader, R. K�usters, and R. Molitor. Rewriting onepts using terminologies. In A.G.

Cohn, F. Giunhiglia, and B. Selman, editors, Pro. of the 7th Int. Conf. on the Priniples

of Knowledge Representation and Reasoning (KR-00), pages 297{308, San Franiso, CA,

2000. Morgan Kaufmann Publishers.

[

3

℄

F. Baader and R. Molitor. Building and struturing desription logi knowledge bases

using least ommon subsumers and onept analysis. In B. Ganter and G. Mineau, editors,

ICCS-00, volume 1867 of Leture Notes in Arti�ial Intelligene, pages 290{303. SV, 2000.

[

4

℄

F. Baader and A.-Y. Turhan. TBoxes do not yield a ompat representation of the least

ommon subsumer. In DL-2001, 2001. To appear.

[

5

℄

Franz Baader, Enrio Franoni, Bernhard Hollunder, Bernhard Nebel, and Hans-J�urgen

Pro�tlih. An empirial analysis of optimization tehniques for terminologial represen-

tation systems or: Making KRIS get a move on. Applied Arti�ial Intelligene. Speial

Issue on Knowledge Base Management, 4:109{132, 1994.

[

6

℄

Franz Baader, Ralf K�usters, and Ralf Molitor. Computing least ommon subsumer in

desription logis with existential restritions. In T. Dean, editor, Pro. of the 16th

Int. Joint Conf. on Arti�ial Intelligene (IJCAI-99), pages 96{101, Stokholm, Sweden,

1999. Morgan Kaufmann, Los Altos.

9

[

7

℄

I. Horroks. Optimising Tableaux Deision Proedures for Desription Logis. PhD thesis,

University of Manhester, 1997.

[

8

℄

Ian Horroks. Optimisation tehniques for expressive desription logis. Tehnial Report

UMCS-97-2-1, University of Manhester, Department of Computer Siene, 1997.

[

9

℄

Ralf K�usters and R. Molitor. Approximating most speif onepts in desription logis

with existential restritions. In Pro. of the 24th German Annual Conf. on Arti�ial

Intelligene (KI'01), 2001. to appear.

[

10

℄

Ralf Molitor. Unterst�utzung der Modellierung verfahrenstehnisher Prozesse durh Niht-

Standardinferenzen in Beshreibungslogiken. PhD thesis, Department of Computer Si-

ene, RWTH Aahen, Germany, 2000. In German.

[

11

℄

Bernhard Nebel. Terminologial reasoning is inherently intratable. Arti�ial Intelligene

Journal, 43:235{249, 1990.

10

