
Using lazy unfolding for the
omputation of least
ommon

subsumers

�

Anni-Yasmin Turhan

?

and Ralf Molitor

??

?

RWTH Aa
hen

LuFG Theoreti
al Computer S
ien
e

52074 Aa
hen, Germany

turhan�
s.rwth-aa
hen.de

??

Swiss Life

IT Resear
h and Development Group

8022 Z�uri
h, Switzerland

ralf.molitor�swisslife.
h

Abstra
t

For des
ription logi
s with existential restri
tions, the size of the least
ommon sub-

sumer (l
s) of
on
ept des
riptions may grow exponentially in the size of the
on
ept

des
riptions. To redu
e the size of the output des
riptions and the run-time of the l
s

algorithm we present an optimized algorithm for
omputing the l
s in ALE using lazy

unfolding. A �rst evaluation of the performan
e of the naive algorithm in
omparison to

the performan
e of the algorithm using lazy unfolding indi
ates a performan
e gain for

both
on
ept sizes as well as run-times.

1 Motivation

In our appli
ation of
hemi
al pro
ess engineering we support the
onstru
tion of des
ription

logi
 (DL) knowledge bases in a bottom-up fashion: instead of dire
tly de�ning a new
on
ept,

the knowledge engineer introdu
es several typi
al examples as obje
ts (individuals), whi
h are

then automati
ally generalized into a
on
ept des
ription by the system. This des
ription is

then o�ered to the knowledge engineer as a possible
andidate for a de�nition of a
on
ept.

The task of automati
ally
omputing su
h a
on
ept des
ription
an be a
hieved by using

two non-standard inferen
es: (1)
omputing the most spe
i�

on
ept (ms
) of ea
h of the

introdu
ed obje
ts, and (2)
omputing the least
ommon subsumer (l
s) of these
on
epts.

The most spe
i�

on
ept of an obje
t o (the least
ommon subsumer of
on
ept des
riptions

C

1

; : : : ; C

n

) is the most spe
i�

on
ept des
ription C expressible in the given DL language

that has o as an instan
e (that subsumes C

1

; : : : ; C

n

). Algorithms for
omputing the ms
 are

given in

[

1; 9

℄

.

Another appli
ation for the l
s is the stru
turing of DL knowledge bases. DL knowledge

bases en
ountered in appli
ations often have a rather
at
on
ept hierar
hy. Deeper hierar
hies

are more
onvenient for browsing the knowledge base, and make sear
hing more eÆ
ient. Given

a
on
ept C with dire
t sub-
on
epts fC

1

; : : : ; C

n

g, one
ould use least
ommon subsumer

of sele
ted subsets to insert additional layers between C and its sub-
on
epts C

1

; : : : ; C

n

.

Computing the hierar
hy of all least
ommon subsumer of subsets of fC

1

; : : : ; C

n

g the system

an support the knowledge engineer in
hoosing an appropriate
on
ept des
ription.

The algorithm for
omputing the l
s of a set of ALE -
on
ept des
riptions as developed in

[

6

℄

works on
on
ept des
riptions unfolded w.r.t. the TBox. In the worst
ase this algorithm

may yield des
riptions exponentially large in the size of the unfolded input des
riptions (also

�

This work was partially supported by the Deuts
he Fors
hungsgemeins
haft, DFG Proje
t BA 1122/4-1.

1

dis
ussed in

[

6

℄

). This inherent
omplexity is an obsta
le for pra
ti
al appli
ations of the l
s.

To employ the l
s in pra
ti
al appli
ations there are several requirements to ful�ll. Besides
or-

re
tness, the runtime of a l
s
omputation should be low and furthermore the size of the output

on
ept des
riptions must be small in order to be readable and
omprehensible by a human

reader. The latter is important for most non-standard inferen
es (e.g. ms
), be
ause in
on-

trast to standard inferen
es (su
h as subsumption, whi
h are de
ision pro
edures) they return

on
ept des
riptions. These des
riptions are then examined and assessed whether they should

be added to the knowledge base by the knowledge engineer. To meet all these requirements we

devise an optimized algorithm whi
h
omputes the l
s, but avoids
omplete unfolding by lazy

unfolding. Lazy unfolding is a standard optimization te
hnique for terminologi
al reasoning

[

5;

7

℄

. It unfolds (sub-)
on
ept des
riptions only if examination of that part of the
on
ept de-

s
ription is ne
essary. Thus, using lazy unfolding for the
omputation of the l
s should not only

result in better average
ase run-times, moreover it should yield smaller
on
ept des
riptions.

A well known approa
h to redu
e the
on
ept size of a result
on
ept des
riptions is to

ompute (minimal) rewritings of the l
s
on
ept des
ription in a subsequent step. Intuitively,

a minimal rewriting of a
on
ept des
ription C is the
on
ept des
ription with the smallest

on
ept size equivalent to C w.r.t. the underlying TBox. A heuristi
 algorithm for
omputing

small (but not always minimal) rewritings is given in

[

2

℄

.

In the mentioned appli
ations of the l
s it is ne
essary to avoid the
omputation of all (in

worst
ase exponentially many) least
ommon subsumers of all possible subsets of a sele
ted set

of
on
ept des
riptions. To �lter out some of the subsets we employ the attribute exploration

algorithm

[

3

℄

, whi
h
omputes a
on
ept latti
e isomorphi
 to the subsumption hierar
hy of

all least
ommon subsumers of all subsets of fC

1

; : : : ; C

n

g. Only least
ommon subsumers

from that
on
ept latti
e are
omputed to obtain
andidates for new
on
epts to be added to

the knowledge base.

The rest of the paper is stru
tured as follows. In the next se
tion we outline the basi
 l
s

algorithm and dis
uss the l
s algorithm using lazy-unfolding for the des
ription logi
 ALE .

Then we give some details about our implementations of both algorithms and present an

evaluation of them w.r.t. to run-time and
on
ept size.

2 Computing the l
s for ALE

The des
ription logi
 ALE provides
onjun
tion, existential restri
tion (9 r: C), value restri
-

tions (8 r: C) and atomi
 negation in
on
ept des
riptions. Only unfoldable TBoxes are ap-

propriate for the l
s, so the set of
on
ept de�nitions o

urring in a TBox have to be a
y
li

and
on
ept names may appear only on
e on the left-hand side of a de�nition. The set of all

roles appearing in the TBox is denoted N

R

and the set of all primitive
on
epts (i.e.,
on
epts

without a de�nition in the TBox) is denoted N

C

.

De�nition 1 (Least Common Subsumer) Let C

1

; : : : ; C

n

be
on
ept des
riptions in a DL

L. The L-
on
ept des
ription C is a least
ommon subsumer (l
s) of C

1

; : : : ; C

n

in L i�

1. C

i

v C for all 1 � i � n, and

2. C is the least
on
ept des
ription with this property, i.e., if D is a
on
ept des
ription

satisfying C

i

v D for all 1 � i � n, then C v D.

The l
s does always exist for ALE -
on
ept des
riptions. If a l
s exists for a DL L, then it is

unique up to equivalen
e. This justi�es to refer to the l
s of C

1

; : : : ; C

n

in L.

Before turning to the l
s algorithm we need the notion of
on
ept size and role-level. The

on
ept size jCj of a
on
ept des
ription C is in
reased by 1 for ea
h o

urren
e of a role name

or a
on
ept name in C (with j>j = j?j = 0). A role-level of a (sub-)
on
ept des
ription

2

refers to the number of exists or value restri
tions it is nested in. If a
on
ept des
ription has

role-level 0 it is on top-level. For example the
on
ept des
ription A u (9 r: (8 r: (B u C)))

has
on
ept size 5 and the role-level of sub-
on
ept des
ription (B u C) in this des
ription is

2, while A is on top-level.

We outline the l
s algorithm as given in

[

6

℄

. It operates on des
ription trees a representation

of
on
ept des
riptions whi
h are unfolded w.r.t. the TBox. The basi
 l
s algorithm is given

as a binary operation, sin
e the n-ary l
s
an be redu
ed to the binary operation. So if a l
s of

n (with 2 � n)
on
ept des
riptions is
omputed, n� 1 su

essive l
s
omputations are made.

The basi
 l
s algorithm
onsists of the following steps:

1. unfold all input
on
ept des
riptions

2. normalize all unfolded des
riptions

3.
ompute the produ
t of the normalized
on
ept des
riptions.

Thus, in order to
ompute the l
s of a set of
on
ept des
riptions C

1

, . . . ,C

n

de�ned in a TBox

T , the
on
ept des
riptions are
ompletely unfolded w.r.t. T . To unfold a
on
ept des
ription

ompletely all de�ned
on
epts appearing in the
on
ept des
ription are re
ursively repla
ed

by their de�nitions in the TBox, until only primitive
on
epts remain in the des
ription. The

pro
ess of unfolding a des
ription may already
ause an exponential blow-up of the
on
ept

des
ription, see

[

11

℄

. In the se
ond step of the l
s algorithm theALE -normal form is
omputed.

To this end the ALE -normalization rules remove
on
ept des
riptions equivalent to > , repla
e

in
onsistent
on
ept des
riptions by ? , join value restri
tions, and propagate value restri
tions

into existential restri
tions on all role-levels. This last step of the normalization is yet another

sour
e of an exponential blow-up (see

[

6; 4

℄

for details). The third step
omputes the produ
t of

two des
ription trees, where ea
h tree
orresponds to a
on
ept des
ription. Ea
h of the three

steps of the l
s algorithm traverses the whole stru
ture of the
on
ept des
ription re
ursively.

We illustrate this basi
 algorithm and its drawba
ks by means of the following example.

Example 2 (l
s) Given the following TBox T with

T = f C

1

:= A

1

u 9 r:D

1

; C

2

:= A

2

u 9 r:D

1

;

D

1

:= (8 s:B

1

) u (9 s:D

2

) u (9 s:D

3

);

D

2

:= B

2

u B

3

; D

3

:= B

3

uB

4

g

we
ompute the l
s of C

1

and C

2

. After the �rst and se
ond step { unfolding and the appli
ation

of the ALE -normalization rules { we have

C

i

=A

i

u (9 r: (8 s:B

1

u

9 s: (B

1

u B

2

u B

3

) u

9 s: (B

1

u B

3

u B

4

))

for i 2 f1; 2g . Then in the third step the algorithm determines the
on
ept names appearing

on the top-level of the l
s { in this
ase none (fA

1

g \ fA

2

g = ;). Then the algorithm makes

a re
ursive
all to
ompute the l
s of the r-su

essors of C

1

and C

2

, whi
h in turn makes

re
ursive
alls for the pair of value restri
tions and for all four pairs of exists restri
tions for

the s-su

essors. The algorithm yields

LCS(C

1

; C

2

) = 9 r: (8 s:B

1

u

9 s: (B

1

u B

2

uB

3

) u

9 s: (B

1

u B

3

) u

9 s: (B

1

u B

3

) u

9 s: (B

1

u B

3

uB

4

)) with jLCS(C

1

; C

2

)j = 17.

3

So, the result is
omputed by three re
ursive traversals of the input des
riptions and its size

results from the a
tually unne
essary unfolding of D

1

. Even if the redundant se
ond and third

existential restri
tion are eliminated from the result, the
on
ept size of the returned l
s
on
ept

des
ription is still quite big in
omparison to the equivalent and obviously smaller l
s
on
ept

des
ription 9 r:D

1

.

In general the size of the l
s of two ALE -
on
ept des
riptions may be exponential in the

size of the (unfolded) input des
riptions in the worst
ase, see

[

6

℄

. To redu
e the size of the

l
s
on
ept des
riptions in the average
ase when
omputing the l
s w.r.t. a non-empty TBox,

we now introdu
e an algorithm for the l
s using lazy unfolding.

2.1 Computing the l
s using lazy unfolding

The idea of lazy unfolding is to repla
e a part of a des
ription only if examination of that

part is ne
essary. Lazy unfolding unfolds
on
ept names appearing on top-level of a
on
ept

des
ription. It leaves de�ned
on
ept names on deeper role-levels un
hanged. In the following

let C be an ALE -
on
ept des
ription and let r be a role name.

De�nition 3 (8-Normal form) An ALE -
on
ept des
ription C is in 8-normalform i� ev-

ery
onjun
tion in C
ontains at most one value restri
tion for ea
h role name r 2 N

R

.

The algorithm for
omputing the l
s with lazy unfolding as shown in Figure 1 is based on

the 8-normalform and the following sets:

� prim(C) (:prim(C)) denotes the set of all (negated) primitive names o

urring on the

top-level of C.

� val

r

(C) denotes the
on
ept des
ription o

urring in the unique value restri
tion on

the top-level of the 8-normal form of C, where val

r

(C) := > if there is no su
h value

restri
tion.

� exr

r

(C) denotes the set fC

1

; : : : ; C

n

g of
on
ept des
riptions o

urring in existential

restri
tions of the form 9r:C

i

on the top-level of C.

The algorithm as given in Figure 1 uses the fun
tion lazy�unfold(), whi
h unfolds the top-

level of its input
on
ept des
ription w.r.t. the ALE -TBox T . The LCS

lu

algorithm �rst tests

on ea
h re
ursion, if an input
on
ept is equivalent to > or ? , in this
ase the l
s
on
ept

an immediately be returned. Next, the top-level of the input
on
epts is unfolded and the

auxiliary sets and
on
ept des
riptions are
omputed. The returned l
s
on
ept des
ription is

a
onjun
tion of four
omponents:

1. a
onjun
tion of all positive
on
ept names appearing on top-level C

0

and D

0

,

2. a
onjun
tion of all negative
on
ept names appearing on top-level C

0

and D

0

,

3. a
onjun
tion of value restri
tions derived from re
ursive LCS

lu

alls for ea
h role whi
h

has a value restri
tion on top-level of C

0

and D

0

,

4. a
onjun
tion of existential restri
tions derived from re
ursive LCS

lu

alls. Where a
all

is made for ea
h pair of existential restri
tions (in
ombination with the appropriate

value restri
tions) for all roles appearing on top-level of C

0

and D

0

.

In
ontrast to the three independent re
ursions in the basi
 algorithm the LCS

lu

algorithm

traverses the stru
ture of the
on
ept des
ription re
ursively only on
e. The three steps

of the basi
 algorithm are now interwoven on ea
h role-level, e.g., the propagation of the

4

Input: Two ALE -
on
ept des
riptions C;D and an ALE -TBox T

Algorithm: LCS

lu

(C;D)

if C v

T

D then LCS

lu

(C;D) = D

if D v

T

C then LCS

lu

(C;D) = C

else

C

0

= lazy�unfold(C; T),

prim(C

0

) = fP

1

; : : : ; P

n

g ,

:prim(C

0

)= fQ

1

; : : : ; Q

n

g ,

for all r 2 N

R

:

val

r

(C

0

) =C

0

,

exr

r

(C

0

)= fC

1

; : : : ; C

n

g ;

end for

D

0

= lazy�unfold(D; T),

prim(D

0

) = fP

1

; : : : ; P

n

g ,

:prim(D

0

)= fQ

1

; : : : ; Q

n

g ,

for all r 2 N

R

:

val

r

(D

0

) =D

0

,

exr

r

(D

0

)= fD

1

; : : : ; D

n

g ;

end for

LCS

lu

(C;D) = (u

P2prim(C

0

)\prim(D

0

)

P u

u

P2:prim(C

0

)\:prim(D

0

)

:P u

u

r2N

R

(8 r: LCS

lu

(val

r

(C

0

); val

r

(D

0

))) u

u

r2N

R

(u

C

i

2 exr

r

(C

0

)

D

j

2 exr

r

(D

0

)

9 r: LCS

lu

(C

i

u val

r

(C

0

); D

j

u val

r

(D

0

))))

Figure 1: The l
s algorithm LCS

lu

for ALE using lazy unfolding.

value restri
tions is here realized role-level-wise by in
luding the
onjun
t val

r

(C

0

) (val

r

(D

0

)

respe
tively) in the re
ursive
alls for the existential restri
tions.

Lazy unfolding does not only save time (and storage) by avoiding
omplete unfolding of

a
on
ept des
ription, but it may also require lesser re
ursion depth for
omputation of the

l
s. If names of
on
epts de�ned in the TBox appear in the input des
riptions on the same

role-level, these names may be dire
tly used in the l
s
on
ept des
ription without unfolding

them. In this
ase lazy unfolding redu
es the size of the des
riptions to be handled by the

algorithm and thereby the size of the resulting
on
ept des
ription. Let us return to Example 2

to illustrate this e�e
t.

Example 4 (l
s using lazy unfolding) Assume we want to
ompute the same l
s as before

w.r.t. the TBox T and apply the LCS

lu

(C

1

, C

2

) algorithm. In the �rst step none of the two

onditions hold and the algorithm
alls lazy�unfold(C

1

, C

2

), but there is no de�ned
on
ept to

repla
e on top-level. Then the algorithm
alls LCS

lu

re
ursively for the existential restri
tion.

This
all dire
tly yields D

1

by the
omparison at the beginning of the pro
edure. The returned

on
ept des
ription is LCS

lu

(C

1

; C

2

) = 9 r:D

1

, with jLCS

lu

(C

1

; C

2

)j = 2.

So
omparing Example 2 to the result obtained here, it shows that LCS

lu

needs less re
ursions

with lesser re
ursion depth and furthermore the
on
ept des
ription returned by LCS

lu

is mu
h

smaller.

5

In general the appli
ation of lazy unfolding is a bene�t in most
ases of
omputing a l
s w.r.t.

a TBox, but there may of
ourse still be
ombinations of input
on
ept des
riptions where an

exponential growth of the l
s
on
ept des
ription is unavoidable.

Our l
s implementations a
tually support the DL ALEf , whi
h is ALE extended by fea-

tures (i.e., fun
tional roles). Features may be used in existential or value restri
tions. The

extension to features of the l
s algorithms is straightforward. Features are treated like roles,

with the ex
eption that there may only be a single feature su

essor per role-level or feature-

level, respe
tively. This is guaranteed by
ombining all existential restri
tions for a feature f

(together with the value restri
tions for f) in one single
onjun
tion for ea
h input des
ription.

These two
onjun
tions are then used as arguments for the re
ursive
all.

3 Implementations of the l
s

We have implemented both, the basi
 and the lazy unfolding l
s algorithms. Both implemen-

tations are done in Lisp and use the FaCT system

[

8

℄

for the
lassi�
ation of the TBox and

for the subsumption tests. Both implement a binary l
s fun
tion wrapped by a fun
tion that

makes su

essive
alls for the binary LCS fun
tion.

The \old l
s" is a straightforward implementation of the fundamental algorithm presented

in Se
tion 2 and dis
ussed in

[

6

℄

. The old implementation further in
ludes some of the methods

needed in our appli
ation framework mentioned in Se
tion 1. It
ontains the implementation

of the heuristi
 rewriting algorithm for
omputing small (but not always minimal) rewritings

of ALE -
on
ept des
riptions mentioned earlier (see

[

2

℄

), whi
h we use in our evaluation.

The \new l
s" implements the algorithm introdu
ed in Se
tion 2.1. It is also a straightfor-

ward implementation and does not use spe
ial en
oding tri
ks to improve the performan
e. In

ontrast to the old l
s implementation the new l
s may be
oupled to di�erent DL reasoner.

3.1 A �rst evaluation of the implementations

To
ompare the implementations of both algorithms we use an a
y
li
 variant of a TBox de-

veloped for our appli
ation in
hemi
al pro
ess engineering. It
ontains 52 primitive
on
epts,

67 de�ned
on
epts, 23 roles and 20 features. It has a deep
on
ept hierar
hy, what makes

it likely that least
ommon subsumers
omputed for
on
ept des
riptions from this TBox will

not
ollapse to > .

The input
on
ept des
riptions we used for the evaluation are the least
ommon subsumers

of seven REACTOR
on
epts de�ned in the appli
ation TBox. To
ompute the l
s of all

ombinations of least
ommon subsumers, we started from the hierar
hy of least
ommon

subsumers as shown in Figure 2. This hierar
hy is
omputed by the earlier mentioned attribute

exploration algorithm as des
ribed in

[

3; 10

℄

.

Our test suite in
luded 22 di�erent l
s
alls, starting from binary l
s
alls. For ea
h

omputation of these least
ommon subsumers we measured run-times and sizes of the output

on
ept des
riptions of four settings:

1. old LCS : Computation of the l
s using the old l
s implementation,

2. old LCS + Rew.: Computation of the l
s using the old l
s implementation followed by

rewriting the l
s
on
ept des
ription,

3. new LCS : Computation of the l
s using the new l
s implementation,

4. new LCS + Rew.: Computation of the l
s using the new l
s implementation followed by

rewriting the l
s
on
ept des
ription.

6

LCS(1 2 3 4 5 6 7)

LCS(1 2 3 4 5 6)

LCS(1 2 3 4 5)

LCS(1 2 3 5)

LCS(1 2 3)

LCS(1 2 4 5 6)

LCS(1 2 4 5) LCS(1 2 4 6)

LCS(1 2 4)LCS(1 2 5)

LCS(1 2)

LCS(1 3 4 5 6)

LCS(1 3 4 5)

LCS(1 3 5)

LCS(1 3)

LCS(1 4 5 6)

LCS(1 4 5) LCS(1 4 6)

LCS(1 4)LCS(1 5)

LCS(1)

LCS(2 5)

LCS(2)

LCS(3 5)

LCS(3) LCS(4)LCS(5) LCS(6) LCS(7)

LCS()

REACTOR1 REACTOR2 REACTOR3 REACTOR4REACTOR5 REACTOR6 REACTOR7

Figure 2: The hierar
hy of least
ommon subsumers of seven rea
tor des
riptions.

The se
ond and the fourth setting use the same rewriting implementation of the heuristi

algorithm. In
ontrast to our appli
ation framework, where the
omputation of l
s with

n input
on
ept des
riptions uses the resulting des
ription of the l
s with n-1 input
on
ept

des
riptions, all least
ommon subsumers are
omputed from s
rat
h. To obtain representative

run-times we did run ea
h LCS in ea
h setting 100 times.

The results for the average
on
ept size is displayed in Figure 3. Note the use of a loga-

rithmi
 s
ale. The measured values indi
ate that a l
s using lazy unfolding returns
on
ept

des
riptions that are about an order of magnitude smaller than the
on
ept des
riptions re-

turned by the basi
 algorithm. Rewriting the l
s
on
ept des
riptions is resulting in terms

that are two (one) orders of magnitude smaller than the l
s
on
ept des
ription returned by

the l
s (l
s using lazy unfolding). Comparing the
on
ept sizes yielded by both settings in
lud-

ing rewriting shows that starting from a smaller
on
ept des
ription does not yield a smaller

rewritten
on
ept by the heuristi
 algorithm.

The absolute values for the
on
ept sizes show that rewriting is still ne
essary, even if lazy

unfolding is employed to
ompute the
on
ept des
ription of the l
s. The average
on
ept

des
ription obtained from the new LCS has a
on
ept size of about 100. Therefore these
on-

ept des
riptions are still too big to be
omprehensible for a human reader. In our appli
ation

framework, a knowledge engineer has to
hose an appropriate des
ription from a set of l
s

on
ept des
riptions to be added to the terminology. Therefore, rewriting remains ne
essary

7

10

100

1000

old LCS old LCS + Rew. new LCS new LCS + Rew.

C

o

n

e

p

t

s

i

z

e

Figure 3: Average
on
ept sizes obtained from the four settings.

as an additional step for this appli
ation.

The run-times in Figure 4 show the added run-times of
omputing the l
s (grey re
tangles)

and of rewriting the obtained l
s
on
ept des
ription (white re
tangles). The
omparison of

run-times for the l
s implementations indi
ate a speed-up of fa
tor 3:5. Thus, the appli
ation

of lazy unfolding provides only a moderate speed-up for the l
s alone. However, in
ombination

with rewriting a bigger enhan
ement is obtained. The run-time for rewriting a l
s
on
ept

des
ription is shorter for the smaller des
riptions returned from the new l
s implementation.

In
ase of our appli
ation the run-time is roughly halved.

1000

2000

3000

4000

5000

6000

7000

8000

old LCS + Rew. new LCS + Rew.

R

u

n

-

t

i

m

e

i

n

m

s

Figure 4: Average run-times needed by the di�erent settings.

4 Con
lusion and Future Work

In general the performan
e of the l
s algorithm using lazy unfolding depends very mu
h on

the stru
ture of the TBox in use. If the
on
ept des
riptions in the
on
ept de�nitions of the

TBox do not make use of de�ned
on
epts, lazy unfolding will not be able to in
rease the

performan
e of the l
s signi�
antly.

8

The �rst evaluation of the l
s implementations in our appli
ation framework indi
ates that

using lazy unfolding
an be a substantial gain for the size of the resulting
on
ept des
riptions.

On the other hand our results also indi
ate that it is still ne
essary to perform rewriting after

omputing the l
s in order to obtain readable
on
ept des
riptions. With lazy unfolding in

use we expe
t the run-times to de
rease for the rewriting step.

We plan to implement further optimizations of the l
s. To speed-up a single
all of the

binary l
s fun
tion it may be advantageous to minimize the exr

r

list and the
onjun
tion val

r

w.r.t. subsumption to avoid redundant re
ursive
alls. So before starting a re
ursive
all all

elements that are subsuming another element of the list are removed. This method would

make heavy use of the underlying DL reasoner and it has to be evaluated if the overhead from

the subsumption tests does not outweigh the bene�ts.

To
ompute the l
s of many input
on
ept des
riptions several su

essive
alls to the

binary l
s fun
tion are made. In order to speed-up the
omputation for the whole set of input

des
riptions (not only one run of the binary l
s pro
edure), a sorting for the input des
riptions

seems to be a good idea. If a \general" l
s
on
ept des
ription is
omputed by the �rst few

alls of the binary l
s fun
tion, it is likely that the general l
s subsumes the remaining input

terms. As a
onsequen
e the remaining
alls of the binary l
s fun
tion will yield the result

already after the subsumption test at the beginning of the l
s algorithm without any re
ursive

alls at all. Therefore sorting the list of input des
riptions a

ording their \generality" may

be a useful prepro
essing step. Another method to further optimize the l
s implementation

is of
ourse a
a
hing strategy for already
omputed least
ommon subsumers, but this also

remains to be future work.

Referen
es

[

1

℄

F. Baader and R. K�usters. Computing the least
ommon subsumer and the most spe
i�

on
ept in the presen
e of
y
li
 ALN -
on
ept des
riptions. In O. Herzog and A. G�unter,

editors, KI-98, volume 1504 of Le
ture Notes in Computer S
ien
e, pages 129{140, Bre-

men, Germany, 1998. Springer-Verlag.

[

2

℄

F. Baader, R. K�usters, and R. Molitor. Rewriting
on
epts using terminologies. In A.G.

Cohn, F. Giun
higlia, and B. Selman, editors, Pro
. of the 7th Int. Conf. on the Prin
iples

of Knowledge Representation and Reasoning (KR-00), pages 297{308, San Fran
is
o, CA,

2000. Morgan Kaufmann Publishers.

[

3

℄

F. Baader and R. Molitor. Building and stru
turing des
ription logi
 knowledge bases

using least
ommon subsumers and
on
ept analysis. In B. Ganter and G. Mineau, editors,

ICCS-00, volume 1867 of Le
ture Notes in Arti�
ial Intelligen
e, pages 290{303. SV, 2000.

[

4

℄

F. Baader and A.-Y. Turhan. TBoxes do not yield a
ompa
t representation of the least

ommon subsumer. In DL-2001, 2001. To appear.

[

5

℄

Franz Baader, Enri
o Fran
oni, Bernhard Hollunder, Bernhard Nebel, and Hans-J�urgen

Pro�tli
h. An empiri
al analysis of optimization te
hniques for terminologi
al represen-

tation systems or: Making KRIS get a move on. Applied Arti�
ial Intelligen
e. Spe
ial

Issue on Knowledge Base Management, 4:109{132, 1994.

[

6

℄

Franz Baader, Ralf K�usters, and Ralf Molitor. Computing least
ommon subsumer in

des
ription logi
s with existential restri
tions. In T. Dean, editor, Pro
. of the 16th

Int. Joint Conf. on Arti�
ial Intelligen
e (IJCAI-99), pages 96{101, Sto
kholm, Sweden,

1999. Morgan Kaufmann, Los Altos.

9

[

7

℄

I. Horro
ks. Optimising Tableaux De
ision Pro
edures for Des
ription Logi
s. PhD thesis,

University of Man
hester, 1997.

[

8

℄

Ian Horro
ks. Optimisation te
hniques for expressive des
ription logi
s. Te
hni
al Report

UMCS-97-2-1, University of Man
hester, Department of Computer S
ien
e, 1997.

[

9

℄

Ralf K�usters and R. Molitor. Approximating most spe
if

on
epts in des
ription logi
s

with existential restri
tions. In Pro
. of the 24th German Annual Conf. on Arti�
ial

Intelligen
e (KI'01), 2001. to appear.

[

10

℄

Ralf Molitor. Unterst�utzung der Modellierung verfahrenste
hnis
her Prozesse dur
h Ni
ht-

Standardinferenzen in Bes
hreibungslogiken. PhD thesis, Department of Computer S
i-

en
e, RWTH Aa
hen, Germany, 2000. In German.

[

11

℄

Bernhard Nebel. Terminologi
al reasoning is inherently intra
table. Arti�
ial Intelligen
e

Journal, 43:235{249, 1990.

10

