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Abstract

For description logics with existential restrictions, the size of the least common sub-
sumer (Ics) of concept descriptions may grow exponentially in the size of the concept
descriptions. To reduce the size of the output descriptions and the run-time of the lcs
algorithm we present an optimized algorithm for computing the lcs in ALE using lazy
unfolding. A first evaluation of the performance of the naive algorithm in comparison to
the performance of the algorithm using lazy unfolding indicates a performance gain for
both concept sizes as well as run-times.

1 Motivation

In our application of chemical process engineering we support the construction of description
logic (DL) knowledge bases in a bottom-up fashion: instead of directly defining a new concept,
the knowledge engineer introduces several typical examples as objects (individuals), which are
then automatically generalized into a concept description by the system. This description is
then offered to the knowledge engineer as a possible candidate for a definition of a concept.

The task of automatically computing such a concept description can be achieved by using
two non-standard inferences: (1) computing the most specific concept (msc) of each of the
introduced objects, and (2) computing the least common subsumer (lcs) of these concepts.
The most specific concept of an object o (the least common subsumer of concept descriptions
Cy,...,Cy) is the most specific concept description C' expressible in the given DL language
that has o as an instance (that subsumes C1,...,C}). Algorithms for computing the msc are
given in [1; 9].

Another application for the lcs is the structuring of DL knowledge bases. DL knowledge
bases encountered in applications often have a rather flat concept hierarchy. Deeper hierarchies
are more convenient for browsing the knowledge base, and make searching more efficient. Given
a concept C with direct sub-concepts {C4,...,Cy,}, one could use least common subsumer
of selected subsets to insert additional layers between C' and its sub-concepts C1i,...,C,.
Computing the hierarchy of all least common subsumer of subsets of {C1,...,C,} the system
can support the knowledge engineer in choosing an appropriate concept description.

The algorithm for computing the lcs of a set of ALE -concept descriptions as developed in
[6] works on concept descriptions unfolded w.r.t. the TBox. In the worst case this algorithm
may yield descriptions exponentially large in the size of the unfolded input descriptions (also
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discussed in [6]). This inherent complexity is an obstacle for practical applications of the lcs.
To employ the lcs in practical applications there are several requirements to fulfill. Besides cor-
rectness, the runtime of a lcs computation should be low and furthermore the size of the output
concept descriptions must be small in order to be readable and comprehensible by a human
reader. The latter is important for most non-standard inferences (e.g. msc), because in con-
trast to standard inferences (such as subsumption, which are decision procedures) they return
concept descriptions. These descriptions are then examined and assessed whether they should
be added to the knowledge base by the knowledge engineer. To meet all these requirements we
devise an optimized algorithm which computes the lcs, but avoids complete unfolding by lazy
unfolding. Lazy unfolding is a standard optimization technique for terminological reasoning [5;
7]. Tt unfolds (sub-)concept descriptions only if examination of that part of the concept de-
scription is necessary. Thus, using lazy unfolding for the computation of the lcs should not only
result in better average case run-times, moreover it should yield smaller concept descriptions.

A well known approach to reduce the concept size of a result concept descriptions is to
compute (minimal) rewritings of the lcs concept description in a subsequent step. Intuitively,
a minimal rewriting of a concept description C' is the concept description with the smallest
concept size equivalent to C' w.r.t. the underlying TBox. A heuristic algorithm for computing
small (but not always minimal) rewritings is given in [2].

In the mentioned applications of the Ics it is necessary to avoid the computation of all (in
worst case exponentially many) least common subsumers of all possible subsets of a selected set
of concept descriptions. To filter out some of the subsets we employ the attribute exploration
algorithm [3], which computes a concept lattice isomorphic to the subsumption hierarchy of
all least common subsumers of all subsets of {Cy,...,Cy}. Only least common subsumers
from that concept lattice are computed to obtain candidates for new concepts to be added to
the knowledge base.

The rest of the paper is structured as follows. In the next section we outline the basic lcs
algorithm and discuss the lcs algorithm using lazy-unfolding for the description logic ALE .
Then we give some details about our implementations of both algorithms and present an
evaluation of them w.r.t. to run-time and concept size.

2 Computing the lcs for ALE

The description logic ALE provides conjunction, existential restriction (3r.C), value restric-
tions (Vr.C) and atomic negation in concept descriptions. Only unfoldable TBoxes are ap-
propriate for the lcs, so the set of concept definitions occurring in a TBox have to be acyclic
and concept names may appear only once on the left-hand side of a definition. The set of all
roles appearing in the TBox is denoted Ng and the set of all primitive concepts (i.e., concepts
without a definition in the TBox) is denoted Nc.

Definition 1 (Least Common Subsumer) LetCy,...,C,, be concept descriptions in a DL
L. The L-concept description C is a least common subsumer (Ics) of Cy,...,Cyp in L iff

1. C;CEC forall1 <i<n, and

2. C is the least concept description with this property, i.e., if D is a concept description
satisfying C; © D for all 1 <i <n, then C C D.

The lcs does always exist for ALE -concept descriptions. If a lcs exists for a DL £, then it is
unique up to equivalence. This justifies to refer to the Ics of Cy,...,Cy in L.

Before turning to the lcs algorithm we need the notion of concept size and role-level. The
concept size |C| of a concept description C is increased by 1 for each occurrence of a role name
or a concept name in C' (with |T| = |L| = 0). A role-level of a (sub-)concept description



refers to the number of exists or value restrictions it is nested in. If a concept description has
role-level 0 it is on top-level. For example the concept description A M (Ir. (Vr. (B N C)))
has concept size 5 and the role-level of sub-concept description (B M C) in this description is
2, while A is on top-level.

We outline the Ics algorithm as given in [6]. It operates on description trees a representation
of concept descriptions which are unfolded w.r.t. the TBox. The basic lcs algorithm is given
as a binary operation, since the n-ary lcs can be reduced to the binary operation. So if a lcs of
n (with 2 < n) concept descriptions is computed, n — 1 successive lcs computations are made.
The basic lcs algorithm consists of the following steps:

1. unfold all input concept descriptions
2. normalize all unfolded descriptions
3. compute the product of the normalized concept descriptions.

Thus, in order to compute the lcs of a set of concept descriptions C1, .. .,C, defined in a TBox
T, the concept descriptions are completely unfolded w.r.t. 7. To unfold a concept description
completely all defined concepts appearing in the concept description are recursively replaced
by their definitions in the TBox, until only primitive concepts remain in the description. The
process of unfolding a description may already cause an exponential blow-up of the concept
description, see [11]. In the second step of the lcs algorithm the ALE -normal form is computed.
To this end the ALE -normalization rules remove concept descriptions equivalent to T , replace
inconsistent concept descriptions by L, join value restrictions, and propagate value restrictions
into existential restrictions on all role-levels. This last step of the normalization is yet another
source of an exponential blow-up (see [6; 4] for details). The third step computes the product of
two description trees, where each tree corresponds to a concept description. Each of the three
steps of the Ics algorithm traverses the whole structure of the concept description recursively.
We illustrate this basic algorithm and its drawbacks by means of the following example.

Example 2 (Ics) Given the following TBoz T with

TZ{Ol = A1|_|E|7“.D1, CQ::AQHHT'.Dl,
D1 = (\V/SBl) M (E'SDQ) m (ElSDg),
D2 = Bz |_|B3, D3 = Bg |_|B4 }

we compute the lcs of Cy and Cy. After the first and second step — unfolding and the application
of the ALE -normalization rules — we have

C;=A; N (HT(VSBl M
ds. (Bl [l B2 [l Bg) [l
ds. (Bl [l B3 [l B4))

for i € {1,2}. Then in the third step the algorithm determines the concept names appearing
on the top-level of the les — in this case none ({A1} N{A2} =0). Then the algorithm makes
a recursive call to compute the lcs of the r-successors of C; and Cs, which in turn makes
recursive calls for the pair of value restrictions and for all four pairs of exists restrictions for
the s-successors. The algorithm yields

LCS(Cl,CQ) =dr. (VSBl [l
ds. (Bl |_|B2|_|B3) [l
ds. (B1 [l Bg) [l
ds. (B1 [l Bg) [l
Js. (Bl M B3l B4)) with |LCS(01,C2)| =17.



So, the result is computed by three recursive traversals of the input descriptions and its size
results from the actually unnecessary unfolding of D1. Even if the redundant second and third
ezistential restriction are eliminated from the result, the concept size of the returned lcs concept
description is still quite big in comparison to the equivalent and obviously smaller lcs concept
description Ar. Dy.

In general the size of the lcs of two ALE -concept descriptions may be exponential in the
size of the (unfolded) input descriptions in the worst case, see [6]. To reduce the size of the
lcs concept descriptions in the average case when computing the lcs w.r.t. a non-empty TBox,
we now introduce an algorithm for the lcs using lazy unfolding.

2.1 Computing the Ics using lazy unfolding

The idea of lazy unfolding is to replace a part of a description only if examination of that
part is necessary. Lazy unfolding unfolds concept names appearing on top-level of a concept
description. It leaves defined concept names on deeper role-levels unchanged. In the following
let C' be an ALE -concept description and let r be a role name.

Definition 3 (V-Normal form) An ALE -concept description C is in V-normalform iff ev-
ery conjunction in C' contains at most one value restriction for each role name r € Npg.

The algorithm for computing the lcs with lazy unfolding as shown in Figure 1 is based on
the V-normalform and the following sets:

e prim(C) (—prim(C)) denotes the set of all (negated) primitive names occurring on the
top-level of C.

e val.(C) denotes the concept description occurring in the unique value restriction on

the top-level of the V-normal form of C, where val.(C) := T if there is no such value
restriction.
o exr,(C) denotes the set {Ci,...,Cp} of concept descriptions occurring in existential

restrictions of the form Jr.C; on the top-level of C.

The algorithm as given in Figure 1 uses the function lazy—unfold(), which unfolds the top-
level of its input concept description w.r.t. the ALE -TBox T . The LCS), algorithm first tests
on each recursion, if an input concept is equivalent to T or L, in this case the lcs concept
can immediately be returned. Next, the top-level of the input concepts is unfolded and the
auxiliary sets and concept descriptions are computed. The returned lcs concept description is
a conjunction of four components:

1. a conjunction of all positive concept names appearing on top-level C' and D',
2. a conjunction of all negative concept names appearing on top-level C' and D',

3. a conjunction of value restrictions derived from recursive LCS), calls for each role which
has a value restriction on top-level of C' and D',

4. a conjunction of existential restrictions derived from recursive LCS,, calls. Where a call
is made for each pair of existential restrictions (in combination with the appropriate
value restrictions) for all roles appearing on top-level of C’ and D'.

In contrast to the three independent recursions in the basic algorithm the LCS, algorithm
traverses the structure of the concept description recursively only once. The three steps
of the basic algorithm are now interwoven on each role-level, e.g., the propagation of the



Input: Two ALE -concept descriptions C, D and an ALE -TBox T
Algorithm: LCS,,(C, D)

if CE4 D then LCS,(C,D)=D
if DCy C then LCS,(C,D)=C
else
C' = lazy—unfold(C, T), D' = lazy—unfold(D, T),
prim(C") ={P,...,P.}, prim(D') ={P,...,P,},
—prim(C)={Q1,...,Qn}, —prim(D")={Q1,...,Qn},
for all r € Ny : for all r € Ng :
val,(C") = Cy, val,(D") = Dy,
exr,(C")={C4,...,Cn}, exrr(D"Y={Dy,...,D,},
end for end for
LCS,(C, D) = ( [ P

Peprim(crynprim(p')

|_| -P 1N

Pe-prim(c'yn-prim(D’)

|_| (Vr.LCSy (val.(C'),val.(D"))) 1
rGNR

M1 [ Ir. LCSy (C; M val,(C"), D; N val.(D"))))
reNr  C; € exr,.(C")
D; € exr.(D')

Figure 1: The lcs algorithm LCS,, for ALE using lazy unfolding.

value restrictions is here realized role-level-wise by including the conjunct val.(C") (val.(D")
respectively) in the recursive calls for the existential restrictions.

Lazy unfolding does not only save time (and storage) by avoiding complete unfolding of
a concept description, but it may also require lesser recursion depth for computation of the
lcs. If names of concepts defined in the TBox appear in the input descriptions on the same
role-level, these names may be directly used in the lcs concept description without unfolding
them. In this case lazy unfolding reduces the size of the descriptions to be handled by the
algorithm and thereby the size of the resulting concept description. Let us return to Example 2
to illustrate this effect.

Example 4 (lcs using lazy unfolding) Assume we want to compute the same lcs as before
w.r.t. the TBox T and apply the LCSy, (C1, C2) algorithm. In the first step none of the two
conditions hold and the algorithm calls lazy —unfold(Cy, Cs), but there is no defined concept to
replace on top-level. Then the algorithm calls LCSy recursively for the existential restriction.
This call directly yields D1 by the comparison at the beginning of the procedure. The returned
concept description is LCS),(Cy, C2) = Ir. Dy, with |[LCS,(C1,Cs)| = 2.

So comparing Example 2 to the result obtained here, it shows that LCSyyneeds less recursions
with lesser recursion depth and furthermore the concept description returned by LCS),is much
smaller.



In general the application of lazy unfolding is a benefit in most cases of computing a lcs w.r.t.
a TBox, but there may of course still be combinations of input concept descriptions where an
exponential growth of the lcs concept description is unavoidable.

Our lcs implementations actually support the DL ALEf , which is ALE extended by fea-
tures (i.e., functional roles). Features may be used in existential or value restrictions. The
extension to features of the lcs algorithms is straightforward. Features are treated like roles,
with the exception that there may only be a single feature successor per role-level or feature-
level, respectively. This is guaranteed by combining all existential restrictions for a feature f
(together with the value restrictions for f) in one single conjunction for each input description.
These two conjunctions are then used as arguments for the recursive call.

3 Implementations of the lcs

We have implemented both, the basic and the lazy unfolding lcs algorithms. Both implemen-
tations are done in Lisp and use the FaCT system [8] for the classification of the TBox and
for the subsumption tests. Both implement a binary lcs function wrapped by a function that
makes successive calls for the binary LCS function.

The “old lcs” is a straightforward implementation of the fundamental algorithm presented
in Section 2 and discussed in [6]. The old implementation further includes some of the methods
needed in our application framework mentioned in Section 1. It contains the implementation
of the heuristic rewriting algorithm for computing small (but not always minimal) rewritings
of ALE -concept descriptions mentioned earlier (see [2]), which we use in our evaluation.

The “new lcs” implements the algorithm introduced in Section 2.1. It is also a straightfor-
ward implementation and does not use special encoding tricks to improve the performance. In
contrast to the old lcs implementation the new lcs may be coupled to different DL reasoner.

3.1 A first evaluation of the implementations

To compare the implementations of both algorithms we use an acyclic variant of a TBox de-
veloped for our application in chemical process engineering. It contains 52 primitive concepts,
67 defined concepts, 23 roles and 20 features. It has a deep concept hierarchy, what makes
it likely that least common subsumers computed for concept descriptions from this TBox will
not, collapse to T .

The input concept descriptions we used for the evaluation are the least common subsumers
of seven REACTOR concepts defined in the application TBox. To compute the lcs of all
combinations of least common subsumers, we started from the hierarchy of least common
subsumers as shown in Figure 2. This hierarchy is computed by the earlier mentioned attribute
exploration algorithm as described in [3; 10].

Our test suite included 22 different lcs calls, starting from binary lcs calls. For each
computation of these least common subsumers we measured run-times and sizes of the output
concept descriptions of four settings:

1. old LCS: Computation of the lcs using the old lcs implementation,

2. old LCS + Rew.: Computation of the lcs using the old lcs implementation followed by
rewriting the lcs concept description,

3. new LCS: Computation of the lcs using the new lcs implementation,

4. new LCS 4+ Rew.: Computation of the lcs using the new lcs implementation followed by
rewriting the lcs concept description.
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Figure 2: The hierarchy of least common subsumers of seven reactor descriptions.

The second and the fourth setting use the same rewriting implementation of the heuristic
algorithm. In contrast to our application framework, where the computation of lcs with
n input concept descriptions uses the resulting description of the lcs with n-1 input concept
descriptions, all least common subsumers are computed from scratch. To obtain representative
run-times we did run each LCS in each setting 100 times.

The results for the average concept size is displayed in Figure 3. Note the use of a loga-
rithmic scale. The measured values indicate that a lcs using lazy unfolding returns concept
descriptions that are about an order of magnitude smaller than the concept descriptions re-
turned by the basic algorithm. Rewriting the lcs concept descriptions is resulting in terms
that are two (one) orders of magnitude smaller than the lcs concept description returned by
the lcs (les using lazy unfolding). Comparing the concept sizes yielded by both settings includ-
ing rewriting shows that starting from a smaller concept description does not yield a smaller
rewritten concept by the heuristic algorithm.

The absolute values for the concept sizes show that rewriting is still necessary, even if lazy
unfolding is employed to compute the concept description of the lcs. The average concept
description obtained from the new LCS has a concept size of about 100. Therefore these con-
cept descriptions are still too big to be comprehensible for a human reader. In our application
framework, a knowledge engineer has to chose an appropriate description from a set of lcs
concept descriptions to be added to the terminology. Therefore, rewriting remains necessary
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Figure 3: Average concept sizes obtained from the four settings.

as an additional step for this application.

The run-times in Figure 4 show the added run-times of computing the lcs (grey rectangles)
and of rewriting the obtained lcs concept description (white rectangles). The comparison of
run-times for the lcs implementations indicate a speed-up of factor 3.5. Thus, the application
of lazy unfolding provides only a moderate speed-up for the lcs alone. However, in combination
with rewriting a bigger enhancement is obtained. The run-time for rewriting a lcs concept
description is shorter for the smaller descriptions returned from the new lcs implementation.
In case of our application the run-time is roughly halved.
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Figure 4: Average run-times needed by the different settings.

4 Conclusion and Future Work

In general the performance of the lcs algorithm using lazy unfolding depends very much on
the structure of the TBox in use. If the concept descriptions in the concept definitions of the
TBox do not make use of defined concepts, lazy unfolding will not be able to increase the
performance of the lcs significantly.



The first evaluation of the Ics implementations in our application framework indicates that
using lazy unfolding can be a substantial gain for the size of the resulting concept descriptions.
On the other hand our results also indicate that it is still necessary to perform rewriting after
computing the lcs in order to obtain readable concept descriptions. With lazy unfolding in
use we expect the run-times to decrease for the rewriting step.

We plan to implement further optimizations of the lcs. To speed-up a single call of the
binary lcs function it may be advantageous to minimize the exr, list and the conjunction val,
w.r.t. subsumption to avoid redundant recursive calls. So before starting a recursive call all
elements that are subsuming another element of the list are removed. This method would
make heavy use of the underlying DL reasoner and it has to be evaluated if the overhead from
the subsumption tests does not outweigh the benefits.

To compute the lcs of many input concept descriptions several successive calls to the
binary lcs function are made. In order to speed-up the computation for the whole set of input
descriptions (not only one run of the binary lcs procedure), a sorting for the input descriptions
seems to be a good idea. If a “general” lcs concept description is computed by the first few
calls of the binary lcs function, it is likely that the general lcs subsumes the remaining input
terms. As a consequence the remaining calls of the binary lcs function will yield the result
already after the subsumption test at the beginning of the lcs algorithm without any recursive
calls at all. Therefore sorting the list of input descriptions according their “generality” may
be a useful preprocessing step. Another method to further optimize the lcs implementation
is of course a caching strategy for already computed least common subsumers, but this also
remains to be future work.
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