
Conrete Domains and Nominals United

Carlos Arees

University of Amsterdam

The Netherlands

arlos�siene.uva.nl

Carsten Lutz

Tehnial University Dresden

Germany

lutz�ts.inf.tu-dresden.de

Abstrat

While the omplexity of onept satis�ability in both ALCO, the basi desrip-

tion logi ALC enrihed with nominals, and ALC(D), the extension of ALC with

onrete domains, is known to be PSpae-omplete, in this artile we show that

the ombination ALCO(D) of these two logis an have a NExpTime-hard onept

satis�ability problem (depending on the onrete domain D used). The proof is by

a redution of a NExpTime-omplete variant of the domino problem to ALCO(D)-

onept satis�ability.

1 Motivation

The basi desription logi ALC (or, equivalently, the modal logi K

m

) pro-

vides a simple yet useful language for representing oneptual knowledge [12,5℄.

However, in many ases the expressive power of ALC is too weak for aptur-

ing the relevant notions of an appliation domain. One of the hallmarks of

desription logis is to o�er a wealth of onstrutors that an be added to

ALC in order to extend its expressive power in an appropriate way.

In this paper, we onsider two suh onstrutors. Firstly, nominals (some-

times in disguise of the so-alled \one-of" onstrutor [7℄) permit the naming

of elements in the interpretation domain [1,2℄. They an hene be used to

de�ne onepts by enumeration: for example, the set of authors of this artile

an be de�ned as Authors = Carlos t Carsten, where Carlos and Carsten are

nominals. The extension of ALC with nominals is alled ALCO. Seondly,

onrete domains provide a way to integrate \onrete data" into a desription

logi [3,10℄. More preisely, a new syntati type alled \onrete features"

allows to attah elements of the onrete domain (whih ould, e.g., be natural

numbers) to elements of the logial domain. A new onept onstrutor an

then be used to desribe onstraints on onrete data. For example, if we take

a onrete domain D that provides the natural numbers and a unary predi-

ate �

18

, then we an express the ondition that the authors are of age by

writing Authors ! 9age: �

18

, where age is a onrete feature. The extension

of ALC with onrete domains is alled ALC(D), where D denotes a onrete

domain that an be viewed as a parameter to the logi.

Both nominals and onrete domains are known to interat with other

onstrutors. For example, while onept satis�ability in both ALCI (ALC

plus onverse roles) and ALCO is PSpae-omplete, adding a single nomi-

nal to ALCI yields an ExpTime-omplete onept satis�ability problem [1℄.

Similarly, while ALC(D)-onept satis�ability is PSpae-omplete if reasoning

with the onrete domain D is in PSpae [9℄, the orresponding problem for

ALCI(D) an be NExpTime-omplete even for onrete domains D for whih

reasoning is in PTime [11℄.

In this paper we show that there also exists a rather strong interation

between nominals and onrete domains: ALCO(D)-onept satis�ability an

be NExpTime-hard even if reasoning with the onrete domain D is in NP.

To show this, we will de�ne a speial onrete domain Dom whih allows

the represention of so-alled domino arrays and redue a NExpTime-omplete

variant of the domino problem to ALCO(Dom). The redution strategy is

rather di�erent from those that have been previously used for other extensions

of ALCO and ALC(D) (.f. [1,10,11℄).

2 The Desription Logi ALCO(D)

In the following, we formally introdue the desription logi ALCO(D). Let

us start with de�ning onrete domains:

De�nition 2.1 A onrete domain D is a pair (�

D

;�

D

), where �

D

is a set

and �

D

a set of prediate names. Eah prediate name P 2 �

D

is assoiated

with an arity n and an n-ary prediate P

D

� �

n

D

.

Based on onrete domains, we an now de�ne ALCO(D)-onepts.

De�nition 2.2 Let N

C

, N

O

, N

R

, N

F

be pairwise disjoint and ountably in-

�nite sets of onept names, nominals, roles, and onrete features. Further-

more, let N

aF

be a ountably in�nite subset of N

R

. The elements of N

aF

are

alled abstrat features. A onrete path u is a omposition f

1

� � �f

n

g of n

abstrat features f

1

; : : : ; f

n

(n � 0) and a onrete feature g. Let D be a

onrete domain. The set of ALCO(D)-onepts is the smallest set suh that

every onept name and every nominal is a onept, and if C and D are

onepts, R is a role, g is a onrete feature, u

1

; : : : ; u

n

are onrete paths,

and P 2 �

D

is a prediate of arity n, then the following expressions are also

2

onepts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

The desription logi ALCO(D) is equipped with a Tarski-style set-theoreti

semantis. Along with the semantis, we introdue the two standard inferene

problems: onept satis�ability and onept subsumption.

De�nition 2.3 An interpretation I is a pair (�

I

; �

I

), where �

I

is a set alled

the domain and �

I

is the interpretation funtion. The interpretation funtion

maps

{ eah onept name C to a subset C

I

of �

I

,

{ eah nominal N to a singleton subset N

I

of �

I

,

{ eah role name R to a subset R

I

of �

I

��

I

,

{ eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

{ eah onrete feature g to a partial funtion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a onrete path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � �).

The interpretation funtion is extended to arbitrary onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P)

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�ned:g

An interpretation I is a model of a onept C i� C

I

6= ;. A onept C is

satis�able i� it has a model. C is subsumed by a onept D (written C v D)

i� C

I

� D

I

for all interpretations I.

It is well-known that subsumption an be redued to (un)satis�ability and

vie versa: C v D i� C u :D is unsatis�able and C is satis�able i� C 6v

(A u :A), where A is an arbitrary onept name. Thus, establishing a lower

omplexity bound for onept satis�ability also yields suh a bound for onept

subsumption.

3 Domino Problems and Conrete Domains

In this setion, we �rst de�ne a NExpTime-omplete variant of the well-known,

undeidable domino problem [4,8℄, and then introdue a onrete domain Dom

that is well-suited for reduing this domino problem to the satis�ability of

ALCO(Dom)-onepts.

In general, a domino problem is given by a �nite set of tile types. All tile

types are of the same size, eah type having a square shape and olored edges.

3

An unlimited number of tiles of eah type is available. In the NExpTime-hard

variant of the domino problem that we use, the task is to tile a 2

n+1

� 2

n+1

-

torus (i.e., a 2

n+1

� 2

n+1

-retangle whose edges are \glued" together) without

holes, overlappings, or rotation of the tiles.

De�nition 3.1 A domino system D is a triple (T;H; V), where T � N is a

�nite set of tile types and H; V � T � T represent the horizontal and vertial

mathing onditions. Let D be a domino system and a = a

0

; : : : ; a

n�1

be an

n-tuple of tiles. A mapping � : 2

n+1

� 2

n+1

! T is a 2

n+1

-solution for D and

a i�, for all x; y < 2

n+1

:

{ if �(x; y) = t and �(x�

2

n+1

1; y) = t

0

, then (t; t

0

) 2 H

{ if �(x; y) = t and �(x; y �

2

n+1

1) = t

0

, then (t; t

0

) 2 V

{ �(i; 0) = a

i

for i < n.

where �

i

denotes addition modulo i.

As shown in, e.g., Corollary 4.15 of [10℄, it follows from results in [6℄ that the

above variant of the domino problem is NExpTime-omplete.

We now de�ne a onrete domain Dom that will be used for reduing

the NExpTime-omplete domino problem to ALCO(Dom)-onept satis�abil-

ity. As we shall see later, it is rather important for the redution that the

whole 2

n+1

� 2

n+1

-torus an be represented by a single element of �

Dom

. To

this end, �

Dom

ontains omplex strutures alled \domino arrays." More-

over, we must be able to identify positions in the torus, and thus �

Dom

also

ontains the natural numbers and �

D

ontains prediates for aessing posi-

tions in domino arrays as well as prediates for performing simple arithmeti

operations.

De�nition 3.2 For every n 2 N, a funtion d : f0; : : : ; n� 1g

2

! N is alled

a domino array of dimension n. We use DA

n

to denote the set of all domino ar-

rays of dimension n. The onrete domain Dom is de�ned by setting �

Dom

:=

N [

S

i>0

DA

i

and �

Dom

to the (smallest) set ontaining the following predi-

ates:

{ a unary prediate > with >

Dom

= �

Dom

;

{ unary prediates nat with (nat)

Dom

= N and da

k

with (da

k

)

Dom

= DA

k

for

eah k 2 N;

{ for every k 2 N, a unary prediate =

k

with (=

k

)

Dom

= fkg;

{ a binary prediate = with (=)

Dom

= f(n; n) j n 2 Ng;

{ for every k 2 N, a binary prediate inr

k

with (inr

k

)

Dom

= f(n;m) 2 N�N j

m = n�

k

1g;

{ a ternary prediate + with (+)

Dom

= f(n;m; s) 2 N

3

j s = n+mg;

{ for every k 2 N, a prediate extr

k

of arity 4 with (extr

k

)

Dom

= f(d; i; j; v) j

d 2 DA

k

; i; j; v 2 N; i; j < k; and d(i; j) = vg;

{ for eah of the above prediates p of arity n its negation, i.e., a prediate p

4

of arity n with the extension �

n

Dom

n p

Dom

.

We assume the index �

k

appearing in extr

k

, extr

k

, inr

k

, inr

k

, =

k

, and =

k

to

be oded in binary.

The prediate extr

k

will play a ruial role in the redution. Intuitively,

extr

k

(d; i; j; v) states that, at position (i; j) of the domino array d, we �nd

value v. The trivial prediate > and the negations of prediates are inluded to

make the onrete domain Dom \well-behaved." More preisely, the presene

of these prediates is neessary to ensure that Dom is admissible, a property

that is usually assumed when proving deidability or omplexity results for

the ALC(D) family of desription logis [3,9,10℄. Let us de�ne admissibility

in a formal way suh that this laim an be veri�ed.

De�nition 3.3 Let D be a onrete domain and V a set of variables. A

prediate onjuntion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary prediate for i < k and the x

(i)

j

are variables from V,

is alled satis�able i� there exists a funtion Æ mapping the variables in to

elements of �

D

suh that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for eah i < k. Suh

a funtion is alled a solution for . We say that the onrete domain D is

alled admissible i� its set of prediate names is losed under negation and

ontains a name > for �

D

and the satis�ability problem for �nite onjuntions

of prediates is deidable.

In what follows, we all �nite onjuntions of prediates from �

Dom

Dom-

onjuntions and refer to the satis�ability of suh onjuntions as Dom-sa-

tis�ability. To show that Dom is admissible, it learly suÆes to prove that

Dom-satis�ability is deidable. However, Dom-satis�ability should also be of

a low omplexity sine our aim is to demonstrate that the NExpTime-hardness

of ALCO(Dom)-onept satis�ability is due to the interation between the

onrete domain and nominals, and not due to the hardness of reasoning with

the onrete domain Dom itself. We now show that this demand is met by

proving that Dom-satis�ability is in NP.

Sine the NP algorithm makes a all to an integer programming algorithm,

it seems apropriate to spend a few words on integer programming. An integer

programming problem has the form Ax = b, where A is an m � n-matrix of

rational numbers, x is an n-vetor of variables, and b is an m-vetor of rational

numbers [13℄. A solution of Ax = b is a mapping Æ that assigns a positive

integer to every variable in x suh that the equality Ax = b holds. Deiding

the satis�ability of an integer programming problem means to deide whether

suh a problem has a solution. As has been shown in, e.g., [13℄, this task is

NP-omplete. We use this fat to prove the following theorem:

5

Theorem 3.4 Dom-satis�ability is in NP.

Proof. We sketh a non-deterministi polynomial time algorithm for Dom-

satis�ability. The algorithm is based on several normalization steps, simple

inonsisteny heks, and a �nal all to an algorithm whih is apable of

deiding the satis�ability of integer programming problems.

Before we desribe the algorithm, let us introdue some notions. For a

Dom-onjuntion , we use () to denote the set of indies k appearing in

da

k

, da

k

, extr

k

, and extr

k

prediates in . Moreover, we use Æ() to denote

() [fmax(()) + 1g. The size of a Dom-onjuntion is the number of

symbols used to write it (reall that indies �

k

in prediate names are enoded

in binary).

Now let be a Dom-onjuntion. The following steps are exeuted sequen-

tially to deide the satis�ability of :

0. Return unsatis�able if ontains the > prediate.

1. Eliminate all ourrenes of the > prediate from and all the result

1

.

2. Eliminate all ourrenes of the nat and da

k

prediates in the following

way: In a prediate onjuntion ̂, an ourrene nat(x) of the nat pred-

iate an be eliminated by nondeterministially replaing it with da

k

(x)

for some k 2 Æ(̂). Similarly, an ourrene da

k

(x) of the da

k

prediate

an be eliminated by nondeterministially replaing it with either nat(x)

or with da

k

0

(x) for some k

0

2 Æ(̂) suh that k 6= k

0

. Call the result of the

elimination

2

.

3. We now introdue a new predie \<" with the obvious semantis

(<)

Dom

= f(n;m) j m;n 2 N and n < mg:

Replae eah prediate 6=(x; y) in

2

with either <(x; y), <(y; x), da

k

(x),

or da

k

(y) for some k 2 Æ(

2

). Call the result

3

.

4. Let �

1

; : : : ; �

n

be all onjunts in

3

whih are of the form extr

k

(d; x; y; r)

and let z

1

; : : : ; z

n

be variables not appearing in

3

. For eah i with

1 � i � n replae �

i

= extr

k

(d; x; y; r) with one of the following (non

deterministially):

{ the onjunts extr

k

(d; x; y; z

i

) and <(z

i

; r),

{ the onjunts extr

k

(d; x; y; z

i

) and <(r; z

i

),

{ one of the onjunts <(k; x) and <(k; y),

{ the onjunt nat(d),

{ the onjunt da

k

0

(d) for some k

0

2 Æ(

3

) with k 6= k

0

,

{ the onjunt da

k

0

(x) for some k

0

2 Æ(

3

),

{ the onjunt da

k

0

(y) for some k

0

2 Æ(

3

), or

{ the onjunt da

k

0

(r) for some k

0

2 Æ(

3

).

In a similar way, eliminate all ourrenes of inr

k

, =

k

, and +. Call the

result

4

.

Notie that

4

ontains only the prediates nat, da

k

, =

k

, =, <, inr

k

,

6

+, and extr

k

.

5. Make the types of variables expliit: for eah onjunt extr

k

(d; x; y; r) in

4

, add the onjunts da

k

(d), nat(x), nat(y), nat(r). Proeed analogoulsy

for =

k

, =, <, inr

k

, and +. Call the result

5

.

6. Return unsatis�able if

{

5

ontains onjunts nat(x) and da

k

(x) for some k 2 N or

{

5

ontains onjunts da

k

(x) and da

k

0

(x) for some k; k

0

2 N with k 6= k

0

.

Then remove all ourrenes of the nat and da

k

prediates. Call the result

6

.

7. For eah variable d appearing in the �rst position of an extr

k

prediate

in

6

and every i; j 2 N, let z

d;i;j

be a variable not appearing in

6

. Re-

plae eah onjunt extr

k

(d; x; y; r) with the new onjunts =

i

(x), =

j

(y),

=(r; z

d;i;j

) for some i; j < k. Call the result

7

.

Notie that

7

only ontains the prediates =

k

, =, <, inr

k

, and +.

8. For eah n 2 N, let z

n

be a variable not ourring in

7

. Replae eah

prediate inr

k

(x; y) in

7

with either =

k�1

(x) ^ =

0

(y) or =

k�1

(z

k�1

) ^

<(x; z

k�1

) ^=

1

(z

1

) ^ +(x; z

1

; y).

Call the result

8

, notie that it ontains only the prediates =

k

, =, <,

and +.

9. It is easy to see that

8

an be transformed into an integer programming

problem (possibly using slak variables to handle \<"). Use a standard

NP algorithm (see, e.g., [13℄) to deide the satis�ability of this problem

and return the result.

It is straightforward to prove the orretness of the skethed algorithm by

showing that (i) eah of the normalization steps preserves (un)satis�ability,

(ii) eah of the inonsisteny heks is orret, and (iii) the redution to integer

programming is orret. Moreover, it is not hard to see that the algorithm an

be exeuted in nondeterministi polynomial time: eah of the normalization

steps leads to at most a polynomial blowup of the size of the prediate on-

juntion. Finally, deiding the satis�ability of integer programming problems

an be done in NP [13℄. 2

4 The Redution

We prove NExpTime-hardness of ALCO(Dom)-onept satis�ability by redu-

tion of the NExpTime-omplete domino problem introdued in the previous

setion. For a domino system D with initial ondition a, the redution on-

ept C

D;a

is de�ned as

7

C

D;a

:= TreeX u 8R

n+1

:TreeY u 8R

2(n+1)

:9f:(N u 9darr:da

2

n+1
)

u 8R

2(n+1)

:(CompXPos u CompYPos u Label u ChekLabel)

u 8R

2(n+1)

:(Init u ChekHMath u ChekVMath)

where 8R

n

:C is an abbreviation for the n-fold nesting 8R: � � � 8R:C and TreeX,

TreeY, CompXPos, et. are abbreviations for omplex onepts that will soon

be desribed in detail. It is interesting to note that C

D;a

refers to only one

nominal N , whih is indeed the only nominal used in the entire redution.

Intuitively, the main purpose of the �rst line of C

D;a

is to enfore a tree

struture of depth 2(n+1) whose leaves orrespond to positions in the 2

n+1

�

2

n+1

-torus. More preisely, TreeX and TreeY are de�ned as follows:

TreeX := 9R:X

0

u 9R::X

0

u u

i=1::n

8R

i

:(DistX

i�1

u 9R:X

i

u 9R::X

i

)

TreeY := 9R:Y

0

uDistX

n

u 9R::Y

0

u u

i=1::n

8R

i

:(DistY

i�1

u DistX

n

u 9R:Y

i

u 9R::Y

i

)

DistX

k

:= u

i=0::k

((X

i

! 8R:X

i

) u (:X

i

! 8R::X

i

))

DistY

k

:= u

i=0::k

((Y

i

! 8R:Y

i

) u (:Y

i

! 8R::Y

i

))

The TreeX onept enfores that, in every model of C

D;a

, there exists a binary

tree of depth n + 1. Moreover, the DistX onepts (there exists one for eah

k 2 f0; : : : ; ng) ensure that the leaves of this tree are binarily numbered (from

0 to 2

n+1

� 1) by the onept names X

0

; : : : ; X

n

. More preisely, for a domain

objet d 2 �

I

, set

xpsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

8

<

:

1 if d 2 X

I

i

0 otherwise.

The TreeX and DistX onepts ensure that there exist leaves of the tree d

0

; : : : ; d

2

n+1

�1

suh that xpsn(d

i

) = i. Intuitively, this numbering represents the horizontal

positions in the 2

n+1

� 2

n+1

-torus. The vertial positions are oded in a simi-

lar way by the Y

0

; : : : ; Y

n

onept names. More spei�ally, the TreeY, DistX,

and DistY ensure that every d

i

(0 � i � 2

n+1

� 1) is the root of another

tree, in whih (i) every node has the same \X

0

; : : : ; X

n

-on�guration" as the

root node, and (ii) the leaves are numbered binarily using the onept names

Y

0

; : : : ; Y

n

(note that the TreeY onept appears in C

D;a

inside a 8R

n+1

value

restrition). De�ne

ypsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

8

<

:

1 if d 2 Y

I

i

0 otherwise.

8

Taking together the leafs of all the trees enfored by the TreeY onept, we

obtain a node e

i;j

for eah 0 � i; j < 2

n+1

suh that xpsn(e

i;j

) = i and

ypsn(e

i;j

) = j, i.e., eah e

i;j

represents a position in the 2

n+1

� 2

n+1

-torus.

Due to last onjunt in the �rst line of C

D;a

, all the e

i;j

are onneted via

the onrete feature f to the domain element identi�ed by the nominal N .

Thus, very roughly, the models of C

D;a

look as follows:

TreeY

TreeX

...

...
TreeY TreeY

f

f

N

f

To make the grid positions aessible by the onrete domain, we translate the

positions enoded by X

0

; : : : ; X

n

and Y

0

; : : : ; Y

n

into integer values and \store"

them in the onrete features xpos and ypos suh that xpos

I

(e

i;j

) = i and

ypos

I

(e

i;j

) = j. This is done by the onepts CompXPos and CompYPos using

the auxiliary onrete features x

0

; : : : ; x

n

, s

0

; : : : ; s

n

, y

0

; : : : ; y

n

, and s

0

0

; : : : ; s

0

n

.

CompXPos := u

i=0::n

�

(X

i

! 9x

i

: =

2

i
) u (:X

i

! 9x

i

: =

0

)

�

u 9s

0

; x

0

:= u (u

i=1::n

9s

i�1

; x

i

; s

i

:+) u 9s

n

; xpos:=

CompYPos := u

i=0::n

�

(Y

i

! 9y

i

: =

2

i
) u (:Y

i

! 9y

i

: =

0

)

�

u 9s

0

0

; y

0

:= u (u

i=1::n

9s

0

i�1

; y

i

; s

0

i

:+) u 9s

0

n

; ypos:=

A domino type is assigned to eah domain element e

i;j

(i.e., to eah position

in the grid), and stored in the onrete feature label. This is done by the Label

onept.

Label :=t

d2D

9label:=

d

ChekLabel := 9(f Æ darr; xpos; ypos; label):extr

2

n+1

It remains to ensure that the tiling satis�es the initial ondition a as well as

the horizontal and vertial mathing onditions. To do this, we \opy" the

grid as represented by the domain elements e

i;j

into a single domino array

from the onrete domain Dom. This is where the nominal N omes into play:

as has already been mentioned, there exists a domain element z identi�ed by

the nominal N suh that f

I

(e

i;j

) = z for every e

i;j

. Due to the last onjunt of

9

C

D;a

, a domino array of size 2

n+1

is assoiated with z via the onrete feature

darr. The ChekLabel onept, of whih the domain elements e

i;j

are required

to be instanes, ensures that this domino array stores a opy of the grid as

represented by the domain elements e

i;j

. Note that the use of the nominal N

is ruial at this point: sine N identi�es the unique domain element z, the

path f Æ darr reahes one and the same domino array starting from any of the

e

i;j

.

The opy of the grid stored in darr

I

(z) an now be used to hek that the

tiling is orret, whih is done by the following three onepts:

Init := u

i=0::n�1

�

(9ypos:=

0

u 9xpos:=

i

)! 9label:=

a

i

�

ChekHMath := 9xpos; xsu:inr

2

n+1 u 9(f Æ darr; xsu; ypos; xslabel):extr

2

n+1

u t

(d;d

0

)2H

(9label:=

d

u 9xslabel:=

d

0

)

ChekVMath := 9ypos; ysu:inr

2

n+1 u 9(f Æ darr; xpos; ysu; yslabel):extr

2

n+1

u t

(d;d

0

)2V

(9label:=

d

u 9yslabel:=

d

0

)

The Init onept ensures that the initial ondition a = a

0

, . . . , a

n�1

is re-

speted. The ChekHMath and ChekVMath onepts, of whih the domain

elements e

i;j

are instanes, enfore the mathing onditions. Let us fous on

ChekHMath sine ChekVMath works analogously. Fix a domain element

e

i;j

. The �rst onjunt of ChekHMath omputes the horizontal position of

the horizontal neighbor of e

i;j

(this position is obviously i+1 mod 2

n+1

) and

uses the onrete feature xsu to store it. The seond onjunt extrats the

label of this horizontal neighbor from the opy of the grid stored in the darr-

suessor of the domain element z. This neighbor's label is stored using the

onrete feature xslabel. All that remains to be done is to ensure that the

label-suessor and the xslabel-suessor of e

i;j

satisfy the horizontal mathing

ondition, whih is done by the third onjunt of ChekHMath.

Using the above onsiderations, the orretness of the redution is readily

heked. Moreover, the size of C

D;a

is at most polynomial in n. To see this,

reall that indizes in Dom-prediates are oded in binary. Summing up, the

desribed redution yields the following result:

Theorem 4.1 Satis�ability of ALCO(Dom)-onept satis�ability is NExpTime-

hard.

Sine, as was noted in Setion 2, unsatis�ability an be redued to subsump-

tion, ALCO(Dom)-onept subsumption is o-NExpTime-hard. Note that a

single nominal is suÆient for these hardness results.

10

5 Conlusion

In this paper, we have shown that ombining onrete domains and nominals

may have rather dramati e�ets on the omplexity of reasoning: although

ALCO-onept satis�ability is in PSpae [1℄ and ALC(D)-onept satis�abil-

ity is PSpae-omplete if D-satis�ability is in PSpae [9℄, ALCO(D)-onept

satis�ability may be NExpTime-hard, depending on the onrete domain D

used. To show this, we have de�ned a onrete domain Dom that provides

for so-alled domino arrays|a data struture that omes very handy for rep-

resenting domino problems. Suh a onrete domain is not too natural for

knowledge representation and other appliation areas of desription logis.

Nevertheless, our result indiates that one has to arefully investigate the

impat on the omplexity of reasoning when ombining nominals and on-

rete domains. Moreover, it implies that the general PSpae-upper bound for

ALC(D) mentioned above annot be extended to ALCO(D).

The reader may wonder why we use the somewhat arti�al domino arrays

as part of the onrete domain, instead of using a single integer to represent

the whole torus. The reason is that, to aess the individual positions of the

torus, we would then need a ternary multipliation prediate. Moreover, it

is not hard to see that a onrete domain D whih provides equality to one,

binary equality, ternary addition and multipliation is powerful enough to ap-

ture Hilbert's tenth problem. Thus, the satis�ability of �nite D-onjuntions

is undeidable whih learly implies that all desription logis inorporating

this onrete domain are also undeidable whih prohibits a �ne-grained om-

plexity analysis.

Referenes

[1℄ C. Arees, P. Blakburn, and M. Marx. A road-map on omplexity for hybrid

logis. In J. Flum and M. Rodr��guez-Artalejo, editors, Computer Siene Logi,

number 1683 in Leture Notes in Computer Siene, pages 307{321. Springer-

Verlag, 1999.

[2℄ C. Arees and M. de Rijke. From desription logis to hybrid logis, and bak.

In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev, editors, Advanes

in Modal Logis Volume 3. CSLI Publiations, Stanford, CA, USA, 2001.

[3℄ F. Baader and P. Hanshke. A sheme for integrating onrete domains into

onept languages. In Proeedings of the Twelfth International Joint Conferene

on Arti�ial Intelligene (IJCAI-91), pages 452{457, Sydney, Australia, 1991.

[4℄ R. Berger. The undeidability of the dominoe problem. Memoirs of the

Amerian Mathematial Soiety, 66, 1966.

[5℄ P. Blakburn, M. de Rijke, and Y. Venema. Modal Logi. Cambridge University

Press, 2001.

[6℄ E. B�orger, E. Gr�adel, and Y. Gurevih. The Classial Deision Problem.

Perspetives in Mathematial Logi. Springer-Verlag, 1997.

11

[7℄ R. J. Brahman, D. L. MGuinness, P. F. Patel-Shneider, L. A. Resnik, and

A. Borgida. Living with lassi: When and how to use a KL-ONE-like language.

In J. F. Sowa, editor, Priniples of Semanti Networks { Explorations in the

Representation of Knowledge, hapter 14, pages 401{456. Morgan Kaufmann,

1991.

[8℄ D. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,

1968.

[9℄ C. Lutz. Reasoning with onrete domains. In T. Dean, editor, Proeedings

of the Sixteenth International Joint Conferene on Arti�ial Intelligene

(IJCAI'99), pages 90{95. Morgan Kaufmann, 1999.

[10℄ C. Lutz. The Complexity of Reasoning with Conrete Domains. PhD thesis,

Teahing and Researh Area for Theoretial Computer Siene, RWTH Aahen,

2001.

[11℄ C. Lutz. NExpTime-omplete desription logis with onrete domains.

In R. Gor�e, A. Leitsh, and T. Nipkow, editors, Proeedings of the First

International Joint Conferene on Automated Reasoning (IJCAR'01), number

2083 in Leture Notes in Arti�al Intelligene, pages 45{60. Springer-Verlag,

2001.

[12℄ M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with

omplements. Arti�ial Intelligene, 48(1):1{26, 1991.

[13℄ A. Shrijver. Theory of Linear and Integer Programming. Wiley, Chihester,

UK, 1986.

12

