
Con
rete Domains and Nominals United

Carlos Are
es

University of Amsterdam

The Netherlands

arlos�s
ien
e.uva.nl

Carsten Lutz

Te
hni
al University Dresden

Germany

lutz�t
s.inf.tu-dresden.de

Abstra
t

While the
omplexity of
on
ept satis�ability in both ALCO, the basi
 des
rip-

tion logi
 ALC enri
hed with nominals, and ALC(D), the extension of ALC with

on
rete domains, is known to be PSpa
e-
omplete, in this arti
le we show that

the
ombination ALCO(D) of these two logi
s
an have a NExpTime-hard
on
ept

satis�ability problem (depending on the
on
rete domain D used). The proof is by

a redu
tion of a NExpTime-
omplete variant of the domino problem to ALCO(D)-

on
ept satis�ability.

1 Motivation

The basi
 des
ription logi
 ALC (or, equivalently, the modal logi
 K

m

) pro-

vides a simple yet useful language for representing
on
eptual knowledge [12,5℄.

However, in many
ases the expressive power of ALC is too weak for
aptur-

ing the relevant notions of an appli
ation domain. One of the hallmarks of

des
ription logi
s is to o�er a wealth of
onstru
tors that
an be added to

ALC in order to extend its expressive power in an appropriate way.

In this paper, we
onsider two su
h
onstru
tors. Firstly, nominals (some-

times in disguise of the so-
alled \one-of"
onstru
tor [7℄) permit the naming

of elements in the interpretation domain [1,2℄. They
an hen
e be used to

de�ne
on
epts by enumeration: for example, the set of authors of this arti
le

an be de�ned as Authors = Carlos t Carsten, where Carlos and Carsten are

nominals. The extension of ALC with nominals is
alled ALCO. Se
ondly,

on
rete domains provide a way to integrate \
on
rete data" into a des
ription

logi
 [3,10℄. More pre
isely, a new synta
ti
 type
alled \
on
rete features"

allows to atta
h elements of the
on
rete domain (whi
h
ould, e.g., be natural

numbers) to elements of the logi
al domain. A new
on
ept
onstru
tor
an

then be used to des
ribe
onstraints on
on
rete data. For example, if we take

a
on
rete domain D that provides the natural numbers and a unary predi-

ate �

18

, then we
an express the
ondition that the authors are of age by

writing Authors ! 9age: �

18

, where age is a
on
rete feature. The extension

of ALC with
on
rete domains is
alled ALC(D), where D denotes a
on
rete

domain that
an be viewed as a parameter to the logi
.

Both nominals and
on
rete domains are known to intera
t with other

onstru
tors. For example, while
on
ept satis�ability in both ALCI (ALC

plus
onverse roles) and ALCO is PSpa
e-
omplete, adding a single nomi-

nal to ALCI yields an ExpTime-
omplete
on
ept satis�ability problem [1℄.

Similarly, while ALC(D)-
on
ept satis�ability is PSpa
e-
omplete if reasoning

with the
on
rete domain D is in PSpa
e [9℄, the
orresponding problem for

ALCI(D)
an be NExpTime-
omplete even for
on
rete domains D for whi
h

reasoning is in PTime [11℄.

In this paper we show that there also exists a rather strong intera
tion

between nominals and
on
rete domains: ALCO(D)-
on
ept satis�ability
an

be NExpTime-hard even if reasoning with the
on
rete domain D is in NP.

To show this, we will de�ne a spe
ial
on
rete domain Dom whi
h allows

the represention of so-
alled domino arrays and redu
e a NExpTime-
omplete

variant of the domino problem to ALCO(Dom). The redu
tion strategy is

rather di�erent from those that have been previously used for other extensions

of ALCO and ALC(D) (
.f. [1,10,11℄).

2 The Des
ription Logi
 ALCO(D)

In the following, we formally introdu
e the des
ription logi
 ALCO(D). Let

us start with de�ning
on
rete domains:

De�nition 2.1 A
on
rete domain D is a pair (�

D

;�

D

), where �

D

is a set

and �

D

a set of predi
ate names. Ea
h predi
ate name P 2 �

D

is asso
iated

with an arity n and an n-ary predi
ate P

D

� �

n

D

.

Based on
on
rete domains, we
an now de�ne ALCO(D)-
on
epts.

De�nition 2.2 Let N

C

, N

O

, N

R

, N

F

be pairwise disjoint and
ountably in-

�nite sets of
on
ept names, nominals, roles, and
on
rete features. Further-

more, let N

aF

be a
ountably in�nite subset of N

R

. The elements of N

aF

are

alled abstra
t features. A
on
rete path u is a
omposition f

1

� � �f

n

g of n

abstra
t features f

1

; : : : ; f

n

(n � 0) and a
on
rete feature g. Let D be a

on
rete domain. The set of ALCO(D)-
on
epts is the smallest set su
h that

every
on
ept name and every nominal is a
on
ept, and if C and D are

on
epts, R is a role, g is a
on
rete feature, u

1

; : : : ; u

n

are
on
rete paths,

and P 2 �

D

is a predi
ate of arity n, then the following expressions are also

2

on
epts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

The des
ription logi
 ALCO(D) is equipped with a Tarski-style set-theoreti

semanti
s. Along with the semanti
s, we introdu
e the two standard inferen
e

problems:
on
ept satis�ability and
on
ept subsumption.

De�nition 2.3 An interpretation I is a pair (�

I

; �

I

), where �

I

is a set
alled

the domain and �

I

is the interpretation fun
tion. The interpretation fun
tion

maps

{ ea
h
on
ept name C to a subset C

I

of �

I

,

{ ea
h nominal N to a singleton subset N

I

of �

I

,

{ ea
h role name R to a subset R

I

of �

I

��

I

,

{ ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

{ ea
h
on
rete feature g to a partial fun
tion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a
on
rete path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � �).

The interpretation fun
tion is extended to arbitrary
on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(9u

1

; : : : ; u

n

:P)

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�ned:g

An interpretation I is a model of a
on
ept C i� C

I

6= ;. A
on
ept C is

satis�able i� it has a model. C is subsumed by a
on
ept D (written C v D)

i� C

I

� D

I

for all interpretations I.

It is well-known that subsumption
an be redu
ed to (un)satis�ability and

vi
e versa: C v D i� C u :D is unsatis�able and C is satis�able i� C 6v

(A u :A), where A is an arbitrary
on
ept name. Thus, establishing a lower

omplexity bound for
on
ept satis�ability also yields su
h a bound for
on
ept

subsumption.

3 Domino Problems and Con
rete Domains

In this se
tion, we �rst de�ne a NExpTime-
omplete variant of the well-known,

unde
idable domino problem [4,8℄, and then introdu
e a
on
rete domain Dom

that is well-suited for redu
ing this domino problem to the satis�ability of

ALCO(Dom)-
on
epts.

In general, a domino problem is given by a �nite set of tile types. All tile

types are of the same size, ea
h type having a square shape and
olored edges.

3

An unlimited number of tiles of ea
h type is available. In the NExpTime-hard

variant of the domino problem that we use, the task is to tile a 2

n+1

� 2

n+1

-

torus (i.e., a 2

n+1

� 2

n+1

-re
tangle whose edges are \glued" together) without

holes, overlappings, or rotation of the tiles.

De�nition 3.1 A domino system D is a triple (T;H; V), where T � N is a

�nite set of tile types and H; V � T � T represent the horizontal and verti
al

mat
hing
onditions. Let D be a domino system and a = a

0

; : : : ; a

n�1

be an

n-tuple of tiles. A mapping � : 2

n+1

� 2

n+1

! T is a 2

n+1

-solution for D and

a i�, for all x; y < 2

n+1

:

{ if �(x; y) = t and �(x�

2

n+1

1; y) = t

0

, then (t; t

0

) 2 H

{ if �(x; y) = t and �(x; y �

2

n+1

1) = t

0

, then (t; t

0

) 2 V

{ �(i; 0) = a

i

for i < n.

where �

i

denotes addition modulo i.

As shown in, e.g., Corollary 4.15 of [10℄, it follows from results in [6℄ that the

above variant of the domino problem is NExpTime-
omplete.

We now de�ne a
on
rete domain Dom that will be used for redu
ing

the NExpTime-
omplete domino problem to ALCO(Dom)-
on
ept satis�abil-

ity. As we shall see later, it is rather important for the redu
tion that the

whole 2

n+1

� 2

n+1

-torus
an be represented by a single element of �

Dom

. To

this end, �

Dom

ontains
omplex stru
tures
alled \domino arrays." More-

over, we must be able to identify positions in the torus, and thus �

Dom

also

ontains the natural numbers and �

D

ontains predi
ates for a

essing posi-

tions in domino arrays as well as predi
ates for performing simple arithmeti

operations.

De�nition 3.2 For every n 2 N, a fun
tion d : f0; : : : ; n� 1g

2

! N is
alled

a domino array of dimension n. We use DA

n

to denote the set of all domino ar-

rays of dimension n. The
on
rete domain Dom is de�ned by setting �

Dom

:=

N [

S

i>0

DA

i

and �

Dom

to the (smallest) set
ontaining the following predi-

ates:

{ a unary predi
ate > with >

Dom

= �

Dom

;

{ unary predi
ates nat with (nat)

Dom

= N and da

k

with (da

k

)

Dom

= DA

k

for

ea
h k 2 N;

{ for every k 2 N, a unary predi
ate =

k

with (=

k

)

Dom

= fkg;

{ a binary predi
ate = with (=)

Dom

= f(n; n) j n 2 Ng;

{ for every k 2 N, a binary predi
ate in
r

k

with (in
r

k

)

Dom

= f(n;m) 2 N�N j

m = n�

k

1g;

{ a ternary predi
ate + with (+)

Dom

= f(n;m; s) 2 N

3

j s = n+mg;

{ for every k 2 N, a predi
ate extr

k

of arity 4 with (extr

k

)

Dom

= f(d; i; j; v) j

d 2 DA

k

; i; j; v 2 N; i; j < k; and d(i; j) = vg;

{ for ea
h of the above predi
ates p of arity n its negation, i.e., a predi
ate p

4

of arity n with the extension �

n

Dom

n p

Dom

.

We assume the index �

k

appearing in extr

k

, extr

k

, in
r

k

, in
r

k

, =

k

, and =

k

to

be
oded in binary.

The predi
ate extr

k

will play a
ru
ial role in the redu
tion. Intuitively,

extr

k

(d; i; j; v) states that, at position (i; j) of the domino array d, we �nd

value v. The trivial predi
ate > and the negations of predi
ates are in
luded to

make the
on
rete domain Dom \well-behaved." More pre
isely, the presen
e

of these predi
ates is ne
essary to ensure that Dom is admissible, a property

that is usually assumed when proving de
idability or
omplexity results for

the ALC(D) family of des
ription logi
s [3,9,10℄. Let us de�ne admissibility

in a formal way su
h that this
laim
an be veri�ed.

De�nition 3.3 Let D be a
on
rete domain and V a set of variables. A

predi
ate
onjun
tion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary predi
ate for i < k and the x

(i)

j

are variables from V,

is
alled satis�able i� there exists a fun
tion Æ mapping the variables in
 to

elements of �

D

su
h that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for ea
h i < k. Su
h

a fun
tion is
alled a solution for
. We say that the
on
rete domain D is

alled admissible i� its set of predi
ate names is
losed under negation and

ontains a name > for �

D

and the satis�ability problem for �nite
onjun
tions

of predi
ates is de
idable.

In what follows, we
all �nite
onjun
tions of predi
ates from �

Dom

Dom-

onjun
tions and refer to the satis�ability of su
h
onjun
tions as Dom-sa-

tis�ability. To show that Dom is admissible, it
learly suÆ
es to prove that

Dom-satis�ability is de
idable. However, Dom-satis�ability should also be of

a low
omplexity sin
e our aim is to demonstrate that the NExpTime-hardness

of ALCO(Dom)-
on
ept satis�ability is due to the intera
tion between the

on
rete domain and nominals, and not due to the hardness of reasoning with

the
on
rete domain Dom itself. We now show that this demand is met by

proving that Dom-satis�ability is in NP.

Sin
e the NP algorithm makes a
all to an integer programming algorithm,

it seems apropriate to spend a few words on integer programming. An integer

programming problem has the form Ax = b, where A is an m � n-matrix of

rational numbers, x is an n-ve
tor of variables, and b is an m-ve
tor of rational

numbers [13℄. A solution of Ax = b is a mapping Æ that assigns a positive

integer to every variable in x su
h that the equality Ax = b holds. De
iding

the satis�ability of an integer programming problem means to de
ide whether

su
h a problem has a solution. As has been shown in, e.g., [13℄, this task is

NP-
omplete. We use this fa
t to prove the following theorem:

5

Theorem 3.4 Dom-satis�ability is in NP.

Proof. We sket
h a non-deterministi
 polynomial time algorithm for Dom-

satis�ability. The algorithm is based on several normalization steps, simple

in
onsisten
y
he
ks, and a �nal
all to an algorithm whi
h is
apable of

de
iding the satis�ability of integer programming problems.

Before we des
ribe the algorithm, let us introdu
e some notions. For a

Dom-
onjun
tion
, we use
(
) to denote the set of indi
es k appearing in

da

k

, da

k

, extr

k

, and extr

k

predi
ates in
. Moreover, we use Æ(
) to denote

(
) [fmax(
(
)) + 1g. The size of a Dom-
onjun
tion
 is the number of

symbols used to write it (re
all that indi
es �

k

in predi
ate names are en
oded

in binary).

Now let
 be a Dom-
onjun
tion. The following steps are exe
uted sequen-

tially to de
ide the satis�ability of
:

0. Return unsatis�able if

ontains the > predi
ate.

1. Eliminate all o

urren
es of the > predi
ate from
 and
all the result

1

.

2. Eliminate all o

urren
es of the nat and da

k

predi
ates in the following

way: In a predi
ate
onjun
tion
̂, an o

urren
e nat(x) of the nat pred-

i
ate
an be eliminated by nondeterministi
ally repla
ing it with da

k

(x)

for some k 2 Æ(
̂). Similarly, an o

urren
e da

k

(x) of the da

k

predi
ate

an be eliminated by nondeterministi
ally repla
ing it with either nat(x)

or with da

k

0

(x) for some k

0

2 Æ(
̂) su
h that k 6= k

0

. Call the result of the

elimination

2

.

3. We now introdu
e a new predi
e \<" with the obvious semanti
s

(<)

Dom

= f(n;m) j m;n 2 N and n < mg:

Repla
e ea
h predi
ate 6=(x; y) in

2

with either <(x; y), <(y; x), da

k

(x),

or da

k

(y) for some k 2 Æ(

2

). Call the result

3

.

4. Let �

1

; : : : ; �

n

be all
onjun
ts in

3

whi
h are of the form extr

k

(d; x; y; r)

and let z

1

; : : : ; z

n

be variables not appearing in

3

. For ea
h i with

1 � i � n repla
e �

i

= extr

k

(d; x; y; r) with one of the following (non

deterministi
ally):

{ the
onjun
ts extr

k

(d; x; y; z

i

) and <(z

i

; r),

{ the
onjun
ts extr

k

(d; x; y; z

i

) and <(r; z

i

),

{ one of the
onjun
ts <(k; x) and <(k; y),

{ the
onjun
t nat(d),

{ the
onjun
t da

k

0

(d) for some k

0

2 Æ(

3

) with k 6= k

0

,

{ the
onjun
t da

k

0

(x) for some k

0

2 Æ(

3

),

{ the
onjun
t da

k

0

(y) for some k

0

2 Æ(

3

), or

{ the
onjun
t da

k

0

(r) for some k

0

2 Æ(

3

).

In a similar way, eliminate all o

urren
es of in
r

k

, =

k

, and +. Call the

result

4

.

Noti
e that

4

ontains only the predi
ates nat, da

k

, =

k

, =, <, in
r

k

,

6

+, and extr

k

.

5. Make the types of variables expli
it: for ea
h
onjun
t extr

k

(d; x; y; r) in

4

, add the
onjun
ts da

k

(d), nat(x), nat(y), nat(r). Pro
eed analogoulsy

for =

k

, =, <, in
r

k

, and +. Call the result

5

.

6. Return unsatis�able if

{

5

ontains
onjun
ts nat(x) and da

k

(x) for some k 2 N or

{

5

ontains
onjun
ts da

k

(x) and da

k

0

(x) for some k; k

0

2 N with k 6= k

0

.

Then remove all o

urren
es of the nat and da

k

predi
ates. Call the result

6

.

7. For ea
h variable d appearing in the �rst position of an extr

k

predi
ate

in

6

and every i; j 2 N, let z

d;i;j

be a variable not appearing in

6

. Re-

pla
e ea
h
onjun
t extr

k

(d; x; y; r) with the new
onjun
ts =

i

(x), =

j

(y),

=(r; z

d;i;j

) for some i; j < k. Call the result

7

.

Noti
e that

7

only
ontains the predi
ates =

k

, =, <, in
r

k

, and +.

8. For ea
h n 2 N, let z

n

be a variable not o

urring in

7

. Repla
e ea
h

predi
ate in
r

k

(x; y) in

7

with either =

k�1

(x) ^ =

0

(y) or =

k�1

(z

k�1

) ^

<(x; z

k�1

) ^=

1

(z

1

) ^ +(x; z

1

; y).

Call the result

8

, noti
e that it
ontains only the predi
ates =

k

, =, <,

and +.

9. It is easy to see that

8

an be transformed into an integer programming

problem (possibly using sla
k variables to handle \<"). Use a standard

NP algorithm (see, e.g., [13℄) to de
ide the satis�ability of this problem

and return the result.

It is straightforward to prove the
orre
tness of the sket
hed algorithm by

showing that (i) ea
h of the normalization steps preserves (un)satis�ability,

(ii) ea
h of the in
onsisten
y
he
ks is
orre
t, and (iii) the redu
tion to integer

programming is
orre
t. Moreover, it is not hard to see that the algorithm
an

be exe
uted in nondeterministi
 polynomial time: ea
h of the normalization

steps leads to at most a polynomial blowup of the size of the predi
ate
on-

jun
tion. Finally, de
iding the satis�ability of integer programming problems

an be done in NP [13℄. 2

4 The Redu
tion

We prove NExpTime-hardness of ALCO(Dom)-
on
ept satis�ability by redu
-

tion of the NExpTime-
omplete domino problem introdu
ed in the previous

se
tion. For a domino system D with initial
ondition a, the redu
tion
on-

ept C

D;a

is de�ned as

7

C

D;a

:= TreeX u 8R

n+1

:TreeY u 8R

2(n+1)

:9f:(N u 9darr:da

2

n+1
)

u 8R

2(n+1)

:(CompXPos u CompYPos u Label u Che
kLabel)

u 8R

2(n+1)

:(Init u Che
kHMat
h u Che
kVMat
h)

where 8R

n

:C is an abbreviation for the n-fold nesting 8R: � � � 8R:C and TreeX,

TreeY, CompXPos, et
. are abbreviations for
omplex
on
epts that will soon

be des
ribed in detail. It is interesting to note that C

D;a

refers to only one

nominal N , whi
h is indeed the only nominal used in the entire redu
tion.

Intuitively, the main purpose of the �rst line of C

D;a

is to enfor
e a tree

stru
ture of depth 2(n+1) whose leaves
orrespond to positions in the 2

n+1

�

2

n+1

-torus. More pre
isely, TreeX and TreeY are de�ned as follows:

TreeX := 9R:X

0

u 9R::X

0

u u

i=1::n

8R

i

:(DistX

i�1

u 9R:X

i

u 9R::X

i

)

TreeY := 9R:Y

0

uDistX

n

u 9R::Y

0

u u

i=1::n

8R

i

:(DistY

i�1

u DistX

n

u 9R:Y

i

u 9R::Y

i

)

DistX

k

:= u

i=0::k

((X

i

! 8R:X

i

) u (:X

i

! 8R::X

i

))

DistY

k

:= u

i=0::k

((Y

i

! 8R:Y

i

) u (:Y

i

! 8R::Y

i

))

The TreeX
on
ept enfor
es that, in every model of C

D;a

, there exists a binary

tree of depth n + 1. Moreover, the DistX
on
epts (there exists one for ea
h

k 2 f0; : : : ; ng) ensure that the leaves of this tree are binarily numbered (from

0 to 2

n+1

� 1) by the
on
ept names X

0

; : : : ; X

n

. More pre
isely, for a domain

obje
t d 2 �

I

, set

xpsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

8

<

:

1 if d 2 X

I

i

0 otherwise.

The TreeX and DistX
on
epts ensure that there exist leaves of the tree d

0

; : : : ; d

2

n+1

�1

su
h that xpsn(d

i

) = i. Intuitively, this numbering represents the horizontal

positions in the 2

n+1

� 2

n+1

-torus. The verti
al positions are
oded in a simi-

lar way by the Y

0

; : : : ; Y

n

on
ept names. More spe
i�
ally, the TreeY, DistX,

and DistY ensure that every d

i

(0 � i � 2

n+1

� 1) is the root of another

tree, in whi
h (i) every node has the same \X

0

; : : : ; X

n

-
on�guration" as the

root node, and (ii) the leaves are numbered binarily using the
on
ept names

Y

0

; : : : ; Y

n

(note that the TreeY
on
ept appears in C

D;a

inside a 8R

n+1

value

restri
tion). De�ne

ypsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

8

<

:

1 if d 2 Y

I

i

0 otherwise.

8

Taking together the leafs of all the trees enfor
ed by the TreeY
on
ept, we

obtain a node e

i;j

for ea
h 0 � i; j < 2

n+1

su
h that xpsn(e

i;j

) = i and

ypsn(e

i;j

) = j, i.e., ea
h e

i;j

represents a position in the 2

n+1

� 2

n+1

-torus.

Due to last
onjun
t in the �rst line of C

D;a

, all the e

i;j

are
onne
ted via

the
on
rete feature f to the domain element identi�ed by the nominal N .

Thus, very roughly, the models of C

D;a

look as follows:

TreeY

TreeX

...

...
TreeY TreeY

f

f

N

f

To make the grid positions a

essible by the
on
rete domain, we translate the

positions en
oded by X

0

; : : : ; X

n

and Y

0

; : : : ; Y

n

into integer values and \store"

them in the
on
rete features xpos and ypos su
h that xpos

I

(e

i;j

) = i and

ypos

I

(e

i;j

) = j. This is done by the
on
epts CompXPos and CompYPos using

the auxiliary
on
rete features x

0

; : : : ; x

n

, s

0

; : : : ; s

n

, y

0

; : : : ; y

n

, and s

0

0

; : : : ; s

0

n

.

CompXPos := u

i=0::n

�

(X

i

! 9x

i

: =

2

i
) u (:X

i

! 9x

i

: =

0

)

�

u 9s

0

; x

0

:= u (u

i=1::n

9s

i�1

; x

i

; s

i

:+) u 9s

n

; xpos:=

CompYPos := u

i=0::n

�

(Y

i

! 9y

i

: =

2

i
) u (:Y

i

! 9y

i

: =

0

)

�

u 9s

0

0

; y

0

:= u (u

i=1::n

9s

0

i�1

; y

i

; s

0

i

:+) u 9s

0

n

; ypos:=

A domino type is assigned to ea
h domain element e

i;j

(i.e., to ea
h position

in the grid), and stored in the
on
rete feature label. This is done by the Label

on
ept.

Label :=t

d2D

9label:=

d

Che
kLabel := 9(f Æ darr; xpos; ypos; label):extr

2

n+1

It remains to ensure that the tiling satis�es the initial
ondition a as well as

the horizontal and verti
al mat
hing
onditions. To do this, we \
opy" the

grid as represented by the domain elements e

i;j

into a single domino array

from the
on
rete domain Dom. This is where the nominal N
omes into play:

as has already been mentioned, there exists a domain element z identi�ed by

the nominal N su
h that f

I

(e

i;j

) = z for every e

i;j

. Due to the last
onjun
t of

9

C

D;a

, a domino array of size 2

n+1

is asso
iated with z via the
on
rete feature

darr. The Che
kLabel
on
ept, of whi
h the domain elements e

i;j

are required

to be instan
es, ensures that this domino array stores a
opy of the grid as

represented by the domain elements e

i;j

. Note that the use of the nominal N

is
ru
ial at this point: sin
e N identi�es the unique domain element z, the

path f Æ darr rea
hes one and the same domino array starting from any of the

e

i;j

.

The
opy of the grid stored in darr

I

(z)
an now be used to
he
k that the

tiling is
orre
t, whi
h is done by the following three
on
epts:

Init := u

i=0::n�1

�

(9ypos:=

0

u 9xpos:=

i

)! 9label:=

a

i

�

Che
kHMat
h := 9xpos; xsu

:in
r

2

n+1 u 9(f Æ darr; xsu

; ypos; xslabel):extr

2

n+1

u t

(d;d

0

)2H

(9label:=

d

u 9xslabel:=

d

0

)

Che
kVMat
h := 9ypos; ysu

:in
r

2

n+1 u 9(f Æ darr; xpos; ysu

; yslabel):extr

2

n+1

u t

(d;d

0

)2V

(9label:=

d

u 9yslabel:=

d

0

)

The Init
on
ept ensures that the initial
ondition a = a

0

, . . . , a

n�1

is re-

spe
ted. The Che
kHMat
h and Che
kVMat
h
on
epts, of whi
h the domain

elements e

i;j

are instan
es, enfor
e the mat
hing
onditions. Let us fo
us on

Che
kHMat
h sin
e Che
kVMat
h works analogously. Fix a domain element

e

i;j

. The �rst
onjun
t of Che
kHMat
h
omputes the horizontal position of

the horizontal neighbor of e

i;j

(this position is obviously i+1 mod 2

n+1

) and

uses the
on
rete feature xsu

 to store it. The se
ond
onjun
t extra
ts the

label of this horizontal neighbor from the
opy of the grid stored in the darr-

su

essor of the domain element z. This neighbor's label is stored using the

on
rete feature xslabel. All that remains to be done is to ensure that the

label-su

essor and the xslabel-su

essor of e

i;j

satisfy the horizontal mat
hing

ondition, whi
h is done by the third
onjun
t of Che
kHMat
h.

Using the above
onsiderations, the
orre
tness of the redu
tion is readily

he
ked. Moreover, the size of C

D;a

is at most polynomial in n. To see this,

re
all that indizes in Dom-predi
ates are
oded in binary. Summing up, the

des
ribed redu
tion yields the following result:

Theorem 4.1 Satis�ability of ALCO(Dom)-
on
ept satis�ability is NExpTime-

hard.

Sin
e, as was noted in Se
tion 2, unsatis�ability
an be redu
ed to subsump-

tion, ALCO(Dom)-
on
ept subsumption is
o-NExpTime-hard. Note that a

single nominal is suÆ
ient for these hardness results.

10

5 Con
lusion

In this paper, we have shown that
ombining
on
rete domains and nominals

may have rather dramati
 e�e
ts on the
omplexity of reasoning: although

ALCO-
on
ept satis�ability is in PSpa
e [1℄ and ALC(D)-
on
ept satis�abil-

ity is PSpa
e-
omplete if D-satis�ability is in PSpa
e [9℄, ALCO(D)-
on
ept

satis�ability may be NExpTime-hard, depending on the
on
rete domain D

used. To show this, we have de�ned a
on
rete domain Dom that provides

for so-
alled domino arrays|a data stru
ture that
omes very handy for rep-

resenting domino problems. Su
h a
on
rete domain is not too natural for

knowledge representation and other appli
ation areas of des
ription logi
s.

Nevertheless, our result indi
ates that one has to
arefully investigate the

impa
t on the
omplexity of reasoning when
ombining nominals and
on-

rete domains. Moreover, it implies that the general PSpa
e-upper bound for

ALC(D) mentioned above
annot be extended to ALCO(D).

The reader may wonder why we use the somewhat arti�
al domino arrays

as part of the
on
rete domain, instead of using a single integer to represent

the whole torus. The reason is that, to a

ess the individual positions of the

torus, we would then need a ternary multipli
ation predi
ate. Moreover, it

is not hard to see that a
on
rete domain D whi
h provides equality to one,

binary equality, ternary addition and multipli
ation is powerful enough to
ap-

ture Hilbert's tenth problem. Thus, the satis�ability of �nite D-
onjun
tions

is unde
idable whi
h
learly implies that all des
ription logi
s in
orporating

this
on
rete domain are also unde
idable whi
h prohibits a �ne-grained
om-

plexity analysis.

Referen
es

[1℄ C. Are
es, P. Bla
kburn, and M. Marx. A road-map on
omplexity for hybrid

logi
s. In J. Flum and M. Rodr��guez-Artalejo, editors, Computer S
ien
e Logi
,

number 1683 in Le
ture Notes in Computer S
ien
e, pages 307{321. Springer-

Verlag, 1999.

[2℄ C. Are
es and M. de Rijke. From des
ription logi
s to hybrid logi
s, and ba
k.

In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyas
hev, editors, Advan
es

in Modal Logi
s Volume 3. CSLI Publi
ations, Stanford, CA, USA, 2001.

[3℄ F. Baader and P. Hans
hke. A s
heme for integrating
on
rete domains into

on
ept languages. In Pro
eedings of the Twelfth International Joint Conferen
e

on Arti�
ial Intelligen
e (IJCAI-91), pages 452{457, Sydney, Australia, 1991.

[4℄ R. Berger. The unde
idability of the dominoe problem. Memoirs of the

Ameri
an Mathemati
al So
iety, 66, 1966.

[5℄ P. Bla
kburn, M. de Rijke, and Y. Venema. Modal Logi
. Cambridge University

Press, 2001.

[6℄ E. B�orger, E. Gr�adel, and Y. Gurevi
h. The Classi
al De
ision Problem.

Perspe
tives in Mathemati
al Logi
. Springer-Verlag, 1997.

11

[7℄ R. J. Bra
hman, D. L. M
Guinness, P. F. Patel-S
hneider, L. A. Resni
k, and

A. Borgida. Living with
lassi
: When and how to use a KL-ONE-like language.

In J. F. Sowa, editor, Prin
iples of Semanti
 Networks { Explorations in the

Representation of Knowledge,
hapter 14, pages 401{456. Morgan Kaufmann,

1991.

[8℄ D. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,

1968.

[9℄ C. Lutz. Reasoning with
on
rete domains. In T. Dean, editor, Pro
eedings

of the Sixteenth International Joint Conferen
e on Arti�
ial Intelligen
e

(IJCAI'99), pages 90{95. Morgan Kaufmann, 1999.

[10℄ C. Lutz. The Complexity of Reasoning with Con
rete Domains. PhD thesis,

Tea
hing and Resear
h Area for Theoreti
al Computer S
ien
e, RWTH Aa
hen,

2001.

[11℄ C. Lutz. NExpTime-
omplete des
ription logi
s with
on
rete domains.

In R. Gor�e, A. Leits
h, and T. Nipkow, editors, Pro
eedings of the First

International Joint Conferen
e on Automated Reasoning (IJCAR'01), number

2083 in Le
ture Notes in Arti�
al Intelligen
e, pages 45{60. Springer-Verlag,

2001.

[12℄ M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
riptions with

omplements. Arti�
ial Intelligen
e, 48(1):1{26, 1991.

[13℄ A. S
hrijver. Theory of Linear and Integer Programming. Wiley, Chi
hester,

UK, 1986.

12

