Concrete Domains and Nominals United

Carlos Areces

University of Amsterdam
The Netherlands
carlos@science.uva.nl

Carsten Lutz

Technical University Dresden
Germany
lutz@tcs.inf.tu-dresden.de

Abstract

While the complexity of concept satisfiability in both ALCO, the basic descrip-
tion logic ALC enriched with nominals, and ALC(D), the extension of ALC with
concrete domains, is known to be PSprack-complete, in this article we show that
the combination ALCO(D) of these two logics can have a NExpTiME-hard concept
satisfiability problem (depending on the concrete domain D used). The proof is by
a reduction of a NExpTIME-complete variant of the domino problem to ALCO(D)-
concept satisfiability.

1 Motivation

The basic description logic ALC (or, equivalently, the modal logic K,,) pro-
vides a simple yet useful language for representing conceptual knowledge [12,5].
However, in many cases the expressive power of ALC is too weak for captur-
ing the relevant notions of an application domain. One of the hallmarks of
description logics is to offer a wealth of constructors that can be added to
ALC in order to extend its expressive power in an appropriate way.

In this paper, we consider two such constructors. Firstly, nominals (some-
times in disguise of the so-called “one-of” constructor [7]) permit the naming
of elements in the interpretation domain [1,2]. They can hence be used to
define concepts by enumeration: for example, the set of authors of this article
can be defined as Authors = Carlos LI Carsten, where Carlos and Carsten are
nominals. The extension of ALC with nominals is called ALCO. Secondly,
concrete domains provide a way to integrate “concrete data” into a description
logic [3,10]. More precisely, a new syntactic type called “concrete features”
allows to attach elements of the concrete domain (which could, e.g., be natural

numbers) to elements of the logical domain. A new concept constructor can
then be used to describe constraints on concrete data. For example, if we take
a concrete domain D that provides the natural numbers and a unary predi-
cate >3, then we can express the condition that the authors are of age by
writing Authors — dage. >3, where age is a concrete feature. The extension
of ALC with concrete domains is called ALC(D), where D denotes a concrete
domain that can be viewed as a parameter to the logic.

Both nominals and concrete domains are known to interact with other
constructors. For example, while concept satisfiability in both ALCZ (ALC
plus converse roles) and ALCQO is PSpace-complete, adding a single nomi-
nal to ALCZ yields an ExpTiMe-complete concept satisfiability problem [1].
Similarly, while ALC(D)-concept satisfiability is PSpace-complete if reasoning
with the concrete domain D is in PSpack [9], the corresponding problem for
ALCZ(D) can be NExpTme-complete even for concrete domains D for which
reasoning is in PTivE [11].

In this paper we show that there also exists a rather strong interaction
between nominals and concrete domains: ALCO(D)-concept satisfiability can
be NExpTime-hard even if reasoning with the concrete domain D is in NP.
To show this, we will define a special concrete domain Dom which allows
the represention of so-called domino arrays and reduce a NExpTiME-complete
variant of the domino problem to ALCO(Dom). The reduction strategy is
rather different from those that have been previously used for other extensions
of ACCO and ALC(D) (c.f. [1,10,11]).

2 The Description Logic ALCO(D)

In the following, we formally introduce the description logic ALCO(D). Let
us start with defining concrete domains:

Definition 2.1 A concrete domain D is a pair (Ap, Pp), where Ap is a set
and ®p a set of predicate names. Each predicate name P € ®p is associated
with an arity n and an n-ary predicate PP C AZ.

Based on concrete domains, we can now define ALCO(D)-concepts.

Definition 2.2 Let N¢, No, Ng, N be pairwise disjoint and countably in-
finite sets of concept names, nominals, roles, and concrete features. Further-
more, let N r be a countably infinite subset of Ng. The elements of N, are
called abstract features. A concrete path u is a composition f;--- f,g of n
abstract features fi,...,f, (n > 0) and a concrete feature g. Let D be a
concrete domain. The set of ALCO(D)-concepts is the smallest set such that
every concept name and every nominal is a concept, and if C' and D are
concepts, R is a role, ¢ is a concrete feature, uq,...,u, are concrete paths,
and P € ®p is a predicate of arity n, then the following expressions are also

2

concepts:
-C, cCnD, CuD, dR.C, VR.C, Fuy,...,u,.P, and g7.

The description logic ALCO(D) is equipped with a Tarski-style set-theoretic
semantics. Along with the semantics, we introduce the two standard inference
problems: concept satisfiability and concept subsumption.

Definition 2.3 An interpretation T is a pair (Az, -Z), where Az is a set called
the domain and -T is the interpretation function. The interpretation function
maps

— each concept name C' to a subset CT of Az,

— each nominal N to a singleton subset N7 of Az,

— each role name R to a subset BT of Az x Az,

— each abstract feature f to a partial function fZ from Az to Az, and

— each concrete feature ¢ to a partial function ¢* from Az to Ap.

Ifu=fi--- fogisaconcrete path, then u”(d) is defined as g (fZ - - - (fL(d))---).
The interpretation function is extended to arbitrary concepts as follows:

(-0 :=A7z\c* (cnD?f:=ctTnp* (CcuD)?:=ctuDpn?
(AR.CYT :={d e Az | {e]| (d,e) € RE}ynCT #)}
(VR.C)F :={d e Az |{e| (d,e) € RT} Cc CT}
(Elul,...,u.PI:={d€AI|E!xl,...,xnGAD:UZ»I(d)=xiand(x1,...,xn)GPD}

)
g := {d € Az | g*(d) undefined.}

— 3

An interpretation Z is a model of a concept C' iff CT # (). A concept C' is
satisfiable iff it has a model. C'is subsumed by a concept D (written C' T D)
iff C7 C D? for all interpretations Z.

It is well-known that subsumption can be reduced to (un)satisfiability and
vice versa: C' C D iff C' M =D is unsatisfiable and C' is satisfiable iff C' [Z
(AM —A), where A is an arbitrary concept name. Thus, establishing a lower
complexity bound for concept satisfiability also yields such a bound for concept
subsumption.

3 Domino Problems and Concrete Domains

In this section, we first define a NExpTivme-complete variant of the well-known,
undecidable domino problem [4,8], and then introduce a concrete domain Dom
that is well-suited for reducing this domino problem to the satisfiability of
ALCO(Dom)-concepts.

In general, a domino problem is given by a finite set of tile types. All tile
types are of the same size, each type having a square shape and colored edges.

3

An unlimited number of tiles of each type is available. In the NExpTime-hard
variant of the domino problem that we use, the task is to tile a 27! x 27+
torus (i.e., a 2! x 2"l rectangle whose edges are “glued” together) without
holes, overlappings, or rotation of the tiles.

Definition 3.1 A domino system D is a triple (T, H,V'), where T C N is a
finite set of tile types and H,V C T x T represent the horizontal and vertical
matching conditions. Let D be a domino system and a = ag,...,a,_1 be an
n-tuple of tiles. A mapping 7 : 2" x 2" — T is a 2" _solution for D and
a iff, for all o,y < 2"+

— if 7(z,y) =t and 7(v Gons1 1,y) =1, then (t,t') € H
— if 7(x,y) =t and 7(x,y Don+1 1) = t', then (t,¢') € V
— 7(1,0) = a; for i < n.

where @; denotes addition modulo i.

As shown in, e.g., Corollary 4.15 of [10], it follows from results in [6] that the
above variant of the domino problem is NExpTime-complete.

We now define a concrete domain Dom that will be used for reducing
the NExpTimve-complete domino problem to ALCO(Dom)-concept satisfiabil-
ity. As we shall see later, it is rather important for the reduction that the
whole 2" x 2" torus can be represented by a single element of Apom. To
this end, Apem contains complex structures called “domino arrays.” More-
over, we must be able to identify positions in the torus, and thus Apem also
contains the natural numbers and ®p contains predicates for accessing posi-
tions in domino arrays as well as predicates for performing simple arithmetic
operations.

Definition 3.2 For every n € N, a function d : {0,...,n — 1}*> — N is called
a domino array of dimension n. We use DA, to denote the set of all domino ar-
rays of dimension n. The concrete domain Dom is defined by setting Apem :=
N U J,.,DA; and ®pony, to the (smallest) set containing the following predi-
cates:

1>0

— a unary predicate T with TP°™ = Apom:

— unary predicates nat with (nat)?°™ = N and da, with (da;)P°™ = DA, for
each k € N;

— for every k € N, a unary predicate =, with (=;)P°™ = {k};

— a binary predicate = with (=)P°™ = {(n,n) | n € N};

— for every k € N, a binary predicate incry with (incry)P°™ = {(n,m) € NxN |
m=n &y 1};

— a ternary predicate + with (+)P°™ = {(n,m,s) € N® | s = n + m};

— for every k € N, a predicate extr; of arity 4 with (extr;)P°™ = {(d, 1, j,v) |
d € DA, i,j,v €N, i,j <k, and d(i,j) = v};

— for each of the above predicates p of arity n its negation, i.e., a predicate p

4

of arity n with the extension AZ__\ pPom.

We assume the index -, appearing in extry, extrg, incrg, incri, =, and = to
be coded in binary.

The predicate extr, will play a crucial role in the reduction. Intuitively,
extri(d,i,j,v) states that, at position (i,7) of the domino array d, we find
value v. The trivial predicate T and the negations of predicates are included to
make the concrete domain Dom “well-behaved.” More precisely, the presence
of these predicates is necessary to ensure that Dom is admissible, a property
that is usually assumed when proving decidability or complexity results for
the ALC(D) family of description logics [3,9,10]. Let us define admissibility
in a formal way such that this claim can be verified.

Definition 3.3 Let D be a concrete domain and V a set of variables. A
predicate conjunction of the form

c= /\(x(()i), . ,xffi)) : P,
i<k
where P; is an n;-ary predicate for ¢ < k£ and the xgl) are variables from V,
is called satisfiable iff there exists a function 0 mapping the variables in ¢ to
elements of Ap such that (5(@@), . .,(5(x£fi))) € PP for each i < k. Such
a function is called a solution for c. We say that the concrete domain D is
called admussible iff its set of predicate names is closed under negation and
contains a name T for Ap and the satisfiability problem for finite conjunctions
of predicates is decidable.

In what follows, we call finite conjunctions of predicates from ®poyn Dom-
conjunctions and refer to the satisfiability of such conjunctions as Dom-sa-
tisfiability. To show that Dom is admissible, it clearly suffices to prove that
Dom-satisfiability is decidable. However, Dom-satisfiability should also be of
a low complexity since our aim is to demonstrate that the NExpTmve-hardness
of ALCO(Dom)-concept satisfiability is due to the interaction between the
concrete domain and nominals, and not due to the hardness of reasoning with
the concrete domain Dom itself. We now show that this demand is met by
proving that Dom-satisfiability is in NP.

Since the NP algorithm makes a call to an integer programming algorithm,
it seems apropriate to spend a few words on integer programming. An integer
programming problem has the form Ax = b, where A is an m X n-matrix of
rational numbers, x is an n-vector of variables, and b is an m-vector of rational
numbers [13]. A solution of Az = b is a mapping ¢ that assigns a positive
integer to every variable in x such that the equality Az = b holds. Deciding
the satisfiability of an integer programming problem means to decide whether
such a problem has a solution. As has been shown in, e.g., [13], this task is
NP-complete. We use this fact to prove the following theorem:

5

Theorem 3.4 Dom-satisfiability is in NP.

Proof. We sketch a non-deterministic polynomial time algorithm for Dom-
satisfiability. The algorithm is based on several normalization steps, simple
inconsistency checks, and a final call to an algorithm which is capable of
deciding the satisfiability of integer programming problems.

Before we describe the algorithm, let us introduce some notions. For a
Dom-conjunction ¢, we use 7y(c) to denote the set of indices k appearing in
day, day, extry, and extr, predicates in c¢. Moreover, we use 4(c) to denote
v(c) U {max(vy(c)) + 1}. The size of a Dom-conjunction ¢ is the number of
symbols used to write it (recall that indices -4 in predicate names are encoded
in binary).

Now let ¢ be a Dom-conjunction. The following steps are executed sequen-
tially to decide the satisfiability of c:

0. Return unsatisfiable if ¢ contains the T predicate.
1. Eliminate all occurrences of the T predicate from ¢ and call the result ¢;.

2. Eliminate all occurrences of the nat and daj; predicates in the following
way: In a predicate conjunction ¢, an occurrence nat(x) of the nat pred-
icate can be eliminated by nondeterministically replacing it with day(x)
for some k € §(¢). Similarly, an occurrence day(x) of the da, predicate
can be eliminated by nondeterministically replacing it with either nat(x)
or with day (z) for some k' € §(¢) such that k # k. Call the result of the
elimination c,.

3. We now introduce a new predice “<” with the obvious semantics
(<)P°™ = {(n,m) | m,n € N and n < m}.

Replace each predicate #(x,y) in ¢y with either <(z,y), <(y, x), day(z),
or day(y) for some k € 0(cz). Call the result cs.

4. Let f31,..., B, be all conjuncts in ¢3 which are of the form extry(d, z,y,r)
and let zy,...,2, be variables not appearing in c3. For each ¢ with
1 < i < n replace f3; = extrg(d,x,y,r) with one of the following (non
deterministically):

— the conjuncts extry(d, x,y, z;) and <(z;, 1),
— the conjuncts extry(d, x,y, z;) and <(r, z;),
— one of the conjuncts <(k,z) and <(k,y),
— the conjunct nat(d),
— the conjunct day (d) for some k' € 6(c3) with k # k|
— the conjunct day (z) for some &’ € §(c3),
— the conjunct day (y) for some k' € d(c3), or
— the conjunct day (r) for some k' € §(c3).
In a similar way, eliminate all occurrences of incri,, =g, and +. Call the
result cy.
Notice that ¢, contains only the predicates nat, da, =5, =, <, incry,

6

+, and extry.

5. Make the types of variables explicit: for each conjunct extry(d,z,y,r) in
¢4, add the conjuncts day(d), nat(z), nat(y), nat(r). Proceed analogoulsy
for =, =, <, incrg, and +. Call the result cs.

6. Return unsatisfiable if
— ¢5 contains conjuncts nat(x) and dag(x) for some k € N or
— ¢5 contains conjuncts day(x) and day (x) for some k, k' € N with k& # £’
Then remove all occurrences of the nat and daj, predicates. Call the result
C6-

7. For each variable d appearing in the first position of an extr, predicate
in c¢ and every ¢,7 € N, let z4;; be a variable not appearing in cs. Re-
place each conjunct extry(d, x, y,r) with the new conjuncts =;(x), =;(y),
=(r, zq, ;) for some i,j < k. Call the result c;.

Notice that c; only contains the predicates =, =, <, incrg, and +.

8. For each n € N, let 2, be a variable not occurring in ¢;. Replace each
predicate incrg(z,y) in ¢; with either =, 1(x) A =q(y) or =, 1(2x_1) A
<(, zk—1) A =1(21) A +(, 21, y).

Call the result cg, notice that it contains only the predicates =, =, <,
and +.

9. Tt is easy to see that cg can be transformed into an integer programming
problem (possibly using slack variables to handle “<”). Use a standard
NP algorithm (see, e.g., [13]) to decide the satisfiability of this problem
and return the result.

It is straightforward to prove the correctness of the sketched algorithm by
showing that (i) each of the normalization steps preserves (un)satisfiability,
(ii) each of the inconsistency checks is correct, and (iii) the reduction to integer
programming is correct. Moreover, it is not hard to see that the algorithm can
be executed in nondeterministic polynomial time: each of the normalization
steps leads to at most a polynomial blowup of the size of the predicate con-
junction. Finally, deciding the satisfiability of integer programming problems
can be done in NP [13]. O

4 The Reduction

We prove NExpTivme-hardness of ALCO(Dom)-concept satisfiability by reduc-
tion of the NExpTmE-complete domino problem introduced in the previous
section. For a domino system D with initial condition a, the reduction con-
cept Cp, is defined as

Cp.q = TreeX MVR" . TreeY NVR2"+1 3£ (N 1 3darr.dagn+1)
NVYR2"*1) (CompXPos M CompYPos M Label 1 CheckLabel)
N YR+ (Init 1 CheckHMatch M CheckVMatch)

where VR".C'is an abbreviation for the n-fold nesting VR. - --VR.C" and TreeX,
TreeY, CompXPos, etc. are abbreviations for complex concepts that will soon
be described in detail. It is interesting to note that Cp, refers to only one
nominal NV, which is indeed the only nominal used in the entire reduction.

Intuitively, the main purpose of the first line of Cp, is to enforce a tree
structure of depth 2(n+ 1) whose leaves correspond to positions in the 27*! x
2"+ torus. More precisely, TreeX and TreeY are defined as follows:

TreeX := 3R. X, M IR. =X, M El VR'.(DistX;_; M 3IR.X; NIR.~X;)
TreeY := dR.Y, M DistX,, M dR.-Yy M |T| VRi.(DistYZ-,l M DistX,, M 3R.Y; M IR.~Y;)
=1..n

DistX; := _Elk((Xi L VR.XG) M (~X; — YR.AX)))

DistY, := | | (Vi = VR.Y;) 1 (=} = VR.~Y)))

The TreeX concept enforces that, in every model of Cp ,, there exists a binary
tree of depth n + 1. Moreover, the DistX concepts (there exists one for each
k€ {0,...,n}) ensure that the leaves of this tree are binarily numbered (from
0 to 2" —1) by the concept names X, ..., X,,. More precisely, for a domain
object d € AZ, set

. lifde XF
xpsn(d) = £ ja;(d) 2" where «;(d) =
0 otherwise.

The TreeX and DistX concepts ensure that there exist leaves of the tree dy, . .., don+1_
such that xpsn(d;) = i. Intuitively, this numbering represents the horizontal
positions in the 27! x 2"*!torus. The vertical positions are coded in a simi-

lar way by the Yy, ..., Y, concept names. More specifically, the TreeY, DistX,

and DistY ensure that every d; (0 < i < 2" — 1) is the root of another

tree, in which (i) every node has the same “Xj, ..., X,,-configuration” as the

root node, and (ii) the leaves are numbered binarily using the concept names

Yo, ..., Y, (note that the TreeY concept appears in Cp, inside a VR value
restriction). Define

) lifdeY?
ypsn(d) = E' (Bi(d) x 2" where f;(d) =
0 otherwise.

Taking together the leafs of all the trees enforced by the TreeY concept, we
obtain a node e;; for each 0 < 4,57 < 2"*! such that xpsn(e;;) = i and
ypsn(e; j) = j, i.e., each e; ; represents a position in the 2nt1 5 2t torus.

Due to last conjunct in the first line of Cp,, all the e;; are connected via
the concrete feature f to the domain element identified by the nominal N.
Thus, very roughly, the models of Cp , look as follows:

N

To make the grid positions accessible by the concrete domain, we translate the
positions encoded by Xy, ..., X, and Yy, ..., Y, into integer values and “store”
them in the concrete features xpos and ypos such that xpos®(e; ;) = i and
ypos”(e; ;) = j. This is done by the concepts CompXPos and CompYPos using

the auxiliary concrete features wg, ..., T, So, .-, Sny Yoy« s Yn, a0d Sp, ..., 5.

CompXPos := |_| ((XZ — Ay =9i) N (= X; — . :0))

1=0..n

M 3sg, zo.= M (3si-1, x4, 8i.-+) M I8y, xpos.=

i=1..n

CompYPos := | | (Vi = Jyi. =51) 11 (<Y} — Fyi. =o))

1=0..n

M 3867 Yo.=T1 (zljln 38;717 Yis S;—i_) M 38;,yp05.=

A domino type is assigned to each domain element e; ; (i.e., to each position
in the grid), and stored in the concrete feature label. This is done by the Label
concept.

Label := LI Slabel.=,
deD

CheckLabel := 3(f o darr, xpos, ypos, label).extron+1

It remains to ensure that the tiling satisfies the initial condition a as well as
the horizontal and vertical matching conditions. To do this, we “copy” the
grid as represented by the domain elements e;; into a single domino array
from the concrete domain Dom. This is where the nominal N comes into play:
as has already been mentioned, there exists a domain element z identified by
the nominal N such that f%(e; ;) = z for every e; ;. Due to the last conjunct of

9

Cb.a, a domino array of size 2" is associated with z via the concrete feature
darr. The CheckLabel concept, of which the domain elements e; ; are required
to be instances, ensures that this domino array stores a copy of the grid as
represented by the domain elements e; ;. Note that the use of the nominal N
is crucial at this point: since N identifies the unique domain element z, the
path f odarr reaches one and the same domino array starting from any of the
€ij-

The copy of the grid stored in darr’(z) can now be used to check that the
tiling is correct, which is done by the following three concepts:

Init := (|)_| ((Bypos.=o 11 3xpos.=;) — 3label.=,)
=uU..n—

CheckHMatch := Ixpos, xsucc.incryn+1 M 3(f o darr, xsucc, ypos, xslabel).extron+1

n L (3nabel.=; 1 3xslabel.=)
(d.d)eH

CheckVMatch := Jypos, ysucc.incrynt+1 M 3(f o darr, xpos, ysucc, yslabel).extron+1

n Ll (3abel.=, 1 3yslabel.=
(d,d’)eV(abel.=, M Jyslabel.=y)

The Init concept ensures that the initial condition a = ag, ..., ap_; is re-
spected. The CheckHMatch and CheckVMatch concepts, of which the domain
elements e; ; are instances, enforce the matching conditions. Let us focus on
CheckHMatch since CheckVMatch works analogously. Fix a domain element
eij. The first conjunct of CheckHMatch computes the horizontal position of
the horizontal neighbor of e; ; (this position is obviously i+ 1 mod 2"*!) and
uses the concrete feature xsucc to store it. The second conjunct extracts the
label of this horizontal neighbor from the copy of the grid stored in the darr-
successor of the domain element z. This neighbor’s label is stored using the
concrete feature xslabel. All that remains to be done is to ensure that the
label-successor and the xslabel-successor of ¢; ; satisfy the horizontal matching
condition, which is done by the third conjunct of CheckHMatch.

Using the above considerations, the correctness of the reduction is readily
checked. Moreover, the size of Cp, is at most polynomial in n. To see this,
recall that indizes in Dom-predicates are coded in binary. Summing up, the
described reduction yields the following result:

Theorem 4.1 Satisfiability of ACCO(Dom)-concept satisfiability is NEXPTIME-
hard.

Since, as was noted in Section 2, unsatisfiability can be reduced to subsump-
tion, ALCO(Dom)-concept subsumption is co-NExpTmve-hard. Note that a
single nominal is sufficient for these hardness results.

10

5 Conclusion

In this paper, we have shown that combining concrete domains and nominals
may have rather dramatic effects on the complexity of reasoning: although
ALCO-concept satisfiability is in PSpace [1] and ALC(D)-concept satisfiabil-
ity is PSpace-complete if D-satisfiability is in PSpack [9], ALCO(D)-concept
satisfiability may be NExpTme-hard, depending on the concrete domain D
used. To show this, we have defined a concrete domain Dom that provides
for so-called domino arrays—a data structure that comes very handy for rep-
resenting domino problems. Such a concrete domain is not too natural for
knowledge representation and other application areas of description logics.
Nevertheless, our result indicates that one has to carefully investigate the
impact on the complexity of reasoning when combining nominals and con-
crete domains. Moreover, it implies that the general PSpace-upper bound for
ALC(D) mentioned above cannot be extended to ALCO(D).

The reader may wonder why we use the somewhat artifical domino arrays
as part of the concrete domain, instead of using a single integer to represent
the whole torus. The reason is that, to access the individual positions of the
torus, we would then need a ternary multiplication predicate. Moreover, it
is not hard to see that a concrete domain D which provides equality to one,
binary equality, ternary addition and multiplication is powerful enough to cap-
ture Hilbert’s tenth problem. Thus, the satisfiability of finite D-conjunctions
is undecidable which clearly implies that all description logics incorporating
this concrete domain are also undecidable which prohibits a fine-grained com-
plexity analysis.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic,
number 1683 in Lecture Notes in Computer Science, pages 307-321. Springer-
Verlag, 1999.

[2] C. Areces and M. de Rijke. From description logics to hybrid logics, and back.
In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances
in. Modal Logics Volume 3. CSLI Publications, Stanford, CA, USA, 2001.

[3] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pages 452-457, Sydney, Australia, 1991.

[4] R. Berger. The undecidability of the dominoe problem. Memoirs of the
American Mathematical Society, 66, 1966.

. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
5] P. Blackb M. de Rijk dY. Vi Modal Logic. Cambridge Uni i
Press, 2001.

[6] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer-Verlag, 1997.

11

[7] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and
A. Borgida. Living with classic: When and how to use a KL-ONE-like language.
In J. F. Sowa, editor, Principles of Semantic Networks — Explorations in the
Representation of Knowledge, chapter 14, pages 401-456. Morgan Kaufmann,
1991.

[8] D. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley,
1968.

[9] C. Lutz. Reasoning with concrete domains. In T. Dean, editor, Proceedings
of the Sizteenth International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 90-95. Morgan Kaufmann, 1999.

[10] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH Aachen,
2001.

[11] C. Lutz. NExpTime-complete description logics with concrete domains.
In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of the First
International Joint Conference on Automated Reasoning (IJCAR’01), number
2083 in Lecture Notes in Artifical Intelligence, pages 45-60. Springer-Verlag,
2001.

[12] M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

[13] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
UK, 1986.

12

