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Abstra
t

Fusions are a simple way of 
ombining logi
s. For normal modal logi
s, fusions have

been investigated in detail. In parti
ular, it is known that, under 
ertain 
onditions,

de
idability transfers from the 
omponent logi
s to their fusion. Though des
ription

logi
s are 
losely related to modal logi
s, they are not ne
essarily normal. In addition,

ABox reasoning in des
ription logi
s is not 
overed by the results from modal logi
s.

In this paper, we extend the de
idability transfer results from normal modal logi
s

to a large 
lass of des
ription logi
s. To 
over di�erent des
ription logi
s in a uni-

form way, we introdu
e abstra
t des
ription systems, whi
h 
an be seen as a 
ommon

generalization of des
ription and modal logi
s, and show the transfer results in this

general setting.

1. Introdu
tion

Knowledge representation systems based on des
ription logi
s (DL) 
an be used to

represent the knowledge of an appli
ation domain in a stru
tured and formally well-

understood way (Bra
hman & S
hmolze, 1985; Baader & Hollunder, 1991; Bra
hman,

M
Guinness, Patel-S
hneider, Alperin Resni
k, & Borgida, 1991; Woods & S
hmolze,

1992; Borgida, 1995; Horro
ks, 1998). In su
h systems, the important notions of the

domain 
an be des
ribed by 
on
ept des
riptions, i.e., expressions that are built from

atomi
 
on
epts (unary predi
ates) and atomi
 roles (binary predi
ates) using the 
on-


ept 
onstru
tors provided by the des
ription logi
 employed by the system. The atomi



on
epts and the 
on
ept des
riptions represent sets of individuals, whereas roles rep-

resent binary relations between individuals. For example, using the atomi
 
on
epts

Woman and Human, and the atomi
 role 
hild, the 
on
ept of all women having only

daughters (i.e., women su
h that all their 
hildren are again women) 
an be repre-

sented by the des
ription Woman u 8
hild:Woman, and the 
on
ept of all mothers by

the des
riptionWomanu9
hild:Human. In this example, we have used the 
onstru
tors


on
ept 
onjun
tion (u), value restri
tion (8R:C), and existential restri
tion (9R:C).

In the DL literature, also various other 
onstru
tors have been 
onsidered. A prominent

example are so-
alled number restri
tions, whi
h are available in almost all DL systems.

For example, using number restri
tions the 
on
ept of all women having exa
tly two
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hildren 
an be represented by the 
on
ept des
ription

Woman u (� 2
hild) u (� 2
hild):

The knowledge base of a DL system 
onsists of a terminologi
al 
omponent (TBox) and

an assertional 
omponent (ABox). In its simplest form, the TBox 
onsists of 
on
ept

de�nitions, whi
h assign names (abbreviations) to 
omplex des
riptions. More general

TBox formalisms allow for so-
alled general 
on
ept in
lusion axioms (GCIs) between


omplex des
riptions. For example, the 
on
ept in
lusion

Human u (� 3
hild) v 9entitled:Taxbreak

states that people having at least three 
hildren are entitled to a tax break. The

ABox formalism 
onsists of 
on
ept assertions (stating that an individual belongs to a


on
ept) and role assertions (stating that two individuals are related by a role). For

example, the assertions Woman(MARY); 
hild(MARY;TOM);Human(TOM) state that

Mary is a woman, who has a 
hild, Tom, who is a human.

DL systems provide their users with various inferen
e 
apabilities that allow them

to dedu
e impli
it knowledge from the expli
itly represented knowledge. For instan
e,

the subsumption problem is 
on
erned with sub
on
ept-super
on
ept relationships: C

is subsumed by D (C v D) if, and only if, all instan
es of C are also instan
es of

D, i.e., the �rst des
ription is always interpreted as a subset of the se
ond des
rip-

tion. For example, the 
on
ept des
ription Woman obviously subsumes the 
on
ept

des
riptionWomanu8
hild:Woman. The 
on
ept des
ription C is satis�able i� it is non-


ontradi
tory, i.e., it 
an be interpreted by a nonempty set. In DLs allowing for 
onjun
-

tion and negation of 
on
epts, subsumption 
an be redu
ed to (un)satis�ability: C v D

i� C u:D is unsatis�able. The instan
e 
he
king problem 
onsists of de
iding whether

a given individual is an instan
e of a given 
on
ept. For example, w.r.t. the assertions

from above, MARY is an instan
e of the 
on
ept des
ription Woman u 9
hild:Human.

The ABox A is 
onsistent i� it is non-
ontradi
tory, i.e., it has a model. In DLs allow-

ing for negation of 
on
epts, the instan
e problem 
an be redu
ed to (in)
onsisten
y of

ABoxes: i is an instan
e of C w.r.t. the ABox A i� A[ f:C(i)g is in
onsistent.

In order to ensure a reasonable and predi
table behavior of a DL system, reason-

ing in the DL employed by the system should at least be de
idable, and preferably

of low 
omplexity. Consequently, the expressive power of the DL in question must be

restri
ted in an appropriate way. If the imposed restri
tions are too severe, however,

then the important notions of the appli
ation domain 
an no longer be expressed. In-

vestigating this trade-o� between the expressivity of DLs and the 
omplexity of their

inferen
e problems has thus been one of the most important issues in DL resear
h (see,

e.g., Levesque & Bra
hman, 1987; Nebel, 1988; S
hmidt-S
hau�, 1989; S
hmidt-S
hau�

& Smolka, 1991; Nebel, 1990; Donini, Lenzerini, Nardi, & Nutt, 1991, 1997; Donini,

Hollunder, Lenzerini, Spa

amela, Nardi, & Nutt, 1992; S
haerf, 1993; Donini, Lenz-

erini, Nardi, & S
haerf, 1994; De Gia
omo & Lenzerini, 1994a, 1994b, 1995; Calvanese,

De Gia
omo, & Lenzerini, 1999; Lutz, 1999; Horro
ks, Sattler, & Tobies, 2000).

This paper investigates an approa
h for extending the expressivity of DLs that (in

many 
ases) guarantees that reasoning remains de
idable: the fusion of DLs. In order

to explain the di�eren
e between the usual union and the fusion of DLs, let us 
onsider

a simple example. Assume that the DL D

1

is ALC, i.e., it provides for the Boolean
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operators u, t, : and the additional 
on
ept 
onstru
tors value restri
tion 8R:C and

existential restri
tion 9R:C, and that the DL D

2

provides for the Boolean operators and

number restri
tions (�nR) and (�nR). If an appli
ation requires 
on
ept 
onstru
tors

from both DLs for expressing its relevant 
on
epts, then one would usually 
onsider the

union D

1

[D

2

of D

1

and D

2

, whi
h allows for the unrestri
ted use of all 
onstru
tors.

For example, the 
on
ept des
ription C

1

:= (9R:A) u (9R::A) u (� 1R) is a legal

D

1

[ D

2

des
ription. Note that this des
ription is unsatis�able, due to the intera
tion

between 
onstru
tors of D

1

and D

2

. The fusion D

1


 D

2

of D

1

and D

2

prevents

su
h intera
tions by imposing the following restri
tion: one assumes that the set of all

role names is partitioned into two sets, one that 
an be used in 
onstru
tors of D

1

,

and another one that 
an be used in 
onstru
tors of D

2

. Thus, the des
ription C

1

from above is not a legal D

1


 D

2

des
ription sin
e it uses the same role R both in

the existential restri
tions (whi
h are D

1

-
onstru
tors) and in the number restri
tion

(whi
h is a D

2

-
onstru
tor). In 
ontrast, the des
riptions (9R

1

:A)u(9R

1

::A)u(� 1R

2

)

and (9R

1

:(� 1R

2

)) are admissible in D

1


 D

2

sin
e they employ di�erent roles in the

D

1

- and D

2

-
onstru
tors. If the 
on
epts that must be expressed are su
h that they

require both 
onstru
tors from D

1

and D

2

, but the ones from D

1

for other roles than

the ones from D

2

, then one does not really need the union of D

1

and D

2

; the fusion

would be suÆ
ient.

What is the advantage of taking the fusion instead of the union? Basi
ally, for the

union of two DLs one must design new reasoning methods, whereas reasoning in the

fusion 
an be redu
ed to reasoning in the 
omponent DLs. Indeed, reasoning in the

union may even be unde
idable whereas reasoning in the fusion is still de
idable. As an

example, we 
onsider the DLs (i) ALCF , whi
h extends the basi
 DL ALC by fun
tional

roles (features) and the same-as 
onstru
tor (agreement) on 
hains of fun
tional roles

(Hollunder & Nutt, 1990; Baader, B�ur
kert, Nebel, Nutt, & Smolka, 1993); and (ii)

ALC

+;Æ;t

, whi
h extends ALC by transitive 
losure, 
omposition, and union of roles

(Baader, 1991; S
hild, 1991). For both DLs, subsumption of 
on
ept des
riptions is

known to be de
idable (Hollunder & Nutt, 1990; S
hild, 1991; Baader, 1991). However,

their union ALCF

+;Æ;t

has an unde
idable subsumption problem (Baader et al., 1993).

This unde
idability result depends on the fa
t that, inALCF

+;Æ;t

, the role 
onstru
tors

transitive 
losure, 
omposition, and union 
an be applied to fun
tional roles that also

appear within the same-as 
onstru
tor. This is not allowed in the fusion ALCF 


ALC

+;Æ;t

. Of 
ourse, failure of a 
ertain unde
idability proof does not make the fusion

de
idable.

Why do we know that the fusion of de
idable DLs is again de
idable? A
tually, in

general we don't, and this was our main reason for writing this paper. The notion \fu-

sion" was introdu
ed and investigated in modal logi
, basi
ally to transfer results like

�nite axiomatizability, de
idability, �nite model property, et
. from uni-modal logi
s

(with one pair of box and diamond operators) to multi-modal logi
s (with several su
h

pairs, possibly satisfying di�erent axioms). This has led to rather general transfer re-

sults (see, e.g., Wolter, 1998; Kra
ht & Wolter, 1991; Fine & S
hurz, 1996; Spaan, 1993;

Gabbay, 1999 for results that 
on
ern de
idability), whi
h are sometimes restri
ted to

so-
alled normal modal logi
s (Chellas, 1980). Sin
e there is a 
lose relationship be-

tween modal logi
s and DLs (S
hild, 1991), it is 
lear that these transfer results also

apply to some DLs. The question is, however, to whi
h DLs exa
tly and to whi
h

inferen
e problems. First, some DLs allow for 
onstru
tors that are not 
onsidered

3
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in modal logi
s (e.g., the same-as 
onstru
tor mentioned above). Se
ond, some DL


onstru
tors that have been 
onsidered in modal logi
s, su
h as quali�ed number re-

stri
tions (�nR:C), (�nR:C) (Hollunder & Baader, 1991), whi
h 
orrespond to graded

modalities (Van der Hoek & de Rijke, 1995), 
an easily be shown to be non-normal.

Third, the transfer results for de
idability are 
on
erned with the satis�ability problem

(with or without general in
lusion axioms). ABoxes and the related inferen
e problems

are not 
onsidered. ABoxes 
an be simulated in modal logi
s allowing for so-
alled

nominals, i.e., names for individuals, within formulae (Prior, 1967; Gargov & Goranko,

1993; Are
es, Bla
kburn, & Marx, 2000). However, as we will see below, the general

transfer results do not apply to modal logi
s with nominals.

The purpose of this paper is to 
larify for whi
h DLs de
idability of the 
omponent

DLs transfers to their fusion. To this purpose, we introdu
e so-
alled abstra
t des
rip-

tion systems (ADSs), whi
h 
an be seen as a 
ommon generalization of des
ription and

modal logi
s. We de�ne the fusion of ADSs, and state four theorems that say under

whi
h 
onditions de
idability transfers from the 
omponent ADSs to their fusion. Two

of these theorems are 
on
erned with inferen
e w.r.t. general 
on
ept in
lusion axioms

and two with inferen
e without TBox axioms. In both 
ases, we �rst formulate and

prove the results for the 
onsisten
y problem of ABoxes (more pre
isely, the 
orre-

sponding problem for ADSs) and then establish analogous results for the satis�ability

problem of 
on
epts.

From the DL point of view, the four theorems shown in this paper are 
on
erned

with the following four de
ision problems:

(i) de
idability of 
onsisten
y of ABoxes w.r.t. TBox axioms (Theorem 17);

(ii) de
idability of satis�ability of 
on
epts w.r.t. TBox axioms; (Corollary 22);

(iii) de
idability of 
onsisten
y of ABoxes without TBox axioms (Theorem 29); and

(iv) de
idability of satis�ability of 
on
epts without TBox axioms (Corollary 34).

These theorems imply that de
idability of the 
onsisten
y problem and the satis�ability

problem transfers to the fusion for most DLs 
onsidered in the literature. The main

ex
eptions (whi
h do not satisfy the prerequisites of the theorems) are

(a) DLs that are not propositionally 
losed, i.e., do not 
ontain all Boolean 
onne
-

tives;

(b) DLs allowing for individuals (
alled nominals in modal logi
) in 
on
ept des
rip-

tions; and

(
) DLs expli
itly allowing for the universal role or for negation of roles.

Results from modal logi
 for problem (iv) usually require the 
omponent modal logi
s

to be normal. Our Theorem 29 is less restri
tive, and thus also applies to DLs allowing

for 
onstru
tors like quali�ed number restri
tions.

2. Des
ription logi
s

Before de�ning abstra
t des
ription systems in the next se
tion, we introdu
e the main

features of DLs that must be 
overed by this de�nition. To this purpose, we �rst
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introdu
e ALC, the basi
 DL 
ontaining all Boolean 
onne
tives, and the relevant

inferen
e problems. Then, we 
onsider di�erent possibilities for extending ALC to

more expressive DLs.

De�nition 1 (ALC Syntax). Let N

C

, N

R

, and N

I

be 
ountable and pairwise disjoint

sets of 
on
ept, role, and individual names, respe
tively. The set of ALC 
on
ept

des
riptions is the smallest set su
h that

1. every 
on
ept name is a 
on
ept des
ription,

2. if C and D are 
on
ept des
riptions and R is a role name, then the following

expressions are also 
on
ept des
riptions:

� :C (negation), C uD (
onjun
tion), C tD (disjun
tion),

� 9R:C (existential restri
tion), and 8R:C (value restri
tion).

We use > as an abbreviation of A t :A and ? as an abbreviation for A u :A (where

A is an arbitrary 
on
ept name).

Let C and D be 
on
ept des
riptions. Then C v D is a general 
on
ept in
lusion

axiom (GCI). A �nite set of su
h axioms is 
alled a TBox.

Let C be a 
on
ept des
ription, R a role name, and i; j individual names. Then

C(i) is a 
on
ept assertion and R(i; j) a role assertion. A �nite set of su
h assertions

is 
alled an ABox.

The meaning of ALC-
on
ept des
riptions, TBoxes, and ABoxes 
an be de�ned

with the help of a set-theoreti
 semanti
s.

De�nition 2 (ALC Semanti
s). An ALC-interpretation I is a pair (�

I

; �

I

), where

�

I

is a nonempty set, the domain of the interpretation, and �

I

is the interpretation

fun
tion. The interpretation fun
tion maps

� ea
h 
on
ept name A to a subset A

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� ea
h individual name i to an element i

I

of �

I

su
h that di�erent names are

mapped to di�erent elements (unique name assumption).

For a role name R and an element a 2 �

I

we de�ne R

I

(a) := fb j (a; b) 2 R

I

g. The

interpretation fun
tion 
an indu
tively be extended to 
omplex 
on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fa 2 �

I

j R

I

(a) \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j R

I

(a) � C

I

g

An interpretation I is a model of the TBox T i� it satis�es C

I

� D

I

for all GCIs

C v D in T . It is a model of the ABox A i� it satis�es i

I

2 C

I

for all 
on
ept

assertions C(i) 2 A and (i

I

; j

I

) 2 R

I

for all role assertions R(i; j) 2 A. Finally, I is a

model of an ABox relative to a TBox i� it is a model of both the ABox and the TBox.

5
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Given this semanti
s, we 
an now formally de�ne the relevant inferen
e problems.

De�nition 3 (Inferen
es). Let C and D be 
on
ept des
riptions, i an individual

name, T a TBox, and A an ABox. We say that C subsumes D relative to the TBox T

(D v

T

C) i� D

I

� C

I

for all models I of T . The 
on
ept des
ription C is satis�able

relative to the TBox T i� there exists a model I of T su
h that C

I

6= ;. The individual

i is an instan
e of C in the ABox A relative to the TBox T i� i

I

2 C

I

for all models

of A relative to T . The ABox A is 
onsistent relative to the TBox T i� there exists a

model of A relative to T .

These three inferen
es 
an also be 
onsidered without referen
e to a TBox: C

subsumes D (C is satis�able) i� C subsumes D (C is satis�able) relative to the empty

TBox, and i is an instan
e of C in A (A is 
onsistent) i� i is an instan
e of C in A (A

is 
onsistent) relative to the empty TBox.

We restri
t our attention to DLs that are propositionally 
losed (i.e., allow for the

Boolean operators 
onjun
tion, disjun
tion, and negation). Consequently, subsumption


an be redu
ed to (un)satis�ability sin
e C v

T

D i� C u :D is unsatis�able relative

to T . Conversely, (un)satis�ability 
an be redu
ed to subsumption sin
e C is unsatis-

�able relative to T i� C v

T

?. For this reason, it is irrelevant whether we 
onsider

the subsumption or the satis�ability problem in our results 
on
erning the transfer of

de
idability of these problems from 
omponent DLs to their fusion (informally 
alled

transfer results in the following).

Similarly, the instan
e problem 
an be redu
ed to the (in)
onsisten
y problem and

vi
e versa: i is an instan
e of C in A relative to T i� A [ f:C(i)g is in
onsistent

relative to T ; and A is in
onsistent relative to T i� i is an instan
e of ? in A relative

to T , where i is an arbitrary individual name. Consequently, it is irrelevant whether

we 
onsider the instan
e problem or the 
onsisten
y problem in our transfer results.

Finally, the satis�ability problem 
an be redu
ed to the 
onsisten
y problem: C

is satis�able relative to T i� the ABox fC(i)g is 
onsistent relative to T , where i is

an arbitrary individual name. However, the 
onverse need not be true. It should be

obvious that this implies that a transfer result for the satis�ability problem does not

yield the 
orresponding transfer result for the 
onsisten
y problem: from de
idability

of the 
onsisten
y problem for the 
omponent DLs we 
an only dedu
e de
idability of

the satis�ability problem in their fusion. What might be less obvious is that a transfer

result for the 
onsisten
y problem need not imply the 
orresponding transfer result

for the satis�ability problem: if the satis�ability problems in the 
omponent DLs are

de
idable, then the transfer result for the 
onsisten
y problem 
an just not be applied

(sin
e the prerequisite of this transfer result, namely, de
idability of the 
onsisten
y

problem in the 
omponent DLs, need not be satis�ed). However, we will show that the

method used to show the transfer result for the 
onsisten
y problem also applies to the

satis�ability problem.

2.1 More expressive DLs

There are several possibilities for extending ALC in order to obtain a more expressive

DL. The three most prominent are adding additional 
on
ept 
onstru
tors, adding role


onstru
tors, and formulating restri
tions on role interpretations. In addition to giving

examples for su
h extensions, we also introdu
e a naming s
heme for the obtained DLs.
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Additional 
on
ept 
onstru
tors are indi
ated by appending 
aligraphi
 letters to the

language name, role 
onstru
tors by symbols in supers
ript, and restri
tions on roles

by letters in subs
ript.

We start with introdu
ing restri
tions on role interpretations, sin
e we need to refer

to su
h restri
tions when de�ning 
ertain 
on
ept 
onstru
tors.

2.1.1 Restri
tions on role interpretations

These restri
tions enfor
e the interpretations of roles to satisfy 
ertain properties, su
h

as fun
tionality, transitivity, et
. We 
onsider three prominent examples:

1. Fun
tional roles. Here one 
onsiders a subset N

F

of the set of role names

N

R

, whose elements are 
alled features. An interpretation must map features

f 2 N

F

to fun
tional binary relations f

I

� �

I

� �

I

, i.e., relations satisfying

8a; b; 
:f

I

(a; b) ^ f

I

(a; 
) ! b = 
. We will sometimes treat fun
tional relations

as partial fun
tions, and write f

I

(a) = b rather than f

I

(a; b). ALC extended

with features is denoted by ALC

f

.

2. Transitive roles. Here one 
onsiders a subset N

R

+
of N

R

. Role names R 2 N

R

+

are 
alled transitive roles. An interpretation must map transitive roles R 2 N

R

+

to transitive binary relations R

I

� �

I

��

I

. ALC extended with transitive roles

is denoted by ALC

R

+
.

3. Role hierar
hies. A role in
lusion axiom is an expression of the form R v S

with R;S 2 N

R

. A �nite set H of role in
lusion axioms is 
alled a role hierar
hy.

An interpretation must satisfy R

I

� S

I

for all R v S 2 H. ALC extended with

a role hierar
hy H is denoted by ALC

H(H)

. If H is 
lear from the 
ontext or

irrelevant, we write ALC

H

instead of ALC

H(H)

.

The above restri
tions 
an also be 
ombined with ea
h other. For example, ALC

HR

+
is

ALC with a role hierar
hy and transitive roles.

Transitive roles in DLs were �rst investigated by Sattler (1996). Features were in-

trodu
ed in DLs by Hollunder and Nutt (1990) and (under the name \attributes") in

the CLASSIC system (Bra
hman et al., 1991), in both 
ases in 
onjun
tion with fea-

ture agreements and disagreements (see 
on
ept 
onstru
tors below). Features without

agreements and disagreements are, e.g., used in the DL SHIF (Horro
ks & Sattler,

1999), albeit in a more expressive \lo
al" way, where fun
tionality 
an be asserted

to hold at 
ertain individuals, but not ne
essarily on the whole model. A

ording to

our naming s
heme, we indi
ate the presen
e of features in a DL by the letter f in

subs
ript.

1

A remark on role hierar
hies is also in order: in our de�nition, if H

1

and H

2

are

di�erent role hierar
hies, then ALC

H(H

1

)

and ALC

H(H

2

)

are di�erent DLs. In the

DL literature, usually only one logi
 ALC

H

is de�ned and role hierar
hies are treated

like TBoxes, i.e., satis�ability and subsumption are de�ned relative to TBoxes and

role hierar
hies (see, e.g., Horro
ks, 1998). For our purposes, however, it is more


onvenient to de�ne one DL per role hierar
hy sin
e distin
t role hierar
hies impose

1. Note that some authors (e.g., Horro
ks & Sattler, 1999) use an appended F to denote lo
al fea-

tures. Following Hollunder and Nutt (1990), we will use F to denote a DL that allows for feature

agreements (see below).

7
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Name Syntax Semanti
s Symbol

Unquali�ed �nR fa 2 �

I

j jR

I

(a)j � ng N

number restri
tions �nR fa 2 �

I

j jR

I

(a)j � ng

Quali�ed �nR:C fa 2 �

I

j jR

I

(a) \ C

I

j � ng Q

number restri
tions �nR:C fa 2 �

I

j jR

I

(a) \ C

I

j � ng

Nominals I I

I

� �

I

with jI

I

j = 1 O

Feature agreement u

1

#u

2

fa 2 �

I

j 9b 2 �

I

: u

I

1

(a) = b = u

I

2

(a)g

and disagreement u

1

"u

2

fa 2 �

I

j 9b

1

; b

2

2 �

I

: F

u

I

1

(a) = b

1

6= b

2

= u

I

2

(b

1

)g

Figure 1: Some des
ription logi
 
on
ept 
onstru
tors.

distin
t restri
tions on the interpretation of roles. The advantages of this approa
h will

be
ome 
lear later on when frames and abstra
t des
ription systems are introdu
ed.

2.1.2 Con
ept 
onstru
tors

Con
ept 
onstru
tors take 
on
ept and/or role des
riptions and transform them into

more 
omplex 
on
ept des
riptions. In addition to the 
onstru
tors available in ALC,

various other 
on
ept 
onstru
tors are 
onsidered in the DL literature. A small 
olle
-

tion of su
h 
onstru
tors 
an be found in Figure 1, where jSj denotes the 
ardinality

of a set S. The symbols in the rightmost 
olumn indi
ate the naming s
heme for the

resulting DL. As mentioned above the name modi�ers for 
on
ept 
onstru
tors are not

written in subs
ript, they are appended to the language name. For example, ALC

HR

+

extended with quali�ed number restri
tions is 
alled ALCQ

HR

+ . The syntax of the

extended DLs is as expe
ted, i.e., the 
onstru
tors may be arbitrarily 
ombined. The

semanti
s is obtained by augmenting the semanti
s of ALC with the appropriate 
on-

ditions, whi
h 
an be found in the third 
olumn in Figure 1. Nominals and feature

(dis)agreements need some more explanation:

� Nominals. We 
onsider a set N

O

of (names for) nominals, whi
h is pairwise

disjoint to the sets N

C

, N

R

, and N

I

. Elements from N

O

are often denoted by I

(possibly with index). An interpretation must map nominals to singleton subsets

of �

I

. The intention underlying nominals is that they stand for elements of �,

just like individual names. However, sin
e we want to use the nominal I 2 N

O

as a (nullary) 
on
ept 
onstru
tor, I must interpret them by a set, namely the

singleton set 
onsisting of the individual that I denotes.

� Feature (dis)agreements. ALCF is the extension of ALC

f

with feature agree-

ments and disagreements. Beside the additional 
on
ept 
onstru
tors, ALCF

uses feature 
hains as part of the (dis)agreement 
onstru
tor. A feature 
hain

is an expression of the form u = f

1

Æ � � � Æ f

n

. The interpretation u

I

of su
h a

feature 
hain is just the 
omposition of the partial fun
tions f

I

1

; : : : ; f

I

n

, where


omposition is to be read from left to right.

DLs in
luding nominals or feature (dis)agreements and additional 
on
ept 
onstru
tors

or restri
tions on role interpretations are de�ned (and named) in the obvious way.

Number restri
tion are available in almost all DL systems. The DL ALCN (i.e.,

ALC extended with number restri
tions) was �rst treated by Hollunder and Nutt

8
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Name Syntax Semanti
s Symbol

Role 
omposition R

1

ÆR

2

f(a; b) 2 �

I

��

I

j Æ

9
 2 �

I

: (a; 
) 2 R

I

1

^ (
; b) 2 R

I

2

g

Role 
omplement R f(a; b) 2 �

I

��

I

j (a; b) =2 R

I

g �

Role 
onjun
tion R

1

u R

2

f(a; b) 2 �

I

��

I

j (a; b) 2 R

I

1

^ (a; b) 2 R

I

2

g u

Role disjun
tion R

1

t R

2

f(a; b) 2 �

I

��

I

j (a; b) 2 R

I

1

_ (a; b) 2 R

I

2

g t

Inverse roles R

�1

f(a; b) 2 �

I

��

I

j (b; a) 2 R

I

g �1

Transitive 
losure R

+

f(a; b) 2 �

I

��

I

j (a; b) 2 (R

I

)

+

g +

Universal role U �

I

��

I

U

For a binary relation R, R

+

denotes the transitive 
losure of R.

Figure 2: Some des
ription logi
 role 
onstru
tors.

(1990), as was ALCF . The DL ALCQ was �rst investigated by Hollunder and Baader

(1991), and ALCO by S
haerf (1994).

2.1.3 Role 
onstru
tors

Role 
onstru
tors allow us to build 
omplex role des
riptions. A 
olle
tion of role


onstru
tors 
an be found in Figure 2. Again, the rightmost 
olumn indi
ates the

naming s
heme, where name modi�ers for role 
onstru
tors are written in supers
ript

and separated by 
ommas. For example, ALCQ with inverse roles and transitive 
losure

is 
alled ALCQ

+;�1

. In DLs admitting role 
onstru
tors, the set of role des
riptions is

de�ned indu
tively, analogously to the set of 
on
ept des
riptions. The semanti
s of

role 
onstru
tors is given in the third 
olumn of Figure 2. As with 
on
ept des
riptions,

it 
an be used to extend the interpretation fun
tion from role names to role des
riptions.

In a DL with role 
onstru
tors, role des
riptions 
an be used wherever role names

may be used in the 
orresponding DLs without role 
onstru
tors. For example,

9(R

1

uR

3

):C u 8(R

2

tR

2

)::C

is an ALC

�;u;t

-
on
ept des
ription. This 
on
ept des
ription is unsatis�able sin
e R

2

t

R

2

is equivalent to the universal role. Note that role des
riptions 
an also be used

within role assertions in an ABox.

The DL ALC

Æ;t;+

was �rst treated by Baader (1991) (under the name ALC

trans

);

S
hild (1991) has shown that this DL is a notational variant of propositional dynami


logi
 (PDL). DLs with Boolean operators on roles were investigated by Lutz and Sattler

(2000). The inverse operator was available in the system CRACK (Bres
iani, Fran
oni,

& Tessaris, 1995), and reasoning in DLs with inverse roles was, for example, investigated

by Calvanese et al. (1998) and Horro
ks et al. (2000). The universal role 
an be

expressed using DLs with Boolean operators on roles (see the above example), and

it 
an in turn be used to simulate general 
on
ept in
lusion axioms within 
on
ept

des
riptions.

2.2 Restri
ting the syntax

Until now, 
onstru
tors 
ould be 
ombined arbitrarily. Sometimes it makes sense to

restri
t the intera
tion between 
onstru
tors sin
e reasoning in the restri
ted DL may

9
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be easier than reasoning in the unrestri
ted DL. We will 
onsider DLs imposing 
ertain

restri
tions on

1. whi
h roles may be used inside 
ertain 
on
ept 
onstru
tors,

2. whi
h roles may be used inside 
ertain role 
onstru
tors,

3. the 
ombination of role 
onstru
tors, and

4. the role 
onstru
tors that may be used inside 
ertain 
on
ept 
onstru
tors.

As an example for the �rst 
ase, 
onsider the fragment of ALCQ

R

+ in whi
h transitive

roles may be used in existential and universal restri
tions, but not in number restri
tions

(see, e.g., Horro
ks et al., 2000).

As the result of taking the fusion of two DLs, we will obtain DLs whose set of roles

N

R

is partitioned. For example, the fusion of ALCQ with ALC

�1

yields a fragment of

ALCQ

�1

where N

R

is partitioned in two sets, say N

R

1

and N

R

2

. In this fragment, the

inverse role 
onstru
tor and roles from N

R

2

may not be used within quali�ed number

restri
tions, while roles from N

R

1

may not be used inside the inverse role 
onstru
tor.

2

Thus, this DL is an example for the �rst, the se
ond, and the fourth 
ase.

Now 
onsider the DL ALCF introdu
ed above, whi
h does not only extend ALC

f

with feature (dis)agreement as a 
on
ept 
onstru
tor, but also provides the role 
om-

position 
onstru
tor. However, the role 
hains built using 
omposition have to be


omprised ex
lusively of features and non-fun
tional roles may not appear inside fea-

ture (dis)agreement. Hen
e, ALCF is also an example for the �rst, se
ond, and fourth


ase.

As an example for the third 
ase, the fragment of ALC

�;u

in whi
h role 
onjun
tion

may not be used inside the role 
omplement 
onstru
tor is 
onsidered by Lutz and

Sattler (2000).

For these restri
ted DLs, we do not introdu
e an expli
it naming s
heme. Note

that, in this paper, we do not deal with DLs in whi
h the 
ombinability of 
on
ept 
on-

stru
tors with ea
h other is restri
ted sin
e these DLs would not �t into the framework

of abstra
t des
ription systems introdu
ed in the next se
tion. An example of su
h a

DL would be one with atomi
 negation of 
on
epts, i.e., where negation may only be

applied to 
on
ept names (e.g., the DL AL dis
ussed by Donini et al., 1997).

3. Abstra
t des
ription systems

In order to de�ne the fusion of DLs and prove general results for fusions of DLs,

one needs a formal de�nition of what are \des
ription logi
s". Sin
e there exists a

wide variety of DLs with very di�erent 
hara
teristi
s, we introdu
e a very general

formalization, whi
h should 
over all of the DLs 
onsidered in the literature, but also

in
ludes logi
s that would usually not be subsumed under the name DL.

3.1 Syntax and semanti
s

The syntax of an abstra
t des
ription system is given by its abstra
t des
ription lan-

guage, whi
h determines a set of terms, term assertions, and obje
t assertions. In

2. This will be
ome 
learer on
e we have given a formal de�nition of the fusion.

10
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this setting, 
on
ept des
riptions are represented by terms that are built using the ab-

stra
t des
ription language. General in
lusion axioms in DLs are represented by term

assertions and ABox assertions in DLs are represented by obje
t assertions.

De�nition 4 (Abstra
t des
ription language). An abstra
t des
ription language

(ADL) is determined by a 
ountably in�nite set V of set variables, a 
ountably in�nite

set X of obje
t variables, a (possibly in�nite) 
ountable set R of relation symbols of

arity two,

3

and a (possibly in�nite) 
ountable set F of fun
tions symbols f , whi
h are

equipped with arities n

f

. All these sets have to be pairwise disjoint.

The terms t

j

of this ADL are built using the follow syntax rules:

t

j

�! x; :t

1

; t

1

^ t

2

; t

1

_ t

2

; f(t

1

; : : : ; t

n

f

);

where x 2 V , f 2 F , and the Boolean operators :;^;_ are di�erent from all fun
tion

symbols in F . For a term t, we denote by var(t) the set of set variables used in t. The

symbol > is used as an abbreviation of x _ :x and ? as an abbreviation for x ^ :x

(where x is a set variable).

The term assertions of this ADL are

� t

1

v t

2

, for all terms t

1

; t

2

,

and the obje
t assertions are

� R(a; b), for a; b 2 X and R 2 R;

� (a : t), for a 2 X and t a term.

The sets of term and obje
t assertions together form the set of assertions of the ADL.

From the DL point of view, the set variables 
orrespond to 
on
ept names, obje
t

variables to individual names, relation symbols to roles, and the Boolean operators as

well as the fun
tion symbols 
orrespond to 
on
ept 
onstru
tors. Thus, terms 
orre-

spond to 
on
ept des
riptions. As an example, let us view 
on
ept des
riptions of the

DL ALCN

u

, i.e., ALC extended with number restri
tions and 
onjun
tion of roles, as

terms of an ADL. Value restri
tions and existential restri
tions 
an be seen as unary

fun
tion symbols: for ea
h role des
ription R, we have the fun
tion symbols f

8R

and

f

9R

, whi
h take a term t

C

(
orresponding to the 
on
ept des
ription C) and transform

it into the more 
omplex terms f

8R

(t

C

) and f

9R

(t

C

) (
orresponding to the 
on
ept de-

s
riptions 8R:C and 9R:C). Similarly, number restri
tions 
an be seen as nullary fun
-

tion symbols: for ea
h role des
ription R and ea
h n 2 N, we have the fun
tion symbols

f

�nR

and f

�nR

. Hen
e, the ALCN

u

-
on
ept des
ription Au8(R

1

uR

2

)::(Bu(� 2R

1

))


orresponds to the term x

A

^f

8(R

1

uR

2

)

(:(x

B

^f

(�2R

1

)

)). We will analyze the 
onne
tion

between ADLs and DLs more formally later on.

The semanti
s of abstra
t des
ription systems is de�ned based on abstra
t des
rip-

tion models. These models are the general semanti
 stru
tures in whi
h the terms of

the ADL are interpreted. It should already be noted here, however, that an abstra
t

des
ription system usually does not take into a

ount all abstra
t des
ription models

available for the language: it allows only for a sele
ted sub
lass of these models. This

sub
lass determines the semanti
s of the system.

3. To keep things simpler, we restri
t our attention to the 
ase of binary predi
ates, i.e., roles in DL.

However, the results 
an easily be extended to n-ary predi
ates.

11
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De�nition 5. Let L be an ADL as in De�nition 4. An abstra
t des
ription model

(ADM) for L is of the form

W =

D

W;F

W

= ff

W

j f 2 Fg;R

W

= fR

W

j R 2 Rg

E

;

whereW is a nonempty set, the f

W

are fun
tions mapping every sequen
e




X

1

; : : : ;X

n

f

�

of subsets of W to a subset of W , and the R

W

are binary relations on W .

Sin
e ADMs do not interpret variables, we need an assignment that assigns a subset

of W to ea
h set variable, before we 
an evaluate terms in an ADM. To evaluate obje
t

assertions, we need an additional assignment that assigns an element of W to ea
h

obje
t variable.

De�nition 6. Let L be an ADL and W =




W;F

W

;R

W

�

be an ADM for L. An

assignment forW is a pair A = (A

1

;A

2

) su
h that A

1

is a mapping from the set of set

variables V into 2

W

, and A

2

is an inje
tive

4

mapping from the set of obje
t variables

X into W . Let W be an ADM and A = (A

1

;A

2

) be an assignment for W. With ea
h

L-term t, we indu
tively asso
iate a value t

W;A

in 2

W

as follows:

� x

W;A

:= A

1

(x) for all variables x 2 V ,

� (:t)

W;A

:=W n (t)

W;A

, (t

1

^ t

2

)

W;A

:= t

W;A

1

\ t

W;A

2

, (t

1

_ t

2

)

W;A

:= t

W;A

1

[ t

W;A

2

,

� f(t

1

; : : : ; t

n

f

)

W;A

:= f

W

(t

W;A

1

; : : : ; t

W;A

n

f

).

If x

1

; : : : ; x

n

are the set variables o

urring in t, then we often write t

W

(X

1

; : : : ;X

n

) as

shorthand for t

W;A

, where A is an assignment with x

A

i

= X

i

for 1 � i � n.

The truth-relation j= between hW;Ai and assertions is de�ned as follows:

� hW;Ai j= R(a; b) i� A

2

(a)R

W

A

2

(b),

� hW;Ai j= a : t i� A

2

(a) 2 t

W;A

,

� hW;Ai j= t

1

v t

2

i� t

W;A

1

� t

W;A

2

.

In this 
ase we say that the assertion is satis�ed in hW;Ai. If, for an ADM W and a

set of assertions �, there exists an assignment A forW su
h that ea
h assertion in � is

satis�ed in hW;Ai, then W is a model for �.

There are two di�eren
es between ADMs and DL interpretations. First, in a DL in-

terpretation, the interpretation of the role names �xes the interpretation of the fun
tion

symbols 
orresponding to 
on
ept 
onstru
tors that involve roles (like value restri
tions,

number restri
tions, et
.). The interpretation of the 
on
ept names 
orresponds to an

assignment. Thus, a DL model is an ADM together with an assignment, whereas an

ADM alone 
orresponds to what is 
alled frame in modal logi
s. Se
ond, in DL the

roles used in 
on
ept 
onstru
tors may, of 
ourse, also o

ur in role assertions. In


ontrast, the de�nition of ADMs per se does not enfor
e any 
onne
tion between the

interpretation of the fun
tion symbols and the interpretation of the relation symbols.

Su
h 
onne
tions 
an, however, be enfor
ed by restri
ting the attention to a sub
lass

of all possible ADMs for the ADL.

4. This 
orresponds to the unique name assumption.
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De�nition 7. An abstra
t des
ription system (ADS) is a pair (L;M), where L is an

ADL and M is a 
lass of ADMs for L that is 
losed under isomorphi
 
opies.

5

From the DL point of view, the 
hoi
e of the 
lass M de�nes the semanti
s of the


on
ept and role 
onstru
tors, and it allows us, e.g., to in
orporate restri
tions on role

interpretations. In this sense, the ADS 
an be viewed as determining a (des
ription)

logi
.

To be more 
on
rete, in a DL interpretation the interpretation of the fun
tion

symbols is determined by the interpretation of the role names. Thus one 
an, for

example, restri
t the 
lass of models to ADMs that interpret a 
ertain role as a transitive

relation or as the 
omposition of two other roles. Another restri
tion that 
an be

realized by the 
hoi
e ofM is that nominals (
orresponding to nullary fun
tion symbols)

must be interpreted as singleton sets.

Let us now de�ne reasoning problems for abstra
t des
ription systems. We will

introdu
e satis�ability of sets of assertions (with or without term assertions), whi
h


orresponds to 
onsisten
y of ABoxes (with or without GCIs), and satis�ability of

terms (with or without term assertions), whi
h 
orresponds to satis�ability of 
on
ept

des
riptions (with or without GCIs).

De�nition 8. Given an ADS (L;M), a �nite set of assertions � is 
alled satis�able

in (L;M) i� there exists an ADM W 2 M and an assignment A for W su
h that

hW;Ai satis�es all assertions in �. The term t is 
alled satis�able in (L;M) i� fa : tg

is satis�able in (L;M), where a is an arbitrary obje
t variable.

� The satis�ability problem for (L;M) is 
on
erned with the following question:

given a �nite set of obje
t assertions � of L, is � is satis�able in (L;M).

� The relativized satis�ability problem for (L;M) is 
on
erned with the following

question: given a �nite set of assertions � of L, is � is satis�able in (L;M).

� The term satis�ability problem for (L;M) is 
on
erned with the following ques-

tion: given a term t of L, is t satis�able in (L;M).

� The relativized term satis�ability problem for (L;M) is 
on
erned with the fol-

lowing question: given a term t and a set of term assertions � of L, is fa : tg [�

satis�able in (L;M).

In the next se
tion, we will de�ne the fusion of two ADSs, and show that (relativized)

satis�ability is de
idable in the fusion if (relativized) satis�ability in the 
omponent

ADSs is de
idable. For these transfer results to hold, we must restri
t ourselves to

so-
alled lo
al ADSs.

De�nition 9. Given a family (W

p

)

p2P

of ADMsW

p

=




W

p

;F

W

p

;R

W

p

�

over pairwise

disjoint domains W

p

, we say that W =




W;F

W

;R

W

�

is the disjoint union of (W

p

)

p2P

i�

� W =

S

p2P

W

p

,

5. Intuitively, this means that, if an ADM W belongs to M, then all ADMs that di�er from it only

w.r.t. the names of the elements in its domain W also belong toM.
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� f

W

(X

1

; : : : ;X

n

f

) =

S

p2P

f

W

p

(X

1

\W

p

; : : : ;X

n

f

\W

p

) for all f 2 F and

X

1

; : : : ;X

n

f

�W ,

� R

W

=

S

p2P

R

W

p

for all R 2 R.

An ADS S = (L;M) is 
alled lo
al i� M is 
losed under disjoint unions.

In the remainder of this se
tion, we �rst analyze the 
onne
tion between ADSs and

DLs in more detail, and then 
omment on the relationship to modal logi
s.

3.2 Corresponden
e to des
ription logi
s

We will show that the DLs introdu
ed in Se
tion 2 
orrespond to ADSs. In order to

do this, we �rst need to introdu
e frames, a notion well-known from modal logi
. Let

L be one of the DLs introdu
ed in Se
tion 2.

De�nition 10 (Frames). An L-frame F is a pair (�

F

; �

F

), where �

F

is a nonempty

set, 
alled the domain of F, and �

F

is the interpretation fun
tion, whi
h maps

� ea
h nominal I to a singleton subset I

F

of �

F

, and

� ea
h role name R to a subset R

F

of �

F

��

F

su
h that the restri
tions for role

interpretations in L are satis�ed. For example, in ALC

R

+ , ea
h R 2 N

R

+ is

mapped to a transitive binary relation.

The interpretation fun
tion �

F


an indu
tively be extended to 
omplex roles in the

obvious way, i.e., by interpreting the role 
onstru
tors in L a

ording to their semanti
s

as given in Figure 2.

An interpretation I is based on a frame F i� �

I

= �

F

, R

I

= R

F

for all roles

R 2 N

R

, and I

I

= I

F

for all nominals I 2 N

O

.

A frame 
an be viewed as an interpretation that is partial in the sense that the

interpretation of individual and 
on
ept names is not �xed. Note that (in 
ontrast to

the 
ase of 
on
ept and individual names) the interpretation of nominals is already

�xed in the frame. The reason for this is that, if we do not interpret nominals in the

frame, then we have to treat them as set variables on the ADS side. These would,

however, have to be variables to whi
h only singleton sets may be assigned. Sin
e su
h

a restri
tion is not possible in the framework of ADSs as de�ned above, we interpret

nominals in the frame. The 
onsequen
e is that they 
orrespond to fun
tions of arity

0 on the ADS side.

Now, we de�ne the abstra
t des
ription system S = (L;M) 
orresponding to a

DL L. It is straightforward to translate the syntax of L into an abstra
t des
ription

language L.

De�nition 11 (Corresponding ADL). Let L be a DL with 
on
ept and role 
on-

stru
tors as well as restri
tions on role interpretations as introdu
ed in Se
tion 2. The


orresponding abstra
t des
ription language L is de�ned as follows. For every 
on
ept

name A in L, there exists a set variable x

A

in L, and for every individual name i in

L there exists an obje
t variable a

i

in L. Let R be the set of (possibly 
omplex) role

des
riptions of L. The set of relation symbols of L is R, and the set of fun
tion symbols

of L is the smallest set 
ontaining

14
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1. for every role des
ription R 2 R, unary fun
tion symbols f

9R

and f

8R

,

2. if L provides unquali�ed number restri
tions, then, for every n 2 N and every

role des
ription R 2 R, fun
tion symbols f

�nR

and f

�nR

of arity 0,

3. if L provides quali�ed number restri
tions, then, for every n 2 N and every role

R 2 R, unary fun
tion symbols f

_

�nR

and f

_

�nR

,

4. if L provides nominals, then, for every I 2 N

O

, a fun
tion symbol f

I

of arity 0,

5. if L provides feature agreement and disagreement, then, for every pair of feature


hains (u

1

; u

2

), two fun
tion symbols f

u

1

#u

2

and f

u

1

"u

2

of arity 0.

For an L-
on
ept des
ription C, let t

C

denote the representation of C as an L-term,

whi
h is de�ned in the obvious way: 
on
ept names A are translated into set variables

x

A

, the 
on
ept 
onstru
tors :, u, and t are mapped to :, ^, and _, respe
tively, and

all other 
on
ept 
onstru
tors are translated to the 
orresponding fun
tion symbols.

Obviously, both the sets of fun
tion and relation symbols of L may be in�nite.

An example of the translation of 
on
ept des
riptions into terms of an ADL was

already given above: the ALCN

u

-
on
ept des
ription A u 8(R

1

uR

2

)::(B u (� 2R

1

))


orresponds to the term x

A

^ f

8(R

1

uR

2

)

(:(x

B

^ f

(�2R

1

)

)).

We now de�ne the set of abstra
t des
ription models M 
orresponding to the DL

L. For every L-frame, M 
ontains a 
orresponding ADM.

De�nition 12 (Corresponding ADM). Let F = (�

F

; �

F

) be a frame. The 
orre-

sponding abstra
t des
ription model W =




W;F

W

;R

W

�

has domain W := �

F

. The

relation symbols of L are just the role des
riptions of L, and thus they are interpreted

in the frame F. For ea
h relation symbol R 2 R we 
an hen
e de�ne R

W

:= R

F

.

To de�ne F

W

, we need to de�ne f

W

for every nullary fun
tion symbol f in L,

and f

W

(X) for every unary fun
tion symbol f in L and every X � �

I

. Let A be an

arbitrary 
on
ept name. For ea
h X � �

F

, let I

X

be the interpretation based on F

mapping the 
on
ept name A to X and every other 
on
ept name to ;.

6

To de�ne f

W

,

we make a 
ase distin
tion a

ording to the type of f :

1. f

W

9R

(X) := (9R:A)

I

X

, f

W

8R

(X) := (8R:A)

I

X

,

2. f

W

�nR

:= (�nR)

I

;

, f

W

�nR

:= (�nR)

I

;

,

3. f

W

_

�nR

(X) := (�nR:A)

I

X

, f

W

_

�nR

(X) := (�nR:A)

I

X

,

4. f

W

I

:= I

I

;

,

5. f

W

u

1

#u

2

= (u

1

#u

2

)

I

;

, f

W

u

1

"u

2

= (u

1

"u

2

)

I

;

.

The 
lass of ADMs M thus obtained from a DL L is obviously 
losed under iso-

morphi
 
opies sin
e this also holds for the set of L-frames (independently of whi
h DL

L we 
onsider). Hen
e, the tuple S = (L;M) 
orresponding to a DL L is indeed an

ADS.

As an example, let us view the DL ALCN

u

as an ADS. The ADL L 
orresponding

to ALCN

u

has already been dis
ussed. Thus, we 
on
entrate on the 
lass of ADMs

6. Taking the empty set here is arbitrary.
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M indu
ed by the frames of ALCN

u

. Assume that F is su
h a frame, i.e., F 
onsists

of a nonempty domain and interpretations R

F

of the role names R. The ADM W =




W;F

W

;R

W

�

indu
ed by F is de�ned as follows. The set W is identi
al to the domain

of F. Ea
h role des
ription yields a relation symbol, whi
h is interpreted inW just as in

the frame. For example, (R

1

uR

2

)

W

= R

F

1

\R

F

2

. It remains to de�ne the interpretation

of the fun
tion symbols. We illustrate this on two examples. First, 
onsider the (unary)

fun
tion symbol f

8(R

1

uR

2

)

. Given a subset X of W , the fun
tion f

W

8(R

1

uR

2

)

maps X to

f

W

8(R

1

uR

2

)

(X) := fw 2W j v 2 X for all v with (w; v) 2 R

F

1

\R

F

2

g;

i.e., the interpretation of the 
on
ept des
ription 8(R

1

u R

2

):A in the interpretations

based on F interpreting A by X. A

ordingly, the value of the 
onstant symbol f

(�2R)

in W is given by the interpretation of (� 2R) in the interpretations based on F.

It is easy to show that the interpretation of 
on
ept des
riptions in L 
oin
ides with

the interpretation of the 
orresponding terms in S = (L;M).

Lemma 13. Let F be a frame, W =




W;F

W

;R

W

�

be the ADM 
orresponding to F,

A = (A

1

;A

2

) be an assignment for W, C be a 
on
ept des
ription, and let the 
on
ept

names used in C be among A

1

; : : : ; A

k

. For all interpretations I based on F with

A

I

i

= A

1

(x

A

i

) for all 1 � i � k, we have that

C

I

= t

W;A

C

:

As an easy 
onsequen
e of this lemma, there is a 
lose 
onne
tion between reasoning

in a DL L and reasoning in the 
orresponding ADS. Given a TBox T and an ABox A

of the DL L, we de�ne the 
orresponding set S(T ;A) of assertions of the 
orresponding

ADL (L;M) in the obvious way, i.e., ea
h GCI C v D in T yields a term assertion

t

C

v t

D

, ea
h role assertion R(i; j) in A yields an obje
t assertion R(a

i

; a

j

), and ea
h


on
ept assertion C(i) yields an obje
t assertion a

i

: t

C

.

Proposition 14. The ABox A is 
onsistent relative to the TBox T in L i� S(T ;A)

is satis�able in the 
orresponding ADS.

We do not treat non-relativized 
onsisten
y expli
itly sin
e it is the spe
ial 
ase of

relativized 
onsisten
y where the TBox is empty.

As already mentioned above, our transfer results require the 
omponent ADSs to

be lo
al. We 
all a DL L lo
al i� the ADS (L;M) 
orresponding to L is lo
al. It turns

out that not all DLs introdu
ed in Se
tion 2 are lo
al.

Proposition 15. Let L be one of the DLs introdu
ed in Se
tion 2. Then, L is lo
al

i� L does not in
lude any of the following 
onstru
tors: nominals, role 
omplement,

universal role.

Proof. We start with the \only if" dire
tion, whi
h is more interesting sin
e it shows

why ADSs 
orresponding to DLs with nominals, role 
omplement, or the universal role

are not lo
al. We make a 
ase distin
tion a

ording to whi
h of these 
onstru
tors L


ontains.

� Nominals. Consider the disjoint unionW of the ADMsW

1

andW

2

, and assume

that W

1

and W

2


orrespond to frames of a DL with nominals. By de�nition of
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the disjoint union, we know that �

W

1

\�

W

2

= ;. If I 2 N

O

is a nominal, then

the de�nition of the disjoint union implies that f

W

I

= f

W

1

I

[f

W

2

I

. Sin
e nominals

are interpreted by singleton sets in W

1

and W

2

, and sin
e the domains of W

1

and W

2

are disjoint, this implies that f

W

I

is a set of 
ardinality 2. Consequently,

W 
annot 
orrespond to an ADM indu
ed by a frame for a DL with nominals,

sin
e su
h frames interpret nominals by singleton sets.

� Universal role. Again, 
onsider the disjoint unionW of the ADMsW

1

andW

2

,

and assume that W

1

and W

2


orrespond to frames of a DL with the universal

role. Let U denote the universal role, i.e., a role name for whi
h the interpretation

is restri
ted to the binary relation relating ea
h pair of individuals of the domain.

By the de�nition of the disjoint union, we have U

W

= U

W

1

[ U

W

2

= �

W

1

�

�

W

1

[ �

W

2

� �

W

2

6= �

W

� �

W

. Consequently, W 
annot 
orrespond to an

ADM indu
ed by a frame for a DL with universal role, sin
e su
h a frame would

interpret U by �

W

��

W

.

� Role 
omplement. Again, 
onsider the disjoint union W of the ADMs W

1

and W

2

, and assume that W

1

and W

2


orrespond to frames of a DL with role

negation. For an arbitrary role name R, we have R

W

= R

W

1

[ R

W

2

= (�

W

1

�

�

W

1

nR

W

1

) [ (�

W

2

��

W

2

nR

W

2

) 6= (�

W

1

[�

W

2

) n (R

W

1

[R

W

2

) = �

W

nR

W

.

It remains to prove the \if" dire
tion. Assume that L is one of the DLs introdu
ed

in Se
tion 2 that does not allow for nominals, role 
omplements, and the universal role.

Let (F

p

)

p2P

be a family of L-frames F

p

= (�

F

p

; �

F

p

) and let W

p

=




W

p

;F

W

p

;R

W

p

�

be the ADMs 
orresponding to them. By de�nition, �

F

p

= W

p

for all p 2 P . Assume

that the domains (W

p

)

p2P

are pairwise disjoint. We must show that the disjoint union

of (W

p

)

p2P

also 
orresponds to an L-frame. To this purpose, we de�ne the frame

F = (�

F

; �

F

) as follows:

� �

F

:=

S

p2P

�

F

p

and

� R

F

:=

S

p2P

R

F

p

for all R 2 N

R

.

Let W =




W;F

W

;R

W

�

2 M be the ADM 
orresponding to F. By De�nition 12

(
orresponding ADM), we have W =

S

p2P

W

p

and R

W

=

S

p2P

R

W

p

for all R 2 N

R

.

By indu
tion on the stru
ture of 
omplex roles, it is easy to show that this also holds for

all R 2 R, i.e., all 
omplex role des
riptions. For example, 
onsider the role des
ription

R

1

Æ R

2

. By indu
tion, we know that R

W

1

=

S

p2P

R

W

p

1

and R

W

2

=

S

p2P

R

W

p

2

. Sin
e

the sets (W

p

)

p2P

are pairwise disjoint,

(R

1

ÆR

2

)

W

= R

W

1

ÆR

W

2

=

[

p2P

R

W

p

1

Æ

[

p2P

R

W

p

2

=

[

p2P

R

W

p

1

Æ R

W

p

2

=

[

p2P

(R

1

Æ R

2

)

W

p

:

Sin
e R

W

p

= R

F

p

for all R 2 R and p 2 P , we obtain the following fa
t:

(�) For all p 2 P , a 2 �

F

p

, and role des
riptions R 2 R, the following holds:

R

F

(a) = R

F

p

(a); in parti
ular, R

F

(a) � �

F

p

.
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It remains to show that, for all n � 0, all X

1

; : : : ;X

n

�W , and all fun
tion symbols f

of arity n, we have

f

W

(X

1

; : : : ;X

n

) =

[

p2P

f

W

p

(X

1

\W

p

; : : : ;X

n

\W

p

):

This 
an be proved by making a 
ase distin
tion a

ording to the type of f . We treat

two 
ases exemplarily.

� f = f

u

1

#u

2

. Sin
e W =

S

p2P

W

p

and the sets W

p

are pairwise disjoint, f

W

u

1

#u

2

is the disjoint union of the sets f

W

u

1

#u

2

\W

p

for p 2 P . It remains to show that

f

W

u

1

#u

2

\W

p

= f

W

p

u

1

#u

2

(p 2 P ). By de�nition of f

W

p

u

1

#u

2

, we know that a 2 f

W

p

u

1

#u

2

i� a 2 �

F

p

, both u

F

p

1

(a) and u

F

p

2

(a) are de�ned, and u

F

p

1

(a) = u

F

p

2

(a). By (�),

this is the 
ase i� a 2 �

F

p

, both u

F

1

(a) and u

F

2

(a) are de�ned and u

F

1

(a) = u

F

2

(a),

whi
h is equivalent to a 2 f

W

u

1

#u

2

\W

p

.

� f = f

_

�nR

. Sin
e W =

S

p2P

W

p

and the sets W

p

are pairwise disjoint, f

W

_

�nR

(X)

is the disjoint union of the sets f

W

_

�nR

(X)\W

p

for p 2 P . It remains to show that

f

W

_

�nR

(X) \W

p

= f

W

p

_

�nR

(X \W

p

) (p 2 P ). By de�nition of f

W

p

_

�nR

, we know that

a 2 f

W

p

_

�nR

(X\W

p

) i� a 2 �

F

p

and jR

F

p

(a)\(X\W

p

)j � n. By (�), this is the 
ase

i� jR

F

(a) \ (X \W

p

)j � n i� jR

F

(a) \Xj � n, and hen
e i� a 2 f

W

_

�nR

(X) \W

p

.

❏

It should be noted that arguments similar to the ones used in the proof of the \only

if" dire
tion show that, in the presen
e of the universal role or of role negation, fun
tion

symbols (e.g., f

8U

) may also violate the lo
ality 
ondition.

The transfer results for de
idability that are developed in this paper only apply to

fusions of lo
al ADSs. Hen
e, the \only if" dire
tion of the proposition implies that our

results are not appli
able to fusions of ADSs 
orresponding to DLs that in
orporate

nominals, role 
omplement, or the universal role.

3.3 Corresponden
e to modal logi
s

In this paper our 
on
ern are fusions of des
ription logi
s and not modal logi
s. Nev-

ertheless, it is useful to have a brief look at the relationship between ADSs and modal

logi
. Standard modal languages 
an be regarded as ADLs without relation symbols

and obje
t variables (just identify propositional formulas with terms). Given su
h an

ADL L, a set L of L-terms is 
alled a 
lassi
al modal logi
 i� is 
ontains all tautologies

of 
lassi
al propositional logi
 and is 
losed under modus ponens, substitutions, and

the regularity rule

x

1

$ y

1

; : : : ; x

n

f

$ y

n

f

f(x

1

; : : : ; x

n

f

)$ f(y

1

; : : : ; y

n

f

)

for all fun
tion symbols f of L. The minimal 
lassi
al modal logi
 in the language with

one unary fun
tion symbol is known as the logi
 E (see Chellas, 1980).

Any ADS (L;M) based on L determines a 
lassi
al modal logi
 L by taking the

valid terms, i.e., by de�ning

t 2 L i� t

W;A

=W for all W 2M and assignments A in W:
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The logi
 E is determined by the ADS with pre
isely one unary operator whose 
lass

of ADMs 
onsists of all models. Chellas formulates this 
ompleteness result (Theo-

rem 9.8 in Chellas, 1980) for so-
alled minimal models (alias neighborhood-frames),

whi
h are, however, just a notational variant of abstra
t des
ription models with one

unary operator (Do�sen, 1988). If the 
lassi
al modal logi
 L is determined by an ADS

with de
idable term satis�ability problem, then L is de
idable sin
e t 2 L i� :t is

unsatis�able.

A 
lassi
al modal logi
 L is 
alled normal i� it additionally 
ontains

f(x

1

; : : : ; x

j�1

; x

j

^ y

j

; x

j+1

; : : : ; x

n

f

) $ f(x

1

; : : : ; x

j�1

; x

j

; x

j+1

; : : : ; x

n

f

) ^

f(x

1

; : : : ; x

j�1

; y

j

; x

j+1

; : : : ; x

n

f

)

and

f(>;?; : : : ;?); f(?;>;?; : : : ;?); : : : ; f(?; : : : ;?;>);

for all fun
tion symbols f and all j with 1 � j � n

f

(J�onsson & Tarski, 1951; J�onsson

& Tarski, 1952; Goldblatt, 1989). This de�nition of normal modal logi
s assumes that

the formulas (terms) are built using only ne
essity (box) operators.

7

We will work here

only with ne
essity operators; the 
orresponding possibility-operators are de�nable by

putting

f

3

(x

1

; : : : ; x

n

f

) = :f(:x

1

; : : : ;:x

n

f

):

The minimal normal modal logi
 in the language with one unary operator is known

as K (Chellas, 1980).

We 
all a fun
tion F : W

n

!W normal i� for all 1 � j � n andX

1

; : : : ;X

n

; Y

j

�W

F (X

1

; : : : ;X

j�1

;X

j

\ Y

j

;X

j+1

; : : : ;X

n

) = F (X

1

; : : : ;X

j�1

;X

j

;X

j+1

; : : : ;X

n

) \

F (X

1

; : : : ;X

j�1

; Y

j

;X

j+1

; : : : ;X

n

))

and

F (W; ;; : : : ; ;) = F (;;W; ;; : : : ; ;) = � � � = F (;; : : : ; ;;W ) =W:

Note that a unary fun
tion F is normal i� F (W ) =W and F (X \Y ) = F (X)\F (Y ),

for any X;Y � W . A fun
tion symbol f is 
alled normal in an ADS (L;M) i� the

fun
tions f

W

are normal for all W 2M.

For any role R of some DL, the fun
tion symbol f

8R

is normal in the 
orresponding

ADS. To the 
ontrary, it is readily 
he
ked that neither f

_

�nR

and f

_

�nR

nor their duals

f

3

_

�nR

and f

3

_

�nR

are normal.

Obviously, an ADS (L;M) determines a normal modal logi
 i� all fun
tion symbols

of L are normal in (L;M). Completeness of K with respe
t to Kripke semanti
s

(Chellas, 1980) implies that the logi
 K is determined by the ADS with one unary

operator whose 
lass of ADMs 
onsists of all models interpreting this operator by a

normal fun
tion.

7. Note that some authors de�ne normal modal logi
s using possibility (diamond) operators, in whi
h


ase the de�nitions are the duals of what we have introdu
ed and thus at �rst sight look quite

di�erent.
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4. Fusions of abstra
t des
ription systems

In this se
tion, we de�ne the fusion of abstra
t des
ription systems and prove two trans-

fer theorems for de
idability, one 
on
erning satis�ability and the other one 
on
erning

relativized satis�ability.

De�nition 16. The fusion S

1


S

2

= (L

1


L

2

;M

1


M

2

) of two abstra
t des
ription

systems S

1

= (L

1

;M

1

) and S

2

= (L

2

;M

2

) over

� disjoint sets of fun
tion symbols F of L

1

and G of L

2

,

� disjoint sets of relation symbols R of L

1

and Q of L

2

, and

� the same sets of set and obje
t variables

is de�ned as follows: L

1


L

2

is the ADL based on

� the union F [ G of the fun
tion symbols of L

1

and L

2

, and

� the union R [Q of the relation symbols of L

1

and L

2

,

and M

1


M

2

is de�ned as

f

D

W;F

W

[ G

W

;R

W

[Q

W

E

j

D

W;F

W

;R

W

E

2M

1

and

D

W;G

W

;Q

W

E

2M

2

g:

As an example, 
onsider the ADSs S

1

and S

2


orresponding to the DLs ALCF and

ALC

+;Æ;t

introdu
ed in Se
tion 2. We 
on
entrate on the fun
tion symbols provided

by their fusion. In the following, we assume that the set of role names employed by

ALCF and ALC

+;Æ;t

are disjoint.

� The ADS S

1

is based on the following fun
tion symbols: (i) unary fun
tions

symbol f

8R

and f

9R

for every role name R of ALCF , (ii) nullary fun
tions symbols


orresponding to the same-as 
onstru
tor for every pair of 
hains of fun
tional

roles of ALCF .

� The ADS S

2

is based on the following fun
tion symbols: (iii) unary fun
tions

symbol f

8Q

and f

9Q

for every role des
riptionQ built from role names of ALC

+;Æ;t

using union, 
omposition, and transitive 
losure.

Sin
e we assumed that the set of role names employed by ALCF and ALC

+;Æ;t

are

disjoint, these sets of fun
tion symbols are also disjoint. The union of these sets provides

us both with the symbols for the same-as 
onstru
tor and with the symbols for value and

existential restri
tions on role des
riptions involving union, 
omposition, and transitive


losure. However, the role des
riptions 
ontain only role names from ALC

+;Æ;t

, and

thus none of the fun
tional roles of ALCF o

urs in su
h des
riptions. Thus, the fusion

of ALCF and ALC

+;Æ;t

yields a stri
t fragment of their union ALCF

+;Æ;t

.

4.1 Relativized satis�ability

We prove a transfer result for de
idability of the relativized satis�ability problem, show

that this also yields a 
orresponding transfer result for the relativized term satis�ability

problem, and investigate how these transfer results 
an be extended to ADSs that


orrespond to DLs providing for the universal role.
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4.1.1 The transfer result

This se
tion is 
on
erned with establishing the following transfer theorem:

Theorem 17. Let S

1

and S

2

be lo
al ADSs, and suppose that the relativized satis�ability

problems for S

1

and S

2

are de
idable. Then the relativized satis�ability problem for

S

1


 S

2

is also de
idable.

The idea underlying the proof of this theorem is to translate a given set of assertions

� of S

1


 S

2

into a set of assertions �

1

of S

1

and a set of assertions �

2

of S

2

su
h that

� is satis�able in S

1


 S

2

i� �

1

is satis�able in S

1

and �

2

is satis�able in S

2

. The �rst

(naive) idea for how to obtain the set �

i

(i = 1; 2) is to repla
e in � alien terms (i.e.,

subterms starting with fun
tion symbols not belonging to S

i

) by new set variables (the

surrogate variables introdu
ed below). With this approa
h, satis�ability of � would in

fa
t imply satis�ability of the sets �

i

, but the 
onverse would not be true. The diÆ
ulty

arises when trying to 
ombine the models of �

1

and �

2

into one for �. To ensure that

the two models 
an indeed be 
ombined, the sets �

i

must 
ontain additional assertions

that make sure that the surrogate variables in one model and the 
orresponding alien

subterms in the other model are interpreted in a \
ompatible" way. To be more pre
ise,

there are (�nitely many) di�erent ways of adding su
h assertions, and one must try

whi
h of them (if any) leads to a satis�able pair �

1

and �

2

.

For the proof of Theorem 17, we �x two lo
al ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whi
h L

1

is based on the set of fun
tion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

.

In what follows, we use the following notation: for a set of assertions �, denote by

term(�) and obj(�) the set of terms and obje
t names in �, respe
tively.

We start with explaining how alien subterms in the set � 
an be repla
ed by new

set variables. For ea
h L-term t of the form h(t

1

; : : : ; t

n

), h 2 F [ G, we reserve a

new variable x

t

, whi
h will be 
alled the surrogate of t. We assume that the set of

surrogate variables is disjoint to the original sets of variables. As sket
hed above, the

idea underlying the introdu
tion of surrogate variables is that the de
ision pro
edure

for S

1

(S

2

) 
annot deal with terms 
ontaining fun
tion symbols from G (F). Thus, these

\alien" fun
tion symbols must be repla
ed before applying the pro
edure. To be more

pre
ise, we repla
e the whole alien subterm starting with the alien fun
tion symbol by

its surrogate. For example, if the unary symbol f belongs to F , and the unary symbol g

belongs to G, then f(g(f(x))) is a \mixed" L-term. To obtain a term of L

1

, we repla
e

the subterm g(f(x)) by its surrogate, whi
h yields f(x

g(f(x))

). Analogously, to obtain

a term of L

2

, we repla
e the whole term by its surrogate, whi
h yields x

f(g(f(x)))

. We

now de�ne this repla
ement pro
ess more formally.

De�nition 18. For an L-term t without surrogate variables, denote by sur

1

(t) the

L

1

-term resulting from t when all o

urren
es of terms g(t

1

; : : : ; t

n

), g 2 G, that are

not within the s
ope of some g

0

2 G are repla
ed by their surrogate variable x

g(t

1

;:::;t

n

)

.

For a set � of terms, put sur

1

(�) := fsur

1

(t) j t 2 �g and de�ne sur

2

(t) as well as

sur

2

(�) a

ordingly.

Denote by sub(�) the set of subterms of terms in �, and by sub

1

(�) the variables

o

urring in � as well as the subterms of alien terms (i.e., terms starting with a symbol

from G) in �. More formally, we 
an de�ne

sub

1

(�) := subft j x

t

2 var(sur

1

(�))g [ var(�):
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De�ne sub

2

(�) a

ordingly.

For example, let f 2 F be unary and g 2 G be binary. If t = f(g(x; f(g(x; y)))), then

sur

1

(t) = f(x

g(x;f(g(x;y)))

). Note that the restri
tion \not within the s
ope of some g

0

2

G" is there to 
larify that only the top-most alien subterms are to be repla
ed. For the

term t of this example, we have sub

1

(ftg) = fg(x; f(g(x; y))); f(g(x; y)); g(x; y); x; yg.

Note that the Boolean operators o

urring in terms are \shared" fun
tion symbols

in the sense that they are alien to neither L

1

nor L

2

. Thus, sur

1

(f(x) ^ g(x; y)) =

f(x) ^ x

g(x;y)

and sur

2

(f(x) ^ g(x; y)) = x

f(x)

^ g(x; y).

Of 
ourse, when repla
ing whole terms by variables, some information is lost. For

example, 
onsider the (in
onsistent) assertion (9R

1

:((�1R

2

) u (�2R

2

)))(i) and as-

sume that R

1

is a role of one 
omponent of a fusion, and R

2

a role of the other


omponent. Translated into abstra
t des
ription language syntax, the 
on
ept des
rip-

tion 9R

1

:((�1R

2

) u (�2R

2

)) yields the term t := f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

), where f

9R

1

is a fun
tion symbol of L

1

and the other two fun
tion symbols belong to L

2

. Now,

sur

1

(t) = f

9R

1

(x ^ y), where x is the surrogate for f

(�1R

2

)

and y is the surrogate for

f

(�2R

2

)

. If the de
ision pro
edure for the �rst ADS only sees f

9R

1

(x^y), it has no way

to know that the 
onjun
tion of the alien subterms 
orresponding to x and y is unsat-

is�able. In fa
t, for this pro
edure x and y are arbitrary set variables, and thus x ^ y

is satis�able. To avoid this problem, we introdu
e so-
alled 
onsisten
y set 
onsisting

of \types", where a type says for ea
h \relevant" formula whether the formula itself

or its negation is supposed to hold. The sets �

1

and �

2

will then 
ontain additional

information that basi
ally ensures that their models satisfy the same types. This will

allow us to merge these models into one for �.

De�nition 19. Given a �nite set � of L-terms, we de�ne the 
onsisten
y set C(�) of

� as C(�) := ft




j 
 � �g, where the type t




determined by 
 � � is de�ned as

t




:=

^

f� j � 2 
g ^

^

f:� j � 2 � n 
g:

Given a �nite set � of assertions in L, we de�ne sub

i

(�) := sub

i

(term(�)). We abbre-

viate C

i

(�) := C(sub

i

(�)), for i 2 f1; 2g.

In the example above, we have

sub

1

(f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

) = ff

(�1R

2

)

; f

(�2R

2

)

g;

and thus C

1

(fa

i

: f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

)g) 
onsists of the 4 terms

f

(�1R

2

)

^ f

(�2R

2

)

;

f

(�1R

2

)

^ :f

(�2R

2

)

;

:f

(�1R

2

)

^ f

(�2R

2

)

; and

:f

(�1R

2

)

^ :f

(�2R

2

)

:

Given a set of terms �, an element t




of its 
onsisten
y set C(�) 
an indeed be 
onsidered

as the \type" of an element e of the domain of an ADM w.r.t. �. Any su
h element

e belongs to the interpretations of some of the terms in �, and to the 
omplements of

the interpretations of the other terms. Thus, if 
 is the set of terms of � to whi
h e

belongs, then e also belongs to the interpretation of t




and it does not belong to the
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interpretation of any of the other terms in C(�). In this 
ase we say that e realizes the

type t




.

We are now ready to formulate the theorem that redu
es the relativized satis�ability

problem in a fusion of two lo
al ADSs to relativized satis�ability in the 
omponent

ADSs. A proof of this theorem 
an be found in the appendix.

Theorem 20. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two lo
al ADSs in whi
h L

1

is based

on the set of fun
tion symbols F and relation symbols R, and L

2

is based on G and Q,

and let L = L

1


L

2

and M =M

1


M

2

. If � is a �nite set of assertions from L, then

the following are equivalent:

1. � is satis�able in (L;M).

2. There exist

(a) a set D � C

1

(�),

(b) for every term t 2 D an obje
t variable a

t

62 obj(�),

(
) for every a 2 obj(�) a term t

a

2 D,

su
h that the union �

1

of the following sets of assertions in L

1

is satis�able in

(L

1

;M

1

):

(d) fa

t

: sur

1

(t) j t 2 Dg [ f> v sur

1

(

W

D)g,

(e) fa : sur

1

(t

a

) j a 2 obj(�)g,

(f) fR(a; b) j R(a; b) 2 �; R 2 Rg,

(g) fsur

1

(t

1

) v sur

1

(t

2

) j t

1

v t

2

2 �g [ fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of assertions in L

2

is satis�able in (L

2

;M

2

):

(h) fa

t

: sur

2

(t) j t 2 Dg [ f> v sur

2

(

W

D)g,

(i) fa : sur

2

(t

a

) j a 2 obj(�)g,

(j) fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

Intuitively, (2a) \guesses" a set D of types (i.e., elements of the 
onsisten
y set).

The idea is that these are exa
tly the types that are realized in the model of � (to be


onstru
ted when showing (2 ! 1) and given when showing (1 ! 2)). Condition (2b)

introdu
es for every type in D a name for an obje
t realizing this type, and (2
)

\guesses" for every obje
t variable o

urring in � a type from D.

Regarding (2d) and (2h), one should note that the set of assertions fa

t

: t j t 2

Dg [ f> v

W

Dg states that every type in D is realized (i.e., there is an obje
t in the

model having this type) and that every obje
t has one of the types in D. The sets

of assertions (2d) and (2h) are obtained from this set through surrogation to make it

digestible by the de
ision pro
edures of the 
omponent logi
s.

The assertions in (2e) and (2i) state (again in surrogated versions) that the obje
t

interpreting the variable a has type t

a

. This ensures that, in the models of �

1

and �

2

(given when showing (2 ! 1)), the obje
ts interpreting a have the same type t

a

from

D. Otherwise, these models 
ould not be 
ombined into a 
ommon one for �.

The sets (2f) and (2j) are obtained from � by distributing its relationship assertions

between �

1

and �

2

, depending on the relation symbol used in the assertion.
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The set (2g) 
ontains (in surrogated version) the term assertions of the form t

1

v t

2

and the membership assertions of the form a : s of �.

Condition 2 is asymmetri
 in two respe
ts. First, it guesses a subset of C

1

(�) rather

than a subset of C

2

(�). Of 
ourse this is arbitrary, we 
ould also have 
hosen index

2 instead of 1 here. Se
ond, the set �

2

neither 
ontains the assertions fsur

2

(t

1

) v

sur

2

(t

2

) j t

1

v t

2

2 �g nor fa : sur

2

(s) j (a : s) 2 �g. If we added these assertions, the

theorem would still be true, but this would unne
essarily in
rease the amount of work

to be done by the 
ombined de
ision pro
edure. In fa
t, sin
e the other assertions in

�

1

and �

2

enfor
e a tight 
oordination between the models of �

1

and �

2

, the fa
t that

the membership assertions and term assertions of � are satis�ed in the models of �

1

implies that they are also satis�ed in the models of �

2

(see the appendix for details).

To prove Theorem 17, we must show how Theorem 20 
an be used to 
onstru
t a

de
ision pro
edure for relativized satis�ability in S

1


S

2

from su
h de
ision pro
edures

for the 
omponent systems S

1

and S

2

. For a given �nite set of assertions � of S

1


 S

2

,

the set C

1

(�) is also �nite, and thus there are �nitely many sets D in (2a) and 
hoi
es

of types for obje
t variables in (2
). Consequently, we 
an enumerate all of them and


he
k whether one of these 
hoi
es leads to satis�able sets �

1

and �

2

. By de�nition

of the sets �

i

and of the fun
tions sur

i

, the assertions in �

i

are indeed assertions of

L

i

, and thus the satis�ability algorithm for (L

i

;M

i

) 
an be applied to �

i

. This proves

Theorem 17.

Regarding the 
omplexity of the obtained de
ision pro
edure, the 
ostly step is

guessing the right set D. Sin
e the 
ardinality of the set sub

1

(�) is linear in the size of

�, the 
ardinality of C

1

(�) is exponential in the size of � (and ea
h element of it has

size quadrati
 in �). Thus, there are doubly exponentially many di�erent subsets to be


hosen from. Sin
e the 
ardinality of the 
hosen set D may be exponential in the size

of �, also the size of �

1

and �

2

may be exponential in � (be
ause of the big disjun
tion

over D). From this, the following 
orollary follows.

Corollary 21. Let S

1

and S

2

be lo
al ADSs, and suppose that the relativized satis�abil-

ity problems for S

1

and S

2

are de
idable in ExpTime (PSpa
e). Then the relativized

satis�ability problem for S

1


 S

2

is de
idable in 2ExpTime (ExpSpa
e).

Proof. Assume that � has size n. Then we must 
onsider 2

2

p

1

(n)

(for some polynomial

p

1

) di�erent sets D in (2a). Ea
h su
h set has size 2

p

1

(n)

and thus we have of 2

2

p

2

(n)


hoi
es in (2
) (for some polynomial p

2

). Overall, this still leaves us with doubly

exponentially many 
hoi
es. Now assume that the relativized satis�ability problems

for S

1

and S

2

are de
idable in ExpTime. Sin
e ea
h 
all of these pro
edures is applied

to a set of assertions of exponential size, it may take double exponential time, say 2

2

p

3

(n)

and 2

2

p

4

(n)

(for polynomials p

3

and p

4

). Overall, we thus have a time 
omplexity of

2

2

p

1

(n)

� 2

2

p

2

(n)

� (2

2

p

3

(n)

+ 2

2

p

4

(n)

);

whi
h 
an 
learly be majorized by 2

2

p(n)

for an appropriate polynomial p. This shows

membership in 2ExpTime.

The argument regarding the spa
e 
omplexity is similar. Here one must additionally

take into a

ount that doubly exponentially many 
hoi
es 
an be enumerated using an

exponentially large 
ounter. ❏
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4.1.2 The relativized term satisfiability problem

The statement of Theorem 17 itself does not imply a transfer result for the relativized

term satis�ability problem. The problem is that de
idability of the relativized term

satis�ability problem in S

1

and S

2

does not ne
essarily imply de
idability of the rela-

tivized satis�ability problem in these ADSs, and thus the prerequisite for the theorem

to apply is not satis�ed. However, if we 
onsider the statement of Theorem 20, then

it is easy to see that this theorem also yields a transfer result for the relativized term

satis�ability problem.

Corollary 22. Let S

1

and S

2

be lo
al ADSs, and suppose that the relativized term sat-

is�ability problems for S

1

and S

2

are de
idable. Then the relativized term satis�ability

problem for S

1


 S

2

is also de
idable.

Proof. Consider the satis�ability 
riterion in Theorem 20. If we are interested in

relativized term satis�ability, then � is of the form fa : tg[�

0

, where �

0

is a set of term

assertions. In this 
ase, the sets of assertions �

1

and �

2

do not 
ontain obje
t assertions

involving relations. Now, assume that �

i

is of the form fa

1

: t

1

; : : : ; a

n

: t

n

g[�

0

i

, where

�

0

i

is a set of term assertions. Sin
e two assertions of the form b : s

1

; b : s

2

are equivalent

to one assertion b : s

1

^ s

2

, we may assume that the a

i

are distin
t from ea
h other.

Sin
e S

i

is lo
al, it is easy to see that the following are equivalent:

1. fa

1

: t

1

; : : : ; a

n

: t

n

g [ �

0

i

is satis�able in S

i

.

2. fa

j

: t

j

g [ �

0

i

is satis�able in S

i

for all j = 1; : : : ; n.

Sin
e (1 ! 2) is trivial, it is enough to show (2 ! 1). Given models W

j

2 M

i

of

fa

j

: t

j

g [ �

0

i

(j = 1; : : : ; n), their disjoint union also belongs to M

i

, and it is 
learly a

model of fa

1

: t

1

; : : : ; a

n

: t

n

g [ �

0

i

.

The se
ond 
ondition 
an now be 
he
ked by applying the term satis�ability test in

S

i

n times. ❏

4.1.3 Dealing with the universal role

As stated above (Proposition 15), ADSs 
orresponding to DLs with the universal role

are not lo
al, and thus Theorem 17 
annot be applied dire
tly. Nevertheless, in some


ases this theorem 
an also be used to obtain a de
idability result for fusions of DLs

with the universal role, provided that both of them provide for a universal role. (We

will 
omment on the usefulness of this approa
h in more detail in Se
tion 5.4).

De�nition 23. Given an ADS S = (L;M), we denote by S

U

the ADS obtained from

S by

1. extending L with two fun
tion symbols f

9U

S

and f

8U

S

, and

2. extending every ADM W =




W;F

W

;R

W

�

2 M with the unary fun
tions f

W

9U

S

and f

W

8U

S

, where

� f

W

9U

S

(X) = ; if X = ;, and f

W

9U

S

(X) =W otherwise;

� f

W

8U

S

(X) =W if X =W , and f

W

8U

S

(X) = ; otherwise.
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For ADSs S 
orresponding to a DL L, the ADS S

U


orresponds to the extension of

L with the universal role, where the universal role 
an only be used within value and

existential restri
tions.

8

There is a 
lose 
onne
tion between the relativized satis�ability

problem in S and the satis�ability problem in S

U

.

Proposition 24. If S is a lo
al ADS, then the following 
onditions are equivalent:

1. the relativized (term) satis�ability problem for S is de
idable,

2. the (term) satis�ability problem for S

U

is de
idable,

3. the relativized (term) satis�ability problem for S

U

is de
idable.

Proof. We restri
t our attention to the term satis�ability problem sin
e the equiva-

len
es for the satis�ability problem 
an be proved similarly.

The impli
ation (3 ! 2) is trivial, and (2 ! 1) is easy to show. In fa
t, t is

satis�able in S relative to the term assertions fs

1

v t

1

; : : : ; s

n

v t

n

g i� t^ f

8U

S

:((:t

1

_

s

1

) ^ : : : ^ (:t

n

_ s

n

)) is satis�able in S

U

.

To show (1 ! 3), we assume that the relativized term satis�ability problem for S

is de
idable. Let S = (L;M) and S

U

= (L

U

;M

U

). In the following, we use f

U

as

an abbreviation for f

8U

S

. Sin
e we 
an repla
e equivalently in any term the fun
tion

symbol f

9U

S

by :f

U

:, we may assume without loss of generality that f

9U

S

does not

o

ur in terms of L

U

.

Suppose a set � = fa : sg [� from L

U

is given, where � is a set of term assertions.

We want to de
ide whether � is satis�able in some model W 2M

U

. To this purpose,

we transform � into a set of assertions not 
ontaining f

U

. The idea underlying this

transformation is that, given a model W 2 M

U

, we have f

U

(t)

W

2 fW; ;g, depending

on whether t

W

= W or not. Consequently, if we repla
e f

U

(t) a

ordingly by > or ?,

the evaluation of this term in W does not 
hange. However, in the satis�ability test

we do not have the modelW (we are trying to de
ide whether one exists), and thus we

must guess the right repla
ement.

A term t from L

U

is 
alled a U -term i� it starts with f

U

. The set of U -terms that

o

ur (possibly as subterms) in � is denoted by �

U

. Set, indu
tively, for any fun
tion

� : �

U

! f?;>g and all subterms of terms in �:

x

�

:= x;

(t

1

^ t

2

)

�

:= t

�

1

^ t

�

2

;

(t

1

_ t

2

)

�

:= t

�

1

_ t

�

2

;

(:t)

�

:= :t

�

;

(f(t

1

; : : : ; t

n

))

�

:= f(t

�

1

; : : : ; t

�

n

) for f 6= f

U

of arity n;

(f

U

(t))

�

:= �(f

U

(t)):

8. Note that it is not ne
essary to add the universal role U to the set of relation symbols sin
e an

assertion of the form U(a; b) is trivially true. However, the use of the universal role within (quali�ed)

number restri
tions is not 
overed by this extension.
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Thus, t

�

is obtained from t by repla
ing all o

urren
es of U -terms in t by their image

under �, i.e., by ? or >. De�ne, for any su
h fun
tion �,

�

�

:= ft

�

1

v t

�

2

j t

1

v t

2

2 �g [ fa : s

�

g [

f> v t

�

j f

U

(t) 2 �

U

and �(f

U

(t)) = >g [

fa

t

: :t

�

j f

U

(t) 2 �

U

and �(f

U

(t)) = ?g;

where the a

t

are mutually distin
t new obje
t variables. Note that �

�

does not 
ontain

the fun
tion symbol f

U

, and thus it 
an be viewed as a set of assertions of S. In

addition, though it 
ontains more than one membership assertion, it does not 
ontain

assertions involving relation symbols. Consequently, the satis�ability of �

�

in S 
an

be 
he
ked using the term satis�ability test for S (see the proof of Corollary 22 above).

De
idability of the relativized term satis�ability problem for S

U

then follows from the

following 
laim:

Claim. � is satis�able in a member ofM

U

i� there exists a mapping � : �

U

! f?;>g

su
h that �

�

is satis�able in a member of M.

To prove this 
laim, �rst suppose that � is satis�ed under an assignment A in

a member W =




W;F

W

[ ff

W

U

g;R

W

�

of M

U

. De�ne � by setting �(f

U

(t)) = > if

(f

U

(t))

W;A

= W , and �(f

U

(t)) = ? otherwise. Obviously, this implies that �

�

is

satis�ed under the assignment A in




W;F

W

;R

W

�

, whi
h is a member of M.

Conversely, suppose �

�

is satis�able for some mapping �. Take a member W =




W;F

W

;R

W

�

of M and an assignment A su
h su
h that hW;Ai j= �

�

. Set W

0

:=




W;F

W

[ ff

W

U

g;R

W

�

, and prove, by indu
tion, for all terms t that o

ur in �:

(�) t

W

0

;A

= (t

�

)

W;A

:

The only 
riti
al 
ase is the one where t = f

U

(s). First, assume that �(f

U

(s)) =

(f

U

(s))

�

= >. Then �

�


ontains > v s

�

, and thus W = (s

�

)

W;A

= s

W

0

;A

, where the

se
ond identity holds by indu
tion. However, s

W

0

;A

= W implies (f

U

(s))

W

0

;A

= W =

>

W;A

. The 
ase where �(f

U

(s)) = (f

U

(s))

�

= ? 
an be treated similarly. Here the

term assertion a

s

: :s

�

ensures that s

�

(and thus by indu
tion s) is not interpreted as

the whole domain. Consequently, applying f

U

to it yields the empty set.

Sin
e hW;Ai j= �

�

, the identity (�) implies that hW

0

;Ai j= �. This 
ompletes the

proof of the 
laim, and thus also of the proposition. ❏

For normal modal logi
s, the result stated in this proposition was already shown

by Goranko and Passy (1992). The proof te
hnique used there 
an, however, not be

transfered to our more general situation sin
e it strongly depends on the normality of

the modal operators.

Using Proposition 24, we obtain the following 
orollary to our �rst transfer theorem.

Corollary 25. Let S

1

, S

2

be lo
al ADSs and assume that, for i 2 f1; 2g, the relativized

(term) satis�ability problem for S

i

is de
idable. Then the relativized (term) satis�ability

problem for S

U

1


 S

U

2

is de
idable.

Proof. We know by Theorem 17 (Corollary 22) that the relativized (term) satis�abil-

ity problem for S

1


 S

2

is de
idable. Hen
e, Proposition 24 yields that the relativized
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(term) satis�ability problem for (S

1


 S

2

)

U

is de
idable. But S

U

1


 S

U

2

is just a nota-

tional variant of (S

1


 S

2

)

U

: the fun
tion symbols f

9U

S

1

and f

9U

S

2


an be repla
ed by

f

9U

S

1


S

2

(and analogously for f

8U

S

1


S

2

) sin
e all three have identi
al semanti
s. ❏

4.2 Satis�ability

Note that Theorem 17 does not yield a transfer result for the unrelativized satis�ability

problem. Of 
ourse, if the relativized satis�ability problems for S

1

and S

2

are de
idable,

then the theorem implies that the satis�ability problem for S

1


 S

2

is also de
idable

(sin
e it is a spe
ial 
ase of the relativized satis�ability problem). However, to be

able to apply the theorem to obtain de
idability of the satis�ability problem in the

fusion, the 
omponent ADSs must satisfy the stronger requirement that the relativized

satis�ability problem is de
idable. Indeed, the set �

i

in Theorem 20 
ontains a term

assertion (namely > v sur

i

(

W

D)) even if � does not 
ontain any term assertions.

There are 
ases where the relativized satis�ability problem is unde
idable whereas

the satis�ability problem is still de
idable. For example, Theorem 17 
annot be applied

for the fusion of ALCF and ALC

+;Æ;t

sin
e the relativized satis�ability problem for

ALCF is already unde
idable (Baader et al., 1993). However, the satis�ability problem

is de
idable for both DLs.

4.2.1 Covering normal terms

Before we 
an formulate a transfer result for the satis�ability problem, we need to

introdu
e an additional notion, whi
h generalizes the notion of a normal modal logi
.

De�nition 26 (Covering normal terms). Let (L;M) be an ADS and f be a fun
tion

symbol of L of arity n. The term t

f

(x) (with one variable x) is a 
overing normal term

for f i� the following holds for all W 2M:

� t

W

f

(W ) =W

� for all X;Y �W , t

W

f

(X \ Y ) = t

W

f

(X) \ t

W

f

(Y ); and

� for all X;X

1

; : : : ; Y

n

�W : X \X

i

= X \ Y

i

for 1 � i � n implies

t

W

f

(X) \ f

W

(X

1

; : : : ;X

n

) = t

W

f

(X) \ f

W

(Y

1

; : : : ; Y

n

):

An ADS (L;M) is said to have 
overing normal terms i� one 
an e�e
tively determine

a 
overing normal term t

f

for every fun
tion symbol f of L.

Intuitively, the �rst two 
onditions state that the 
overing normal term behaves

like a value restri
tion (or box operator). Consider the term f

8R

(x), where f

8R

is the

fun
tion symbol 
orresponding to the value restri
tion 
onstru
tor for the role R. Then

f

8R

(x) obviously satis�es the �rst two requirements for 
overing normal terms. Note

that the se
ond 
ondition implies that the fun
tion indu
ed by t

f

is monotoni
, i.e.,

X � Y implies t

W

f

(X) � t

W

f

(Y ). The third 
ondition spe
i�es the 
onne
tion between

the 
overing normal term and the fun
tion symbol it 
overs. With respe
t to elements of

t

W

f

(X), the values of the fun
tions f

W

(X

1

; : : : ;X

n

) and f

W

(Y

1

; : : : ; Y

n

) agree provided

that their arguments agree on X. It is easy to see that f

8R

(x) is a 
overing normal
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term for the fun
tion symbols 
orresponding to the value, existential, and (quali�ed)

number restri
tions on the role R (see Proposition 35 below).

Given 
overing normal terms t

f

for the fun
tion symbols f of a �nite set of fun
tion

symbols E, one 
an 
onstru
t a term t

E

that is a 
overing normal term for all the

elements of E.

Lemma 27. Suppose the ADS (L;M) has 
overing normal terms and L is based on

a set of fun
tion symbols F . Denote by t

f

the 
overing normal term for the fun
tion

symbol f , for all f 2 F . Then, for every �nite set E � F of fun
tion symbols, the term

t

E

(x) :=

^

f2E

t

f

(x)

is a 
overing normal term for all f 2 E.

4.2.2 Corresponden
e to normal modal logi
s

The following result shows that any ADS in whi
h every fun
tion symbol is normal

has 
overing normal terms. Hen
e, the notion of 
overing normal terms generalizes the

notion of normality in modal logi
s.

Proposition 28. Let (L;M) be an ADS, and assume that f is a normal fun
tion

symbol in (L;M). Then

t

f

(x) := f(x;?; : : : ;?) ^ f(?; x; : : : ;?) ^ � � � ^ f(?; : : : ;?; x)

is a 
overing normal term for f . In parti
ular, if f is nullary (unary), then t

f

(x) = >

(t

f

(x) = f(x)) is a 
overing normal term for f .

Proof. The �rst two 
onditions in the de�nition of 
overing normal terms immedi-

ately follow from the de�nition of normal fun
tion symbols. Thus, we 
on
entrate on

the third 
ondition. Assume, for simpli
ity, that f is binary. Suppose W 2 M and

X;X

1

;X

2

; Y

1

; Y

2

� W with X \ X

i

= X \ Y

i

for i = 1; 2, and set F := f

W

. Then

F (X \X

1

;X \X

2

) = F (X \ Y

1

;X \ Y

2

). Sin
e F is normal, we know that

F (X \X

1

;X \X

2

) = F (X;X) \ F (X;X

2

) \ F (X

1

;X) \ F (X

1

;X

2

);

F (X \ Y

1

;X \ Y

2

) = F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) \ F (Y

1

; Y

2

);

and thus

F (X;X) \ F (X;X

2

) \ F (X

1

;X) \ F (X

1

;X

2

) =

F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) \ F (Y

1

; Y

2

):

Sin
e, by normality of F ,

F (X;X) \ F (X;X

2

) \ F (X

1

;X) � t

W

f

(X);

F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) � t

W

f

(X);

this implies t

W

f

(X) \ F (X

1

;X

2

) = t

W

f

(X) \ F (Y

1

; Y

2

). ❏
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4.2.3 The transfer result

Using 
overing normal terms, we 
an now formulate the se
ond transfer theorem, whi
h

is 
on
erned with the transfer of de
idability of (non-relativized) satis�ability.

Theorem 29. Let S

1

and S

2

be lo
al ADSs having 
overing normal terms, and suppose

that the satis�ability problems for S

1

and S

2

are de
idable. Then the satis�ability

problem for S

1


 S

2

is also de
idable.

As in the proof of Theorem 17, we �x two lo
al ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whi
h L

1

is based on the set of fun
tion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

.

The proof of Theorem 29 follows the same general ideas as the proof of Theorem 17.

There are, however, notable di�eren
es in the way satis�ability in S

1


S

2

is redu
ed to

satis�ability in S

1

and S

2

. In Theorem 20 we had to \guess" a set D of types, and then

based on this set and some additional guesses, a pair of satis�ability problems �

1

and

�

2

in S

1

and S

2

, respe
tively, was generated. In the proof of Theorem 29, we do not

need to guess D. Instead, we 
an 
ompute the right set. However, this 
omputation

requires us to solve additional satis�ability problems in the fusion S

1


S

2

. Nevertheless,

this yields a redu
tion sin
e the alternation depth (i.e., number of alternations between

fun
tion symbols of S

1

and S

2

) de
reases when going from the input set � to these

additional mixed satis�ability problems.

Before we 
an des
ribe this redu
tion in more detail, we must introdu
e some new

notation. In the 
ase of relativized satis�ability, term assertions of the form > v

sur

i

(

W

D) were used to assert that all elements of the domain belong to sur

i

(

W

D).

Now, we use 
overing normal terms to \propagate" sur

i

(

W

D) into terms up to a 
ertain

depth. For a set of fun
tion symbols E, de�ne the E-depth d

E

(t) of a term t indu
tively:

d

E

(x

i

) = 0

d

E

(:t) = d

E

(t)

d

E

(t

1

_ t

2

) = d

E

(t

1

^ t

2

) = maxfd

E

(t

1

); d

E

(t

2

)g

d

E

(f(t

1

; : : : ; t

n

)) = maxfd

E

(t

1

); : : : ; d

E

(t

n

)g+ 1 if f 2 E

d

E

(f(t

1

; : : : ; t

n

)) = maxfd

E

(t

1

); : : : ; d

E

(t

n

)g if f 62 E

If � is a �nite set of assertions, then

d

E

(�) := maxfd

E

(t) j t 2 term(�)g:

Put, for a term t(x) with one variable x, t

0

(x) := x, t

m+1

(x) := t(t

m

(x)), t

�0

(x) := x,

and t

�m+1

(x) := t

m+1

(x) ^ t

�m

(x).

We are now in the position to formulate the result that redu
es satis�ability in the

fusion of two lo
al ADSs with 
overing normal terms to satis�ability in the 
omponent

ADSs.

Theorem 30. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two lo
al ADSs having 
overing normal

terms in whi
h L

1

is based on the set of fun
tion symbols F and relation symbols R,

and L

2

is based on G and Q, and let L = L

1


 L

2

and M = M

1


M

2

. Let � be a

�nite set of obje
t assertions from L. Put m := d

F

(�), r := d

G

(�), and let 
(x) (d(x))

be a 
overing normal term for all fun
tion symbols in � that are in F (G).

For i 2 f1; 2g, denote by �

i

the set of all s 2 C

i

(�) su
h that the term s is satis�able

in (L;M). Then the following three 
onditions are equivalent:
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1. � is satis�able in (L;M).

2. There exist

� for every t 2 �

1

an obje
t variable a

t

62 obj(�)

� for every a 2 obj(�) a term t

a

2 �

1

su
h that the union �

1

of the following sets of obje
t assertions is satis�able in

(L

1

;M

1

):

� fa

t

: sur

1

(t ^ 


�m

(sur

1

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

1

(t

a

^ 


�m

(sur

1

(

W

�

1

)) j a 2 obj(�)g,

� fR(a; b) j R(a; b) 2 �; R 2 Rg,

� fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of obje
t assertions is satis�able in (L

2

;M

2

):

� fa

t

: sur

2

(t ^ d

�r

(sur

2

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

2

(t

a

^ d

�r

(sur

2

(

W

�

1

)) j a 2 obj(�)g,

� fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

3. The same 
ondition as in (2) above, with �

1

repla
ed by �

2

.

The sets �

i

in the above theorem are very similar to the ones in Theorem 20. The

main di�eren
e is that the term assertion > v sur

i

(

W

D) is no longer there. Instead, the

disjun
tion sur

i

(

W

�

1

) is dire
tly \inserted" into the terms using the 
overing normals

terms. As already mentioned above, another di�eren
e is that the set D, whi
h had

to be guessed in Theorem 20, is repla
ed by the set �

1

in (2) and �

2

in (3). A
tually,

guessing the set D is no longer possible in this 
ase. In the proof of Theorem 30 we

need to know that > v sur

i

(

W

D) is satis�able in S

i

(i.e., holds in at least one model in

M

i

). But we have no way to 
he
k this e�e
tively sin
e we do not have an algorithm for

relativized satis�ability in S

i

. Taking the set �

i

ensures that this property is satis�ed

(see the proof in the appendix for details).

By de�nition, �

i

is the set of all s 2 C

i

(�) su
h that the term s is satis�able

in (L;M). Re
all that the term s is satis�able i� fa : sg is satis�able in (L;M)

for an arbitrary obje
t variable a. Sin
e the elements of C

i

(�) are still mixed terms

(i.e., terms of the fusion), 
omputing the set �

i

a
tually needs a re
ursive 
all to the

de
ision pro
edure for satis�ability in (L;M). This re
ursion is well-founded sin
e the

alternation depth de
reases.

De�nition 31. For a term s of L, denote by a

1

(s) and a

2

(s) the 1-alternation and the

2-alternation depth of s, respe
tively. That is to say, a

1

(s) is the length of the longest

sequen
e of the form (g

1

; f

2

; g

3

; : : :) su
h that

g

1

(: : : (f

2

: : : (g

3

: : :)))

with g

j

2 G and f

j

2 F appears in s. The 2-alternation depth a

2

(s) is de�ned by

ex
hanging the roles of F and G. Put a(s) := a

1

(s)+a

2

(s), and 
all this the alternation

depth. For a �nite set � of terms, a(�) is the maximum of all a(s) with s 2 �.
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Thus, a

1

(s) 
ounts the maximal number of 
hanges between symbols from the �rst

and the se
ond ADS, starting with the �rst symbol from S

2

(i.e., the �rst symbol from

S

2


ounts as a 
hange, even if it does not o

ur inside the s
ope of a symbol from S

2

).

The 2-alternation depth is de�ned a

ordingly. The alternation depth sums up the 1-

and the 2-alternation depth.

Lemma 32. If a(term(�)) > 0, then a(C

1

(�)) < a(term(�)) or a(C

2

(�)) < a(term(�)).

Proof. We show that, if a(term(�)) > 0, then we have a(sub

1

(�)) < a(term(�)) or

a(sub

2

(�)) < a(term(�)), whi
h, by de�nition of C

i

, 
learly implies the lemma. First

note that, by de�nition of sub

i

, we have

a

i

(sub

j

(�)) � a

i

(term(�)) for all i; j: (�)

We now make a 
ase distin
tion as follows:

1. a

1

(term(�)) � a

2

(term(�)). We want to show that a

1

(sub

2

(�)) < a

1

(term(�)),

sin
e, by (�), this implies a(sub

2

(�)) < a(term(�)). Assume to the 
ontrary that

a

1

(sub

2

(�)) � a

1

(term(�)). Then (�) implies a

1

(sub

2

(�)) = a

1

(term(�)). Hen
e,

there exists a term s 2 sub

2

(�) and a sequen
e (g

1

; f

2

; g

3

; : : : ) of fun
tion symbols

g

i

2 G; f

i

2 F of length a

1

(term(�)) su
h that g

1

(: : : (f

2

: : : (g

3

: : :))) o

urs in

s. By de�nition of sub

2

, this implies the existen
e of a term t 2 term(�) and a

fun
tion symbol f 2 F su
h that f(: : : g

1

(: : : (f

2

: : : (g

3

: : :)))) o

urs in t. Sin
e

the length of (g

1

; f

2

; g

3

; : : : ) is a

1

(term(�)), this obviously yields a

2

(term(�)) >

a

1

(term(�)) whi
h is a 
ontradi
tion.

2. a

1

(term(�)) � a

2

(term(�)). Similar to the previous 
ase: just ex
hange the roles

of a

1

and a

2

, F and G, and sub

1

and sub

2

.

❏

To prove Theorem 29, we must show how Theorem 30 
an be used to 
onstru
t a

de
ision pro
edure for satis�ability in S

1


 S

2

from su
h de
ision pro
edures for the


omponent systems S

1

and S

2

. Let us �rst 
onsider the problem of 
omputing the

sets �

1

and �

2

. If a((term(�)) = 0, then � 
onsists of Boolean 
ombinations of set

variables. In this 
ase, C

i

(�) 
onsists of set variables, and �

i

; i = 1; 2, 
an be 
omputed

using Boolean reasoning. If a(term(�)) > 0, then Lemma 32 states that there is an

i 2 f1; 2g su
h that a(C

i

(�)) < a(term(�)). By indu
tion we 
an thus assume that

�

i


an e�e
tively be 
omputed. Consequently, it remains to 
he
k Condition (i + 1)

of Theorem 30 for i 2 f1; 2g. Sin
e �

i

is �nite, we 
an guess for every obje
t variable

a o

urring in � a type t

a

in �

i

. The sets �

1

and �

2

obtained this way are indeed

sets of assertions of L

1

and L

2

, respe
tively. Thus, their satis�ability 
an e�e
tively be


he
ked using the de
ision pro
edures for S

1

and S

2

. This proves Theorem 29.

The argument used above also shows why in Theorem 30 it was not suÆ
ient to

state equivalen
e of (1) and (2) (as in Theorem 20). In fa
t, the indu
tion argument

used above does not ne
essarily always apply to the 
omputation of �

1

. In some 
ases,

the alternation depth may not de
reases for �

1

, but only for �

2

. It should be noted

that Theorem 20 
ould also have been formulated in this symmetri
 way. We have not

done this sin
e it was not ne
essary for proving Theorem 17.

Regarding the 
omplexity of the 
ombined de
ision pro
edure, we must in prin
iple

also 
onsider the 
omplexity of 
omputing 
overing normal terms and the size of these
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terms. In the examples from DL, these terms are just value restri
tions, and thus their

size and the 
omplexity of 
omputing them is linear. Here, we assume a polynomial

bound on both. Under this assumption, we obtain the same 
omplexity results as for

the 
ase of relativized satis�ability. In fa
t, the 
omplexity of testing Condition (2) and

(3) of Theorem 30 agrees with the 
omplexity of testing Condition (2) of Theorem 20:

it adds one exponential to the 
omplexity of the de
ision pro
edure for the single ADSs.

In order to 
ompute �

i

, we need exponentially many re
ursive 
alls to the pro
edure.

Sin
e the re
ursion depth is linear in the size of �, we end up with at most exponentially

many tests of Condition (2) and (3).

Corollary 33. Let S

1

and S

2

be lo
al ADSs having 
overing normal terms, and assume

that these 
overing normal terms 
an be 
omputed in polynomial time. If the satis�abil-

ity problems for S

1

and S

2

are de
idable in ExpTime (PSpa
e), then the satis�ability

problem for S

1


 S

2

is de
idable in 2ExpTime (ExpSpa
e).

With the same argument as in the 
ase of relativized satis�ability, we 
an extend

the transfer result also to term satis�ability.

Corollary 34. Let S

1

and S

2

be lo
al ADSs having 
overing normal terms, and sup-

pose that the term satis�ability problems for S

1

and S

2

are de
idable. Then the term

satis�ability problem for S

1


 S

2

is also de
idable.

5. Fusions of des
ription logi
s

Given two DLs L

1

and L

2

, their fusion is de�ned as follows. We translate them into the


orresponding ADSs S

1

and S

2

, and then build the fusion S

1


S

2

. The fusion L

1


L

2

of L

1

and L

2

is the DL that 
orresponds to S

1


 S

2

. Sin
e the de�nition of the fusion

of ADSs requires their sets of fun
tion symbols to be disjoint, we must ensure that the

ADSs 
orresponding to L

1

and L

2

are built over disjoint sets of fun
tion symbols. For

the DLs introdu
ed in Se
tion 2, this 
an be a
hieved by assuming that the sets of role

names of L

1

and L

2

are disjoint and the sets of nominals of L

1

and L

2

are disjoint.

The DL L

1


L

2

then allows the use of the 
on
ept and role 
onstru
tors of both DLs,

but in a restri
ted way. Role des
riptions are either role des
riptions of L

1

or of L

2

.

There are no role des
riptions involving 
onstru
tors or names of both DLs. Con
ept

des
riptions may 
ontain 
on
ept 
onstru
tors of both DLs; however, a 
onstru
tor of

L

i

may only use a role des
ription of L

i

(i = 1; 2).

Let us illustrate these restri
tions by two simple examples. The fusion ALC

+




ALC

�1

of the two DLs ALC

+

and ALC

�1

is the fragment of ALC

+;�1

whose set of role

names is partitioned into two sets N

R

1

and N

R

2

su
h that

� the transitive 
losure operator may only be applied to names from N

R

1

;

� the inverse operator may only be applied to names from N

R

2

.

For example, if A is a 
on
ept name, R 2 N

R

1

and Q 2 N

R

2

, then 9R

+

:A u 8Q

�1

::A

is a 
on
ept des
ription of ALC

+


 ALC

�1

, but 9R

+

:A u 8R

�1

::A and 9(Q

�1

)

+

:A

are not. Note that, although the two sour
e DLs have disjoint sets of role names, in

ALC

+


 ALC

�1

role names from both sets may be used inside existential and value

restri
tions sin
e these 
on
ept 
onstru
tors are available in both DLs.
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The fusion ALCQ
ALC

R

+ of the two DLs ALCQ and ALC

R

+ is the fragment of

ALCQ

R

+
whose set of role names N

R

(with transitive roles N

R

+
� N

R

) is partitioned

into two sets N

R

1

and N

R

2

with N

R

+
� N

R

2

su
h that, inside qualifying number

restri
tions, only role names from N

R

1

may be used. In parti
ular, this means that

transitive roles 
annot o

ur within quali�ed number restri
tions.

In the following, we give examples that illustrate the usefulness of the transfer

results proved in the previous se
tion. First, we will give an example for the 
ase

of satis�ability and then for relativized satis�ability. Subsequently, we will 
onsider a

more 
omplex example involving so-
alled 
on
rete domains. Here, our general transfer

result 
an be used to prove a de
idability result that has only re
ently been proved by

designing a spe
ialized algorithm for the fusion. Finally, we will give an example that

demonstrates that the restri
tion to lo
al ADSs is really ne
essary.

5.1 De
idability transfer for satis�ability

In this subse
tion, we will give an example for an appli
ation of Theorem 29 where the

de
idability result 
ould not be obtained using Theorem 17.

Theorem 29 requires the ADSs to have 
overing normal terms. This is, however,

satis�ed by all the DLs that yield lo
al ADSs.

Proposition 35. Let L be one of the DLs introdu
ed in Se
tion 2, and let the 
or-

responding ADS S = (L;M) be lo
al. Then S has 
overing normal terms, and these

terms 
an be 
omputed in linear time.

Proof. For all fun
tion symbols f in L, the term t

f

has the form f

8R

(x) for some

role des
ription R. The semanti
s of value restri
tions implies that terms of this form

satisfy the �rst two properties of De�nition 26. This 
ompletes the proof for all fun
tion

symbols f of arity 0 sin
e for these the third 
ondition of De�nition 26 is trivially

satis�ed. Thus, for nullary fun
tion symbols, f

8R

(x) for an arbitrary role name R does

the job.

It remains to show that, for every unary fun
tion symbol f 2 ff

9R

; f

8R

; f

_

�nR

; f

_

�nR

g,

the term f

8R

(x) also satis�es the third property. This is an immediate 
onsequen
e

of the fa
t that, for these fun
tion symbols f , we have f

W

8R

(X) \ f

W

(Y ) = f

W

8R

(X) \

f

W

(X \ Y ) for all models W 2M and X;Y �W . ❏

In the following, we 
onsider the two des
ription logi
s ALCF and ALC

+;Æ;t

. Hol-

lunder and Nutt (1990) show that satis�ability of ALCF -
on
ept des
riptions is de
id-

able. The same is true for 
onsisten
y of ALCF-ABoxes (Lutz, 1999). Note, however,

that relativized satis�ability of ALCF -
on
ept des
riptions and thus also relativized

ABox 
onsisten
y in ALCF is unde
idable (Baader et al., 1993). For ALC

+;Æ;t

, de
id-

ability of satis�ability is shown by Baader (1991) and S
hild (1991).

9

De
idability of

ABox 
onsisten
y in ALC

+;Æ;t

is shown in Chapter 7 of (De Gia
omo, 1995).

The unrestri
ted 
ombinationALCF

+;Æ;t

of the two DLs is unde
idable. To be more

pre
ise, satis�ability of ALCF

+;Æ;t

-
on
ept des
riptions (and thus also 
onsisten
y of

ALCF

+;Æ;t

-ABoxes) is unde
idable. This follows from the unde
idability of relativized

satis�ability of ALCF -
on
ept des
riptions and the fa
t that the role operators in

9. Note that ALC

+;Æ;t

is a notational variant of test-free propositional dynami
 logi
 (PDL) (Fis
her

& Ladner, 1979).
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ALCF

+;Æ;t


an be used to internalize TBoxes (S
hild, 1991; Baader et al., 1993). In


ontrast to the unde
idability of ALCF

+;Æ;t

, Theorem 29 immediately implies that

satis�ability of 
on
ept des
riptions in the fusion of ALCF and ALC

+;Æ;t

is de
idable.

Theorem 36. Satis�ability of 
on
ept des
riptions and 
onsisten
y of ABoxes is de-


idable in ALCF 
ALC

+;Æ;t

, whereas satis�ability of ALCF

+;Æ;t

-
on
ept des
riptions

is already unde
idable.

Taking the fusion thus yields a de
idable 
ombination of two DLs whose unre-

stri
ted 
ombination is unde
idable. The pri
e one has to pay is that the fusion o�ers

less expressivity than the unrestri
ted 
ombination. The 
on
ept f

1

#f

2

u 8f

+

1

:C is

an example of a 
on
ept des
ription of ALCF

+;Æ;t

that is not allowed in the fusion

ALCF 
ALC

+;Æ;t

.

5.2 De
idability transfer for relativized satis�ability

As an example for the appli
ation of Corollary 22 (and thus of Theorem 17), we 
onsider

the DL ALC

+;Æ;u;t

f

. For this DL, satis�ability of 
on
ept des
riptions is unde
idable.

However, an expressive fragment with a de
idable relativized satis�ability problem 
an

be obtained by building the fusion of the two sublanguages ALC

+;Æ;t

f

and ALC

+;Æ;t;u

.

Theorem 37. Satis�ability of ALC

+;Æ;u;t

f

-
on
ept des
riptions is unde
idable.

Unde
idability 
an be shown by a redu
tion of the domino problem (Berger, 1966;

Knuth, 1973) (see, e.g., Baader & Sattler, 1999, for unde
idability proofs of DLs using

su
h a redu
tion). The main tasks to solve in su
h a redu
tion is that one 
an express

the N�N grid and that one 
an a

ess all points on the grid. One square of the grid


an be expressed by a des
ription of the form 9(x Æ yu y Æx):>, where x; y are features.

In fa
t, this des
ription expresses that the \points" belonging to it have both an x Æ y

and a y Æ x su

essor, and that these two su

essors 
oin
ide. A

essing all point on

the grid 
an then be a
hieved by using the role des
ription (x t y)

+

.

Note that this unde
idability result is also 
losely related to the known unde
idabil-

ity of IDPDL, i.e., deterministi
 propositional dynami
 logi
 with interse
tion (Harel,

1984). However, the unde
idability proof for IDPDL by Harel (1984) uses the test


onstru
t, whi
h is not available in ALC

+;Æ;u;t

f

.

Next, we show that relativized satis�ability in two rather expressive sublanguages

of ALC

+;Æ;u;t

f

is de
idable.

Theorem 38. Relativized satis�ability of 
on
ept des
riptions is de
idable in ALC

+;Æ;t

f

and ALC

+;Æ;t;u

.

Proof sket
h. In both 
ases, TBoxes 
an be internalized as des
ribed by S
hild (1991)

and Baader et al. (1993). Thus, it is suÆ
ient to show de
idability of (unrelativized)

satis�ability.

For ALC

+;Æ;t

f

, this follows from de
idability of DPDL (Ben-Ari, Halpern, & Pnueli,

1982), the known 
orresponden
e between PDL and ALC

+;Æ;t

(S
hild, 1991), and the

fa
t that non-fun
tional roles 
an be simulated by fun
tional ones in the presen
e of


omposition and transitive 
losure (Parikh, 1980).

For ALC

+;Æ;t;u

, de
idability of satis�ability follows from de
idability of IPDL, i.e.,

PDL with interse
tion (Dane
ki, 1984). ❏
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Given this theorem, Corollary 22 now yields the following de
idability result.

Corollary 39. Relativized satis�ability of 
on
ept des
riptions is de
idable in the fusion

ALC

+;Æ;t

f


ALC

+;Æ;t;u

.

5.3 A \
on
rete" example

Des
ription logi
s with 
on
rete domains were introdu
ed by Baader and Hans
hke

(1991) in order to allow for the referen
e to 
on
rete obje
ts like numbers, time intervals,

spatial regions, et
. when de�ning 
on
epts. To be more pre
ise, Baader and Hans
hke

(1991) de�ne the extension ALC(D) of ALC, where D is a 
on
rete domain (see below).

Under suitable assumptions on D, they show that satis�ability in ALC(D) is de
idable.

One of the main problems with this extension of DLs is that relativized satis�ability

(and satis�ability in DLs where TBoxes 
an be internalized) is usually unde
idable

(Baader & Hans
hke, 1992) (though there are ex
eptions, see Lutz, 2001). For this

reason, Haarslev et al. (2001) introdu
e a restri
ted way of extending DLs by 
on
rete

domains, and show that the 
orresponding extension of ALCN

HR

+ has a de
idable

relativized satis�ability problem.

10

In the following, we show that this result 
an also

be obtained as an easy 
onsequen
e of our Theorem 17. Moreover, ALCN

HR

+ 
an be

repla
ed by an arbitrary lo
al DL with a de
idable relativized satis�ability problem.

De�nition 40 (Con
rete Domain). A 
on
rete domain D is a pair (�

D

;�

D

), where

�

D

is a nonempty set 
alled the domain, and �

D

is a set of predi
ate names. Ea
h

predi
ate name P 2 �

D

is asso
iated with an arity n and an n-ary predi
ate P

D

� �

n

D

.

A 
on
rete domain D is 
alled admissible i� (1) the set of its predi
ate names is 
losed

under negation and 
ontains a name >

D

for �

D

, and (2) the satis�ability problem for

�nite 
onjun
tions of predi
ates is de
idable.

Given a 
on
rete domain D and one of the predi
ates P 2 �

D

(of arity n), one 
an

de�ne a new 
on
ept 
onstru
tor 9f

1

; : : : ; f

n

:P (predi
ate restri
tion), where f

1

; : : : ; f

n

are 
on
rete features.

11

In 
ontrast to the abstra
t features 
onsidered until now,


on
rete features are interpreted by partial fun
tions from the abstra
t domain �

I

into

the 
on
rete domain �

D

. We 
onsider the basi
 DL that allows for Boolean operators

and these new 
on
ept 
onstru
tors only.

De�nition 41 (B(D)). Let N

C

be a set of 
on
ept names and N

F




be a set of names

for 
on
rete features disjoint from N

C

, and let D be an admissible 
on
rete domain.

Con
epts des
riptions of B(D) are Boolean 
ombinations of 
on
ept names and predi
ate

restri
tions, i.e., expressions of the form 9f

1

; : : : ; f

n

:P where P is an n-ary predi
ate

in �

D

and f

1

; : : : ; f

n

2 N

F




.

The semanti
s of B(D) is de�ned as follows. We 
onsider an interpretation I, whi
h

has a nonempty domain �

I

, and interprets 
on
ept names as subsets of �

I

and 
on
rete

10. To be more pre
ise, they even show that relativized ABox 
onsisten
y is de
idable in their restri
ted

extension of ALCN

HR

+

by 
on
rete domains. Here, we restri
t ourself to satis�ability of 
on
epts

sin
e the ABoxes introdu
ed by Haarslev et al. (2001) also allow for the use of 
on
rete individuals

and for predi
ate assertions on these individuals, whi
h is not 
overed by the obje
t assertions for

ADSs introdu
ed in the present paper.

11. Note that the general framework introdu
ed by Baader and Hans
hke (1991) allows for feature


hains in predi
ate restri
tions. Considering only feature 
hains of length one is the main restri
tion

introdu
ed by Haarslev et al. (2001).
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features as partial fun
tions from �

I

into �

D

. The Boolean operators are interpreted

as usual, and

(9f

1

; : : : ; f

n

:P )

I

= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

f

I

i

(a) = x

i

for all 1 � i � n and (x

1

; : : : ; x

n

) 2 P

D

g:

Note that 
on
ept des
riptions are interpreted as subsets of �

I

and not of �

I

[�

D

.

Thus, if we go to the ADS 
orresponding to B(D), the 
on
rete domain is not an

expli
it part of the 
orresponding ADMs. It is only used to de�ne the interpretation of

the fun
tion symbols 
orresponding to predi
ate restri
tions. The predi
ate restri
tion


onstru
tor is translated into a fun
tion symbol f

9f

1

;:::;f

n

:P

of arity 0, and, for an ADM

W 
orresponding to a frame F, f

W

9f

1

;:::;f

n

:P

is de�ned as (9f

1

; : : : ; f

n

:P )

I

;

, where I

;

is

the interpretation based on F that maps all 
on
ept names to the empty set.

Theorem 42. Let D be an admissible 
on
rete domain. Then, B(D) is lo
al and the

relativized satis�ability problem for B(D)-
on
ept des
riptions is de
idable.

Proof. Given the family (W

i

)

i2I

of ADMs W

i


orresponding to the frames F

i

over

pairwise disjoint domains �

F

i

(i 2 I), we �rst build the union F of the frames: the

domain of F is

S

i2I

�

F

i

and it interprets the 
on
rete features in the obvious way, i.e.,

f

F

(x) := f

F

i

(x) if x 2 �

F

i

. Let W be the ADM indu
ed by F. To prove that W is in

fa
t the disjoint union of (W

i

)

i2I

, it remains to show that f

W

9f

1

;:::;f

n

:P

=

S

i2I

f

W

i

9f

1

;:::;f

n

:P

.

This is an easy 
onsequen
e of the semanti
s of the predi
ate restri
tion 
onstru
tor,

the interpretation of the 
on
rete features in F, and the fa
t that the domains �

F

i

are

pairwise disjoint.

De
idability of the unrelativized satis�ability problem is an immediate 
onsequen
e

of the de
idability results for ALC(D) given by Baader and Hans
hke (1991). Sin
e

B(D) is a very simple DL that does not 
ontain any 
on
ept 
onstru
tors requiring

the generation of abstra
t individuals, it is easy to see that a B(D)-
on
ept des
ription

C

0

is satis�able relative to the TBox C

1

v D

1

; : : : ; C

n

v D

n

i� it is satis�able in a

one-element interpretation. But then the TBox 
an be internalized in a very simple

way: C

0

is satis�able relative to the TBox C

1

v D

1

; : : : ; C

n

v D

n

i� C

0

u (:C

1

tD

1

)u

: : : u (:C

n

tD

n

) is satis�able. ❏

Given this theorem, Corollary 22 now yields the following transfer result, whi
h

shows that 
on
rete domains with the restri
ted form of predi
ate restri
tions intro-

du
ed above 
an be integrated into any lo
al DL with a de
idable relativized satis�a-

bility problem without losing de
idability.

Corollary 43. Let D be an admissible 
on
rete domain and L be a lo
al DL for whi
h

relativized satis�ability of 
on
ept des
riptions is de
idable. Then, relativized satis�a-

bility of 
on
ept des
riptions in B(D)
 L is also de
idable.

5.4 Non-lo
al DLs

By Proposition 15, DLs allowing for nominals, the universal role, or role negation

are not lo
al. It follows that the de
idability transfer theorems are not appli
able to

fusions of su
h DLs. In the following, we try to 
larify the reasons for this restri
ted

appli
ability of the theorems.
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First, we show that there are DLs with de
idable satis�ability problem su
h that

their fusion has an unde
idable satis�ability problem. The 
ulprit in this 
ase is the

universal role (or role negation).

Theorem 44. Satis�ability of 
on
ept des
riptions is de
idable in ALC

U

and ALCF ,

but unde
idable in their fusion ALC

U


ALCF .

Proof. De
idability of ALCF was shown by Hollunder and Nutt (1990) and of ALC

U

by Baader et al. (1990) and Goranko and Passy (1992). Unde
idability of ALC

U




ALCF (whi
h is identi
al to ALCF

U

) follows from the results by Baader et al. (1993)

and the fa
t that the universal role 
an be used to simulate TBoxes (see Proposition 24).

❏

Note that role negation 
an be used to simulate the universal role: just repla
e

8U:C by 8R:C u8R:C and 9U:C by 9R:C t9R:C. In addition, de
idability of ALC

�

is

known to be de
idable (Lutz & Sattler, 2000). Consequently, the theorem also holds if

we repla
e ALC

U

by ALC

�

.

It should be noted that the example given in the above theorem depends on the fa
t

that one of the two DLs allows for the universal role and the other be
omes unde
idable

if the universal role is added. In fa
t, Corollary 25 shows that de
idability does transfer

if both DLs already provide for the universal role.

Con
erning nominals, we do not have a 
ounterexample to the transfer of de
id-

ability in their presen
e. However, we think that it is very unlikely that there 
an be a

general transfer result in this 
ase. In fa
t, note that for ea
h DL L without nominals

introdu
ed in Se
tion 2, its fusion with ALCO is identi
al to L extended with nomi-

nals. Sin
e (relativized) satis�ability in ALCO is de
idable, a general transfer result

in this 
ase would imply that this extension is de
idable provided that L is de
idable.

Consequently, this would yield a general transfer result for adding nominals.

6. Con
lusion

Regarding related work, the work that is most 
losely related to the one presented here

is (Wolter, 1998). There, analogs of our Theorems 20 and 30 are proved for normal

modal logi
s within an algebrai
 framework. The present results extend the ones from

Wolter (1998) in two dire
tions. First, we have added obje
t assertions, and thus 
an

also prove transfer results for ABox reasoning. Se
ond, we 
an show transfer results for

satis�ability in non-normal modal logi
s as long as we have 
overing normal terms. This

allows us to handle non-normal 
on
ept 
onstru
tors like quali�ed number restri
tions

(graded modalities) in our framework.

We also think that the introdu
tion of abstra
t des
ription systems (ADSs) is a


ontribution in its own right. ADSs abstra
t from the internal stru
ture of 
on
ept


onstru
tors and thus allow us to treat a vast range of su
h 
onstru
tors in a uniform

way. Nevertheless, the model theoreti
 semanti
s provided by ADSs is less abstra
t

than the algebrai
 semanti
s employed by Wolter (1998). It is 
loser to the usual

semanti
s of DLs, and thus easier to 
omprehend for people used to this semanti
s.

The results in this paper show that ADSs in fa
t yield a good level of abstra
tion for

proving general results on des
ription logi
s. Re
ently, the same notion has been used

for proving general results about so-
alled E-
onne
tions of representation formalisms
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like des
ription logi
s, modal spatial logi
s, and temporal logi
s (Kutz, Wolter, & Za-

kharyas
hev, 2001). In 
ontrast to fusions, in an E-
onne
tion the two domains are not

merged but 
onne
ted by means of relations.

Regarding 
omplexity, our transfer results yield only upper bounds. Basi
ally, they

show that the 
omplexity of the algorithm for the fusion is at most one exponent higher

than of the ones for the 
omponents. We believe that the 
omplexity of satis�ability in

the fusion of ADSs 
an indeed be exponentially higher than the 
omplexity of satis�a-

bility in the 
omponent ADSs. However, we do not yet have mat
hing lower bounds,

i.e., we know of no example where this exponential in
rease in the 
omplexity really

happens.

Note that Spaan's results (1993) on the transfer of NP andPSpa
e de
idability from

the 
omponent modal logi
s to their fusion are restri
ted to normal modal logi
s, and

that they make additional assumptions on the algorithms used to solve the satis�ability

problem in the 
omponent logi
s. Nevertheless, for many PSpa
e-
omplete des
ription

logi
s it is easy to see that their fusion is also PSpa
e-
omplete. In this sense, the

general te
hniques for reasoning in the fusion of des
riptions logi
s developed in this

paper give only a rough 
omplexity estimate.
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Appendix A. Proofs

In this appendix, we give detailed proofs of 
riteria for (relativized) satis�ability in

the fusion of lo
al ADSs. Re
all that, from these 
riteria, the transfer theorems for

de
idability easily follow. We have deferred the proofs of these theorems to the appendix

sin
e they are rather te
hni
al.

A.1 Proof of Theorem 20

Before we 
an prove this theorem, we need a te
hni
al lemma. In the proof of Theo-

rem 20, we are going to merge modelsW

1

2M

1

andW

2

2M

2

by means of a bije
tive

fun
tion b from the domain W

1

of W

1

onto the domain W

2

of W

2

in su
h a way that

the surrogates sur

i

(t), t 2 C

1

(�), are respe
ted by b in the sense that

w 2 sur

1

(t)

W

1

;A

1

, b(w) 2 sur

2

(t)

W

2

;A

2

for all w 2 W

1

and t 2 C

1

(�). The existen
e of su
h a bije
tion is equivalent to the


ondition that the 
ardinalities jsur

1

(t)

W

1

;A

1

j of sur

1

(t)

W

1

;A

1

and jsur

2

(t)

W

2

;A

2

j of

sur

2

(t)

W

2

;A

2


oin
ide for all t 2 C

1

(�): if t 6= t

0

for t; t

0

2 C

1

(�), then t 
ontains a


onjun
t whi
h is (equivalent to) the negation of a 
onjun
t of t

0

; hen
e, for all su
h

t; t

0

, we have sur

i

(t)

W

i

;A

i

\ sur

i

(t

0

)

W

i

;A

i

= ; for i 2 f1; 2g, whi
h 
learly yields the

above equivalen
e. The following lemma will be used to 
hoose models in su
h a way

that this 
ardinality 
ondition is satis�ed. (We refer the reader to, e.g., Gr�atzer, 1979

for information about 
ardinals.)

Lemma 45. Let (L;M) be a lo
al ADS and � a set of assertions satis�able in (L;M).

Then there exists a 
ardinal � su
h that, for all 
ardinals �

0

� �, there exists a model

W =




W;F

W

;R

W

�

2 M with jW j = �

0

and an assignment A with hW;Ai j= � and

js

W;A

j 2 f0; �

0

g for all terms s.

Proof. By assumption, there exists an ADM W

0

=




W

0

;F

W

0

;R

W

0

�

2 M and an

assignment B = hB

1

;B

2

i in it su
h that hW

0

;Bi j= �. Let � = maxf�

0

; jW

0

jg. We

show that � is as required. Let �

0

� �. Take �

0

disjoint isomorphi
 
opies hW

�

;B

�

1

i,

W

�

=




W

�

;F

W

�

;R

W

�

�

, � < �

0

, of hW

0

;B

1

i. (The �rst member of the list 
oin
ides

with W

0

.) Let W =




W;F

W

;R

W

�

be the disjoint union of the W

�

, � < �

0

, and de�ne

hW;A = hA

1

;A

2

ii by putting A

2

(a) = B

2

(a), for all a 2 X , and

A

1

(x) =

[

�<�

0

B

�

1

(x);

for all x 2 V . Note that all obje
t variables are interpreted in W

0

. It follows from the

de�nitions of term semanti
s and disjoint unions that

s

W;A

=

[

�<�

0

s

W

�

;B

�

; (�)

for all terms s. Hen
e jW j = �

0

and hW;Ai j= �. It remains to show that js

W;A

j 2 f0; �

0

g

for every term s. Suppose js

W;A

j 6= 0. Then, by (�), �

0

� js

W;A

j � �� �

0

= �

0

, whi
h

means �

0

= js

W;A

j. ❏
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As noted above, the disjointness of the sets sur

i

(t)

W

i

;A

i

and sur

i

(t

0

)

W

i

;A

i

(for t 6= t

0

)

is required in order to ensure the existen
e of the bije
tion b. More pre
isely, in order to

merge modelsW

1

;W

2

, the sets sur

i

(t)

W

i

;A

i

for t member of some \relevant" subset of

C

1

(�) must form a partition ofW

i

's domain that satis�es a 
ertain 
ardinality 
ondition.

This is formalized by the following de�nition:

De�nition 46. Let � be a 
ardinal. A set fX

1

; : : : ;X

n

g is 
alled a �-partition of a set

W i�

1. jX

i

j = �, for all 1 � i � n,

2. X

i

\X

j

= ; whenever i 6= j, and

3. W =

S

1�i�n

X

i

.

fX

1

; : : : ;X

n

g is a �-partition of an ADMW with domainW i� it is a �-partition ofW .

In the proof, we will enfor
e that Properties 1 and 3 hold by appropriate 
onstru
-

tions, while Property 2 holds by de�nition of C

1

(�).

Before proving Theorem 20, we repeat its formulation.

Theorem 20. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two lo
al ADSs in whi
h L

1

is based

on the set of fun
tion symbols F and relation symbols R, and L

2

is based on G and Q,

and let L = L

1


L

2

and M =M

1


M

2

. If � is a �nite set of assertions from L, then

the following are equivalent:

1. � is satis�able in (L;M).

2. There exist

(a) a set D � C

1

(�),

(b) for every term t 2 D an obje
t variable a

t

62 obj(�),

(
) for every a 2 obj(�) a term t

a

2 D,

su
h that the union �

1

of the following sets of assertions in L

1

is satis�able in

(L

1

;M

1

):

(d) fa

t

: sur

1

(t) j t 2 Dg [ f> v sur

1

(

W

D)g,

(e) fa : sur

1

(t

a

) j a 2 obj(�)g,

(f) fR(a; b) j R(a; b) 2 �; R 2 Rg,

(g) fsur

1

(t

1

) v sur

1

(t

2

) j t

1

v t

2

2 �g [ fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of assertions in L

2

is satis�able in (L

2

;M

2

):

(h) fa

t

: sur

2

(t) j t 2 Dg [ f> v sur

2

(

W

D)g,

(i) fa : sur

2

(t

a

) j a 2 obj(�)g,

(j) fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.
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.

.

.

.

.

.

.

.

.

sur

1

(s

1

)

W

1

;A

1

sur

1

(s

2

)

W

1

;A

1

sur

1

(s

k

)

W

1

;A

1

sur

2

(s

1

)

W

2

;A

2

sur

2

(s

2

)

W

2

;A

2

sur

2

(s

k

)

W

2

;A

2

b

b

b

W

1

W

2

Figure 3: The mapping b.

Proof. We start with the dire
tion from (2) to (1). Take a set D � C

1

(�) sat-

isfying the properties listed in the theorem. Take 
ardinals �

i

, i 2 f1; 2g as in

Lemma 45 for (L

i

;M

i

), put � = maxf�

1

; �

2

g, and take




W

1

;A

1

=




A

1

1

;A

1

2

��

and




W

2

;A

2

=




A

2

1

;A

2

2

��

with W

i

2 M

i

su
h that




W

i

;A

i

�

j= �

i

for i 2 f1; 2g. By

Lemma 45, for i 2 f1; 2g we 
an assume jW

i

j = � and, jsur

i

(s)

W

i

;A

i

j 2 f0; �g for all

s 2 D.

The sets fsur

i

(s)

W

i

;A

i

: s 2 Dg are �-partitions ofW

i

for i 2 f0; 1g sin
e (i) for ea
h

s 2 D, we have (a

s

: sur

i

(s)) 2 �

i

, (ii)




W

i

;A

i

�

j= > v sur

i

(

W

D), and (iii) s; s

0

2 D

and s 6= s

0

implies sur

i

(s)

W

i

;A

i

\ sur

i

(s

0

)

W

i

;A

i

by de�nition of D and C

1

. Moreover,

obj(�

1

) = obj(�

2

) and, for all a 2 obj(�

1

) and s 2 D, we have A

1

2

(a) 2 sur

1

(s)

W

1

;A

1

i�

A

2

2

(a) 2 sur

2

(s)

W

2

;A

2

.

Together with the fa
t that A

1

2

and A

2

2

are inje
tive, this implies the existen
e of a

bije
tion b from W

1

onto W

2

su
h that

fb(w) : w 2 sur

1

(t)

W

1

;A

1

g = sur

2

(t)

W

2

;A

2

;

for all t 2 D, and

b(A

1

2

(a)) = A

2

2

(a);

for all a 2 obj(�

1

). Figure 3, in whi
h it is assumed that D = fs

1

; : : : ; s

k

g, illustrates

the mapping b.

De�ne a model W =




W; (F [ G)

W

; (R [Q)

W

�

2M by putting

� W =W

1

,

� f

W

= f

W

1

, for f 2 F ,

� for all g 2 G of arity n and all Z

1

; : : : ; Z

n

�W ,

g

W

(Z

1

; : : : ; Z

n

) = b

�1

(g

W

2

(b(Z

1

); : : : ; b(Z

n

)));

where b(Z) = fb(z) : z 2 Zg,

� R

W

= R

W

1

, for all R 2 R,
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� Q

W

(x; y) i� Q

W

2

(b(x); b(y)), for all Q 2 Q.

Sin
e M

2

is 
losed under isomorphi
 
opies, it is not hard to see that W 2M

1


M

2

.

Let A = A

1

. To prove the impli
ation from (2) to (1) of the theorem it remains to

show that hW;Ai j= �. To this end it suÆ
es to prove the following 
laim:

Claim. For all terms t 2 sub

1

(�), we have

t

W;A

= sur

1

(t)

W

1

;A

1

= b

�1

(sur

2

(t)

W

2

;A

2

):

Before we prove this 
laim, let us show that it implies hW;Ai j= �. First note that,

from the 
laim, we obtain

t

W;A

= sur

1

(t)

W

1

;A

1

for all t 2 term(�): (1)

This may be proved by indu
tion on the 
onstru
tion of t 2 term(�) from terms in

sub

1

(�) using the booleans and fun
tion symbols from L

1

, only. The basis of indu
tion

(i.e., the equality for members of sub

1

(�)) is stated in the 
laim and the indu
tion step

is straightforward.

We now show that hW;Ai j= � is a 
onsequen
e of (1). Suppose R(a; b) 2 �.

Then R(a; b) 2 �

1

and thus hW;Ai j= R(a; b). Similarly, Q(a; b) 2 � implies Q(a; b) 2

�

2

and hW;Ai j= Q(a; b). Suppose (a : t) 2 �. Then (a : sur

1

(t)) 2 �

1

and so

A

1

2

(a) 2 sur

1

(t)

W

1

;A

1

whi
h implies, by (1), A

1

2

(a) 2 t

W;A

. Hen
e hW;Ai j= (a : t).

If t

1

v t

2

2 �, then sur

1

(t

1

) v sur

1

(t

2

) 2 �

1

and so, by (1), t

W;A

1

� t

W;A

2

. Hen
e

hW;Ai j= t

1

v t

2

.

We 
ome to the proof of the 
laim. It is proved by indu
tion on the stru
ture

of t. Due to the following equalities holding for all t 2 sub

1

(�), it suÆ
es to show that

t

W;A

= sur

1

(t)

W

1

;A

1

.

sur

1

(t)

W

1

;A

1

=

[

fsur

1

(s)

W

1

;A

1

: s 2 D; t is a 
onjun
t of sg

=

[

fb

�1

(sur

2

(s)

W

2

;A

2

) : s 2 D; t is a 
onjun
t of sg

= b

�1

(sur

2

(t)

W

2

;A

2

)

The �rst equality holds sin
e sur

1

(

W

D)

W

1

;A

1

= W

1

and, for all s 2 D, either t or :t

is a 
onjun
t of s. The se
ond equality is true by de�nition of b and the validity of the

third equality 
an be seen analogously to the validity of the �rst one by 
onsidering

that sur

2

(

W

D)

W

2

;A

2

=W

2

.

Hen
e let us show t

W;A

= sur

1

(t)

W

1

;A

1

. For the indu
tion start, let t be a variable. The

equation t

W;A

= sur

1

(t)

W

1

;A

1

is an immediate 
onsequen
e of the fa
t that A = A

1

.

For the indu
tion step, we distinguish several 
ases:

� t = :t

1

. By indu
tion hypothesis, t

W;A

1

= sur

1

(t

1

)

W

1

;A

1

. Hen
e, t

W;A

= W n

t

W;A

1

=W n sur

1

(t

1

)

W

1

;A

1

= sur

1

(t)

W

1

;A

1

(sin
e W =W

1

).

� t = t

1

^ t

2

. By indu
tion hypothesis, t

W;A

i

= sur

1

(t

i

)

W

1

;A

1

for i 2 f1; 2g. Hen
e,

t

W;A

= t

W;A

1

\ t

W;A

2

= sur

1

(t

1

)

W

1

;A

1

\ sur

1

(t

2

)

W

1

;A

1

= sur

1

(t)

W

1

;A

1

.

� t = t

1

_ t

2

. Similar to the above 
ase.
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� t = f(t

1

; : : : ; t

n

). By indu
tion hypothesis, t

W;A

i

= sur

1

(t

i

)

W

1

;A

1

for 1 � i � n.

Hen
e, t

W;A

= f

W

(t

W;A

1

; : : : ; t

W;A

n

) = f

W

(sur

1

(t

1

)

W

1

;A

1

; : : : ; sur

1

(t

n

)

W

1

;A

1

) =

sur

1

(t)

W

1

;A

1

(sin
e f

W

= f

W

1

).

� t = g(t

1

; : : : ; t

n

). In this 
ase, t

W;A

= b

�1

(g

W

2

(b(t

W;A

1

); : : : ; b(t

W;A

n

))). Sin
e,

by the above equalities, sur

1

(t)

W

1

;A

1

= b

�1

(sur

2

(t)

W

2

;A

2

), it remains to show

that sur

2

(t)

W

2

;A

2

= g

W

2

(b(t

W;A

1

); : : : ; b(t

W;A

n

)). Sin
e we have sur

2

(t)

W

2

;A

2

=

g

W

2

(sur

2

(t

1

)

W

2

;A

2

; : : : ; sur

2

(t

n

)

W

2

;A

2

), this amounts to showing that b(t

W;A

i

) =

sur

2

(t

i

)

W

2

;A

2

for 1 � i � n. This, however, follows by indu
tion hypothesis

together with the above equations.

This 
on
ludes the proof of the dire
tion from (2) to (1).

It remains to prove the dire
tion from (1) to (2). Suppose hW;Ai j= �, for some

W 2M and A = hA

1

;A

2

i. Put

D = fs 2 C

1

(�) : s

W;A

6= ;g:

Note that the fusion of lo
al ADLs is a lo
al ADL again. Hen
e (L;M) is lo
al and we

may assume, by Lemma 45, that the sets s

W;A

are in�nite.

Take a new obje
t name a

s

62 obj(�) for every s 2 D and let, for a 2 obj(�),

t

a

=

^

ft 2 sub

1

(�) : A

2

(a) 2 t

W;A

g ^

^

f:t : t 2 sub

1

(�);A

2

(a) 62 t

W;A

g:

We prove that set of assertions �

1

based on D, t

a

, a 2 obj(�), and a

s

, s 2 D, is

satis�able in (L

1

;M

1

).

Let F

W

denote the restri
tion of (F [ G)

W

to the symbols in F . Similarly, R

W

is the restri
tion of (R [ Q)

W

to the symbols in R. Set W

1

=




W;F

W

;R

W

�

2 M

1

,

A

1

=




A

1

1

;A

1

2

�

, where

A

1

1

= A

1

[ fx

t

7! t

W;A

: t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g;

A

1

2

(a) = A

2

(a), for a 2 obj(�), and A

1

2

(a

s

) 2 s

W;A

, for all s 2 D. Note that we 
an


hoose an inje
tive fun
tion A

1

2

be
ause the s

W;A

are in�nite. We show by indu
tion

that

sur

1

(t)

W

1

;A

1

= t

W;A

for all t 2 term(�): (2)

Let t = x be a variable. Then x is not a surrogate, and so A

1

1

(x) = A

1

(x). For the

indu
tion step, we distinguish several 
ases:

� The indu
tive steps for t = :t

1

, t = t

1

^ t

2

, t = t

1

_ t

2

, and t = f(t

1

; : : : ; t

n

),

f 2 F , are identi
al to the 
orresponding 
ases in the proof of Equation 1, whi
h

o

urs in the dire
tion that (2) implies (1) above.

� t = g(t

1

; : : : ; t

n

), where g 2 G. Then sur

1

(t) = x

t

. Hen
e A

1

1

(x

t

) = t

W;A

and the

equation is proved.

From Equation 2, we obtain




W

1

;A

1

�

j= �

1

: we prove




W

1

;A

1

�

j= R(a; b) whenever

R(a; b) 2 �

1

and




W

1

;A

1

�

j= sur

1

(t

1

) v sur

1

(t

2

) whenever sur

1

(t

1

) v sur

1

(t

2

) 2 �

1

.

The remaining formulas from �

1

are left to the reader. Suppose R(a; b) 2 �

1

. Then
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R(a; b) 2 � and so hW;Ai j= R(a; b). Hen
e




W

1

;A

1

�

j= R(a; b). Suppose sur

1

(t

1

) v

sur

1

(t

2

) 2 �

1

. Then t

1

v t

2

2 �. Hen
e hW;Ai j= t

1

v t

2

whi
h means t

W;A

1

� t

W;A

2

.

By Equation 2, sur

1

(t

1

)

W

1

;A

1

� sur

1

(t

2

)

W

1

;A

1

whi
h means




W

1

;A

1

�

j= sur

1

(t

1

) v

sur

1

(t

2

).

The 
onstru
tion of a model in M

2

satisfying �

2

is similar and left to the reader.

❏

A.2 Proof of Theorem 30

As in the proof of Theorem 17, we �x two lo
al ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whi
h L

1

is based on the set of fun
tion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

. We assume that S

1

and S

2

have 
overing normal terms.

Similarly to what was done in the previous se
tion, we will merge models by means

of bije
tions whi
h map points in sets sur

1

(t)

W

1

;A

1

to points in the 
orresponding sets

sur

2

(t)

W

2

;A

2

. For a �nite set of obje
t assertions � of L, let �

i

(�) denote the set of all

s 2 C

i

(�) su
h that the term s is satis�able in (L;M) (for i 2 f1; 2g). To ensure that

the merging of models su

eeds, we must enfor
e that the elements of �

1

(�) and �

2

(�)

form �-partitions (for some appropriate �) of the models to be merged. For �

1

(�), this

is 
aptured by the following lemma. Expli
itly stating a dual of this lemma for �

2

(�)

is omitted for brevity.

Lemma 47. Let � be a �nite set of obje
t assertions of L, � a 
ardinal satisfying the


onditions of Lemma 45 for (L;M) and �, and �

1

= �

1

(�). If �

0

� �, then

1. there exists a model W 2M

1

and an assignment A su
h that

fsur

1

(s)

W;A

j s 2 �

1

g

is a �

0

-partition of W; and

2. there exists a model W 2M

2

and an assignment A su
h that

fsur

2

(s)

W;A

j s 2 �

1

g

is a �

0

-partition of W.

Proof. 1. By de�nition of �

1

, for ea
h s 2 �

1

, we �nd a model W

s

2 M and an

assignment A

s

su
h that s

W

s

;A

s

6= ;. Sin
e the fusion of two lo
al ADSs is again lo
al,

the set of models M is 
losed under disjoint unions. Hen
e, there exists a model W

�

1

and an assignment A

�

1

su
h that s

W

�

1

;A

�

1

6= ; for all s 2 �

1

. It follows that the set

�

1

:= fa

s

: s j s 2 �

1

g is satis�able in (L;M). By Lemma 45, there thus exists a model

W

0

=

D

W

0

; (F [ G)

W

0

; (R [Q)

W

0

E

2 M and an assignment A

0

su
h that W

0

;A

0

j= �

1

and fs

W

0

;A

0

j s 2 �

1

g is a �

0

-partition of W

0

. Now let W denote the restri
tion of W

0

to L

1

and de�ne

A

1

= A

0

1

[ fx

t

7! t

W

0

;A

0

j t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g:

Then hW;Ai is as required. To prove this note that sur

1

(t)

W;A

= t

W

0

;A

0

for all

t 2 term(�).

2. is similar and left to the reader. ❏
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We repeat the formulation of the theorem to be proved.

Theorem 30. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two lo
al ADSs having 
overing normal

terms in whi
h L

1

is based on the set of fun
tion symbols F and relation symbols R,

and L

2

is based on G and Q, and let L = L

1


 L

2

and M = M

1


M

2

. Let � be a

�nite set of obje
t assertions from L. Put m := d

F

(�), r := d

G

(�), and let 
(x) (d(x))

be a 
overing normal term for all fun
tion symbols in � that are in F (G).

For i 2 f1; 2g, denote by �

i

the set of all s 2 C

i

(�) su
h that the term s is satis�able

in (L;M). Then the following three 
onditions are equivalent:

1. � is satis�able in (L;M).

2. There exist

� for every t 2 �

1

an obje
t variable a

t

62 obj(�)

� for every a 2 obj(�) a term t

a

2 �

1

su
h that the union �

1

of the following sets of obje
t assertions is satis�able in

(L

1

;M

1

):

� fa

t

: sur

1

(t ^ 


�m

(sur

1

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

1

(t

a

^ 


�m

(sur

1

(

W

�

1

)) j a 2 obj(�)g,

� fR(a; b) j R(a; b) 2 �; R 2 Rg,

� fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of obje
t assertions is satis�able in (L

2

;M

2

):

� fa

t

: sur

2

(t ^ d

�r

(sur

2

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

2

(t

a

^ d

�r

(sur

2

(

W

�

1

)) j a 2 obj(�)g,

� fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

3. The same 
ondition as in (2) above, with �

1

repla
ed by �

2

.

We start the proof with the dire
tion from (1) to (2) and (1) to (3). The proofs are

dual to ea
h other, so we only give a proof for (1) ) (2). Suppose hW;Ai j= �, where

W =




W; (F [ G)

W

; (R [Q)

W

�

. By Lemma 45, we 
an assume that that, for every

t 2 �

1

, jt

W;A

j is in�nite. Take a new obje
t name a

s

62 obj(�) for every s 2 �

1

and let,

for a 2 obj(�),

t

a

=

^

ft 2 sub

1

(�) : A

2

(a) 2 t

W;A

g ^

^

f:t : t 2 sub

1

(�);A

2

(a) 62 t

W;A

g:

We prove that the set �

1

of assertions based on t

a

, a 2 obj(�), and a

s

, s 2 �

1

, is

satis�able in (L

1

;M

1

) (the proof is rather similar to the proof of the dire
tion from

(1) to (2) in the proof of Theorem 20). Let F

W

(resp. G

W

) denote the restri
tion of

(F [G)

W

to the symbols in F (resp. G). Similarly, R

W

and Q

W

are the restri
tions of

(R [ Q)

W

to the symbols in R and Q, respe
tively. Set W

1

=




W;F

W

;R

W

�

2 M

1

,

A

1

=




A

1

1

;A

1

2

�

, where

A

1

1

= A

1

[ fx

t

7! t

W;A

j t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g;
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A

1

2

(a) = A

2

(a), for a 2 obj(�), and A

1

2

(a

t

) 2 t

W;A

, for all t 2 �

1

(we 
an 
hoose an

inje
tive fun
tion for A

1

2

sin
e the sets t

W;A

are in�nite).

As in the 
orresponding part of the proof of Theorem 20, it 
an show by indu
tion

that

sur

1

(t)

W

1

;A

1

= t

W;A

for all t 2 term(�):

Let us see now why




W

1

;A

1

�

j= �

1

follows from this equation. For R(a; b) 2 �

1

we

have R(a; b) 2 � and so hW;Ai j= R(a; b). Hen
e




W

1

;A

1

�

j= R(a; b). We have

hW;Ai j= (

W

�

1

) = > (by the de�nition of �

1

). Hen
e




W

1

;A

1

�

j= sur

1

(

W

�

1

) = >

and so, by the de�nition of 


�m

,




W

1

;A

1

�

j= (


�m

(sur

1

(

W

�

1

))) = >. It remains to

observe that A

1

2

(a) 2 sur

1

(t

a

)

W

1

;A

1

for all a 2 obj(�), A

1

2

(a) 2 sur

1

(s)

W

1

;A

1

whenever

(a : s) 2 �, and A

1

2

(a

t

) 2 sur

1

(t)

W

1

;A

1

for all t 2 �

1

.

The 
onstru
tion of a model in M

2

satisfying �

2

is similar and left to the reader.

It remains to show the impli
ations (2) ) (1) and (3) ) (1). They are similar, so

we 
on
entrate on the �rst. In the proof of Theorem 20 it was possible to 
onstru
t

the required model for � by merging models for �

1

and �

2

. The situation is di�erent

here. It is not possible to merge models for �

1

and �

2

in one step, sin
e we do not

know whether they satisfy sur

1

(

W

�

1

) = > and sur

2

(

W

�

1

) = >, respe
tively. We

only know that they satisfy the approximations a : sur

1

(s) ^ 


�m

(sur

1

(

W

�

1

)) and

a : sur

2

(s)^ d

�r

(sur

2

(

W

�

1

)), respe
tively, for a : s 2 �. To merge models of this type

we have to distinguish various pie
es of the models and have to add new pie
es as well.

To de�ne those pie
es we need a te
hni
al 
laim. As in the proof of Theorem 17, take


ardinals �

i

, i 2 f1; 2g as in Lemma 45 for (L

i

;M

i

) and put � = maxf�

1

; �

2

g.

Claim 1. Suppose (2) holds.

(a) There exist W

1

=




W

1

;F

W

;R

W

�

2M

1

, an assignment A = hA

1

;A

2

i into W

1

,

and a sequen
e X

0

; : : : ;X

m

of subsets of W

1

su
h that

[a1℄ A

2

(a) 2 X

m

, for all a 2 obj(�

1

),

[a2℄ hW

1

;Ai j= �

1

,

[a3℄ X

n+1

� X

n

\ 


W

1

(X

n

), for all 0 � n < m,

[a4℄ The set fsur

1

(s)

W

1

;A

\X

m

: s 2 �

1

g is a �-partition of X

m

,

[a5℄ The sets

fsur

1

(s)

W

1

;A

\ (X

n

�X

n+1

) : s 2 �

1

g

are �-partitions of X

n

�X

n+1

, for 0 � n < m.

[a6℄ jW

1

�X

0

j = �.

(b) There exist W

2

=




W

2

;G

W

;Q

W

�

2 M

2

, an assignment B = hB

1

;B

2

i, and a

sequen
e Y

0

; : : : ; Y

r

of subsets of W

2

su
h that

[b1℄ B

2

(a) 2 Y

r

, for all a 2 obj(�

1

),

[b2℄ hW

2

;Bi j= �

2

,

[b3℄ Y

n+1

� Y

n

\ d

W

2

(Y

n

), for all 0 � n < r,
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..

.
..
.

X

m

A

m�1

= X

m�1

�X

m

A

m�2

= X

m�2

�X

m�1

A

�1

=W

1

�X

0

W

1

A

0

= X

0

�X

1

Figure 4: The sets X

i

.

[b4℄ The set fsur

2

(s)

M;A

\ Y

r

: s 2 �

1

g is a �-partition of Y

r

,

[b5℄ The sets

fsur

2

(s)

M;A

\ (Y

n

� Y

n+1

) : s 2 �

1

g

are �-partitions of Y

n

� Y

n+1

, for 0 � n < r.

[b6℄ jW

2

� Y

0

j = �.

Figure 4 illustrates the relation between the sets X

i

. (We set A

i

= X

i

� X

i+1

for

0 � i < m and A

�1

= W

1

� X

0

.) Intuitively, X

m

is the set of points for whi
h we

know that points in W

1

� sur

1

(

W

�

1

)

W

1

;A

are \very far away". For X

m�1

they are

possibly less \far away", for X

m�2

possibly even \less far", and so on for X

i

, i < m�1.

Finally, for members of A

�1

it is not even known whether they are in sur

1

(

W

�

1

)

W

1

;A

or not. Note that all obje
t names are interpreted in X

m

. We now 
ome to the formal


onstru
tion of the sets X

i

.

Proof of Claim 1. We prove (a). Part (b) is proved similarly and left to the reader.

By assumption and Lemma 45, we �nd an ADM W

a

=




W

a

; F

W

a

; R

W

a

�

2 M

1

with

jW

a

j = � and an assignment A

a

= hA

a

1

;A

a

2

i su
h that hW

a

;A

a

i j= �

1

.

Let

Z

n

= (


�n

(sur

1

(

_

�

1

)))

W

a

;A

a

;

for 0 � n � m. By Lemma 47 (1) we 
an take for every n with �1 � n � m an ADM

W

n

=




W

n

;F

W

n

;R

W

n

�

2M

1

and assignments A

n

su
h that

fsur

1

(s)

W

n

;A

n

: s 2 �

1

g

are �-partitions of W

n

.
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Take the disjoint unionW (withW =




W;F

W

;R

W

�

) of theW

n

, �1 � n � m, and

W

a

. De�ne A = hA

1

;A

2

i in W by putting

A

1

(x) = A

a

1

(x) [

[

�1�i�m

A

i

1

(x);

for all set variables x and A

2

(b) = A

a

2

(b), for all obje
t variables b. Let, for 0 � n � m,

X

n

= Z

n

[

[

n�i�m

W

i

:

We show that hW;Ai and the sets X

n

, 0 � n � m, are as required.

[a1℄ We have hW

a

;A

a

i j= �

1

and so A

2

(b) = A

a

2

(b) 2 Z

m

for all b 2 obj(�

1

). Hen
e

A

2

(b) 2 X

m

= Z

m

[W

m

for all b 2 obj(�

1

).

[a2℄ By the de�nition of disjoint unions and be
ause hW

a

;A

a

i j= �

1

.

[a3℄ Firstly, we have, by the de�nition of 


�n

t and sin
e 


W

is monotone (it distributes

over interse
tions),

Z

n+1

� Z

n

\ 


W

(Z

n

) � X

n

\ 


W

(X

n

): (3)

Se
ondly, by the de�nition of disjoint unions, the �rst property of 
overing normal

terms, and sin
e 


W

is monotone

[

n+1�i�m

W

i

�

[

n�i�m

W

i

�

[

n�i�m

W

i

\ 


W

(

[

n�i�m

W

i

) � X

n

\ 


W

X

n

: (4)

From (3) and (4) we obtain

X

n+1

= Z

n+1

[

[

n+1�i�m

W

i

� X

n

\ 


W

X

n

: (5)

[a4℄ We show that the three properties from De�nition 46 are satis�ed. Sin
e

fsur

1

(s)

W

m

;A

m

: s 2 �

1

g

is a �-partition of W

m

, we have jsur

1

(s)

W

m

;A

m

j = � for all s 2 �

1

. This implies

Property 1 sin
e sur

1

(s)

W;A

\W

m

= sur

1

(s)

W

m

;A

m

, W

m

� X

m

, and jX

m

j � �.

Property 2 is an immediate 
onsequen
e of the de�nition of �

1

. As for Property 3,

we show that, for all w 2 X

m

, we have w 2 s

W;A

for an s 2 �

1

. Fix a w 2 X

m

.

We distinguish two 
ases: �rstly, assume w 2 W

m

. Then, by the fa
t that

fsur

1

(s)

W

m

;A

m

: s 2 �

1

g is a �-partition of W

m

, it is 
lear that there exists an

s 2 �

1

as required. Se
ondly, assume w 2 Z

m

= (


�m

(sur

1

(

W

�

1

)))

W

a

;A

a

. By

de�nition of 


�m

t, we have w 2 (sur

1

(

W

�

1

))

W

a

;A

a

and so again w 2 sur

1

(s)

W;A

for some s 2 �

1

.

[a5℄ The proof is similar to that of Property [a4℄.

[a6℄ By de�nition.
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This �nishes the proof of Claim 1.

Suppose now that we have

W

1

=

D

W

1

;F

W

1

;R

W

1

E

; A; X

m

; : : : ;X

0

and W

2

=

D

W

2

;G

W

2

;Q

W

2

E

; B; Y

r

; : : : ; Y

0

satisfying the properties listed in Claim 1. We may assume that

(W

1

�X

m

) \ (W

2

� Y

r

) = ;:

Using an appropriate bije
tion b from X

m

onto Y

r

we may also assume that X

m

= Y

r

,

A

2

(a) = B

2

(a) for all obje
t variables a 2 obj(�

1

), and

sur

1

(s)

W

1

;A

\X

m

= sur

2

(s)

W

2

;B

\X

m

for all s 2 �

1

: (6)

This follows from the fa
t that all obje
t variables are mapped by A

2

and B

2

into X

m

and Y

r

([a1℄, [b1℄), respe
tively, the inje
tivity of the mappings A

2

and B

2

, and the


onditions [a4℄ and [b4℄ whi
h state that fsur

1

(s)

W

1

;A

\X

m

: s 2 �

1

g and fsur

2

(s)

W

2

;B

\

Y

r

: s 2 �

1

g both form �-partitions of X

m

= Y

r

. Some abbreviations are useful: set

� A

i

= X

i

�X

i+1

, for 0 � i < m,

� B

i

= Y

i

� Y

i+1

, for 0 � i < r,

� A

�1

=W

1

�X

0

, B

�1

=W

2

� Y

0

.

So far we have merged the X

m

-part of W

1

with the Y

r

-part of W

2

. It remains to take


are of the sets A

i

, �1 � i < m, and B

i

, �1 � i < r: the sets A

i

will be merged with

new models W

i

2 M

2

and the sets B

i

will be merged with new models V

i

from M

1

.

Thus, the �nal model will be obtained by merging the disjoint union of W

1

and W

i

,

�1 � i < m with the disjoint union of W

2

and V

i

, �1 � i < r. Figure 5 illustrates

this merging. In the �gure, we assume that �

1

= fs

1

; : : : ; s

k

g.

Of 
ourse, when merging A

i

, i � 0, with a new model W

i

we have to respe
t the

partition

fsur

1

(t)

W

1

;A

\A

i

j t 2 �

1

g

of A

i

. And when merging B

i

, i � 0, with a new model V

i

we have to respe
t the

partition

fsur

1

(t)

W

1

;B

\B

i

j t 2 �

1

g

of B

i

. Note that for A

�1

and B

�1

there is no partition to take 
are of. We now

pro
eed with the formal 
onstru
tion. We �nd models W

i

=

D

A

i

;G

W

i

;Q

W

i

E

2 M

2

with assignments B

i

=




B

i

1

;B

i

2

�

, �1 � i � m� 1, su
h that, for 0 � i � m� 1,

sur

2

(s)

W

i

;B

i

= sur

1

(s)

W

1

;A

\A

i

for all s 2 �

1

: (7)

This follows from [a5℄, [a6℄, and Lemma 47 (2).

We �nd, now using [b5℄, [b6℄, and Lemma 47 (1), models V

i

=

D

B

i

;F

V

i

;R

V

i

E

2

M

1

with assignments A

i

=




A

i

1

;A

i

2

�

, �1 � i � r � 1, su
h that, for 0 � i � r � 1,

sur

1

(s)

V

i

;A

i

= sur

2

(s)

W

2

;B

\B

i

for all s 2 �

1

: (8)
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. .. . ..

...

. ..

...

. ..

. ..

. .. . ..

. . . ..

. ..

.

X

m

A

m�1

A

�1

A

0

V

r�1

V

�1

V

0

sur

1

(s

1

)

sur

1

(s

k

)

Y

r

W

m�1

W

�1

W

0

B

�1

B

0

sur

2

(s

1

)

sur

2

(s

k

)

B

r�1

Figure 5: The bije
tion.

Let

W

0

1

=

D

W

1

[ (W

2

� Y

r

);F

W

0

1

;R

W

0

1

E

2M

1

be the disjoint union of the V

i

, �1 � i < r, and W

1

, and let

W

0

2

=

D

W

2

[ (W

1

�X

m

);G

W

0

2

;Q

W

0

2

E

2M

2

be the disjoint union of the W

i

, �1 � i < m, and W

2

. We assume X

m

= Y

r

and so

the domain of both ADMs is W

1

[W

2

.

De�ne a model W =




W; (F [ G)

W

; (R [Q)

W

�

2 M based on W = W

1

[W

2

by

putting

� R

W

= R

W

0

1

,

� F

W

= F

W

0

1

,

� Q

W

= Q

W

0

2

,

� G

W

= G

W

0

2

.

De�ne an assignment C = hC

1

; C

2

i in W by putting

� C

2

(a) = A

2

(a)(= B

2

(a)), for all a 2 obj(�

1

).

� C

1

(x) = A

1

(x) [

S

�1�i<r

A

i

1

(x), for all set variables x in term(�).

Noti
e that C

1

(x) = B

1

(x) [

S

�1�i<m

B

i

1

(x), for all set variables x 2 term(�).

51



Baader, Lutz, Sturm, & Wolter

� C

1

(x

t

) = A

1

(x

t

) [

S

�1�i<r

A

i

1

(x

t

), for all t = g(t

1

; : : : ; t

k

) 2 sub

1

(�).

� C

1

(x

t

) = B

1

(x

t

) [

S

�1�i<m

B

i

1

(x

t

), for all t = f(t

1

; : : : ; t

k

) 2 sub

1

(�).

We will show that hW; Ci j= �. Firstly, however, we make a list of the relevant properties

of hW; Ci:

Claim 2.

[
1℄ C

2

(a) 2 X

m

= Y

r

, for all a 2 obj(�);

[
2℄ hW; Ci j= �

1

[ �

2

;

[
3℄ sur

1

(t)

W;C

\ (X

0

[ Y

0

) = sur

2

(t)

W;C

\ (X

0

[ Y

0

), for all t 2 �

1

;

[
4℄ sur

1

(s)

W;C

\ (X

0

[ Y

0

) = sur

2

(s)

W;C

\ (X

0

[ Y

0

), for all s 2 sub

1

(�);

[
5℄ X

n+1

� X

n

\ 


W

(X

n

), for all 0 � n < m;

[
6℄ Y

n+1

� Y

n

\ d

W

(Y

n

), for all 0 � n < r;

[
7℄ for all g 2 G of arity l, 0 � n < m, and all C

1

; : : : ; C

l

�W :

g

W

(C

1

; : : : ; C

l

) \X

n

= g

W

(C

1

\X

n

; : : : ; C

l

\X

n

) \X

n

;

[
8℄ for all f 2 F of arity l, 0 � n < r, and all C

1

; : : : ; C

l

�W :

f

W

(C

1

; : : : ; C

l

) \ Y

n

= f

W

(C

1

\ Y

n

; : : : ; C

l

\ Y

n

) \ Y

n

:

Proof of Claim 2. [
1℄ follows from [a1℄ and [b1℄ and the 
onstru
tion of hW; Ci. [
2℄

follows from [a2℄ and [b2℄. [
3℄ follows from the 
onstru
tion of hW; Ci and equations (6),

(7), and (8). [
4℄ follows from [
3℄. [
5℄ and [
6℄ follow from [a3℄ and [b3℄, respe
tively.

It remains to prove [
7℄ and [
8℄. But [
7℄ follows from the fa
t that




W; G

W

�

is the

disjoint union of stru
tures based on X

n

and W �X

n

, for 0 � n < m, and [
8℄ is dual

to [
7℄. Claim 2 is proved.

We now show hW; Ci j= �. To this end we �rst show the following:

Claim 3. For all k

1

; k

2

with 0 � k

1

� m and 0 � k

2

� r and all s 2 sub

1

(�) with

d

F

(s) � k

1

and d

G

(s) � k

2

we have, for Z 2 fX

k

1

; Y

k

2

g,

Z \ s

M;C

= Z \ sur

1

(s)

M;C

= Z \ sur

2

(s)

M;C

:

Proof of Claim 3. By [
4℄ it suÆ
es to prove the �rst equation. The proof is by indu
tion

on the 
ardinal k

1

+ k

2

. The indu
tion base k

1

= k

2

= 0 follows from sur

1

(s) = sur

2

(s)

for d

F

(s) = d

G

(s) = 0.

Suppose the 
laim is proved for all X

k

; Y

k

0

with k � m, k

0

� r and k+ k

0

< k

1

+ k

2

.

We prove the 
laim for X

k

1

; Y

k

2

. The proof is by indu
tion on the 
onstru
tion of terms

s with d

F

(s) � k

1

and d

G

(s) � k

2

. The boolean 
ases are trivial.

Suppose s = f(s

1

; : : : ; s

l

) with d

F

(s) � k

1

and d

G

(s) � k

2

. We have to show the

following two statements:
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(i) X

k

1

\ s

W;C

= X

k

1

\ sur

1

(s)

M;C

.

(ii) Y

k

2

\ s

W;C

= Y

k

2

\ sur

1

(s)

M;C

.

Consider (i) �rst. The indu
tion hypothesis yields

X

k

1

�1

\ s

W;C

i

= X

k

1

�1

\ sur

1

(s

i

)

W;C

for 1 � i � l. We have

X

k

1

�1

\ 


W

(X

k

1

�1

) \ s

W;C

= X

k

1

�1

\ 


W

(X

k

1

�1

) \ f

W

(s

W;C

1

; : : : ; s

W;C

l

)

= X

k

1

�1

\ 


W

(X

k

1

�1

) \ f

W

(sur

1

(s

1

)

W;C

; : : : ; sur

1

(s

l

)

W;C

)

= X

k

1

�1

\ 


W

(X

k

1

�1

) \ sur

1

(s)

W;C

:

The se
ond equation is an immediate 
onsequen
e of the third property of 
overing

normal terms as given in De�nition 26. Now the equation follows from [
5℄, i.e. X

k

1

�

X

k

1

�1

\ 


W

(X

k

1

�1

). (i) is proved.

(ii) Suppose �rst that k

2

= r. Then Y

k

2

= X

m

and the 
laim 
an be proved as above

sin
e X

m

� X

k

1

and, by indu
tion hypothesis, X

k

1

�1

\ s

W;C

i

= X

k

1

�1

\ sur

1

(s

i

)

W;C

, for

1 � i � l.

Assume now that k

2

< r. By indu
tion hypothesis,

Y

k

2

\ s

W;C

i

= Y

k

2

\ sur

2

(s

i

)

W;C

;

for 1 � i � l. Hen
e

f

W

(Y

k

2

\ s

W;C

1

; : : : ; Y

k

2

\ s

W;C

l

) = f

W

(Y

k

2

\ sur

2

(s

1

)

W;C

; : : : ; Y

k

2

\ sur

2

(s

l

)

W;C

):

We interse
t both sides of the equation with Y

k

2

and derive with the help of [
8℄:

Y

k

2

\ f

W

(s

W;C

1

; : : : ; s

W;C

l

) = Y

k

2

\ f

W

(sur

2

(s

1

)

W;C

; : : : ; sur

2

(s

l

)

W;C

):

This means Y

k

2

\ s

W;C

= Y

k

2

\ sur

2

(s)

W;C

, and the equation follows. The statements

are proved.

The 
ase s = g(s

1

; : : : ; s

l

) is dual and left to the reader. We have proved 
laim 3.

By indu
tion (
.f. in the proof of Theorem 20 the proof of (1) from the 
orresponding


laim), we obtain from Claim 3:

X

m

\ s

W;C

= X

m

\ sur

1

(s)

M;C

for all s 2 term(�): (9)

Let us see how hW;Ai j= � follows from (9). We distinguish three 
ases: Suppose

R(a; b) 2 �. Then R(a; b) 2 �

1

and therefore hW; Ci j= R(a; b). Similarly, Q(a; b) 2 �

implies Q(a; b) 2 �

2

and hW; Ci j= Q(a; b). Suppose (a : t) 2 �. Then (a : sur

1

(t)) 2 �

1

and so, by [
2℄, C

2

(a) 2 sur

1

(t)

W;C

whi
h implies, by (9), C

2

(a) 2 t

W;C

. Hen
e hW; Ci j=

(a : t). This �nishes the proof of Theorem 30.
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