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Abstrat

Fusions are a simple way of ombining logis. For normal modal logis, fusions have

been investigated in detail. In partiular, it is known that, under ertain onditions,

deidability transfers from the omponent logis to their fusion. Though desription

logis are losely related to modal logis, they are not neessarily normal. In addition,

ABox reasoning in desription logis is not overed by the results from modal logis.

In this paper, we extend the deidability transfer results from normal modal logis

to a large lass of desription logis. To over di�erent desription logis in a uni-

form way, we introdue abstrat desription systems, whih an be seen as a ommon

generalization of desription and modal logis, and show the transfer results in this

general setting.

1. Introdution

Knowledge representation systems based on desription logis (DL) an be used to

represent the knowledge of an appliation domain in a strutured and formally well-

understood way (Brahman & Shmolze, 1985; Baader & Hollunder, 1991; Brahman,

MGuinness, Patel-Shneider, Alperin Resnik, & Borgida, 1991; Woods & Shmolze,

1992; Borgida, 1995; Horroks, 1998). In suh systems, the important notions of the

domain an be desribed by onept desriptions, i.e., expressions that are built from

atomi onepts (unary prediates) and atomi roles (binary prediates) using the on-

ept onstrutors provided by the desription logi employed by the system. The atomi

onepts and the onept desriptions represent sets of individuals, whereas roles rep-

resent binary relations between individuals. For example, using the atomi onepts

Woman and Human, and the atomi role hild, the onept of all women having only

daughters (i.e., women suh that all their hildren are again women) an be repre-

sented by the desription Woman u 8hild:Woman, and the onept of all mothers by

the desriptionWomanu9hild:Human. In this example, we have used the onstrutors

onept onjuntion (u), value restrition (8R:C), and existential restrition (9R:C).

In the DL literature, also various other onstrutors have been onsidered. A prominent

example are so-alled number restritions, whih are available in almost all DL systems.

For example, using number restritions the onept of all women having exatly two
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hildren an be represented by the onept desription

Woman u (� 2hild) u (� 2hild):

The knowledge base of a DL system onsists of a terminologial omponent (TBox) and

an assertional omponent (ABox). In its simplest form, the TBox onsists of onept

de�nitions, whih assign names (abbreviations) to omplex desriptions. More general

TBox formalisms allow for so-alled general onept inlusion axioms (GCIs) between

omplex desriptions. For example, the onept inlusion

Human u (� 3hild) v 9entitled:Taxbreak

states that people having at least three hildren are entitled to a tax break. The

ABox formalism onsists of onept assertions (stating that an individual belongs to a

onept) and role assertions (stating that two individuals are related by a role). For

example, the assertions Woman(MARY); hild(MARY;TOM);Human(TOM) state that

Mary is a woman, who has a hild, Tom, who is a human.

DL systems provide their users with various inferene apabilities that allow them

to dedue impliit knowledge from the expliitly represented knowledge. For instane,

the subsumption problem is onerned with subonept-superonept relationships: C

is subsumed by D (C v D) if, and only if, all instanes of C are also instanes of

D, i.e., the �rst desription is always interpreted as a subset of the seond desrip-

tion. For example, the onept desription Woman obviously subsumes the onept

desriptionWomanu8hild:Woman. The onept desription C is satis�able i� it is non-

ontraditory, i.e., it an be interpreted by a nonempty set. In DLs allowing for onjun-

tion and negation of onepts, subsumption an be redued to (un)satis�ability: C v D

i� C u:D is unsatis�able. The instane heking problem onsists of deiding whether

a given individual is an instane of a given onept. For example, w.r.t. the assertions

from above, MARY is an instane of the onept desription Woman u 9hild:Human.

The ABox A is onsistent i� it is non-ontraditory, i.e., it has a model. In DLs allow-

ing for negation of onepts, the instane problem an be redued to (in)onsisteny of

ABoxes: i is an instane of C w.r.t. the ABox A i� A[ f:C(i)g is inonsistent.

In order to ensure a reasonable and preditable behavior of a DL system, reason-

ing in the DL employed by the system should at least be deidable, and preferably

of low omplexity. Consequently, the expressive power of the DL in question must be

restrited in an appropriate way. If the imposed restritions are too severe, however,

then the important notions of the appliation domain an no longer be expressed. In-

vestigating this trade-o� between the expressivity of DLs and the omplexity of their

inferene problems has thus been one of the most important issues in DL researh (see,

e.g., Levesque & Brahman, 1987; Nebel, 1988; Shmidt-Shau�, 1989; Shmidt-Shau�

& Smolka, 1991; Nebel, 1990; Donini, Lenzerini, Nardi, & Nutt, 1991, 1997; Donini,

Hollunder, Lenzerini, Spaamela, Nardi, & Nutt, 1992; Shaerf, 1993; Donini, Lenz-

erini, Nardi, & Shaerf, 1994; De Giaomo & Lenzerini, 1994a, 1994b, 1995; Calvanese,

De Giaomo, & Lenzerini, 1999; Lutz, 1999; Horroks, Sattler, & Tobies, 2000).

This paper investigates an approah for extending the expressivity of DLs that (in

many ases) guarantees that reasoning remains deidable: the fusion of DLs. In order

to explain the di�erene between the usual union and the fusion of DLs, let us onsider

a simple example. Assume that the DL D

1

is ALC, i.e., it provides for the Boolean

2
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operators u, t, : and the additional onept onstrutors value restrition 8R:C and

existential restrition 9R:C, and that the DL D

2

provides for the Boolean operators and

number restritions (�nR) and (�nR). If an appliation requires onept onstrutors

from both DLs for expressing its relevant onepts, then one would usually onsider the

union D

1

[D

2

of D

1

and D

2

, whih allows for the unrestrited use of all onstrutors.

For example, the onept desription C

1

:= (9R:A) u (9R::A) u (� 1R) is a legal

D

1

[ D

2

desription. Note that this desription is unsatis�able, due to the interation

between onstrutors of D

1

and D

2

. The fusion D

1


 D

2

of D

1

and D

2

prevents

suh interations by imposing the following restrition: one assumes that the set of all

role names is partitioned into two sets, one that an be used in onstrutors of D

1

,

and another one that an be used in onstrutors of D

2

. Thus, the desription C

1

from above is not a legal D

1


 D

2

desription sine it uses the same role R both in

the existential restritions (whih are D

1

-onstrutors) and in the number restrition

(whih is a D

2

-onstrutor). In ontrast, the desriptions (9R

1

:A)u(9R

1

::A)u(� 1R

2

)

and (9R

1

:(� 1R

2

)) are admissible in D

1


 D

2

sine they employ di�erent roles in the

D

1

- and D

2

-onstrutors. If the onepts that must be expressed are suh that they

require both onstrutors from D

1

and D

2

, but the ones from D

1

for other roles than

the ones from D

2

, then one does not really need the union of D

1

and D

2

; the fusion

would be suÆient.

What is the advantage of taking the fusion instead of the union? Basially, for the

union of two DLs one must design new reasoning methods, whereas reasoning in the

fusion an be redued to reasoning in the omponent DLs. Indeed, reasoning in the

union may even be undeidable whereas reasoning in the fusion is still deidable. As an

example, we onsider the DLs (i) ALCF , whih extends the basi DL ALC by funtional

roles (features) and the same-as onstrutor (agreement) on hains of funtional roles

(Hollunder & Nutt, 1990; Baader, B�urkert, Nebel, Nutt, & Smolka, 1993); and (ii)

ALC

+;Æ;t

, whih extends ALC by transitive losure, omposition, and union of roles

(Baader, 1991; Shild, 1991). For both DLs, subsumption of onept desriptions is

known to be deidable (Hollunder & Nutt, 1990; Shild, 1991; Baader, 1991). However,

their union ALCF

+;Æ;t

has an undeidable subsumption problem (Baader et al., 1993).

This undeidability result depends on the fat that, inALCF

+;Æ;t

, the role onstrutors

transitive losure, omposition, and union an be applied to funtional roles that also

appear within the same-as onstrutor. This is not allowed in the fusion ALCF 


ALC

+;Æ;t

. Of ourse, failure of a ertain undeidability proof does not make the fusion

deidable.

Why do we know that the fusion of deidable DLs is again deidable? Atually, in

general we don't, and this was our main reason for writing this paper. The notion \fu-

sion" was introdued and investigated in modal logi, basially to transfer results like

�nite axiomatizability, deidability, �nite model property, et. from uni-modal logis

(with one pair of box and diamond operators) to multi-modal logis (with several suh

pairs, possibly satisfying di�erent axioms). This has led to rather general transfer re-

sults (see, e.g., Wolter, 1998; Kraht & Wolter, 1991; Fine & Shurz, 1996; Spaan, 1993;

Gabbay, 1999 for results that onern deidability), whih are sometimes restrited to

so-alled normal modal logis (Chellas, 1980). Sine there is a lose relationship be-

tween modal logis and DLs (Shild, 1991), it is lear that these transfer results also

apply to some DLs. The question is, however, to whih DLs exatly and to whih

inferene problems. First, some DLs allow for onstrutors that are not onsidered

3
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in modal logis (e.g., the same-as onstrutor mentioned above). Seond, some DL

onstrutors that have been onsidered in modal logis, suh as quali�ed number re-

stritions (�nR:C), (�nR:C) (Hollunder & Baader, 1991), whih orrespond to graded

modalities (Van der Hoek & de Rijke, 1995), an easily be shown to be non-normal.

Third, the transfer results for deidability are onerned with the satis�ability problem

(with or without general inlusion axioms). ABoxes and the related inferene problems

are not onsidered. ABoxes an be simulated in modal logis allowing for so-alled

nominals, i.e., names for individuals, within formulae (Prior, 1967; Gargov & Goranko,

1993; Arees, Blakburn, & Marx, 2000). However, as we will see below, the general

transfer results do not apply to modal logis with nominals.

The purpose of this paper is to larify for whih DLs deidability of the omponent

DLs transfers to their fusion. To this purpose, we introdue so-alled abstrat desrip-

tion systems (ADSs), whih an be seen as a ommon generalization of desription and

modal logis. We de�ne the fusion of ADSs, and state four theorems that say under

whih onditions deidability transfers from the omponent ADSs to their fusion. Two

of these theorems are onerned with inferene w.r.t. general onept inlusion axioms

and two with inferene without TBox axioms. In both ases, we �rst formulate and

prove the results for the onsisteny problem of ABoxes (more preisely, the orre-

sponding problem for ADSs) and then establish analogous results for the satis�ability

problem of onepts.

From the DL point of view, the four theorems shown in this paper are onerned

with the following four deision problems:

(i) deidability of onsisteny of ABoxes w.r.t. TBox axioms (Theorem 17);

(ii) deidability of satis�ability of onepts w.r.t. TBox axioms; (Corollary 22);

(iii) deidability of onsisteny of ABoxes without TBox axioms (Theorem 29); and

(iv) deidability of satis�ability of onepts without TBox axioms (Corollary 34).

These theorems imply that deidability of the onsisteny problem and the satis�ability

problem transfers to the fusion for most DLs onsidered in the literature. The main

exeptions (whih do not satisfy the prerequisites of the theorems) are

(a) DLs that are not propositionally losed, i.e., do not ontain all Boolean onne-

tives;

(b) DLs allowing for individuals (alled nominals in modal logi) in onept desrip-

tions; and

() DLs expliitly allowing for the universal role or for negation of roles.

Results from modal logi for problem (iv) usually require the omponent modal logis

to be normal. Our Theorem 29 is less restritive, and thus also applies to DLs allowing

for onstrutors like quali�ed number restritions.

2. Desription logis

Before de�ning abstrat desription systems in the next setion, we introdue the main

features of DLs that must be overed by this de�nition. To this purpose, we �rst

4
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introdue ALC, the basi DL ontaining all Boolean onnetives, and the relevant

inferene problems. Then, we onsider di�erent possibilities for extending ALC to

more expressive DLs.

De�nition 1 (ALC Syntax). Let N

C

, N

R

, and N

I

be ountable and pairwise disjoint

sets of onept, role, and individual names, respetively. The set of ALC onept

desriptions is the smallest set suh that

1. every onept name is a onept desription,

2. if C and D are onept desriptions and R is a role name, then the following

expressions are also onept desriptions:

� :C (negation), C uD (onjuntion), C tD (disjuntion),

� 9R:C (existential restrition), and 8R:C (value restrition).

We use > as an abbreviation of A t :A and ? as an abbreviation for A u :A (where

A is an arbitrary onept name).

Let C and D be onept desriptions. Then C v D is a general onept inlusion

axiom (GCI). A �nite set of suh axioms is alled a TBox.

Let C be a onept desription, R a role name, and i; j individual names. Then

C(i) is a onept assertion and R(i; j) a role assertion. A �nite set of suh assertions

is alled an ABox.

The meaning of ALC-onept desriptions, TBoxes, and ABoxes an be de�ned

with the help of a set-theoreti semantis.

De�nition 2 (ALC Semantis). An ALC-interpretation I is a pair (�

I

; �

I

), where

�

I

is a nonempty set, the domain of the interpretation, and �

I

is the interpretation

funtion. The interpretation funtion maps

� eah onept name A to a subset A

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� eah individual name i to an element i

I

of �

I

suh that di�erent names are

mapped to di�erent elements (unique name assumption).

For a role name R and an element a 2 �

I

we de�ne R

I

(a) := fb j (a; b) 2 R

I

g. The

interpretation funtion an indutively be extended to omplex onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fa 2 �

I

j R

I

(a) \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j R

I

(a) � C

I

g

An interpretation I is a model of the TBox T i� it satis�es C

I

� D

I

for all GCIs

C v D in T . It is a model of the ABox A i� it satis�es i

I

2 C

I

for all onept

assertions C(i) 2 A and (i

I

; j

I

) 2 R

I

for all role assertions R(i; j) 2 A. Finally, I is a

model of an ABox relative to a TBox i� it is a model of both the ABox and the TBox.

5
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Given this semantis, we an now formally de�ne the relevant inferene problems.

De�nition 3 (Inferenes). Let C and D be onept desriptions, i an individual

name, T a TBox, and A an ABox. We say that C subsumes D relative to the TBox T

(D v

T

C) i� D

I

� C

I

for all models I of T . The onept desription C is satis�able

relative to the TBox T i� there exists a model I of T suh that C

I

6= ;. The individual

i is an instane of C in the ABox A relative to the TBox T i� i

I

2 C

I

for all models

of A relative to T . The ABox A is onsistent relative to the TBox T i� there exists a

model of A relative to T .

These three inferenes an also be onsidered without referene to a TBox: C

subsumes D (C is satis�able) i� C subsumes D (C is satis�able) relative to the empty

TBox, and i is an instane of C in A (A is onsistent) i� i is an instane of C in A (A

is onsistent) relative to the empty TBox.

We restrit our attention to DLs that are propositionally losed (i.e., allow for the

Boolean operators onjuntion, disjuntion, and negation). Consequently, subsumption

an be redued to (un)satis�ability sine C v

T

D i� C u :D is unsatis�able relative

to T . Conversely, (un)satis�ability an be redued to subsumption sine C is unsatis-

�able relative to T i� C v

T

?. For this reason, it is irrelevant whether we onsider

the subsumption or the satis�ability problem in our results onerning the transfer of

deidability of these problems from omponent DLs to their fusion (informally alled

transfer results in the following).

Similarly, the instane problem an be redued to the (in)onsisteny problem and

vie versa: i is an instane of C in A relative to T i� A [ f:C(i)g is inonsistent

relative to T ; and A is inonsistent relative to T i� i is an instane of ? in A relative

to T , where i is an arbitrary individual name. Consequently, it is irrelevant whether

we onsider the instane problem or the onsisteny problem in our transfer results.

Finally, the satis�ability problem an be redued to the onsisteny problem: C

is satis�able relative to T i� the ABox fC(i)g is onsistent relative to T , where i is

an arbitrary individual name. However, the onverse need not be true. It should be

obvious that this implies that a transfer result for the satis�ability problem does not

yield the orresponding transfer result for the onsisteny problem: from deidability

of the onsisteny problem for the omponent DLs we an only dedue deidability of

the satis�ability problem in their fusion. What might be less obvious is that a transfer

result for the onsisteny problem need not imply the orresponding transfer result

for the satis�ability problem: if the satis�ability problems in the omponent DLs are

deidable, then the transfer result for the onsisteny problem an just not be applied

(sine the prerequisite of this transfer result, namely, deidability of the onsisteny

problem in the omponent DLs, need not be satis�ed). However, we will show that the

method used to show the transfer result for the onsisteny problem also applies to the

satis�ability problem.

2.1 More expressive DLs

There are several possibilities for extending ALC in order to obtain a more expressive

DL. The three most prominent are adding additional onept onstrutors, adding role

onstrutors, and formulating restritions on role interpretations. In addition to giving

examples for suh extensions, we also introdue a naming sheme for the obtained DLs.

6
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Additional onept onstrutors are indiated by appending aligraphi letters to the

language name, role onstrutors by symbols in supersript, and restritions on roles

by letters in subsript.

We start with introduing restritions on role interpretations, sine we need to refer

to suh restritions when de�ning ertain onept onstrutors.

2.1.1 Restritions on role interpretations

These restritions enfore the interpretations of roles to satisfy ertain properties, suh

as funtionality, transitivity, et. We onsider three prominent examples:

1. Funtional roles. Here one onsiders a subset N

F

of the set of role names

N

R

, whose elements are alled features. An interpretation must map features

f 2 N

F

to funtional binary relations f

I

� �

I

� �

I

, i.e., relations satisfying

8a; b; :f

I

(a; b) ^ f

I

(a; ) ! b = . We will sometimes treat funtional relations

as partial funtions, and write f

I

(a) = b rather than f

I

(a; b). ALC extended

with features is denoted by ALC

f

.

2. Transitive roles. Here one onsiders a subset N

R

+
of N

R

. Role names R 2 N

R

+

are alled transitive roles. An interpretation must map transitive roles R 2 N

R

+

to transitive binary relations R

I

� �

I

��

I

. ALC extended with transitive roles

is denoted by ALC

R

+
.

3. Role hierarhies. A role inlusion axiom is an expression of the form R v S

with R;S 2 N

R

. A �nite set H of role inlusion axioms is alled a role hierarhy.

An interpretation must satisfy R

I

� S

I

for all R v S 2 H. ALC extended with

a role hierarhy H is denoted by ALC

H(H)

. If H is lear from the ontext or

irrelevant, we write ALC

H

instead of ALC

H(H)

.

The above restritions an also be ombined with eah other. For example, ALC

HR

+
is

ALC with a role hierarhy and transitive roles.

Transitive roles in DLs were �rst investigated by Sattler (1996). Features were in-

trodued in DLs by Hollunder and Nutt (1990) and (under the name \attributes") in

the CLASSIC system (Brahman et al., 1991), in both ases in onjuntion with fea-

ture agreements and disagreements (see onept onstrutors below). Features without

agreements and disagreements are, e.g., used in the DL SHIF (Horroks & Sattler,

1999), albeit in a more expressive \loal" way, where funtionality an be asserted

to hold at ertain individuals, but not neessarily on the whole model. Aording to

our naming sheme, we indiate the presene of features in a DL by the letter f in

subsript.

1

A remark on role hierarhies is also in order: in our de�nition, if H

1

and H

2

are

di�erent role hierarhies, then ALC

H(H

1

)

and ALC

H(H

2

)

are di�erent DLs. In the

DL literature, usually only one logi ALC

H

is de�ned and role hierarhies are treated

like TBoxes, i.e., satis�ability and subsumption are de�ned relative to TBoxes and

role hierarhies (see, e.g., Horroks, 1998). For our purposes, however, it is more

onvenient to de�ne one DL per role hierarhy sine distint role hierarhies impose

1. Note that some authors (e.g., Horroks & Sattler, 1999) use an appended F to denote loal fea-

tures. Following Hollunder and Nutt (1990), we will use F to denote a DL that allows for feature

agreements (see below).
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Name Syntax Semantis Symbol

Unquali�ed �nR fa 2 �

I

j jR

I

(a)j � ng N

number restritions �nR fa 2 �

I

j jR

I

(a)j � ng

Quali�ed �nR:C fa 2 �

I

j jR

I

(a) \ C

I

j � ng Q

number restritions �nR:C fa 2 �

I

j jR

I

(a) \ C

I

j � ng

Nominals I I

I

� �

I

with jI

I

j = 1 O

Feature agreement u

1

#u

2

fa 2 �

I

j 9b 2 �

I

: u

I

1

(a) = b = u

I

2

(a)g

and disagreement u

1

"u

2

fa 2 �

I

j 9b

1

; b

2

2 �

I

: F

u

I

1

(a) = b

1

6= b

2

= u

I

2

(b

1

)g

Figure 1: Some desription logi onept onstrutors.

distint restritions on the interpretation of roles. The advantages of this approah will

beome lear later on when frames and abstrat desription systems are introdued.

2.1.2 Conept onstrutors

Conept onstrutors take onept and/or role desriptions and transform them into

more omplex onept desriptions. In addition to the onstrutors available in ALC,

various other onept onstrutors are onsidered in the DL literature. A small olle-

tion of suh onstrutors an be found in Figure 1, where jSj denotes the ardinality

of a set S. The symbols in the rightmost olumn indiate the naming sheme for the

resulting DL. As mentioned above the name modi�ers for onept onstrutors are not

written in subsript, they are appended to the language name. For example, ALC

HR

+

extended with quali�ed number restritions is alled ALCQ

HR

+ . The syntax of the

extended DLs is as expeted, i.e., the onstrutors may be arbitrarily ombined. The

semantis is obtained by augmenting the semantis of ALC with the appropriate on-

ditions, whih an be found in the third olumn in Figure 1. Nominals and feature

(dis)agreements need some more explanation:

� Nominals. We onsider a set N

O

of (names for) nominals, whih is pairwise

disjoint to the sets N

C

, N

R

, and N

I

. Elements from N

O

are often denoted by I

(possibly with index). An interpretation must map nominals to singleton subsets

of �

I

. The intention underlying nominals is that they stand for elements of �,

just like individual names. However, sine we want to use the nominal I 2 N

O

as a (nullary) onept onstrutor, I must interpret them by a set, namely the

singleton set onsisting of the individual that I denotes.

� Feature (dis)agreements. ALCF is the extension of ALC

f

with feature agree-

ments and disagreements. Beside the additional onept onstrutors, ALCF

uses feature hains as part of the (dis)agreement onstrutor. A feature hain

is an expression of the form u = f

1

Æ � � � Æ f

n

. The interpretation u

I

of suh a

feature hain is just the omposition of the partial funtions f

I

1

; : : : ; f

I

n

, where

omposition is to be read from left to right.

DLs inluding nominals or feature (dis)agreements and additional onept onstrutors

or restritions on role interpretations are de�ned (and named) in the obvious way.

Number restrition are available in almost all DL systems. The DL ALCN (i.e.,

ALC extended with number restritions) was �rst treated by Hollunder and Nutt

8
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Name Syntax Semantis Symbol

Role omposition R

1

ÆR

2

f(a; b) 2 �

I

��

I

j Æ

9 2 �

I

: (a; ) 2 R

I

1

^ (; b) 2 R

I

2

g

Role omplement R f(a; b) 2 �

I

��

I

j (a; b) =2 R

I

g �

Role onjuntion R

1

u R

2

f(a; b) 2 �

I

��

I

j (a; b) 2 R

I

1

^ (a; b) 2 R

I

2

g u

Role disjuntion R

1

t R

2

f(a; b) 2 �

I

��

I

j (a; b) 2 R

I

1

_ (a; b) 2 R

I

2

g t

Inverse roles R

�1

f(a; b) 2 �

I

��

I

j (b; a) 2 R

I

g �1

Transitive losure R

+

f(a; b) 2 �

I

��

I

j (a; b) 2 (R

I

)

+

g +

Universal role U �

I

��

I

U

For a binary relation R, R

+

denotes the transitive losure of R.

Figure 2: Some desription logi role onstrutors.

(1990), as was ALCF . The DL ALCQ was �rst investigated by Hollunder and Baader

(1991), and ALCO by Shaerf (1994).

2.1.3 Role onstrutors

Role onstrutors allow us to build omplex role desriptions. A olletion of role

onstrutors an be found in Figure 2. Again, the rightmost olumn indiates the

naming sheme, where name modi�ers for role onstrutors are written in supersript

and separated by ommas. For example, ALCQ with inverse roles and transitive losure

is alled ALCQ

+;�1

. In DLs admitting role onstrutors, the set of role desriptions is

de�ned indutively, analogously to the set of onept desriptions. The semantis of

role onstrutors is given in the third olumn of Figure 2. As with onept desriptions,

it an be used to extend the interpretation funtion from role names to role desriptions.

In a DL with role onstrutors, role desriptions an be used wherever role names

may be used in the orresponding DLs without role onstrutors. For example,

9(R

1

uR

3

):C u 8(R

2

tR

2

)::C

is an ALC

�;u;t

-onept desription. This onept desription is unsatis�able sine R

2

t

R

2

is equivalent to the universal role. Note that role desriptions an also be used

within role assertions in an ABox.

The DL ALC

Æ;t;+

was �rst treated by Baader (1991) (under the name ALC

trans

);

Shild (1991) has shown that this DL is a notational variant of propositional dynami

logi (PDL). DLs with Boolean operators on roles were investigated by Lutz and Sattler

(2000). The inverse operator was available in the system CRACK (Bresiani, Franoni,

& Tessaris, 1995), and reasoning in DLs with inverse roles was, for example, investigated

by Calvanese et al. (1998) and Horroks et al. (2000). The universal role an be

expressed using DLs with Boolean operators on roles (see the above example), and

it an in turn be used to simulate general onept inlusion axioms within onept

desriptions.

2.2 Restriting the syntax

Until now, onstrutors ould be ombined arbitrarily. Sometimes it makes sense to

restrit the interation between onstrutors sine reasoning in the restrited DL may

9
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be easier than reasoning in the unrestrited DL. We will onsider DLs imposing ertain

restritions on

1. whih roles may be used inside ertain onept onstrutors,

2. whih roles may be used inside ertain role onstrutors,

3. the ombination of role onstrutors, and

4. the role onstrutors that may be used inside ertain onept onstrutors.

As an example for the �rst ase, onsider the fragment of ALCQ

R

+ in whih transitive

roles may be used in existential and universal restritions, but not in number restritions

(see, e.g., Horroks et al., 2000).

As the result of taking the fusion of two DLs, we will obtain DLs whose set of roles

N

R

is partitioned. For example, the fusion of ALCQ with ALC

�1

yields a fragment of

ALCQ

�1

where N

R

is partitioned in two sets, say N

R

1

and N

R

2

. In this fragment, the

inverse role onstrutor and roles from N

R

2

may not be used within quali�ed number

restritions, while roles from N

R

1

may not be used inside the inverse role onstrutor.

2

Thus, this DL is an example for the �rst, the seond, and the fourth ase.

Now onsider the DL ALCF introdued above, whih does not only extend ALC

f

with feature (dis)agreement as a onept onstrutor, but also provides the role om-

position onstrutor. However, the role hains built using omposition have to be

omprised exlusively of features and non-funtional roles may not appear inside fea-

ture (dis)agreement. Hene, ALCF is also an example for the �rst, seond, and fourth

ase.

As an example for the third ase, the fragment of ALC

�;u

in whih role onjuntion

may not be used inside the role omplement onstrutor is onsidered by Lutz and

Sattler (2000).

For these restrited DLs, we do not introdue an expliit naming sheme. Note

that, in this paper, we do not deal with DLs in whih the ombinability of onept on-

strutors with eah other is restrited sine these DLs would not �t into the framework

of abstrat desription systems introdued in the next setion. An example of suh a

DL would be one with atomi negation of onepts, i.e., where negation may only be

applied to onept names (e.g., the DL AL disussed by Donini et al., 1997).

3. Abstrat desription systems

In order to de�ne the fusion of DLs and prove general results for fusions of DLs,

one needs a formal de�nition of what are \desription logis". Sine there exists a

wide variety of DLs with very di�erent harateristis, we introdue a very general

formalization, whih should over all of the DLs onsidered in the literature, but also

inludes logis that would usually not be subsumed under the name DL.

3.1 Syntax and semantis

The syntax of an abstrat desription system is given by its abstrat desription lan-

guage, whih determines a set of terms, term assertions, and objet assertions. In

2. This will beome learer one we have given a formal de�nition of the fusion.

10
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this setting, onept desriptions are represented by terms that are built using the ab-

strat desription language. General inlusion axioms in DLs are represented by term

assertions and ABox assertions in DLs are represented by objet assertions.

De�nition 4 (Abstrat desription language). An abstrat desription language

(ADL) is determined by a ountably in�nite set V of set variables, a ountably in�nite

set X of objet variables, a (possibly in�nite) ountable set R of relation symbols of

arity two,

3

and a (possibly in�nite) ountable set F of funtions symbols f , whih are

equipped with arities n

f

. All these sets have to be pairwise disjoint.

The terms t

j

of this ADL are built using the follow syntax rules:

t

j

�! x; :t

1

; t

1

^ t

2

; t

1

_ t

2

; f(t

1

; : : : ; t

n

f

);

where x 2 V , f 2 F , and the Boolean operators :;^;_ are di�erent from all funtion

symbols in F . For a term t, we denote by var(t) the set of set variables used in t. The

symbol > is used as an abbreviation of x _ :x and ? as an abbreviation for x ^ :x

(where x is a set variable).

The term assertions of this ADL are

� t

1

v t

2

, for all terms t

1

; t

2

,

and the objet assertions are

� R(a; b), for a; b 2 X and R 2 R;

� (a : t), for a 2 X and t a term.

The sets of term and objet assertions together form the set of assertions of the ADL.

From the DL point of view, the set variables orrespond to onept names, objet

variables to individual names, relation symbols to roles, and the Boolean operators as

well as the funtion symbols orrespond to onept onstrutors. Thus, terms orre-

spond to onept desriptions. As an example, let us view onept desriptions of the

DL ALCN

u

, i.e., ALC extended with number restritions and onjuntion of roles, as

terms of an ADL. Value restritions and existential restritions an be seen as unary

funtion symbols: for eah role desription R, we have the funtion symbols f

8R

and

f

9R

, whih take a term t

C

(orresponding to the onept desription C) and transform

it into the more omplex terms f

8R

(t

C

) and f

9R

(t

C

) (orresponding to the onept de-

sriptions 8R:C and 9R:C). Similarly, number restritions an be seen as nullary fun-

tion symbols: for eah role desription R and eah n 2 N, we have the funtion symbols

f

�nR

and f

�nR

. Hene, the ALCN

u

-onept desription Au8(R

1

uR

2

)::(Bu(� 2R

1

))

orresponds to the term x

A

^f

8(R

1

uR

2

)

(:(x

B

^f

(�2R

1

)

)). We will analyze the onnetion

between ADLs and DLs more formally later on.

The semantis of abstrat desription systems is de�ned based on abstrat desrip-

tion models. These models are the general semanti strutures in whih the terms of

the ADL are interpreted. It should already be noted here, however, that an abstrat

desription system usually does not take into aount all abstrat desription models

available for the language: it allows only for a seleted sublass of these models. This

sublass determines the semantis of the system.

3. To keep things simpler, we restrit our attention to the ase of binary prediates, i.e., roles in DL.

However, the results an easily be extended to n-ary prediates.

11
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De�nition 5. Let L be an ADL as in De�nition 4. An abstrat desription model

(ADM) for L is of the form

W =

D

W;F

W

= ff

W

j f 2 Fg;R

W

= fR

W

j R 2 Rg

E

;

whereW is a nonempty set, the f

W

are funtions mapping every sequene




X

1

; : : : ;X

n

f

�

of subsets of W to a subset of W , and the R

W

are binary relations on W .

Sine ADMs do not interpret variables, we need an assignment that assigns a subset

of W to eah set variable, before we an evaluate terms in an ADM. To evaluate objet

assertions, we need an additional assignment that assigns an element of W to eah

objet variable.

De�nition 6. Let L be an ADL and W =




W;F

W

;R

W

�

be an ADM for L. An

assignment forW is a pair A = (A

1

;A

2

) suh that A

1

is a mapping from the set of set

variables V into 2

W

, and A

2

is an injetive

4

mapping from the set of objet variables

X into W . Let W be an ADM and A = (A

1

;A

2

) be an assignment for W. With eah

L-term t, we indutively assoiate a value t

W;A

in 2

W

as follows:

� x

W;A

:= A

1

(x) for all variables x 2 V ,

� (:t)

W;A

:=W n (t)

W;A

, (t

1

^ t

2

)

W;A

:= t

W;A

1

\ t

W;A

2

, (t

1

_ t

2

)

W;A

:= t

W;A

1

[ t

W;A

2

,

� f(t

1

; : : : ; t

n

f

)

W;A

:= f

W

(t

W;A

1

; : : : ; t

W;A

n

f

).

If x

1

; : : : ; x

n

are the set variables ourring in t, then we often write t

W

(X

1

; : : : ;X

n

) as

shorthand for t

W;A

, where A is an assignment with x

A

i

= X

i

for 1 � i � n.

The truth-relation j= between hW;Ai and assertions is de�ned as follows:

� hW;Ai j= R(a; b) i� A

2

(a)R

W

A

2

(b),

� hW;Ai j= a : t i� A

2

(a) 2 t

W;A

,

� hW;Ai j= t

1

v t

2

i� t

W;A

1

� t

W;A

2

.

In this ase we say that the assertion is satis�ed in hW;Ai. If, for an ADM W and a

set of assertions �, there exists an assignment A forW suh that eah assertion in � is

satis�ed in hW;Ai, then W is a model for �.

There are two di�erenes between ADMs and DL interpretations. First, in a DL in-

terpretation, the interpretation of the role names �xes the interpretation of the funtion

symbols orresponding to onept onstrutors that involve roles (like value restritions,

number restritions, et.). The interpretation of the onept names orresponds to an

assignment. Thus, a DL model is an ADM together with an assignment, whereas an

ADM alone orresponds to what is alled frame in modal logis. Seond, in DL the

roles used in onept onstrutors may, of ourse, also our in role assertions. In

ontrast, the de�nition of ADMs per se does not enfore any onnetion between the

interpretation of the funtion symbols and the interpretation of the relation symbols.

Suh onnetions an, however, be enfored by restriting the attention to a sublass

of all possible ADMs for the ADL.

4. This orresponds to the unique name assumption.
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De�nition 7. An abstrat desription system (ADS) is a pair (L;M), where L is an

ADL and M is a lass of ADMs for L that is losed under isomorphi opies.

5

From the DL point of view, the hoie of the lass M de�nes the semantis of the

onept and role onstrutors, and it allows us, e.g., to inorporate restritions on role

interpretations. In this sense, the ADS an be viewed as determining a (desription)

logi.

To be more onrete, in a DL interpretation the interpretation of the funtion

symbols is determined by the interpretation of the role names. Thus one an, for

example, restrit the lass of models to ADMs that interpret a ertain role as a transitive

relation or as the omposition of two other roles. Another restrition that an be

realized by the hoie ofM is that nominals (orresponding to nullary funtion symbols)

must be interpreted as singleton sets.

Let us now de�ne reasoning problems for abstrat desription systems. We will

introdue satis�ability of sets of assertions (with or without term assertions), whih

orresponds to onsisteny of ABoxes (with or without GCIs), and satis�ability of

terms (with or without term assertions), whih orresponds to satis�ability of onept

desriptions (with or without GCIs).

De�nition 8. Given an ADS (L;M), a �nite set of assertions � is alled satis�able

in (L;M) i� there exists an ADM W 2 M and an assignment A for W suh that

hW;Ai satis�es all assertions in �. The term t is alled satis�able in (L;M) i� fa : tg

is satis�able in (L;M), where a is an arbitrary objet variable.

� The satis�ability problem for (L;M) is onerned with the following question:

given a �nite set of objet assertions � of L, is � is satis�able in (L;M).

� The relativized satis�ability problem for (L;M) is onerned with the following

question: given a �nite set of assertions � of L, is � is satis�able in (L;M).

� The term satis�ability problem for (L;M) is onerned with the following ques-

tion: given a term t of L, is t satis�able in (L;M).

� The relativized term satis�ability problem for (L;M) is onerned with the fol-

lowing question: given a term t and a set of term assertions � of L, is fa : tg [�

satis�able in (L;M).

In the next setion, we will de�ne the fusion of two ADSs, and show that (relativized)

satis�ability is deidable in the fusion if (relativized) satis�ability in the omponent

ADSs is deidable. For these transfer results to hold, we must restrit ourselves to

so-alled loal ADSs.

De�nition 9. Given a family (W

p

)

p2P

of ADMsW

p

=




W

p

;F

W

p

;R

W

p

�

over pairwise

disjoint domains W

p

, we say that W =




W;F

W

;R

W

�

is the disjoint union of (W

p

)

p2P

i�

� W =

S

p2P

W

p

,

5. Intuitively, this means that, if an ADM W belongs to M, then all ADMs that di�er from it only

w.r.t. the names of the elements in its domain W also belong toM.
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� f

W

(X

1

; : : : ;X

n

f

) =

S

p2P

f

W

p

(X

1

\W

p

; : : : ;X

n

f

\W

p

) for all f 2 F and

X

1

; : : : ;X

n

f

�W ,

� R

W

=

S

p2P

R

W

p

for all R 2 R.

An ADS S = (L;M) is alled loal i� M is losed under disjoint unions.

In the remainder of this setion, we �rst analyze the onnetion between ADSs and

DLs in more detail, and then omment on the relationship to modal logis.

3.2 Correspondene to desription logis

We will show that the DLs introdued in Setion 2 orrespond to ADSs. In order to

do this, we �rst need to introdue frames, a notion well-known from modal logi. Let

L be one of the DLs introdued in Setion 2.

De�nition 10 (Frames). An L-frame F is a pair (�

F

; �

F

), where �

F

is a nonempty

set, alled the domain of F, and �

F

is the interpretation funtion, whih maps

� eah nominal I to a singleton subset I

F

of �

F

, and

� eah role name R to a subset R

F

of �

F

��

F

suh that the restritions for role

interpretations in L are satis�ed. For example, in ALC

R

+ , eah R 2 N

R

+ is

mapped to a transitive binary relation.

The interpretation funtion �

F

an indutively be extended to omplex roles in the

obvious way, i.e., by interpreting the role onstrutors in L aording to their semantis

as given in Figure 2.

An interpretation I is based on a frame F i� �

I

= �

F

, R

I

= R

F

for all roles

R 2 N

R

, and I

I

= I

F

for all nominals I 2 N

O

.

A frame an be viewed as an interpretation that is partial in the sense that the

interpretation of individual and onept names is not �xed. Note that (in ontrast to

the ase of onept and individual names) the interpretation of nominals is already

�xed in the frame. The reason for this is that, if we do not interpret nominals in the

frame, then we have to treat them as set variables on the ADS side. These would,

however, have to be variables to whih only singleton sets may be assigned. Sine suh

a restrition is not possible in the framework of ADSs as de�ned above, we interpret

nominals in the frame. The onsequene is that they orrespond to funtions of arity

0 on the ADS side.

Now, we de�ne the abstrat desription system S = (L;M) orresponding to a

DL L. It is straightforward to translate the syntax of L into an abstrat desription

language L.

De�nition 11 (Corresponding ADL). Let L be a DL with onept and role on-

strutors as well as restritions on role interpretations as introdued in Setion 2. The

orresponding abstrat desription language L is de�ned as follows. For every onept

name A in L, there exists a set variable x

A

in L, and for every individual name i in

L there exists an objet variable a

i

in L. Let R be the set of (possibly omplex) role

desriptions of L. The set of relation symbols of L is R, and the set of funtion symbols

of L is the smallest set ontaining
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1. for every role desription R 2 R, unary funtion symbols f

9R

and f

8R

,

2. if L provides unquali�ed number restritions, then, for every n 2 N and every

role desription R 2 R, funtion symbols f

�nR

and f

�nR

of arity 0,

3. if L provides quali�ed number restritions, then, for every n 2 N and every role

R 2 R, unary funtion symbols f

_

�nR

and f

_

�nR

,

4. if L provides nominals, then, for every I 2 N

O

, a funtion symbol f

I

of arity 0,

5. if L provides feature agreement and disagreement, then, for every pair of feature

hains (u

1

; u

2

), two funtion symbols f

u

1

#u

2

and f

u

1

"u

2

of arity 0.

For an L-onept desription C, let t

C

denote the representation of C as an L-term,

whih is de�ned in the obvious way: onept names A are translated into set variables

x

A

, the onept onstrutors :, u, and t are mapped to :, ^, and _, respetively, and

all other onept onstrutors are translated to the orresponding funtion symbols.

Obviously, both the sets of funtion and relation symbols of L may be in�nite.

An example of the translation of onept desriptions into terms of an ADL was

already given above: the ALCN

u

-onept desription A u 8(R

1

uR

2

)::(B u (� 2R

1

))

orresponds to the term x

A

^ f

8(R

1

uR

2

)

(:(x

B

^ f

(�2R

1

)

)).

We now de�ne the set of abstrat desription models M orresponding to the DL

L. For every L-frame, M ontains a orresponding ADM.

De�nition 12 (Corresponding ADM). Let F = (�

F

; �

F

) be a frame. The orre-

sponding abstrat desription model W =




W;F

W

;R

W

�

has domain W := �

F

. The

relation symbols of L are just the role desriptions of L, and thus they are interpreted

in the frame F. For eah relation symbol R 2 R we an hene de�ne R

W

:= R

F

.

To de�ne F

W

, we need to de�ne f

W

for every nullary funtion symbol f in L,

and f

W

(X) for every unary funtion symbol f in L and every X � �

I

. Let A be an

arbitrary onept name. For eah X � �

F

, let I

X

be the interpretation based on F

mapping the onept name A to X and every other onept name to ;.

6

To de�ne f

W

,

we make a ase distintion aording to the type of f :

1. f

W

9R

(X) := (9R:A)

I

X

, f

W

8R

(X) := (8R:A)

I

X

,

2. f

W

�nR

:= (�nR)

I

;

, f

W

�nR

:= (�nR)

I

;

,

3. f

W

_

�nR

(X) := (�nR:A)

I

X

, f

W

_

�nR

(X) := (�nR:A)

I

X

,

4. f

W

I

:= I

I

;

,

5. f

W

u

1

#u

2

= (u

1

#u

2

)

I

;

, f

W

u

1

"u

2

= (u

1

"u

2

)

I

;

.

The lass of ADMs M thus obtained from a DL L is obviously losed under iso-

morphi opies sine this also holds for the set of L-frames (independently of whih DL

L we onsider). Hene, the tuple S = (L;M) orresponding to a DL L is indeed an

ADS.

As an example, let us view the DL ALCN

u

as an ADS. The ADL L orresponding

to ALCN

u

has already been disussed. Thus, we onentrate on the lass of ADMs

6. Taking the empty set here is arbitrary.
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M indued by the frames of ALCN

u

. Assume that F is suh a frame, i.e., F onsists

of a nonempty domain and interpretations R

F

of the role names R. The ADM W =




W;F

W

;R

W

�

indued by F is de�ned as follows. The set W is idential to the domain

of F. Eah role desription yields a relation symbol, whih is interpreted inW just as in

the frame. For example, (R

1

uR

2

)

W

= R

F

1

\R

F

2

. It remains to de�ne the interpretation

of the funtion symbols. We illustrate this on two examples. First, onsider the (unary)

funtion symbol f

8(R

1

uR

2

)

. Given a subset X of W , the funtion f

W

8(R

1

uR

2

)

maps X to

f

W

8(R

1

uR

2

)

(X) := fw 2W j v 2 X for all v with (w; v) 2 R

F

1

\R

F

2

g;

i.e., the interpretation of the onept desription 8(R

1

u R

2

):A in the interpretations

based on F interpreting A by X. Aordingly, the value of the onstant symbol f

(�2R)

in W is given by the interpretation of (� 2R) in the interpretations based on F.

It is easy to show that the interpretation of onept desriptions in L oinides with

the interpretation of the orresponding terms in S = (L;M).

Lemma 13. Let F be a frame, W =




W;F

W

;R

W

�

be the ADM orresponding to F,

A = (A

1

;A

2

) be an assignment for W, C be a onept desription, and let the onept

names used in C be among A

1

; : : : ; A

k

. For all interpretations I based on F with

A

I

i

= A

1

(x

A

i

) for all 1 � i � k, we have that

C

I

= t

W;A

C

:

As an easy onsequene of this lemma, there is a lose onnetion between reasoning

in a DL L and reasoning in the orresponding ADS. Given a TBox T and an ABox A

of the DL L, we de�ne the orresponding set S(T ;A) of assertions of the orresponding

ADL (L;M) in the obvious way, i.e., eah GCI C v D in T yields a term assertion

t

C

v t

D

, eah role assertion R(i; j) in A yields an objet assertion R(a

i

; a

j

), and eah

onept assertion C(i) yields an objet assertion a

i

: t

C

.

Proposition 14. The ABox A is onsistent relative to the TBox T in L i� S(T ;A)

is satis�able in the orresponding ADS.

We do not treat non-relativized onsisteny expliitly sine it is the speial ase of

relativized onsisteny where the TBox is empty.

As already mentioned above, our transfer results require the omponent ADSs to

be loal. We all a DL L loal i� the ADS (L;M) orresponding to L is loal. It turns

out that not all DLs introdued in Setion 2 are loal.

Proposition 15. Let L be one of the DLs introdued in Setion 2. Then, L is loal

i� L does not inlude any of the following onstrutors: nominals, role omplement,

universal role.

Proof. We start with the \only if" diretion, whih is more interesting sine it shows

why ADSs orresponding to DLs with nominals, role omplement, or the universal role

are not loal. We make a ase distintion aording to whih of these onstrutors L

ontains.

� Nominals. Consider the disjoint unionW of the ADMsW

1

andW

2

, and assume

that W

1

and W

2

orrespond to frames of a DL with nominals. By de�nition of
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the disjoint union, we know that �

W

1

\�

W

2

= ;. If I 2 N

O

is a nominal, then

the de�nition of the disjoint union implies that f

W

I

= f

W

1

I

[f

W

2

I

. Sine nominals

are interpreted by singleton sets in W

1

and W

2

, and sine the domains of W

1

and W

2

are disjoint, this implies that f

W

I

is a set of ardinality 2. Consequently,

W annot orrespond to an ADM indued by a frame for a DL with nominals,

sine suh frames interpret nominals by singleton sets.

� Universal role. Again, onsider the disjoint unionW of the ADMsW

1

andW

2

,

and assume that W

1

and W

2

orrespond to frames of a DL with the universal

role. Let U denote the universal role, i.e., a role name for whih the interpretation

is restrited to the binary relation relating eah pair of individuals of the domain.

By the de�nition of the disjoint union, we have U

W

= U

W

1

[ U

W

2

= �

W

1

�

�

W

1

[ �

W

2

� �

W

2

6= �

W

� �

W

. Consequently, W annot orrespond to an

ADM indued by a frame for a DL with universal role, sine suh a frame would

interpret U by �

W

��

W

.

� Role omplement. Again, onsider the disjoint union W of the ADMs W

1

and W

2

, and assume that W

1

and W

2

orrespond to frames of a DL with role

negation. For an arbitrary role name R, we have R

W

= R

W

1

[ R

W

2

= (�

W

1

�

�

W

1

nR

W

1

) [ (�

W

2

��

W

2

nR

W

2

) 6= (�

W

1

[�

W

2

) n (R

W

1

[R

W

2

) = �

W

nR

W

.

It remains to prove the \if" diretion. Assume that L is one of the DLs introdued

in Setion 2 that does not allow for nominals, role omplements, and the universal role.

Let (F

p

)

p2P

be a family of L-frames F

p

= (�

F

p

; �

F

p

) and let W

p

=




W

p

;F

W

p

;R

W

p

�

be the ADMs orresponding to them. By de�nition, �

F

p

= W

p

for all p 2 P . Assume

that the domains (W

p

)

p2P

are pairwise disjoint. We must show that the disjoint union

of (W

p

)

p2P

also orresponds to an L-frame. To this purpose, we de�ne the frame

F = (�

F

; �

F

) as follows:

� �

F

:=

S

p2P

�

F

p

and

� R

F

:=

S

p2P

R

F

p

for all R 2 N

R

.

Let W =




W;F

W

;R

W

�

2 M be the ADM orresponding to F. By De�nition 12

(orresponding ADM), we have W =

S

p2P

W

p

and R

W

=

S

p2P

R

W

p

for all R 2 N

R

.

By indution on the struture of omplex roles, it is easy to show that this also holds for

all R 2 R, i.e., all omplex role desriptions. For example, onsider the role desription

R

1

Æ R

2

. By indution, we know that R

W

1

=

S

p2P

R

W

p

1

and R

W

2

=

S

p2P

R

W

p

2

. Sine

the sets (W

p

)

p2P

are pairwise disjoint,

(R

1

ÆR

2

)

W

= R

W

1

ÆR

W

2

=

[

p2P

R

W

p

1

Æ

[

p2P

R

W

p

2

=

[

p2P

R

W

p

1

Æ R

W

p

2

=

[

p2P

(R

1

Æ R

2

)

W

p

:

Sine R

W

p

= R

F

p

for all R 2 R and p 2 P , we obtain the following fat:

(�) For all p 2 P , a 2 �

F

p

, and role desriptions R 2 R, the following holds:

R

F

(a) = R

F

p

(a); in partiular, R

F

(a) � �

F

p

.
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It remains to show that, for all n � 0, all X

1

; : : : ;X

n

�W , and all funtion symbols f

of arity n, we have

f

W

(X

1

; : : : ;X

n

) =

[

p2P

f

W

p

(X

1

\W

p

; : : : ;X

n

\W

p

):

This an be proved by making a ase distintion aording to the type of f . We treat

two ases exemplarily.

� f = f

u

1

#u

2

. Sine W =

S

p2P

W

p

and the sets W

p

are pairwise disjoint, f

W

u

1

#u

2

is the disjoint union of the sets f

W

u

1

#u

2

\W

p

for p 2 P . It remains to show that

f

W

u

1

#u

2

\W

p

= f

W

p

u

1

#u

2

(p 2 P ). By de�nition of f

W

p

u

1

#u

2

, we know that a 2 f

W

p

u

1

#u

2

i� a 2 �

F

p

, both u

F

p

1

(a) and u

F

p

2

(a) are de�ned, and u

F

p

1

(a) = u

F

p

2

(a). By (�),

this is the ase i� a 2 �

F

p

, both u

F

1

(a) and u

F

2

(a) are de�ned and u

F

1

(a) = u

F

2

(a),

whih is equivalent to a 2 f

W

u

1

#u

2

\W

p

.

� f = f

_

�nR

. Sine W =

S

p2P

W

p

and the sets W

p

are pairwise disjoint, f

W

_

�nR

(X)

is the disjoint union of the sets f

W

_

�nR

(X)\W

p

for p 2 P . It remains to show that

f

W

_

�nR

(X) \W

p

= f

W

p

_

�nR

(X \W

p

) (p 2 P ). By de�nition of f

W

p

_

�nR

, we know that

a 2 f

W

p

_

�nR

(X\W

p

) i� a 2 �

F

p

and jR

F

p

(a)\(X\W

p

)j � n. By (�), this is the ase

i� jR

F

(a) \ (X \W

p

)j � n i� jR

F

(a) \Xj � n, and hene i� a 2 f

W

_

�nR

(X) \W

p

.

❏

It should be noted that arguments similar to the ones used in the proof of the \only

if" diretion show that, in the presene of the universal role or of role negation, funtion

symbols (e.g., f

8U

) may also violate the loality ondition.

The transfer results for deidability that are developed in this paper only apply to

fusions of loal ADSs. Hene, the \only if" diretion of the proposition implies that our

results are not appliable to fusions of ADSs orresponding to DLs that inorporate

nominals, role omplement, or the universal role.

3.3 Correspondene to modal logis

In this paper our onern are fusions of desription logis and not modal logis. Nev-

ertheless, it is useful to have a brief look at the relationship between ADSs and modal

logi. Standard modal languages an be regarded as ADLs without relation symbols

and objet variables (just identify propositional formulas with terms). Given suh an

ADL L, a set L of L-terms is alled a lassial modal logi i� is ontains all tautologies

of lassial propositional logi and is losed under modus ponens, substitutions, and

the regularity rule

x

1

$ y

1

; : : : ; x

n

f

$ y

n

f

f(x

1

; : : : ; x

n

f

)$ f(y

1

; : : : ; y

n

f

)

for all funtion symbols f of L. The minimal lassial modal logi in the language with

one unary funtion symbol is known as the logi E (see Chellas, 1980).

Any ADS (L;M) based on L determines a lassial modal logi L by taking the

valid terms, i.e., by de�ning

t 2 L i� t

W;A

=W for all W 2M and assignments A in W:
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The logi E is determined by the ADS with preisely one unary operator whose lass

of ADMs onsists of all models. Chellas formulates this ompleteness result (Theo-

rem 9.8 in Chellas, 1980) for so-alled minimal models (alias neighborhood-frames),

whih are, however, just a notational variant of abstrat desription models with one

unary operator (Do�sen, 1988). If the lassial modal logi L is determined by an ADS

with deidable term satis�ability problem, then L is deidable sine t 2 L i� :t is

unsatis�able.

A lassial modal logi L is alled normal i� it additionally ontains

f(x

1

; : : : ; x

j�1

; x

j

^ y

j

; x

j+1

; : : : ; x

n

f

) $ f(x

1

; : : : ; x

j�1

; x

j

; x

j+1

; : : : ; x

n

f

) ^

f(x

1

; : : : ; x

j�1

; y

j

; x

j+1

; : : : ; x

n

f

)

and

f(>;?; : : : ;?); f(?;>;?; : : : ;?); : : : ; f(?; : : : ;?;>);

for all funtion symbols f and all j with 1 � j � n

f

(J�onsson & Tarski, 1951; J�onsson

& Tarski, 1952; Goldblatt, 1989). This de�nition of normal modal logis assumes that

the formulas (terms) are built using only neessity (box) operators.

7

We will work here

only with neessity operators; the orresponding possibility-operators are de�nable by

putting

f

3

(x

1

; : : : ; x

n

f

) = :f(:x

1

; : : : ;:x

n

f

):

The minimal normal modal logi in the language with one unary operator is known

as K (Chellas, 1980).

We all a funtion F : W

n

!W normal i� for all 1 � j � n andX

1

; : : : ;X

n

; Y

j

�W

F (X

1

; : : : ;X

j�1

;X

j

\ Y

j

;X

j+1

; : : : ;X

n

) = F (X

1

; : : : ;X

j�1

;X

j

;X

j+1

; : : : ;X

n

) \

F (X

1

; : : : ;X

j�1

; Y

j

;X

j+1

; : : : ;X

n

))

and

F (W; ;; : : : ; ;) = F (;;W; ;; : : : ; ;) = � � � = F (;; : : : ; ;;W ) =W:

Note that a unary funtion F is normal i� F (W ) =W and F (X \Y ) = F (X)\F (Y ),

for any X;Y � W . A funtion symbol f is alled normal in an ADS (L;M) i� the

funtions f

W

are normal for all W 2M.

For any role R of some DL, the funtion symbol f

8R

is normal in the orresponding

ADS. To the ontrary, it is readily heked that neither f

_

�nR

and f

_

�nR

nor their duals

f

3

_

�nR

and f

3

_

�nR

are normal.

Obviously, an ADS (L;M) determines a normal modal logi i� all funtion symbols

of L are normal in (L;M). Completeness of K with respet to Kripke semantis

(Chellas, 1980) implies that the logi K is determined by the ADS with one unary

operator whose lass of ADMs onsists of all models interpreting this operator by a

normal funtion.

7. Note that some authors de�ne normal modal logis using possibility (diamond) operators, in whih

ase the de�nitions are the duals of what we have introdued and thus at �rst sight look quite

di�erent.
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4. Fusions of abstrat desription systems

In this setion, we de�ne the fusion of abstrat desription systems and prove two trans-

fer theorems for deidability, one onerning satis�ability and the other one onerning

relativized satis�ability.

De�nition 16. The fusion S

1


S

2

= (L

1


L

2

;M

1


M

2

) of two abstrat desription

systems S

1

= (L

1

;M

1

) and S

2

= (L

2

;M

2

) over

� disjoint sets of funtion symbols F of L

1

and G of L

2

,

� disjoint sets of relation symbols R of L

1

and Q of L

2

, and

� the same sets of set and objet variables

is de�ned as follows: L

1


L

2

is the ADL based on

� the union F [ G of the funtion symbols of L

1

and L

2

, and

� the union R [Q of the relation symbols of L

1

and L

2

,

and M

1


M

2

is de�ned as

f

D

W;F

W

[ G

W

;R

W

[Q

W

E

j

D

W;F

W

;R

W

E

2M

1

and

D

W;G

W

;Q

W

E

2M

2

g:

As an example, onsider the ADSs S

1

and S

2

orresponding to the DLs ALCF and

ALC

+;Æ;t

introdued in Setion 2. We onentrate on the funtion symbols provided

by their fusion. In the following, we assume that the set of role names employed by

ALCF and ALC

+;Æ;t

are disjoint.

� The ADS S

1

is based on the following funtion symbols: (i) unary funtions

symbol f

8R

and f

9R

for every role name R of ALCF , (ii) nullary funtions symbols

orresponding to the same-as onstrutor for every pair of hains of funtional

roles of ALCF .

� The ADS S

2

is based on the following funtion symbols: (iii) unary funtions

symbol f

8Q

and f

9Q

for every role desriptionQ built from role names of ALC

+;Æ;t

using union, omposition, and transitive losure.

Sine we assumed that the set of role names employed by ALCF and ALC

+;Æ;t

are

disjoint, these sets of funtion symbols are also disjoint. The union of these sets provides

us both with the symbols for the same-as onstrutor and with the symbols for value and

existential restritions on role desriptions involving union, omposition, and transitive

losure. However, the role desriptions ontain only role names from ALC

+;Æ;t

, and

thus none of the funtional roles of ALCF ours in suh desriptions. Thus, the fusion

of ALCF and ALC

+;Æ;t

yields a strit fragment of their union ALCF

+;Æ;t

.

4.1 Relativized satis�ability

We prove a transfer result for deidability of the relativized satis�ability problem, show

that this also yields a orresponding transfer result for the relativized term satis�ability

problem, and investigate how these transfer results an be extended to ADSs that

orrespond to DLs providing for the universal role.
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4.1.1 The transfer result

This setion is onerned with establishing the following transfer theorem:

Theorem 17. Let S

1

and S

2

be loal ADSs, and suppose that the relativized satis�ability

problems for S

1

and S

2

are deidable. Then the relativized satis�ability problem for

S

1


 S

2

is also deidable.

The idea underlying the proof of this theorem is to translate a given set of assertions

� of S

1


 S

2

into a set of assertions �

1

of S

1

and a set of assertions �

2

of S

2

suh that

� is satis�able in S

1


 S

2

i� �

1

is satis�able in S

1

and �

2

is satis�able in S

2

. The �rst

(naive) idea for how to obtain the set �

i

(i = 1; 2) is to replae in � alien terms (i.e.,

subterms starting with funtion symbols not belonging to S

i

) by new set variables (the

surrogate variables introdued below). With this approah, satis�ability of � would in

fat imply satis�ability of the sets �

i

, but the onverse would not be true. The diÆulty

arises when trying to ombine the models of �

1

and �

2

into one for �. To ensure that

the two models an indeed be ombined, the sets �

i

must ontain additional assertions

that make sure that the surrogate variables in one model and the orresponding alien

subterms in the other model are interpreted in a \ompatible" way. To be more preise,

there are (�nitely many) di�erent ways of adding suh assertions, and one must try

whih of them (if any) leads to a satis�able pair �

1

and �

2

.

For the proof of Theorem 17, we �x two loal ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whih L

1

is based on the set of funtion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

.

In what follows, we use the following notation: for a set of assertions �, denote by

term(�) and obj(�) the set of terms and objet names in �, respetively.

We start with explaining how alien subterms in the set � an be replaed by new

set variables. For eah L-term t of the form h(t

1

; : : : ; t

n

), h 2 F [ G, we reserve a

new variable x

t

, whih will be alled the surrogate of t. We assume that the set of

surrogate variables is disjoint to the original sets of variables. As skethed above, the

idea underlying the introdution of surrogate variables is that the deision proedure

for S

1

(S

2

) annot deal with terms ontaining funtion symbols from G (F). Thus, these

\alien" funtion symbols must be replaed before applying the proedure. To be more

preise, we replae the whole alien subterm starting with the alien funtion symbol by

its surrogate. For example, if the unary symbol f belongs to F , and the unary symbol g

belongs to G, then f(g(f(x))) is a \mixed" L-term. To obtain a term of L

1

, we replae

the subterm g(f(x)) by its surrogate, whih yields f(x

g(f(x))

). Analogously, to obtain

a term of L

2

, we replae the whole term by its surrogate, whih yields x

f(g(f(x)))

. We

now de�ne this replaement proess more formally.

De�nition 18. For an L-term t without surrogate variables, denote by sur

1

(t) the

L

1

-term resulting from t when all ourrenes of terms g(t

1

; : : : ; t

n

), g 2 G, that are

not within the sope of some g

0

2 G are replaed by their surrogate variable x

g(t

1

;:::;t

n

)

.

For a set � of terms, put sur

1

(�) := fsur

1

(t) j t 2 �g and de�ne sur

2

(t) as well as

sur

2

(�) aordingly.

Denote by sub(�) the set of subterms of terms in �, and by sub

1

(�) the variables

ourring in � as well as the subterms of alien terms (i.e., terms starting with a symbol

from G) in �. More formally, we an de�ne

sub

1

(�) := subft j x

t

2 var(sur

1

(�))g [ var(�):
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De�ne sub

2

(�) aordingly.

For example, let f 2 F be unary and g 2 G be binary. If t = f(g(x; f(g(x; y)))), then

sur

1

(t) = f(x

g(x;f(g(x;y)))

). Note that the restrition \not within the sope of some g

0

2

G" is there to larify that only the top-most alien subterms are to be replaed. For the

term t of this example, we have sub

1

(ftg) = fg(x; f(g(x; y))); f(g(x; y)); g(x; y); x; yg.

Note that the Boolean operators ourring in terms are \shared" funtion symbols

in the sense that they are alien to neither L

1

nor L

2

. Thus, sur

1

(f(x) ^ g(x; y)) =

f(x) ^ x

g(x;y)

and sur

2

(f(x) ^ g(x; y)) = x

f(x)

^ g(x; y).

Of ourse, when replaing whole terms by variables, some information is lost. For

example, onsider the (inonsistent) assertion (9R

1

:((�1R

2

) u (�2R

2

)))(i) and as-

sume that R

1

is a role of one omponent of a fusion, and R

2

a role of the other

omponent. Translated into abstrat desription language syntax, the onept desrip-

tion 9R

1

:((�1R

2

) u (�2R

2

)) yields the term t := f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

), where f

9R

1

is a funtion symbol of L

1

and the other two funtion symbols belong to L

2

. Now,

sur

1

(t) = f

9R

1

(x ^ y), where x is the surrogate for f

(�1R

2

)

and y is the surrogate for

f

(�2R

2

)

. If the deision proedure for the �rst ADS only sees f

9R

1

(x^y), it has no way

to know that the onjuntion of the alien subterms orresponding to x and y is unsat-

is�able. In fat, for this proedure x and y are arbitrary set variables, and thus x ^ y

is satis�able. To avoid this problem, we introdue so-alled onsisteny set onsisting

of \types", where a type says for eah \relevant" formula whether the formula itself

or its negation is supposed to hold. The sets �

1

and �

2

will then ontain additional

information that basially ensures that their models satisfy the same types. This will

allow us to merge these models into one for �.

De�nition 19. Given a �nite set � of L-terms, we de�ne the onsisteny set C(�) of

� as C(�) := ft



j  � �g, where the type t



determined by  � � is de�ned as

t



:=

^

f� j � 2 g ^

^

f:� j � 2 � n g:

Given a �nite set � of assertions in L, we de�ne sub

i

(�) := sub

i

(term(�)). We abbre-

viate C

i

(�) := C(sub

i

(�)), for i 2 f1; 2g.

In the example above, we have

sub

1

(f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

) = ff

(�1R

2

)

; f

(�2R

2

)

g;

and thus C

1

(fa

i

: f

9R

1

(f

(�1R

2

)

^ f

(�2R

2

)

)g) onsists of the 4 terms

f

(�1R

2

)

^ f

(�2R

2

)

;

f

(�1R

2

)

^ :f

(�2R

2

)

;

:f

(�1R

2

)

^ f

(�2R

2

)

; and

:f

(�1R

2

)

^ :f

(�2R

2

)

:

Given a set of terms �, an element t



of its onsisteny set C(�) an indeed be onsidered

as the \type" of an element e of the domain of an ADM w.r.t. �. Any suh element

e belongs to the interpretations of some of the terms in �, and to the omplements of

the interpretations of the other terms. Thus, if  is the set of terms of � to whih e

belongs, then e also belongs to the interpretation of t



and it does not belong to the
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interpretation of any of the other terms in C(�). In this ase we say that e realizes the

type t



.

We are now ready to formulate the theorem that redues the relativized satis�ability

problem in a fusion of two loal ADSs to relativized satis�ability in the omponent

ADSs. A proof of this theorem an be found in the appendix.

Theorem 20. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two loal ADSs in whih L

1

is based

on the set of funtion symbols F and relation symbols R, and L

2

is based on G and Q,

and let L = L

1


L

2

and M =M

1


M

2

. If � is a �nite set of assertions from L, then

the following are equivalent:

1. � is satis�able in (L;M).

2. There exist

(a) a set D � C

1

(�),

(b) for every term t 2 D an objet variable a

t

62 obj(�),

() for every a 2 obj(�) a term t

a

2 D,

suh that the union �

1

of the following sets of assertions in L

1

is satis�able in

(L

1

;M

1

):

(d) fa

t

: sur

1

(t) j t 2 Dg [ f> v sur

1

(

W

D)g,

(e) fa : sur

1

(t

a

) j a 2 obj(�)g,

(f) fR(a; b) j R(a; b) 2 �; R 2 Rg,

(g) fsur

1

(t

1

) v sur

1

(t

2

) j t

1

v t

2

2 �g [ fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of assertions in L

2

is satis�able in (L

2

;M

2

):

(h) fa

t

: sur

2

(t) j t 2 Dg [ f> v sur

2

(

W

D)g,

(i) fa : sur

2

(t

a

) j a 2 obj(�)g,

(j) fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

Intuitively, (2a) \guesses" a set D of types (i.e., elements of the onsisteny set).

The idea is that these are exatly the types that are realized in the model of � (to be

onstruted when showing (2 ! 1) and given when showing (1 ! 2)). Condition (2b)

introdues for every type in D a name for an objet realizing this type, and (2)

\guesses" for every objet variable ourring in � a type from D.

Regarding (2d) and (2h), one should note that the set of assertions fa

t

: t j t 2

Dg [ f> v

W

Dg states that every type in D is realized (i.e., there is an objet in the

model having this type) and that every objet has one of the types in D. The sets

of assertions (2d) and (2h) are obtained from this set through surrogation to make it

digestible by the deision proedures of the omponent logis.

The assertions in (2e) and (2i) state (again in surrogated versions) that the objet

interpreting the variable a has type t

a

. This ensures that, in the models of �

1

and �

2

(given when showing (2 ! 1)), the objets interpreting a have the same type t

a

from

D. Otherwise, these models ould not be ombined into a ommon one for �.

The sets (2f) and (2j) are obtained from � by distributing its relationship assertions

between �

1

and �

2

, depending on the relation symbol used in the assertion.
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The set (2g) ontains (in surrogated version) the term assertions of the form t

1

v t

2

and the membership assertions of the form a : s of �.

Condition 2 is asymmetri in two respets. First, it guesses a subset of C

1

(�) rather

than a subset of C

2

(�). Of ourse this is arbitrary, we ould also have hosen index

2 instead of 1 here. Seond, the set �

2

neither ontains the assertions fsur

2

(t

1

) v

sur

2

(t

2

) j t

1

v t

2

2 �g nor fa : sur

2

(s) j (a : s) 2 �g. If we added these assertions, the

theorem would still be true, but this would unneessarily inrease the amount of work

to be done by the ombined deision proedure. In fat, sine the other assertions in

�

1

and �

2

enfore a tight oordination between the models of �

1

and �

2

, the fat that

the membership assertions and term assertions of � are satis�ed in the models of �

1

implies that they are also satis�ed in the models of �

2

(see the appendix for details).

To prove Theorem 17, we must show how Theorem 20 an be used to onstrut a

deision proedure for relativized satis�ability in S

1


S

2

from suh deision proedures

for the omponent systems S

1

and S

2

. For a given �nite set of assertions � of S

1


 S

2

,

the set C

1

(�) is also �nite, and thus there are �nitely many sets D in (2a) and hoies

of types for objet variables in (2). Consequently, we an enumerate all of them and

hek whether one of these hoies leads to satis�able sets �

1

and �

2

. By de�nition

of the sets �

i

and of the funtions sur

i

, the assertions in �

i

are indeed assertions of

L

i

, and thus the satis�ability algorithm for (L

i

;M

i

) an be applied to �

i

. This proves

Theorem 17.

Regarding the omplexity of the obtained deision proedure, the ostly step is

guessing the right set D. Sine the ardinality of the set sub

1

(�) is linear in the size of

�, the ardinality of C

1

(�) is exponential in the size of � (and eah element of it has

size quadrati in �). Thus, there are doubly exponentially many di�erent subsets to be

hosen from. Sine the ardinality of the hosen set D may be exponential in the size

of �, also the size of �

1

and �

2

may be exponential in � (beause of the big disjuntion

over D). From this, the following orollary follows.

Corollary 21. Let S

1

and S

2

be loal ADSs, and suppose that the relativized satis�abil-

ity problems for S

1

and S

2

are deidable in ExpTime (PSpae). Then the relativized

satis�ability problem for S

1


 S

2

is deidable in 2ExpTime (ExpSpae).

Proof. Assume that � has size n. Then we must onsider 2

2

p

1

(n)

(for some polynomial

p

1

) di�erent sets D in (2a). Eah suh set has size 2

p

1

(n)

and thus we have of 2

2

p

2

(n)

hoies in (2) (for some polynomial p

2

). Overall, this still leaves us with doubly

exponentially many hoies. Now assume that the relativized satis�ability problems

for S

1

and S

2

are deidable in ExpTime. Sine eah all of these proedures is applied

to a set of assertions of exponential size, it may take double exponential time, say 2

2

p

3

(n)

and 2

2

p

4

(n)

(for polynomials p

3

and p

4

). Overall, we thus have a time omplexity of

2

2

p

1

(n)

� 2

2

p

2

(n)

� (2

2

p

3

(n)

+ 2

2

p

4

(n)

);

whih an learly be majorized by 2

2

p(n)

for an appropriate polynomial p. This shows

membership in 2ExpTime.

The argument regarding the spae omplexity is similar. Here one must additionally

take into aount that doubly exponentially many hoies an be enumerated using an

exponentially large ounter. ❏
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4.1.2 The relativized term satisfiability problem

The statement of Theorem 17 itself does not imply a transfer result for the relativized

term satis�ability problem. The problem is that deidability of the relativized term

satis�ability problem in S

1

and S

2

does not neessarily imply deidability of the rela-

tivized satis�ability problem in these ADSs, and thus the prerequisite for the theorem

to apply is not satis�ed. However, if we onsider the statement of Theorem 20, then

it is easy to see that this theorem also yields a transfer result for the relativized term

satis�ability problem.

Corollary 22. Let S

1

and S

2

be loal ADSs, and suppose that the relativized term sat-

is�ability problems for S

1

and S

2

are deidable. Then the relativized term satis�ability

problem for S

1


 S

2

is also deidable.

Proof. Consider the satis�ability riterion in Theorem 20. If we are interested in

relativized term satis�ability, then � is of the form fa : tg[�

0

, where �

0

is a set of term

assertions. In this ase, the sets of assertions �

1

and �

2

do not ontain objet assertions

involving relations. Now, assume that �

i

is of the form fa

1

: t

1

; : : : ; a

n

: t

n

g[�

0

i

, where

�

0

i

is a set of term assertions. Sine two assertions of the form b : s

1

; b : s

2

are equivalent

to one assertion b : s

1

^ s

2

, we may assume that the a

i

are distint from eah other.

Sine S

i

is loal, it is easy to see that the following are equivalent:

1. fa

1

: t

1

; : : : ; a

n

: t

n

g [ �

0

i

is satis�able in S

i

.

2. fa

j

: t

j

g [ �

0

i

is satis�able in S

i

for all j = 1; : : : ; n.

Sine (1 ! 2) is trivial, it is enough to show (2 ! 1). Given models W

j

2 M

i

of

fa

j

: t

j

g [ �

0

i

(j = 1; : : : ; n), their disjoint union also belongs to M

i

, and it is learly a

model of fa

1

: t

1

; : : : ; a

n

: t

n

g [ �

0

i

.

The seond ondition an now be heked by applying the term satis�ability test in

S

i

n times. ❏

4.1.3 Dealing with the universal role

As stated above (Proposition 15), ADSs orresponding to DLs with the universal role

are not loal, and thus Theorem 17 annot be applied diretly. Nevertheless, in some

ases this theorem an also be used to obtain a deidability result for fusions of DLs

with the universal role, provided that both of them provide for a universal role. (We

will omment on the usefulness of this approah in more detail in Setion 5.4).

De�nition 23. Given an ADS S = (L;M), we denote by S

U

the ADS obtained from

S by

1. extending L with two funtion symbols f

9U

S

and f

8U

S

, and

2. extending every ADM W =




W;F

W

;R

W

�

2 M with the unary funtions f

W

9U

S

and f

W

8U

S

, where

� f

W

9U

S

(X) = ; if X = ;, and f

W

9U

S

(X) =W otherwise;

� f

W

8U

S

(X) =W if X =W , and f

W

8U

S

(X) = ; otherwise.
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For ADSs S orresponding to a DL L, the ADS S

U

orresponds to the extension of

L with the universal role, where the universal role an only be used within value and

existential restritions.

8

There is a lose onnetion between the relativized satis�ability

problem in S and the satis�ability problem in S

U

.

Proposition 24. If S is a loal ADS, then the following onditions are equivalent:

1. the relativized (term) satis�ability problem for S is deidable,

2. the (term) satis�ability problem for S

U

is deidable,

3. the relativized (term) satis�ability problem for S

U

is deidable.

Proof. We restrit our attention to the term satis�ability problem sine the equiva-

lenes for the satis�ability problem an be proved similarly.

The impliation (3 ! 2) is trivial, and (2 ! 1) is easy to show. In fat, t is

satis�able in S relative to the term assertions fs

1

v t

1

; : : : ; s

n

v t

n

g i� t^ f

8U

S

:((:t

1

_

s

1

) ^ : : : ^ (:t

n

_ s

n

)) is satis�able in S

U

.

To show (1 ! 3), we assume that the relativized term satis�ability problem for S

is deidable. Let S = (L;M) and S

U

= (L

U

;M

U

). In the following, we use f

U

as

an abbreviation for f

8U

S

. Sine we an replae equivalently in any term the funtion

symbol f

9U

S

by :f

U

:, we may assume without loss of generality that f

9U

S

does not

our in terms of L

U

.

Suppose a set � = fa : sg [� from L

U

is given, where � is a set of term assertions.

We want to deide whether � is satis�able in some model W 2M

U

. To this purpose,

we transform � into a set of assertions not ontaining f

U

. The idea underlying this

transformation is that, given a model W 2 M

U

, we have f

U

(t)

W

2 fW; ;g, depending

on whether t

W

= W or not. Consequently, if we replae f

U

(t) aordingly by > or ?,

the evaluation of this term in W does not hange. However, in the satis�ability test

we do not have the modelW (we are trying to deide whether one exists), and thus we

must guess the right replaement.

A term t from L

U

is alled a U -term i� it starts with f

U

. The set of U -terms that

our (possibly as subterms) in � is denoted by �

U

. Set, indutively, for any funtion

� : �

U

! f?;>g and all subterms of terms in �:

x

�

:= x;

(t

1

^ t

2

)

�

:= t

�

1

^ t

�

2

;

(t

1

_ t

2

)

�

:= t

�

1

_ t

�

2

;

(:t)

�

:= :t

�

;

(f(t

1

; : : : ; t

n

))

�

:= f(t

�

1

; : : : ; t

�

n

) for f 6= f

U

of arity n;

(f

U

(t))

�

:= �(f

U

(t)):

8. Note that it is not neessary to add the universal role U to the set of relation symbols sine an

assertion of the form U(a; b) is trivially true. However, the use of the universal role within (quali�ed)

number restritions is not overed by this extension.
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Thus, t

�

is obtained from t by replaing all ourrenes of U -terms in t by their image

under �, i.e., by ? or >. De�ne, for any suh funtion �,

�

�

:= ft

�

1

v t

�

2

j t

1

v t

2

2 �g [ fa : s

�

g [

f> v t

�

j f

U

(t) 2 �

U

and �(f

U

(t)) = >g [

fa

t

: :t

�

j f

U

(t) 2 �

U

and �(f

U

(t)) = ?g;

where the a

t

are mutually distint new objet variables. Note that �

�

does not ontain

the funtion symbol f

U

, and thus it an be viewed as a set of assertions of S. In

addition, though it ontains more than one membership assertion, it does not ontain

assertions involving relation symbols. Consequently, the satis�ability of �

�

in S an

be heked using the term satis�ability test for S (see the proof of Corollary 22 above).

Deidability of the relativized term satis�ability problem for S

U

then follows from the

following laim:

Claim. � is satis�able in a member ofM

U

i� there exists a mapping � : �

U

! f?;>g

suh that �

�

is satis�able in a member of M.

To prove this laim, �rst suppose that � is satis�ed under an assignment A in

a member W =




W;F

W

[ ff

W

U

g;R

W

�

of M

U

. De�ne � by setting �(f

U

(t)) = > if

(f

U

(t))

W;A

= W , and �(f

U

(t)) = ? otherwise. Obviously, this implies that �

�

is

satis�ed under the assignment A in




W;F

W

;R

W

�

, whih is a member of M.

Conversely, suppose �

�

is satis�able for some mapping �. Take a member W =




W;F

W

;R

W

�

of M and an assignment A suh suh that hW;Ai j= �

�

. Set W

0

:=




W;F

W

[ ff

W

U

g;R

W

�

, and prove, by indution, for all terms t that our in �:

(�) t

W

0

;A

= (t

�

)

W;A

:

The only ritial ase is the one where t = f

U

(s). First, assume that �(f

U

(s)) =

(f

U

(s))

�

= >. Then �

�

ontains > v s

�

, and thus W = (s

�

)

W;A

= s

W

0

;A

, where the

seond identity holds by indution. However, s

W

0

;A

= W implies (f

U

(s))

W

0

;A

= W =

>

W;A

. The ase where �(f

U

(s)) = (f

U

(s))

�

= ? an be treated similarly. Here the

term assertion a

s

: :s

�

ensures that s

�

(and thus by indution s) is not interpreted as

the whole domain. Consequently, applying f

U

to it yields the empty set.

Sine hW;Ai j= �

�

, the identity (�) implies that hW

0

;Ai j= �. This ompletes the

proof of the laim, and thus also of the proposition. ❏

For normal modal logis, the result stated in this proposition was already shown

by Goranko and Passy (1992). The proof tehnique used there an, however, not be

transfered to our more general situation sine it strongly depends on the normality of

the modal operators.

Using Proposition 24, we obtain the following orollary to our �rst transfer theorem.

Corollary 25. Let S

1

, S

2

be loal ADSs and assume that, for i 2 f1; 2g, the relativized

(term) satis�ability problem for S

i

is deidable. Then the relativized (term) satis�ability

problem for S

U

1


 S

U

2

is deidable.

Proof. We know by Theorem 17 (Corollary 22) that the relativized (term) satis�abil-

ity problem for S

1


 S

2

is deidable. Hene, Proposition 24 yields that the relativized
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(term) satis�ability problem for (S

1


 S

2

)

U

is deidable. But S

U

1


 S

U

2

is just a nota-

tional variant of (S

1


 S

2

)

U

: the funtion symbols f

9U

S

1

and f

9U

S

2

an be replaed by

f

9U

S

1


S

2

(and analogously for f

8U

S

1


S

2

) sine all three have idential semantis. ❏

4.2 Satis�ability

Note that Theorem 17 does not yield a transfer result for the unrelativized satis�ability

problem. Of ourse, if the relativized satis�ability problems for S

1

and S

2

are deidable,

then the theorem implies that the satis�ability problem for S

1


 S

2

is also deidable

(sine it is a speial ase of the relativized satis�ability problem). However, to be

able to apply the theorem to obtain deidability of the satis�ability problem in the

fusion, the omponent ADSs must satisfy the stronger requirement that the relativized

satis�ability problem is deidable. Indeed, the set �

i

in Theorem 20 ontains a term

assertion (namely > v sur

i

(

W

D)) even if � does not ontain any term assertions.

There are ases where the relativized satis�ability problem is undeidable whereas

the satis�ability problem is still deidable. For example, Theorem 17 annot be applied

for the fusion of ALCF and ALC

+;Æ;t

sine the relativized satis�ability problem for

ALCF is already undeidable (Baader et al., 1993). However, the satis�ability problem

is deidable for both DLs.

4.2.1 Covering normal terms

Before we an formulate a transfer result for the satis�ability problem, we need to

introdue an additional notion, whih generalizes the notion of a normal modal logi.

De�nition 26 (Covering normal terms). Let (L;M) be an ADS and f be a funtion

symbol of L of arity n. The term t

f

(x) (with one variable x) is a overing normal term

for f i� the following holds for all W 2M:

� t

W

f

(W ) =W

� for all X;Y �W , t

W

f

(X \ Y ) = t

W

f

(X) \ t

W

f

(Y ); and

� for all X;X

1

; : : : ; Y

n

�W : X \X

i

= X \ Y

i

for 1 � i � n implies

t

W

f

(X) \ f

W

(X

1

; : : : ;X

n

) = t

W

f

(X) \ f

W

(Y

1

; : : : ; Y

n

):

An ADS (L;M) is said to have overing normal terms i� one an e�etively determine

a overing normal term t

f

for every funtion symbol f of L.

Intuitively, the �rst two onditions state that the overing normal term behaves

like a value restrition (or box operator). Consider the term f

8R

(x), where f

8R

is the

funtion symbol orresponding to the value restrition onstrutor for the role R. Then

f

8R

(x) obviously satis�es the �rst two requirements for overing normal terms. Note

that the seond ondition implies that the funtion indued by t

f

is monotoni, i.e.,

X � Y implies t

W

f

(X) � t

W

f

(Y ). The third ondition spei�es the onnetion between

the overing normal term and the funtion symbol it overs. With respet to elements of

t

W

f

(X), the values of the funtions f

W

(X

1

; : : : ;X

n

) and f

W

(Y

1

; : : : ; Y

n

) agree provided

that their arguments agree on X. It is easy to see that f

8R

(x) is a overing normal
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term for the funtion symbols orresponding to the value, existential, and (quali�ed)

number restritions on the role R (see Proposition 35 below).

Given overing normal terms t

f

for the funtion symbols f of a �nite set of funtion

symbols E, one an onstrut a term t

E

that is a overing normal term for all the

elements of E.

Lemma 27. Suppose the ADS (L;M) has overing normal terms and L is based on

a set of funtion symbols F . Denote by t

f

the overing normal term for the funtion

symbol f , for all f 2 F . Then, for every �nite set E � F of funtion symbols, the term

t

E

(x) :=

^

f2E

t

f

(x)

is a overing normal term for all f 2 E.

4.2.2 Correspondene to normal modal logis

The following result shows that any ADS in whih every funtion symbol is normal

has overing normal terms. Hene, the notion of overing normal terms generalizes the

notion of normality in modal logis.

Proposition 28. Let (L;M) be an ADS, and assume that f is a normal funtion

symbol in (L;M). Then

t

f

(x) := f(x;?; : : : ;?) ^ f(?; x; : : : ;?) ^ � � � ^ f(?; : : : ;?; x)

is a overing normal term for f . In partiular, if f is nullary (unary), then t

f

(x) = >

(t

f

(x) = f(x)) is a overing normal term for f .

Proof. The �rst two onditions in the de�nition of overing normal terms immedi-

ately follow from the de�nition of normal funtion symbols. Thus, we onentrate on

the third ondition. Assume, for simpliity, that f is binary. Suppose W 2 M and

X;X

1

;X

2

; Y

1

; Y

2

� W with X \ X

i

= X \ Y

i

for i = 1; 2, and set F := f

W

. Then

F (X \X

1

;X \X

2

) = F (X \ Y

1

;X \ Y

2

). Sine F is normal, we know that

F (X \X

1

;X \X

2

) = F (X;X) \ F (X;X

2

) \ F (X

1

;X) \ F (X

1

;X

2

);

F (X \ Y

1

;X \ Y

2

) = F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) \ F (Y

1

; Y

2

);

and thus

F (X;X) \ F (X;X

2

) \ F (X

1

;X) \ F (X

1

;X

2

) =

F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) \ F (Y

1

; Y

2

):

Sine, by normality of F ,

F (X;X) \ F (X;X

2

) \ F (X

1

;X) � t

W

f

(X);

F (X;X) \ F (X;Y

2

) \ F (Y

1

;X) � t

W

f

(X);

this implies t

W

f

(X) \ F (X

1

;X

2

) = t

W

f

(X) \ F (Y

1

; Y

2

). ❏
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4.2.3 The transfer result

Using overing normal terms, we an now formulate the seond transfer theorem, whih

is onerned with the transfer of deidability of (non-relativized) satis�ability.

Theorem 29. Let S

1

and S

2

be loal ADSs having overing normal terms, and suppose

that the satis�ability problems for S

1

and S

2

are deidable. Then the satis�ability

problem for S

1


 S

2

is also deidable.

As in the proof of Theorem 17, we �x two loal ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whih L

1

is based on the set of funtion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

.

The proof of Theorem 29 follows the same general ideas as the proof of Theorem 17.

There are, however, notable di�erenes in the way satis�ability in S

1


S

2

is redued to

satis�ability in S

1

and S

2

. In Theorem 20 we had to \guess" a set D of types, and then

based on this set and some additional guesses, a pair of satis�ability problems �

1

and

�

2

in S

1

and S

2

, respetively, was generated. In the proof of Theorem 29, we do not

need to guess D. Instead, we an ompute the right set. However, this omputation

requires us to solve additional satis�ability problems in the fusion S

1


S

2

. Nevertheless,

this yields a redution sine the alternation depth (i.e., number of alternations between

funtion symbols of S

1

and S

2

) dereases when going from the input set � to these

additional mixed satis�ability problems.

Before we an desribe this redution in more detail, we must introdue some new

notation. In the ase of relativized satis�ability, term assertions of the form > v

sur

i

(

W

D) were used to assert that all elements of the domain belong to sur

i

(

W

D).

Now, we use overing normal terms to \propagate" sur

i

(

W

D) into terms up to a ertain

depth. For a set of funtion symbols E, de�ne the E-depth d

E

(t) of a term t indutively:

d

E

(x

i

) = 0

d

E

(:t) = d

E

(t)

d

E

(t

1

_ t

2

) = d

E

(t

1

^ t

2

) = maxfd

E

(t

1

); d

E

(t

2

)g

d

E

(f(t

1

; : : : ; t

n

)) = maxfd

E

(t

1

); : : : ; d

E

(t

n

)g+ 1 if f 2 E

d

E

(f(t

1

; : : : ; t

n

)) = maxfd

E

(t

1

); : : : ; d

E

(t

n

)g if f 62 E

If � is a �nite set of assertions, then

d

E

(�) := maxfd

E

(t) j t 2 term(�)g:

Put, for a term t(x) with one variable x, t

0

(x) := x, t

m+1

(x) := t(t

m

(x)), t

�0

(x) := x,

and t

�m+1

(x) := t

m+1

(x) ^ t

�m

(x).

We are now in the position to formulate the result that redues satis�ability in the

fusion of two loal ADSs with overing normal terms to satis�ability in the omponent

ADSs.

Theorem 30. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two loal ADSs having overing normal

terms in whih L

1

is based on the set of funtion symbols F and relation symbols R,

and L

2

is based on G and Q, and let L = L

1


 L

2

and M = M

1


M

2

. Let � be a

�nite set of objet assertions from L. Put m := d

F

(�), r := d

G

(�), and let (x) (d(x))

be a overing normal term for all funtion symbols in � that are in F (G).

For i 2 f1; 2g, denote by �

i

the set of all s 2 C

i

(�) suh that the term s is satis�able

in (L;M). Then the following three onditions are equivalent:
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1. � is satis�able in (L;M).

2. There exist

� for every t 2 �

1

an objet variable a

t

62 obj(�)

� for every a 2 obj(�) a term t

a

2 �

1

suh that the union �

1

of the following sets of objet assertions is satis�able in

(L

1

;M

1

):

� fa

t

: sur

1

(t ^ 

�m

(sur

1

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

1

(t

a

^ 

�m

(sur

1

(

W

�

1

)) j a 2 obj(�)g,

� fR(a; b) j R(a; b) 2 �; R 2 Rg,

� fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of objet assertions is satis�able in (L

2

;M

2

):

� fa

t

: sur

2

(t ^ d

�r

(sur

2

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

2

(t

a

^ d

�r

(sur

2

(

W

�

1

)) j a 2 obj(�)g,

� fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

3. The same ondition as in (2) above, with �

1

replaed by �

2

.

The sets �

i

in the above theorem are very similar to the ones in Theorem 20. The

main di�erene is that the term assertion > v sur

i

(

W

D) is no longer there. Instead, the

disjuntion sur

i

(

W

�

1

) is diretly \inserted" into the terms using the overing normals

terms. As already mentioned above, another di�erene is that the set D, whih had

to be guessed in Theorem 20, is replaed by the set �

1

in (2) and �

2

in (3). Atually,

guessing the set D is no longer possible in this ase. In the proof of Theorem 30 we

need to know that > v sur

i

(

W

D) is satis�able in S

i

(i.e., holds in at least one model in

M

i

). But we have no way to hek this e�etively sine we do not have an algorithm for

relativized satis�ability in S

i

. Taking the set �

i

ensures that this property is satis�ed

(see the proof in the appendix for details).

By de�nition, �

i

is the set of all s 2 C

i

(�) suh that the term s is satis�able

in (L;M). Reall that the term s is satis�able i� fa : sg is satis�able in (L;M)

for an arbitrary objet variable a. Sine the elements of C

i

(�) are still mixed terms

(i.e., terms of the fusion), omputing the set �

i

atually needs a reursive all to the

deision proedure for satis�ability in (L;M). This reursion is well-founded sine the

alternation depth dereases.

De�nition 31. For a term s of L, denote by a

1

(s) and a

2

(s) the 1-alternation and the

2-alternation depth of s, respetively. That is to say, a

1

(s) is the length of the longest

sequene of the form (g

1

; f

2

; g

3

; : : :) suh that

g

1

(: : : (f

2

: : : (g

3

: : :)))

with g

j

2 G and f

j

2 F appears in s. The 2-alternation depth a

2

(s) is de�ned by

exhanging the roles of F and G. Put a(s) := a

1

(s)+a

2

(s), and all this the alternation

depth. For a �nite set � of terms, a(�) is the maximum of all a(s) with s 2 �.
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Thus, a

1

(s) ounts the maximal number of hanges between symbols from the �rst

and the seond ADS, starting with the �rst symbol from S

2

(i.e., the �rst symbol from

S

2

ounts as a hange, even if it does not our inside the sope of a symbol from S

2

).

The 2-alternation depth is de�ned aordingly. The alternation depth sums up the 1-

and the 2-alternation depth.

Lemma 32. If a(term(�)) > 0, then a(C

1

(�)) < a(term(�)) or a(C

2

(�)) < a(term(�)).

Proof. We show that, if a(term(�)) > 0, then we have a(sub

1

(�)) < a(term(�)) or

a(sub

2

(�)) < a(term(�)), whih, by de�nition of C

i

, learly implies the lemma. First

note that, by de�nition of sub

i

, we have

a

i

(sub

j

(�)) � a

i

(term(�)) for all i; j: (�)

We now make a ase distintion as follows:

1. a

1

(term(�)) � a

2

(term(�)). We want to show that a

1

(sub

2

(�)) < a

1

(term(�)),

sine, by (�), this implies a(sub

2

(�)) < a(term(�)). Assume to the ontrary that

a

1

(sub

2

(�)) � a

1

(term(�)). Then (�) implies a

1

(sub

2

(�)) = a

1

(term(�)). Hene,

there exists a term s 2 sub

2

(�) and a sequene (g

1

; f

2

; g

3

; : : : ) of funtion symbols

g

i

2 G; f

i

2 F of length a

1

(term(�)) suh that g

1

(: : : (f

2

: : : (g

3

: : :))) ours in

s. By de�nition of sub

2

, this implies the existene of a term t 2 term(�) and a

funtion symbol f 2 F suh that f(: : : g

1

(: : : (f

2

: : : (g

3

: : :)))) ours in t. Sine

the length of (g

1

; f

2

; g

3

; : : : ) is a

1

(term(�)), this obviously yields a

2

(term(�)) >

a

1

(term(�)) whih is a ontradition.

2. a

1

(term(�)) � a

2

(term(�)). Similar to the previous ase: just exhange the roles

of a

1

and a

2

, F and G, and sub

1

and sub

2

.

❏

To prove Theorem 29, we must show how Theorem 30 an be used to onstrut a

deision proedure for satis�ability in S

1


 S

2

from suh deision proedures for the

omponent systems S

1

and S

2

. Let us �rst onsider the problem of omputing the

sets �

1

and �

2

. If a((term(�)) = 0, then � onsists of Boolean ombinations of set

variables. In this ase, C

i

(�) onsists of set variables, and �

i

; i = 1; 2, an be omputed

using Boolean reasoning. If a(term(�)) > 0, then Lemma 32 states that there is an

i 2 f1; 2g suh that a(C

i

(�)) < a(term(�)). By indution we an thus assume that

�

i

an e�etively be omputed. Consequently, it remains to hek Condition (i + 1)

of Theorem 30 for i 2 f1; 2g. Sine �

i

is �nite, we an guess for every objet variable

a ourring in � a type t

a

in �

i

. The sets �

1

and �

2

obtained this way are indeed

sets of assertions of L

1

and L

2

, respetively. Thus, their satis�ability an e�etively be

heked using the deision proedures for S

1

and S

2

. This proves Theorem 29.

The argument used above also shows why in Theorem 30 it was not suÆient to

state equivalene of (1) and (2) (as in Theorem 20). In fat, the indution argument

used above does not neessarily always apply to the omputation of �

1

. In some ases,

the alternation depth may not dereases for �

1

, but only for �

2

. It should be noted

that Theorem 20 ould also have been formulated in this symmetri way. We have not

done this sine it was not neessary for proving Theorem 17.

Regarding the omplexity of the ombined deision proedure, we must in priniple

also onsider the omplexity of omputing overing normal terms and the size of these
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terms. In the examples from DL, these terms are just value restritions, and thus their

size and the omplexity of omputing them is linear. Here, we assume a polynomial

bound on both. Under this assumption, we obtain the same omplexity results as for

the ase of relativized satis�ability. In fat, the omplexity of testing Condition (2) and

(3) of Theorem 30 agrees with the omplexity of testing Condition (2) of Theorem 20:

it adds one exponential to the omplexity of the deision proedure for the single ADSs.

In order to ompute �

i

, we need exponentially many reursive alls to the proedure.

Sine the reursion depth is linear in the size of �, we end up with at most exponentially

many tests of Condition (2) and (3).

Corollary 33. Let S

1

and S

2

be loal ADSs having overing normal terms, and assume

that these overing normal terms an be omputed in polynomial time. If the satis�abil-

ity problems for S

1

and S

2

are deidable in ExpTime (PSpae), then the satis�ability

problem for S

1


 S

2

is deidable in 2ExpTime (ExpSpae).

With the same argument as in the ase of relativized satis�ability, we an extend

the transfer result also to term satis�ability.

Corollary 34. Let S

1

and S

2

be loal ADSs having overing normal terms, and sup-

pose that the term satis�ability problems for S

1

and S

2

are deidable. Then the term

satis�ability problem for S

1


 S

2

is also deidable.

5. Fusions of desription logis

Given two DLs L

1

and L

2

, their fusion is de�ned as follows. We translate them into the

orresponding ADSs S

1

and S

2

, and then build the fusion S

1


S

2

. The fusion L

1


L

2

of L

1

and L

2

is the DL that orresponds to S

1


 S

2

. Sine the de�nition of the fusion

of ADSs requires their sets of funtion symbols to be disjoint, we must ensure that the

ADSs orresponding to L

1

and L

2

are built over disjoint sets of funtion symbols. For

the DLs introdued in Setion 2, this an be ahieved by assuming that the sets of role

names of L

1

and L

2

are disjoint and the sets of nominals of L

1

and L

2

are disjoint.

The DL L

1


L

2

then allows the use of the onept and role onstrutors of both DLs,

but in a restrited way. Role desriptions are either role desriptions of L

1

or of L

2

.

There are no role desriptions involving onstrutors or names of both DLs. Conept

desriptions may ontain onept onstrutors of both DLs; however, a onstrutor of

L

i

may only use a role desription of L

i

(i = 1; 2).

Let us illustrate these restritions by two simple examples. The fusion ALC

+




ALC

�1

of the two DLs ALC

+

and ALC

�1

is the fragment of ALC

+;�1

whose set of role

names is partitioned into two sets N

R

1

and N

R

2

suh that

� the transitive losure operator may only be applied to names from N

R

1

;

� the inverse operator may only be applied to names from N

R

2

.

For example, if A is a onept name, R 2 N

R

1

and Q 2 N

R

2

, then 9R

+

:A u 8Q

�1

::A

is a onept desription of ALC

+


 ALC

�1

, but 9R

+

:A u 8R

�1

::A and 9(Q

�1

)

+

:A

are not. Note that, although the two soure DLs have disjoint sets of role names, in

ALC

+


 ALC

�1

role names from both sets may be used inside existential and value

restritions sine these onept onstrutors are available in both DLs.

33



Baader, Lutz, Sturm, & Wolter

The fusion ALCQ
ALC

R

+ of the two DLs ALCQ and ALC

R

+ is the fragment of

ALCQ

R

+
whose set of role names N

R

(with transitive roles N

R

+
� N

R

) is partitioned

into two sets N

R

1

and N

R

2

with N

R

+
� N

R

2

suh that, inside qualifying number

restritions, only role names from N

R

1

may be used. In partiular, this means that

transitive roles annot our within quali�ed number restritions.

In the following, we give examples that illustrate the usefulness of the transfer

results proved in the previous setion. First, we will give an example for the ase

of satis�ability and then for relativized satis�ability. Subsequently, we will onsider a

more omplex example involving so-alled onrete domains. Here, our general transfer

result an be used to prove a deidability result that has only reently been proved by

designing a speialized algorithm for the fusion. Finally, we will give an example that

demonstrates that the restrition to loal ADSs is really neessary.

5.1 Deidability transfer for satis�ability

In this subsetion, we will give an example for an appliation of Theorem 29 where the

deidability result ould not be obtained using Theorem 17.

Theorem 29 requires the ADSs to have overing normal terms. This is, however,

satis�ed by all the DLs that yield loal ADSs.

Proposition 35. Let L be one of the DLs introdued in Setion 2, and let the or-

responding ADS S = (L;M) be loal. Then S has overing normal terms, and these

terms an be omputed in linear time.

Proof. For all funtion symbols f in L, the term t

f

has the form f

8R

(x) for some

role desription R. The semantis of value restritions implies that terms of this form

satisfy the �rst two properties of De�nition 26. This ompletes the proof for all funtion

symbols f of arity 0 sine for these the third ondition of De�nition 26 is trivially

satis�ed. Thus, for nullary funtion symbols, f

8R

(x) for an arbitrary role name R does

the job.

It remains to show that, for every unary funtion symbol f 2 ff

9R

; f

8R

; f

_

�nR

; f

_

�nR

g,

the term f

8R

(x) also satis�es the third property. This is an immediate onsequene

of the fat that, for these funtion symbols f , we have f

W

8R

(X) \ f

W

(Y ) = f

W

8R

(X) \

f

W

(X \ Y ) for all models W 2M and X;Y �W . ❏

In the following, we onsider the two desription logis ALCF and ALC

+;Æ;t

. Hol-

lunder and Nutt (1990) show that satis�ability of ALCF -onept desriptions is deid-

able. The same is true for onsisteny of ALCF-ABoxes (Lutz, 1999). Note, however,

that relativized satis�ability of ALCF -onept desriptions and thus also relativized

ABox onsisteny in ALCF is undeidable (Baader et al., 1993). For ALC

+;Æ;t

, deid-

ability of satis�ability is shown by Baader (1991) and Shild (1991).

9

Deidability of

ABox onsisteny in ALC

+;Æ;t

is shown in Chapter 7 of (De Giaomo, 1995).

The unrestrited ombinationALCF

+;Æ;t

of the two DLs is undeidable. To be more

preise, satis�ability of ALCF

+;Æ;t

-onept desriptions (and thus also onsisteny of

ALCF

+;Æ;t

-ABoxes) is undeidable. This follows from the undeidability of relativized

satis�ability of ALCF -onept desriptions and the fat that the role operators in

9. Note that ALC

+;Æ;t

is a notational variant of test-free propositional dynami logi (PDL) (Fisher

& Ladner, 1979).
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ALCF

+;Æ;t

an be used to internalize TBoxes (Shild, 1991; Baader et al., 1993). In

ontrast to the undeidability of ALCF

+;Æ;t

, Theorem 29 immediately implies that

satis�ability of onept desriptions in the fusion of ALCF and ALC

+;Æ;t

is deidable.

Theorem 36. Satis�ability of onept desriptions and onsisteny of ABoxes is de-

idable in ALCF 
ALC

+;Æ;t

, whereas satis�ability of ALCF

+;Æ;t

-onept desriptions

is already undeidable.

Taking the fusion thus yields a deidable ombination of two DLs whose unre-

strited ombination is undeidable. The prie one has to pay is that the fusion o�ers

less expressivity than the unrestrited ombination. The onept f

1

#f

2

u 8f

+

1

:C is

an example of a onept desription of ALCF

+;Æ;t

that is not allowed in the fusion

ALCF 
ALC

+;Æ;t

.

5.2 Deidability transfer for relativized satis�ability

As an example for the appliation of Corollary 22 (and thus of Theorem 17), we onsider

the DL ALC

+;Æ;u;t

f

. For this DL, satis�ability of onept desriptions is undeidable.

However, an expressive fragment with a deidable relativized satis�ability problem an

be obtained by building the fusion of the two sublanguages ALC

+;Æ;t

f

and ALC

+;Æ;t;u

.

Theorem 37. Satis�ability of ALC

+;Æ;u;t

f

-onept desriptions is undeidable.

Undeidability an be shown by a redution of the domino problem (Berger, 1966;

Knuth, 1973) (see, e.g., Baader & Sattler, 1999, for undeidability proofs of DLs using

suh a redution). The main tasks to solve in suh a redution is that one an express

the N�N grid and that one an aess all points on the grid. One square of the grid

an be expressed by a desription of the form 9(x Æ yu y Æx):>, where x; y are features.

In fat, this desription expresses that the \points" belonging to it have both an x Æ y

and a y Æ x suessor, and that these two suessors oinide. Aessing all point on

the grid an then be ahieved by using the role desription (x t y)

+

.

Note that this undeidability result is also losely related to the known undeidabil-

ity of IDPDL, i.e., deterministi propositional dynami logi with intersetion (Harel,

1984). However, the undeidability proof for IDPDL by Harel (1984) uses the test

onstrut, whih is not available in ALC

+;Æ;u;t

f

.

Next, we show that relativized satis�ability in two rather expressive sublanguages

of ALC

+;Æ;u;t

f

is deidable.

Theorem 38. Relativized satis�ability of onept desriptions is deidable in ALC

+;Æ;t

f

and ALC

+;Æ;t;u

.

Proof sketh. In both ases, TBoxes an be internalized as desribed by Shild (1991)

and Baader et al. (1993). Thus, it is suÆient to show deidability of (unrelativized)

satis�ability.

For ALC

+;Æ;t

f

, this follows from deidability of DPDL (Ben-Ari, Halpern, & Pnueli,

1982), the known orrespondene between PDL and ALC

+;Æ;t

(Shild, 1991), and the

fat that non-funtional roles an be simulated by funtional ones in the presene of

omposition and transitive losure (Parikh, 1980).

For ALC

+;Æ;t;u

, deidability of satis�ability follows from deidability of IPDL, i.e.,

PDL with intersetion (Daneki, 1984). ❏
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Given this theorem, Corollary 22 now yields the following deidability result.

Corollary 39. Relativized satis�ability of onept desriptions is deidable in the fusion

ALC

+;Æ;t

f


ALC

+;Æ;t;u

.

5.3 A \onrete" example

Desription logis with onrete domains were introdued by Baader and Hanshke

(1991) in order to allow for the referene to onrete objets like numbers, time intervals,

spatial regions, et. when de�ning onepts. To be more preise, Baader and Hanshke

(1991) de�ne the extension ALC(D) of ALC, where D is a onrete domain (see below).

Under suitable assumptions on D, they show that satis�ability in ALC(D) is deidable.

One of the main problems with this extension of DLs is that relativized satis�ability

(and satis�ability in DLs where TBoxes an be internalized) is usually undeidable

(Baader & Hanshke, 1992) (though there are exeptions, see Lutz, 2001). For this

reason, Haarslev et al. (2001) introdue a restrited way of extending DLs by onrete

domains, and show that the orresponding extension of ALCN

HR

+ has a deidable

relativized satis�ability problem.

10

In the following, we show that this result an also

be obtained as an easy onsequene of our Theorem 17. Moreover, ALCN

HR

+ an be

replaed by an arbitrary loal DL with a deidable relativized satis�ability problem.

De�nition 40 (Conrete Domain). A onrete domain D is a pair (�

D

;�

D

), where

�

D

is a nonempty set alled the domain, and �

D

is a set of prediate names. Eah

prediate name P 2 �

D

is assoiated with an arity n and an n-ary prediate P

D

� �

n

D

.

A onrete domain D is alled admissible i� (1) the set of its prediate names is losed

under negation and ontains a name >

D

for �

D

, and (2) the satis�ability problem for

�nite onjuntions of prediates is deidable.

Given a onrete domain D and one of the prediates P 2 �

D

(of arity n), one an

de�ne a new onept onstrutor 9f

1

; : : : ; f

n

:P (prediate restrition), where f

1

; : : : ; f

n

are onrete features.

11

In ontrast to the abstrat features onsidered until now,

onrete features are interpreted by partial funtions from the abstrat domain �

I

into

the onrete domain �

D

. We onsider the basi DL that allows for Boolean operators

and these new onept onstrutors only.

De�nition 41 (B(D)). Let N

C

be a set of onept names and N

F



be a set of names

for onrete features disjoint from N

C

, and let D be an admissible onrete domain.

Conepts desriptions of B(D) are Boolean ombinations of onept names and prediate

restritions, i.e., expressions of the form 9f

1

; : : : ; f

n

:P where P is an n-ary prediate

in �

D

and f

1

; : : : ; f

n

2 N

F



.

The semantis of B(D) is de�ned as follows. We onsider an interpretation I, whih

has a nonempty domain �

I

, and interprets onept names as subsets of �

I

and onrete

10. To be more preise, they even show that relativized ABox onsisteny is deidable in their restrited

extension of ALCN

HR

+

by onrete domains. Here, we restrit ourself to satis�ability of onepts

sine the ABoxes introdued by Haarslev et al. (2001) also allow for the use of onrete individuals

and for prediate assertions on these individuals, whih is not overed by the objet assertions for

ADSs introdued in the present paper.

11. Note that the general framework introdued by Baader and Hanshke (1991) allows for feature

hains in prediate restritions. Considering only feature hains of length one is the main restrition

introdued by Haarslev et al. (2001).
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features as partial funtions from �

I

into �

D

. The Boolean operators are interpreted

as usual, and

(9f

1

; : : : ; f

n

:P )

I

= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

f

I

i

(a) = x

i

for all 1 � i � n and (x

1

; : : : ; x

n

) 2 P

D

g:

Note that onept desriptions are interpreted as subsets of �

I

and not of �

I

[�

D

.

Thus, if we go to the ADS orresponding to B(D), the onrete domain is not an

expliit part of the orresponding ADMs. It is only used to de�ne the interpretation of

the funtion symbols orresponding to prediate restritions. The prediate restrition

onstrutor is translated into a funtion symbol f

9f

1

;:::;f

n

:P

of arity 0, and, for an ADM

W orresponding to a frame F, f

W

9f

1

;:::;f

n

:P

is de�ned as (9f

1

; : : : ; f

n

:P )

I

;

, where I

;

is

the interpretation based on F that maps all onept names to the empty set.

Theorem 42. Let D be an admissible onrete domain. Then, B(D) is loal and the

relativized satis�ability problem for B(D)-onept desriptions is deidable.

Proof. Given the family (W

i

)

i2I

of ADMs W

i

orresponding to the frames F

i

over

pairwise disjoint domains �

F

i

(i 2 I), we �rst build the union F of the frames: the

domain of F is

S

i2I

�

F

i

and it interprets the onrete features in the obvious way, i.e.,

f

F

(x) := f

F

i

(x) if x 2 �

F

i

. Let W be the ADM indued by F. To prove that W is in

fat the disjoint union of (W

i

)

i2I

, it remains to show that f

W

9f

1

;:::;f

n

:P

=

S

i2I

f

W

i

9f

1

;:::;f

n

:P

.

This is an easy onsequene of the semantis of the prediate restrition onstrutor,

the interpretation of the onrete features in F, and the fat that the domains �

F

i

are

pairwise disjoint.

Deidability of the unrelativized satis�ability problem is an immediate onsequene

of the deidability results for ALC(D) given by Baader and Hanshke (1991). Sine

B(D) is a very simple DL that does not ontain any onept onstrutors requiring

the generation of abstrat individuals, it is easy to see that a B(D)-onept desription

C

0

is satis�able relative to the TBox C

1

v D

1

; : : : ; C

n

v D

n

i� it is satis�able in a

one-element interpretation. But then the TBox an be internalized in a very simple

way: C

0

is satis�able relative to the TBox C

1

v D

1

; : : : ; C

n

v D

n

i� C

0

u (:C

1

tD

1

)u

: : : u (:C

n

tD

n

) is satis�able. ❏

Given this theorem, Corollary 22 now yields the following transfer result, whih

shows that onrete domains with the restrited form of prediate restritions intro-

dued above an be integrated into any loal DL with a deidable relativized satis�a-

bility problem without losing deidability.

Corollary 43. Let D be an admissible onrete domain and L be a loal DL for whih

relativized satis�ability of onept desriptions is deidable. Then, relativized satis�a-

bility of onept desriptions in B(D)
 L is also deidable.

5.4 Non-loal DLs

By Proposition 15, DLs allowing for nominals, the universal role, or role negation

are not loal. It follows that the deidability transfer theorems are not appliable to

fusions of suh DLs. In the following, we try to larify the reasons for this restrited

appliability of the theorems.
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First, we show that there are DLs with deidable satis�ability problem suh that

their fusion has an undeidable satis�ability problem. The ulprit in this ase is the

universal role (or role negation).

Theorem 44. Satis�ability of onept desriptions is deidable in ALC

U

and ALCF ,

but undeidable in their fusion ALC

U


ALCF .

Proof. Deidability of ALCF was shown by Hollunder and Nutt (1990) and of ALC

U

by Baader et al. (1990) and Goranko and Passy (1992). Undeidability of ALC

U




ALCF (whih is idential to ALCF

U

) follows from the results by Baader et al. (1993)

and the fat that the universal role an be used to simulate TBoxes (see Proposition 24).

❏

Note that role negation an be used to simulate the universal role: just replae

8U:C by 8R:C u8R:C and 9U:C by 9R:C t9R:C. In addition, deidability of ALC

�

is

known to be deidable (Lutz & Sattler, 2000). Consequently, the theorem also holds if

we replae ALC

U

by ALC

�

.

It should be noted that the example given in the above theorem depends on the fat

that one of the two DLs allows for the universal role and the other beomes undeidable

if the universal role is added. In fat, Corollary 25 shows that deidability does transfer

if both DLs already provide for the universal role.

Conerning nominals, we do not have a ounterexample to the transfer of deid-

ability in their presene. However, we think that it is very unlikely that there an be a

general transfer result in this ase. In fat, note that for eah DL L without nominals

introdued in Setion 2, its fusion with ALCO is idential to L extended with nomi-

nals. Sine (relativized) satis�ability in ALCO is deidable, a general transfer result

in this ase would imply that this extension is deidable provided that L is deidable.

Consequently, this would yield a general transfer result for adding nominals.

6. Conlusion

Regarding related work, the work that is most losely related to the one presented here

is (Wolter, 1998). There, analogs of our Theorems 20 and 30 are proved for normal

modal logis within an algebrai framework. The present results extend the ones from

Wolter (1998) in two diretions. First, we have added objet assertions, and thus an

also prove transfer results for ABox reasoning. Seond, we an show transfer results for

satis�ability in non-normal modal logis as long as we have overing normal terms. This

allows us to handle non-normal onept onstrutors like quali�ed number restritions

(graded modalities) in our framework.

We also think that the introdution of abstrat desription systems (ADSs) is a

ontribution in its own right. ADSs abstrat from the internal struture of onept

onstrutors and thus allow us to treat a vast range of suh onstrutors in a uniform

way. Nevertheless, the model theoreti semantis provided by ADSs is less abstrat

than the algebrai semantis employed by Wolter (1998). It is loser to the usual

semantis of DLs, and thus easier to omprehend for people used to this semantis.

The results in this paper show that ADSs in fat yield a good level of abstration for

proving general results on desription logis. Reently, the same notion has been used

for proving general results about so-alled E-onnetions of representation formalisms
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like desription logis, modal spatial logis, and temporal logis (Kutz, Wolter, & Za-

kharyashev, 2001). In ontrast to fusions, in an E-onnetion the two domains are not

merged but onneted by means of relations.

Regarding omplexity, our transfer results yield only upper bounds. Basially, they

show that the omplexity of the algorithm for the fusion is at most one exponent higher

than of the ones for the omponents. We believe that the omplexity of satis�ability in

the fusion of ADSs an indeed be exponentially higher than the omplexity of satis�a-

bility in the omponent ADSs. However, we do not yet have mathing lower bounds,

i.e., we know of no example where this exponential inrease in the omplexity really

happens.

Note that Spaan's results (1993) on the transfer of NP andPSpae deidability from

the omponent modal logis to their fusion are restrited to normal modal logis, and

that they make additional assumptions on the algorithms used to solve the satis�ability

problem in the omponent logis. Nevertheless, for many PSpae-omplete desription

logis it is easy to see that their fusion is also PSpae-omplete. In this sense, the

general tehniques for reasoning in the fusion of desriptions logis developed in this

paper give only a rough omplexity estimate.
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Appendix A. Proofs

In this appendix, we give detailed proofs of riteria for (relativized) satis�ability in

the fusion of loal ADSs. Reall that, from these riteria, the transfer theorems for

deidability easily follow. We have deferred the proofs of these theorems to the appendix

sine they are rather tehnial.

A.1 Proof of Theorem 20

Before we an prove this theorem, we need a tehnial lemma. In the proof of Theo-

rem 20, we are going to merge modelsW

1

2M

1

andW

2

2M

2

by means of a bijetive

funtion b from the domain W

1

of W

1

onto the domain W

2

of W

2

in suh a way that

the surrogates sur

i

(t), t 2 C

1

(�), are respeted by b in the sense that

w 2 sur

1

(t)

W

1

;A

1

, b(w) 2 sur

2

(t)

W

2

;A

2

for all w 2 W

1

and t 2 C

1

(�). The existene of suh a bijetion is equivalent to the

ondition that the ardinalities jsur

1

(t)

W

1

;A

1

j of sur

1

(t)

W

1

;A

1

and jsur

2

(t)

W

2

;A

2

j of

sur

2

(t)

W

2

;A

2

oinide for all t 2 C

1

(�): if t 6= t

0

for t; t

0

2 C

1

(�), then t ontains a

onjunt whih is (equivalent to) the negation of a onjunt of t

0

; hene, for all suh

t; t

0

, we have sur

i

(t)

W

i

;A

i

\ sur

i

(t

0

)

W

i

;A

i

= ; for i 2 f1; 2g, whih learly yields the

above equivalene. The following lemma will be used to hoose models in suh a way

that this ardinality ondition is satis�ed. (We refer the reader to, e.g., Gr�atzer, 1979

for information about ardinals.)

Lemma 45. Let (L;M) be a loal ADS and � a set of assertions satis�able in (L;M).

Then there exists a ardinal � suh that, for all ardinals �

0

� �, there exists a model

W =




W;F

W

;R

W

�

2 M with jW j = �

0

and an assignment A with hW;Ai j= � and

js

W;A

j 2 f0; �

0

g for all terms s.

Proof. By assumption, there exists an ADM W

0

=




W

0

;F

W

0

;R

W

0

�

2 M and an

assignment B = hB

1

;B

2

i in it suh that hW

0

;Bi j= �. Let � = maxf�

0

; jW

0

jg. We

show that � is as required. Let �

0

� �. Take �

0

disjoint isomorphi opies hW

�

;B

�

1

i,

W

�

=




W

�

;F

W

�

;R

W

�

�

, � < �

0

, of hW

0

;B

1

i. (The �rst member of the list oinides

with W

0

.) Let W =




W;F

W

;R

W

�

be the disjoint union of the W

�

, � < �

0

, and de�ne

hW;A = hA

1

;A

2

ii by putting A

2

(a) = B

2

(a), for all a 2 X , and

A

1

(x) =

[

�<�

0

B

�

1

(x);

for all x 2 V . Note that all objet variables are interpreted in W

0

. It follows from the

de�nitions of term semantis and disjoint unions that

s

W;A

=

[

�<�

0

s

W

�

;B

�

; (�)

for all terms s. Hene jW j = �

0

and hW;Ai j= �. It remains to show that js

W;A

j 2 f0; �

0

g

for every term s. Suppose js

W;A

j 6= 0. Then, by (�), �

0

� js

W;A

j � �� �

0

= �

0

, whih

means �

0

= js

W;A

j. ❏
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As noted above, the disjointness of the sets sur

i

(t)

W

i

;A

i

and sur

i

(t

0

)

W

i

;A

i

(for t 6= t

0

)

is required in order to ensure the existene of the bijetion b. More preisely, in order to

merge modelsW

1

;W

2

, the sets sur

i

(t)

W

i

;A

i

for t member of some \relevant" subset of

C

1

(�) must form a partition ofW

i

's domain that satis�es a ertain ardinality ondition.

This is formalized by the following de�nition:

De�nition 46. Let � be a ardinal. A set fX

1

; : : : ;X

n

g is alled a �-partition of a set

W i�

1. jX

i

j = �, for all 1 � i � n,

2. X

i

\X

j

= ; whenever i 6= j, and

3. W =

S

1�i�n

X

i

.

fX

1

; : : : ;X

n

g is a �-partition of an ADMW with domainW i� it is a �-partition ofW .

In the proof, we will enfore that Properties 1 and 3 hold by appropriate onstru-

tions, while Property 2 holds by de�nition of C

1

(�).

Before proving Theorem 20, we repeat its formulation.

Theorem 20. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two loal ADSs in whih L

1

is based

on the set of funtion symbols F and relation symbols R, and L

2

is based on G and Q,

and let L = L

1


L

2

and M =M

1


M

2

. If � is a �nite set of assertions from L, then

the following are equivalent:

1. � is satis�able in (L;M).

2. There exist

(a) a set D � C

1

(�),

(b) for every term t 2 D an objet variable a

t

62 obj(�),

() for every a 2 obj(�) a term t

a

2 D,

suh that the union �

1

of the following sets of assertions in L

1

is satis�able in

(L

1

;M

1

):

(d) fa

t

: sur

1

(t) j t 2 Dg [ f> v sur

1

(

W

D)g,

(e) fa : sur

1

(t

a

) j a 2 obj(�)g,

(f) fR(a; b) j R(a; b) 2 �; R 2 Rg,

(g) fsur

1

(t

1

) v sur

1

(t

2

) j t

1

v t

2

2 �g [ fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of assertions in L

2

is satis�able in (L

2

;M

2

):

(h) fa

t

: sur

2

(t) j t 2 Dg [ f> v sur

2

(

W

D)g,

(i) fa : sur

2

(t

a

) j a 2 obj(�)g,

(j) fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.
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.

.

.

.

.

.

.

.

.

sur

1

(s

1

)

W

1

;A

1

sur

1

(s

2

)

W

1

;A

1

sur

1

(s

k

)

W

1

;A

1

sur

2

(s

1

)

W

2

;A

2

sur

2

(s

2

)

W

2

;A

2

sur

2

(s

k

)

W

2

;A

2

b

b

b

W

1

W

2

Figure 3: The mapping b.

Proof. We start with the diretion from (2) to (1). Take a set D � C

1

(�) sat-

isfying the properties listed in the theorem. Take ardinals �

i

, i 2 f1; 2g as in

Lemma 45 for (L

i

;M

i

), put � = maxf�

1

; �

2

g, and take




W

1

;A

1

=




A

1

1

;A

1

2

��

and




W

2

;A

2

=




A

2

1

;A

2

2

��

with W

i

2 M

i

suh that




W

i

;A

i

�

j= �

i

for i 2 f1; 2g. By

Lemma 45, for i 2 f1; 2g we an assume jW

i

j = � and, jsur

i

(s)

W

i

;A

i

j 2 f0; �g for all

s 2 D.

The sets fsur

i

(s)

W

i

;A

i

: s 2 Dg are �-partitions ofW

i

for i 2 f0; 1g sine (i) for eah

s 2 D, we have (a

s

: sur

i

(s)) 2 �

i

, (ii)




W

i

;A

i

�

j= > v sur

i

(

W

D), and (iii) s; s

0

2 D

and s 6= s

0

implies sur

i

(s)

W

i

;A

i

\ sur

i

(s

0

)

W

i

;A

i

by de�nition of D and C

1

. Moreover,

obj(�

1

) = obj(�

2

) and, for all a 2 obj(�

1

) and s 2 D, we have A

1

2

(a) 2 sur

1

(s)

W

1

;A

1

i�

A

2

2

(a) 2 sur

2

(s)

W

2

;A

2

.

Together with the fat that A

1

2

and A

2

2

are injetive, this implies the existene of a

bijetion b from W

1

onto W

2

suh that

fb(w) : w 2 sur

1

(t)

W

1

;A

1

g = sur

2

(t)

W

2

;A

2

;

for all t 2 D, and

b(A

1

2

(a)) = A

2

2

(a);

for all a 2 obj(�

1

). Figure 3, in whih it is assumed that D = fs

1

; : : : ; s

k

g, illustrates

the mapping b.

De�ne a model W =




W; (F [ G)

W

; (R [Q)

W

�

2M by putting

� W =W

1

,

� f

W

= f

W

1

, for f 2 F ,

� for all g 2 G of arity n and all Z

1

; : : : ; Z

n

�W ,

g

W

(Z

1

; : : : ; Z

n

) = b

�1

(g

W

2

(b(Z

1

); : : : ; b(Z

n

)));

where b(Z) = fb(z) : z 2 Zg,

� R

W

= R

W

1

, for all R 2 R,
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� Q

W

(x; y) i� Q

W

2

(b(x); b(y)), for all Q 2 Q.

Sine M

2

is losed under isomorphi opies, it is not hard to see that W 2M

1


M

2

.

Let A = A

1

. To prove the impliation from (2) to (1) of the theorem it remains to

show that hW;Ai j= �. To this end it suÆes to prove the following laim:

Claim. For all terms t 2 sub

1

(�), we have

t

W;A

= sur

1

(t)

W

1

;A

1

= b

�1

(sur

2

(t)

W

2

;A

2

):

Before we prove this laim, let us show that it implies hW;Ai j= �. First note that,

from the laim, we obtain

t

W;A

= sur

1

(t)

W

1

;A

1

for all t 2 term(�): (1)

This may be proved by indution on the onstrution of t 2 term(�) from terms in

sub

1

(�) using the booleans and funtion symbols from L

1

, only. The basis of indution

(i.e., the equality for members of sub

1

(�)) is stated in the laim and the indution step

is straightforward.

We now show that hW;Ai j= � is a onsequene of (1). Suppose R(a; b) 2 �.

Then R(a; b) 2 �

1

and thus hW;Ai j= R(a; b). Similarly, Q(a; b) 2 � implies Q(a; b) 2

�

2

and hW;Ai j= Q(a; b). Suppose (a : t) 2 �. Then (a : sur

1

(t)) 2 �

1

and so

A

1

2

(a) 2 sur

1

(t)

W

1

;A

1

whih implies, by (1), A

1

2

(a) 2 t

W;A

. Hene hW;Ai j= (a : t).

If t

1

v t

2

2 �, then sur

1

(t

1

) v sur

1

(t

2

) 2 �

1

and so, by (1), t

W;A

1

� t

W;A

2

. Hene

hW;Ai j= t

1

v t

2

.

We ome to the proof of the laim. It is proved by indution on the struture

of t. Due to the following equalities holding for all t 2 sub

1

(�), it suÆes to show that

t

W;A

= sur

1

(t)

W

1

;A

1

.

sur

1

(t)

W

1

;A

1

=

[

fsur

1

(s)

W

1

;A

1

: s 2 D; t is a onjunt of sg

=

[

fb

�1

(sur

2

(s)

W

2

;A

2

) : s 2 D; t is a onjunt of sg

= b

�1

(sur

2

(t)

W

2

;A

2

)

The �rst equality holds sine sur

1

(

W

D)

W

1

;A

1

= W

1

and, for all s 2 D, either t or :t

is a onjunt of s. The seond equality is true by de�nition of b and the validity of the

third equality an be seen analogously to the validity of the �rst one by onsidering

that sur

2

(

W

D)

W

2

;A

2

=W

2

.

Hene let us show t

W;A

= sur

1

(t)

W

1

;A

1

. For the indution start, let t be a variable. The

equation t

W;A

= sur

1

(t)

W

1

;A

1

is an immediate onsequene of the fat that A = A

1

.

For the indution step, we distinguish several ases:

� t = :t

1

. By indution hypothesis, t

W;A

1

= sur

1

(t

1

)

W

1

;A

1

. Hene, t

W;A

= W n

t

W;A

1

=W n sur

1

(t

1

)

W

1

;A

1

= sur

1

(t)

W

1

;A

1

(sine W =W

1

).

� t = t

1

^ t

2

. By indution hypothesis, t

W;A

i

= sur

1

(t

i

)

W

1

;A

1

for i 2 f1; 2g. Hene,

t

W;A

= t

W;A

1

\ t

W;A

2

= sur

1

(t

1

)

W

1

;A

1

\ sur

1

(t

2

)

W

1

;A

1

= sur

1

(t)

W

1

;A

1

.

� t = t

1

_ t

2

. Similar to the above ase.
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� t = f(t

1

; : : : ; t

n

). By indution hypothesis, t

W;A

i

= sur

1

(t

i

)

W

1

;A

1

for 1 � i � n.

Hene, t

W;A

= f

W

(t

W;A

1

; : : : ; t

W;A

n

) = f

W

(sur

1

(t

1

)

W

1

;A

1

; : : : ; sur

1

(t

n

)

W

1

;A

1

) =

sur

1

(t)

W

1

;A

1

(sine f

W

= f

W

1

).

� t = g(t

1

; : : : ; t

n

). In this ase, t

W;A

= b

�1

(g

W

2

(b(t

W;A

1

); : : : ; b(t

W;A

n

))). Sine,

by the above equalities, sur

1

(t)

W

1

;A

1

= b

�1

(sur

2

(t)

W

2

;A

2

), it remains to show

that sur

2

(t)

W

2

;A

2

= g

W

2

(b(t

W;A

1

); : : : ; b(t

W;A

n

)). Sine we have sur

2

(t)

W

2

;A

2

=

g

W

2

(sur

2

(t

1

)

W

2

;A

2

; : : : ; sur

2

(t

n

)

W

2

;A

2

), this amounts to showing that b(t

W;A

i

) =

sur

2

(t

i

)

W

2

;A

2

for 1 � i � n. This, however, follows by indution hypothesis

together with the above equations.

This onludes the proof of the diretion from (2) to (1).

It remains to prove the diretion from (1) to (2). Suppose hW;Ai j= �, for some

W 2M and A = hA

1

;A

2

i. Put

D = fs 2 C

1

(�) : s

W;A

6= ;g:

Note that the fusion of loal ADLs is a loal ADL again. Hene (L;M) is loal and we

may assume, by Lemma 45, that the sets s

W;A

are in�nite.

Take a new objet name a

s

62 obj(�) for every s 2 D and let, for a 2 obj(�),

t

a

=

^

ft 2 sub

1

(�) : A

2

(a) 2 t

W;A

g ^

^

f:t : t 2 sub

1

(�);A

2

(a) 62 t

W;A

g:

We prove that set of assertions �

1

based on D, t

a

, a 2 obj(�), and a

s

, s 2 D, is

satis�able in (L

1

;M

1

).

Let F

W

denote the restrition of (F [ G)

W

to the symbols in F . Similarly, R

W

is the restrition of (R [ Q)

W

to the symbols in R. Set W

1

=




W;F

W

;R

W

�

2 M

1

,

A

1

=




A

1

1

;A

1

2

�

, where

A

1

1

= A

1

[ fx

t

7! t

W;A

: t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g;

A

1

2

(a) = A

2

(a), for a 2 obj(�), and A

1

2

(a

s

) 2 s

W;A

, for all s 2 D. Note that we an

hoose an injetive funtion A

1

2

beause the s

W;A

are in�nite. We show by indution

that

sur

1

(t)

W

1

;A

1

= t

W;A

for all t 2 term(�): (2)

Let t = x be a variable. Then x is not a surrogate, and so A

1

1

(x) = A

1

(x). For the

indution step, we distinguish several ases:

� The indutive steps for t = :t

1

, t = t

1

^ t

2

, t = t

1

_ t

2

, and t = f(t

1

; : : : ; t

n

),

f 2 F , are idential to the orresponding ases in the proof of Equation 1, whih

ours in the diretion that (2) implies (1) above.

� t = g(t

1

; : : : ; t

n

), where g 2 G. Then sur

1

(t) = x

t

. Hene A

1

1

(x

t

) = t

W;A

and the

equation is proved.

From Equation 2, we obtain




W

1

;A

1

�

j= �

1

: we prove




W

1

;A

1

�

j= R(a; b) whenever

R(a; b) 2 �

1

and




W

1

;A

1

�

j= sur

1

(t

1

) v sur

1

(t

2

) whenever sur

1

(t

1

) v sur

1

(t

2

) 2 �

1

.

The remaining formulas from �

1

are left to the reader. Suppose R(a; b) 2 �

1

. Then
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R(a; b) 2 � and so hW;Ai j= R(a; b). Hene




W

1

;A

1

�

j= R(a; b). Suppose sur

1

(t

1

) v

sur

1

(t

2

) 2 �

1

. Then t

1

v t

2

2 �. Hene hW;Ai j= t

1

v t

2

whih means t

W;A

1

� t

W;A

2

.

By Equation 2, sur

1

(t

1

)

W

1

;A

1

� sur

1

(t

2

)

W

1

;A

1

whih means




W

1

;A

1

�

j= sur

1

(t

1

) v

sur

1

(t

2

).

The onstrution of a model in M

2

satisfying �

2

is similar and left to the reader.

❏

A.2 Proof of Theorem 30

As in the proof of Theorem 17, we �x two loal ADSs S

i

= (L

i

;M

i

), i 2 f1; 2g, in

whih L

1

is based on the set of funtion symbols F and relation symbols R, and L

2

is

based on G and Q. Let L = L

1


L

2

and M =M

1


M

2

. We assume that S

1

and S

2

have overing normal terms.

Similarly to what was done in the previous setion, we will merge models by means

of bijetions whih map points in sets sur

1

(t)

W

1

;A

1

to points in the orresponding sets

sur

2

(t)

W

2

;A

2

. For a �nite set of objet assertions � of L, let �

i

(�) denote the set of all

s 2 C

i

(�) suh that the term s is satis�able in (L;M) (for i 2 f1; 2g). To ensure that

the merging of models sueeds, we must enfore that the elements of �

1

(�) and �

2

(�)

form �-partitions (for some appropriate �) of the models to be merged. For �

1

(�), this

is aptured by the following lemma. Expliitly stating a dual of this lemma for �

2

(�)

is omitted for brevity.

Lemma 47. Let � be a �nite set of objet assertions of L, � a ardinal satisfying the

onditions of Lemma 45 for (L;M) and �, and �

1

= �

1

(�). If �

0

� �, then

1. there exists a model W 2M

1

and an assignment A suh that

fsur

1

(s)

W;A

j s 2 �

1

g

is a �

0

-partition of W; and

2. there exists a model W 2M

2

and an assignment A suh that

fsur

2

(s)

W;A

j s 2 �

1

g

is a �

0

-partition of W.

Proof. 1. By de�nition of �

1

, for eah s 2 �

1

, we �nd a model W

s

2 M and an

assignment A

s

suh that s

W

s

;A

s

6= ;. Sine the fusion of two loal ADSs is again loal,

the set of models M is losed under disjoint unions. Hene, there exists a model W

�

1

and an assignment A

�

1

suh that s

W

�

1

;A

�

1

6= ; for all s 2 �

1

. It follows that the set

�

1

:= fa

s

: s j s 2 �

1

g is satis�able in (L;M). By Lemma 45, there thus exists a model

W

0

=

D

W

0

; (F [ G)

W

0

; (R [Q)

W

0

E

2 M and an assignment A

0

suh that W

0

;A

0

j= �

1

and fs

W

0

;A

0

j s 2 �

1

g is a �

0

-partition of W

0

. Now let W denote the restrition of W

0

to L

1

and de�ne

A

1

= A

0

1

[ fx

t

7! t

W

0

;A

0

j t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g:

Then hW;Ai is as required. To prove this note that sur

1

(t)

W;A

= t

W

0

;A

0

for all

t 2 term(�).

2. is similar and left to the reader. ❏
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We repeat the formulation of the theorem to be proved.

Theorem 30. Let S

i

= (L

i

;M

i

), i 2 f1; 2g, be two loal ADSs having overing normal

terms in whih L

1

is based on the set of funtion symbols F and relation symbols R,

and L

2

is based on G and Q, and let L = L

1


 L

2

and M = M

1


M

2

. Let � be a

�nite set of objet assertions from L. Put m := d

F

(�), r := d

G

(�), and let (x) (d(x))

be a overing normal term for all funtion symbols in � that are in F (G).

For i 2 f1; 2g, denote by �

i

the set of all s 2 C

i

(�) suh that the term s is satis�able

in (L;M). Then the following three onditions are equivalent:

1. � is satis�able in (L;M).

2. There exist

� for every t 2 �

1

an objet variable a

t

62 obj(�)

� for every a 2 obj(�) a term t

a

2 �

1

suh that the union �

1

of the following sets of objet assertions is satis�able in

(L

1

;M

1

):

� fa

t

: sur

1

(t ^ 

�m

(sur

1

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

1

(t

a

^ 

�m

(sur

1

(

W

�

1

)) j a 2 obj(�)g,

� fR(a; b) j R(a; b) 2 �; R 2 Rg,

� fa : sur

1

(s) j (a : s) 2 �g;

and the union �

2

of the following sets of objet assertions is satis�able in (L

2

;M

2

):

� fa

t

: sur

2

(t ^ d

�r

(sur

2

(

W

�

1

)) j t 2 �

1

g,

� fa : sur

2

(t

a

^ d

�r

(sur

2

(

W

�

1

)) j a 2 obj(�)g,

� fQ(a; b) j Q(a; b) 2 �; Q 2 Qg.

3. The same ondition as in (2) above, with �

1

replaed by �

2

.

We start the proof with the diretion from (1) to (2) and (1) to (3). The proofs are

dual to eah other, so we only give a proof for (1) ) (2). Suppose hW;Ai j= �, where

W =




W; (F [ G)

W

; (R [Q)

W

�

. By Lemma 45, we an assume that that, for every

t 2 �

1

, jt

W;A

j is in�nite. Take a new objet name a

s

62 obj(�) for every s 2 �

1

and let,

for a 2 obj(�),

t

a

=

^

ft 2 sub

1

(�) : A

2

(a) 2 t

W;A

g ^

^

f:t : t 2 sub

1

(�);A

2

(a) 62 t

W;A

g:

We prove that the set �

1

of assertions based on t

a

, a 2 obj(�), and a

s

, s 2 �

1

, is

satis�able in (L

1

;M

1

) (the proof is rather similar to the proof of the diretion from

(1) to (2) in the proof of Theorem 20). Let F

W

(resp. G

W

) denote the restrition of

(F [G)

W

to the symbols in F (resp. G). Similarly, R

W

and Q

W

are the restritions of

(R [ Q)

W

to the symbols in R and Q, respetively. Set W

1

=




W;F

W

;R

W

�

2 M

1

,

A

1

=




A

1

1

;A

1

2

�

, where

A

1

1

= A

1

[ fx

t

7! t

W;A

j t = g(t

1

; : : : ; t

k

) 2 sub

1

(�)g;
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A

1

2

(a) = A

2

(a), for a 2 obj(�), and A

1

2

(a

t

) 2 t

W;A

, for all t 2 �

1

(we an hoose an

injetive funtion for A

1

2

sine the sets t

W;A

are in�nite).

As in the orresponding part of the proof of Theorem 20, it an show by indution

that

sur

1

(t)

W

1

;A

1

= t

W;A

for all t 2 term(�):

Let us see now why




W

1

;A

1

�

j= �

1

follows from this equation. For R(a; b) 2 �

1

we

have R(a; b) 2 � and so hW;Ai j= R(a; b). Hene




W

1

;A

1

�

j= R(a; b). We have

hW;Ai j= (

W

�

1

) = > (by the de�nition of �

1

). Hene




W

1

;A

1

�

j= sur

1

(

W

�

1

) = >

and so, by the de�nition of 

�m

,




W

1

;A

1

�

j= (

�m

(sur

1

(

W

�

1

))) = >. It remains to

observe that A

1

2

(a) 2 sur

1

(t

a

)

W

1

;A

1

for all a 2 obj(�), A

1

2

(a) 2 sur

1

(s)

W

1

;A

1

whenever

(a : s) 2 �, and A

1

2

(a

t

) 2 sur

1

(t)

W

1

;A

1

for all t 2 �

1

.

The onstrution of a model in M

2

satisfying �

2

is similar and left to the reader.

It remains to show the impliations (2) ) (1) and (3) ) (1). They are similar, so

we onentrate on the �rst. In the proof of Theorem 20 it was possible to onstrut

the required model for � by merging models for �

1

and �

2

. The situation is di�erent

here. It is not possible to merge models for �

1

and �

2

in one step, sine we do not

know whether they satisfy sur

1

(

W

�

1

) = > and sur

2

(

W

�

1

) = >, respetively. We

only know that they satisfy the approximations a : sur

1

(s) ^ 

�m

(sur

1

(

W

�

1

)) and

a : sur

2

(s)^ d

�r

(sur

2

(

W

�

1

)), respetively, for a : s 2 �. To merge models of this type

we have to distinguish various piees of the models and have to add new piees as well.

To de�ne those piees we need a tehnial laim. As in the proof of Theorem 17, take

ardinals �

i

, i 2 f1; 2g as in Lemma 45 for (L

i

;M

i

) and put � = maxf�

1

; �

2

g.

Claim 1. Suppose (2) holds.

(a) There exist W

1

=




W

1

;F

W

;R

W

�

2M

1

, an assignment A = hA

1

;A

2

i into W

1

,

and a sequene X

0

; : : : ;X

m

of subsets of W

1

suh that

[a1℄ A

2

(a) 2 X

m

, for all a 2 obj(�

1

),

[a2℄ hW

1

;Ai j= �

1

,

[a3℄ X

n+1

� X

n

\ 

W

1

(X

n

), for all 0 � n < m,

[a4℄ The set fsur

1

(s)

W

1

;A

\X

m

: s 2 �

1

g is a �-partition of X

m

,

[a5℄ The sets

fsur

1

(s)

W

1

;A

\ (X

n

�X

n+1

) : s 2 �

1

g

are �-partitions of X

n

�X

n+1

, for 0 � n < m.

[a6℄ jW

1

�X

0

j = �.

(b) There exist W

2

=




W

2

;G

W

;Q

W

�

2 M

2

, an assignment B = hB

1

;B

2

i, and a

sequene Y

0

; : : : ; Y

r

of subsets of W

2

suh that

[b1℄ B

2

(a) 2 Y

r

, for all a 2 obj(�

1

),

[b2℄ hW

2

;Bi j= �

2

,

[b3℄ Y

n+1

� Y

n

\ d

W

2

(Y

n

), for all 0 � n < r,
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X

m

A

m�1

= X

m�1

�X

m

A

m�2

= X

m�2

�X

m�1

A

�1

=W

1

�X

0

W

1

A

0

= X

0

�X

1

Figure 4: The sets X

i

.

[b4℄ The set fsur

2

(s)

M;A

\ Y

r

: s 2 �

1

g is a �-partition of Y

r

,

[b5℄ The sets

fsur

2

(s)

M;A

\ (Y

n

� Y

n+1

) : s 2 �

1

g

are �-partitions of Y

n

� Y

n+1

, for 0 � n < r.

[b6℄ jW

2

� Y

0

j = �.

Figure 4 illustrates the relation between the sets X

i

. (We set A

i

= X

i

� X

i+1

for

0 � i < m and A

�1

= W

1

� X

0

.) Intuitively, X

m

is the set of points for whih we

know that points in W

1

� sur

1

(

W

�

1

)

W

1

;A

are \very far away". For X

m�1

they are

possibly less \far away", for X

m�2

possibly even \less far", and so on for X

i

, i < m�1.

Finally, for members of A

�1

it is not even known whether they are in sur

1

(

W

�

1

)

W

1

;A

or not. Note that all objet names are interpreted in X

m

. We now ome to the formal

onstrution of the sets X

i

.

Proof of Claim 1. We prove (a). Part (b) is proved similarly and left to the reader.

By assumption and Lemma 45, we �nd an ADM W

a

=




W

a

; F

W

a

; R

W

a

�

2 M

1

with

jW

a

j = � and an assignment A

a

= hA

a

1

;A

a

2

i suh that hW

a

;A

a

i j= �

1

.

Let

Z

n

= (

�n

(sur

1

(

_

�

1

)))

W

a

;A

a

;

for 0 � n � m. By Lemma 47 (1) we an take for every n with �1 � n � m an ADM

W

n

=




W

n

;F

W

n

;R

W

n

�

2M

1

and assignments A

n

suh that

fsur

1

(s)

W

n

;A

n

: s 2 �

1

g

are �-partitions of W

n

.
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Take the disjoint unionW (withW =




W;F

W

;R

W

�

) of theW

n

, �1 � n � m, and

W

a

. De�ne A = hA

1

;A

2

i in W by putting

A

1

(x) = A

a

1

(x) [

[

�1�i�m

A

i

1

(x);

for all set variables x and A

2

(b) = A

a

2

(b), for all objet variables b. Let, for 0 � n � m,

X

n

= Z

n

[

[

n�i�m

W

i

:

We show that hW;Ai and the sets X

n

, 0 � n � m, are as required.

[a1℄ We have hW

a

;A

a

i j= �

1

and so A

2

(b) = A

a

2

(b) 2 Z

m

for all b 2 obj(�

1

). Hene

A

2

(b) 2 X

m

= Z

m

[W

m

for all b 2 obj(�

1

).

[a2℄ By the de�nition of disjoint unions and beause hW

a

;A

a

i j= �

1

.

[a3℄ Firstly, we have, by the de�nition of 

�n

t and sine 

W

is monotone (it distributes

over intersetions),

Z

n+1

� Z

n

\ 

W

(Z

n

) � X

n

\ 

W

(X

n

): (3)

Seondly, by the de�nition of disjoint unions, the �rst property of overing normal

terms, and sine 

W

is monotone

[

n+1�i�m

W

i

�

[

n�i�m

W

i

�

[

n�i�m

W

i

\ 

W

(

[

n�i�m

W

i

) � X

n

\ 

W

X

n

: (4)

From (3) and (4) we obtain

X

n+1

= Z

n+1

[

[

n+1�i�m

W

i

� X

n

\ 

W

X

n

: (5)

[a4℄ We show that the three properties from De�nition 46 are satis�ed. Sine

fsur

1

(s)

W

m

;A

m

: s 2 �

1

g

is a �-partition of W

m

, we have jsur

1

(s)

W

m

;A

m

j = � for all s 2 �

1

. This implies

Property 1 sine sur

1

(s)

W;A

\W

m

= sur

1

(s)

W

m

;A

m

, W

m

� X

m

, and jX

m

j � �.

Property 2 is an immediate onsequene of the de�nition of �

1

. As for Property 3,

we show that, for all w 2 X

m

, we have w 2 s

W;A

for an s 2 �

1

. Fix a w 2 X

m

.

We distinguish two ases: �rstly, assume w 2 W

m

. Then, by the fat that

fsur

1

(s)

W

m

;A

m

: s 2 �

1

g is a �-partition of W

m

, it is lear that there exists an

s 2 �

1

as required. Seondly, assume w 2 Z

m

= (

�m

(sur

1

(

W

�

1

)))

W

a

;A

a

. By

de�nition of 

�m

t, we have w 2 (sur

1

(

W

�

1

))

W

a

;A

a

and so again w 2 sur

1

(s)

W;A

for some s 2 �

1

.

[a5℄ The proof is similar to that of Property [a4℄.

[a6℄ By de�nition.
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This �nishes the proof of Claim 1.

Suppose now that we have

W

1

=

D

W

1

;F

W

1

;R

W

1

E

; A; X

m

; : : : ;X

0

and W

2

=

D

W

2

;G

W

2

;Q

W

2

E

; B; Y

r

; : : : ; Y

0

satisfying the properties listed in Claim 1. We may assume that

(W

1

�X

m

) \ (W

2

� Y

r

) = ;:

Using an appropriate bijetion b from X

m

onto Y

r

we may also assume that X

m

= Y

r

,

A

2

(a) = B

2

(a) for all objet variables a 2 obj(�

1

), and

sur

1

(s)

W

1

;A

\X

m

= sur

2

(s)

W

2

;B

\X

m

for all s 2 �

1

: (6)

This follows from the fat that all objet variables are mapped by A

2

and B

2

into X

m

and Y

r

([a1℄, [b1℄), respetively, the injetivity of the mappings A

2

and B

2

, and the

onditions [a4℄ and [b4℄ whih state that fsur

1

(s)

W

1

;A

\X

m

: s 2 �

1

g and fsur

2

(s)

W

2

;B

\

Y

r

: s 2 �

1

g both form �-partitions of X

m

= Y

r

. Some abbreviations are useful: set

� A

i

= X

i

�X

i+1

, for 0 � i < m,

� B

i

= Y

i

� Y

i+1

, for 0 � i < r,

� A

�1

=W

1

�X

0

, B

�1

=W

2

� Y

0

.

So far we have merged the X

m

-part of W

1

with the Y

r

-part of W

2

. It remains to take

are of the sets A

i

, �1 � i < m, and B

i

, �1 � i < r: the sets A

i

will be merged with

new models W

i

2 M

2

and the sets B

i

will be merged with new models V

i

from M

1

.

Thus, the �nal model will be obtained by merging the disjoint union of W

1

and W

i

,

�1 � i < m with the disjoint union of W

2

and V

i

, �1 � i < r. Figure 5 illustrates

this merging. In the �gure, we assume that �

1

= fs

1

; : : : ; s

k

g.

Of ourse, when merging A

i

, i � 0, with a new model W

i

we have to respet the

partition

fsur

1

(t)

W

1

;A

\A

i

j t 2 �

1

g

of A

i

. And when merging B

i

, i � 0, with a new model V

i

we have to respet the

partition

fsur

1

(t)

W

1

;B

\B

i

j t 2 �

1

g

of B

i

. Note that for A

�1

and B

�1

there is no partition to take are of. We now

proeed with the formal onstrution. We �nd models W

i

=

D

A

i

;G

W

i

;Q

W

i

E

2 M

2

with assignments B

i

=




B

i

1

;B

i

2

�

, �1 � i � m� 1, suh that, for 0 � i � m� 1,

sur

2

(s)

W

i

;B

i

= sur

1

(s)

W

1

;A

\A

i

for all s 2 �

1

: (7)

This follows from [a5℄, [a6℄, and Lemma 47 (2).

We �nd, now using [b5℄, [b6℄, and Lemma 47 (1), models V

i

=

D

B

i

;F

V

i

;R

V

i

E

2

M

1

with assignments A

i

=




A

i

1

;A

i

2

�

, �1 � i � r � 1, suh that, for 0 � i � r � 1,

sur

1

(s)

V

i

;A

i

= sur

2

(s)

W

2

;B

\B

i

for all s 2 �

1

: (8)
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�1

A

0

V
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V

�1

V

0

sur

1

(s

1

)

sur

1

(s

k

)

Y

r

W

m�1

W

�1

W

0

B

�1

B

0

sur

2

(s

1

)

sur

2

(s

k

)

B
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Figure 5: The bijetion.

Let

W

0

1

=

D

W

1

[ (W

2

� Y

r

);F

W

0

1

;R

W

0

1

E

2M

1

be the disjoint union of the V

i

, �1 � i < r, and W

1

, and let

W

0

2

=

D

W

2

[ (W

1

�X

m

);G

W

0

2

;Q

W

0

2

E

2M

2

be the disjoint union of the W

i

, �1 � i < m, and W

2

. We assume X

m

= Y

r

and so

the domain of both ADMs is W

1

[W

2

.

De�ne a model W =




W; (F [ G)

W

; (R [Q)

W

�

2 M based on W = W

1

[W

2

by

putting

� R

W

= R

W

0

1

,

� F

W

= F

W

0

1

,

� Q

W

= Q

W

0

2

,

� G

W

= G

W

0

2

.

De�ne an assignment C = hC

1

; C

2

i in W by putting

� C

2

(a) = A

2

(a)(= B

2

(a)), for all a 2 obj(�

1

).

� C

1

(x) = A

1

(x) [

S

�1�i<r

A

i

1

(x), for all set variables x in term(�).

Notie that C

1

(x) = B

1

(x) [

S

�1�i<m

B

i

1

(x), for all set variables x 2 term(�).
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� C

1

(x

t

) = A

1

(x

t

) [

S

�1�i<r

A

i

1

(x

t

), for all t = g(t

1

; : : : ; t

k

) 2 sub

1

(�).

� C

1

(x

t

) = B

1

(x

t

) [

S

�1�i<m

B

i

1

(x

t

), for all t = f(t

1

; : : : ; t

k

) 2 sub

1

(�).

We will show that hW; Ci j= �. Firstly, however, we make a list of the relevant properties

of hW; Ci:

Claim 2.

[1℄ C

2

(a) 2 X

m

= Y

r

, for all a 2 obj(�);

[2℄ hW; Ci j= �

1

[ �

2

;

[3℄ sur

1

(t)

W;C

\ (X

0

[ Y

0

) = sur

2

(t)

W;C

\ (X

0

[ Y

0

), for all t 2 �

1

;

[4℄ sur

1

(s)

W;C

\ (X

0

[ Y

0

) = sur

2

(s)

W;C

\ (X

0

[ Y

0

), for all s 2 sub

1

(�);

[5℄ X

n+1

� X

n

\ 

W

(X

n

), for all 0 � n < m;

[6℄ Y

n+1

� Y

n

\ d

W

(Y

n

), for all 0 � n < r;

[7℄ for all g 2 G of arity l, 0 � n < m, and all C

1

; : : : ; C

l

�W :

g

W

(C

1

; : : : ; C

l

) \X

n

= g

W

(C

1

\X

n

; : : : ; C

l

\X

n

) \X

n

;

[8℄ for all f 2 F of arity l, 0 � n < r, and all C

1

; : : : ; C

l

�W :

f

W

(C

1

; : : : ; C

l

) \ Y

n

= f

W

(C

1

\ Y

n

; : : : ; C

l

\ Y

n

) \ Y

n

:

Proof of Claim 2. [1℄ follows from [a1℄ and [b1℄ and the onstrution of hW; Ci. [2℄

follows from [a2℄ and [b2℄. [3℄ follows from the onstrution of hW; Ci and equations (6),

(7), and (8). [4℄ follows from [3℄. [5℄ and [6℄ follow from [a3℄ and [b3℄, respetively.

It remains to prove [7℄ and [8℄. But [7℄ follows from the fat that




W; G

W

�

is the

disjoint union of strutures based on X

n

and W �X

n

, for 0 � n < m, and [8℄ is dual

to [7℄. Claim 2 is proved.

We now show hW; Ci j= �. To this end we �rst show the following:

Claim 3. For all k

1

; k

2

with 0 � k

1

� m and 0 � k

2

� r and all s 2 sub

1

(�) with

d

F

(s) � k

1

and d

G

(s) � k

2

we have, for Z 2 fX

k

1

; Y

k

2

g,

Z \ s

M;C

= Z \ sur

1

(s)

M;C

= Z \ sur

2

(s)

M;C

:

Proof of Claim 3. By [4℄ it suÆes to prove the �rst equation. The proof is by indution

on the ardinal k

1

+ k

2

. The indution base k

1

= k

2

= 0 follows from sur

1

(s) = sur

2

(s)

for d

F

(s) = d

G

(s) = 0.

Suppose the laim is proved for all X

k

; Y

k

0

with k � m, k

0

� r and k+ k

0

< k

1

+ k

2

.

We prove the laim for X

k

1

; Y

k

2

. The proof is by indution on the onstrution of terms

s with d

F

(s) � k

1

and d

G

(s) � k

2

. The boolean ases are trivial.

Suppose s = f(s

1

; : : : ; s

l

) with d

F

(s) � k

1

and d

G

(s) � k

2

. We have to show the

following two statements:
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(i) X

k

1

\ s

W;C

= X

k

1

\ sur

1

(s)

M;C

.

(ii) Y

k

2

\ s

W;C

= Y

k

2

\ sur

1

(s)

M;C

.

Consider (i) �rst. The indution hypothesis yields

X

k

1

�1

\ s

W;C

i

= X

k

1

�1

\ sur

1

(s

i

)

W;C

for 1 � i � l. We have

X

k

1

�1

\ 

W

(X

k

1

�1

) \ s

W;C

= X

k

1

�1

\ 

W

(X

k

1

�1

) \ f

W

(s

W;C

1

; : : : ; s

W;C

l

)

= X

k

1

�1

\ 

W

(X

k

1

�1

) \ f

W

(sur

1

(s

1

)

W;C

; : : : ; sur

1

(s

l

)

W;C

)

= X

k

1

�1

\ 

W

(X

k

1

�1

) \ sur

1

(s)

W;C

:

The seond equation is an immediate onsequene of the third property of overing

normal terms as given in De�nition 26. Now the equation follows from [5℄, i.e. X

k

1

�

X

k

1

�1

\ 

W

(X

k

1

�1

). (i) is proved.

(ii) Suppose �rst that k

2

= r. Then Y

k

2

= X

m

and the laim an be proved as above

sine X

m

� X

k

1

and, by indution hypothesis, X

k

1

�1

\ s

W;C

i

= X

k

1

�1

\ sur

1

(s

i

)

W;C

, for

1 � i � l.

Assume now that k

2

< r. By indution hypothesis,

Y

k

2

\ s

W;C

i

= Y

k

2

\ sur

2

(s

i

)

W;C

;

for 1 � i � l. Hene

f

W

(Y

k

2

\ s

W;C

1

; : : : ; Y

k

2

\ s

W;C

l

) = f

W

(Y

k

2

\ sur

2

(s

1

)

W;C

; : : : ; Y

k

2

\ sur

2

(s

l

)

W;C

):

We interset both sides of the equation with Y

k

2

and derive with the help of [8℄:

Y

k

2

\ f

W

(s

W;C

1

; : : : ; s

W;C

l

) = Y

k

2

\ f

W

(sur

2

(s

1

)

W;C

; : : : ; sur

2

(s

l

)

W;C

):

This means Y

k

2

\ s

W;C

= Y

k

2

\ sur

2

(s)

W;C

, and the equation follows. The statements

are proved.

The ase s = g(s

1

; : : : ; s

l

) is dual and left to the reader. We have proved laim 3.

By indution (.f. in the proof of Theorem 20 the proof of (1) from the orresponding

laim), we obtain from Claim 3:

X

m

\ s

W;C

= X

m

\ sur

1

(s)

M;C

for all s 2 term(�): (9)

Let us see how hW;Ai j= � follows from (9). We distinguish three ases: Suppose

R(a; b) 2 �. Then R(a; b) 2 �

1

and therefore hW; Ci j= R(a; b). Similarly, Q(a; b) 2 �

implies Q(a; b) 2 �

2

and hW; Ci j= Q(a; b). Suppose (a : t) 2 �. Then (a : sur

1

(t)) 2 �

1

and so, by [2℄, C

2

(a) 2 sur

1

(t)

W;C

whih implies, by (9), C

2

(a) 2 t

W;C

. Hene hW; Ci j=

(a : t). This �nishes the proof of Theorem 30.
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