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Abstrat

Uni�ation onsiders onept patterns, i.e., onept desriptions with

variables, and tries to make these desriptions equivalent by replaing

the variables by appropriate onept desriptions. Baader and K�usters

have shown that uni�ation in FL

reg

, a desription logi that allows for

the onept onstrutors top onept, onept onjuntion, and value re-

stritions as well as the role onstrutors union, omposition, and transi-

tive losure, is an ExpTime-omplete problem and that solvable FL

reg

-

uni�ation problems always have least uni�ers. In the present paper, we

generalize these results to a DL whih extends FL

reg

by the bottom on-

ept. The proof strongly depends on the existene of least uni�ers in

FL

reg

.

1 Introdution

Uni�ation of onept desriptions was introdued by Baader and Narendran [5℄

as a new inferene servie for deteting and avoiding redundanies in DL knowl-

edge bases. Uni�ation onsiders onept patterns, i.e., onept desriptions

with variables, and tries to make these desriptions equivalent by replaing the

variables by appropriate onept desriptions. The tehnial results in [5℄ were

onerned with uni�ation in the small DL FL

0

, whih allows for onjuntion of

onepts (CuD), value restrition (8R:C), and the top onept (>): uni�ation

of FL

0

-onept patterns is an ExpTime-omplete problem.



Sine then, extending this result to more expressive DLs has turned out to

be quite hard. Even if one just adds the bottom onept ? to FL

0

, the methods

employed for uni�ation in FL

0

no longer apply. Consequently, it is also not

lear how to handle uni�ation in desriptions logis that an express inonsis-

teny (like DLs with (atomi) negation, number restritions, et.). Instead of

adding onept onstrutors to FL

0

, [4℄ onsiders uni�ation in FL

reg

, whih

extends FL

0

by the role onstrutors union, omposition, and transitive losure.

For this DL, uni�ation is still an ExpTime-omplete problem. In ontrast to the

ase of FL

0

, solvable FL

reg

-uni�ation problems always have a least solution

(w.r.t. subsumption), whih an be omputed in exponential time.

In the present paper we extend the results for FL

reg

to FL?

reg

, the extension

of FL

reg

by the bottom onept. The proof strongly depends on the existene

of least uni�ers in FL

reg

.

The results for uni�ation in FL

reg

have been obtained by redution from/to

the problem of solving (systems of) linear equations over regular languages, and

solvability of suh equations has been shown to be ExpTime-omplete, by re-

dutions from/to deision problems for tree-automata on in�nite trees. Closely

related to the problem of solving linear language equations is the problem of

solving set onstraints [1℄, i.e., relations between sets of terms. Set onstraints

are usually more general than linear language equations, whih most losely or-

respond to positive set onstraints [1℄ for terms over unary and nullary funtion

symbols where only union of sets is allowed. In fat, it is easy to see that linear

language equations an be expressed using positive set onstraints. However,

whereas we are interested in greatest solutions (orresponding to least solutions

on the uni�ation side), for set onstraints one usually onsiders least solutions.

To solve uni�ation in FL?

reg

, we have extended linear language equations

to so-alled linear �

�

-equations: Linear language equations only allow for left

onatenation of regular languages and variables, i.e., onatenation of the form

L �X, where L is a regular language and X is a variable. In linear �

�

-equations

one an in addition onatenate �

�

from right, where �

�

is the set of all words

over the alphabet �, yielding terms of the form L � X � �

�

, whih annot be

expressed by set onstraints.

2 Preliminaries

First, we introdue the DLs FL

0

-, FL?-, FL

reg

-, and FL?

reg

. Starting from

the �nite and disjoint sets N

C

of onept names and N

R

of role names, FL

0

-

onept desriptions are built using the onept onstrutors onjuntion (C u

D), value restrition (8r:C), and the top onept (>). FL? additionally al-

lows for the bottom onept (?). FL

reg

extends FL

0

by the role onstru-

tors identity role ("), empty role (;), union (R [ S), omposition (R Æ S),



Syntax Semantis FL

0

FL? FL

reg

FL?

reg

> �

I

x x x x

? ; x x

C uD C

I

\D

I

x x x x

8R:C fx 2 �

I

j 8y : (x; y) 2 R

I

! y 2 C

I

g x x x x

" f(x; x) j x 2 �

I

g x x

; ; x x

R Æ S f(x; z) j 9y : (x; y) 2 R

I

^ (y; z) 2 S

I

g x x

R

�

S

n�0

(R

I

)

n

x x

Table 1: Syntax and semantis of onept desriptions.

and reexive-transitive losure (R

�

). Finally, FL?

reg

adds the bottom on-

ept (?) to FL

reg

. As an example, onsider the FL?

reg

-onept desription

Woman u 8hild

�

:Woman u 8pet:?, whih represents the set of all women with

only female o�spring and no pets.

Role names will be denoted by lower ase letters (r; s; : : : 2 N

R

), and omplex

roles by upper ase letters (R; S; T : : :). Note that a omplex role an be viewed

as a regular expression over N

R

where " is taken as the empty word, role names

as elements of the alphabet, the empty role as the empty language, union as

union of languages, omposition as onatenation, and reexive-transitive lo-

sure as Kleene star. Therefore, we sometimes view a omplex role R as a regular

expression. In the following, we will abuse notation by identifying regular ex-

pressions with the languages they desribe. In partiular, if R and R

0

are regular

expressions, then R = R

0

will mean that the orresponding languages are equal.

The semantis of onept and role desriptions is de�ned as usual in terms

of an interpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set

and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a set

A

I

� �

I

and eah role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The

extension of �

I

to arbitrary onept and role desriptions is de�ned indutively,

as shown in the seond olumn of Table 1. The interested reader may note that

FL?

reg

-onept desriptions an also be viewed as onepts de�ned by yli

FL?-TBoxes interpreted with the greatest �xed-point semantis [2℄.

The onept desription D subsumes the desription C (C v D) i� C

I

� D

I

for all interpretations I. Two onept desriptions C;D are equivalent (C � D)

i� they subsume eah other.

In order to de�ne uni�ation of onept desriptions, we �rst have to intro-

due the notions onept pattern and substitution operating on onept pat-

terns. To this purpose, we onsider a set of onept variables N

X

(disjoint from

N

C

[N

R

). Now, FL?

reg

-onept patterns are FL?

reg

-onept desriptions de-



�ned over the set N

C

[N

X

of onept names and the set N

R

of role names. For

example, given A 2 N

C

, X 2 N

X

, and r 2 N

R

, 8r:A u 8r

�

:X is an FL?

reg

-

onept pattern.

A substitution � is a mapping from N

X

into the set of all FL?

reg

-onept

desriptions. This mapping is extended from variables to onept patterns in

the obvious way, i.e.,

� �(>) := >, �(?) := ?, and �(A) := A for all A 2 N

C

,

� �(C uD) := �(C) u �(D) and �(8R:C) := 8R:�(C).

De�nition 1 An FL?

reg

-uni�ation problem is of the form C �

?

D, where C,

D are FL?

reg

-onept patterns. The substitution � is a uni�er of this problem

i� �(C) � �(D). In this ase, the uni�ation problem is solvable, and C and D

are alled uni�able.

For sublanguages of FL?

reg

, onept patterns, substitutions, and uni�ation

problems are de�ned analogously.

For example, the substitution � = fX 7! 8r Æ r

�

:A; Y 7! 8r:?g is a uni�er

of the uni�ation problem

8s:8r:? u 8r:A u 8r:X �

?

8s:8r:8s:A uX u 8s:Y:

Note that this problem an also be viewed as an FL?-uni�ation problem.

However, in this ase it does not have a solution sine there are no FL?-onept

desriptions that, when substituted for X and Y , make the two onept patterns

equivalent.

In ase a uni�ation problem is solvable, one is usually interested in obtain-

ing an atual solution. Sine a given uni�ation problem may have in�nitely

many uni�ers, one must deide whih ones to prefer. As mentioned in the in-

trodution, in many appliations least uni�ers are of interest. To de�ne least

uni�ers, we extend the subsumption quasi-ordering from onept desriptions to

substitutions: if � and �

0

are substitutions, then � v �

0

i� �(X) v �

0

(X) for all

variables X. The uni�er � is a least uni�er of an uni�ation problem if � v �

0

for all uni�ers �

0

. Note that least uni�ers (if they exist) are uniquely determined

up to equivalene. By abuse of language, we therefore refer to the least uni�er.

For FL

0

and FL?, least uni�ers need not exist. For example, assume that

N

C

= fAg, N

R

= frg, and N

X

= fXg, and onsider the uni�ation problem

8r:Au 8r:X �

?

X u8r:A. Substituting > for X solves the problem in FL

0

and

FL?. However, it is not hard to show that there does not exist a least uni�er

in FL? or FL

0

. On the other hand, � with �(X) = 8r

�

:A is the least uni�er

of this problem in FL?

reg

. More generally, we will show that every solvable

FL?

reg

-uni�ation problem has a least uni�er.

The example X �

?

X shows that there are problems that have least uni�ers

in FL? but not in FL

0

. In FL?, mapping X to ? yields the least uni�er of

the problem, but there is no least uni�er of this problem in FL

0

.



3 Uni�ation in FL

reg

In this setion, we briey reall the results from [4℄ for uni�ation in FL

reg

,

sine our results for FL?

reg

depend on them.

The following is shown in [4℄ for uni�ation in FL

reg

:

1. Deiding the solvability of FL

reg

-uni�ation problems is an ExpTime-

omplete problem.

2. Every solvable FL

reg

-uni�ation problem has a least uni�er. The size of

this uni�er may grow exponentially in the size of the problem, and it an

be omputed in exponential time.

These results have been obtained by redution to/from the problem of solving

(systems of) linear equations over regular languages built using the alphabet

N

R

of role names. Any FL

reg

-uni�ation problem an be transformed into a

system of linear equations over regular languages suh that the uni�ers of the

problem orrespond to the solutions of the system (see the next setion for the

orresponding redution for FL?

reg

).

This type of equations is de�ned as follows. For languages L;M � N

�

R

, their

onatenation is de�ned as LM := fvw j v 2 L;w 2 Mg. Let X

1

; : : : ; X

n

be variables. Given regular languages S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

1

over N

R

, a

linear equation over regular languages is of the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

[ T

1

X

1

[ � � � [ T

n

X

n

: (1)

A (regular) solution � of this equation is a substitution assigning to eah vari-

able a (regular) language over N

R

suh that the equation holds. A system of

regular language equations is a �nite olletion of linear equations over regular

languages. A substitution � solves suh a system if it solves every equation in it

simultaneously.

We are partiularly interested in regular solutions sine they orrespond to

uni�ers in FL

reg

. We are also interested in greatest solutions sine they or-

respond to least uni�ers. To de�ne greatest solutions we extend the inlusion

relation on languages to solutions of linear equations: if � and �

0

are solutions

of a given linear equation, then � � �

0

i� �(X) � �(X

0

) for every variable X

ourring in the equation. A solution � is alled greatest solution i� �

0

� � for

every solution �

0

.

For systems of regular language equations the following results have been

shown in [4℄:

1. Deiding the solvability of systems of regular language equations is an

ExpTime-omplete problem.

1

We assume that these languages are given by regular expressions or nondeterministi �nite

automata.



2. Every solvable system of regular language equations has a greatest solution

�, and this solution is regular, i.e., the languages �(X) for all variables X

ourring in the system are regular. There exists an exponential time al-

gorithm that omputes deterministi �nite automata aepting the regular

languages �(X), and the size of these automata may grow exponentially

in the size of the system of equations.

The omplexity results for the deision problem are obtained by redutions

to/from deision problems for a ertain lass of B�uhi tree-automata. Deter-

ministi �nite automata aepting the greatest solution of a (solvable) system

of regular language equations an be onstruted from a B�uhi tree-automaton

that \aepts" all the solutions of the system (see [4℄ for details).

4 Uni�ation in FL?

reg

In this setion, we extend the results above from FL

reg

to FL?

reg

. To be more

preise, we show the following theorem.

Theorem 2 Deiding the solvability of an FL?

reg

-uni�ation problem is an

ExpTime-omplete problem. A solvable FL?

reg

-uni�ation problem always has

a least solution, whih an be omputed in exponential time. The size of suh a

solution may grow exponentially in the size of the uni�ation problem.

While for FL

reg

we have proved these results by redution to the solvability of

systems of linear equations over regular languages of the form (1), we now need

linear �

�

-equations over regular languages, whih have the form

S

0

[

n

[

i=1

S

i

X

i

[

n

0

[

i=1

S

0

i

X

0

i

�

�

= T

0

[

n

[

i=1

T

i

X

i

[

n

0

[

i=1

T

0

i

X

0

i

�

�

; (2)

where the sets fX

i

g and fX

0

i

g of variables are disjoint. In the following, we will

�rst show how uni�ation in FL?

reg

an be redued to deiding the solvability

of ertain systems of suh linear �

�

-equations. We then show how to solve suh

systems.

The Redution

It is easy to see that FL?

reg

-onept patterns an be written in the following

normal form:

8R

?

:? u u

A2N

C

8R

A

:A u u

X2N

X

8R

X

:X;

where R

?

, R

A

, and R

X

are regular expressions over N

R

. These normal forms

are obtained by exhaustively applying the equivalene preserving normalization



rule 8R:C u 8R

0

:C �! 8(R[R

0

):C, where R;R

0

are regular languages over N

R

and C is some FL?

reg

-onept pattern.

To establish the orretness of our redution, we need the following hara-

terization of equivalene between FL?

reg

-onept desriptions.

Lemma 3 Let C;D be FL?

reg

-onept desriptions suh that

C � 8S

?

:? u u

A2N

C

8S

A

:A and D � 8T

?

:? u u

A2N

C

8T

A

:A:

Then C � D i� (i) S

?

�

�

= T

?

�

�

, and (ii) S

A

[ S

?

�

�

= T

A

[ T

?

�

�

for all

A 2 N

C

.

As an easy onsequene of this lemma, uni�ation in FL?

reg

an be redued to

solving the �

�

-equations E(?) and E(A) introdued below. In these equations,

the variables X

?

and X

A

are new opies of X 2 N

X

. If E denotes an equation,

then E

l

shall denote its left hand-side and E

r

its right hand-side.

Theorem 4 Let C;D be FL?

reg

-onept patterns suh that

C � 8S

?

:? u u

A2N

C

8S

A

:A u u

X2N

X

8S

X

:X; and

D � 8T

?

:? u u

A2N

C

8T

A

:A u u

X2N

X

8T

X

:X:

Then C;D are uni�able i� the system fE(?)g [ fE(A) j A 2 N

C

g of linear

�

�

-equations has a solution, where

E(?) := S

?

�

�

[

[

X2N

X

S

X

X

?

�

�

= T

?

�

�

[

[

X2N

X

T

X

X

?

�

�

;

E(A) := E(?)

l

[ S

A

[

[

X2N

X

S

X

X

A

= E(?)

r

[ T

A

[

[

X2N

X

T

X

X

A

:

Solutions of the system fE(?)g [ fE(A) j A 2 N

C

g an easily be translated

into uni�ers of C;D and vie versa. In partiular, it is easy to show that least

uni�ers of C;D orrespond to greatest solutions of fE(?)g [ fE(A) j A 2 N

C

g.

Unlike the system onsidered for FL

reg

, the equations in the system here

annot be solved separately sine the variables in E(?) our also in E(A).

Note that E(?) is a speial kind of a linear �

�

-equation. An equation of this

form will be alled restrited linear �

�

-equation in the sequel.

Solving Restrited Linear �

�

-Equations

The existene of greatest solutions of solvable restrited linear �

�

-equation fol-

lows from the observation that the set of solutions of systems of (general) linear

�

�

-equations is losed under (arbitrary) union, i.e., if �

i

, i 2 I, for some index

set I, are solutions, then so is � with �(X) :=

S

i2I

�

i

(X) for every variable X



ourring in the system. Note, however, that this does not imply that greatest

solutions of suh systems are regular.

As for the solvability of restrited linear �

�

-equations, let E

0

(?) denote the

equation obtained from E(?) by omitting the right-onatenation of the vari-

ables X

?

with �

�

. We an prove the following lemma (see Appendix A).

Lemma 5 E

0

(?) is solvable i� E(?) is solvable. If the equations are solvable,

then they have greatest solutions, and their greatest solutions oinide.

Sine E

0

(?) is a linear equation over regular languages, this lemma, together

with the results from [4℄ ited above, yields the following proposition.

Proposition 6 The solvability of restrited linear �

�

-equations an be deided

in exponential time. Any solvable restrited linear �

�

-equation has a greatest

solution, whih is regular and an be omputed in exponential time.

Proof of Theorem 2

Beause of Theorem 4, it is enough to onsider the solvability and the existene

of greatest solutions of the system fE(?)g [ fE(A) j A 2 N

C

g. We already

know that if suh a system is solvable, it has a greatest solution.

As for the solvability, let E

0

(A) be the equation obtained from E(A) by

replaing E

l

(?) by S

?

�

�

and E

r

(?) by T

?

�

�

. See Appendix B for the proof of

the following lemma.

Lemma 7 The system fE(?)g [ fE

0

(A) j A 2 N

C

g is solvable i� fE(?)g [

fE(A) j A 2 N

C

g is solvable. If these systems are solvable, then they have

greatest solutions, and their greatest solutions oinide.

By Proposition 6, the solvability of E(?) an be deided in exponential time.

Sine eah E

0

(A) is a linear equation over regular languages, its solvability an

also be deided in exponential time. Beause E(?) and the equations E

0

(A) do

not share variables, solvability of fE(?)g [ fE

0

(A) j A 2 N

C

g an be deided

by testing these equations separately for solvability. We know that eah of

these equations (if solvable) has a greatest solution, whih is regular and an

be omputed in exponential time. The greatest solution of fE(?)g [ fE

0

(A) j

A 2 N

C

g (whih is also the greatest solution of fE(?)g [ fE(A) j A 2 N

C

g by

Lemma 7) an simply be obtained by ombining the greatest solutions of the

single equations. This proves the following theorem:

Theorem 8 The solvability of systems of equations of the form

fE(?)g [ fE(A) j A 2 N

C

g

an be deided in exponential time. Solvable systems always have a greatest

solution, whih is regular and an be omputed in exponential time.



From this theorem it immediately follows that deiding the solvability ofFL?

reg

-

uni�ation problems is in ExpTime, that least solutions always exist, and that

they an be omputed in exponential time. Given this, to omplete the proof of

Theorem 2 it remains to show ExpTime-hardness and the fat that the size of

greatest solutions may grow exponentially.

ExpTime-hardness follows from the following lemma (see Appendix C for

the proof) and the fat that uni�ation in FL

reg

is an ExpTime-hard problem

(see Setion 3).

Lemma 9 Given an FL

reg

-uni�ation problem, this problem is solvable in FL

reg

i� it is solvable when onsidered as FL?

reg

-uni�ation problem.

The lower bound on the size of a least solution laimed in Theorem 2 an be

proved as follows. Let L

1

; : : : ; L

k

be regular languages and r

1

; : : : ; r

k

be pairwise

distint role names whih do not our in the languages L

i

. Then the least uni�er

of the FL?

reg

-uni�ation problem

8(fr

1

gL

1

[ : : : [ fr

k

gL

k

):A � 8(fr

1

gL

1

[ : : : fr

k

gL

k

):A u 8fr

1

; : : : ; r

k

g:X

is �(X) � 8(L

1

\ � � � \ L

k

):A. From results shown in [7℄ it follows that the size

of automata aepting the intersetion of the L

i

s may grow exponentially in the

size of automata aepting L

1

; : : : ; L

k

.

5 Conlusion

Uni�ation in DLs that an express inonsisteny has turned out to be a very

hard problem. In the present paper, we have shown that uni�ation in the

extension of FL

reg

by the bottom onept is not harder than uni�ation in

FL

reg

itself. However, this result strongly depends on the fat that solvable

FL

reg

-uni�ation problems always have a least uni�er in FL

reg

. Consequently,

and unfortunately, the method employed in this paper annot be adapted to the

extension of FL

0

by the bottom onept sine in FL

0

least uni�ers need not

exist. Thus, the uni�ation in this extension still remains a wide open problem.

More aessible appears to be uni�ation in extensions of FL

reg

by onstrutors

that an express inonsisteny (like atomi negation and number restritions).

Referenes

[1℄ A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The Complexity of Set

Constraints. In E. B�orger, Y. Gurevih, and K. Meinke, editors, Proeedings

1993 Conf. Computer Siene Logi (CSL'93), volume 832 of Leture Notes

in Computer Siene, pages 1{17. European Assoiation Computer Siene

Logi, Springer, September 1993.



[2℄ F. Baader. Augmenting Conept Languages by Transitive Closure of Rules:

An Alternativ to Terminologial Cyles. In J. Mylopoulos and R. Reiter,

editors, Proeedings of the 12th International Joint Conferene on Arti�ial

Intelligene (IJCAI'91), pages 446{451, Sydney, 1991. Morgan Kaufmann

Publishers.

[3℄ F. Baader and B. Hollunder. A Terminologial Knowledge Representation

System with Complete Inferene Algorithms. In Proeedings of the First

International Workshop on Proessing Delarative Knowledge, volume 572 of

Leture Notes in Computer Siene, pages 67{85, Kaiserslautern (Germany),

1991. Springer{Verlag.

[4℄ F. Baader and R. K�usters. Uni�ation in a Desription Logi with Transitive

Closure of Roles. In R. Nieuwenhuis and A. Voronkov, editors, Proeedings

of the 8th International Conferene on Logi for Programming, Arti�ial

Intelligene and Reasoning (LPAR 2001), volume 2250 of Leture Notes in

Arti�ial Intelligene, Vienna, Austria, 2001. Springer{Verlag.

[5℄ F. Baader and P. Narendran. Uni�ation of Conept Terms in Desription

Logis. In H. Prade, editor, Proeedings of the 13th European Conferene

on Arti�ial Intelligene (ECAI-98), pages 331{335, Brighton, UK, 1998.

John Wiley & Sons Ltd. An extended version has appeared in J. Symboli

Computation 31:277{305, 2001.

[6℄ R. J. Brahman and J. G. Shmolze. An overview of the KL-ONE knowledge

representation system. Cognitive Siene, 9(2):171{216, 1985.

[7℄ S. Yu and Q. Zhuang. On the State Complexity of Intersetion of Regular

Languages. ACM SIGACT News, 22(3):52{54, 1991.

A Proof of Lemma 5

Assume that � is a solution of E

0

(?), i.e.,

S

?

�

�

[

[

X2N

X

S

X

�(X

?

) = T

?

�

�

[

[

X2N

X

T

X

�(X

?

):

Now, onsider the identity obtained by onatenating both sides from the right

with �

�

. Using the fat that �

�

�

�

= �

�

, it is easy to see that the identity

obtained this way is just E(?), where the variablesX

?

are substituted by �(X

?

).

Thus, � solves E(?). Conversely, let � be a solution of E(?). Then learly �

0

with �

0

(X

?

) := �(X

?

)�

�

solves E

0

(?).

Assume that the equations are solvable. We know that E

0

(?) has a greatest

solution, say �. As argued above, every solution of E

0

(?) is also a solution of



E(?), and thus � is a solution of E(?). It remains to show that � is the greatest

solution of E(?). Assume that � is a solution of E(?). As shown above, �

0

with

�

0

(X

?

) := �(X

?

)�

�

is a solution of E

0

(?), and thus we have for all variables X

?

ourring in E(?) and E

0

(?):

�(X

?

) � �(X

?

)�

�

= �

0

(X

?

) � �(X

?

):

The �rst inlusion holds sine the empty word belongs to �

�

and the seond

inlusion holds sine � is the greatest solution of E

0

(?). Summing up, we have

shown that the (arbitrarily hosen) solution � of E(?) is ontained in �, whih

proves that � is the greatest solution of E(?).

B Proof of Lemma 7

Let S denote the system fE(?)g[fE(A) j A 2 N

C

g and S

0

the system fE(?)g[

fE

0

(A) j A 2 N

C

g.

Let � be a solution of S. We show that �

0

with �

0

(X

?

) := �(X

?

) and

�

0

(X

A

) := �(X

A

)[�(X

?

)�

�

solves S

0

. Obviously �

0

solves E(?). When replaing

the variables in E

0

(A) by their �

0

-images, we obtain on the left-hand side

S

?

�

�

[ S

A

[

[

X2N

X

S

X

(�(X

A

) [ (�(X

?

)�

�

))

and on the right-hand side

T

?

�

�

[ T

A

[

[

X2N

X

T

X

(�(X

A

) [ (�(X

?

)�

�

)):

By applying known rules for onatenation and union of regular languages, the

left-hand side an be transformed into

S

?

�

�

[

[

X2N

X

S

X

�(X

?

)�

�

[ S

A

[

[

X2N

X

S

X

�(X

A

)

and the right-hand side into

T

?

�

�

[

[

X2N

X

T

X

�(X

?

)�

�

[ T

A

[

[

X2N

X

T

X

�(X

A

):

By our assumption, � solves both E(?) and E(A), and thus both sides are equal.

Thus, we have shown that if S is solvable, then so is S

0

.

Conversely, if � solves S

0

, then also S: Obviously, � solves E(?). Now,

onsider E

0

(A) where the variables are instantiated by �. Sine � solves E(?),

we an add E

l

(?) and E

r

(?) (again with the variables instantiated by �) to the

left and the right hand-side of E

0

(A), respetively, without destroying the fat



that both sides are equal. The identity obtained this way is just E(A), with the

variables instantiated by �. Hene, � also solves E(A).

Assume that the systems are solvable. We know that S

0

has a greatest

solution, say �. As shown above, eah solution of S

0

is also a solution of S.

Thus, � is a solution of S. It remains to show that it is the greatest solution of

S. Assume that � is an arbitrary solution of S. We must show that � � �. Let

�

0

be onstruted from � as at the beginning of this proof, i.e., �

0

(X

?

) := �(X

?

)

and �

0

(X

A

) := �(X

A

) [ �(X

?

)�

�

. Then, � � �

0

and �

0

is a solution of S

0

. Sine

� is the greatest solution of S

0

, this implies � � �

0

� �, whih shows the required

inlusion � � �.

C Proof of Lemma 9

The lemma is an easy onsequene of Lemma 7 and the redution of uni�a-

tion in FL

reg

to solving systems of regular language equation: Analogously to

Theorem 4 and as stated in [4℄, the solvability of an FL

reg

-uni�ation prob-

lem an be redued to the solvability of a system of regular language equa-

tions, whih oinides with the one in Theorem 4, exept that the equation

E(?) is omitted and E(A) does not ontain E(?)

l

and E(?)

r

. Let us all

this version of E(A), E

FL

reg

(A). Given an FL

reg

-uni�ation problem, the sets

S

?

and T

?

are empty, thus E

0

(A) (f. Lemma 7) oinides with E

FL

reg

(A).

As a onsequene, if fE(?)g [ fE

0

(A) j A 2 N

C

g has a solution, then also

fE

FL

reg

(A) j A 2 N

C

g. Conversely, if fE

FL

reg

(A) j A 2 N

C

g is solvable, then

also fE(?)g [ fE

0

(A) j A 2 N

C

g (the variables X

?

an simply be substituted

by the empty set). By Lemma 7, the system fE(?)g [ fE(A) j A 2 N

C

g

has a solution i� fE(?)g [ fE

0

(A) j A 2 N

C

g has a solution, and thus,

fE(?)g [ fE(A) j A 2 N

C

g is solvable i� fE

FL

reg

(A) j A 2 N

C

g is solvable.

Together with Theorem 4 and the redution of uni�ation in FL

reg

to solving

the system fE

FL

reg

(A) j A 2 N

C

g, Lemma 9 follows.


