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Abstra
t

Uni�
ation 
onsiders 
on
ept patterns, i.e., 
on
ept des
riptions with

variables, and tries to make these des
riptions equivalent by repla
ing

the variables by appropriate 
on
ept des
riptions. Baader and K�usters

have shown that uni�
ation in FL

reg

, a des
ription logi
 that allows for

the 
on
ept 
onstru
tors top 
on
ept, 
on
ept 
onjun
tion, and value re-

stri
tions as well as the role 
onstru
tors union, 
omposition, and transi-

tive 
losure, is an ExpTime-
omplete problem and that solvable FL

reg

-

uni�
ation problems always have least uni�ers. In the present paper, we

generalize these results to a DL whi
h extends FL

reg

by the bottom 
on-


ept. The proof strongly depends on the existen
e of least uni�ers in

FL

reg

.

1 Introdu
tion

Uni�
ation of 
on
ept des
riptions was introdu
ed by Baader and Narendran [5℄

as a new inferen
e servi
e for dete
ting and avoiding redundan
ies in DL knowl-

edge bases. Uni�
ation 
onsiders 
on
ept patterns, i.e., 
on
ept des
riptions

with variables, and tries to make these des
riptions equivalent by repla
ing the

variables by appropriate 
on
ept des
riptions. The te
hni
al results in [5℄ were


on
erned with uni�
ation in the small DL FL

0

, whi
h allows for 
onjun
tion of


on
epts (CuD), value restri
tion (8R:C), and the top 
on
ept (>): uni�
ation

of FL

0

-
on
ept patterns is an ExpTime-
omplete problem.



Sin
e then, extending this result to more expressive DLs has turned out to

be quite hard. Even if one just adds the bottom 
on
ept ? to FL

0

, the methods

employed for uni�
ation in FL

0

no longer apply. Consequently, it is also not


lear how to handle uni�
ation in des
riptions logi
s that 
an express in
onsis-

ten
y (like DLs with (atomi
) negation, number restri
tions, et
.). Instead of

adding 
on
ept 
onstru
tors to FL

0

, [4℄ 
onsiders uni�
ation in FL

reg

, whi
h

extends FL

0

by the role 
onstru
tors union, 
omposition, and transitive 
losure.

For this DL, uni�
ation is still an ExpTime-
omplete problem. In 
ontrast to the


ase of FL

0

, solvable FL

reg

-uni�
ation problems always have a least solution

(w.r.t. subsumption), whi
h 
an be 
omputed in exponential time.

In the present paper we extend the results for FL

reg

to FL?

reg

, the extension

of FL

reg

by the bottom 
on
ept. The proof strongly depends on the existen
e

of least uni�ers in FL

reg

.

The results for uni�
ation in FL

reg

have been obtained by redu
tion from/to

the problem of solving (systems of) linear equations over regular languages, and

solvability of su
h equations has been shown to be ExpTime-
omplete, by re-

du
tions from/to de
ision problems for tree-automata on in�nite trees. Closely

related to the problem of solving linear language equations is the problem of

solving set 
onstraints [1℄, i.e., relations between sets of terms. Set 
onstraints

are usually more general than linear language equations, whi
h most 
losely 
or-

respond to positive set 
onstraints [1℄ for terms over unary and nullary fun
tion

symbols where only union of sets is allowed. In fa
t, it is easy to see that linear

language equations 
an be expressed using positive set 
onstraints. However,

whereas we are interested in greatest solutions (
orresponding to least solutions

on the uni�
ation side), for set 
onstraints one usually 
onsiders least solutions.

To solve uni�
ation in FL?

reg

, we have extended linear language equations

to so-
alled linear �

�

-equations: Linear language equations only allow for left


on
atenation of regular languages and variables, i.e., 
on
atenation of the form

L �X, where L is a regular language and X is a variable. In linear �

�

-equations

one 
an in addition 
on
atenate �

�

from right, where �

�

is the set of all words

over the alphabet �, yielding terms of the form L � X � �

�

, whi
h 
annot be

expressed by set 
onstraints.

2 Preliminaries

First, we introdu
e the DLs FL

0

-, FL?-, FL

reg

-, and FL?

reg

. Starting from

the �nite and disjoint sets N

C

of 
on
ept names and N

R

of role names, FL

0

-


on
ept des
riptions are built using the 
on
ept 
onstru
tors 
onjun
tion (C u

D), value restri
tion (8r:C), and the top 
on
ept (>). FL? additionally al-

lows for the bottom 
on
ept (?). FL

reg

extends FL

0

by the role 
onstru
-

tors identity role ("), empty role (;), union (R [ S), 
omposition (R Æ S),



Syntax Semanti
s FL

0

FL? FL

reg

FL?

reg

> �

I

x x x x

? ; x x

C uD C

I

\D

I

x x x x

8R:C fx 2 �

I

j 8y : (x; y) 2 R

I

! y 2 C

I

g x x x x

" f(x; x) j x 2 �

I

g x x

; ; x x

R Æ S f(x; z) j 9y : (x; y) 2 R

I

^ (y; z) 2 S

I

g x x

R

�

S

n�0

(R

I

)

n

x x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

and re
exive-transitive 
losure (R

�

). Finally, FL?

reg

adds the bottom 
on-


ept (?) to FL

reg

. As an example, 
onsider the FL?

reg

-
on
ept des
ription

Woman u 8
hild

�

:Woman u 8pet:?, whi
h represents the set of all women with

only female o�spring and no pets.

Role names will be denoted by lower 
ase letters (r; s; : : : 2 N

R

), and 
omplex

roles by upper 
ase letters (R; S; T : : :). Note that a 
omplex role 
an be viewed

as a regular expression over N

R

where " is taken as the empty word, role names

as elements of the alphabet, the empty role as the empty language, union as

union of languages, 
omposition as 
on
atenation, and re
exive-transitive 
lo-

sure as Kleene star. Therefore, we sometimes view a 
omplex role R as a regular

expression. In the following, we will abuse notation by identifying regular ex-

pressions with the languages they des
ribe. In parti
ular, if R and R

0

are regular

expressions, then R = R

0

will mean that the 
orresponding languages are equal.

The semanti
s of 
on
ept and role des
riptions is de�ned as usual in terms

of an interpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set

and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a set

A

I

� �

I

and ea
h role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The

extension of �

I

to arbitrary 
on
ept and role des
riptions is de�ned indu
tively,

as shown in the se
ond 
olumn of Table 1. The interested reader may note that

FL?

reg

-
on
ept des
riptions 
an also be viewed as 
on
epts de�ned by 
y
li


FL?-TBoxes interpreted with the greatest �xed-point semanti
s [2℄.

The 
on
ept des
ription D subsumes the des
ription C (C v D) i� C

I

� D

I

for all interpretations I. Two 
on
ept des
riptions C;D are equivalent (C � D)

i� they subsume ea
h other.

In order to de�ne uni�
ation of 
on
ept des
riptions, we �rst have to intro-

du
e the notions 
on
ept pattern and substitution operating on 
on
ept pat-

terns. To this purpose, we 
onsider a set of 
on
ept variables N

X

(disjoint from

N

C

[N

R

). Now, FL?

reg

-
on
ept patterns are FL?

reg

-
on
ept des
riptions de-



�ned over the set N

C

[N

X

of 
on
ept names and the set N

R

of role names. For

example, given A 2 N

C

, X 2 N

X

, and r 2 N

R

, 8r:A u 8r

�

:X is an FL?

reg

-


on
ept pattern.

A substitution � is a mapping from N

X

into the set of all FL?

reg

-
on
ept

des
riptions. This mapping is extended from variables to 
on
ept patterns in

the obvious way, i.e.,

� �(>) := >, �(?) := ?, and �(A) := A for all A 2 N

C

,

� �(C uD) := �(C) u �(D) and �(8R:C) := 8R:�(C).

De�nition 1 An FL?

reg

-uni�
ation problem is of the form C �

?

D, where C,

D are FL?

reg

-
on
ept patterns. The substitution � is a uni�er of this problem

i� �(C) � �(D). In this 
ase, the uni�
ation problem is solvable, and C and D

are 
alled uni�able.

For sublanguages of FL?

reg

, 
on
ept patterns, substitutions, and uni�
ation

problems are de�ned analogously.

For example, the substitution � = fX 7! 8r Æ r

�

:A; Y 7! 8r:?g is a uni�er

of the uni�
ation problem

8s:8r:? u 8r:A u 8r:X �

?

8s:8r:8s:A uX u 8s:Y:

Note that this problem 
an also be viewed as an FL?-uni�
ation problem.

However, in this 
ase it does not have a solution sin
e there are no FL?-
on
ept

des
riptions that, when substituted for X and Y , make the two 
on
ept patterns

equivalent.

In 
ase a uni�
ation problem is solvable, one is usually interested in obtain-

ing an a
tual solution. Sin
e a given uni�
ation problem may have in�nitely

many uni�ers, one must de
ide whi
h ones to prefer. As mentioned in the in-

trodu
tion, in many appli
ations least uni�ers are of interest. To de�ne least

uni�ers, we extend the subsumption quasi-ordering from 
on
ept des
riptions to

substitutions: if � and �

0

are substitutions, then � v �

0

i� �(X) v �

0

(X) for all

variables X. The uni�er � is a least uni�er of an uni�
ation problem if � v �

0

for all uni�ers �

0

. Note that least uni�ers (if they exist) are uniquely determined

up to equivalen
e. By abuse of language, we therefore refer to the least uni�er.

For FL

0

and FL?, least uni�ers need not exist. For example, assume that

N

C

= fAg, N

R

= frg, and N

X

= fXg, and 
onsider the uni�
ation problem

8r:Au 8r:X �

?

X u8r:A. Substituting > for X solves the problem in FL

0

and

FL?. However, it is not hard to show that there does not exist a least uni�er

in FL? or FL

0

. On the other hand, � with �(X) = 8r

�

:A is the least uni�er

of this problem in FL?

reg

. More generally, we will show that every solvable

FL?

reg

-uni�
ation problem has a least uni�er.

The example X �

?

X shows that there are problems that have least uni�ers

in FL? but not in FL

0

. In FL?, mapping X to ? yields the least uni�er of

the problem, but there is no least uni�er of this problem in FL

0

.



3 Uni�
ation in FL

reg

In this se
tion, we brie
y re
all the results from [4℄ for uni�
ation in FL

reg

,

sin
e our results for FL?

reg

depend on them.

The following is shown in [4℄ for uni�
ation in FL

reg

:

1. De
iding the solvability of FL

reg

-uni�
ation problems is an ExpTime-


omplete problem.

2. Every solvable FL

reg

-uni�
ation problem has a least uni�er. The size of

this uni�er may grow exponentially in the size of the problem, and it 
an

be 
omputed in exponential time.

These results have been obtained by redu
tion to/from the problem of solving

(systems of) linear equations over regular languages built using the alphabet

N

R

of role names. Any FL

reg

-uni�
ation problem 
an be transformed into a

system of linear equations over regular languages su
h that the uni�ers of the

problem 
orrespond to the solutions of the system (see the next se
tion for the


orresponding redu
tion for FL?

reg

).

This type of equations is de�ned as follows. For languages L;M � N

�

R

, their


on
atenation is de�ned as LM := fvw j v 2 L;w 2 Mg. Let X

1

; : : : ; X

n

be variables. Given regular languages S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

1

over N

R

, a

linear equation over regular languages is of the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

[ T

1

X

1

[ � � � [ T

n

X

n

: (1)

A (regular) solution � of this equation is a substitution assigning to ea
h vari-

able a (regular) language over N

R

su
h that the equation holds. A system of

regular language equations is a �nite 
olle
tion of linear equations over regular

languages. A substitution � solves su
h a system if it solves every equation in it

simultaneously.

We are parti
ularly interested in regular solutions sin
e they 
orrespond to

uni�ers in FL

reg

. We are also interested in greatest solutions sin
e they 
or-

respond to least uni�ers. To de�ne greatest solutions we extend the in
lusion

relation on languages to solutions of linear equations: if � and �

0

are solutions

of a given linear equation, then � � �

0

i� �(X) � �(X

0

) for every variable X

o

urring in the equation. A solution � is 
alled greatest solution i� �

0

� � for

every solution �

0

.

For systems of regular language equations the following results have been

shown in [4℄:

1. De
iding the solvability of systems of regular language equations is an

ExpTime-
omplete problem.

1

We assume that these languages are given by regular expressions or nondeterministi
 �nite

automata.



2. Every solvable system of regular language equations has a greatest solution

�, and this solution is regular, i.e., the languages �(X) for all variables X

o

urring in the system are regular. There exists an exponential time al-

gorithm that 
omputes deterministi
 �nite automata a

epting the regular

languages �(X), and the size of these automata may grow exponentially

in the size of the system of equations.

The 
omplexity results for the de
ision problem are obtained by redu
tions

to/from de
ision problems for a 
ertain 
lass of B�u
hi tree-automata. Deter-

ministi
 �nite automata a

epting the greatest solution of a (solvable) system

of regular language equations 
an be 
onstru
ted from a B�u
hi tree-automaton

that \a

epts" all the solutions of the system (see [4℄ for details).

4 Uni�
ation in FL?

reg

In this se
tion, we extend the results above from FL

reg

to FL?

reg

. To be more

pre
ise, we show the following theorem.

Theorem 2 De
iding the solvability of an FL?

reg

-uni�
ation problem is an

ExpTime-
omplete problem. A solvable FL?

reg

-uni�
ation problem always has

a least solution, whi
h 
an be 
omputed in exponential time. The size of su
h a

solution may grow exponentially in the size of the uni�
ation problem.

While for FL

reg

we have proved these results by redu
tion to the solvability of

systems of linear equations over regular languages of the form (1), we now need

linear �

�

-equations over regular languages, whi
h have the form

S

0

[

n

[

i=1

S

i

X

i

[

n

0

[

i=1

S

0

i

X

0

i

�

�

= T

0

[

n

[

i=1

T

i

X

i

[

n

0

[

i=1

T

0

i

X

0

i

�

�

; (2)

where the sets fX

i

g and fX

0

i

g of variables are disjoint. In the following, we will

�rst show how uni�
ation in FL?

reg


an be redu
ed to de
iding the solvability

of 
ertain systems of su
h linear �

�

-equations. We then show how to solve su
h

systems.

The Redu
tion

It is easy to see that FL?

reg

-
on
ept patterns 
an be written in the following

normal form:

8R

?

:? u u

A2N

C

8R

A

:A u u

X2N

X

8R

X

:X;

where R

?

, R

A

, and R

X

are regular expressions over N

R

. These normal forms

are obtained by exhaustively applying the equivalen
e preserving normalization



rule 8R:C u 8R

0

:C �! 8(R[R

0

):C, where R;R

0

are regular languages over N

R

and C is some FL?

reg

-
on
ept pattern.

To establish the 
orre
tness of our redu
tion, we need the following 
hara
-

terization of equivalen
e between FL?

reg

-
on
ept des
riptions.

Lemma 3 Let C;D be FL?

reg

-
on
ept des
riptions su
h that

C � 8S

?

:? u u

A2N

C

8S

A

:A and D � 8T

?

:? u u

A2N

C

8T

A

:A:

Then C � D i� (i) S

?

�

�

= T

?

�

�

, and (ii) S

A

[ S

?

�

�

= T

A

[ T

?

�

�

for all

A 2 N

C

.

As an easy 
onsequen
e of this lemma, uni�
ation in FL?

reg


an be redu
ed to

solving the �

�

-equations E(?) and E(A) introdu
ed below. In these equations,

the variables X

?

and X

A

are new 
opies of X 2 N

X

. If E denotes an equation,

then E

l

shall denote its left hand-side and E

r

its right hand-side.

Theorem 4 Let C;D be FL?

reg

-
on
ept patterns su
h that

C � 8S

?

:? u u

A2N

C

8S

A

:A u u

X2N

X

8S

X

:X; and

D � 8T

?

:? u u

A2N

C

8T

A

:A u u

X2N

X

8T

X

:X:

Then C;D are uni�able i� the system fE(?)g [ fE(A) j A 2 N

C

g of linear

�

�

-equations has a solution, where

E(?) := S

?

�

�

[

[

X2N

X

S

X

X

?

�

�

= T

?

�

�

[

[

X2N

X

T

X

X

?

�

�

;

E(A) := E(?)

l

[ S

A

[

[

X2N

X

S

X

X

A

= E(?)

r

[ T

A

[

[

X2N

X

T

X

X

A

:

Solutions of the system fE(?)g [ fE(A) j A 2 N

C

g 
an easily be translated

into uni�ers of C;D and vi
e versa. In parti
ular, it is easy to show that least

uni�ers of C;D 
orrespond to greatest solutions of fE(?)g [ fE(A) j A 2 N

C

g.

Unlike the system 
onsidered for FL

reg

, the equations in the system here


annot be solved separately sin
e the variables in E(?) o

ur also in E(A).

Note that E(?) is a spe
ial kind of a linear �

�

-equation. An equation of this

form will be 
alled restri
ted linear �

�

-equation in the sequel.

Solving Restri
ted Linear �

�

-Equations

The existen
e of greatest solutions of solvable restri
ted linear �

�

-equation fol-

lows from the observation that the set of solutions of systems of (general) linear

�

�

-equations is 
losed under (arbitrary) union, i.e., if �

i

, i 2 I, for some index

set I, are solutions, then so is � with �(X) :=

S

i2I

�

i

(X) for every variable X



o

urring in the system. Note, however, that this does not imply that greatest

solutions of su
h systems are regular.

As for the solvability of restri
ted linear �

�

-equations, let E

0

(?) denote the

equation obtained from E(?) by omitting the right-
on
atenation of the vari-

ables X

?

with �

�

. We 
an prove the following lemma (see Appendix A).

Lemma 5 E

0

(?) is solvable i� E(?) is solvable. If the equations are solvable,

then they have greatest solutions, and their greatest solutions 
oin
ide.

Sin
e E

0

(?) is a linear equation over regular languages, this lemma, together

with the results from [4℄ 
ited above, yields the following proposition.

Proposition 6 The solvability of restri
ted linear �

�

-equations 
an be de
ided

in exponential time. Any solvable restri
ted linear �

�

-equation has a greatest

solution, whi
h is regular and 
an be 
omputed in exponential time.

Proof of Theorem 2

Be
ause of Theorem 4, it is enough to 
onsider the solvability and the existen
e

of greatest solutions of the system fE(?)g [ fE(A) j A 2 N

C

g. We already

know that if su
h a system is solvable, it has a greatest solution.

As for the solvability, let E

0

(A) be the equation obtained from E(A) by

repla
ing E

l

(?) by S

?

�

�

and E

r

(?) by T

?

�

�

. See Appendix B for the proof of

the following lemma.

Lemma 7 The system fE(?)g [ fE

0

(A) j A 2 N

C

g is solvable i� fE(?)g [

fE(A) j A 2 N

C

g is solvable. If these systems are solvable, then they have

greatest solutions, and their greatest solutions 
oin
ide.

By Proposition 6, the solvability of E(?) 
an be de
ided in exponential time.

Sin
e ea
h E

0

(A) is a linear equation over regular languages, its solvability 
an

also be de
ided in exponential time. Be
ause E(?) and the equations E

0

(A) do

not share variables, solvability of fE(?)g [ fE

0

(A) j A 2 N

C

g 
an be de
ided

by testing these equations separately for solvability. We know that ea
h of

these equations (if solvable) has a greatest solution, whi
h is regular and 
an

be 
omputed in exponential time. The greatest solution of fE(?)g [ fE

0

(A) j

A 2 N

C

g (whi
h is also the greatest solution of fE(?)g [ fE(A) j A 2 N

C

g by

Lemma 7) 
an simply be obtained by 
ombining the greatest solutions of the

single equations. This proves the following theorem:

Theorem 8 The solvability of systems of equations of the form

fE(?)g [ fE(A) j A 2 N

C

g


an be de
ided in exponential time. Solvable systems always have a greatest

solution, whi
h is regular and 
an be 
omputed in exponential time.



From this theorem it immediately follows that de
iding the solvability ofFL?

reg

-

uni�
ation problems is in ExpTime, that least solutions always exist, and that

they 
an be 
omputed in exponential time. Given this, to 
omplete the proof of

Theorem 2 it remains to show ExpTime-hardness and the fa
t that the size of

greatest solutions may grow exponentially.

ExpTime-hardness follows from the following lemma (see Appendix C for

the proof) and the fa
t that uni�
ation in FL

reg

is an ExpTime-hard problem

(see Se
tion 3).

Lemma 9 Given an FL

reg

-uni�
ation problem, this problem is solvable in FL

reg

i� it is solvable when 
onsidered as FL?

reg

-uni�
ation problem.

The lower bound on the size of a least solution 
laimed in Theorem 2 
an be

proved as follows. Let L

1

; : : : ; L

k

be regular languages and r

1

; : : : ; r

k

be pairwise

distin
t role names whi
h do not o

ur in the languages L

i

. Then the least uni�er

of the FL?

reg

-uni�
ation problem

8(fr

1

gL

1

[ : : : [ fr

k

gL

k

):A � 8(fr

1

gL

1

[ : : : fr

k

gL

k

):A u 8fr

1

; : : : ; r

k

g:X

is �(X) � 8(L

1

\ � � � \ L

k

):A. From results shown in [7℄ it follows that the size

of automata a

epting the interse
tion of the L

i

s may grow exponentially in the

size of automata a

epting L

1

; : : : ; L

k

.

5 Con
lusion

Uni�
ation in DLs that 
an express in
onsisten
y has turned out to be a very

hard problem. In the present paper, we have shown that uni�
ation in the

extension of FL

reg

by the bottom 
on
ept is not harder than uni�
ation in

FL

reg

itself. However, this result strongly depends on the fa
t that solvable

FL

reg

-uni�
ation problems always have a least uni�er in FL

reg

. Consequently,

and unfortunately, the method employed in this paper 
annot be adapted to the

extension of FL

0

by the bottom 
on
ept sin
e in FL

0

least uni�ers need not

exist. Thus, the uni�
ation in this extension still remains a wide open problem.

More a

essible appears to be uni�
ation in extensions of FL

reg

by 
onstru
tors

that 
an express in
onsisten
y (like atomi
 negation and number restri
tions).
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A Proof of Lemma 5

Assume that � is a solution of E

0

(?), i.e.,

S

?

�

�

[

[

X2N

X

S

X

�(X

?

) = T

?

�

�

[

[

X2N

X

T

X

�(X

?

):

Now, 
onsider the identity obtained by 
on
atenating both sides from the right

with �

�

. Using the fa
t that �

�

�

�

= �

�

, it is easy to see that the identity

obtained this way is just E(?), where the variablesX

?

are substituted by �(X

?

).

Thus, � solves E(?). Conversely, let � be a solution of E(?). Then 
learly �

0

with �

0

(X

?

) := �(X

?

)�

�

solves E

0

(?).

Assume that the equations are solvable. We know that E

0

(?) has a greatest

solution, say �. As argued above, every solution of E

0

(?) is also a solution of



E(?), and thus � is a solution of E(?). It remains to show that � is the greatest

solution of E(?). Assume that � is a solution of E(?). As shown above, �

0

with

�

0

(X

?

) := �(X

?

)�

�

is a solution of E

0

(?), and thus we have for all variables X

?

o

urring in E(?) and E

0

(?):

�(X

?

) � �(X

?

)�

�

= �

0

(X

?

) � �(X

?

):

The �rst in
lusion holds sin
e the empty word belongs to �

�

and the se
ond

in
lusion holds sin
e � is the greatest solution of E

0

(?). Summing up, we have

shown that the (arbitrarily 
hosen) solution � of E(?) is 
ontained in �, whi
h

proves that � is the greatest solution of E(?).

B Proof of Lemma 7

Let S denote the system fE(?)g[fE(A) j A 2 N

C

g and S

0

the system fE(?)g[

fE

0

(A) j A 2 N

C

g.

Let � be a solution of S. We show that �

0

with �

0

(X

?

) := �(X

?

) and

�

0

(X

A

) := �(X

A

)[�(X

?

)�

�

solves S

0

. Obviously �

0

solves E(?). When repla
ing

the variables in E

0

(A) by their �

0

-images, we obtain on the left-hand side

S

?

�

�

[ S

A

[

[

X2N

X

S

X

(�(X

A

) [ (�(X

?

)�

�

))

and on the right-hand side

T

?

�

�

[ T

A

[

[

X2N

X

T

X

(�(X

A

) [ (�(X

?

)�

�

)):

By applying known rules for 
on
atenation and union of regular languages, the

left-hand side 
an be transformed into

S

?

�

�

[

[

X2N

X

S

X

�(X

?

)�

�

[ S

A

[

[

X2N

X

S

X

�(X

A

)

and the right-hand side into

T

?

�

�

[

[

X2N

X

T

X

�(X

?

)�

�

[ T

A

[

[

X2N

X

T

X

�(X

A

):

By our assumption, � solves both E(?) and E(A), and thus both sides are equal.

Thus, we have shown that if S is solvable, then so is S

0

.

Conversely, if � solves S

0

, then also S: Obviously, � solves E(?). Now,


onsider E

0

(A) where the variables are instantiated by �. Sin
e � solves E(?),

we 
an add E

l

(?) and E

r

(?) (again with the variables instantiated by �) to the

left and the right hand-side of E

0

(A), respe
tively, without destroying the fa
t



that both sides are equal. The identity obtained this way is just E(A), with the

variables instantiated by �. Hen
e, � also solves E(A).

Assume that the systems are solvable. We know that S

0

has a greatest

solution, say �. As shown above, ea
h solution of S

0

is also a solution of S.

Thus, � is a solution of S. It remains to show that it is the greatest solution of

S. Assume that � is an arbitrary solution of S. We must show that � � �. Let

�

0

be 
onstru
ted from � as at the beginning of this proof, i.e., �

0

(X

?

) := �(X

?

)

and �

0

(X

A

) := �(X

A

) [ �(X

?

)�

�

. Then, � � �

0

and �

0

is a solution of S

0

. Sin
e

� is the greatest solution of S

0

, this implies � � �

0

� �, whi
h shows the required

in
lusion � � �.

C Proof of Lemma 9

The lemma is an easy 
onsequen
e of Lemma 7 and the redu
tion of uni�
a-

tion in FL

reg

to solving systems of regular language equation: Analogously to

Theorem 4 and as stated in [4℄, the solvability of an FL

reg

-uni�
ation prob-

lem 
an be redu
ed to the solvability of a system of regular language equa-

tions, whi
h 
oin
ides with the one in Theorem 4, ex
ept that the equation

E(?) is omitted and E(A) does not 
ontain E(?)

l

and E(?)

r

. Let us 
all

this version of E(A), E

FL

reg

(A). Given an FL

reg

-uni�
ation problem, the sets

S

?

and T

?

are empty, thus E

0

(A) (
f. Lemma 7) 
oin
ides with E

FL

reg

(A).

As a 
onsequen
e, if fE(?)g [ fE

0

(A) j A 2 N

C

g has a solution, then also

fE

FL

reg

(A) j A 2 N

C

g. Conversely, if fE

FL

reg

(A) j A 2 N

C

g is solvable, then

also fE(?)g [ fE

0

(A) j A 2 N

C

g (the variables X

?


an simply be substituted

by the empty set). By Lemma 7, the system fE(?)g [ fE(A) j A 2 N

C

g

has a solution i� fE(?)g [ fE

0

(A) j A 2 N

C

g has a solution, and thus,

fE(?)g [ fE(A) j A 2 N

C

g is solvable i� fE

FL

reg

(A) j A 2 N

C

g is solvable.

Together with Theorem 4 and the redu
tion of uni�
ation in FL

reg

to solving

the system fE

FL

reg

(A) j A 2 N

C

g, Lemma 9 follows.


