Unification in a Description Logic with
Inconsistency and Transitive Closure of Roles

Franz Baader
LuFG Theoretische Informatik

RWTH Aachen, Germany
baader@informatik.rwth-aachen.de

Ralf Kiisters
Institut fur Informatik und Praktische Mathematik
CAU Kiel, Germany
kuesters@ti.informatik.uni-kiel.de

Abstract

Unification considers concept patterns, i.e., concept descriptions with
variables, and tries to make these descriptions equivalent by replacing
the variables by appropriate concept descriptions. Baader and Kiusters
have shown that unification in FL,.4, a description logic that allows for
the concept constructors top concept, concept conjunction, and value re-
strictions as well as the role constructors union, composition, and transi-
tive closure, is an ExpTime-complete problem and that solvable FL;.q-
unification problems always have least unifiers. In the present paper, we
generalize these results to a DL which extends FL,., by the bottom con-
cept. The proof strongly depends on the existence of least unifiers in

FLyeg-

1 Introduction

Unification of concept descriptions was introduced by Baader and Narendran [5]
as a new inference service for detecting and avoiding redundancies in DL knowl-
edge bases. Unification considers concept patterns, i.e., concept descriptions
with variables, and tries to make these descriptions equivalent by replacing the
variables by appropriate concept descriptions. The technical results in [5] were
concerned with unification in the small DI, F L, which allows for conjunction of
concepts (C'T1D), value restriction (VR.C'), and the top concept (T): unification
of FLy-concept patterns is an ExpTime-complete problem.



Since then, extending this result to more expressive DLs has turned out to
be quite hard. Even if one just adds the bottom concept L to FLy, the methods
employed for unification in FLy no longer apply. Consequently, it is also not
clear how to handle unification in descriptions logics that can express inconsis-
tency (like DLs with (atomic) negation, number restrictions, etc.). Instead of
adding concept constructors to FLy, [4] considers unification in FL,.,, which
extends F Ly by the role constructors union, composition, and transitive closure.
For this DL, unification is still an ExpTime-complete problem. In contrast to the
case of FL,, solvable FL,.,-unification problems always have a least solution
(w.r.t. subsumption), which can be computed in exponential time.

In the present paper we extend the results for F L, .4 to FLL,.4, the extension
of FL,.4 by the bottom concept. The proof strongly depends on the existence
of least unifiers in FL,,.

The results for unification in FL,., have been obtained by reduction from/to
the problem of solving (systems of) linear equations over regular languages, and
solvability of such equations has been shown to be ExpTime-complete, by re-
ductions from/to decision problems for tree-automata on infinite trees. Closely
related to the problem of solving linear language equations is the problem of
solving set constraints [1], i.e., relations between sets of terms. Set constraints
are usually more general than linear language equations, which most closely cor-
respond to positive set constraints [1] for terms over unary and nullary function
symbols where only union of sets is allowed. In fact, it is easy to see that linear
language equations can be expressed using positive set constraints. However,
whereas we are interested in greatest solutions (corresponding to least solutions
on the unification side), for set constraints one usually considers least solutions.

To solve unification in FL 1,4, we have extended linear language equations
to so-called linear ¥ *-equations: Linear language equations only allow for left
concatenation of regular languages and variables, i.e., concatenation of the form
L - X, where L is a regular language and X is a variable. In linear ¥*-equations
one can in addition concatenate >* from right, where ¥* is the set of all words
over the alphabet ¥, yielding terms of the form L - X - ¥* which cannot be
expressed by set constraints.

2 Preliminaries

First, we introduce the DLs FLy-, FLL-, FLeq-, and FLL,.,. Starting from
the finite and disjoint sets Ng of concept names and Ny of role names, FL,-
concept descriptions are built using the concept constructors conjunction (C' 1
D), value restriction (Vr.C'), and the top concept (T). FLL additionally al-
lows for the bottom concept (L). FL,, extends FLy by the role construc-
tors identity role (¢), empty role (), union (R U S), composition (R o S),



| Syntax | Semantics | FLo | FLL | Flreg | FLLieg
T AT X X X

b'e
1 0 X X
cnbD c'np! X X X X
VR.C | {z € Al |Vy: (z,y) e RT - yecCl} X X X
€ {(z,7) | v € AT} X X
0 0 X b'e
RoS | {(z,2)|3y: (z,y) € RTA(y,2) € ST} X X
R* Un>0(RI)n X X

Table 1: Syntax and semantics of concept descriptions.

and reflexive-transitive closure (R*). Finally, FLl,., adds the bottom con-
cept (L) to FLye. As an example, consider the FL.L,.,-concept description
Woman M Vchild*. Woman M Vpet. L, which represents the set of all women with
only female offspring and no pets.

Role names will be denoted by lower case letters (r, s,... € Ng), and complex
roles by upper case letters (R, S,T...). Note that a complex role can be viewed
as a regular expression over Np where ¢ is taken as the empty word, role names
as elements of the alphabet, the empty role as the empty language, union as
union of languages, composition as concatenation, and reflexive-transitive clo-
sure as Kleene star. Therefore, we sometimes view a complex role R as a regular
expression. In the following, we will abuse notation by identifying regular ex-
pressions with the languages they describe. In particular, if R and R’ are regular
expressions, then R = R’ will mean that the corresponding languages are equal.

The semantics of concept and role descriptions is defined as usual in terms
of an interpretation T = (A’,-7). The domain A’ of Z is a non-empty set
and the interpretation function -/ maps each concept name A € Ng to a set
AT C AT and each role name r € Ng to a binary relation »/ C A’ x A, The
extension of -! to arbitrary concept and role descriptions is defined inductively,
as shown in the second column of Table 1. The interested reader may note that
FLL,.4-concept descriptions can also be viewed as concepts defined by cyclic
FL1-TBoxes interpreted with the greatest fixed-point semantics [2].

The concept description D subsumes the description C' (C C D) iff C' C D'
for all interpretations Z. Two concept descriptions C, D are equivalent (C' = D)
iff they subsume each other.

In order to define unification of concept descriptions, we first have to intro-
duce the notions concept pattern and substitution operating on concept pat-
terns. To this purpose, we consider a set of concept variables Nx (disjoint from
Ne¢ U Ng). Now, FLL,e,-concept patterns are FLL,.,~concept descriptions de-



fined over the set No U Nx of concept names and the set N of role names. For
example, given A € N¢, X € Nx, and r € Ng, Vi ATIVr*. X is an FLL, .-
concept pattern.

A substitution o is a mapping from Ny into the set of all FL1,.,-concept
descriptions. This mapping is extended from variables to concept patterns in
the obvious way, i.e.,

e o(T):=T,0(L):=1, and o(A):= A for all A € Ng,
e 0(CND):=0(C)No(D) and o(VR.C) :=VYR.0(C).

Definition 1 An FLL,.,-unification problem is of the form C' =" D, where C,
D are FLL,.q-concept patterns. The substitution o is a unifier of this problem
iff o(C) = o(D). In this case, the unification problem is solvable, and C' and D
are called unifiable.

For sublanguages of FL1,.,, concept patterns, substitutions, and unification
problems are defined analogously.

For example, the substitution o = {X — Vror*. A, Y + Vr.L} is a unifier
of the unification problem

VsVr. L NVr.ANYr.X =’ VsVrVs. AN XMNvVs.Y.

Note that this problem can also be viewed as an FLl-unification problem.
However, in this case it does not have a solution since there are no F L1 -concept
descriptions that, when substituted for X and Y, make the two concept patterns
equivalent.

In case a unification problem is solvable, one is usually interested in obtain-
ing an actual solution. Since a given unification problem may have infinitely
many unifiers, one must decide which ones to prefer. As mentioned in the in-
troduction, in many applications least unifiers are of interest. To define least
unifiers, we extend the subsumption quasi-ordering from concept descriptions to
substitutions: if o and ¢’ are substitutions, then o C ¢’ iff 0(X) C o'(X) for all
variables X. The unifier o is a least unifier of an unification problem if ¢ C o’
for all unifiers o’. Note that least unifiers (if they exist) are uniquely determined
up to equivalence. By abuse of language, we therefore refer to the least unifier.

For FLy and FL1, least unifiers need not exist. For example, assume that
Ne = {A}, Ngp = {r}, and Nx = {X}, and consider the unification problem
Vr.ANVr.X =° X NVr.A. Substituting T for X solves the problem in FL, and
FL1. However, it is not hard to show that there does not exist a least unifier
in FLL or FLy. On the other hand, ¢ with o(X) = Vr*.A is the least unifier
of this problem in F£L1,,,. More generally, we will show that every solvable
FLL,.g-unification problem has a least unifier.

The example X =7 X shows that there are problems that have least unifiers
in FL1 but not in FLy. In FLL, mapping X to L yields the least unifier of
the problem, but there is no least unifier of this problem in FL,.



3 Unification in L,

In this section, we briefly recall the results from [4] for unification in FL,.,,
since our results for £ 1,., depend on them.
The following is shown in [4] for unification in FL,.,:

1. Deciding the solvability of FL,.s,-unification problems is an ExpTime-
complete problem.

2. Every solvable FL,.,-unification problem has a least unifier. The size of
this unifier may grow exponentially in the size of the problem, and it can
be computed in exponential time.

These results have been obtained by reduction to/from the problem of solving
(systems of) linear equations over regular languages built using the alphabet
Npg of role names. Any FL,.s-unification problem can be transformed into a
system of linear equations over regular languages such that the unifiers of the
problem correspond to the solutions of the system (see the next section for the
corresponding reduction for FLL,.,).

This type of equations is defined as follows. For languages L, M C N7, their
concatenation is defined as LM := {vw | v € Lyw € M}. Let Xy,..., X,
be variables. Given regular languages Sy, Si,..., S, Ty, T1,...,T,' over Ng, a
linear equation over reqular languages is of the form

SouleluUSan:TUUTlXIUUTan (1)

A (regular) solution 6 of this equation is a substitution assigning to each vari-
able a (regular) language over Np such that the equation holds. A system of
reqular language equations is a finite collection of linear equations over regular
languages. A substitution 6 solves such a system if it solves every equation in it
simultaneously.

We are particularly interested in regular solutions since they correspond to
unifiers in FL,.,. We are also interested in greatest solutions since they cor-
respond to least unifiers. To define greatest solutions we extend the inclusion
relation on languages to solutions of linear equations: if 6 and 6 are solutions
of a given linear equation, then 6§ C ¢ iff (X) C 0(X') for every variable X
occurring in the equation. A solution @ is called greatest solution iff §' C 6 for
every solution 6'.

For systems of regular language equations the following results have been
shown in [4]:

1. Deciding the solvability of systems of regular language equations is an
ExpTime-complete problem.

'We assume that these languages are given by regular expressions or nondeterministic finite
automata.



2. Every solvable system of regular language equations has a greatest solution
6, and this solution is regular, i.e., the languages 6(X) for all variables X
occurring in the system are regular. There exists an exponential time al-
gorithm that computes deterministic finite automata accepting the regular
languages 6(X), and the size of these automata may grow exponentially
in the size of the system of equations.

The complexity results for the decision problem are obtained by reductions
to/from decision problems for a certain class of Biichi tree-automata. Deter-
ministic finite automata accepting the greatest solution of a (solvable) system
of regular language equations can be constructed from a Biichi tree-automaton
that “accepts” all the solutions of the system (see [4] for details).

4 Unification in FL 1,

In this section, we extend the results above from FL,., to FL1,.,. To be more
precise, we show the following theorem.

Theorem 2 Deciding the solvability of an FLL,..-unification problem is an
EzpTime-complete problem. A solvable F L1, 4-unification problem always has
a least solution, which can be computed in exponential time. The size of such a
solution may grow exponentially in the size of the unification problem.

While for FL,., we have proved these results by reduction to the solvability of
systems of linear equations over regular languages of the form (1), we now need
linear Y*-equations over reqular languages, which have the form

SoulJ Six;ul Sixisr =Tyu | ThX; U | TIX(S, 2)

=1 i=1 i=1 i=1

where the sets {X;} and {X]} of variables are disjoint. In the following, we will
first show how unification in FL£.L,., can be reduced to deciding the solvability
of certain systems of such linear ¥*-equations. We then show how to solve such
systems.

The Reduction

It is easy to see that FL1,.,-concept patterns can be written in the following
normal form:

VR, .LT AQVC VR4.AT XQVX VRx.X,

where R, R4, and Rx are regular expressions over Ng. These normal forms
are obtained by exhaustively applying the equivalence preserving normalization



rule VR.CMVYR'.C — Y(RUR').C, where R, R’ are regular languages over Ng
and C'is some FL.1,.,-concept pattern.

To establish the correctness of our reduction, we need the following charac-
terization of equivalence between FL_L,.,-concept descriptions.

Lemma 3 Let C,D be FLL,.4-concept descriptions such that

C=vVS,.Ln I1 VS4.A and D=VT, .L 1 1 VT,4.A.
AEN¢e AEN¢e

Then C = D iff (i) S X" =T, %*%, and (ii) S4 U S, ¥* = T4 U T X* for all
A€ N¢.

As an easy consequence of this lemma, unification in F£1,., can be reduced to
solving the Y*-equations F(L) and E(A) introduced below. In these equations,
the variables X | and X4 are new copies of X € Nx. If F denotes an equation,
then E'! shall denote its left hand-side and E" its right hand-side.

Theorem 4 Let C, D be FLL,.4-concept patterns such that

C = VS,..Lm Il VS4.AM [1 VSx.X, and
AEN¢o XENx

D = VT,.1Ln Il VI, AN 1 VTx.X.
AEN¢e XENx

Then C, D are unifiable iff the system {FE(L)} U{E(A) | A € N¢} of linear

Y *-equations has a solution, where

E(J_) = SJ_E* U U SXXJ_E* = TJ_E* U U TXXJ_E*,
XENX XENX
E(A) = E(L)uSiu |J SxXu=EL)UTyU |J TxXa.
XeNx X€ENx

Solutions of the system {E(L)} U{FE(A) | A € N} can easily be translated
into unifiers of C', D and vice versa. In particular, it is easy to show that least
unifiers of C, D correspond to greatest solutions of {E(L)} U{E(A) | A € N¢}.
Unlike the system considered for FL,.,, the equations in the system here
cannot be solved separately since the variables in E(L) occur also in E(A).
Note that E(L) is a special kind of a linear ¥*-equation. An equation of this
form will be called restricted linear ¥*-equation in the sequel.

Solving Restricted Linear Y*-Equations

The existence of greatest solutions of solvable restricted linear ¥*-equation fol-
lows from the observation that the set of solutions of systems of (general) linear
Y*-equations is closed under (arbitrary) union, i.e., if 6;, i € I, for some index
set I, are solutions, then so is 0 with 6(X) := U;c; 0;(X) for every variable X



occurring in the system. Note, however, that this does not imply that greatest
solutions of such systems are regular.

As for the solvability of restricted linear X*-equations, let E'(L) denote the
equation obtained from E(L) by omitting the right-concatenation of the vari-
ables X | with ¥*. We can prove the following lemma (see Appendix A).

Lemma 5 E'(L) is solvable iff E(L) is solvable. If the equations are solvable,
then they have greatest solutions, and their greatest solutions coincide.

Since E’(L) is a linear equation over regular languages, this lemma, together
with the results from [4] cited above, yields the following proposition.

Proposition 6 The solvability of restricted linear X*-equations can be decided
in exponential time. Any solvable restricted linear ¥*-equation has a greatest
solution, which is regular and can be computed in exponential time.

Proof of Theorem 2

Because of Theorem 4, it is enough to consider the solvability and the existence
of greatest solutions of the system {F(L)} U{E(A) | A € N¢}. We already
know that if such a system is solvable, it has a greatest solution.

As for the solvability, let E’(A) be the equation obtained from E(A) by
replacing E'(L) by S, ¥* and E"(L) by T X*. See Appendix B for the proof of
the following lemma.

Lemma 7 The system {E(L)} U{E'(A) | A € N¢} is solvable iff {E(L)} U
{E(A) | A € N¢} is solvable. If these systems are solvable, then they have
greatest solutions, and their greatest solutions coincide.

By Proposition 6, the solvability of E(_L) can be decided in exponential time.
Since each F'(A) is a linear equation over regular languages, its solvability can
also be decided in exponential time. Because F(L) and the equations E'(A) do
not share variables, solvability of {E(L)} U{E'(A) | A € N¢} can be decided
by testing these equations separately for solvability. We know that each of
these equations (if solvable) has a greatest solution, which is regular and can
be computed in exponential time. The greatest solution of {E(L)} U {E'(A) |
A € N¢} (which is also the greatest solution of {E(L)} U{E(A) | A € N¢} by
Lemma 7) can simply be obtained by combining the greatest solutions of the
single equations. This proves the following theorem:

Theorem 8 The solvability of systems of equations of the form
{E(L)}U{E(A) [ A€ No}

can be decided in exponential time. Solvable systems always have a greatest
solution, which is regular and can be computed in exponential time.



From this theorem it immediately follows that deciding the solvability of FL L, -
unification problems is in ExpTime, that least solutions always exist, and that
they can be computed in exponential time. Given this, to complete the proof of
Theorem 2 it remains to show ExpTime-hardness and the fact that the size of
greatest solutions may grow exponentially.

ExpTime-hardness follows from the following lemma (see Appendix C for
the proof) and the fact that unification in FL,., is an ExpTime-hard problem
(see Section 3).

Lemma 9 Given an FL,q4-unification problem, this problem is solvable in FL,q4
iff it is solvable when considered as FL1,q4-unification problem.

The lower bound on the size of a least solution claimed in Theorem 2 can be
proved as follows. Let Ly, ..., L; be regular languages and ry, ..., ry be pairwise
distinct role names which do not occur in the languages L;. Then the least unifier
of the FL1,.4-unification problem

V({Tl}Ll u...u {Tk}Lk).A = V({TI}LI U... {Tk}Lk)A 1 V{Tl, c. ,Tk}.X

is o(X)=V(LyN---N Lg).A. From results shown in [7] it follows that the size
of automata accepting the intersection of the L;s may grow exponentially in the
size of automata accepting L1, ..., L.

5 Conclusion

Unification in DLs that can express inconsistency has turned out to be a very
hard problem. In the present paper, we have shown that unification in the
extension of FL,., by the bottom concept is not harder than unification in
FLyeq itself. However, this result strongly depends on the fact that solvable
FLyeqg-unification problems always have a least unifier in FL,.,. Consequently,
and unfortunately, the method employed in this paper cannot be adapted to the
extension of FLy by the bottom concept since in FL; least unifiers need not
exist. Thus, the unification in this extension still remains a wide open problem.
More accessible appears to be unification in extensions of FL,., by constructors
that can express inconsistency (like atomic negation and number restrictions).

References

[1] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The Complexity of Set
Constraints. In E. Borger, Y. Gurevich, and K. Meinke, editors, Proceedings
1993 Conf. Computer Science Logic (CSL’93), volume 832 of Lecture Notes
in Computer Science, pages 1-17. European Association Computer Science
Logic, Springer, September 1993.



[2] F. Baader. Augmenting Concept Languages by Transitive Closure of Rules:
An Alternativ to Terminological Cycles. In J. Mylopoulos and R. Reiter,
editors, Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI’91), pages 446-451, Sydney, 1991. Morgan Kaufmann
Publishers.

[3] F. Baader and B. Hollunder. A Terminological Knowledge Representation
System with Complete Inference Algorithms. In Proceedings of the First
International Workshop on Processing Declarative Knowledge, volume 572 of
Lecture Notes in Computer Science, pages 67-85, Kaiserslautern (Germany),
1991. Springer—Verlag.

[4] F. Baader and R. Kiisters. Unification in a Description Logic with Transitive
Closure of Roles. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings
of the 8th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR 2001), volume 2250 of Lecture Notes in
Artificial Intelligence, Vienna, Austria, 2001. Springer—Verlag.

[5] F. Baader and P. Narendran. Unification of Concept Terms in Description
Logics. In H. Prade, editor, Proceedings of the 13th FEuropean Conference
on Artificial Intelligence (ECAI-98), pages 331-335, Brighton, UK, 1998.
John Wiley & Sons Ltd. An extended version has appeared in J. Symbolic
Computation 31:277-305, 2001.

[6] R.J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171-216, 1985.

[7] S. Yu and Q. Zhuang. On the State Complexity of Intersection of Regular
Languages. ACM SIGACT News, 22(3):52-54, 1991.

A Proof of Lemma 5

Assume that 6 is a solution of E'(L), i.e.,

Si¥U | Sx0(X1)=T.2U |J Tx0(X.).

XENX XENX

Now, consider the identity obtained by concatenating both sides from the right
with >*. Using the fact that X*¥* = ¥* it is easy to see that the identity
obtained this way is just F/(_L), where the variables X | are substituted by (X ).
Thus, € solves F(L). Conversely, let 6 be a solution of F(L). Then clearly ¢
with 6/(X ) := 0(X)¥* solves E'(L).

Assume that the equations are solvable. We know that E’(L) has a greatest
solution, say #. As argued above, every solution of E'(L) is also a solution of



E(1), and thus 6 is a solution of E(_L). It remains to show that 6 is the greatest
solution of F'(L). Assume that 7 is a solution of E(L). As shown above, 7’ with
(X ) := 7(X)X* is a solution of E'(_L), and thus we have for all variables X |
occurring in E(L) and E'(L):

T(XJ_) g T(XJ_)E* = T,(XJ_) g G(XJ_)

The first inclusion holds since the empty word belongs to ¥* and the second
inclusion holds since @ is the greatest solution of E'(L). Summing up, we have
shown that the (arbitrarily chosen) solution 7 of E(L) is contained in €, which
proves that 6 is the greatest solution of F(L).

B Proof of Lemma 7

Let S denote the system { E(L)}U{E(A) | A € N¢} and 8’ the system {E(L)}U
{E'(A) | A € Nt

Let # be a solution of §. We show that #" with (X ) := (X ) and
0'(X4) :=0(X4)UO(X )E* solves S'. Obviously #' solves E(_L). When replacing
the variables in E'(A) by their #'-images, we obtain on the left-hand side

SLE* U SA U U Sx(e(XA) U (H(XL)E*))

XENX

and on the right-hand side

TS UT U | Tx(0(X4) U (O(X1)S)).

XEeNx

By applying known rules for concatenation and union of regular languages, the
left-hand side can be transformed into

S ¥U U SXg(XL)E*USAU U SXH(XA)

XENX XENX

and the right-hand side into

T.x* U |J TxO(X)S*UTaU |J TxO(X.).

XENX XENX

By our assumption, € solves both E(L) and F(A), and thus both sides are equal.
Thus, we have shown that if S is solvable, then so is §'.

Conversely, if 6 solves &', then also S: Obviously, 0 solves E(L). Now,
consider E'(A) where the variables are instantiated by 6. Since 6 solves E(L),
we can add E'(L) and E”(L) (again with the variables instantiated by #) to the
left and the right hand-side of E'(A), respectively, without destroying the fact



that both sides are equal. The identity obtained this way is just E(A), with the
variables instantiated by 6. Hence, 6 also solves E(A).

Assume that the systems are solvable. We know that &’ has a greatest
solution, say . As shown above, each solution of &' is also a solution of S.
Thus, # is a solution of S. It remains to show that it is the greatest solution of
S. Assume that 7 is an arbitrary solution of S. We must show that 7 C 6. Let
7' be constructed from 7 as at the beginning of this proof, i.e., 7/(X ) := 7(X )
and 7'(X ) := 7(X4) UT(X)X*. Then, 7 C 7" and 7' is a solution of S'. Since
6 is the greatest solution of &', this implies 7 C 7" C #, which shows the required
inclusion 7 C 6.

C Proof of Lemma 9

The lemma is an easy consequence of Lemma 7 and the reduction of unifica-
tion in FL,., to solving systems of regular language equation: Analogously to
Theorem 4 and as stated in [4], the solvability of an FL,.,-unification prob-
lem can be reduced to the solvability of a system of regular language equa-
tions, which coincides with the one in Theorem 4, except that the equation
E(L) is omitted and E(A) does not contain E(L)! and E(L)". Let us call
this version of E(A), Er,.,(A). Given an FL,.g-unification problem, the sets
S, and T, are empty, thus E'(A) (cf. Lemma 7) coincides with Er.  (A).
As a consequence, if {F(L)} U{F'(A) | A € N¢} has a solution, then also
{Erc,.,(A) | A € N¢}. Conversely, if {Erc,., (A) | A € N¢} is solvable, then
also {E(L)} U{E'(A) | A € N¢} (the variables X can simply be substituted
by the empty set). By Lemma 7, the system {E(L)} U{E(A) | A € N¢}
has a solution iff {F(L)} U {E'(A) | A € N¢} has a solution, and thus,
{E(L)}U{E(A) | A € N¢} is solvable iff {Ez.,, (A) | A € N¢} is solvable.
Together with Theorem 4 and the reduction of unification in FL,., to solving
the system {Erc,.,(A) | A € N¢}, Lemma 9 follows.



