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Abstract. This paper addresses the following combination problem:
given two equational theories E; and E> whose positive theories are de-
cidable, how can one obtain a decision procedure for the positive theory
of E1UE>? For theories over disjoint signatures, this problem was solved
by Baader and Schulz in 1995. This paper is a first step towards extend-
ing this result to the case of theories sharing constructors. Since there
is a close connection between positive theories and unification problems,
this also extends to the non-disjoint case the work on combining decision
procedures for unification modulo equational theories.

1 Introduction

Built-in decision procedures for certain types of theories (like equational theories)
can greatly speed up the performance of theorem provers. In many applications,
however, the theories actually encountered are combinations of theories for which
dedicated decision procedure are available. Thus, one must find ways to com-
bine the decision procedures for the single theories into one for their combination.
In the context of equational theories over disjoint signatures, this combination
problem has been thoroughly investigated in the following three instances:* the
word problem, the validity problem for universally quantified formulae, and the
unification problem. For the word problem, i.e., the problem whether a single
(universally quantified) equation s = t follows from the equational theory, the
first solution to the combination problem was given by Pigozzi [9] in 1974. The
problem of combining decision procedures for universally quantified formulae,
i.e., arbitrary Boolean combinations of equations that are universally quantified,
was solved by Nelson and Oppen [8] in 1979. Work on combining unification
algorithms started also in the seventies with Stickel’s investigation [12] of uni-
fication of terms containing several associative-commutative and free symbols.
The first general result on how to combine decision procedures for unification
was published by Baader and Schulz [1] in 1992. It turned out that decision
procedures for unification (with constants) are not sufficient to allow for a com-
bination result. Instead, one needs decision procedures for unification with linear
constant restrictions in the theories to be combined. In 1995, Baader and Schulz

% Some of the work mentioned below can also handle more general theories. To simplify
the presentation, we restrict our attention in this paper to the equational case.
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[2] described a version of their combination procedure that applies to positive
theories, i.e., positive Boolean combinations of equations with an arbitrary quan-
tifier prefix. They also showed [3] that the decidability of the positive theory is
equivalent to the decidability of unification with linear constant restrictions.

Since then, the main open problem in the area was how to extend these
results to the combination of theories having symbols in common. In general,
the existence of shared symbols may lead to undecidability results for the union
theory (see, e.g., [6,5] for some examples). This means that a controlled form
of sharing of symbols is necessary. For the word problem and for universally
quantified formulae, a suitable notion of shared constructors has proved useful.
In [5], Pigozzi’s combination result for the word problem was extended to theories
all of whose shared symbols are constructors. A similar extension of the Nelson-
Oppen combination procedure can be found in [13].

In a similar vein, we show in this paper that the combination results in [2] for
positive theories (and thus for unification) can be extended to theories sharing
constructors. We do that by extending the combination procedure in [2] with
an extra step that deals with shared symbols and proving that the extended
procedure is sound and complete. Since this extra step is not finitary, the new
procedure in general yields only a semi-decision procedure for the combined the-
ory. Under some additional assumptions on the equational theory of the shared
symbols, the procedure can, however, be turned into a decision procedure. Al-
though the combination procedure described here differs from the one in [2] by
just one extra step, proving its correctness is considerably more challenging, due
to the non-disjointness of the theories. A major contribution of this work is a
novel algebraic construction of the free algebra of the combined theory. As in
the non-disjoint case [2], this construction is vital for the correctness proof of
the procedure, and we believe that it will prove helpful also in future research
on non-disjoint combination.

The paper is organized as follows. Section 2 contains some formal prelimi-
naries. Section 3 defines our notion of constructors and presents some of their
properties, which will be used later to prove the correctness of the combination
procedure. Section 4 describes our extension of the Baader-Schulz procedure to
component theories sharing constructors. It then introduces a straightforward
condition on the component theories under which the semi-decision procedure
obtained this way can in fact be used to decide the positive consequences of
their union. Finally, it proves that the general procedure is sound and complete.
We conclude the paper with a comparison to related work and suggestions for
further research. Space constraints prevent us from providing all the proofs of
the results in the paper. The missing proofs can be found in [4].

2 Preliminaries

In this paper we will use standard notions from universal algebra such as formula,
sentence, algebra, subalgebra, generators, reduct, entailment, model, homomor-
phism and so on. Notable differences are reported in the following.
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We consider only first-order theories (with equality) over a functional sig-
nature. A signature X is a set of function symbols, each with an associated
arity, an integer n > 0. A constant symbol is a function symbol of zero arity.
We use the letters X, 2, A to denote signatures. Throughout the paper, we fix
a countably-infinite set V' of wariables, disjoint with any signature X. For any
X CV, T(¥,X) denotes the set of X-terms over X, i.e., first-order terms with
variables in X and function symbols in X. Formulae in the signature X' are de-
fined as usual. We use = to denote the equality symbol. We also use the standard
notion of substitution, with the usual postfix notation. We call a substitution a
renaming iff it is a bijection of V onto itself. We say that a subset T of T'(X, V)
is closed under renaming iff to € T for all terms ¢ € T and renamings o.

If A is a set, we denote by A* the set of all finite tuples made of elements
of A. If @ and b are two tuples, we denote by a,b the tuple obtained as the
concatenation of @ and b. If ¢ is a term or a formula, we denote by Var(p)
the set of ¢’s free variables. We will often write ¢(v) to indicate, as usual,
that v is a tuple of variables with no repetitions and all elements of Var(y)
occur in v. A formula is positive iff it is in prenex normal form and its matrix
is obtained from atomic formulae using only conjunctions and disjunctions. A
formula is existential iff it has the form Ju. p(u,v) where p(u,v) is a quantifier-
free formula.

If A is an algebra of signature {2, we denote by A the universe of A and by
A* the reduct of A to a given subsignature X of 2. If p(v) is an 2-formula
and « is a valuation of v into A, we write (4, a) = ¢(v) iff p(v) is satisfied
by the interpretation (A, «). Equivalently, where a = «a(v), we may also write
A | ¢(a). If t(v) is an 2-term, we denote by [t]4 the interpretation of ¢ in A
under the valuation « of ». Similarly, if 7' is a set of terms, we denote by [T]4
the set {[t]2 |t € T}.

A theory of signature (2, or an 2-theory, is any set of {2-sentences, i.e., closed
2-formulae. An algebra A is a model of a theory T, or models T, iff each sentence
in T is satisfied by the interpretation (A, «) where « is the empty valuation. Let
T be an 2-theory. We denote by Mod(T) the class of all {2-algebras that model
T. The theory T is satisfiable if it has a model, and trivial if it has only trivial
models, i.e., models of cardinality 1. For all sentences ¢ (of any signature), we
say as usual that 7 entails ¢, or that ¢ is valid in T, and write T [ ¢, iff
T U{—¢} is unsatisfiable. We call (existential) positive theory of T the set of all
(existential) positive sentences in the signature of T that are entailed by 7.

An equational theory is a set of (universally quantified) equations. If E is
an equational theory of signature {2 and X is an arbitrary signature, we denote
by E¥ the set of all (universally quantified) Y-equations entailed by E. When
X C 2 we call E* the X-restriction of E. For all 2-terms s(v),t(v), we write
s =g t and say that s and t are equivalent in E iff E |=Vv. s =t.

We will later appeal to the two basic model theory results below about sub-
algebras (see [7] among others).
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Lemma 1. Let B be a Y-algebra and A a subalgebra of B. For all quantifier-
free formulae p(v1,...,v,) and individuals a1, ...,an, € A, A E p(a,...,a,)
iff Bl=o(ar,...,ap).

Lemma 2. For all equational theories E, Mod(E) is closed under subalgebras.

Similarly to [2], our procedure’s correctness proof will be based on free alge-
bras. Instead of the usual definition of free algebras, we will rely on the following
characterization [7].

Proposition 3. Let E be a X-theory and A a X-algebra. Then, A is free in E
over some set X iff the following holds:

1. A is a model of E generated by X ;
2. foralls,t € T(X,V) and injections a of Var(s =t) into X, if (A,a) Es=t
then s =g t.

When A is free in E over X we will also say that A is a free model of E
(with basis X ). We will implicitly rely on the well-known fact that every non-
trivial equational theory E admits a free model with a countably infinite basis,
namely the quotient term algebra T(X,V)/=pg. We will also use the following
two results from [2] about free models and positive formulae.

Lemma 4. Let B be an 2-algebra free (in some theory E) over a countably in-
finite set X . For all positive (2-formulae p(v1,vs2,...,V2m—1,V2m) the following
are equivalent:

1. BEYv, Jvy - Yoo,m—1 IV2m. ©(V1,02,...,V2m—1,V2m);

2. there ezist tuples xy1,...,x, € X* and by,..., b, € B* and finite subsets
Ziy.ooyZm of X such that
(a) B |: @(wla b17 st 7mm7 bm)7
(b) all components of x1,...,x, are distinct,
(c) for alln € {1,...,m}, all components of by, are generated by Z, in B,
(d) for alln € {1,...,m — 1}, no components of T,1 are in Z; U---U Z,.

Lemma 5. For every equational theory E having a countable signature and a
free model A with a countably infinite basis, the positive theory of E coincides
with the set of positive sentences true in A.

In this paper, we will deal with combined equational theories, that is, theories
of the form E; U Es, where F; and FEs are two component equational theories of
(possibly non-disjoint) signatures Xy and X5, respectively. Where X := X1 N X5,
we call shared symbols the elements of X' and shared terms the elements of
T(X,V). Notice that, when ¥y and X, are disjoint, the only shared terms are
the variables.

Most combination procedures, including the one described in this paper, work
with (X U Xy)-formulae by first “purifying” them into a set of X;-formulae and
a set of Ys-formulae. There is a standard purification procedure that, when Xy
and Y, are disjoint, can convert any set S of equations of signature X; U X5 into
a set S’ of pure equations (that is, each of signature ¥y or X5) such that S’ is
satisfiable in a (X U Xy)-algebra A iff S is satisfiable in 4. As we show in [5],
a similar procedure also exists for the case in which Xy and X5 are not disjoint.
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3 Theories with Constructors

The main requirement for our generalization of the combination procedure de-
scribed in [2] to apply is that the symbols shared by the two theories are con-
structors as defined in [5,13]. For the rest of the section, let F be an non-trivial
equational theory of signature (2. Also, let X be a subsignature of 2.

Definition 6 (Constructors). The signature X is a set of constructors for E
iff for every free model A of E with a countably infinite basis X, A* is a free
model of E¥ with a basis Y including X .

It is usually non-trivial to show that a signature X is a set of constructors for
a given theory E by using just the definition above. Instead, using a syntactic
characterization of constructors given in terms of certain subsets of T(£2,V) is
usually more helpful. Before we can give this characterization, we need a little
more notation.

Given a subset G of T(£2,V), we denote by T(X,G) the set of X-terms
over the “variables” G. More precisely, every member of T(X,G) is obtained
from a term s € T(X, V) by replacing the variables of s with terms from G. To
express this construction, we will denote any such term by s(r) where r is a tuple
collecting the terms of G that replace the variables of s. Note that G C T(X,G)
and that T(X,V) C T(X¥,G) whenever V C G.

Definition 7 (X-base). A subset G of T(£2,V) is a X-base of E iff

1. VCG@G;

2. for allt € T(2,V), there is an s(r) € T(X,G) such that t =g s(r);

3. fOT all 81(7‘1),82(7‘2) € T(Z,G), 81(’["1) =F 82(7’2) fo 81(’01) =FE 82(’02),
where v1 and v2 are tuples of fresh variables abstracting the terms of r,rs
so that two terms in r1,7r2 are abstracted by the same variable iff they are
equivalent in E.

We say that E admits a X-base if some G C T(£2,V) is a X-base of E.

Theorem 8 (Characterization of constructors). The signature X is a set
of constructors for E iff E admits a X-base.

A proof of this theorem and of the following corollary can be found in [5].

Corollary 9. Where A is a free model of E with a countably-infinite basis X,
let a be an arbitrary bijection of V onto X. If G is a X-base of E, then A% is
free in E¥ over the superset [G]2 of X.

In the following, we will assume that the theories we consider admit X'-bases
closed under renaming. This assumption is necessary for technical reasons. It is
used in the long version of this paper in the proof of a lemma (Lemma 4.18 in
[4]; omitted here) needed to prove the soundness of the combination procedure
described later. Although we do not know whether this assumption can be made
with no loss of generality, it is not clear how to avoid it and it seems to be satisfied
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by all “sensible” examples of theories admitting constructors. Also note that
the same technical assumption was needed in our work on combining decision
procedures for the word problem [5].

It is shown in [5] that, under the right conditions, constructors and the prop-
erty of having X-bases closed under renaming are modular with respect to the
union of theories.

Proposition 10. For i = 1,2 let E; be a non-trivial equational X;-theory. If
X =Xy N Xy is a set of constructors for Ey and for Es and Elz = EQZ, then
X is a set of constructors for E1 U Es. If both Ey and E> admit a X -base closed
under renaming, then Ey; U Es also admits a X -base closed under renaming.

A useful consequence of Proposition 10 for us will be the following.

Proposition 11. Let E be an (2-theory and let E' be the empty A-theory for
some signature A disjoint with 2. If X C (2 is a set of constructors for E, then
it is a set of constructors for EU E'. Furthermore, if E admits a X-base closed
under renaming, then so does EUE'.

4 Combining Decision Procedures

In this section, we generalize the Baader-Schulz procedure [2] for combining
decision procedures for the validity of positive formulae in equational theories
from theories over disjoint signatures to theories sharing constructors. More
precisely, we will consider two theories Fy and FE, that satisfy the following
assumptions for ¢ = 1,2, which we fix for the rest of the section:

— FE; is a non-trivial equational theory of some countable signature X;;
— XY := XY, NX;is a set of constructors for E;, and E; admits a X-base closed

under renaming;
T

Let E := E; UE,. Under the assumptions above, E¥ = Ey¥ = By~ (see [5]). In
the following then, we will use E* to refer indifferently to Ei” or By”.

The combination procedure will use two kinds of substitutions that we call,
after [13], identifications and X'-instantiations. Given a set of variables U, an
identification of U is a substitution defined by partitioning U, selecting a rep-
resentative for each block in the partition, and mapping each element of U to
the representative in its block. A X-instantiation of U is a substitution that
maps some elements of U to non-variable Y-terms and the other elements to
themselves. For convenience, we will assume that the variables occurring in the
terms introduced by a X-instantiation are always fresh.

4.1 The Combination Procedure

The procedure takes as input a positive existential (X} U Xs)-formula Jw. p(w)
and outputs, non-deterministically, a pair of sentences: a positive X';-sentence
and a positive Xs-sentence. It consists of the following steps.
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1. Convert into DNF. Convert the input’s matrix ¢ into the disjunctive
normal form ¢, V - -V 1), and choose a disjunct ;.

2. Convert into Separate Form. Let S be the set obtained by purifying,
as mentioned in Section 2, the set of all the equations in ;. For ¢ = 1,2,
let o;(v,u;) be the conjunction of all ¥;-equations in S,* with v listing the
variables in Var(p1) N Var(ps) and u; listing the remaining variables of ;.

3. Instantiate Shared Variables. Choose a Y-instantiation p of Var(v) =
Var(e1) N Var(pz).

4. Identify Shared Variables. Choose an identification & of Var(y1p) N
Var(pz2p) = Var(vp). For i = 1,2, let ¢} := ¢;p€.

5. Partition Shared Variables. Group the elements of Vy := Var(vp) =
Var(p]) N Var(ph) into the tuples v1, ..., Vay,, with 2 < 2m < |V + 1, so
that each element of V; occurs exactly once in the tuple v1,...,va,.%

6. Generate Output Pair. Output the pair of sentences

(3’01 va e E"Ugm_l \V/’Ugm E"U.l. (,0’1, V’Ul E"UQ tee \V/’Ugm_l E|’l)2m 3“2. (pl2 )

Ignoring inessential differences and our restriction to functional signatures, this
combination procedure differs from Baader and Schulz’s only for the presence of
Step 3. Note however that, for component theories with disjoint signatures (the
case considered in [2]), Step 3 is vacuous because X is empty. In that case then
the procedure above reduces to that in [2]. Correspondingly, our requirements on
the two component theories also reduce to that in [2], which simply asks that E;
and E5 be non-trivial. In fact, when X' is empty it is always a set of constructors
for E; (i = 1,2), with T'(X;, V) being a ¥-base closed under renaming. Moreover,
E;* = F»” because they both coincide with the theory {v=v | v € V}.

As will be shown in Section 4.3, our combination procedure is sound and
complete in the following sense.

Theorem 12 (Soundness and Completeness). For all possible input sen-
tences Jw. p(w) of the combination procedure, Ey U Ey | Jw. o(w) iff there is
a possible output (y1,7v2) such that Ey = v1 and Ey |= 7.

Unlike the procedure in [2], the combination procedure above does not nec-
essarily yield a decision procedure. The reason is that the non-determinism in
Step 3 of the procedure is not finitary since in general there are infinitely-many
possible Y-instantiations to choose from. One viable, albeit strong, restriction
for obtaining a decision procedure is described in the next subsection.

4.2 Decidability Results

In order to turn the combination procedure from above into a decision procedure,
we require that the equivalence relation defined by the theory E¥ = E, ¥ = E»¥
be bounded in a sense described below.

4 Where Y-equations are considered arbitrarily as either X'i- or Y»-equations.
® Note that some of the subtuples v; may be empty.
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Definition 13. Let E be an equational 2-theory. We say that equivalence in E
is finitary modulo renaming iff there is a finite subset R of T(£2,V) such that
for all s € T(2,V) there is a term t € R and a renaming o such that s =g to.
We call R a set of E-representatives.

When (2 in the above definition is empty, equivalence in F is trivially finitary—
with any singleton set of variables being a set of E-representatives. A non-trivial
example is provided at the end of this section.

If E¥ is finitary modulo renaming, then it is easy to see that it suffices to
consider only finitely many instantiations in Step 3 of the procedure, which leads
to the following decidability result.

Proposition 14. Assume that X, Ey, E5> satisfy the assumptions stated at the
beginning of Section 4, and that equivalence in E~ is finitary modulo renaming.
If the positive theories of Ey and of Es are both decidable, then the positive
ezistential theory of Fy U Es is also decidable.

Using a Skolemization argument together with Proposition 11, the result
above can be extended from positive existential input sentences to arbitrary
positive input sentences. The main idea is to Skolemize the universal quantifiers
of the input sentence and then expand the signature of one the theories, Fy say,
to the newly introduced Skolem symbols. Proposition 11 and the combination
result in [2] for the disjoint case imply that the pair E, Ej}, where E} is the
conservative extension of Es to the expanded signature, satisfies the assumptions
of Proposition 14.

Theorem 15. Assume that Ey1, Fy satisfy the assumptions of Proposition 14. If
the positive theories of Ey and of Es are both decidable, then the positive theory
of E := E, U E5 is also decidable.

The following example describes one theory satisfying all the requirements
on the component theories imposed by Theorem 15.

Ezample 16. Consider the signature 2 := {0, s,+} and, for some n > 1, the
equational theory E,, axiomatized by the identities

T+ (y+2)=(r+y)+z, r+y=y+u,
z+s(y) =s(z +y), r+0=ux, s"(x) = x.

where as usual s"(z) stands for the n-fold application of s to 2. We show in
[4] that, for E, and the subsignature ¥ := {0,s} of 2, all the assumptions of
Theorem 15 on the component theories are satisfied.

4.3 Soundness and Completeness of the Procedure

The soundness and completeness proof for the disjoint case in [2] relies on an
explicit construction of the free model of E = FE; U Ey as an amalgamated
product of the free models of the component theories. A direct adaptation of the
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Fig. 1. The Fusion F of A; and As,.

free amalgamation construction of [2] to the non-disjoint case has so far proven
elusive. An important technical contribution of the present work is to provide
an alternative way to obtain an appropriate amalgamated free model in the case
of theories sharing constructors. We obtain this model for the union theory F
indirectly, by first building a simpler sort of amalgamated model as a fusion
(defined below) of the free models of the two component theories. Contrary to
Baader and Schulz’s free amalgamated product, the fusion model we construct
is not free in E. However, it has a subalgebra that is so. That subalgebra will
serve as the free amalgamated model of E.

Definition 17 (Fusion [5,13]). A ({4 U (%)-algebra F is a fusion of a (2;-
algebra A1 and a 25-algebra As iff F is (21 -isomorphic to Ay and F2 is
(25-isomorphic to As.

It is shown in [13] that two algebras A; and A have fusions exactly when they
are isomorphic over their shared signature, and that every fusion of a model of
a theory 7; with a model of a theory 75 is a model of the theory 77 U 7.

In the following, we will construct a model of E = F; U E5 as a fusion of free
models of the theories E; and FE5 fixed earlier, whose shared signature X was a
set of constructors for both. We start by fixing, for ¢ = 1,2,

a free model A; of E; with a countably infinite basis X,
— a bijective valuation a; of V' onto X,

a Y-base G; of E; closed under renaming, and

— the set Y := [G;]2 .

We know from Corollary 9 that X; C Y; and A;” is free in E¥ = E\¥ = By~
over Y;. Observe that A; is countably infinite, given our assumption that Xj; is
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countably infinite and X; is countable. As a consequence, Y; is countably infinite
as well.

Now let Z;» := Y;\ X; for i = 1,2, and let {Z11,Z1} be a partition of X;
such that Z; is countably infinite and |Z1 1| = |Z22|.% Similarly, let {Z51, Z>}
be a partition of X5 such that |Z> 1] = |Z12] and Z; is countably infinite (see
Figure 1). Then consider 3 arbitrary bijections

hi:Z1o—Zs1, ho: Zy — Zy, hg: Z11 — Zsp,

as shown in Figure 1. Observing that {Z;1,Z;,Z; 2} is a partition of ¥; for
i = 1,2, it is immediate that hy U hs U hs is a well-defined bijection of Y; onto
Ys. Since A;” is free in E* over Y; for i = 1,2, we have that hy Uhs Uhs extends
uniquely to a (X)-isomorphism h of A;* onto As>. The isomorphism & induces
a fusion of A; and As whose main properties are listed in the following lemma,
taken from [5].

Lemma 18. There is a fusion F of A1 and Ay having the same universe as Ao
and such that

h is a (X1 )-isomorphism of Ay onto F*1;
the identity map of As is a (X5 )-isomorphism of Ay onto F*2;
Fxi is free in E; over X| = Z5 ;U Zs fori,j=1,2,i# j;
F*¥ is free in E¥ over Yy = Z21 U ZyU Zso;

b3 >3
Yy = [G2]2,” = [Gilion

hoa *

GrRs Lo~

We will now consider the theory E = E; U Es again, together with the algebras
F, F1, F» and A where:

— F is the fusion of A4; and A from Lemma 18;
— Fi=F% fori=1,2;
— A is the subalgebra of F generated by Z».

Both F and A are models of E. In fact, F is a model of E = E; U Es for being
a fusion of a model of E; and a model of E>, whereas A is a model of E by
Lemma 2. We prove in [4] that A is in fact a free model of E. To do that we use
the following sets of terms, which will come in handy later as well.

Definition 19 (G7°,G5°,G*®). Let G := G UGS where fori=1,2, G° :=
Uolo G and {G? | n > 0} is the family of sets defined as follows:

GY =V,

G;H'l =GP U{r(ry,...,rm) | (V1 ... om) € Gi\V, r Zg v for allv €V,
r; € G withk #1i, forallj=1,...,m,
rj #g ry for all distinct j,j' =1,...,m }.

As proved in [5], the sets G°,G3°, G* satisfy the following two properties.

6 This is possible because Z s is countable (possibly finite).
" These algebras are defined just for notational convenience.
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Fig. 2. The families {[G}] | n > 0} and {C}" | n > 0}.

Lemma 20. Let i € {1,2}. For any bijection o of V onto Zy the following
holds:

LGP \VIT C Za;
2. for all ti,ty € G\ V, if [t1]Z = [t2] then t; =g ta.

Proposition 21. The set G* is Y-base of E = E; U Es.

Note that this proposition entails by Theorem 8 that X is a set of constructors
for E. Using these two properties (and Proposition 3) we can show the following.

Proposition 22. A is free in E over Z,.

Corollary 23. For every bijection o of V. onto Zs, A* is free in E* over
Y = [G®]4, and Y C Ys.

a?

For the rest of the section, let us fix a bijection a of V onto Z> and the
corresponding set Y := [G®]4.

To prove the completeness of the combination procedure we will need two
families {C]" | n > 0} and {C3 | n > 0} of sets partitioning the set ¥ above.
To build these families we use the denotations in A of the sets G7 and G%
introduced in Definition 19. More precisely, for i = 1,2, we consider the family
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{[GPTA | n > 0} of subsets of Y. Since A is the subalgebra of F generated by
Zs5 and « is a valuation of V into Zs, it is easy to see that [GP]A = [G?]Z for
all n > 0. Therefore, we will write just [G?] in place of either [G?]A or [G}]Z.

Observe that [GY] = [GY] = Z» and [G?] C [G}T'] for all n > 0 and
i = 1,2. Given that [G?]\ Z» C [G?\ V], we can conclude by Lemma 20 that
[G?]\ Z2 C Z5,;.8 By Corollary 23 we have that

U (eirulesn =1 Gruan] = [6° 6] = [G™] =Y.

n>0 n>0

Now consider the family of sets {C?* | n > 0}, depicted in Figure 2 along with
{[G?] | » > 0} and defined as follows:

CY :=[GY] and CM' :=[GI']\[G?] for all n > 0.

First note that | J,,~, (CT UC%) = U,>o (IGT] U [G5]) =Y. Then note that, for
alln > 0 and ¢ = 1,2, the elements of C}* are individuals of the algebras F; and
F> (which have the same universe). By Lemma 20, C} C [G}] C Z>1UZy = X3;
in other words, every element of C7" is a generator of F». Similarly, C3 C [G3] C
Zs2 U Zy = X, that is, every element of C¥ is a generator of F;. In addition,
we have the following.

Lemma 24. For all distinct m,n > 0 and distinct i,j € {1,2},

1. C"NC =0 and
2. CZH'l is X;-generated by [[G;‘]] mn F;.

Now, Theorem 12 is an easy consequence of the following proposition.

Proposition 25. For i = 1,2, let p;(v,u;) be a conjunction of X;-equations
where v lists the elements of Var(p1) N Var(ps) and wu; lists the elements of
Var(p;) not in v. The following are equivalent:

1. There is a X-instantiation p of v, an identification £ of Var(vp) and a
grouping v1, ..., V2, of Var(vp€) with each element of Var(vp€) occurring
exactly once in v1,...,V2y such that

Al '= 3’01 V’UQ e E"Ugm_l \V/’Ugm E"U.l. (Lplpf) and
A2 ': V’Ul E"U2 s V'Ugm,1 El’UQm E"UQ. ((p2p€)

2. A '= El’UEl’Uqu’U.Q. ((pl A (pg)

Proof. The proof of (1 = 2) is similar to the corresponding proof in [2], although
it requires some additional technical lemmas (see [4] for details). We concentrate
here on the proof of (2 = 1).

Assume that A | Jv, w1, us. (@1 (v,u1) A p2(v,u2)). Let a be the bijection
of V onto Zy and Y the subset of Y5 that we fixed after Corollary 23. Since

® This entails that [GT"] \ Z2 is disjoint with [G5]\ Z> for all m,n > 0.
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the reduct A% of A is Y-generated by Y by the same corollary, there is a X-
instantiation p of v, an identification £ of Var(vp), and an injective valuation 3
of v’ into Y such that, for ¢} := ¢;p¢ (i = 1,2) and v’ listing the variables of
vp€, we have

(A, B8) = Fur, uz. () (v, u1) A gy (v', u2)).

From this, recalling that A is (X U X3)-generated by Z> by construction and
Y is included in Y5, we can conclude that there is a tuple a of pairwise distinct
elements of Y3, all (¥} U Xy)-generated by Zs, such that

A E Jui,us. ¢ (a,ur) A ph(a,us).

Since A is a subalgebra of F and ¢! Ay}, is quantifier-free, it follows by Lemma 1
that F | Jui,us. ¢i(a,ur) A ph(a,uz) as well. Given that each ¢} is a X;-
formula and u; and u» are disjoint, we have then that

Fi E Jui. ¢ (a,ur) and Fo E Jus. ph(a,us). (1)

We construct a partition of the elements of a that will induce a grouping of
v’ having the properties listed in Point 1 of the proposition. For that, we will
use the families {C}* | n > 0} and {C% | n > 0} defined before Lemma 24.

First, let a; be a tuple collecting the components of a that are in CY U C7.
Then, for all n > 1, let a,, be a tuple collecting the components of a that are in
C7. Finally, for all n > 0, let b,, be a tuple collecting the components of a that
are in C3.°

Since a is a (finite) tuple of Y* and Y = |J,,~, (CT U CF) as observed earlier,
there is a smallest m > 0 such that every component of a is in [JI_,(C* U C%).
Let n € {0,...,m — 1}. By Lemma 24(2), b,,+1 is X»-generated by [G7] in Fo.
Let Z,1 be any finite subset of [G}] that generates by,11. Now recall that Fy
is free over the countably-infinite set X}. We prove that a1,...,am, b1,...,bm,
and Z1,...,Z, satisfy Lemma 4(2).

To start with, we have that a, € (X})* for all n € {1,...,m} because
CP C [GT] € X} by construction of C7'. From Lemma 24(1) it follows that the
tuples a,, and a, are pairwise disjoint for all distinct n,n' € {1,...,m}, which
means that all components of a1, .. ., a,, are distinct. Now let n € {1,...,m—1}.
Observe that the set Z;U- - -UZ,, is included in [GT'™'] = CYU---UC]~" whereas
every component of a1 belongs to C’{H'l. It follows that no components of @,
are in Z; U --- U Z,. Finally, where f is the bijection that maps, in order, the

components of a to those of v', let v1,vs,...,V2m_1, V2, be the rearrangement
of v’ corresponding to a1, by, . . ., @m, by, according to f. From (1) above we know
that Fy E Jus. ¢h(a1,by,..., by, anm,u2). By Lemma 4 we can then conclude

that .7'—2 |: V'Ul 3’02 R V’Ugm,1 El’Ugm E"UQ. (,0’2

Almost symmetrically, we can prove F; |= Jv; Yoo - - - Juam—1 Yo, Juy. ¢f.
The claim then follows from the fact that F; is X;-isomorphic to A; for i = 1,2
by Lemma 18. O

% Each tuple above is meant to have no repeated components, and may be empty.
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5 Related Research

From a technical point of view, this work strongly depends on previous research
on combining decision procedures for unification in the disjoint case and on
research on combining decision procedures for the word problem in the non-
disjoint case. The combination procedure as well as the proof of correctness are
modeled on the corresponding procedure and proof in [2]. The only extension to
the procedure is Step 3, which takes care of the shared symbols. In the proof,
one of the main obstacles to overcome was to find an amalgamation construction
that worked in the non-disjoint case. Several of the hard technical results used
in the proof depend on results from our previous work on combining decision
procedures for the word problem [5]. The definition of the sets G;, which are
vital for proving that the constructed algebra A is indeed free, is also borrowed
from there. It should be noted, however, that this definition can also be seen as a
generalization to the non-disjoint case of a syntactic amalgamation construction
originally due to Schmidt-Schauf [11]. As already mentioned in the introduction,
the notion of constructors used here is taken from [5,13].

The only other work on combination methods for unification in the non-
disjoint case is due to Domenjoud, Ringeissen and Klay [6]. The main differences
with our work are that (i) their notion of constructors is considerably more
restrictive than ours; and (ii) they combine algorithms computing complete sets
of unifiers, and so their method cannot be used to combine decision procedures.
On the other hand, Domenjoud, Ringeissen and Klay do not impose the strong
restriction that the component theories be finitary modulo renaming, which we
need for our decidability result. However, it was recently discovered [10] that
termination of the combination algorithm in [6] is actually not guaranteed with
the conditions given in that paper.

6 Conclusion

We have extended the Baader-Schulz combination procedure [2] for positive the-
ories to the case of component theories over non-disjoint signatures. The main
contribution of this paper is the formulation of appropriate restrictions under
which this procedure is sound and complete, and the proof of soundness and com-
pleteness itself. This proof depends on a novel construction of the free model of
the combined theory, which is not just a straightforward extension of the free
amalgamation construction used in [2] in the disjoint case. Regarding the gen-
erality of our restriction to theories sharing constructors, we believe that the
notion of constructors is as general as one can get, a conviction that is sup-
ported by the work on combining decision procedures for the word problem and
for universal theories [5,13].

Unfortunately, our combination procedure yields only a semi-decision proce-
dure since it incorporates an infinitary step. The restriction to equational theories
that are finitary modulo renaming overcomes this problem, but it is probably
too strong to be useful in applications. Thus, the main thrust of further research
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will be to remove or at least relax this restriction. We believe that the overall
framework introduced in this paper and the proof of soundness and completeness
of the semi-decision procedure (or at least the tools used in this proof) will help
us obtain more interesting decidability results in the near future. One direction
to follow could be to try to impose additional algorithmic requirements on the
theories to be combined or on the constructor theory, and exploit those require-
ments to transform the infinitary step into a series of finitary ones. For this, the
work in [6], which assumes algorithms computing complete sets of unifiers for the
component theories, could be a starting point. Since the combination algorithm
presented there has turned out to be non-terminating [10], that work needs to
be reconsidered anyway.

Another direction for extending the results presented here is to withdraw the
restriction to functional signatures. As a matter of fact, the combination results
in [2] apply not just to equational theories, but to arbitrary atomic theories, i.e.,
theories over signatures also containing relation symbols and axiomatized by a
set of (universally quantified) atomic formulae. Since the algebraic apparatus
employed in the present paper (in particular, free algebras) is also available in
this more general case (in the form of free structures), it should be easy to
generalize our results to atomic theories.
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