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Abstra
t. This paper addresses the following 
ombination problem:

given two equational theories E

1

and E

2

whose positive theories are de-


idable, how 
an one obtain a de
ision pro
edure for the positive theory

of E

1

[E

2

? For theories over disjoint signatures, this problem was solved

by Baader and S
hulz in 1995. This paper is a �rst step towards extend-

ing this result to the 
ase of theories sharing 
onstru
tors. Sin
e there

is a 
lose 
onne
tion between positive theories and uni�
ation problems,

this also extends to the non-disjoint 
ase the work on 
ombining de
ision

pro
edures for uni�
ation modulo equational theories.

1 Introdu
tion

Built-in de
ision pro
edures for 
ertain types of theories (like equational theories)


an greatly speed up the performan
e of theorem provers. In many appli
ations,

however, the theories a
tually en
ountered are 
ombinations of theories for whi
h

dedi
ated de
ision pro
edure are available. Thus, one must �nd ways to 
om-

bine the de
ision pro
edures for the single theories into one for their 
ombination.

In the 
ontext of equational theories over disjoint signatures, this 
ombination

problem has been thoroughly investigated in the following three instan
es:

3

the

word problem, the validity problem for universally quanti�ed formulae, and the

uni�
ation problem. For the word problem, i.e., the problem whether a single

(universally quanti�ed) equation s � t follows from the equational theory, the

�rst solution to the 
ombination problem was given by Pigozzi [9℄ in 1974. The

problem of 
ombining de
ision pro
edures for universally quanti�ed formulae,

i.e., arbitrary Boolean 
ombinations of equations that are universally quanti�ed,

was solved by Nelson and Oppen [8℄ in 1979. Work on 
ombining uni�
ation

algorithms started also in the seventies with Sti
kel's investigation [12℄ of uni-

�
ation of terms 
ontaining several asso
iative-
ommutative and free symbols.

The �rst general result on how to 
ombine de
ision pro
edures for uni�
ation

was published by Baader and S
hulz [1℄ in 1992. It turned out that de
ision

pro
edures for uni�
ation (with 
onstants) are not suÆ
ient to allow for a 
om-

bination result. Instead, one needs de
ision pro
edures for uni�
ation with linear


onstant restri
tions in the theories to be 
ombined. In 1995, Baader and S
hulz

3

Some of the work mentioned below 
an also handle more general theories. To simplify

the presentation, we restri
t our attention in this paper to the equational 
ase.
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[2℄ des
ribed a version of their 
ombination pro
edure that applies to positive

theories, i.e., positive Boolean 
ombinations of equations with an arbitrary quan-

ti�er pre�x. They also showed [3℄ that the de
idability of the positive theory is

equivalent to the de
idability of uni�
ation with linear 
onstant restri
tions.

Sin
e then, the main open problem in the area was how to extend these

results to the 
ombination of theories having symbols in 
ommon. In general,

the existen
e of shared symbols may lead to unde
idability results for the union

theory (see, e.g., [6, 5℄ for some examples). This means that a 
ontrolled form

of sharing of symbols is ne
essary. For the word problem and for universally

quanti�ed formulae, a suitable notion of shared 
onstru
tors has proved useful.

In [5℄, Pigozzi's 
ombination result for the word problem was extended to theories

all of whose shared symbols are 
onstru
tors. A similar extension of the Nelson-

Oppen 
ombination pro
edure 
an be found in [13℄.

In a similar vein, we show in this paper that the 
ombination results in [2℄ for

positive theories (and thus for uni�
ation) 
an be extended to theories sharing


onstru
tors. We do that by extending the 
ombination pro
edure in [2℄ with

an extra step that deals with shared symbols and proving that the extended

pro
edure is sound and 
omplete. Sin
e this extra step is not �nitary, the new

pro
edure in general yields only a semi-de
ision pro
edure for the 
ombined the-

ory. Under some additional assumptions on the equational theory of the shared

symbols, the pro
edure 
an, however, be turned into a de
ision pro
edure. Al-

though the 
ombination pro
edure des
ribed here di�ers from the one in [2℄ by

just one extra step, proving its 
orre
tness is 
onsiderably more 
hallenging, due

to the non-disjointness of the theories. A major 
ontribution of this work is a

novel algebrai
 
onstru
tion of the free algebra of the 
ombined theory. As in

the non-disjoint 
ase [2℄, this 
onstru
tion is vital for the 
orre
tness proof of

the pro
edure, and we believe that it will prove helpful also in future resear
h

on non-disjoint 
ombination.

The paper is organized as follows. Se
tion 2 
ontains some formal prelimi-

naries. Se
tion 3 de�nes our notion of 
onstru
tors and presents some of their

properties, whi
h will be used later to prove the 
orre
tness of the 
ombination

pro
edure. Se
tion 4 des
ribes our extension of the Baader-S
hulz pro
edure to


omponent theories sharing 
onstru
tors. It then introdu
es a straightforward


ondition on the 
omponent theories under whi
h the semi-de
ision pro
edure

obtained this way 
an in fa
t be used to de
ide the positive 
onsequen
es of

their union. Finally, it proves that the general pro
edure is sound and 
omplete.

We 
on
lude the paper with a 
omparison to related work and suggestions for

further resear
h. Spa
e 
onstraints prevent us from providing all the proofs of

the results in the paper. The missing proofs 
an be found in [4℄.

2 Preliminaries

In this paper we will use standard notions from universal algebra su
h as formula,

senten
e, algebra, subalgebra, generators, redu
t, entailment, model, homomor-

phism and so on. Notable di�eren
es are reported in the following.
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We 
onsider only �rst-order theories (with equality) over a fun
tional sig-

nature. A signature � is a set of fun
tion symbols, ea
h with an asso
iated

arity, an integer n � 0. A 
onstant symbol is a fun
tion symbol of zero arity.

We use the letters �;
;� to denote signatures. Throughout the paper, we �x

a 
ountably-in�nite set V of variables, disjoint with any signature �. For any

X � V , T (�;X) denotes the set of �-terms over X , i.e., �rst-order terms with

variables in X and fun
tion symbols in �. Formulae in the signature � are de-

�ned as usual. We use � to denote the equality symbol. We also use the standard

notion of substitution, with the usual post�x notation. We 
all a substitution a

renaming i� it is a bije
tion of V onto itself. We say that a subset T of T (�; V )

is 
losed under renaming i� t� 2 T for all terms t 2 T and renamings �.

If A is a set, we denote by A

�

the set of all �nite tuples made of elements

of A. If a and b are two tuples, we denote by a; b the tuple obtained as the


on
atenation of a and b. If ' is a term or a formula, we denote by Var(')

the set of ''s free variables. We will often write '(v) to indi
ate, as usual,

that v is a tuple of variables with no repetitions and all elements of Var(')

o

ur in v. A formula is positive i� it is in prenex normal form and its matrix

is obtained from atomi
 formulae using only 
onjun
tions and disjun
tions. A

formula is existential i� it has the form 9u: '(u;v) where '(u;v) is a quanti�er-

free formula.

If A is an algebra of signature 
, we denote by A the universe of A and by

A

�

the redu
t of A to a given subsignature � of 
. If '(v) is an 
-formula

and � is a valuation of v into A, we write (A; �) j= '(v) i� '(v) is satis�ed

by the interpretation (A; �). Equivalently, where a = �(v), we may also write

A j= '(a). If t(v) is an 
-term, we denote by [[t℄℄

A

�

the interpretation of t in A

under the valuation � of v. Similarly, if T is a set of terms, we denote by [[T ℄℄

A

�

the set f[[t℄℄

A

�

j t 2 Tg.

A theory of signature 
, or an 
-theory, is any set of 
-senten
es, i.e., 
losed


-formulae. An algebraA is a model of a theory T , ormodels T , i� ea
h senten
e

in T is satis�ed by the interpretation (A; �) where � is the empty valuation. Let

T be an 
-theory. We denote by Mod (T ) the 
lass of all 
-algebras that model

T . The theory T is satis�able if it has a model, and trivial if it has only trivial

models, i.e., models of 
ardinality 1. For all senten
es ' (of any signature), we

say as usual that T entails ', or that ' is valid in T , and write T j= ', i�

T [ f:'g is unsatis�able. We 
all (existential) positive theory of T the set of all

(existential) positive senten
es in the signature of T that are entailed by T .

An equational theory is a set of (universally quanti�ed) equations. If E is

an equational theory of signature 
 and � is an arbitrary signature, we denote

by E

�

the set of all (universally quanti�ed) �-equations entailed by E. When

� � 
 we 
all E

�

the �-restri
tion of E. For all 
-terms s(v); t(v), we write

s =

E

t and say that s and t are equivalent in E i� E j= 8v: s � t.

We will later appeal to the two basi
 model theory results below about sub-

algebras (see [7℄ among others).
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Lemma 1. Let B be a �-algebra and A a subalgebra of B. For all quanti�er-

free formulae '(v

1

; : : : ; v

n

) and individuals a

1

; : : : ; a

n

2 A, A j= '(a

1

; : : : ; a

n

)

i� B j= '(a

1

; : : : ; a

n

).

Lemma 2. For all equational theories E, Mod(E) is 
losed under subalgebras.

Similarly to [2℄, our pro
edure's 
orre
tness proof will be based on free alge-

bras. Instead of the usual de�nition of free algebras, we will rely on the following


hara
terization [7℄.

Proposition 3. Let E be a �-theory and A a �-algebra. Then, A is free in E

over some set X i� the following holds:

1. A is a model of E generated by X;

2. for all s; t 2 T (�; V ) and inje
tions � of Var(s � t) into X, if (A; �) j= s � t

then s =

E

t.

When A is free in E over X we will also say that A is a free model of E

(with basis X). We will impli
itly rely on the well-known fa
t that every non-

trivial equational theory E admits a free model with a 
ountably in�nite basis,

namely the quotient term algebra T (�; V )==

E

. We will also use the following

two results from [2℄ about free models and positive formulae.

Lemma 4. Let B be an 
-algebra free (in some theory E) over a 
ountably in-

�nite set X. For all positive 
-formulae '(v

1

;v

2

; : : : ;v

2m�1

;v

2m

) the following

are equivalent:

1. B j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

: '(v

1

;v

2

; : : : ;v

2m�1

;v

2m

);

2. there exist tuples x

1

; : : : ;x

m

2 X

�

and b

1

; : : : ; b

m

2 B

�

and �nite subsets

Z

1

; : : : ; Z

m

of X su
h that

(a) B j= '(x

1

; b

1

; : : : ;x

m

; b

m

),

(b) all 
omponents of x

1

; : : : ;x

n

are distin
t,

(
) for all n 2 f1; : : : ;mg, all 
omponents of b

n

are generated by Z

n

in B,

(d) for all n 2 f1; : : : ;m� 1g, no 
omponents of x

n+1

are in Z

1

[ � � � [ Z

n

.

Lemma 5. For every equational theory E having a 
ountable signature and a

free model A with a 
ountably in�nite basis, the positive theory of E 
oin
ides

with the set of positive senten
es true in A.

In this paper, we will deal with 
ombined equational theories, that is, theories

of the form E

1

[E

2

, where E

1

and E

2

are two 
omponent equational theories of

(possibly non-disjoint) signatures �

1

and �

2

, respe
tively. Where � := �

1

\�

2

,

we 
all shared symbols the elements of � and shared terms the elements of

T (�; V ). Noti
e that, when �

1

and �

2

are disjoint, the only shared terms are

the variables.

Most 
ombination pro
edures, in
luding the one des
ribed in this paper, work

with (�

1

[�

2

)-formulae by �rst \purifying" them into a set of �

1

-formulae and

a set of �

2

-formulae. There is a standard puri�
ation pro
edure that, when �

1

and �

2

are disjoint, 
an 
onvert any set S of equations of signature �

1

[�

2

into

a set S

0

of pure equations (that is, ea
h of signature �

1

or �

2

) su
h that S

0

is

satis�able in a (�

1

[ �

2

)-algebra A i� S is satis�able in A. As we show in [5℄,

a similar pro
edure also exists for the 
ase in whi
h �

1

and �

2

are not disjoint.
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3 Theories with Constru
tors

The main requirement for our generalization of the 
ombination pro
edure de-

s
ribed in [2℄ to apply is that the symbols shared by the two theories are 
on-

stru
tors as de�ned in [5, 13℄. For the rest of the se
tion, let E be an non-trivial

equational theory of signature 
. Also, let � be a subsignature of 
.

De�nition 6 (Constru
tors). The signature � is a set of 
onstru
tors for E

i� for every free model A of E with a 
ountably in�nite basis X, A

�

is a free

model of E

�

with a basis Y in
luding X.

It is usually non-trivial to show that a signature � is a set of 
onstru
tors for

a given theory E by using just the de�nition above. Instead, using a synta
ti



hara
terization of 
onstru
tors given in terms of 
ertain subsets of T (
; V ) is

usually more helpful. Before we 
an give this 
hara
terization, we need a little

more notation.

Given a subset G of T (
; V ), we denote by T (�;G) the set of �-terms

over the \variables" G. More pre
isely, every member of T (�;G) is obtained

from a term s 2 T (�; V ) by repla
ing the variables of s with terms from G. To

express this 
onstru
tion, we will denote any su
h term by s(r) where r is a tuple


olle
ting the terms of G that repla
e the variables of s. Note that G � T (�;G)

and that T (�; V ) � T (�;G) whenever V � G.

De�nition 7 (�-base). A subset G of T (
; V ) is a �-base of E i�

1. V � G;

2. for all t 2 T (
; V ), there is an s(r) 2 T (�;G) su
h that t =

E

s(r);

3. for all s

1

(r

1

); s

2

(r

2

) 2 T (�;G), s

1

(r

1

) =

E

s

2

(r

2

) i� s

1

(v

1

) =

E

s

2

(v

2

),

where v

1

and v

2

are tuples of fresh variables abstra
ting the terms of r

1

; r

2

so that two terms in r

1

; r

2

are abstra
ted by the same variable i� they are

equivalent in E.

We say that E admits a �-base if some G � T (
; V ) is a �-base of E.

Theorem 8 (Chara
terization of 
onstru
tors). The signature � is a set

of 
onstru
tors for E i� E admits a �-base.

A proof of this theorem and of the following 
orollary 
an be found in [5℄.

Corollary 9. Where A is a free model of E with a 
ountably-in�nite basis X,

let � be an arbitrary bije
tion of V onto X. If G is a �-base of E, then A

�

is

free in E

�

over the superset [[G℄℄

A

�

of X.

In the following, we will assume that the theories we 
onsider admit �-bases


losed under renaming. This assumption is ne
essary for te
hni
al reasons. It is

used in the long version of this paper in the proof of a lemma (Lemma 4.18 in

[4℄; omitted here) needed to prove the soundness of the 
ombination pro
edure

des
ribed later. Although we do not know whether this assumption 
an be made

with no loss of generality, it is not 
lear how to avoid it and it seems to be satis�ed
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by all \sensible" examples of theories admitting 
onstru
tors. Also note that

the same te
hni
al assumption was needed in our work on 
ombining de
ision

pro
edures for the word problem [5℄.

It is shown in [5℄ that, under the right 
onditions, 
onstru
tors and the prop-

erty of having �-bases 
losed under renaming are modular with respe
t to the

union of theories.

Proposition 10. For i = 1; 2 let E

i

be a non-trivial equational �

i

-theory. If

� := �

1

\�

2

is a set of 
onstru
tors for E

1

and for E

2

and E

1

�

= E

2

�

, then

� is a set of 
onstru
tors for E

1

[E

2

. If both E

1

and E

2

admit a �-base 
losed

under renaming, then E

1

[E

2

also admits a �-base 
losed under renaming.

A useful 
onsequen
e of Proposition 10 for us will be the following.

Proposition 11. Let E be an 
-theory and let E

0

be the empty �-theory for

some signature � disjoint with 
. If � � 
 is a set of 
onstru
tors for E, then

it is a set of 
onstru
tors for E [E

0

. Furthermore, if E admits a �-base 
losed

under renaming, then so does E [E

0

.

4 Combining De
ision Pro
edures

In this se
tion, we generalize the Baader-S
hulz pro
edure [2℄ for 
ombining

de
ision pro
edures for the validity of positive formulae in equational theories

from theories over disjoint signatures to theories sharing 
onstru
tors. More

pre
isely, we will 
onsider two theories E

1

and E

2

that satisfy the following

assumptions for i = 1; 2, whi
h we �x for the rest of the se
tion:

{ E

i

is a non-trivial equational theory of some 
ountable signature �

i

;

{ � := �

1

\�

2

is a set of 
onstru
tors for E

i

, and E

i

admits a �-base 
losed

under renaming;

{ E

1

�

= E

2

�

.

Let E := E

1

[E

2

. Under the assumptions above, E

�

= E

1

�

= E

2

�

(see [5℄). In

the following then, we will use E

�

to refer indi�erently to E

1

�

or E

2

�

.

The 
ombination pro
edure will use two kinds of substitutions that we 
all,

after [13℄, identi�
ations and �-instantiations . Given a set of variables U , an

identi�
ation of U is a substitution de�ned by partitioning U , sele
ting a rep-

resentative for ea
h blo
k in the partition, and mapping ea
h element of U to

the representative in its blo
k. A �-instantiation of U is a substitution that

maps some elements of U to non-variable �-terms and the other elements to

themselves. For 
onvenien
e, we will assume that the variables o

urring in the

terms introdu
ed by a �-instantiation are always fresh.

4.1 The Combination Pro
edure

The pro
edure takes as input a positive existential (�

1

[�

2

)-formula 9w: '(w)

and outputs, non-deterministi
ally, a pair of senten
es: a positive �

1

-senten
e

and a positive �

2

-senten
e. It 
onsists of the following steps.
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1. Convert into DNF. Convert the input's matrix ' into the disjun
tive

normal form  

1

_ � � � _  

n

and 
hoose a disjun
t  

j

.

2. Convert into Separate Form. Let S be the set obtained by purifying,

as mentioned in Se
tion 2, the set of all the equations in  

j

. For i = 1; 2,

let '

i

(v;u

i

) be the 
onjun
tion of all �

i

-equations in S,

4

with v listing the

variables in Var('

1

) \ Var('

2

) and u

i

listing the remaining variables of '

i

.

3. Instantiate Shared Variables. Choose a �-instantiation � of Var(v) =

Var('

1

) \ Var('

2

).

4. Identify Shared Variables. Choose an identi�
ation � of Var('

1

�) \

Var('

2

�) = Var(v�). For i = 1; 2, let '

0

i

:= '

i

��.

5. Partition Shared Variables. Group the elements of V

s

:= Var(v��) =

Var('

0

1

) \ Var('

0

2

) into the tuples v

1

, . . . , v

2m

, with 2 � 2m � jV

s

j+ 1, so

that ea
h element of V

s

o

urs exa
tly on
e in the tuple v

1

; : : : ;v

2m

.

5

6. Generate Output Pair. Output the pair of senten
es

( 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: '

0

1

; 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: '

0

2

):

Ignoring inessential di�eren
es and our restri
tion to fun
tional signatures, this


ombination pro
edure di�ers from Baader and S
hulz's only for the presen
e of

Step 3. Note however that, for 
omponent theories with disjoint signatures (the


ase 
onsidered in [2℄), Step 3 is va
uous be
ause � is empty. In that 
ase then

the pro
edure above redu
es to that in [2℄. Correspondingly, our requirements on

the two 
omponent theories also redu
e to that in [2℄, whi
h simply asks that E

1

and E

2

be non-trivial. In fa
t, when � is empty it is always a set of 
onstru
tors

for E

i

(i = 1; 2), with T (�

i

; V ) being a�-base 
losed under renaming. Moreover,

E

1

�

= E

2

�

be
ause they both 
oin
ide with the theory fv � v j v 2 V g.

As will be shown in Se
tion 4.3, our 
ombination pro
edure is sound and


omplete in the following sense.

Theorem 12 (Soundness and Completeness). For all possible input sen-

ten
es 9w: '(w) of the 
ombination pro
edure, E

1

[E

2

j= 9w: '(w) i� there is

a possible output (


1

; 


2

) su
h that E

1

j= 


1

and E

2

j= 


2

.

Unlike the pro
edure in [2℄, the 
ombination pro
edure above does not ne
-

essarily yield a de
ision pro
edure. The reason is that the non-determinism in

Step 3 of the pro
edure is not �nitary sin
e in general there are in�nitely-many

possible �-instantiations to 
hoose from. One viable, albeit strong, restri
tion

for obtaining a de
ision pro
edure is des
ribed in the next subse
tion.

4.2 De
idability Results

In order to turn the 
ombination pro
edure from above into a de
ision pro
edure,

we require that the equivalen
e relation de�ned by the theory E

�

= E

1

�

= E

2

�

be bounded in a sense des
ribed below.

4

Where �-equations are 
onsidered arbitrarily as either �

1

- or �

2

-equations.

5

Note that some of the subtuples v

i

may be empty.
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De�nition 13. Let E be an equational 
-theory. We say that equivalen
e in E

is �nitary modulo renaming i� there is a �nite subset R of T (
; V ) su
h that

for all s 2 T (
; V ) there is a term t 2 R and a renaming � su
h that s =

E

t�.

We 
all R a set of E-representatives.

When 
 in the above de�nition is empty, equivalen
e in E is trivially �nitary|

with any singleton set of variables being a set of E-representatives. A non-trivial

example is provided at the end of this se
tion.

If E

�

is �nitary modulo renaming, then it is easy to see that it suÆ
es to


onsider only �nitely many instantiations in Step 3 of the pro
edure, whi
h leads

to the following de
idability result.

Proposition 14. Assume that �;E

1

; E

2

satisfy the assumptions stated at the

beginning of Se
tion 4, and that equivalen
e in E

�

is �nitary modulo renaming.

If the positive theories of E

1

and of E

2

are both de
idable, then the positive

existential theory of E

1

[ E

2

is also de
idable.

Using a Skolemization argument together with Proposition 11, the result

above 
an be extended from positive existential input senten
es to arbitrary

positive input senten
es. The main idea is to Skolemize the universal quanti�ers

of the input senten
e and then expand the signature of one the theories, E

2

say,

to the newly introdu
ed Skolem symbols. Proposition 11 and the 
ombination

result in [2℄ for the disjoint 
ase imply that the pair E

1

; E

0

2

, where E

0

2

is the


onservative extension of E

2

to the expanded signature, satis�es the assumptions

of Proposition 14.

Theorem 15. Assume that E

1

; E

2

satisfy the assumptions of Proposition 14. If

the positive theories of E

1

and of E

2

are both de
idable, then the positive theory

of E := E

1

[ E

2

is also de
idable.

The following example des
ribes one theory satisfying all the requirements

on the 
omponent theories imposed by Theorem 15.

Example 16. Consider the signature 
 := f0; s;+g and, for some n > 1, the

equational theory E

n

axiomatized by the identities

x+ (y + z) � (x+ y) + z; x+ y � y + x;

x+ s(y) � s(x+ y); x+ 0 � x; s

n

(x) � x:

where as usual s

n

(x) stands for the n-fold appli
ation of s to x. We show in

[4℄ that, for E

n

and the subsignature � := f0; sg of 
, all the assumptions of

Theorem 15 on the 
omponent theories are satis�ed.

4.3 Soundness and Completeness of the Pro
edure

The soundness and 
ompleteness proof for the disjoint 
ase in [2℄ relies on an

expli
it 
onstru
tion of the free model of E = E

1

[ E

2

as an amalgamated

produ
t of the free models of the 
omponent theories. A dire
t adaptation of the
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A

h3

2h

h1

X’1X1

Y2

2X =X’2

Y1

2A =F1

2,2

1

1,2Z

Z

Z1,1

2Z

Z

Z

2,1

Fig. 1. The Fusion F of A

1

and A

2

.

free amalgamation 
onstru
tion of [2℄ to the non-disjoint 
ase has so far proven

elusive. An important te
hni
al 
ontribution of the present work is to provide

an alternative way to obtain an appropriate amalgamated free model in the 
ase

of theories sharing 
onstru
tors. We obtain this model for the union theory E

indire
tly, by �rst building a simpler sort of amalgamated model as a fusion

(de�ned below) of the free models of the two 
omponent theories. Contrary to

Baader and S
hulz's free amalgamated produ
t, the fusion model we 
onstru
t

is not free in E. However, it has a subalgebra that is so. That subalgebra will

serve as the free amalgamated model of E.

De�nition 17 (Fusion [5, 13℄). A (


1

[ 


2

)-algebra F is a fusion of a 


1

-

algebra A

1

and a 


2

-algebra A

2

i� F




1

is 


1

-isomorphi
 to A

1

and F




2

is




2

-isomorphi
 to A

2

.

It is shown in [13℄ that two algebras A

1

and A

2

have fusions exa
tly when they

are isomorphi
 over their shared signature, and that every fusion of a model of

a theory T

1

with a model of a theory T

2

is a model of the theory T

1

[ T

2

.

In the following, we will 
onstru
t a model of E = E

1

[E

2

as a fusion of free

models of the theories E

1

and E

2

�xed earlier, whose shared signature � was a

set of 
onstru
tors for both. We start by �xing, for i = 1; 2,

{ a free model A

i

of E

i

with a 
ountably in�nite basis X

i

,

{ a bije
tive valuation �

i

of V onto X

i

,

{ a �-base G

i

of E

i


losed under renaming, and

{ the set Y

i

:= [[G

i

℄℄

A

i

�

i

:

We know from Corollary 9 that X

i

� Y

i

and A

i

�

is free in E

�

= E

1

�

= E

2

�

over Y

i

. Observe that A

i

is 
ountably in�nite, given our assumption that X

i

is
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ountably in�nite and �

i

is 
ountable. As a 
onsequen
e, Y

i

is 
ountably in�nite

as well.

Now let Z

i;2

:= Y

i

nX

i

for i = 1; 2, and let fZ

1;1

; Z

1

g be a partition of X

1

su
h that Z

1

is 
ountably in�nite and jZ

1;1

j = jZ

2;2

j.

6

Similarly, let fZ

2;1

; Z

2

g

be a partition of X

2

su
h that jZ

2;1

j = jZ

1;2

j and Z

2

is 
ountably in�nite (see

Figure 1). Then 
onsider 3 arbitrary bije
tions

h

1

: Z

1;2

�! Z

2;1

; h

2

: Z

1

�! Z

2

; h

3

: Z

1;1

�! Z

2;2

;

as shown in Figure 1. Observing that fZ

i;1

; Z

i

; Z

i;2

g is a partition of Y

i

for

i = 1; 2, it is immediate that h

1

[ h

2

[ h

3

is a well-de�ned bije
tion of Y

1

onto

Y

2

. Sin
e A

i

�

is free in E

�

over Y

i

for i = 1; 2, we have that h

1

[h

2

[h

3

extends

uniquely to a (�)-isomorphism h of A

1

�

onto A

2

�

. The isomorphism h indu
es

a fusion of A

1

and A

2

whose main properties are listed in the following lemma,

taken from [5℄.

Lemma 18. There is a fusion F of A

1

and A

2

having the same universe as A

2

and su
h that

1. h is a (�

1

)-isomorphism of A

1

onto F

�

1

;

2. the identity map of A

2

is a (�

2

)-isomorphism of A

2

onto F

�

2

;

3. F

�

i

is free in E

i

over X

0

i

:= Z

2;j

[ Z

2

for i; j = 1; 2, i 6= j;

4. F

�

is free in E

�

over Y

2

= Z

2;1

[ Z

2

[ Z

2;2

;

5. Y

2

= [[G

2

℄℄

F

�

2

�

2

= [[G

1

℄℄

F

�

1

hÆ�

1

.

We will now 
onsider the theory E = E

1

[E

2

again, together with the algebras

F , F

1

, F

2

and A where:

{ F is the fusion of A

1

and A

2

from Lemma 18;

{ F

i

:= F

�

i

for i = 1; 2;

7

{ A is the subalgebra of F generated by Z

2

.

Both F and A are models of E. In fa
t, F is a model of E = E

1

[ E

2

for being

a fusion of a model of E

1

and a model of E

2

, whereas A is a model of E by

Lemma 2. We prove in [4℄ that A is in fa
t a free model of E. To do that we use

the following sets of terms, whi
h will 
ome in handy later as well.

De�nition 19 (G

1

1

; G

1

2

; G

1

). Let G

1

:= G

1

1

[G

1

2

where for i = 1; 2, G

1

i

:=

S

1

n=0

G

n

i

and fG

n

i

j n � 0g is the family of sets de�ned as follows:

G

0

i

:= V;

G

n+1

i

:= G

n

i

[ fr(r

1

; : : : ; r

m

) j r(v

1

; : : : ; v

m

) 2 G

i

nV; r 6=

E

v for all v 2 V;

r

j

2 G

n

k

with k 6= i; for all j = 1; : : : ;m;

r

j

6=

E

r

j

0

for all distin
t j; j

0

= 1; : : : ;m g:

As proved in [5℄, the sets G

1

1

; G

1

2

; G

1

satisfy the following two properties.

6

This is possible be
ause Z

2;2

is 
ountable (possibly �nite).

7

These algebras are de�ned just for notational 
onvenien
e.
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G1
0

G2
0

G2
1

2
2G

G2
3

G1
1

G1
2

G1
3

X’1

X’2

Z 2,2

Z 2

Z 2,1

C2
1

C2
2

C2
3

C1
1

C1
2

C1
3

C1
0

C2
0

...

Y

...

...
...

=

Fig. 2. The families f[[G

n

i

℄℄ j n � 0g and fC

n

i

j n � 0g.

Lemma 20. Let i 2 f1; 2g. For any bije
tion � of V onto Z

2

the following

holds:

1. [[G

1

i

nV ℄℄

F

�

� Z

2;i

;

2. for all t

1

; t

2

2 G

1

i

nV , if [[t

1

℄℄

F

�

= [[t

2

℄℄

F

�

then t

1

=

E

t

2

.

Proposition 21. The set G

1

is �-base of E = E

1

[ E

2

.

Note that this proposition entails by Theorem 8 that � is a set of 
onstru
tors

for E. Using these two properties (and Proposition 3) we 
an show the following.

Proposition 22. A is free in E over Z

2

.

Corollary 23. For every bije
tion � of V onto Z

2

, A

�

is free in E

�

over

Y := [[G

1

℄℄

A

�

, and Y � Y

2

.

For the rest of the se
tion, let us �x a bije
tion � of V onto Z

2

and the


orresponding set Y := [[G

1

℄℄

A

�

.

To prove the 
ompleteness of the 
ombination pro
edure we will need two

families fC

n

1

j n � 0g and fC

n

2

j n � 0g of sets partitioning the set Y above.

To build these families we use the denotations in A of the sets G

n

1

and G

n

2

introdu
ed in De�nition 19. More pre
isely, for i = 1; 2, we 
onsider the family
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f[[G

n

i

℄℄

A

�

j n � 0g of subsets of Y . Sin
e A is the subalgebra of F generated by

Z

2

and � is a valuation of V into Z

2

, it is easy to see that [[G

n

i

℄℄

A

�

= [[G

n

i

℄℄

F

�

for

all n � 0. Therefore, we will write just [[G

n

i

℄℄ in pla
e of either [[G

n

i

℄℄

A

�

or [[G

n

i

℄℄

F

�

.

Observe that [[G

0

1

℄℄ = [[G

0

2

℄℄ = Z

2

and [[G

n

i

℄℄ � [[G

n+1

i

℄℄ for all n � 0 and

i = 1; 2. Given that [[G

n

i

℄℄ nZ

2

� [[G

n

i

nV ℄℄

A

�

, we 
an 
on
lude by Lemma 20 that

[[G

n

i

℄℄ nZ

2

� Z

2;i

.

8

By Corollary 23 we have that

[

n�0

([[G

n

1

℄℄ [ [[G

n

2

℄℄) = [[

[

n�0

(G

n

1

[G

n

2

)℄℄ = [[G

1

1

[G

1

2

℄℄ = [[G

1

℄℄ = Y:

Now 
onsider the family of sets fC

n

i

j n � 0g, depi
ted in Figure 2 along with

f[[G

n

i

℄℄ j n � 0g and de�ned as follows:

C

0

i

:= [[G

0

i

℄℄ and C

n+1

i

:= [[G

n+1

i

℄℄ n [[G

n

i

℄℄ for all n � 0:

First note that

S

n�0

(C

n

1

[ C

n

2

) =

S

n�0

([[G

n

1

℄℄ [ [[G

n

2

℄℄) = Y: Then note that, for

all n � 0 and i = 1; 2, the elements of C

n

i

are individuals of the algebras F

1

and

F

2

(whi
h have the same universe). By Lemma 20, C

n

1

� [[G

n

1

℄℄ � Z

2;1

[Z

2

= X

0

2

;

in other words, every element of C

n

1

is a generator of F

2

. Similarly, C

n

2

� [[G

n

2

℄℄ �

Z

2;2

[ Z

2

= X

0

1

, that is, every element of C

n

2

is a generator of F

1

. In addition,

we have the following.

Lemma 24. For all distin
t m;n � 0 and distin
t i; j 2 f1; 2g,

1. C

m

i

\ C

n

i

= ; and

2. C

n+1

i

is �

i

-generated by [[G

n

j

℄℄ in F

i

.

Now, Theorem 12 is an easy 
onsequen
e of the following proposition.

Proposition 25. For i = 1; 2, let '

i

(v;u

i

) be a 
onjun
tion of �

i

-equations

where v lists the elements of Var('

1

) \ Var('

2

) and u

i

lists the elements of

Var('

i

) not in v. The following are equivalent:

1. There is a �-instantiation � of v, an identi�
ation � of Var(v�) and a

grouping v

1

, . . . , v

2m

of Var(v��) with ea
h element of Var(v��) o

urring

exa
tly on
e in v

1

; : : : ;v

2m

su
h that

A

1

j= 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: ('

1

��) and

A

2

j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: ('

2

��):

2. A j= 9v9u

1

9u

2

: ('

1

^ '

2

):

Proof. The proof of (1) 2) is similar to the 
orresponding proof in [2℄, although

it requires some additional te
hni
al lemmas (see [4℄ for details). We 
on
entrate

here on the proof of (2) 1).

Assume that A j= 9v;u

1

;u

2

: ('

1

(v;u

1

) ^ '

2

(v;u

2

)): Let � be the bije
tion

of V onto Z

2

and Y the subset of Y

2

that we �xed after Corollary 23. Sin
e

8

This entails that [[G

m

1

℄℄ nZ

2

is disjoint with [[G

n

2

℄℄ nZ

2

for all m;n > 0.



Combining De
ision Pro
edures for Positive Theories Sharing Constru
tors 13

the redu
t A

�

of A is �-generated by Y by the same 
orollary, there is a �-

instantiation � of v, an identi�
ation � of Var(v�), and an inje
tive valuation �

of v

0

into Y su
h that, for '

0

i

:= '

i

�� (i = 1; 2) and v

0

listing the variables of

v��, we have

(A; �) j= 9u

1

;u

2

: ('

0

1

(v

0

;u

1

) ^ '

0

2

(v

0

;u

2

)):

From this, re
alling that A is (�

1

[ �

2

)-generated by Z

2

by 
onstru
tion and

Y is in
luded in Y

2

, we 
an 
on
lude that there is a tuple a of pairwise distin
t

elements of Y

2

, all (�

1

[�

2

)-generated by Z

2

, su
h that

A j= 9u

1

;u

2

: '

0

1

(a;u

1

) ^ '

0

2

(a;u

2

):

Sin
e A is a subalgebra of F and '

0

1

^'

0

2

is quanti�er-free, it follows by Lemma 1

that F j= 9u

1

;u

2

: '

0

1

(a;u

1

) ^ '

0

2

(a;u

2

) as well. Given that ea
h '

0

i

is a �

i

-

formula and u

1

and u

2

are disjoint, we have then that

F

1

j= 9u

1

: '

0

1

(a;u

1

) and F

2

j= 9u

2

: '

0

2

(a;u

2

): (1)

We 
onstru
t a partition of the elements of a that will indu
e a grouping of

v

0

having the properties listed in Point 1 of the proposition. For that, we will

use the families fC

n

1

j n � 0g and fC

n

2

j n � 0g de�ned before Lemma 24.

First, let a

1

be a tuple 
olle
ting the 
omponents of a that are in C

0

1

[ C

1

1

.

Then, for all n > 1, let a

n

be a tuple 
olle
ting the 
omponents of a that are in

C

n

1

. Finally, for all n > 0, let b

n

be a tuple 
olle
ting the 
omponents of a that

are in C

n

2

.

9

Sin
e a is a (�nite) tuple of Y

�

and Y =

S

n�0

(C

n

1

[ C

n

2

) as observed earlier,

there is a smallest m > 0 su
h that every 
omponent of a is in

S

m

n=0

(C

n

1

[C

n

2

).

Let n 2 f0; : : : ;m� 1g. By Lemma 24(2), b

n+1

is �

2

-generated by [[G

n

1

℄℄ in F

2

.

Let Z

n+1

be any �nite subset of [[G

n

1

℄℄ that generates b

n+1

. Now re
all that F

2

is free over the 
ountably-in�nite set X

0

2

. We prove that a

1

; : : : ;a

m

, b

1

; : : : ; b

m

,

and Z

1

; : : : ; Z

m

satisfy Lemma 4(2).

To start with, we have that a

n

2 (X

0

2

)

�

for all n 2 f1; : : : ;mg be
ause

C

n

1

� [[G

n

1

℄℄ � X

0

2

by 
onstru
tion of C

n

1

. From Lemma 24(1) it follows that the

tuples a

n

and a

n

0

are pairwise disjoint for all distin
t n; n

0

2 f1; : : : ;mg, whi
h

means that all 
omponents of a

1

; : : : ;a

m

are distin
t. Now let n 2 f1; : : : ;m�1g.

Observe that the set Z

1

[� � �[Z

n

is in
luded in [[G

n�1

1

℄℄ = C

0

1

[� � �[C

n�1

1

whereas

every 
omponent of a

n+1

belongs to C

n+1

1

. It follows that no 
omponents of a

n+1

are in Z

1

[ � � � [ Z

n

. Finally, where f is the bije
tion that maps, in order, the


omponents of a to those of v

0

, let v

1

;v

2

; : : : ;v

2m�1

;v

2m

be the rearrangement

of v

0


orresponding to a

1

; b

1

; : : : ;a

m

; b

m

a

ording to f . From (1) above we know

that F

2

j= 9u

2

: '

0

2

(a

1

; b

1

; : : : ; b

m

;a

m

;u

2

): By Lemma 4 we 
an then 
on
lude

that F

2

j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: '

0

2

:

Almost symmetri
ally, we 
an prove F

1

j= 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: '

0

1

:

The 
laim then follows from the fa
t that F

i

is �

i

-isomorphi
 to A

i

for i = 1; 2

by Lemma 18. ut

9

Ea
h tuple above is meant to have no repeated 
omponents, and may be empty.
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5 Related Resear
h

From a te
hni
al point of view, this work strongly depends on previous resear
h

on 
ombining de
ision pro
edures for uni�
ation in the disjoint 
ase and on

resear
h on 
ombining de
ision pro
edures for the word problem in the non-

disjoint 
ase. The 
ombination pro
edure as well as the proof of 
orre
tness are

modeled on the 
orresponding pro
edure and proof in [2℄. The only extension to

the pro
edure is Step 3, whi
h takes 
are of the shared symbols. In the proof,

one of the main obsta
les to over
ome was to �nd an amalgamation 
onstru
tion

that worked in the non-disjoint 
ase. Several of the hard te
hni
al results used

in the proof depend on results from our previous work on 
ombining de
ision

pro
edures for the word problem [5℄. The de�nition of the sets G

i

, whi
h are

vital for proving that the 
onstru
ted algebra A is indeed free, is also borrowed

from there. It should be noted, however, that this de�nition 
an also be seen as a

generalization to the non-disjoint 
ase of a synta
ti
 amalgamation 
onstru
tion

originally due to S
hmidt-S
hau� [11℄. As already mentioned in the introdu
tion,

the notion of 
onstru
tors used here is taken from [5, 13℄.

The only other work on 
ombination methods for uni�
ation in the non-

disjoint 
ase is due to Domenjoud, Ringeissen and Klay [6℄. The main di�eren
es

with our work are that (i) their notion of 
onstru
tors is 
onsiderably more

restri
tive than ours; and (ii) they 
ombine algorithms 
omputing 
omplete sets

of uni�ers, and so their method 
annot be used to 
ombine de
ision pro
edures.

On the other hand, Domenjoud, Ringeissen and Klay do not impose the strong

restri
tion that the 
omponent theories be �nitary modulo renaming, whi
h we

need for our de
idability result. However, it was re
ently dis
overed [10℄ that

termination of the 
ombination algorithm in [6℄ is a
tually not guaranteed with

the 
onditions given in that paper.

6 Con
lusion

We have extended the Baader-S
hulz 
ombination pro
edure [2℄ for positive the-

ories to the 
ase of 
omponent theories over non-disjoint signatures. The main


ontribution of this paper is the formulation of appropriate restri
tions under

whi
h this pro
edure is sound and 
omplete, and the proof of soundness and 
om-

pleteness itself. This proof depends on a novel 
onstru
tion of the free model of

the 
ombined theory, whi
h is not just a straightforward extension of the free

amalgamation 
onstru
tion used in [2℄ in the disjoint 
ase. Regarding the gen-

erality of our restri
tion to theories sharing 
onstru
tors, we believe that the

notion of 
onstru
tors is as general as one 
an get, a 
onvi
tion that is sup-

ported by the work on 
ombining de
ision pro
edures for the word problem and

for universal theories [5, 13℄.

Unfortunately, our 
ombination pro
edure yields only a semi-de
ision pro
e-

dure sin
e it in
orporates an in�nitary step. The restri
tion to equational theories

that are �nitary modulo renaming over
omes this problem, but it is probably

too strong to be useful in appli
ations. Thus, the main thrust of further resear
h
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will be to remove or at least relax this restri
tion. We believe that the overall

framework introdu
ed in this paper and the proof of soundness and 
ompleteness

of the semi-de
ision pro
edure (or at least the tools used in this proof) will help

us obtain more interesting de
idability results in the near future. One dire
tion

to follow 
ould be to try to impose additional algorithmi
 requirements on the

theories to be 
ombined or on the 
onstru
tor theory, and exploit those require-

ments to transform the in�nitary step into a series of �nitary ones. For this, the

work in [6℄, whi
h assumes algorithms 
omputing 
omplete sets of uni�ers for the


omponent theories, 
ould be a starting point. Sin
e the 
ombination algorithm

presented there has turned out to be non-terminating [10℄, that work needs to

be re
onsidered anyway.

Another dire
tion for extending the results presented here is to withdraw the

restri
tion to fun
tional signatures. As a matter of fa
t, the 
ombination results

in [2℄ apply not just to equational theories, but to arbitrary atomi
 theories, i.e.,

theories over signatures also 
ontaining relation symbols and axiomatized by a

set of (universally quanti�ed) atomi
 formulae. Sin
e the algebrai
 apparatus

employed in the present paper (in parti
ular, free algebras) is also available in

this more general 
ase (in the form of free stru
tures), it should be easy to

generalize our results to atomi
 theories.
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