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Abstrat. This paper addresses the following ombination problem:

given two equational theories E

1

and E

2

whose positive theories are de-

idable, how an one obtain a deision proedure for the positive theory

of E

1

[E

2

? For theories over disjoint signatures, this problem was solved

by Baader and Shulz in 1995. This paper is a �rst step towards extend-

ing this result to the ase of theories sharing onstrutors. Sine there

is a lose onnetion between positive theories and uni�ation problems,

this also extends to the non-disjoint ase the work on ombining deision

proedures for uni�ation modulo equational theories.

1 Introdution

Built-in deision proedures for ertain types of theories (like equational theories)

an greatly speed up the performane of theorem provers. In many appliations,

however, the theories atually enountered are ombinations of theories for whih

dediated deision proedure are available. Thus, one must �nd ways to om-

bine the deision proedures for the single theories into one for their ombination.

In the ontext of equational theories over disjoint signatures, this ombination

problem has been thoroughly investigated in the following three instanes:

3

the

word problem, the validity problem for universally quanti�ed formulae, and the

uni�ation problem. For the word problem, i.e., the problem whether a single

(universally quanti�ed) equation s � t follows from the equational theory, the

�rst solution to the ombination problem was given by Pigozzi [9℄ in 1974. The

problem of ombining deision proedures for universally quanti�ed formulae,

i.e., arbitrary Boolean ombinations of equations that are universally quanti�ed,

was solved by Nelson and Oppen [8℄ in 1979. Work on ombining uni�ation

algorithms started also in the seventies with Stikel's investigation [12℄ of uni-

�ation of terms ontaining several assoiative-ommutative and free symbols.

The �rst general result on how to ombine deision proedures for uni�ation

was published by Baader and Shulz [1℄ in 1992. It turned out that deision

proedures for uni�ation (with onstants) are not suÆient to allow for a om-

bination result. Instead, one needs deision proedures for uni�ation with linear

onstant restritions in the theories to be ombined. In 1995, Baader and Shulz

3

Some of the work mentioned below an also handle more general theories. To simplify

the presentation, we restrit our attention in this paper to the equational ase.
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[2℄ desribed a version of their ombination proedure that applies to positive

theories, i.e., positive Boolean ombinations of equations with an arbitrary quan-

ti�er pre�x. They also showed [3℄ that the deidability of the positive theory is

equivalent to the deidability of uni�ation with linear onstant restritions.

Sine then, the main open problem in the area was how to extend these

results to the ombination of theories having symbols in ommon. In general,

the existene of shared symbols may lead to undeidability results for the union

theory (see, e.g., [6, 5℄ for some examples). This means that a ontrolled form

of sharing of symbols is neessary. For the word problem and for universally

quanti�ed formulae, a suitable notion of shared onstrutors has proved useful.

In [5℄, Pigozzi's ombination result for the word problem was extended to theories

all of whose shared symbols are onstrutors. A similar extension of the Nelson-

Oppen ombination proedure an be found in [13℄.

In a similar vein, we show in this paper that the ombination results in [2℄ for

positive theories (and thus for uni�ation) an be extended to theories sharing

onstrutors. We do that by extending the ombination proedure in [2℄ with

an extra step that deals with shared symbols and proving that the extended

proedure is sound and omplete. Sine this extra step is not �nitary, the new

proedure in general yields only a semi-deision proedure for the ombined the-

ory. Under some additional assumptions on the equational theory of the shared

symbols, the proedure an, however, be turned into a deision proedure. Al-

though the ombination proedure desribed here di�ers from the one in [2℄ by

just one extra step, proving its orretness is onsiderably more hallenging, due

to the non-disjointness of the theories. A major ontribution of this work is a

novel algebrai onstrution of the free algebra of the ombined theory. As in

the non-disjoint ase [2℄, this onstrution is vital for the orretness proof of

the proedure, and we believe that it will prove helpful also in future researh

on non-disjoint ombination.

The paper is organized as follows. Setion 2 ontains some formal prelimi-

naries. Setion 3 de�nes our notion of onstrutors and presents some of their

properties, whih will be used later to prove the orretness of the ombination

proedure. Setion 4 desribes our extension of the Baader-Shulz proedure to

omponent theories sharing onstrutors. It then introdues a straightforward

ondition on the omponent theories under whih the semi-deision proedure

obtained this way an in fat be used to deide the positive onsequenes of

their union. Finally, it proves that the general proedure is sound and omplete.

We onlude the paper with a omparison to related work and suggestions for

further researh. Spae onstraints prevent us from providing all the proofs of

the results in the paper. The missing proofs an be found in [4℄.

2 Preliminaries

In this paper we will use standard notions from universal algebra suh as formula,

sentene, algebra, subalgebra, generators, redut, entailment, model, homomor-

phism and so on. Notable di�erenes are reported in the following.
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We onsider only �rst-order theories (with equality) over a funtional sig-

nature. A signature � is a set of funtion symbols, eah with an assoiated

arity, an integer n � 0. A onstant symbol is a funtion symbol of zero arity.

We use the letters �;
;� to denote signatures. Throughout the paper, we �x

a ountably-in�nite set V of variables, disjoint with any signature �. For any

X � V , T (�;X) denotes the set of �-terms over X , i.e., �rst-order terms with

variables in X and funtion symbols in �. Formulae in the signature � are de-

�ned as usual. We use � to denote the equality symbol. We also use the standard

notion of substitution, with the usual post�x notation. We all a substitution a

renaming i� it is a bijetion of V onto itself. We say that a subset T of T (�; V )

is losed under renaming i� t� 2 T for all terms t 2 T and renamings �.

If A is a set, we denote by A

�

the set of all �nite tuples made of elements

of A. If a and b are two tuples, we denote by a; b the tuple obtained as the

onatenation of a and b. If ' is a term or a formula, we denote by Var(')

the set of ''s free variables. We will often write '(v) to indiate, as usual,

that v is a tuple of variables with no repetitions and all elements of Var(')

our in v. A formula is positive i� it is in prenex normal form and its matrix

is obtained from atomi formulae using only onjuntions and disjuntions. A

formula is existential i� it has the form 9u: '(u;v) where '(u;v) is a quanti�er-

free formula.

If A is an algebra of signature 
, we denote by A the universe of A and by

A

�

the redut of A to a given subsignature � of 
. If '(v) is an 
-formula

and � is a valuation of v into A, we write (A; �) j= '(v) i� '(v) is satis�ed

by the interpretation (A; �). Equivalently, where a = �(v), we may also write

A j= '(a). If t(v) is an 
-term, we denote by [[t℄℄

A

�

the interpretation of t in A

under the valuation � of v. Similarly, if T is a set of terms, we denote by [[T ℄℄

A

�

the set f[[t℄℄

A

�

j t 2 Tg.

A theory of signature 
, or an 
-theory, is any set of 
-sentenes, i.e., losed


-formulae. An algebraA is a model of a theory T , ormodels T , i� eah sentene

in T is satis�ed by the interpretation (A; �) where � is the empty valuation. Let

T be an 
-theory. We denote by Mod (T ) the lass of all 
-algebras that model

T . The theory T is satis�able if it has a model, and trivial if it has only trivial

models, i.e., models of ardinality 1. For all sentenes ' (of any signature), we

say as usual that T entails ', or that ' is valid in T , and write T j= ', i�

T [ f:'g is unsatis�able. We all (existential) positive theory of T the set of all

(existential) positive sentenes in the signature of T that are entailed by T .

An equational theory is a set of (universally quanti�ed) equations. If E is

an equational theory of signature 
 and � is an arbitrary signature, we denote

by E

�

the set of all (universally quanti�ed) �-equations entailed by E. When

� � 
 we all E

�

the �-restrition of E. For all 
-terms s(v); t(v), we write

s =

E

t and say that s and t are equivalent in E i� E j= 8v: s � t.

We will later appeal to the two basi model theory results below about sub-

algebras (see [7℄ among others).
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Lemma 1. Let B be a �-algebra and A a subalgebra of B. For all quanti�er-

free formulae '(v

1

; : : : ; v

n

) and individuals a

1

; : : : ; a

n

2 A, A j= '(a

1

; : : : ; a

n

)

i� B j= '(a

1

; : : : ; a

n

).

Lemma 2. For all equational theories E, Mod(E) is losed under subalgebras.

Similarly to [2℄, our proedure's orretness proof will be based on free alge-

bras. Instead of the usual de�nition of free algebras, we will rely on the following

haraterization [7℄.

Proposition 3. Let E be a �-theory and A a �-algebra. Then, A is free in E

over some set X i� the following holds:

1. A is a model of E generated by X;

2. for all s; t 2 T (�; V ) and injetions � of Var(s � t) into X, if (A; �) j= s � t

then s =

E

t.

When A is free in E over X we will also say that A is a free model of E

(with basis X). We will impliitly rely on the well-known fat that every non-

trivial equational theory E admits a free model with a ountably in�nite basis,

namely the quotient term algebra T (�; V )==

E

. We will also use the following

two results from [2℄ about free models and positive formulae.

Lemma 4. Let B be an 
-algebra free (in some theory E) over a ountably in-

�nite set X. For all positive 
-formulae '(v

1

;v

2

; : : : ;v

2m�1

;v

2m

) the following

are equivalent:

1. B j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

: '(v

1

;v

2

; : : : ;v

2m�1

;v

2m

);

2. there exist tuples x

1

; : : : ;x

m

2 X

�

and b

1

; : : : ; b

m

2 B

�

and �nite subsets

Z

1

; : : : ; Z

m

of X suh that

(a) B j= '(x

1

; b

1

; : : : ;x

m

; b

m

),

(b) all omponents of x

1

; : : : ;x

n

are distint,

() for all n 2 f1; : : : ;mg, all omponents of b

n

are generated by Z

n

in B,

(d) for all n 2 f1; : : : ;m� 1g, no omponents of x

n+1

are in Z

1

[ � � � [ Z

n

.

Lemma 5. For every equational theory E having a ountable signature and a

free model A with a ountably in�nite basis, the positive theory of E oinides

with the set of positive sentenes true in A.

In this paper, we will deal with ombined equational theories, that is, theories

of the form E

1

[E

2

, where E

1

and E

2

are two omponent equational theories of

(possibly non-disjoint) signatures �

1

and �

2

, respetively. Where � := �

1

\�

2

,

we all shared symbols the elements of � and shared terms the elements of

T (�; V ). Notie that, when �

1

and �

2

are disjoint, the only shared terms are

the variables.

Most ombination proedures, inluding the one desribed in this paper, work

with (�

1

[�

2

)-formulae by �rst \purifying" them into a set of �

1

-formulae and

a set of �

2

-formulae. There is a standard puri�ation proedure that, when �

1

and �

2

are disjoint, an onvert any set S of equations of signature �

1

[�

2

into

a set S

0

of pure equations (that is, eah of signature �

1

or �

2

) suh that S

0

is

satis�able in a (�

1

[ �

2

)-algebra A i� S is satis�able in A. As we show in [5℄,

a similar proedure also exists for the ase in whih �

1

and �

2

are not disjoint.
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3 Theories with Construtors

The main requirement for our generalization of the ombination proedure de-

sribed in [2℄ to apply is that the symbols shared by the two theories are on-

strutors as de�ned in [5, 13℄. For the rest of the setion, let E be an non-trivial

equational theory of signature 
. Also, let � be a subsignature of 
.

De�nition 6 (Construtors). The signature � is a set of onstrutors for E

i� for every free model A of E with a ountably in�nite basis X, A

�

is a free

model of E

�

with a basis Y inluding X.

It is usually non-trivial to show that a signature � is a set of onstrutors for

a given theory E by using just the de�nition above. Instead, using a syntati

haraterization of onstrutors given in terms of ertain subsets of T (
; V ) is

usually more helpful. Before we an give this haraterization, we need a little

more notation.

Given a subset G of T (
; V ), we denote by T (�;G) the set of �-terms

over the \variables" G. More preisely, every member of T (�;G) is obtained

from a term s 2 T (�; V ) by replaing the variables of s with terms from G. To

express this onstrution, we will denote any suh term by s(r) where r is a tuple

olleting the terms of G that replae the variables of s. Note that G � T (�;G)

and that T (�; V ) � T (�;G) whenever V � G.

De�nition 7 (�-base). A subset G of T (
; V ) is a �-base of E i�

1. V � G;

2. for all t 2 T (
; V ), there is an s(r) 2 T (�;G) suh that t =

E

s(r);

3. for all s

1

(r

1

); s

2

(r

2

) 2 T (�;G), s

1

(r

1

) =

E

s

2

(r

2

) i� s

1

(v

1

) =

E

s

2

(v

2

),

where v

1

and v

2

are tuples of fresh variables abstrating the terms of r

1

; r

2

so that two terms in r

1

; r

2

are abstrated by the same variable i� they are

equivalent in E.

We say that E admits a �-base if some G � T (
; V ) is a �-base of E.

Theorem 8 (Charaterization of onstrutors). The signature � is a set

of onstrutors for E i� E admits a �-base.

A proof of this theorem and of the following orollary an be found in [5℄.

Corollary 9. Where A is a free model of E with a ountably-in�nite basis X,

let � be an arbitrary bijetion of V onto X. If G is a �-base of E, then A

�

is

free in E

�

over the superset [[G℄℄

A

�

of X.

In the following, we will assume that the theories we onsider admit �-bases

losed under renaming. This assumption is neessary for tehnial reasons. It is

used in the long version of this paper in the proof of a lemma (Lemma 4.18 in

[4℄; omitted here) needed to prove the soundness of the ombination proedure

desribed later. Although we do not know whether this assumption an be made

with no loss of generality, it is not lear how to avoid it and it seems to be satis�ed
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by all \sensible" examples of theories admitting onstrutors. Also note that

the same tehnial assumption was needed in our work on ombining deision

proedures for the word problem [5℄.

It is shown in [5℄ that, under the right onditions, onstrutors and the prop-

erty of having �-bases losed under renaming are modular with respet to the

union of theories.

Proposition 10. For i = 1; 2 let E

i

be a non-trivial equational �

i

-theory. If

� := �

1

\�

2

is a set of onstrutors for E

1

and for E

2

and E

1

�

= E

2

�

, then

� is a set of onstrutors for E

1

[E

2

. If both E

1

and E

2

admit a �-base losed

under renaming, then E

1

[E

2

also admits a �-base losed under renaming.

A useful onsequene of Proposition 10 for us will be the following.

Proposition 11. Let E be an 
-theory and let E

0

be the empty �-theory for

some signature � disjoint with 
. If � � 
 is a set of onstrutors for E, then

it is a set of onstrutors for E [E

0

. Furthermore, if E admits a �-base losed

under renaming, then so does E [E

0

.

4 Combining Deision Proedures

In this setion, we generalize the Baader-Shulz proedure [2℄ for ombining

deision proedures for the validity of positive formulae in equational theories

from theories over disjoint signatures to theories sharing onstrutors. More

preisely, we will onsider two theories E

1

and E

2

that satisfy the following

assumptions for i = 1; 2, whih we �x for the rest of the setion:

{ E

i

is a non-trivial equational theory of some ountable signature �

i

;

{ � := �

1

\�

2

is a set of onstrutors for E

i

, and E

i

admits a �-base losed

under renaming;

{ E

1

�

= E

2

�

.

Let E := E

1

[E

2

. Under the assumptions above, E

�

= E

1

�

= E

2

�

(see [5℄). In

the following then, we will use E

�

to refer indi�erently to E

1

�

or E

2

�

.

The ombination proedure will use two kinds of substitutions that we all,

after [13℄, identi�ations and �-instantiations . Given a set of variables U , an

identi�ation of U is a substitution de�ned by partitioning U , seleting a rep-

resentative for eah blok in the partition, and mapping eah element of U to

the representative in its blok. A �-instantiation of U is a substitution that

maps some elements of U to non-variable �-terms and the other elements to

themselves. For onveniene, we will assume that the variables ourring in the

terms introdued by a �-instantiation are always fresh.

4.1 The Combination Proedure

The proedure takes as input a positive existential (�

1

[�

2

)-formula 9w: '(w)

and outputs, non-deterministially, a pair of sentenes: a positive �

1

-sentene

and a positive �

2

-sentene. It onsists of the following steps.
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1. Convert into DNF. Convert the input's matrix ' into the disjuntive

normal form  

1

_ � � � _  

n

and hoose a disjunt  

j

.

2. Convert into Separate Form. Let S be the set obtained by purifying,

as mentioned in Setion 2, the set of all the equations in  

j

. For i = 1; 2,

let '

i

(v;u

i

) be the onjuntion of all �

i

-equations in S,

4

with v listing the

variables in Var('

1

) \ Var('

2

) and u

i

listing the remaining variables of '

i

.

3. Instantiate Shared Variables. Choose a �-instantiation � of Var(v) =

Var('

1

) \ Var('

2

).

4. Identify Shared Variables. Choose an identi�ation � of Var('

1

�) \

Var('

2

�) = Var(v�). For i = 1; 2, let '

0

i

:= '

i

��.

5. Partition Shared Variables. Group the elements of V

s

:= Var(v��) =

Var('

0

1

) \ Var('

0

2

) into the tuples v

1

, . . . , v

2m

, with 2 � 2m � jV

s

j+ 1, so

that eah element of V

s

ours exatly one in the tuple v

1

; : : : ;v

2m

.

5

6. Generate Output Pair. Output the pair of sentenes

( 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: '

0

1

; 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: '

0

2

):

Ignoring inessential di�erenes and our restrition to funtional signatures, this

ombination proedure di�ers from Baader and Shulz's only for the presene of

Step 3. Note however that, for omponent theories with disjoint signatures (the

ase onsidered in [2℄), Step 3 is vauous beause � is empty. In that ase then

the proedure above redues to that in [2℄. Correspondingly, our requirements on

the two omponent theories also redue to that in [2℄, whih simply asks that E

1

and E

2

be non-trivial. In fat, when � is empty it is always a set of onstrutors

for E

i

(i = 1; 2), with T (�

i

; V ) being a�-base losed under renaming. Moreover,

E

1

�

= E

2

�

beause they both oinide with the theory fv � v j v 2 V g.

As will be shown in Setion 4.3, our ombination proedure is sound and

omplete in the following sense.

Theorem 12 (Soundness and Completeness). For all possible input sen-

tenes 9w: '(w) of the ombination proedure, E

1

[E

2

j= 9w: '(w) i� there is

a possible output (

1

; 

2

) suh that E

1

j= 

1

and E

2

j= 

2

.

Unlike the proedure in [2℄, the ombination proedure above does not ne-

essarily yield a deision proedure. The reason is that the non-determinism in

Step 3 of the proedure is not �nitary sine in general there are in�nitely-many

possible �-instantiations to hoose from. One viable, albeit strong, restrition

for obtaining a deision proedure is desribed in the next subsetion.

4.2 Deidability Results

In order to turn the ombination proedure from above into a deision proedure,

we require that the equivalene relation de�ned by the theory E

�

= E

1

�

= E

2

�

be bounded in a sense desribed below.

4

Where �-equations are onsidered arbitrarily as either �

1

- or �

2

-equations.

5

Note that some of the subtuples v

i

may be empty.
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De�nition 13. Let E be an equational 
-theory. We say that equivalene in E

is �nitary modulo renaming i� there is a �nite subset R of T (
; V ) suh that

for all s 2 T (
; V ) there is a term t 2 R and a renaming � suh that s =

E

t�.

We all R a set of E-representatives.

When 
 in the above de�nition is empty, equivalene in E is trivially �nitary|

with any singleton set of variables being a set of E-representatives. A non-trivial

example is provided at the end of this setion.

If E

�

is �nitary modulo renaming, then it is easy to see that it suÆes to

onsider only �nitely many instantiations in Step 3 of the proedure, whih leads

to the following deidability result.

Proposition 14. Assume that �;E

1

; E

2

satisfy the assumptions stated at the

beginning of Setion 4, and that equivalene in E

�

is �nitary modulo renaming.

If the positive theories of E

1

and of E

2

are both deidable, then the positive

existential theory of E

1

[ E

2

is also deidable.

Using a Skolemization argument together with Proposition 11, the result

above an be extended from positive existential input sentenes to arbitrary

positive input sentenes. The main idea is to Skolemize the universal quanti�ers

of the input sentene and then expand the signature of one the theories, E

2

say,

to the newly introdued Skolem symbols. Proposition 11 and the ombination

result in [2℄ for the disjoint ase imply that the pair E

1

; E

0

2

, where E

0

2

is the

onservative extension of E

2

to the expanded signature, satis�es the assumptions

of Proposition 14.

Theorem 15. Assume that E

1

; E

2

satisfy the assumptions of Proposition 14. If

the positive theories of E

1

and of E

2

are both deidable, then the positive theory

of E := E

1

[ E

2

is also deidable.

The following example desribes one theory satisfying all the requirements

on the omponent theories imposed by Theorem 15.

Example 16. Consider the signature 
 := f0; s;+g and, for some n > 1, the

equational theory E

n

axiomatized by the identities

x+ (y + z) � (x+ y) + z; x+ y � y + x;

x+ s(y) � s(x+ y); x+ 0 � x; s

n

(x) � x:

where as usual s

n

(x) stands for the n-fold appliation of s to x. We show in

[4℄ that, for E

n

and the subsignature � := f0; sg of 
, all the assumptions of

Theorem 15 on the omponent theories are satis�ed.

4.3 Soundness and Completeness of the Proedure

The soundness and ompleteness proof for the disjoint ase in [2℄ relies on an

expliit onstrution of the free model of E = E

1

[ E

2

as an amalgamated

produt of the free models of the omponent theories. A diret adaptation of the
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A

h3

2h

h1

X’1X1

Y2

2X =X’2

Y1

2A =F1

2,2

1

1,2Z

Z

Z1,1

2Z

Z

Z

2,1

Fig. 1. The Fusion F of A

1

and A

2

.

free amalgamation onstrution of [2℄ to the non-disjoint ase has so far proven

elusive. An important tehnial ontribution of the present work is to provide

an alternative way to obtain an appropriate amalgamated free model in the ase

of theories sharing onstrutors. We obtain this model for the union theory E

indiretly, by �rst building a simpler sort of amalgamated model as a fusion

(de�ned below) of the free models of the two omponent theories. Contrary to

Baader and Shulz's free amalgamated produt, the fusion model we onstrut

is not free in E. However, it has a subalgebra that is so. That subalgebra will

serve as the free amalgamated model of E.

De�nition 17 (Fusion [5, 13℄). A (


1

[ 


2

)-algebra F is a fusion of a 


1

-

algebra A

1

and a 


2

-algebra A

2

i� F




1

is 


1

-isomorphi to A

1

and F




2

is




2

-isomorphi to A

2

.

It is shown in [13℄ that two algebras A

1

and A

2

have fusions exatly when they

are isomorphi over their shared signature, and that every fusion of a model of

a theory T

1

with a model of a theory T

2

is a model of the theory T

1

[ T

2

.

In the following, we will onstrut a model of E = E

1

[E

2

as a fusion of free

models of the theories E

1

and E

2

�xed earlier, whose shared signature � was a

set of onstrutors for both. We start by �xing, for i = 1; 2,

{ a free model A

i

of E

i

with a ountably in�nite basis X

i

,

{ a bijetive valuation �

i

of V onto X

i

,

{ a �-base G

i

of E

i

losed under renaming, and

{ the set Y

i

:= [[G

i

℄℄

A

i

�

i

:

We know from Corollary 9 that X

i

� Y

i

and A

i

�

is free in E

�

= E

1

�

= E

2

�

over Y

i

. Observe that A

i

is ountably in�nite, given our assumption that X

i

is
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ountably in�nite and �

i

is ountable. As a onsequene, Y

i

is ountably in�nite

as well.

Now let Z

i;2

:= Y

i

nX

i

for i = 1; 2, and let fZ

1;1

; Z

1

g be a partition of X

1

suh that Z

1

is ountably in�nite and jZ

1;1

j = jZ

2;2

j.

6

Similarly, let fZ

2;1

; Z

2

g

be a partition of X

2

suh that jZ

2;1

j = jZ

1;2

j and Z

2

is ountably in�nite (see

Figure 1). Then onsider 3 arbitrary bijetions

h

1

: Z

1;2

�! Z

2;1

; h

2

: Z

1

�! Z

2

; h

3

: Z

1;1

�! Z

2;2

;

as shown in Figure 1. Observing that fZ

i;1

; Z

i

; Z

i;2

g is a partition of Y

i

for

i = 1; 2, it is immediate that h

1

[ h

2

[ h

3

is a well-de�ned bijetion of Y

1

onto

Y

2

. Sine A

i

�

is free in E

�

over Y

i

for i = 1; 2, we have that h

1

[h

2

[h

3

extends

uniquely to a (�)-isomorphism h of A

1

�

onto A

2

�

. The isomorphism h indues

a fusion of A

1

and A

2

whose main properties are listed in the following lemma,

taken from [5℄.

Lemma 18. There is a fusion F of A

1

and A

2

having the same universe as A

2

and suh that

1. h is a (�

1

)-isomorphism of A

1

onto F

�

1

;

2. the identity map of A

2

is a (�

2

)-isomorphism of A

2

onto F

�

2

;

3. F

�

i

is free in E

i

over X

0

i

:= Z

2;j

[ Z

2

for i; j = 1; 2, i 6= j;

4. F

�

is free in E

�

over Y

2

= Z

2;1

[ Z

2

[ Z

2;2

;

5. Y

2

= [[G

2

℄℄

F

�

2

�

2

= [[G

1

℄℄

F

�

1

hÆ�

1

.

We will now onsider the theory E = E

1

[E

2

again, together with the algebras

F , F

1

, F

2

and A where:

{ F is the fusion of A

1

and A

2

from Lemma 18;

{ F

i

:= F

�

i

for i = 1; 2;

7

{ A is the subalgebra of F generated by Z

2

.

Both F and A are models of E. In fat, F is a model of E = E

1

[ E

2

for being

a fusion of a model of E

1

and a model of E

2

, whereas A is a model of E by

Lemma 2. We prove in [4℄ that A is in fat a free model of E. To do that we use

the following sets of terms, whih will ome in handy later as well.

De�nition 19 (G

1

1

; G

1

2

; G

1

). Let G

1

:= G

1

1

[G

1

2

where for i = 1; 2, G

1

i

:=

S

1

n=0

G

n

i

and fG

n

i

j n � 0g is the family of sets de�ned as follows:

G

0

i

:= V;

G

n+1

i

:= G

n

i

[ fr(r

1

; : : : ; r

m

) j r(v

1

; : : : ; v

m

) 2 G

i

nV; r 6=

E

v for all v 2 V;

r

j

2 G

n

k

with k 6= i; for all j = 1; : : : ;m;

r

j

6=

E

r

j

0

for all distint j; j

0

= 1; : : : ;m g:

As proved in [5℄, the sets G

1

1

; G

1

2

; G

1

satisfy the following two properties.

6

This is possible beause Z

2;2

is ountable (possibly �nite).

7

These algebras are de�ned just for notational onveniene.
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G1
0

G2
0

G2
1

2
2G

G2
3

G1
1

G1
2

G1
3

X’1

X’2

Z 2,2

Z 2

Z 2,1

C2
1

C2
2

C2
3

C1
1

C1
2

C1
3

C1
0

C2
0

...

Y

...

...
...

=

Fig. 2. The families f[[G

n

i

℄℄ j n � 0g and fC

n

i

j n � 0g.

Lemma 20. Let i 2 f1; 2g. For any bijetion � of V onto Z

2

the following

holds:

1. [[G

1

i

nV ℄℄

F

�

� Z

2;i

;

2. for all t

1

; t

2

2 G

1

i

nV , if [[t

1

℄℄

F

�

= [[t

2

℄℄

F

�

then t

1

=

E

t

2

.

Proposition 21. The set G

1

is �-base of E = E

1

[ E

2

.

Note that this proposition entails by Theorem 8 that � is a set of onstrutors

for E. Using these two properties (and Proposition 3) we an show the following.

Proposition 22. A is free in E over Z

2

.

Corollary 23. For every bijetion � of V onto Z

2

, A

�

is free in E

�

over

Y := [[G

1

℄℄

A

�

, and Y � Y

2

.

For the rest of the setion, let us �x a bijetion � of V onto Z

2

and the

orresponding set Y := [[G

1

℄℄

A

�

.

To prove the ompleteness of the ombination proedure we will need two

families fC

n

1

j n � 0g and fC

n

2

j n � 0g of sets partitioning the set Y above.

To build these families we use the denotations in A of the sets G

n

1

and G

n

2

introdued in De�nition 19. More preisely, for i = 1; 2, we onsider the family
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f[[G

n

i

℄℄

A

�

j n � 0g of subsets of Y . Sine A is the subalgebra of F generated by

Z

2

and � is a valuation of V into Z

2

, it is easy to see that [[G

n

i

℄℄

A

�

= [[G

n

i

℄℄

F

�

for

all n � 0. Therefore, we will write just [[G

n

i

℄℄ in plae of either [[G

n

i

℄℄

A

�

or [[G

n

i

℄℄

F

�

.

Observe that [[G

0

1

℄℄ = [[G

0

2

℄℄ = Z

2

and [[G

n

i

℄℄ � [[G

n+1

i

℄℄ for all n � 0 and

i = 1; 2. Given that [[G

n

i

℄℄ nZ

2

� [[G

n

i

nV ℄℄

A

�

, we an onlude by Lemma 20 that

[[G

n

i

℄℄ nZ

2

� Z

2;i

.

8

By Corollary 23 we have that

[

n�0

([[G

n

1

℄℄ [ [[G

n

2

℄℄) = [[

[

n�0

(G

n

1

[G

n

2

)℄℄ = [[G

1

1

[G

1

2

℄℄ = [[G

1

℄℄ = Y:

Now onsider the family of sets fC

n

i

j n � 0g, depited in Figure 2 along with

f[[G

n

i

℄℄ j n � 0g and de�ned as follows:

C

0

i

:= [[G

0

i

℄℄ and C

n+1

i

:= [[G

n+1

i

℄℄ n [[G

n

i

℄℄ for all n � 0:

First note that

S

n�0

(C

n

1

[ C

n

2

) =

S

n�0

([[G

n

1

℄℄ [ [[G

n

2

℄℄) = Y: Then note that, for

all n � 0 and i = 1; 2, the elements of C

n

i

are individuals of the algebras F

1

and

F

2

(whih have the same universe). By Lemma 20, C

n

1

� [[G

n

1

℄℄ � Z

2;1

[Z

2

= X

0

2

;

in other words, every element of C

n

1

is a generator of F

2

. Similarly, C

n

2

� [[G

n

2

℄℄ �

Z

2;2

[ Z

2

= X

0

1

, that is, every element of C

n

2

is a generator of F

1

. In addition,

we have the following.

Lemma 24. For all distint m;n � 0 and distint i; j 2 f1; 2g,

1. C

m

i

\ C

n

i

= ; and

2. C

n+1

i

is �

i

-generated by [[G

n

j

℄℄ in F

i

.

Now, Theorem 12 is an easy onsequene of the following proposition.

Proposition 25. For i = 1; 2, let '

i

(v;u

i

) be a onjuntion of �

i

-equations

where v lists the elements of Var('

1

) \ Var('

2

) and u

i

lists the elements of

Var('

i

) not in v. The following are equivalent:

1. There is a �-instantiation � of v, an identi�ation � of Var(v�) and a

grouping v

1

, . . . , v

2m

of Var(v��) with eah element of Var(v��) ourring

exatly one in v

1

; : : : ;v

2m

suh that

A

1

j= 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: ('

1

��) and

A

2

j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: ('

2

��):

2. A j= 9v9u

1

9u

2

: ('

1

^ '

2

):

Proof. The proof of (1) 2) is similar to the orresponding proof in [2℄, although

it requires some additional tehnial lemmas (see [4℄ for details). We onentrate

here on the proof of (2) 1).

Assume that A j= 9v;u

1

;u

2

: ('

1

(v;u

1

) ^ '

2

(v;u

2

)): Let � be the bijetion

of V onto Z

2

and Y the subset of Y

2

that we �xed after Corollary 23. Sine

8

This entails that [[G

m

1

℄℄ nZ

2

is disjoint with [[G

n

2

℄℄ nZ

2

for all m;n > 0.
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the redut A

�

of A is �-generated by Y by the same orollary, there is a �-

instantiation � of v, an identi�ation � of Var(v�), and an injetive valuation �

of v

0

into Y suh that, for '

0

i

:= '

i

�� (i = 1; 2) and v

0

listing the variables of

v��, we have

(A; �) j= 9u

1

;u

2

: ('

0

1

(v

0

;u

1

) ^ '

0

2

(v

0

;u

2

)):

From this, realling that A is (�

1

[ �

2

)-generated by Z

2

by onstrution and

Y is inluded in Y

2

, we an onlude that there is a tuple a of pairwise distint

elements of Y

2

, all (�

1

[�

2

)-generated by Z

2

, suh that

A j= 9u

1

;u

2

: '

0

1

(a;u

1

) ^ '

0

2

(a;u

2

):

Sine A is a subalgebra of F and '

0

1

^'

0

2

is quanti�er-free, it follows by Lemma 1

that F j= 9u

1

;u

2

: '

0

1

(a;u

1

) ^ '

0

2

(a;u

2

) as well. Given that eah '

0

i

is a �

i

-

formula and u

1

and u

2

are disjoint, we have then that

F

1

j= 9u

1

: '

0

1

(a;u

1

) and F

2

j= 9u

2

: '

0

2

(a;u

2

): (1)

We onstrut a partition of the elements of a that will indue a grouping of

v

0

having the properties listed in Point 1 of the proposition. For that, we will

use the families fC

n

1

j n � 0g and fC

n

2

j n � 0g de�ned before Lemma 24.

First, let a

1

be a tuple olleting the omponents of a that are in C

0

1

[ C

1

1

.

Then, for all n > 1, let a

n

be a tuple olleting the omponents of a that are in

C

n

1

. Finally, for all n > 0, let b

n

be a tuple olleting the omponents of a that

are in C

n

2

.

9

Sine a is a (�nite) tuple of Y

�

and Y =

S

n�0

(C

n

1

[ C

n

2

) as observed earlier,

there is a smallest m > 0 suh that every omponent of a is in

S

m

n=0

(C

n

1

[C

n

2

).

Let n 2 f0; : : : ;m� 1g. By Lemma 24(2), b

n+1

is �

2

-generated by [[G

n

1

℄℄ in F

2

.

Let Z

n+1

be any �nite subset of [[G

n

1

℄℄ that generates b

n+1

. Now reall that F

2

is free over the ountably-in�nite set X

0

2

. We prove that a

1

; : : : ;a

m

, b

1

; : : : ; b

m

,

and Z

1

; : : : ; Z

m

satisfy Lemma 4(2).

To start with, we have that a

n

2 (X

0

2

)

�

for all n 2 f1; : : : ;mg beause

C

n

1

� [[G

n

1

℄℄ � X

0

2

by onstrution of C

n

1

. From Lemma 24(1) it follows that the

tuples a

n

and a

n

0

are pairwise disjoint for all distint n; n

0

2 f1; : : : ;mg, whih

means that all omponents of a

1

; : : : ;a

m

are distint. Now let n 2 f1; : : : ;m�1g.

Observe that the set Z

1

[� � �[Z

n

is inluded in [[G

n�1

1

℄℄ = C

0

1

[� � �[C

n�1

1

whereas

every omponent of a

n+1

belongs to C

n+1

1

. It follows that no omponents of a

n+1

are in Z

1

[ � � � [ Z

n

. Finally, where f is the bijetion that maps, in order, the

omponents of a to those of v

0

, let v

1

;v

2

; : : : ;v

2m�1

;v

2m

be the rearrangement

of v

0

orresponding to a

1

; b

1

; : : : ;a

m

; b

m

aording to f . From (1) above we know

that F

2

j= 9u

2

: '

0

2

(a

1

; b

1

; : : : ; b

m

;a

m

;u

2

): By Lemma 4 we an then onlude

that F

2

j= 8v

1

9v

2

� � � 8v

2m�1

9v

2m

9u

2

: '

0

2

:

Almost symmetrially, we an prove F

1

j= 9v

1

8v

2

� � � 9v

2m�1

8v

2m

9u

1

: '

0

1

:

The laim then follows from the fat that F

i

is �

i

-isomorphi to A

i

for i = 1; 2

by Lemma 18. ut

9

Eah tuple above is meant to have no repeated omponents, and may be empty.
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5 Related Researh

From a tehnial point of view, this work strongly depends on previous researh

on ombining deision proedures for uni�ation in the disjoint ase and on

researh on ombining deision proedures for the word problem in the non-

disjoint ase. The ombination proedure as well as the proof of orretness are

modeled on the orresponding proedure and proof in [2℄. The only extension to

the proedure is Step 3, whih takes are of the shared symbols. In the proof,

one of the main obstales to overome was to �nd an amalgamation onstrution

that worked in the non-disjoint ase. Several of the hard tehnial results used

in the proof depend on results from our previous work on ombining deision

proedures for the word problem [5℄. The de�nition of the sets G

i

, whih are

vital for proving that the onstruted algebra A is indeed free, is also borrowed

from there. It should be noted, however, that this de�nition an also be seen as a

generalization to the non-disjoint ase of a syntati amalgamation onstrution

originally due to Shmidt-Shau� [11℄. As already mentioned in the introdution,

the notion of onstrutors used here is taken from [5, 13℄.

The only other work on ombination methods for uni�ation in the non-

disjoint ase is due to Domenjoud, Ringeissen and Klay [6℄. The main di�erenes

with our work are that (i) their notion of onstrutors is onsiderably more

restritive than ours; and (ii) they ombine algorithms omputing omplete sets

of uni�ers, and so their method annot be used to ombine deision proedures.

On the other hand, Domenjoud, Ringeissen and Klay do not impose the strong

restrition that the omponent theories be �nitary modulo renaming, whih we

need for our deidability result. However, it was reently disovered [10℄ that

termination of the ombination algorithm in [6℄ is atually not guaranteed with

the onditions given in that paper.

6 Conlusion

We have extended the Baader-Shulz ombination proedure [2℄ for positive the-

ories to the ase of omponent theories over non-disjoint signatures. The main

ontribution of this paper is the formulation of appropriate restritions under

whih this proedure is sound and omplete, and the proof of soundness and om-

pleteness itself. This proof depends on a novel onstrution of the free model of

the ombined theory, whih is not just a straightforward extension of the free

amalgamation onstrution used in [2℄ in the disjoint ase. Regarding the gen-

erality of our restrition to theories sharing onstrutors, we believe that the

notion of onstrutors is as general as one an get, a onvition that is sup-

ported by the work on ombining deision proedures for the word problem and

for universal theories [5, 13℄.

Unfortunately, our ombination proedure yields only a semi-deision proe-

dure sine it inorporates an in�nitary step. The restrition to equational theories

that are �nitary modulo renaming overomes this problem, but it is probably

too strong to be useful in appliations. Thus, the main thrust of further researh
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will be to remove or at least relax this restrition. We believe that the overall

framework introdued in this paper and the proof of soundness and ompleteness

of the semi-deision proedure (or at least the tools used in this proof) will help

us obtain more interesting deidability results in the near future. One diretion

to follow ould be to try to impose additional algorithmi requirements on the

theories to be ombined or on the onstrutor theory, and exploit those require-

ments to transform the in�nitary step into a series of �nitary ones. For this, the

work in [6℄, whih assumes algorithms omputing omplete sets of uni�ers for the

omponent theories, ould be a starting point. Sine the ombination algorithm

presented there has turned out to be non-terminating [10℄, that work needs to

be reonsidered anyway.

Another diretion for extending the results presented here is to withdraw the

restrition to funtional signatures. As a matter of fat, the ombination results

in [2℄ apply not just to equational theories, but to arbitrary atomi theories, i.e.,

theories over signatures also ontaining relation symbols and axiomatized by a

set of (universally quanti�ed) atomi formulae. Sine the algebrai apparatus

employed in the present paper (in partiular, free algebras) is also available in

this more general ase (in the form of free strutures), it should be easy to

generalize our results to atomi theories.
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