On the problem of computing small
representations of least common subsumers

Franz Baader and Anni-Yasmin Turhan

Theoretical Computer Science, TU Dresden, Germany
{baader, turhan}@tcs.inf.tu-dresden.de

Abstract. For Description Logics with existential restrictions, the size
of the least common subsumer (Ics) of concept descriptions may grow
exponentially in the size of the input descriptions. The first (negative)
result presented in this paper is that it is in general not possible to
express the exponentially large concept description representing the lcs
in a more compact way by using an appropriate (acyclic) terminology.
In practice, a second and often more severe cause of complexity was
the fact that concept descriptions containing concepts defined in a ter-
minology must first be unfolded (by replacing defined names by their
definition) before the known lcs algorithms could be applied. To over-
come this problem, we present a modified lcs algorithm that performs
lazy unfolding, and show that this algorithm works well in practice.

1 Introduction

In an application in chemical process engineering [5,11], we support the bottom-
up construction of Description Logic (DL) knowledge bases by computing most
specific concepts (msc) of individuals and least common subsumers (lcs) of con-
cepts: instead of directly defining a new concept, the knowledge engineer intro-
duces several typical examples as individuals, which are then generalized into a
concept description by using the msc and the les operation [1,2,9]. This descrip-
tion is offered to the knowledge engineer as a possible candidate for a definition
of the concept.

Unfortunately, due to the nature of the algorithm for computing the lcs
proposed in [2], this algorithm yields concept descriptions that do not contain
defined concept names, even if the descriptions of the individuals use concepts
defined in a terminology (TBox) 7. In addition, due to the inherent complexity
of the lcs operation, these descriptions may be quite large (exponentially large
in the size of the unfolded input descriptions). For the small DL &L, which
allows for conjunctions, existential restrictions, and the top concept, the binary
lcs operation is still polynomial, but the n-ary one is already exponential. For
the DL ALE, which extends EL by value restrictions, primitive negation, and the
bottom concept, already the binary lcs is exponential in the worst case.

To overcome the problem of large least common subsumers, we have employed
rewriting of the computed concept description using the TBox 7 in order to
obtain a shorter and better readable description [3]. Informally, the problem of

rewriting a concept given a terminology can be stated as follows: given a TBox
T and a concept description C' that does not contain concept names defined in
T, can this description be rewritten into an equivalent smaller description D by
using (some of) the names defined in 77 First results obtained in our process
engineering application were quite encouraging: for a TBox with about 65 defined
and 55 primitive names, source descriptions of size about 800 (obtained as results
of the lcs computation) were rewritten into descriptions of size about 10 [3].

This paper complements these results in two ways. First, the positive empir-
ical results for the rewriting approach led us to conjecture that maybe TBoxes
can always be used to yield a compact representation of the lcs. More formally,
our conjecture can be stated as follows. Let £ be a DL for which the lcs opera-
tion (binary or n-ary) is exponential (like EC or ALE). Given input descriptions
Cy,...,C, with lcs D, does there always exist a TBox 7 whose size is polynomial
in the size of (4, ..., (), and a defined concept name A in 7 such that A = D,
i.e., the TBox defines A such that it is equivalent to the les D of Cy,...,C,,7 A
closer look at the worst-case examples for £ and ALE from [2] supported this
conjecture: the exponentially large least common subsumers constructed there
can easily be represented using polynomially large TBoxes. Nevertheless, we will
show in Section 4 that the conjecture is false, both for ££ and ALE.

Second, we modify the les algorithm presented in [2] such that it works on
concept descriptions still containing names defined in a TBox. The idea is that
unfolding is not performed a priori, but only if necessary. This technique, called
lazy unfolding, is a common optimization technique for standard inferences such
as subsumption [7, 8], but was until now not employed for non-standard infer-
ences like computing the Ics. Though the lcs computed by this modified algorithm
may contain defined concept names, it turned out that rewriting can still reduce
the size of the description. However, since it already starts with smaller descrip-
tions, the rewriting step takes less time than with the unmodified algorithm.

2 Preliminaries

First, we introduce the DLs £ and ALE in more detail. Concept descriptions are
inductively defined using a set of constructors, starting with a set N of concept
names and a set Nr of role names. The constructors determine the expressive
power of the DL. In this paper, we consider concept descriptions built from the
constructors shown in Table 1. In £L, concept descriptions are formed using the
constructors top concept (T), conjunction (C M D) and existential restriction
(3r.C). The DL ALE provides all the constructors introduced in Table 1.

The semantics of a concept description is defined in terms of an interpretation
T = (A,-T). The domain A of 7 is a non-empty set of individuals and the
interpretation function -* maps each concept name P € N¢ to a set PT C A
and each role name r € Ny to a binary relation rZ C AxA. The extension of -~
to arbitrary concept descriptions is inductively defined, as shown in Table 1.

A TBoz is a finite set of concept definitions of the form A = C, where A is a
concept name and C a concept description. In addition, we require that TBoxes

|Construct0r name |Syntax| Semantics

primitive concept, P € No P PTcCcA

top-concept T A

conjunction cnb ctnbD*

existential restriction for r € Ng| Ir.C' [{z € A |y : (v,y) €rT Ay € CT}
value restriction for r € Ng Vr.C {z € AVy: (z,y) €T =y € CT}
primitive negation, P € N¢ -P A\ P*
bottom-concept L 0

Table 1. Syntax and semantics of concept descriptions.

are acyclic and do not contain multiple definitions (see, e.g., [10]). Concept names
occurring on the left-hand side of a definition are called defined concepts. All
other concept names are called primitive concepts. In TBoxes of the DL ALE,
negation may only be applied to primitive concepts. An interpretation 7 is a
model of the TBox 7 iff it satisfies all its concept definitions, i.e., AT = C7 for
all definitions A = C'in T.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C' is
subsumed by the description D w.r.t. the TBox 7 (C C7 D) iff C* C D? holds
for all models Z of 7. The description C' is subsumed by D (C E D) iff it is
subsumed by D w.r.t. the empty TBox (which has all interpretations as models).
The concept descriptions C' and D are equivalent (w.r.t. T) iff they subsume each
other (w.r.t. 7). We write C = D if C and D are equivalent w.r.t. T.

In this paper, we are interested in the non-standard inference task of com-
puting the least common subsumer of concept descriptions.

Definition 1 (Least Common Subsumer). Let Cy,...,C, be concept de-
scriptions in a DL L. The L-concept description C is a least common subsumer

(Ies) of C1,...,Cy in L (for short C = LCS.(Ch,...,Cp)) iff

1. C;CEC forall0<i<n, and
2. C 1is the least concept description with this property, i.e., if D is a concept
description satisfying C; © D for all 1 <i <mn, then C C D.

This definition can naturally be extended to concept definitions containing names
defined in a TBox 7: simply replace subsumption by subsumption w.r.t. 7.

In general (i.e., for an arbitrary DL L), a given collection of n concept de-
scriptions need not have an lcs. However, if an lcs exists, then it is unique up to
equivalence. This justifies to talk about the lcs of Cy,...,C, in L.

3 Computing the Least Common Subsumer

In [2] it was shown that, for the DLs ££ and ALE, the lcs always exists. The main
idea underlying the algorithms computing the lcs is that concept descriptions are
transformed into so-called description trees. Since subsumption can be charac-
terized through the existence of homomorphisms between description trees, the

les operation corresponds to the product of description trees (see [2]). Because
of space limitations, we can only outline the lcs algorithm introduced in [2]. The
basic algorithm for computing the lcs of two £L- or ALE-concept descriptions
w.r.t. a TBox consists of the following steps:

1. Unfold the input descriptions: if the input concept descriptions contain con-
cept names defined in the TBox 7, these concept names are recursively
replaced by their definitions until no defined names remain in the descrip-
tions. It is well-known that the process of unfolding a description may cause
an exponential blow-up [10].

2. Normalize the input descriptions: the normal form is computed by removing
concept descriptions equivalent to T, replacing inconsistent concept descrip-
tions by L, joining value restrictions for the same role, and propagating value
restrictions into existential restrictions on all role-levels. This last step of the
normalization (which is only relevant for ALE) is yet another source of an
exponential blow-up [2, 6].

3. Transform the normalized descriptions into description trees and compute
their product: basically, the description tree of a normalized description
is just its syntax tree. The product of the description trees can then be
translated back into a concept description, which is the lcs of the input
descriptions w.r.t. 7. The product construction is explained in the next
subsection.

It should be noted that each of the three steps of the lcs algorithm traverses the
whole structure of the concept description as obtained in the step before recur-
sively. The basic lcs algorithm is given as a binary operation since the n-ary lcs
can be reduced to the binary operation using the fact that LCS(Cy,...,Cy) =
LCS(Cy,LCS(Cy, ..., Cy)). Of course, one can also directly treat the n-ary les
by using the n-ary product of description trees. We will illustrate the lcs al-
gorithms for ££ and ALE on two examples, which are the worst-case examples
demonstrating that the n-ary lcs in £ and the binary lcs in ALE may lead to
exponentially large concept descriptions (even without TBox).

3.1 The Least Common Subsumer in €L

For the DL &L, a description tree is merely a graphical representation of the syn-
tax of the concept description. Its nodes are labeled with sets of concept names
(corresponding to possibly negated concept names occurring in the description)
and its edges are labeled with role names (corresponding to the existential re-
strictions occurring in the description). We call a node w reachable from a node
v by an edge labeled with r an r-successor of v.

For example, the trees depicted in the upper half of Figure 1 were obtained
from the concept descriptions

C}:=FI(PNIr(PNQNIr(PNQ))) N Ir(QNIr(PNQNIr(PNQ))),
C3:=FIr(PNQMNIr(PNIr(PNQ))NIr(QNIr(PNQ))),
C3 =3I (PNnQNIr(PNQNIr.PNIrQ))).

v P V4 wr : P,Q r1:P,Q

rl lr r/\r l r
v2: P,Q vs : P,Q we : P wy:Q x2: P,Q

Tl lr Tl lr rAr
vs: P, Q ve : P,Q w3 : P,Q ws : P,Q z3: P r4:Q

G(C}) x G(CF) x G(C3F)

Yo : 0
/\
y1: P ys 1 @
/\ /\
y2: P ys 1 Q yo : P yi2 1 Q

2 AT A TR

yz: P ys:Q Yy : P yr:Q yio: Py Q Y13 : Py1s 2 Q

Fig. 1. Description trees of C¥,C3, C% and their product.

The product Gy X --- x G, of n EL-description trees Gi,...,G, is defined by
induction on the depth of the trees. Let vp1,...,v,, respectively be the roots
of the trees Gi, ..., G, with labels ¢1(vo,1),-..,€n(vo,,). Then the product G; x
.-+ X Gy, has the root (vo,1,...,v0,,) with label ¢1(vo1) N...N ¢y (vo,p). For each
role r and for each n-tuple vy, ..., v, of r-successors of v 1,...,v9, the root
(vo,1,---,v0,n) has an r-successor (vy,...,vy), which is the root of the product
of the subtrees of Gy,...,G, with roots vy,...,v,. The lower half of Figure 1
depicts the tree obtained as the product of the description trees corresponding
to the descriptions O}, C3,C3. This tree is a full binary tree of depth 3, where
the nodes reached by going to the left are labeled with P and the ones reached
by going to the right are labeled with Q.

This example can be generalized to an example demonstrating that the lcs
of n EL-concept descriptions of size linear in n may be exponential in n [2].

Ezample 1. We define for each n > 1 a sequence {C],...,C} of EL-concept
descriptions. For n > 0 let

D T, n=20
") I (PNQMNDp_1),n>0

and for n > 1 and 1 < i < n we define

C’n ElT‘.(PHDn_l)HHT.(QHDn_l),'i:1
ST I(Pnnorh, 1<i<n.

It is easy to see that each C7 is linear in the size of n. The product of the
corresponding description trees is a full binary tree of depth n, where the nodes
reached by going to the left are labeled with P and the ones reached by going to
the right are labeled with Q. Obviously, the size of this tree is exponential in n.
What is less obvious, but can also be shown (see [2], is that there is no smaller
description tree representing the same concept (modulo equivalence).

3.2 The Least Common Subsumer in ACE

ALE-description trees are very similar to £L£-description trees. The value restric-
tions just lead to another type of edges, which are labeled by Vr instead of
simply r. However, the unfolded concept descriptions must first be normalized
before they can be transformed into description trees. On the one hand, there
are normalization rules dealing with negation and the bottom concept. Here we
will ignore them since neither negation nor bottom is used in our examples. On
the other hand, there are normalization rules dealing with value restrictions and
their interaction with existential restrictions:

Vr.ENVr.F — Vr.(ENF),

Vr.EN3Ir.F — Yr.EN3r.(ENF).

The first rule conjoins all value restrictions for the same role into a single value
restriction. The second rule is problematic since it duplicates subterms, and
thus may lead to an exponential blow-up of the description. The following is a
well-known example that demonstrates this effect.

Example 2. We define the following sequence Cy,Cs, C3, ... of ALE-concept de-

scriptions: o 3P M 3.0, n=1
"I P 0 IQ N Vr.Cpoq, n> 1.

Obviously, the size of C), is linear in n. However, applying the second normal-
ization rule to C'), yields a description of size exponential in n. If one ignores the
value restrictions (and everything occurring below a value restriction), then the
description tree corresponding to the normal form of C), is again a full binary
tree of depth n, where the nodes reached by going to the left are labeled with P
and the ones reached by going to the right are labeled with Q. Figure 2 shows
the ALE-description tree of the normal form of Cs.

Given the description trees of normalized ALE-concept descriptions, one can
again obtain the lcs as the product of these trees. In this product, the bottom
concept requires a special treatment, but we ignore this issue since it is irrelevant
for our examples.

For each tuple of nodes on the same role-level, existential restrictions and
value restrictions are treated symmetrically, i.e., for a role r the r-successors
are combined with r-successors in all possible combinations (as before) and the

A\A\ A\
o e

PQPQPQ PQPQPQ PQPQPAQ

Fig. 2. The ALE-description tree of the normal form of C3 from Example 2.

(unique) Vr-successors are combined with each other. Note that r-successors are
not combined with Vr-successors. The following example is taken from [2].

Example 3. For n > 1, we consider the concept descriptions C), introduced in
Example 2 and the concept descriptions D,, defined in Example 1. By building
the product of the description trees corresponding to the normal forms of),
and D,,, one basically removes the value restrictions from the normal form of C),.
Thus, one ends up with an lcs E,, that agrees with the binary tree we obtained
in Example 1. Again, it can be shown that there is no smaller ALE-concept
description equivalent to this lcs.

The lcs computed by the basic algorithm is a concept description not contain-
ing names defined in the underlying TBox. If some “parts” of this description
have been given names in the TBox, they can be replaced by these names, thus
reducing the size of the description. This can be achieved through rewriting [3].
In the next section we show that, though rewriting may be quite effective in
some examples (see [3]), it cannot always reduce the size of the lcs.

4 Using TBoxes to Compress the lcs

The exponentially large lcs E,, constructed in Examples 1 and 3 has as its de-
scription tree the full binary tree of depth n, where the nodes reached by going
to the left were labeled with P and the ones reached by going to the right were
labeled with (). This concept can be defined in a TBox of size linear in n.

Example 4. Consider the following TBox T,:

{A; =3I PNIrQ} U
{Ai = E'T.(PH Ai—l) M El’r‘(Q M Ai—l) | 1< S TL}

It is easy to see that the size of 7, is linear in n and that A, =7, E,, i.e., the
TBox T, provides us with a compact representation of F,,.

In general, however, such a compact representation by structure sharing is not
possible. We will first give a counterexample for the n-ary lcs in £, and then
for the binary lcs in ALE. The main idea underlying both counterexamples is to
generate description trees having exponentially many leaves that are all labeled
by sets of concept names that are incomparable w.r.t. set inclusion. To this
purpose, we consider the set of concept names Ny, := {A?, A} |1 < j <n}, and

define A':= A" ..M Al for each n-tuple i = (iy,...,i,) € {0,1}".

4.1 The Counterexample for L

For all n > 1 we define a sequence (1, ..., C,, of n EL-concept descriptions whose
size is linear in n:

c;=a [1 B n 3% [l B

BEN,\{A?} BEN.\{A}}
Since each of the concepts C; contains two existential restrictions, the lcs of
C1,...,C), contains 2" existential restrictions. The concept descriptions occur-
ring under these restrictions are obtained by intersecting the corresponding con-
cept descriptions under the existential restrictions of the concept descriptions
C;. Tt is easy to see that these are exactly the 2" concept descriptions Al for
i € {0,1}" introduced above. Since the descriptions A' are pairwise incompara-
ble w.r.t. subsumption, it is clear that there is no smaller ££-concept description
equivalent to this lcs. We show now that a TBox cannot be used to obtain a
smaller representation.

Recall that acyclic TBoxes can be unfolded by replacing defined names by
their definitions until no more defined names occur on the right-hand sides [10].
If the defined name A represents the lcs of Cy,...,C, w.r.t. a TBox, then the
description defining A in the unfolded TBox is equivalent to this lcs.

Obviously, to get a more compact representation of the lcs using a TBox, one
needs duplication of concept names on the right-hand sides of the TBox. During
unfolding of the TBox, this would, however, lead to duplication of subconcepts.
Since the (description tree of the) lcs we have constructed here has 2™ different
leaves, such duplication does not help, since it can only duplicate leaves with the
same label, but not generate leaves with different labels. Thus, in general, we
cannot represent, the lcs in a more compact way by introducing new definitions
in an £ TBox.

4.2 The Counterexample for ALCE

For n > 1 we define concept descriptions C), of size quadratic in n. For n > 1,
let F} :=Vr..--Vr.Aj,; be the concept description consisting of j nested value
restrictions followed by the concept name Ag- +1- We define

Cy =3I A N 3Ir. Al
Cp:=3.F° , 1 IrF | 1 Vr.Ch_y for n > 1.

o0 0 0
r

Vrl vr ‘v’rl Vrt 7\

A3 Ay A3 Ay A A

Fig. 3. The ALE-description tree corresponding to Cs.

Figure 3 shows the description tree corresponding to Cs.

Applying the normalization rule Vr.E N 3Ir.F — Vr.ENJIr(ENF) to C,
yields a normalized concept description whose size is exponential in n. If one
ignores the value restrictions (and everything occurring below them), then the
description tree corresponding to this normal form of C), is a full binary tree
of depth n whose 2" leaves are labeled by the 2" concept descriptions A! for
ie{0,1}"

Let D, := Jr.---3r. |_|B€Nn B be the concept description consisting of n
nested existential restrictions followed by the conjunction of all concept names
in N,. Again, by building the product of the description trees corresponding
to the normal forms of C), and D,,, one basically removes the value restrictions
from the normal form of C),. Thus, the lcs corresponds to the full binary tree of
depth n whose leaves are labeled by the concept descriptions A for i € {0,1}™.

By an argument similar to the one for ££ one can show that there is no
smaller ALE-concept description equivalent to this lcs, and that a TBox cannot
be used to obtain a smaller representation.

The examples given above show that the exponential size of the lcs cannot
be avoided by employing structure sharing (i.e., replacing common substructures
by a defined name). In practice, however, the complexity of unfolding concept
descriptions before applying the lcs algorithm appears to be more problematic
than this inherent complexity of the lcs operation. How to avoid this unfolding
step is the topic of the next section.

5 Computing the lcs using Lazy Unfolding

Recall from the beginning of Section 3 that the computation of an lcs is real-
ized by three consecutive traversals of the concept descriptions: unfolding, nor-
malization, and construction of the product. The first two steps may cause an
exponential blow-up of the descriptions which are in turn the input for the next
step, whereas the third step is polynomial for the binary lcs operation.

Before illustrating the shortcomings of the basic lcs algorithm by an example,
let us formally define the size of a concept. The size |C| of a concept description
C' is increased by 1 for each occurrence of a role name or a concept name in C'
(with |T| = |L1] = 0).

Ezample 5 (naive lcs algorithm). Given the following TBox

T:={Ci= A N3rD, Cy = Ay M 3r.Dy,
D1 = (VSBl) M (ElSDQ) I (E'SD?,),
Dy = B, M Bs, D3y = B3MNBy},

we compute the lcs of C'; and C5 as sketched in Section 3. After the first and
second step we obtain the unfolded and normalized descriptions

C!:=A; 1 Ir.(Vs.By N 3s.(B; N By N Bs) M 3s.(By 1 Bs M By))

for i € {1,2}. In the third step, the algorithm first determines the concept names
appearing on the top-level of the les—in this case none since {4;} N{A;} = 0.
Then, the algorithm makes a recursive call to compute the Ics of the descriptions
occurring in the existential restriction of C] and C}, respectively. This in turn
leads to recursive calls for the pair of value restrictions and for all four pairs of
existential restrictions for the s-successors. As output, the algorithm yields

LCS(Cl R Cg) = ElT‘.(VS.Bl [l
HS(Bl m B2 m Bg) M
E'S(Bl [l B3) [l
E'S(Bl [l B3) [l
Js.(By M B3 M By)) which is of size |LCS(CY, Cs)| = 17.

Thus, the result is computed by three recursive traversals of the input descrip-
tions. The size of the output description results from the actually unnecessary
unfolding of D;. Even if the redundant existential restrictions are eliminated
from the result, the size of the returned lcs concept description is still quite big
in comparison to the equivalent description 3r.D;. Of course, rewriting the com-
puted les w.r.t. 7 would also yield this result, but it would be better to avoid
obtaining such an unnecessarily large intermediate result.

The idea of lazy unfolding is to replace a defined concept in a concept description
only if examination of that part of the description is necessary. Lazy unfolding
unfolds all defined concepts appearing on the top-level of the concept descrip-
tion under consideration, while defined concepts on deeper role-levels remain
unchanged. Note, however, that unfolding may still be applied iteratedly if un-
folding has produced another defined name on the top-level. Once this is finished,
all (negated) primitive concepts, value restrictions, and existential restrictions
that would occur on the top-level of the completely unfolded concept descrip-
tion are visible, and one can in principle continue as in the case of the naive lcs
algorithm.

The algorithm for computing the lcs with lazy unfolding, as shown in Fig-
ure 4, is based on the following sets:

Input: Two ALE-concept descriptions C, D and an ACE-TBox T
Algorithm: LCS,(C, D)

if CCy D then LCS,(C,D)=D

if DCy C then LCS,(C,D)=C

else

C" := lazy-unfold(C, T, D' := lazy-unfold(D, T,

{P1,..., Py} :=prim(C"), {Pi,..., P} :==prim(D’),

for all r € Ng: for all r € Ny :

Co:=va|,«(cﬂ)7 D():=V2\|,«(D’)7

{Ch,...,Ch} =ex, (C"), {D1,...,Dp} :=ex, (D)

end for end for

LCS(C, D) = [P n

Peprim(C’)Nprim(D')

[1 (vrLcs, (val.(C'),val, (D)) 1

rENR

[T¢ T1 3rLcs, (G nval ('), D; 1 val, (D))
re€NR C; € ex,.(C")
Dj S eX,w(DI)

Fig. 4. The Ics algorithm LCS), for ALE using lazy unfolding.

prim(C): denotes the set of all (negated) primitive names occurring on the top-
level of C'.
val.(C): denotes the conjunction of the concept descriptions occurring in value

restrictions on the top-level of C, where val.(C') := T if there is no value
restriction.
ex,(C): denotes the set {C1,...,Cp} of concept descriptions occurring in exis-

tential restrictions of the form 3r.C; on the top-level of C.

The LCS, algorithm as given in Figure 4 tests in each recursion, if the input
concepts subsume each other, in this case the lcs is trivial. The algorithm uses
the function lazy-unfold() for unfolding the top-level of the input concept de-
scriptions w.r.t. the input ACE-TBox 7. Next, the auxiliary sets and concept
descriptions defined above are computed. The returned lcs concept description
is a conjunction of three components:

1. the conjunction of all (negative) primitive concepts appearing on both the
top-level of C" and D',

2. the conjunction of all value restrictions derived from recursive calls of LCS),
for each role that has a value restriction on top-level of C' and D',

3. a conjunction of the existential restrictions derived from recursive calls of
LCS,, for each combination of existential restrictions where the value restric-
tions are propagated “on the fly”.

In contrast to the three independent recursions in the naive algorithm, the LCS),
algorithm traverses the structure of the concept descriptions recursively only
once. The three steps of the basic algorithm are now interwoven on each role-
level. In particular, the normalization of the concept descriptions is realized role-
level-wise (i) by the definition of the description val,.(C’) and val,(D’); (ii) by
including the conjuncts val,.(C’) and val,.(D'), respectively, in the recursive calls
for the existential restrictions. The normalization rules dealing with negation
and the bottom concept (which we have not described above) are taken care of
by the subsumption test at the beginning of the algorithm.

There are two reasons why the new lcs algorithm may avoid computations
done by the naive algorithm. First, if one of the subsumption tests at the be-
ginning are successful, then one of the input descriptions is returned without
unfolding or normalizing any of the two descriptions. This can also happen in
recursive calls of the algorithm. In particular, this also means that the returned
description may still contain defined names. Second, if an existential restriction
for a role r has no matching restriction in the other description, then this re-
striction need not be processed (i.e., its concept description is not unfolded and
normalized). Consider once more Example 5 to illustrate the first effect.

Ezample 6 (lcs using lazy unfolding). Assume we apply the new lcs algorithm
to the descriptions C7,Cs of Example 5. In the first step, none of the two
subsumption conditions hold and the algorithm calls lazy-unfold(C;,7) and
lazy-unfold(C2, 7). There is no defined concept name to replace on top-level.
Then the algorithm calls LCS), recursively for the pair of existential restrictions.
Because the subsumption test is successful, this call directly yields D;, with-
out considering the definition of D;. Thus the returned concept description is
LCSu(Cy, C2) = Ar.Dy, which has size |LCS,,(Cy,Cy)| = 2.

Comparing the lcs from Example 5 to the result obtained here, we see that
LCS), needs less recursive calls with less recursion depth, and furthermore returns
a smaller concept description.

Using lazy unfolding is advantageous in most cases when computing a lcs
w.r.t. a TBox, but there are, of course, combinations of input concept descrip-
tions where an exponential growth of the lcs concept description is still unavoid-
able.

6 Implementations of the lcs

We have implemented both, the naive and the lazy unfolding based lcs algorithm
[12] in Lisp. The FaCT system [8] is used to compute subsumption. The core
of both implementations is a binary lcs function wrapped by a function that
successively calls the binary lcs function.

The “old lcs” is a straightforward implementation of the fundamental algo-
rithm outlined in Section 3 and discussed in [2]. It also uses an implementation
of the heuristic rewriting algorithm for computing small (but not always mini-
mal) rewritings of ALE-concept descriptions mentioned earlier (see [3]), which we

1000

Concept size

10
old L.CS old LCS + Rew. new LCS new LCS + Rew.

Fig. 5. Average concept sizes obtained from the four settings.

use in our evaluation. The “new lcs” implements the algorithm LCS), introduced
in Section 5. It is also a straightforward implementation of this algorithm and
does not employ special low-level encoding tricks to improve its performance. In
contrast to the old lcs implementation, which is strongly linked to FaCT, the
new lcs may be coupled with arbitrary DL reasoners.

6.1 A first Evaluation of the Implementations

To compare the performance of our implementations of both algorithms we use a
TBox derived from our application in chemical process engineering. It contains
52 primitive concepts, 67 defined concepts and 43 roles. It has a rather deep
concept hierarchy, which makes it likely that least common subsumers computed
for concept descriptions defined in this TBox will not collapse to T.

The input descriptions we used for the evaluation are combinations of seven
REACTOR concepts defined in the application TBox. To compute the lcs of all
possible combinations of these REACTOR concepts, it suffices to compute some
combinations determined by the attribute exploration algorithm as described
in [4]. Our test suite included 22 different lcs calls, ranging from binary lcs
calls to lcs calls with seven input concepts. For each computation of these least
common subsumers, we measured run-times and sizes of the output concept
descriptions of four settings: both of the lcs implementations and both of the
lcs implementations followed by a rewriting step. The latter two use the same
rewriting implementation of the heuristic algorithm. To obtain representative
run-times we ran each LCS in each setting 100 times.

The results for the average concept size are shown in Figure 5, where one
should note the logarithmic scale. The measured values indicate that an lcs
computed by the LCS), implementation returns concept descriptions that are
about an order of magnitude smaller than the concept descriptions returned by
the naive algorithm. The rewritten lcs concept descriptions are again one order
of magnitude smaller than the lcs concept description returned by the LCS),

8000

7000
6000

5000

Run-time in ms

4000
3000
2000

00
old LCS + Rew. new LCS + Rew.

Fig. 6. Average run-times needed by the different settings.

implementation. Comparing the concept sizes obtained for the settings including
the heuristic rewriting shows that starting from a smaller concept description
does not yield a smaller rewritten concept. This is probably due to the fact that
for our examples the heuristic algorithm produced the optimal result.

The average concept description obtained with the LCS), implementation has
a concept size of about 100. These concept descriptions are still too big to be
comprehensible to a human reader. In our application scenario, the knowledge
engineer is supposed to choose an appropriate description from a set of computed
least common subsumers, and possibly also modifying the chosen description
by hand. Therefore, rewriting remains necessary as an additional step in this
application.

Figure 6 shows the sum of run-times for computing the lcs (grey) and rewrit-
ing the obtained les concept description (white). The comparison of run-times
for the lcs implementations indicates a speed-up of factor 3.5. The run-time for
rewriting an lcs concept description returned by the LCS), implementation is also
lower than for rewriting the description produced by the naive algorithm (by a
factor of about 2). Taking lcs computation and rewriting together, the overall
run-time differs by a factor of three.

7 Conclusion and Future Work

The worst-case examples presented in Section 4 are quite contrived and not likely
to occur in practice. Nevertheless, they show that, in principle, the exponential
blow-up inherent to the lcs operation cannot be avoided, even if one can introduce
“abbreviations” for subdescriptions. An interesting question for future research
is to characterize situations in which this exponential blow-up cannot occur, and
to check whether these situations are likely to occur in practice.

The performance of the lcs algorithm using lazy unfolding greatly depends
on the structure of the TBox and the input descriptions. There are, of course,
examples where there is no improvement over the naive algorithm. However,
since no overhead is generated by using lazy unfolding, it is advantageous to use
the new algorithm in any case.

The first evaluation of the lcs implementations in our application framework
indicates that using lazy unfolding can substantially decrease the size of the
resulting concept descriptions. However, our results also indicate that it is still
necessary to perform rewriting after computing the Ics in order to obtain concept
descriptions that are small enough to be inspected by human users. As indicated
by our tests, lazy unfolding will also decrease the run-time of the subsequent
rewriting step.

References

1. F. Baader and R. Kiisters. Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN -concept descriptions. In O. Herzog
and A. Giinter, eds., Proc. of KI-98, volume 1504 of Lecture Notes in Computer
Science, p. 129-140, Bremen, Germany, 1998. Springer-Verlag.

2. F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumer
in description logics with existential restrictions. In T. Dean, ed., Proc.
of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI-99), p. 96-101,
Stockholm, Sweden, 1999. Morgan Kaufmann, Los Altos. An extended ver-
sion appeared as LTCS-Report LTCS-98-09, LuFG Theoretical Computer Sci-
ence, RWTH Aachen, Germany, 1998. See http://www-lti.informatik.rwth-
aachen.de/Forschung/Papers.html.

3. F. Baader, R. Kiisters, and R. Molitor. Rewriting concepts using terminologies.
In A.G. Cohn, F. Giunchiglia, and B. Selman, eds., Proc. of the 7th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR-00), p. 297-308,
San Francisco, CA, 2000. Morgan Kaufmann Publishers.

4. F. Baader and R. Molitor. Building and structuring description logic knowledge
bases using least common subsumers and concept analysis. In B. Ganter and
G. Mineau, eds., Proc. of ICCS-00, volume 1867 of Lecture Notes in Artificial
Intelligence, p. 290-303. Springer-Verlag, 2000.

5. F. Baader and U. Sattler. Knowledge representation in process engineering. In
Proc. of DL-96, 1996.

6. F. Baader and A.-Y. Turhan. TBoxes do not yield a compact representation of the
least common subsumer. In Proc. of DL-2001, 2001.

7. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4:109-132, 1994.

8. I. Horrocks. Optimising Tableaur Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

9. R. Kiisters and R. Molitor. Approximating most specific concepts in description
logics with existential restrictions. In T. Eiter F. Baader, G. Brewka, eds., Proc.
of the 24th German Annual Conf. on Artificial Intelligence (KI’01), number 2174
in Lecture Notes In Artificial Intelligence, p. 33-47. Springer-Verlag, 2001.

10. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence
Journal, 43:235-249, 1990.

11. U. Sattler. Terminological knowledge representation systems in a process engineer-
ing application. PhD thesis, RWTH Aachen, 1998.

12. A.-Y. Turhan and R. Molitor. Using lazy unfolding for the computation of least
common subsumers. In Proc. of DL-2001, 2001.

