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Abstra
t. For Des
ription Logi
s with existential restri
tions, the size

of the least 
ommon subsumer (l
s) of 
on
ept des
riptions may grow

exponentially in the size of the input des
riptions. The �rst (negative)

result presented in this paper is that it is in general not possible to

express the exponentially large 
on
ept des
ription representing the l
s

in a more 
ompa
t way by using an appropriate (a
y
li
) terminology.

In pra
ti
e, a se
ond and often more severe 
ause of 
omplexity was

the fa
t that 
on
ept des
riptions 
ontaining 
on
epts de�ned in a ter-

minology must �rst be unfolded (by repla
ing de�ned names by their

de�nition) before the known l
s algorithms 
ould be applied. To over-


ome this problem, we present a modi�ed l
s algorithm that performs

lazy unfolding, and show that this algorithm works well in pra
ti
e.

1 Introdu
tion

In an appli
ation in 
hemi
al pro
ess engineering [5, 11℄, we support the bottom-

up 
onstru
tion of Des
ription Logi
 (DL) knowledge bases by 
omputing most

spe
i�
 
on
epts (ms
) of individuals and least 
ommon subsumers (l
s) of 
on-


epts: instead of dire
tly de�ning a new 
on
ept, the knowledge engineer intro-

du
es several typi
al examples as individuals, whi
h are then generalized into a


on
ept des
ription by using the ms
 and the l
s operation [1, 2, 9℄. This des
rip-

tion is o�ered to the knowledge engineer as a possible 
andidate for a de�nition

of the 
on
ept.

Unfortunately, due to the nature of the algorithm for 
omputing the l
s

proposed in [2℄, this algorithm yields 
on
ept des
riptions that do not 
ontain

de�ned 
on
ept names, even if the des
riptions of the individuals use 
on
epts

de�ned in a terminology (TBox) T . In addition, due to the inherent 
omplexity

of the l
s operation, these des
riptions may be quite large (exponentially large

in the size of the unfolded input des
riptions). For the small DL EL, whi
h

allows for 
onjun
tions, existential restri
tions, and the top 
on
ept, the binary

l
s operation is still polynomial, but the n-ary one is already exponential. For

the DL ALE , whi
h extends EL by value restri
tions, primitive negation, and the

bottom 
on
ept, already the binary l
s is exponential in the worst 
ase.

To over
ome the problem of large least 
ommon subsumers, we have employed

rewriting of the 
omputed 
on
ept des
ription using the TBox T in order to

obtain a shorter and better readable des
ription [3℄. Informally, the problem of



rewriting a 
on
ept given a terminology 
an be stated as follows: given a TBox

T and a 
on
ept des
ription C that does not 
ontain 
on
ept names de�ned in

T , 
an this des
ription be rewritten into an equivalent smaller des
ription D by

using (some of) the names de�ned in T ? First results obtained in our pro
ess

engineering appli
ation were quite en
ouraging: for a TBox with about 65 de�ned

and 55 primitive names, sour
e des
riptions of size about 800 (obtained as results

of the l
s 
omputation) were rewritten into des
riptions of size about 10 [3℄.

This paper 
omplements these results in two ways. First, the positive empir-

i
al results for the rewriting approa
h led us to 
onje
ture that maybe TBoxes


an always be used to yield a 
ompa
t representation of the l
s. More formally,

our 
onje
ture 
an be stated as follows. Let L be a DL for whi
h the l
s opera-

tion (binary or n-ary) is exponential (like EL or ALE). Given input des
riptions

C

1

; : : : ; C

n

with l
sD, does there always exist a TBox T whose size is polynomial

in the size of C

1

; : : : ; C

n

and a de�ned 
on
ept name A in T su
h that A �

T

D,

i.e., the TBox de�nes A su
h that it is equivalent to the l
s D of C

1

; : : : ; C

n

? A


loser look at the worst-
ase examples for EL and ALE from [2℄ supported this


onje
ture: the exponentially large least 
ommon subsumers 
onstru
ted there


an easily be represented using polynomially large TBoxes. Nevertheless, we will

show in Se
tion 4 that the 
onje
ture is false, both for EL and ALE .

Se
ond, we modify the l
s algorithm presented in [2℄ su
h that it works on


on
ept des
riptions still 
ontaining names de�ned in a TBox. The idea is that

unfolding is not performed a priori, but only if ne
essary. This te
hnique, 
alled

lazy unfolding, is a 
ommon optimization te
hnique for standard inferen
es su
h

as subsumption [7, 8℄, but was until now not employed for non-standard infer-

en
es like 
omputing the l
s. Though the l
s 
omputed by this modi�ed algorithm

may 
ontain de�ned 
on
ept names, it turned out that rewriting 
an still redu
e

the size of the des
ription. However, sin
e it already starts with smaller des
rip-

tions, the rewriting step takes less time than with the unmodi�ed algorithm.

2 Preliminaries

First, we introdu
e the DLs EL and ALE in more detail. Con
ept des
riptions are

indu
tively de�ned using a set of 
onstru
tors, starting with a set N

C

of 
on
ept

names and a set N

R

of role names. The 
onstru
tors determine the expressive

power of the DL. In this paper, we 
onsider 
on
ept des
riptions built from the


onstru
tors shown in Table 1. In EL, 
on
ept des
riptions are formed using the


onstru
tors top 
on
ept (>), 
onjun
tion (C u D) and existential restri
tion

(9r:C). The DL ALE provides all the 
onstru
tors introdu
ed in Table 1.

The semanti
s of a 
on
ept des
ription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation fun
tion �

I

maps ea
h 
on
ept name P 2 N

C

to a set P

I

� �

and ea
h role name r 2 N

R

to a binary relation r

I

� ���. The extension of �

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in Table 1.

A TBox is a �nite set of 
on
ept de�nitions of the form A

:

= C, where A is a


on
ept name and C a 
on
ept des
ription. In addition, we require that TBoxes



Constru
tor name Syntax Semanti
s

primitive 
on
ept, P 2 N

C

P P

I

� �

top-
on
ept > �


onjun
tion C uD C

I

\D

I

existential restri
tion for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restri
tion for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-
on
ept ? ;

Table 1. Syntax and semanti
s of 
on
ept des
riptions.

are a
y
li
 and do not 
ontain multiple de�nitions (see, e.g., [10℄). Con
ept names

o

urring on the left-hand side of a de�nition are 
alled de�ned 
on
epts. All

other 
on
ept names are 
alled primitive 
on
epts. In TBoxes of the DL ALE ,

negation may only be applied to primitive 
on
epts. An interpretation I is a

model of the TBox T i� it satis�es all its 
on
ept de�nitions, i.e., A

I

= C

I

for

all de�nitions A

:

= C in T .

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C is

subsumed by the des
ription D w.r.t. the TBox T (C v

T

D) i� C

I

� D

I

holds

for all models I of T . The des
ription C is subsumed by D (C v D) i� it is

subsumed by D w.r.t. the empty TBox (whi
h has all interpretations as models).

The 
on
ept des
riptions C andD are equivalent (w.r.t. T ) i� they subsume ea
h

other (w.r.t. T ). We write C �

T

D if C and D are equivalent w.r.t. T .

In this paper, we are interested in the non-standard inferen
e task of 
om-

puting the least 
ommon subsumer of 
on
ept des
riptions.

De�nition 1 (Least Common Subsumer). Let C

1

; : : : ; C

n

be 
on
ept de-

s
riptions in a DL L. The L-
on
ept des
ription C is a least 
ommon subsumer

(l
s) of C

1

; : : : ; C

n

in L (for short C = LCS

L

(C

1

; : : : ; C

n

)) i�

1. C

i

v C for all 0 � i � n, and

2. C is the least 
on
ept des
ription with this property, i.e., if D is a 
on
ept

des
ription satisfying C

i

v D for all 1 � i � n, then C v D.

This de�nition 
an naturally be extended to 
on
ept de�nitions 
ontaining names

de�ned in a TBox T : simply repla
e subsumption by subsumption w.r.t. T .

In general (i.e., for an arbitrary DL L), a given 
olle
tion of n 
on
ept de-

s
riptions need not have an l
s. However, if an l
s exists, then it is unique up to

equivalen
e. This justi�es to talk about the l
s of C

1

; : : : ; C

n

in L.

3 Computing the Least Common Subsumer

In [2℄ it was shown that, for the DLs EL and ALE , the l
s always exists. The main

idea underlying the algorithms 
omputing the l
s is that 
on
ept des
riptions are

transformed into so-
alled des
ription trees. Sin
e subsumption 
an be 
hara
-

terized through the existen
e of homomorphisms between des
ription trees, the



l
s operation 
orresponds to the produ
t of des
ription trees (see [2℄). Be
ause

of spa
e limitations, we 
an only outline the l
s algorithm introdu
ed in [2℄. The

basi
 algorithm for 
omputing the l
s of two EL- or ALE-
on
ept des
riptions

w.r.t. a TBox 
onsists of the following steps:

1. Unfold the input des
riptions: if the input 
on
ept des
riptions 
ontain 
on-


ept names de�ned in the TBox T , these 
on
ept names are re
ursively

repla
ed by their de�nitions until no de�ned names remain in the des
rip-

tions. It is well-known that the pro
ess of unfolding a des
ription may 
ause

an exponential blow-up [10℄.

2. Normalize the input des
riptions: the normal form is 
omputed by removing


on
ept des
riptions equivalent to >, repla
ing in
onsistent 
on
ept des
rip-

tions by ?, joining value restri
tions for the same role, and propagating value

restri
tions into existential restri
tions on all role-levels. This last step of the

normalization (whi
h is only relevant for ALE) is yet another sour
e of an

exponential blow-up [2, 6℄.

3. Transform the normalized des
riptions into des
ription trees and 
ompute

their produ
t: basi
ally, the des
ription tree of a normalized des
ription

is just its syntax tree. The produ
t of the des
ription trees 
an then be

translated ba
k into a 
on
ept des
ription, whi
h is the l
s of the input

des
riptions w.r.t. T . The produ
t 
onstru
tion is explained in the next

subse
tion.

It should be noted that ea
h of the three steps of the l
s algorithm traverses the

whole stru
ture of the 
on
ept des
ription as obtained in the step before re
ur-

sively. The basi
 l
s algorithm is given as a binary operation sin
e the n-ary l
s


an be redu
ed to the binary operation using the fa
t that LCS(C

1

; : : : ; C

n

) =

LCS(C

1

; LCS(C

2

; : : : ; C

n

)). Of 
ourse, one 
an also dire
tly treat the n-ary l
s

by using the n-ary produ
t of des
ription trees. We will illustrate the l
s al-

gorithms for EL and ALE on two examples, whi
h are the worst-
ase examples

demonstrating that the n-ary l
s in EL and the binary l
s in ALE may lead to

exponentially large 
on
ept des
riptions (even without TBox).

3.1 The Least Common Subsumer in EL

For the DL EL, a des
ription tree is merely a graphi
al representation of the syn-

tax of the 
on
ept des
ription. Its nodes are labeled with sets of 
on
ept names

(
orresponding to possibly negated 
on
ept names o

urring in the des
ription)

and its edges are labeled with role names (
orresponding to the existential re-

stri
tions o

urring in the des
ription). We 
all a node w rea
hable from a node

v by an edge labeled with r an r-su

essor of v.

For example, the trees depi
ted in the upper half of Figure 1 were obtained

from the 
on
ept des
riptions

C

3

1

:= 9r:(P u 9r:(P uQ u 9r:(P uQ))) u 9r:(Q u 9r:(P uQ u 9r:(P uQ)));

C

3

2

:= 9r:(P uQ u 9r:(P u 9r:(P uQ)) u 9r:(Q u 9r:(P uQ)));

C

3

3

:= 9r:(P uQ u 9r:(P uQ u 9r:P u 9r:Q))):
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Fig. 1. Des
ription trees of C

3

1

; C

3

2

; C

3

3

and their produ
t.

The produ
t G

1

� � � � � G

n

of n EL-des
ription trees G

1

; : : : ;G

n

is de�ned by

indu
tion on the depth of the trees. Let v

0;1

; : : : ; v

0;n

respe
tively be the roots

of the trees G

1

; : : : ;G

n

with labels `

1

(v

0;1

); : : : ; `

n

(v

0;n

). Then the produ
t G

1

�

� � � � G

n

has the root (v

0;1

; : : : ; v

0;n

) with label `

1

(v

0;1

)\ : : :\ `

n

(v

0;n

). For ea
h

role r and for ea
h n-tuple v

1

; : : : ; v

n

of r-su

essors of v

0;1

; : : : ; v

0;n

, the root

(v

0;1

; : : : ; v

0;n

) has an r-su

essor (v

1

; : : : ; v

n

), whi
h is the root of the produ
t

of the subtrees of G

1

; : : : ;G

n

with roots v

1

; : : : ; v

n

. The lower half of Figure 1

depi
ts the tree obtained as the produ
t of the des
ription trees 
orresponding

to the des
riptions C

3

1

; C

3

2

; C

3

3

. This tree is a full binary tree of depth 3, where

the nodes rea
hed by going to the left are labeled with P and the ones rea
hed

by going to the right are labeled with Q.

This example 
an be generalized to an example demonstrating that the l
s

of n EL-
on
ept des
riptions of size linear in n may be exponential in n [2℄.

Example 1. We de�ne for ea
h n � 1 a sequen
e fC

n

1

; : : : ; C

n

n

g of EL-
on
ept

des
riptions. For n � 0 let

D

n

:=

(

>; n = 0

9r:(P uQ uD

n�1

); n > 0

and for n � 1 and 1 � i � n we de�ne



C

n

i

:=

(

9r:(P uD

n�1

) u 9r:(Q uD

n�1

); i = 1

9r:(P uQ u C

n�1

i�1

); 1 < i � n:

It is easy to see that ea
h C

n

i

is linear in the size of n. The produ
t of the


orresponding des
ription trees is a full binary tree of depth n, where the nodes

rea
hed by going to the left are labeled with P and the ones rea
hed by going to

the right are labeled with Q. Obviously, the size of this tree is exponential in n.

What is less obvious, but 
an also be shown (see [2℄, is that there is no smaller

des
ription tree representing the same 
on
ept (modulo equivalen
e).

3.2 The Least Common Subsumer in ALE

ALE-des
ription trees are very similar to EL-des
ription trees. The value restri
-

tions just lead to another type of edges, whi
h are labeled by 8r instead of

simply r. However, the unfolded 
on
ept des
riptions must �rst be normalized

before they 
an be transformed into des
ription trees. On the one hand, there

are normalization rules dealing with negation and the bottom 
on
ept. Here we

will ignore them sin
e neither negation nor bottom is used in our examples. On

the other hand, there are normalization rules dealing with value restri
tions and

their intera
tion with existential restri
tions:

8r:E u 8r:F �! 8r:(E u F );

8r:E u 9r:F �! 8r:E u 9r:(E u F ):

The �rst rule 
onjoins all value restri
tions for the same role into a single value

restri
tion. The se
ond rule is problemati
 sin
e it dupli
ates subterms, and

thus may lead to an exponential blow-up of the des
ription. The following is a

well-known example that demonstrates this e�e
t.

Example 2. We de�ne the following sequen
e C

1

; C

2

; C

3

; : : : of ALE-
on
ept de-

s
riptions:

C

n

:=

�

9r:P u 9r:Q; n = 1

9r:P u 9r:Q u 8r:C

n�1

; n > 1:

Obviously, the size of C

n

is linear in n. However, applying the se
ond normal-

ization rule to C

n

yields a des
ription of size exponential in n. If one ignores the

value restri
tions (and everything o

urring below a value restri
tion), then the

des
ription tree 
orresponding to the normal form of C

n

is again a full binary

tree of depth n, where the nodes rea
hed by going to the left are labeled with P

and the ones rea
hed by going to the right are labeled with Q. Figure 2 shows

the ALE-des
ription tree of the normal form of C

3

.

Given the des
ription trees of normalized ALE-
on
ept des
riptions, one 
an

again obtain the l
s as the produ
t of these trees. In this produ
t, the bottom


on
ept requires a spe
ial treatment, but we ignore this issue sin
e it is irrelevant

for our examples.

For ea
h tuple of nodes on the same role-level, existential restri
tions and

value restri
tions are treated symmetri
ally, i.e., for a role r the r-su

essors

are 
ombined with r-su

essors in all possible 
ombinations (as before) and the
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Fig. 2. The ALE-des
ription tree of the normal form of C

3

from Example 2.

(unique) 8r-su

essors are 
ombined with ea
h other. Note that r-su

essors are

not 
ombined with 8r-su

essors. The following example is taken from [2℄.

Example 3. For n � 1, we 
onsider the 
on
ept des
riptions C

n

introdu
ed in

Example 2 and the 
on
ept des
riptions D

n

de�ned in Example 1. By building

the produ
t of the des
ription trees 
orresponding to the normal forms of C

n

and D

n

, one basi
ally removes the value restri
tions from the normal form of C

n

.

Thus, one ends up with an l
s E

n

that agrees with the binary tree we obtained

in Example 1. Again, it 
an be shown that there is no smaller ALE -
on
ept

des
ription equivalent to this l
s.

The l
s 
omputed by the basi
 algorithm is a 
on
ept des
ription not 
ontain-

ing names de�ned in the underlying TBox. If some \parts" of this des
ription

have been given names in the TBox, they 
an be repla
ed by these names, thus

redu
ing the size of the des
ription. This 
an be a
hieved through rewriting [3℄.

In the next se
tion we show that, though rewriting may be quite e�e
tive in

some examples (see [3℄), it 
annot always redu
e the size of the l
s.

4 Using TBoxes to Compress the l
s

The exponentially large l
s E

n


onstru
ted in Examples 1 and 3 has as its de-

s
ription tree the full binary tree of depth n, where the nodes rea
hed by going

to the left were labeled with P and the ones rea
hed by going to the right were

labeled with Q. This 
on
ept 
an be de�ned in a TBox of size linear in n.

Example 4. Consider the following TBox T

n

:

fA

1

:

= 9r:P u 9r:Qg [

fA

i

:

= 9r:(P u A

i�1

) u 9r:(Q u A

i�1

) j 1 < i � ng:

It is easy to see that the size of T

n

is linear in n and that A

n

�

T

n

E

n

, i.e., the

TBox T

n

provides us with a 
ompa
t representation of E

n

.



In general, however, su
h a 
ompa
t representation by stru
ture sharing is not

possible. We will �rst give a 
ounterexample for the n-ary l
s in EL, and then

for the binary l
s in ALE . The main idea underlying both 
ounterexamples is to

generate des
ription trees having exponentially many leaves that are all labeled

by sets of 
on
ept names that are in
omparable w.r.t. set in
lusion. To this

purpose, we 
onsider the set of 
on
ept names N

n

:= fA

0

j

; A

1

j

j 1 � j � ng, and

de�ne A

i

:= A

i

1

1

u : : : u A

i

n

n

for ea
h n-tuple i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

.

4.1 The Counterexample for EL

For all n � 1 we de�ne a sequen
e C

1

; : : : ; C

n

of n EL-
on
ept des
riptions whose

size is linear in n:

C

j

:= 9r: u

B2N

n

nfA

0

j

g

B u 9r: u

B2N

n

nfA

1

j

g

B:

Sin
e ea
h of the 
on
epts C

j


ontains two existential restri
tions, the l
s of

C

1

; : : : ; C

n


ontains 2

n

existential restri
tions. The 
on
ept des
riptions o

ur-

ring under these restri
tions are obtained by interse
ting the 
orresponding 
on-


ept des
riptions under the existential restri
tions of the 
on
ept des
riptions

C

j

. It is easy to see that these are exa
tly the 2

n


on
ept des
riptions A

i

for

i 2 f0; 1g

n

introdu
ed above. Sin
e the des
riptions A

i

are pairwise in
ompara-

ble w.r.t. subsumption, it is 
lear that there is no smaller EL-
on
ept des
ription

equivalent to this l
s. We show now that a TBox 
annot be used to obtain a

smaller representation.

Re
all that a
y
li
 TBoxes 
an be unfolded by repla
ing de�ned names by

their de�nitions until no more de�ned names o

ur on the right-hand sides [10℄.

If the de�ned name A represents the l
s of C

1

; : : : ; C

n

w.r.t. a TBox, then the

des
ription de�ning A in the unfolded TBox is equivalent to this l
s.

Obviously, to get a more 
ompa
t representation of the l
s using a TBox, one

needs dupli
ation of 
on
ept names on the right-hand sides of the TBox. During

unfolding of the TBox, this would, however, lead to dupli
ation of sub
on
epts.

Sin
e the (des
ription tree of the) l
s we have 
onstru
ted here has 2

n

di�erent

leaves, su
h dupli
ation does not help, sin
e it 
an only dupli
ate leaves with the

same label, but not generate leaves with di�erent labels. Thus, in general, we


annot represent the l
s in a more 
ompa
t way by introdu
ing new de�nitions

in an EL TBox.

4.2 The Counterexample for ALE

For n � 1 we de�ne 
on
ept des
riptions C

n

of size quadrati
 in n. For n � 1,

let F

i

j

:= 8r: � � � 8r:A

i

j+1

be the 
on
ept des
ription 
onsisting of j nested value

restri
tions followed by the 
on
ept name A

i

j+1

. We de�ne

C

1

:= 9r:A

0

1

u 9r:A

1

1

,

C

n

:= 9r:F

0

n�1

u 9r:F

1

n�1

u 8r:C

n�1

for n > 1.
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;
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Fig. 3. The ALE-des
ription tree 
orresponding to C

3

.

Figure 3 shows the des
ription tree 
orresponding to C

3

.

Applying the normalization rule 8r:E u 9r:F �! 8r:E u 9r:(E u F ) to C

n

yields a normalized 
on
ept des
ription whose size is exponential in n. If one

ignores the value restri
tions (and everything o

urring below them), then the

des
ription tree 
orresponding to this normal form of C

n

is a full binary tree

of depth n whose 2

n

leaves are labeled by the 2

n


on
ept des
riptions A

i

for

i 2 f0; 1g

n

.

Let D

n

:= 9r: � � � 9r:u

B2N

n

B be the 
on
ept des
ription 
onsisting of n

nested existential restri
tions followed by the 
onjun
tion of all 
on
ept names

in N

n

. Again, by building the produ
t of the des
ription trees 
orresponding

to the normal forms of C

n

and D

n

, one basi
ally removes the value restri
tions

from the normal form of C

n

. Thus, the l
s 
orresponds to the full binary tree of

depth n whose leaves are labeled by the 
on
ept des
riptions A

i

for i 2 f0; 1g

n

.

By an argument similar to the one for EL one 
an show that there is no

smaller ALE-
on
ept des
ription equivalent to this l
s, and that a TBox 
annot

be used to obtain a smaller representation.

The examples given above show that the exponential size of the l
s 
annot

be avoided by employing stru
ture sharing (i.e., repla
ing 
ommon substru
tures

by a de�ned name). In pra
ti
e, however, the 
omplexity of unfolding 
on
ept

des
riptions before applying the l
s algorithm appears to be more problemati


than this inherent 
omplexity of the l
s operation. How to avoid this unfolding

step is the topi
 of the next se
tion.

5 Computing the l
s using Lazy Unfolding

Re
all from the beginning of Se
tion 3 that the 
omputation of an l
s is real-

ized by three 
onse
utive traversals of the 
on
ept des
riptions: unfolding, nor-

malization, and 
onstru
tion of the produ
t. The �rst two steps may 
ause an

exponential blow-up of the des
riptions whi
h are in turn the input for the next

step, whereas the third step is polynomial for the binary l
s operation.



Before illustrating the short
omings of the basi
 l
s algorithm by an example,

let us formally de�ne the size of a 
on
ept. The size jCj of a 
on
ept des
ription

C is in
reased by 1 for ea
h o

urren
e of a role name or a 
on
ept name in C

(with j>j = j?j = 0).

Example 5 (na��ve l
s algorithm). Given the following TBox

T := f C

1

:

= A

1

u 9r:D

1

; C

2

:

= A

2

u 9r:D

1

;

D

1

:

= (8s:B

1

) u (9s:D

2

) u (9s:D

3

);

D

2

:

= B

2

uB

3

; D

3

:

= B

3

u B

4

g,

we 
ompute the l
s of C

1

and C

2

as sket
hed in Se
tion 3. After the �rst and

se
ond step we obtain the unfolded and normalized des
riptions

C

0

i

:= A

i

u 9r:

�

8s:B

1

u 9s:(B

1

u B

2

u B

3

) u 9s:(B

1

u B

3

u B

4

)

�

for i 2 f1; 2g . In the third step, the algorithm �rst determines the 
on
ept names

appearing on the top-level of the l
s|in this 
ase none sin
e fA

1

g \ fA

2

g = ;.

Then, the algorithm makes a re
ursive 
all to 
ompute the l
s of the des
riptions

o

urring in the existential restri
tion of C

0

1

and C

0

2

, respe
tively. This in turn

leads to re
ursive 
alls for the pair of value restri
tions and for all four pairs of

existential restri
tions for the s-su

essors. As output, the algorithm yields

LCS(C

1

; C

2

) = 9r:(8s:B

1

u

9s:(B

1

u B

2

u B

3

)u

9s:(B

1

u B

3

)u

9s:(B

1

u B

3

)u

9s:(B

1

u B

3

u B

4

)) whi
h is of size jLCS(C

1

; C

2

)j = 17.

Thus, the result is 
omputed by three re
ursive traversals of the input des
rip-

tions. The size of the output des
ription results from the a
tually unne
essary

unfolding of D

1

. Even if the redundant existential restri
tions are eliminated

from the result, the size of the returned l
s 
on
ept des
ription is still quite big

in 
omparison to the equivalent des
ription 9r:D

1

. Of 
ourse, rewriting the 
om-

puted l
s w.r.t. T would also yield this result, but it would be better to avoid

obtaining su
h an unne
essarily large intermediate result.

The idea of lazy unfolding is to repla
e a de�ned 
on
ept in a 
on
ept des
ription

only if examination of that part of the des
ription is ne
essary. Lazy unfolding

unfolds all de�ned 
on
epts appearing on the top-level of the 
on
ept des
rip-

tion under 
onsideration, while de�ned 
on
epts on deeper role-levels remain

un
hanged. Note, however, that unfolding may still be applied iteratedly if un-

folding has produ
ed another de�ned name on the top-level. On
e this is �nished,

all (negated) primitive 
on
epts, value restri
tions, and existential restri
tions

that would o

ur on the top-level of the 
ompletely unfolded 
on
ept des
rip-

tion are visible, and one 
an in prin
iple 
ontinue as in the 
ase of the na��ve l
s

algorithm.

The algorithm for 
omputing the l
s with lazy unfolding, as shown in Fig-

ure 4, is based on the following sets:



Input: Two ALE-
on
ept des
riptions C;D and an ALE-TBox T

Algorithm: LCS

lu

(C;D)

if C v

T

D then LCS

lu

(C;D) = D

if D v

T

C then LCS

lu

(C;D) = C

else

C

0

:= lazy-unfold(C; T ),

fP

1

; : : : ; P

n

g := prim(C

0

),

for all r 2 N

R

:

C

0

:= val

r

(C

0

),

fC

1

; : : : ; C

n

g := ex

r

(C

0

);

end for

D

0

:= lazy-unfold(D; T ),

fP

1

; : : : ; P

n

g := prim(D

0

),

for all r 2 N

R

:

D

0

:= val

r

(D

0

),

fD

1

; : : : ; D

n

g := ex

r

(D

0

)

end for

LCS

lu

(C;D) = u

P2prim(C

0

)\prim(D

0

)

P u

u

r2N

R

( 8r:LCS

lu

(val

r

(C

0

); val

r

(D

0

)) ) u

u

r2N

R

( u

C

i

2 ex

r

(C

0

)

D

j

2 ex

r

(D

0

)

9r: LCS

lu

(C

i

u val

r

(C

0

); D

j

u val

r

(D

0

)))

Fig. 4. The l
s algorithm LCS

lu

for ALE using lazy unfolding.

prim(C): denotes the set of all (negated) primitive names o

urring on the top-

level of C.

val

r

(C): denotes the 
onjun
tion of the 
on
ept des
riptions o

urring in value

restri
tions on the top-level of C, where val

r

(C) := > if there is no value

restri
tion.

ex

r

(C): denotes the set fC

1

; : : : ; C

n

g of 
on
ept des
riptions o

urring in exis-

tential restri
tions of the form 9r:C

i

on the top-level of C.

The LCS

lu

algorithm as given in Figure 4 tests in ea
h re
ursion, if the input


on
epts subsume ea
h other, in this 
ase the l
s is trivial. The algorithm uses

the fun
tion lazy-unfold() for unfolding the top-level of the input 
on
ept de-

s
riptions w.r.t. the input ALE -TBox T . Next, the auxiliary sets and 
on
ept

des
riptions de�ned above are 
omputed. The returned l
s 
on
ept des
ription

is a 
onjun
tion of three 
omponents:

1. the 
onjun
tion of all (negative) primitive 
on
epts appearing on both the

top-level of C

0

and D

0

,

2. the 
onjun
tion of all value restri
tions derived from re
ursive 
alls of LCS

lu

for ea
h role that has a value restri
tion on top-level of C

0

and D

0

,

3. a 
onjun
tion of the existential restri
tions derived from re
ursive 
alls of

LCS

lu

for ea
h 
ombination of existential restri
tions where the value restri
-

tions are propagated \on the 
y".



In 
ontrast to the three independent re
ursions in the na��ve algorithm, the LCS

lu

algorithm traverses the stru
ture of the 
on
ept des
riptions re
ursively only

on
e. The three steps of the basi
 algorithm are now interwoven on ea
h role-

level. In parti
ular, the normalization of the 
on
ept des
riptions is realized role-

level-wise (i) by the de�nition of the des
ription val

r

(C

0

) and val

r

(D

0

); (ii) by

in
luding the 
onjun
ts val

r

(C

0

) and val

r

(D

0

), respe
tively, in the re
ursive 
alls

for the existential restri
tions. The normalization rules dealing with negation

and the bottom 
on
ept (whi
h we have not des
ribed above) are taken 
are of

by the subsumption test at the beginning of the algorithm.

There are two reasons why the new l
s algorithm may avoid 
omputations

done by the na��ve algorithm. First, if one of the subsumption tests at the be-

ginning are su

essful, then one of the input des
riptions is returned without

unfolding or normalizing any of the two des
riptions. This 
an also happen in

re
ursive 
alls of the algorithm. In parti
ular, this also means that the returned

des
ription may still 
ontain de�ned names. Se
ond, if an existential restri
tion

for a role r has no mat
hing restri
tion in the other des
ription, then this re-

stri
tion need not be pro
essed (i.e., its 
on
ept des
ription is not unfolded and

normalized). Consider on
e more Example 5 to illustrate the �rst e�e
t.

Example 6 (l
s using lazy unfolding). Assume we apply the new l
s algorithm

to the des
riptions C

1

; C

2

of Example 5. In the �rst step, none of the two

subsumption 
onditions hold and the algorithm 
alls lazy-unfold(C

1

; T ) and

lazy-unfold(C

2

; T ). There is no de�ned 
on
ept name to repla
e on top-level.

Then the algorithm 
alls LCS

lu

re
ursively for the pair of existential restri
tions.

Be
ause the subsumption test is su

essful, this 
all dire
tly yields D

1

, with-

out 
onsidering the de�nition of D

1

. Thus the returned 
on
ept des
ription is

LCS

lu

(C

1

; C

2

) = 9r:D

1

, whi
h has size jLCS

lu

(C

1

; C

2

)j = 2.

Comparing the l
s from Example 5 to the result obtained here, we see that

LCS

lu

needs less re
ursive 
alls with less re
ursion depth, and furthermore returns

a smaller 
on
ept des
ription.

Using lazy unfolding is advantageous in most 
ases when 
omputing a l
s

w.r.t. a TBox, but there are, of 
ourse, 
ombinations of input 
on
ept des
rip-

tions where an exponential growth of the l
s 
on
ept des
ription is still unavoid-

able.

6 Implementations of the l
s

We have implemented both, the na��ve and the lazy unfolding based l
s algorithm

[12℄ in Lisp. The FaCT system [8℄ is used to 
ompute subsumption. The 
ore

of both implementations is a binary l
s fun
tion wrapped by a fun
tion that

su

essively 
alls the binary l
s fun
tion.

The \old l
s" is a straightforward implementation of the fundamental algo-

rithm outlined in Se
tion 3 and dis
ussed in [2℄. It also uses an implementation

of the heuristi
 rewriting algorithm for 
omputing small (but not always mini-

mal) rewritings of ALE-
on
ept des
riptions mentioned earlier (see [3℄), whi
h we
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Fig. 5. Average 
on
ept sizes obtained from the four settings.

use in our evaluation. The \new l
s" implements the algorithm LCS

lu

introdu
ed

in Se
tion 5. It is also a straightforward implementation of this algorithm and

does not employ spe
ial low-level en
oding tri
ks to improve its performan
e. In


ontrast to the old l
s implementation, whi
h is strongly linked to FaCT, the

new l
s may be 
oupled with arbitrary DL reasoners.

6.1 A �rst Evaluation of the Implementations

To 
ompare the performan
e of our implementations of both algorithms we use a

TBox derived from our appli
ation in 
hemi
al pro
ess engineering. It 
ontains

52 primitive 
on
epts, 67 de�ned 
on
epts and 43 roles. It has a rather deep


on
ept hierar
hy, whi
h makes it likely that least 
ommon subsumers 
omputed

for 
on
ept des
riptions de�ned in this TBox will not 
ollapse to >.

The input des
riptions we used for the evaluation are 
ombinations of seven

REACTOR 
on
epts de�ned in the appli
ation TBox. To 
ompute the l
s of all

possible 
ombinations of these REACTOR 
on
epts, it suÆ
es to 
ompute some


ombinations determined by the attribute exploration algorithm as des
ribed

in [4℄. Our test suite in
luded 22 di�erent l
s 
alls, ranging from binary l
s


alls to l
s 
alls with seven input 
on
epts. For ea
h 
omputation of these least


ommon subsumers, we measured run-times and sizes of the output 
on
ept

des
riptions of four settings: both of the l
s implementations and both of the

l
s implementations followed by a rewriting step. The latter two use the same

rewriting implementation of the heuristi
 algorithm. To obtain representative

run-times we ran ea
h LCS in ea
h setting 100 times.

The results for the average 
on
ept size are shown in Figure 5, where one

should note the logarithmi
 s
ale. The measured values indi
ate that an l
s


omputed by the LCS

lu

implementation returns 
on
ept des
riptions that are

about an order of magnitude smaller than the 
on
ept des
riptions returned by

the na��ve algorithm. The rewritten l
s 
on
ept des
riptions are again one order

of magnitude smaller than the l
s 
on
ept des
ription returned by the LCS

lu
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Fig. 6. Average run-times needed by the di�erent settings.

implementation. Comparing the 
on
ept sizes obtained for the settings in
luding

the heuristi
 rewriting shows that starting from a smaller 
on
ept des
ription

does not yield a smaller rewritten 
on
ept. This is probably due to the fa
t that

for our examples the heuristi
 algorithm produ
ed the optimal result.

The average 
on
ept des
ription obtained with the LCS

lu

implementation has

a 
on
ept size of about 100. These 
on
ept des
riptions are still too big to be


omprehensible to a human reader. In our appli
ation s
enario, the knowledge

engineer is supposed to 
hoose an appropriate des
ription from a set of 
omputed

least 
ommon subsumers, and possibly also modifying the 
hosen des
ription

by hand. Therefore, rewriting remains ne
essary as an additional step in this

appli
ation.

Figure 6 shows the sum of run-times for 
omputing the l
s (grey) and rewrit-

ing the obtained l
s 
on
ept des
ription (white). The 
omparison of run-times

for the l
s implementations indi
ates a speed-up of fa
tor 3:5. The run-time for

rewriting an l
s 
on
ept des
ription returned by the LCS

lu

implementation is also

lower than for rewriting the des
ription produ
ed by the na��ve algorithm (by a

fa
tor of about 2). Taking l
s 
omputation and rewriting together, the overall

run-time di�ers by a fa
tor of three.

7 Con
lusion and Future Work

The worst-
ase examples presented in Se
tion 4 are quite 
ontrived and not likely

to o

ur in pra
ti
e. Nevertheless, they show that, in prin
iple, the exponential

blow-up inherent to the l
s operation 
annot be avoided, even if one 
an introdu
e

\abbreviations" for subdes
riptions. An interesting question for future resear
h

is to 
hara
terize situations in whi
h this exponential blow-up 
annot o

ur, and

to 
he
k whether these situations are likely to o

ur in pra
ti
e.

The performan
e of the l
s algorithm using lazy unfolding greatly depends

on the stru
ture of the TBox and the input des
riptions. There are, of 
ourse,

examples where there is no improvement over the na��ve algorithm. However,

sin
e no overhead is generated by using lazy unfolding, it is advantageous to use

the new algorithm in any 
ase.



The �rst evaluation of the l
s implementations in our appli
ation framework

indi
ates that using lazy unfolding 
an substantially de
rease the size of the

resulting 
on
ept des
riptions. However, our results also indi
ate that it is still

ne
essary to perform rewriting after 
omputing the l
s in order to obtain 
on
ept

des
riptions that are small enough to be inspe
ted by human users. As indi
ated

by our tests, lazy unfolding will also de
rease the run-time of the subsequent

rewriting step.
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