
On the problem of omputing small

representations of least ommon subsumers

Franz Baader and Anni-Yasmin Turhan

Theoretial Computer Siene, TU Dresden, Germany

fbaader, turhang�ts.inf.tu-dresden.de

Abstrat. For Desription Logis with existential restritions, the size

of the least ommon subsumer (ls) of onept desriptions may grow

exponentially in the size of the input desriptions. The �rst (negative)

result presented in this paper is that it is in general not possible to

express the exponentially large onept desription representing the ls

in a more ompat way by using an appropriate (ayli) terminology.

In pratie, a seond and often more severe ause of omplexity was

the fat that onept desriptions ontaining onepts de�ned in a ter-

minology must �rst be unfolded (by replaing de�ned names by their

de�nition) before the known ls algorithms ould be applied. To over-

ome this problem, we present a modi�ed ls algorithm that performs

lazy unfolding, and show that this algorithm works well in pratie.

1 Introdution

In an appliation in hemial proess engineering [5, 11℄, we support the bottom-

up onstrution of Desription Logi (DL) knowledge bases by omputing most

spei� onepts (ms) of individuals and least ommon subsumers (ls) of on-

epts: instead of diretly de�ning a new onept, the knowledge engineer intro-

dues several typial examples as individuals, whih are then generalized into a

onept desription by using the ms and the ls operation [1, 2, 9℄. This desrip-

tion is o�ered to the knowledge engineer as a possible andidate for a de�nition

of the onept.

Unfortunately, due to the nature of the algorithm for omputing the ls

proposed in [2℄, this algorithm yields onept desriptions that do not ontain

de�ned onept names, even if the desriptions of the individuals use onepts

de�ned in a terminology (TBox) T . In addition, due to the inherent omplexity

of the ls operation, these desriptions may be quite large (exponentially large

in the size of the unfolded input desriptions). For the small DL EL, whih

allows for onjuntions, existential restritions, and the top onept, the binary

ls operation is still polynomial, but the n-ary one is already exponential. For

the DL ALE , whih extends EL by value restritions, primitive negation, and the

bottom onept, already the binary ls is exponential in the worst ase.

To overome the problem of large least ommon subsumers, we have employed

rewriting of the omputed onept desription using the TBox T in order to

obtain a shorter and better readable desription [3℄. Informally, the problem of

rewriting a onept given a terminology an be stated as follows: given a TBox

T and a onept desription C that does not ontain onept names de�ned in

T , an this desription be rewritten into an equivalent smaller desription D by

using (some of) the names de�ned in T ? First results obtained in our proess

engineering appliation were quite enouraging: for a TBox with about 65 de�ned

and 55 primitive names, soure desriptions of size about 800 (obtained as results

of the ls omputation) were rewritten into desriptions of size about 10 [3℄.

This paper omplements these results in two ways. First, the positive empir-

ial results for the rewriting approah led us to onjeture that maybe TBoxes

an always be used to yield a ompat representation of the ls. More formally,

our onjeture an be stated as follows. Let L be a DL for whih the ls opera-

tion (binary or n-ary) is exponential (like EL or ALE). Given input desriptions

C

1

; : : : ; C

n

with lsD, does there always exist a TBox T whose size is polynomial

in the size of C

1

; : : : ; C

n

and a de�ned onept name A in T suh that A �

T

D,

i.e., the TBox de�nes A suh that it is equivalent to the ls D of C

1

; : : : ; C

n

? A

loser look at the worst-ase examples for EL and ALE from [2℄ supported this

onjeture: the exponentially large least ommon subsumers onstruted there

an easily be represented using polynomially large TBoxes. Nevertheless, we will

show in Setion 4 that the onjeture is false, both for EL and ALE .

Seond, we modify the ls algorithm presented in [2℄ suh that it works on

onept desriptions still ontaining names de�ned in a TBox. The idea is that

unfolding is not performed a priori, but only if neessary. This tehnique, alled

lazy unfolding, is a ommon optimization tehnique for standard inferenes suh

as subsumption [7, 8℄, but was until now not employed for non-standard infer-

enes like omputing the ls. Though the ls omputed by this modi�ed algorithm

may ontain de�ned onept names, it turned out that rewriting an still redue

the size of the desription. However, sine it already starts with smaller desrip-

tions, the rewriting step takes less time than with the unmodi�ed algorithm.

2 Preliminaries

First, we introdue the DLs EL and ALE in more detail. Conept desriptions are

indutively de�ned using a set of onstrutors, starting with a set N

C

of onept

names and a set N

R

of role names. The onstrutors determine the expressive

power of the DL. In this paper, we onsider onept desriptions built from the

onstrutors shown in Table 1. In EL, onept desriptions are formed using the

onstrutors top onept (>), onjuntion (C u D) and existential restrition

(9r:C). The DL ALE provides all the onstrutors introdued in Table 1.

The semantis of a onept desription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation funtion �

I

maps eah onept name P 2 N

C

to a set P

I

� �

and eah role name r 2 N

R

to a binary relation r

I

� ���. The extension of �

I

to arbitrary onept desriptions is indutively de�ned, as shown in Table 1.

A TBox is a �nite set of onept de�nitions of the form A

:

= C, where A is a

onept name and C a onept desription. In addition, we require that TBoxes

Construtor name Syntax Semantis

primitive onept, P 2 N

C

P P

I

� �

top-onept > �

onjuntion C uD C

I

\D

I

existential restrition for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restrition for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-onept ? ;

Table 1. Syntax and semantis of onept desriptions.

are ayli and do not ontain multiple de�nitions (see, e.g., [10℄). Conept names

ourring on the left-hand side of a de�nition are alled de�ned onepts. All

other onept names are alled primitive onepts. In TBoxes of the DL ALE ,

negation may only be applied to primitive onepts. An interpretation I is a

model of the TBox T i� it satis�es all its onept de�nitions, i.e., A

I

= C

I

for

all de�nitions A

:

= C in T .

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C is

subsumed by the desription D w.r.t. the TBox T (C v

T

D) i� C

I

� D

I

holds

for all models I of T . The desription C is subsumed by D (C v D) i� it is

subsumed by D w.r.t. the empty TBox (whih has all interpretations as models).

The onept desriptions C andD are equivalent (w.r.t. T) i� they subsume eah

other (w.r.t. T). We write C �

T

D if C and D are equivalent w.r.t. T .

In this paper, we are interested in the non-standard inferene task of om-

puting the least ommon subsumer of onept desriptions.

De�nition 1 (Least Common Subsumer). Let C

1

; : : : ; C

n

be onept de-

sriptions in a DL L. The L-onept desription C is a least ommon subsumer

(ls) of C

1

; : : : ; C

n

in L (for short C = LCS

L

(C

1

; : : : ; C

n

)) i�

1. C

i

v C for all 0 � i � n, and

2. C is the least onept desription with this property, i.e., if D is a onept

desription satisfying C

i

v D for all 1 � i � n, then C v D.

This de�nition an naturally be extended to onept de�nitions ontaining names

de�ned in a TBox T : simply replae subsumption by subsumption w.r.t. T .

In general (i.e., for an arbitrary DL L), a given olletion of n onept de-

sriptions need not have an ls. However, if an ls exists, then it is unique up to

equivalene. This justi�es to talk about the ls of C

1

; : : : ; C

n

in L.

3 Computing the Least Common Subsumer

In [2℄ it was shown that, for the DLs EL and ALE , the ls always exists. The main

idea underlying the algorithms omputing the ls is that onept desriptions are

transformed into so-alled desription trees. Sine subsumption an be hara-

terized through the existene of homomorphisms between desription trees, the

ls operation orresponds to the produt of desription trees (see [2℄). Beause

of spae limitations, we an only outline the ls algorithm introdued in [2℄. The

basi algorithm for omputing the ls of two EL- or ALE-onept desriptions

w.r.t. a TBox onsists of the following steps:

1. Unfold the input desriptions: if the input onept desriptions ontain on-

ept names de�ned in the TBox T , these onept names are reursively

replaed by their de�nitions until no de�ned names remain in the desrip-

tions. It is well-known that the proess of unfolding a desription may ause

an exponential blow-up [10℄.

2. Normalize the input desriptions: the normal form is omputed by removing

onept desriptions equivalent to >, replaing inonsistent onept desrip-

tions by ?, joining value restritions for the same role, and propagating value

restritions into existential restritions on all role-levels. This last step of the

normalization (whih is only relevant for ALE) is yet another soure of an

exponential blow-up [2, 6℄.

3. Transform the normalized desriptions into desription trees and ompute

their produt: basially, the desription tree of a normalized desription

is just its syntax tree. The produt of the desription trees an then be

translated bak into a onept desription, whih is the ls of the input

desriptions w.r.t. T . The produt onstrution is explained in the next

subsetion.

It should be noted that eah of the three steps of the ls algorithm traverses the

whole struture of the onept desription as obtained in the step before reur-

sively. The basi ls algorithm is given as a binary operation sine the n-ary ls

an be redued to the binary operation using the fat that LCS(C

1

; : : : ; C

n

) =

LCS(C

1

; LCS(C

2

; : : : ; C

n

)). Of ourse, one an also diretly treat the n-ary ls

by using the n-ary produt of desription trees. We will illustrate the ls al-

gorithms for EL and ALE on two examples, whih are the worst-ase examples

demonstrating that the n-ary ls in EL and the binary ls in ALE may lead to

exponentially large onept desriptions (even without TBox).

3.1 The Least Common Subsumer in EL

For the DL EL, a desription tree is merely a graphial representation of the syn-

tax of the onept desription. Its nodes are labeled with sets of onept names

(orresponding to possibly negated onept names ourring in the desription)

and its edges are labeled with role names (orresponding to the existential re-

stritions ourring in the desription). We all a node w reahable from a node

v by an edge labeled with r an r-suessor of v.

For example, the trees depited in the upper half of Figure 1 were obtained

from the onept desriptions

C

3

1

:= 9r:(P u 9r:(P uQ u 9r:(P uQ))) u 9r:(Q u 9r:(P uQ u 9r:(P uQ)));

C

3

2

:= 9r:(P uQ u 9r:(P u 9r:(P uQ)) u 9r:(Q u 9r:(P uQ)));

C

3

3

:= 9r:(P uQ u 9r:(P uQ u 9r:P u 9r:Q))):

R	

?

?

r r

r

x

1

: P;Q

x

0

: ;

x

2

: P;Q

x

3

: P x

4

: Q

r

? ?

R	

?

rr

w

2

: P

r r

w

1

: P;Q

w

0

: ;

w

3

: P;Q

w

4

: Q

w

5

: P;Q

r

G(C

3

3

) :

	 R

??

? ?

v

1

: P

v

0

: ;

r

v

2

: P;Q

r

G(C

3

1

) :

rr

rr

v

3

: P;Q

v

4

: Q

v

5

: P;Q

v

6

: P;Q

G(C

3

2

) :

y

5

: Q

y

6

: P y

7

: Q

r r

y

9

: P

y

10

: P y

11

: Q

r r

y

12

: Q

y

13

: P y

14

: Q

r r

y

2

: P

y

3

: P y

4

: Q

r r

y

0

: ;

y

1

: P y

8

: Q

rrrr

r r

G(C

3

1

)� G(C

3

2

)� G(C

3

3

) :

Fig. 1. Desription trees of C

3

1

; C

3

2

; C

3

3

and their produt.

The produt G

1

� � � � � G

n

of n EL-desription trees G

1

; : : : ;G

n

is de�ned by

indution on the depth of the trees. Let v

0;1

; : : : ; v

0;n

respetively be the roots

of the trees G

1

; : : : ;G

n

with labels `

1

(v

0;1

); : : : ; `

n

(v

0;n

). Then the produt G

1

�

� � � � G

n

has the root (v

0;1

; : : : ; v

0;n

) with label `

1

(v

0;1

)\ : : :\ `

n

(v

0;n

). For eah

role r and for eah n-tuple v

1

; : : : ; v

n

of r-suessors of v

0;1

; : : : ; v

0;n

, the root

(v

0;1

; : : : ; v

0;n

) has an r-suessor (v

1

; : : : ; v

n

), whih is the root of the produt

of the subtrees of G

1

; : : : ;G

n

with roots v

1

; : : : ; v

n

. The lower half of Figure 1

depits the tree obtained as the produt of the desription trees orresponding

to the desriptions C

3

1

; C

3

2

; C

3

3

. This tree is a full binary tree of depth 3, where

the nodes reahed by going to the left are labeled with P and the ones reahed

by going to the right are labeled with Q.

This example an be generalized to an example demonstrating that the ls

of n EL-onept desriptions of size linear in n may be exponential in n [2℄.

Example 1. We de�ne for eah n � 1 a sequene fC

n

1

; : : : ; C

n

n

g of EL-onept

desriptions. For n � 0 let

D

n

:=

(

>; n = 0

9r:(P uQ uD

n�1

); n > 0

and for n � 1 and 1 � i � n we de�ne

C

n

i

:=

(

9r:(P uD

n�1

) u 9r:(Q uD

n�1

); i = 1

9r:(P uQ u C

n�1

i�1

); 1 < i � n:

It is easy to see that eah C

n

i

is linear in the size of n. The produt of the

orresponding desription trees is a full binary tree of depth n, where the nodes

reahed by going to the left are labeled with P and the ones reahed by going to

the right are labeled with Q. Obviously, the size of this tree is exponential in n.

What is less obvious, but an also be shown (see [2℄, is that there is no smaller

desription tree representing the same onept (modulo equivalene).

3.2 The Least Common Subsumer in ALE

ALE-desription trees are very similar to EL-desription trees. The value restri-

tions just lead to another type of edges, whih are labeled by 8r instead of

simply r. However, the unfolded onept desriptions must �rst be normalized

before they an be transformed into desription trees. On the one hand, there

are normalization rules dealing with negation and the bottom onept. Here we

will ignore them sine neither negation nor bottom is used in our examples. On

the other hand, there are normalization rules dealing with value restritions and

their interation with existential restritions:

8r:E u 8r:F �! 8r:(E u F);

8r:E u 9r:F �! 8r:E u 9r:(E u F):

The �rst rule onjoins all value restritions for the same role into a single value

restrition. The seond rule is problemati sine it dupliates subterms, and

thus may lead to an exponential blow-up of the desription. The following is a

well-known example that demonstrates this e�et.

Example 2. We de�ne the following sequene C

1

; C

2

; C

3

; : : : of ALE-onept de-

sriptions:

C

n

:=

�

9r:P u 9r:Q; n = 1

9r:P u 9r:Q u 8r:C

n�1

; n > 1:

Obviously, the size of C

n

is linear in n. However, applying the seond normal-

ization rule to C

n

yields a desription of size exponential in n. If one ignores the

value restritions (and everything ourring below a value restrition), then the

desription tree orresponding to the normal form of C

n

is again a full binary

tree of depth n, where the nodes reahed by going to the left are labeled with P

and the ones reahed by going to the right are labeled with Q. Figure 2 shows

the ALE-desription tree of the normal form of C

3

.

Given the desription trees of normalized ALE-onept desriptions, one an

again obtain the ls as the produt of these trees. In this produt, the bottom

onept requires a speial treatment, but we ignore this issue sine it is irrelevant

for our examples.

For eah tuple of nodes on the same role-level, existential restritions and

value restritions are treated symmetrially, i.e., for a role r the r-suessors

are ombined with r-suessors in all possible ombinations (as before) and the

rr

P Q

Q

rr

P Q

P

rr

P Q

;

rr

P Q

Q

rr

P Q

P

rr

P Q

;

rr

P Q

Q

rr

P Q

P

rr

P Q

;

r 8r

r

r

8r

r

Q

8r

r

r

;

8r

r

r

P

;

Fig. 2. The ALE-desription tree of the normal form of C

3

from Example 2.

(unique) 8r-suessors are ombined with eah other. Note that r-suessors are

not ombined with 8r-suessors. The following example is taken from [2℄.

Example 3. For n � 1, we onsider the onept desriptions C

n

introdued in

Example 2 and the onept desriptions D

n

de�ned in Example 1. By building

the produt of the desription trees orresponding to the normal forms of C

n

and D

n

, one basially removes the value restritions from the normal form of C

n

.

Thus, one ends up with an ls E

n

that agrees with the binary tree we obtained

in Example 1. Again, it an be shown that there is no smaller ALE -onept

desription equivalent to this ls.

The ls omputed by the basi algorithm is a onept desription not ontain-

ing names de�ned in the underlying TBox. If some \parts" of this desription

have been given names in the TBox, they an be replaed by these names, thus

reduing the size of the desription. This an be ahieved through rewriting [3℄.

In the next setion we show that, though rewriting may be quite e�etive in

some examples (see [3℄), it annot always redue the size of the ls.

4 Using TBoxes to Compress the ls

The exponentially large ls E

n

onstruted in Examples 1 and 3 has as its de-

sription tree the full binary tree of depth n, where the nodes reahed by going

to the left were labeled with P and the ones reahed by going to the right were

labeled with Q. This onept an be de�ned in a TBox of size linear in n.

Example 4. Consider the following TBox T

n

:

fA

1

:

= 9r:P u 9r:Qg [

fA

i

:

= 9r:(P u A

i�1

) u 9r:(Q u A

i�1

) j 1 < i � ng:

It is easy to see that the size of T

n

is linear in n and that A

n

�

T

n

E

n

, i.e., the

TBox T

n

provides us with a ompat representation of E

n

.

In general, however, suh a ompat representation by struture sharing is not

possible. We will �rst give a ounterexample for the n-ary ls in EL, and then

for the binary ls in ALE . The main idea underlying both ounterexamples is to

generate desription trees having exponentially many leaves that are all labeled

by sets of onept names that are inomparable w.r.t. set inlusion. To this

purpose, we onsider the set of onept names N

n

:= fA

0

j

; A

1

j

j 1 � j � ng, and

de�ne A

i

:= A

i

1

1

u : : : u A

i

n

n

for eah n-tuple i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

.

4.1 The Counterexample for EL

For all n � 1 we de�ne a sequene C

1

; : : : ; C

n

of n EL-onept desriptions whose

size is linear in n:

C

j

:= 9r: u

B2N

n

nfA

0

j

g

B u 9r: u

B2N

n

nfA

1

j

g

B:

Sine eah of the onepts C

j

ontains two existential restritions, the ls of

C

1

; : : : ; C

n

ontains 2

n

existential restritions. The onept desriptions our-

ring under these restritions are obtained by interseting the orresponding on-

ept desriptions under the existential restritions of the onept desriptions

C

j

. It is easy to see that these are exatly the 2

n

onept desriptions A

i

for

i 2 f0; 1g

n

introdued above. Sine the desriptions A

i

are pairwise inompara-

ble w.r.t. subsumption, it is lear that there is no smaller EL-onept desription

equivalent to this ls. We show now that a TBox annot be used to obtain a

smaller representation.

Reall that ayli TBoxes an be unfolded by replaing de�ned names by

their de�nitions until no more de�ned names our on the right-hand sides [10℄.

If the de�ned name A represents the ls of C

1

; : : : ; C

n

w.r.t. a TBox, then the

desription de�ning A in the unfolded TBox is equivalent to this ls.

Obviously, to get a more ompat representation of the ls using a TBox, one

needs dupliation of onept names on the right-hand sides of the TBox. During

unfolding of the TBox, this would, however, lead to dupliation of subonepts.

Sine the (desription tree of the) ls we have onstruted here has 2

n

di�erent

leaves, suh dupliation does not help, sine it an only dupliate leaves with the

same label, but not generate leaves with di�erent labels. Thus, in general, we

annot represent the ls in a more ompat way by introduing new de�nitions

in an EL TBox.

4.2 The Counterexample for ALE

For n � 1 we de�ne onept desriptions C

n

of size quadrati in n. For n � 1,

let F

i

j

:= 8r: � � � 8r:A

i

j+1

be the onept desription onsisting of j nested value

restritions followed by the onept name A

i

j+1

. We de�ne

C

1

:= 9r:A

0

1

u 9r:A

1

1

,

C

n

:= 9r:F

0

n�1

u 9r:F

1

n�1

u 8r:C

n�1

for n > 1.

8r8r8r 8r rr

8r

8r

;

;

8r

;

;

r

r

8r

;

;

; ;

r

r

;

A

1

3

A

0

3

A

0

2

A

1

2

A

1

1

A

0

1

Fig. 3. The ALE-desription tree orresponding to C

3

.

Figure 3 shows the desription tree orresponding to C

3

.

Applying the normalization rule 8r:E u 9r:F �! 8r:E u 9r:(E u F) to C

n

yields a normalized onept desription whose size is exponential in n. If one

ignores the value restritions (and everything ourring below them), then the

desription tree orresponding to this normal form of C

n

is a full binary tree

of depth n whose 2

n

leaves are labeled by the 2

n

onept desriptions A

i

for

i 2 f0; 1g

n

.

Let D

n

:= 9r: � � � 9r:u

B2N

n

B be the onept desription onsisting of n

nested existential restritions followed by the onjuntion of all onept names

in N

n

. Again, by building the produt of the desription trees orresponding

to the normal forms of C

n

and D

n

, one basially removes the value restritions

from the normal form of C

n

. Thus, the ls orresponds to the full binary tree of

depth n whose leaves are labeled by the onept desriptions A

i

for i 2 f0; 1g

n

.

By an argument similar to the one for EL one an show that there is no

smaller ALE-onept desription equivalent to this ls, and that a TBox annot

be used to obtain a smaller representation.

The examples given above show that the exponential size of the ls annot

be avoided by employing struture sharing (i.e., replaing ommon substrutures

by a de�ned name). In pratie, however, the omplexity of unfolding onept

desriptions before applying the ls algorithm appears to be more problemati

than this inherent omplexity of the ls operation. How to avoid this unfolding

step is the topi of the next setion.

5 Computing the ls using Lazy Unfolding

Reall from the beginning of Setion 3 that the omputation of an ls is real-

ized by three onseutive traversals of the onept desriptions: unfolding, nor-

malization, and onstrution of the produt. The �rst two steps may ause an

exponential blow-up of the desriptions whih are in turn the input for the next

step, whereas the third step is polynomial for the binary ls operation.

Before illustrating the shortomings of the basi ls algorithm by an example,

let us formally de�ne the size of a onept. The size jCj of a onept desription

C is inreased by 1 for eah ourrene of a role name or a onept name in C

(with j>j = j?j = 0).

Example 5 (na��ve ls algorithm). Given the following TBox

T := f C

1

:

= A

1

u 9r:D

1

; C

2

:

= A

2

u 9r:D

1

;

D

1

:

= (8s:B

1

) u (9s:D

2

) u (9s:D

3

);

D

2

:

= B

2

uB

3

; D

3

:

= B

3

u B

4

g,

we ompute the ls of C

1

and C

2

as skethed in Setion 3. After the �rst and

seond step we obtain the unfolded and normalized desriptions

C

0

i

:= A

i

u 9r:

�

8s:B

1

u 9s:(B

1

u B

2

u B

3

) u 9s:(B

1

u B

3

u B

4

)

�

for i 2 f1; 2g . In the third step, the algorithm �rst determines the onept names

appearing on the top-level of the ls|in this ase none sine fA

1

g \ fA

2

g = ;.

Then, the algorithm makes a reursive all to ompute the ls of the desriptions

ourring in the existential restrition of C

0

1

and C

0

2

, respetively. This in turn

leads to reursive alls for the pair of value restritions and for all four pairs of

existential restritions for the s-suessors. As output, the algorithm yields

LCS(C

1

; C

2

) = 9r:(8s:B

1

u

9s:(B

1

u B

2

u B

3

)u

9s:(B

1

u B

3

)u

9s:(B

1

u B

3

)u

9s:(B

1

u B

3

u B

4

)) whih is of size jLCS(C

1

; C

2

)j = 17.

Thus, the result is omputed by three reursive traversals of the input desrip-

tions. The size of the output desription results from the atually unneessary

unfolding of D

1

. Even if the redundant existential restritions are eliminated

from the result, the size of the returned ls onept desription is still quite big

in omparison to the equivalent desription 9r:D

1

. Of ourse, rewriting the om-

puted ls w.r.t. T would also yield this result, but it would be better to avoid

obtaining suh an unneessarily large intermediate result.

The idea of lazy unfolding is to replae a de�ned onept in a onept desription

only if examination of that part of the desription is neessary. Lazy unfolding

unfolds all de�ned onepts appearing on the top-level of the onept desrip-

tion under onsideration, while de�ned onepts on deeper role-levels remain

unhanged. Note, however, that unfolding may still be applied iteratedly if un-

folding has produed another de�ned name on the top-level. One this is �nished,

all (negated) primitive onepts, value restritions, and existential restritions

that would our on the top-level of the ompletely unfolded onept desrip-

tion are visible, and one an in priniple ontinue as in the ase of the na��ve ls

algorithm.

The algorithm for omputing the ls with lazy unfolding, as shown in Fig-

ure 4, is based on the following sets:

Input: Two ALE-onept desriptions C;D and an ALE-TBox T

Algorithm: LCS

lu

(C;D)

if C v

T

D then LCS

lu

(C;D) = D

if D v

T

C then LCS

lu

(C;D) = C

else

C

0

:= lazy-unfold(C; T),

fP

1

; : : : ; P

n

g := prim(C

0

),

for all r 2 N

R

:

C

0

:= val

r

(C

0

),

fC

1

; : : : ; C

n

g := ex

r

(C

0

);

end for

D

0

:= lazy-unfold(D; T),

fP

1

; : : : ; P

n

g := prim(D

0

),

for all r 2 N

R

:

D

0

:= val

r

(D

0

),

fD

1

; : : : ; D

n

g := ex

r

(D

0

)

end for

LCS

lu

(C;D) = u

P2prim(C

0

)\prim(D

0

)

P u

u

r2N

R

(8r:LCS

lu

(val

r

(C

0

); val

r

(D

0

))) u

u

r2N

R

(u

C

i

2 ex

r

(C

0

)

D

j

2 ex

r

(D

0

)

9r: LCS

lu

(C

i

u val

r

(C

0

); D

j

u val

r

(D

0

)))

Fig. 4. The ls algorithm LCS

lu

for ALE using lazy unfolding.

prim(C): denotes the set of all (negated) primitive names ourring on the top-

level of C.

val

r

(C): denotes the onjuntion of the onept desriptions ourring in value

restritions on the top-level of C, where val

r

(C) := > if there is no value

restrition.

ex

r

(C): denotes the set fC

1

; : : : ; C

n

g of onept desriptions ourring in exis-

tential restritions of the form 9r:C

i

on the top-level of C.

The LCS

lu

algorithm as given in Figure 4 tests in eah reursion, if the input

onepts subsume eah other, in this ase the ls is trivial. The algorithm uses

the funtion lazy-unfold() for unfolding the top-level of the input onept de-

sriptions w.r.t. the input ALE -TBox T . Next, the auxiliary sets and onept

desriptions de�ned above are omputed. The returned ls onept desription

is a onjuntion of three omponents:

1. the onjuntion of all (negative) primitive onepts appearing on both the

top-level of C

0

and D

0

,

2. the onjuntion of all value restritions derived from reursive alls of LCS

lu

for eah role that has a value restrition on top-level of C

0

and D

0

,

3. a onjuntion of the existential restritions derived from reursive alls of

LCS

lu

for eah ombination of existential restritions where the value restri-

tions are propagated \on the y".

In ontrast to the three independent reursions in the na��ve algorithm, the LCS

lu

algorithm traverses the struture of the onept desriptions reursively only

one. The three steps of the basi algorithm are now interwoven on eah role-

level. In partiular, the normalization of the onept desriptions is realized role-

level-wise (i) by the de�nition of the desription val

r

(C

0

) and val

r

(D

0

); (ii) by

inluding the onjunts val

r

(C

0

) and val

r

(D

0

), respetively, in the reursive alls

for the existential restritions. The normalization rules dealing with negation

and the bottom onept (whih we have not desribed above) are taken are of

by the subsumption test at the beginning of the algorithm.

There are two reasons why the new ls algorithm may avoid omputations

done by the na��ve algorithm. First, if one of the subsumption tests at the be-

ginning are suessful, then one of the input desriptions is returned without

unfolding or normalizing any of the two desriptions. This an also happen in

reursive alls of the algorithm. In partiular, this also means that the returned

desription may still ontain de�ned names. Seond, if an existential restrition

for a role r has no mathing restrition in the other desription, then this re-

strition need not be proessed (i.e., its onept desription is not unfolded and

normalized). Consider one more Example 5 to illustrate the �rst e�et.

Example 6 (ls using lazy unfolding). Assume we apply the new ls algorithm

to the desriptions C

1

; C

2

of Example 5. In the �rst step, none of the two

subsumption onditions hold and the algorithm alls lazy-unfold(C

1

; T) and

lazy-unfold(C

2

; T). There is no de�ned onept name to replae on top-level.

Then the algorithm alls LCS

lu

reursively for the pair of existential restritions.

Beause the subsumption test is suessful, this all diretly yields D

1

, with-

out onsidering the de�nition of D

1

. Thus the returned onept desription is

LCS

lu

(C

1

; C

2

) = 9r:D

1

, whih has size jLCS

lu

(C

1

; C

2

)j = 2.

Comparing the ls from Example 5 to the result obtained here, we see that

LCS

lu

needs less reursive alls with less reursion depth, and furthermore returns

a smaller onept desription.

Using lazy unfolding is advantageous in most ases when omputing a ls

w.r.t. a TBox, but there are, of ourse, ombinations of input onept desrip-

tions where an exponential growth of the ls onept desription is still unavoid-

able.

6 Implementations of the ls

We have implemented both, the na��ve and the lazy unfolding based ls algorithm

[12℄ in Lisp. The FaCT system [8℄ is used to ompute subsumption. The ore

of both implementations is a binary ls funtion wrapped by a funtion that

suessively alls the binary ls funtion.

The \old ls" is a straightforward implementation of the fundamental algo-

rithm outlined in Setion 3 and disussed in [2℄. It also uses an implementation

of the heuristi rewriting algorithm for omputing small (but not always mini-

mal) rewritings of ALE-onept desriptions mentioned earlier (see [3℄), whih we

10

100

1000

old LCS old LCS + Rew. new LCS new LCS + Rew.

C

o

n

e

p

t

s

i

z

e

Fig. 5. Average onept sizes obtained from the four settings.

use in our evaluation. The \new ls" implements the algorithm LCS

lu

introdued

in Setion 5. It is also a straightforward implementation of this algorithm and

does not employ speial low-level enoding triks to improve its performane. In

ontrast to the old ls implementation, whih is strongly linked to FaCT, the

new ls may be oupled with arbitrary DL reasoners.

6.1 A �rst Evaluation of the Implementations

To ompare the performane of our implementations of both algorithms we use a

TBox derived from our appliation in hemial proess engineering. It ontains

52 primitive onepts, 67 de�ned onepts and 43 roles. It has a rather deep

onept hierarhy, whih makes it likely that least ommon subsumers omputed

for onept desriptions de�ned in this TBox will not ollapse to >.

The input desriptions we used for the evaluation are ombinations of seven

REACTOR onepts de�ned in the appliation TBox. To ompute the ls of all

possible ombinations of these REACTOR onepts, it suÆes to ompute some

ombinations determined by the attribute exploration algorithm as desribed

in [4℄. Our test suite inluded 22 di�erent ls alls, ranging from binary ls

alls to ls alls with seven input onepts. For eah omputation of these least

ommon subsumers, we measured run-times and sizes of the output onept

desriptions of four settings: both of the ls implementations and both of the

ls implementations followed by a rewriting step. The latter two use the same

rewriting implementation of the heuristi algorithm. To obtain representative

run-times we ran eah LCS in eah setting 100 times.

The results for the average onept size are shown in Figure 5, where one

should note the logarithmi sale. The measured values indiate that an ls

omputed by the LCS

lu

implementation returns onept desriptions that are

about an order of magnitude smaller than the onept desriptions returned by

the na��ve algorithm. The rewritten ls onept desriptions are again one order

of magnitude smaller than the ls onept desription returned by the LCS

lu

1000

2000

3000

4000

5000

6000

7000

8000

old LCS + Rew. new LCS + Rew.

R

u

n

-

t

i

m

e

i

n

m

s

Fig. 6. Average run-times needed by the di�erent settings.

implementation. Comparing the onept sizes obtained for the settings inluding

the heuristi rewriting shows that starting from a smaller onept desription

does not yield a smaller rewritten onept. This is probably due to the fat that

for our examples the heuristi algorithm produed the optimal result.

The average onept desription obtained with the LCS

lu

implementation has

a onept size of about 100. These onept desriptions are still too big to be

omprehensible to a human reader. In our appliation senario, the knowledge

engineer is supposed to hoose an appropriate desription from a set of omputed

least ommon subsumers, and possibly also modifying the hosen desription

by hand. Therefore, rewriting remains neessary as an additional step in this

appliation.

Figure 6 shows the sum of run-times for omputing the ls (grey) and rewrit-

ing the obtained ls onept desription (white). The omparison of run-times

for the ls implementations indiates a speed-up of fator 3:5. The run-time for

rewriting an ls onept desription returned by the LCS

lu

implementation is also

lower than for rewriting the desription produed by the na��ve algorithm (by a

fator of about 2). Taking ls omputation and rewriting together, the overall

run-time di�ers by a fator of three.

7 Conlusion and Future Work

The worst-ase examples presented in Setion 4 are quite ontrived and not likely

to our in pratie. Nevertheless, they show that, in priniple, the exponential

blow-up inherent to the ls operation annot be avoided, even if one an introdue

\abbreviations" for subdesriptions. An interesting question for future researh

is to haraterize situations in whih this exponential blow-up annot our, and

to hek whether these situations are likely to our in pratie.

The performane of the ls algorithm using lazy unfolding greatly depends

on the struture of the TBox and the input desriptions. There are, of ourse,

examples where there is no improvement over the na��ve algorithm. However,

sine no overhead is generated by using lazy unfolding, it is advantageous to use

the new algorithm in any ase.

The �rst evaluation of the ls implementations in our appliation framework

indiates that using lazy unfolding an substantially derease the size of the

resulting onept desriptions. However, our results also indiate that it is still

neessary to perform rewriting after omputing the ls in order to obtain onept

desriptions that are small enough to be inspeted by human users. As indiated

by our tests, lazy unfolding will also derease the run-time of the subsequent

rewriting step.

Referenes

1. F. Baader and R. K�usters. Computing the least ommon subsumer and the most

spei� onept in the presene of yli ALN -onept desriptions. In O. Herzog

and A. G�unter, eds., Pro. of KI-98, volume 1504 of Leture Notes in Computer

Siene, p. 129{140, Bremen, Germany, 1998. Springer-Verlag.

2. F. Baader, R. K�usters, and R. Molitor. Computing least ommon subsumer

in desription logis with existential restritions. In T. Dean, ed., Pro.

of the 16th Int. Joint Conf. on Arti�ial Intelligene (IJCAI-99), p. 96{101,

Stokholm, Sweden, 1999. Morgan Kaufmann, Los Altos. An extended ver-

sion appeared as LTCS-Report LTCS-98-09, LuFG Theoretial Computer Si-

ene, RWTH Aahen, Germany, 1998. See http://www-lti.informatik.rwth-

aahen.de/Forshung/Papers.html.

3. F. Baader, R. K�usters, and R. Molitor. Rewriting onepts using terminologies.

In A.G. Cohn, F. Giunhiglia, and B. Selman, eds., Pro. of the 7th Int. Conf. on

the Priniples of Knowledge Representation and Reasoning (KR-00), p. 297{308,

San Franiso, CA, 2000. Morgan Kaufmann Publishers.

4. F. Baader and R. Molitor. Building and struturing desription logi knowledge

bases using least ommon subsumers and onept analysis. In B. Ganter and

G. Mineau, eds., Pro. of ICCS-00, volume 1867 of Leture Notes in Arti�ial

Intelligene, p. 290{303. Springer-Verlag, 2000.

5. F. Baader and U. Sattler. Knowledge representation in proess engineering. In

Pro. of DL-96, 1996.

6. F. Baader and A.-Y. Turhan. TBoxes do not yield a ompat representation of the

least ommon subsumer. In Pro. of DL-2001, 2001.

7. F. Baader, E. Franoni, B. Hollunder, B. Nebel, and H.-J. Pro�tlih. An empirial

analysis of optimization tehniques for terminologial representation systems or:

Making KRIS get a move on. Applied Arti�ial Intelligene. Speial Issue on

Knowledge Base Management, 4:109{132, 1994.

8. I. Horroks. Optimising Tableaux Deision Proedures for Desription Logis. PhD

thesis, University of Manhester, 1997.

9. R. K�usters and R. Molitor. Approximating most spei� onepts in desription

logis with existential restritions. In T. Eiter F. Baader, G. Brewka, eds., Pro.

of the 24th German Annual Conf. on Arti�ial Intelligene (KI'01), number 2174

in Leture Notes In Arti�ial Intelligene, p. 33{47. Springer-Verlag, 2001.

10. B. Nebel. Terminologial reasoning is inherently intratable. Arti�ial Intelligene

Journal, 43:235{249, 1990.

11. U. Sattler. Terminologial knowledge representation systems in a proess engineer-

ing appliation. PhD thesis, RWTH Aahen, 1998.

12. A.-Y. Turhan and R. Molitor. Using lazy unfolding for the omputation of least

ommon subsumers. In Pro. of DL-2001, 2001.

