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Abstra
t

Approximating a 
on
ept, de�ned in one DL, means to translate this


on
ept to another 
on
ept, de�ned in a se
ond typi
ally less expressive

DL, su
h that both 
on
epts are as 
losely related as possible with respe
t

to subsumption. In a previous work, we have provided an algorithm for

approximating ALC-
on
ept des
riptions by ALE-
on
ept des
riptions. In

the present paper, motivated by an appli
ation in 
hemi
al pro
ess engi-

neering, we extend this result by taking number restri
tions into a

ount.

1 Introdu
tion

Approximation is a new inferen
e servi
e in Des
ription Logi
s (DLs) �rst men-

tioned by Baader, K�usters, and Molitor [2℄. Approximating a 
on
ept, de�ned in

one DL, means to translate this 
on
ept to another 
on
ept, de�ned in a se
ond

typi
ally less expressive DL, su
h that both 
on
epts are as 
losely related as

possible with respe
t to subsumption. There are a number of di�erent appli
a-

tions of this inferen
e problem, some of whi
h we will brie
y mention here; see

[4℄ for others, su
h as the translation of knowledge-bases, and knowledge-base

vivi�
ation.

Non-standard inferen
es in expressive DLs. Non-standard inferen
es in DLs,

su
h as 
omputing the least 
ommon subsumer (l
s), mat
hing, and uni�
ation

of 
on
epts, have been introdu
ed to support the 
onstru
tion and maintenan
e

of DL knowledge-bases (see [8, 6℄ for an overview). However, up to now they

are mostly restri
ted to quite inexpressive DLs, for example to those that do

not allow for 
on
ept disjun
tion. Approximation 
an be used to over
ome this

�
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problem to some extent. The general idea is to �rst approximate 
on
epts given

in an expressive DL, whi
h yields 
on
epts represented in a less expressive DL,

and then apply the non-standard inferen
es to the approximations.

For example, the existing mat
hing algorithms 
an be lifted up to handle

more expressive DLs as follows: instead of dire
tly mat
hing 
on
ept patterns

(de�ned in a small DL) against 
on
epts (de�ned in a DL that 
an not be

handled by existing mat
hing algorithms), one 
an �rst approximate the 
on
ept

(in the small DL) and then mat
h against its approximation. Even though some

information may be lost, e.g., the mat
her is more general than the 
orre
t one,

the a

ura
y of the result may still suÆ
e.

Another example, whi
h was in fa
t the main motivation for us to investi-

gate approximation in the �rst pla
e, is the 
omputation of 
ommonalities of


on
epts. This inferen
e servi
e is used in our 
hemi
al pro
ess engineering ap-

pli
ation [10℄ to support the bottom-up 
onstru
tion of knowledge-bases [1, 6℄.

Typi
ally, the l
s is employed to a

omplish this task. Formally, the l
s of two


on
epts, say C

1

and C

2

, de�ned in some DL L, is the most spe
i�
 
on
ept

(w.r.t. subsumption) in L that subsumes both 
on
epts. In 
ase L provides 
on-


ept disjun
tion, the l
s is just the disjun
tion of C

1

and C

2

(C

1

t C

2

). Thus,

the problem is that a user inspe
ting this 
on
ept does not learn anything about

the 
ommonalities between C

1

and C

2

. By using approximation, however, one


an make the 
ommonalities expli
it by �rst approximating C

1

and C

2

in a sub-

language of L whi
h does not allow to express 
on
ept disjun
tion, and then


omputing the l
s of the approximations in this sublanguage.

Supporting frame-based user interfa
es of DL systems. In the intera
tion with

DL systems, users with little knowledge representation expertise may have diÆ-


ulties to understand and make use of the full expressive power of the underlying

DLs. To over
ome this problem, some knowledge representation systems have

been equipped with a simpli�ed frame-based user interfa
e built on top of a

more powerful DL system. One Example for su
h a system is the ontology edi-

tor OilEd [3℄ built on top of the FaCT DL system [7℄. On many o

asions, these

systems have to present 
on
ept des
riptions to the user for editing, inspe
tion,

or as a solution of inferen
e problems. Su
h 
on
ept des
riptions, however, need

not always �t into the restri
ted representation of the frame-based user interfa
e

or might overwhelm an inexperien
ed user. In su
h 
ases, approximation may

be helpful as a means to represent 
on
ept des
riptions in a simpli�ed fashion

suited to the user interfa
e and the users level of expertise.

In [5℄, a �rst in-depth investigation of the approximation problem has been

presented. Parti
ularly, a double-exponential time algorithm has been devised

to approximate ALC-
on
epts by ALE-
on
epts. Despite of the high 
omplexity,

our prototypi
al implementation showed a quite promising performan
e on run-

time and 
on
ept sizes, see [4℄.

Sin
e most appli
ations (like our 
hemi
al pro
ess engineering appli
ation),



Constru
t name Syntax Semanti
s

prim. negation, A 2 N

C

:A �

I

n A

I


onjun
tion C uD C

I

\D

I

A

existential restri
tions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g L A

value restri
tions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g E L

number restri
tions, (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng, N C

r 2 N

R

, n 2 IN (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng N

full negation :C �

I

n C

I

disjun
tion C tD C

I

[D

I

Table 1: Syntax and semanti
s of ALEN - and ALCN -
on
ept des
riptions.

require number restri
tions, in this paper we extend the results for ALC to ALCN

and show how ALCN -
on
epts 
an be approximated by 
on
epts in ALEN or

sublanguages thereof. It turns out that the approximation algorithm be
omes

mu
h more involved.

The stru
ture of the paper is as follows. In the next se
tion, we de�ne the

DLs used and introdu
e the least 
ommon subsumer, a key operation in our

approximation algorithm. We then (Se
tion 3) formally de�ne the notion of ap-

proximation and illustrate it by an example. Our approximation algorithm will

be based on a so-
alled ALCN -normal form, whi
h is introdu
ed in Se
tion 3.1.

The main diÆ
ulty in 
omputing approximations is to extra
t indu
ed 
on
ept

des
riptions from given ALCN -
on
ept des
riptions. Se
tion 3.2 is devoted to

this problem. The proof of 
orre
tness of our algorithm uses a 
hara
terization

of subsumption between ALCN - and ALEN -
on
ept des
ription. Su
h a 
har-

a
terization is provided in Se
tion 3.3. The approximation algorithm is then

presented in Se
tion 3.4. We 
on
lude in Se
tion 4.

2 Preliminaries

Con
ept des
riptions are de�ned indu
tively with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names.

For the sake of simpli
ity, we assume N

R

to be the singleton frg. However, all

de�nitions and results 
an easily be generalized to arbitrary sets of role names.

In this work, we 
onsider the DLs ALEN and ALCN . Both of these DLs provide

the top 
on
ept (>), the bottom 
on
ept (?), 
onjun
tion (C u D), number

restri
tions ((� n r), (� n r)), existential (9r:C) and value restri
tions (8r:C).

In addition, ALEN o�ers primitive negation, i.e., negation appears only in front

of 
on
ept names (:A, for a 
on
ept name A 2 N

C

), ALCN o�ers disjun
tion

(C t D) and full negation (:C). The semanti
s of ALCN - and ALEN -
on
ept

des
riptions is de�ned in the usual model-theoreti
 way in terms of an inter-



pretation I = (�

I

; �

I

). The extension of �

I

to arbitrary 
on
ept des
riptions is

de�ned indu
tively, as shown in Table 1.

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C is

subsumed by the des
ription D (C v D) i� C

I

� D

I

holds for all interpretations

I. The 
on
ept des
riptions C and D are equivalent (C � D) i� they subsume

ea
h other. In this paper, we are interested in the 
omputation of approximations

of ALCN -
on
ept des
riptions by ALEN -
on
ept des
riptions, for this purpose

we need to 
ompute least 
ommon subsumers of ALEN -
on
ept des
riptions.

De�nition 1 (l
s) Given n � 1 and ALEN -
on
ept des
riptions C

1

; : : : ; C

n

,

the ALEN -
on
ept des
ription C is the least 
ommon subsumer (l
s) of C

1

; : : : ;

C

n

(C = l
s(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 � i � n, and (ii) C is

the least 
on
ept des
ription with this property, i.e., if C

0

satis�es C

i

v C

0

for

all 1 � i � n, then C v C

0

.

Depending on the DL under 
onsideration, the l
s of two or more des
riptions

need not always exist, but if it exists, then it is unique up to equivalen
e. It

has been shown in [9℄ that for ALEN the l
s always exists and that it 
an be


omputed in double exponential time.

3 ALEN -Approximation of ALCN -Con
epts

In this se
tion, we show how ALCN -
on
ept des
riptions 
an be approximated

(from above) by ALEN -
on
ept des
riptions. Let us �rst de�ne the notion of an

upper ALEN -approximation formally.

De�nition 2 Let C be an ALCN -
on
ept des
ription. An ALEN -
on
ept de-

s
ription D is an (upper) ALEN -approximation of C (approx

ALEN

(C)) i� (i)

C v D, and (ii) D is minimal with this property, i.e., C v D

0

and D

0

v D

implies D

0

� D for all ALEN -
on
ept des
riptions D

0

.

Analogously, an ALCN -
on
ept des
ription 
an be approximated from below.

Sin
e we fo
us only on upper approximations in this paper, approximation in

the following always means upper approximation. Sin
e ALEN allows for 
on-


ept 
onjun
tion it immediately follows that ALEN -approximations are uniquely

determined up to equivalen
e, if they exist: If D

1

and D

2

are two upper ALEN -

approximations of the same ALCN -
on
ept, then so is D

1

u D

2

. But then, by

de�nition of upper approximation, D

1

u D

2

v D

1

and D

1

u D

2

v D

2

implies

D

1

uD

2

� D

1

� D

2

.

In [5℄, for the 
ase of approximating ALC- by ALE-
on
ept des
riptions, it

was shown that, naive approa
hes for 
omputing the approximation return too

general 
on
ept des
riptions. For example one might think that every ALCN -


on
ept des
ription D 
an be approximated by simply repla
ing every 
on
ept



disjun
tion in D by the l
s operator and evaluating the l
s operators from inside

out. However, the ALCN -
on
ept des
ription

D =

�

(9r:B u (� 2 r)) t (9r:B u 9r:A)

�

u 8r:A;

with 
on
ept names A and B, illustrates that this is not the 
ase: The obtained

approximation would be

approx

ALEN

(D) � l
s

�

9r:B u (� 2r); (9r:B u 9r:A)

�

u 8r:A

� 9r:B u 8r:A:

However, as one 
an easily 
he
k, C v

�

9r:(BuA)u9r:Au8r:A

�

� 9r:Bu8r:A.

In fa
t, (9r:(B u A) u 9r:A u 8r:A

�

is the 
orre
t ALEN -approximation of C.

To avoid these e�e
ts it has already been shown in [5℄ for the approximation

of an ALC-
on
ept des
ription by an ALE-
on
ept des
ription that in order to


ompute approximations, one needs to turn 
on
epts into a kind of disjun
tive

normal form and make impli
it fa
ts expli
it, i.e., 
ompute indu
ed 
on
epts.

For ALC, the latter step is rather easy (from a 
on
eptual point of view), sin
e

it suÆ
es to make in
onsisten
ies expli
it and propagate value restri
tions to

existential restri
tions. For ALCN , things are mu
h more involved sin
e number

restri
tions 
an indu
e new value and existential restri
tions. To illustrate the

main diÆ
ulties one en
ounters, we 
onsider the following running example.

Example 3 Consider the ALCN -
on
ept des
ription C

ex

over the set of 
on
ept

names N

C

:= fA

1

; A

2

; P; Qg with

C

ex

:=

�

9r:(P uA

1

) u 9r:(P uA

2

) u 9r:(:P uA

1

) u 9r:Q u (� 2 r)

�

(C

ex1

)

t

�

8r:((A

1

u A

2

u P ) t (A

1

u A

2

u :P )) u (� 1 r)

�

: (C

ex2

)

We want to 
ompute the ALEN -approximation of C

ex

. To this end, we have

to �nd the number restri
tions, existential restri
tions, and value restri
tions


ommon to both top-level disjun
ts C

ex1

and C

ex2

.

Indu
ed number restri
tions. As expli
it number restri
tions, we �nd (�

2 r) in C

ex1

and (� 1 r) in C

ex2

. Sin
e C

ex1

has one existential restri
tion with P

and another with :P , we know that at least two r-su

essors must exist. Thus,

C

ex1

indu
es (� 2 r), and approx

ALEN

(C

ex

) will have (� 1 r) as indu
ed at-least

restri
tion and no at-most restri
tion.

Indu
ed existential restri
tions. The �rst disjun
t C

ex1

has 4 existential

restri
tions while the number of r-su

essors is limited to 2. Hen
e, the 4 ex-

istential restri
tions must be merged into 2 su
h that 
onsisten
y is preserved.



This 
an be done in two ways, yielding the possibilities

9r:(P u A

1

u A

2

uQ) u 9r:(:P u A

1

) or

9r:(P u A

1

u A

2

) u 9r:(:P u A

1

uQ):

Although C

ex2

has no expli
it existential restri
tions, the at-least restri
tion (�

1 r) implies one r-su

essor for whi
h the value restri
tion holds. It is easy

to see that the value restri
tion in C

ex2

is approximated by 8r:(A

1

u A

2

), so

9r:(A

1

uA

2

) is an indu
ed ALEN -
on
ept des
ription of C

ex2

. In both mappings,

A

1

uA

2

o

urs in one existential restri
tion. Hen
e, we know that 9r:(A

1

uA

2

)

will o

ur in the approximation of C

ex

.

Indu
ed value restri
tions. The �rst disjun
t C

ex1

has no expli
it value

restri
tion. Nevertheless, as seen above, C

ex1

has exa
tly 2 r-su

essors and

every 
onsistent merging has A

1

in every existential restri
tion. Hen
e, 8r:A

1

is indu
ed as a value restri
tion for C

ex1

. As the disjun
tion in C

ex2

yields

8r:(A

1

u A

2

), the resulting value restri
tion for C

ex

is 8r:A

1

.

Summing up, we obtain (� 1 r)u9r:(A

1

uA

2

)u8r:A

1

as the approximation

of the 
on
ept des
ription C

ex

.

Our approximation algorithm is based on a normal form for ALCN -
on
ept de-

s
riptions, that will be de�ned next.

3.1 ALCN -Normal Form

We 
all a 
on
ept des
ription top-level t-free, if it is in negation normal form

(i.e., negation is pushed inwards until in front of a 
on
ept name) and does not


ontain any disjun
tion on top-level (w.r.t. role-depth). Some notation is needed

to a

ess the di�erent parts of an ALEN -
on
ept des
ription or a top-level t-free

ALCN -
on
ept des
ription C:

� prim(C) denotes the set of all (negated) 
on
ept names and the bottom


on
ept o

urring on the top-level of C;

� val

r

(C) := C

1

u � � � u C

n

, if there exist value restri
tions of the form

8r:C

1

; : : : ; 8r:C

n

on the top-level of C; otherwise, val

r

(C) := >;

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg;

� min

r

(C) := maxfk j C v (� k r)g (Note that min

r

(C) is always �nite.);

� max

r

(C) := minfk j C v (� k r)g; if there exists no k with C v (� k r),

then max

r

(C) :=1.



Note that min

r

(C) and max

r

(C) 
an be 
omputed in polynomial time with an

ora
le for subsumption. Also, these numbers do not ne
essarily refer to number

restri
tions expli
itly represented in C, but rather to those indu
ed by C.

De�nition 4 Let C be an ALCN -
on
ept des
ription. C is in ALCN -normal

form i� C = ?, C = >, or C is of the form C = C

1

t : : : t C

n

with C

i

:=

u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

) u (� min

r

(C

i

) r) u (� max

r

(C

i

) r);

for all i = 1; : : : n, where the 
on
epts val

r

(C

i

) and C

0

again are in ALCN -normal

form; C

i

is removed from the disjun
tion in 
ase C

i

� ?.

It is easy to see that every ALCN -
on
ept des
ription 
an be turned into an

equivalent 
on
ept des
ription in ALCN -normal form. Note, however, that be-


ause disjun
tions need to be distributed over 
onjun
tions, the resulting normal

form may be of size exponential in the size of the given 
on
ept des
ription; for

example, the ALCN -normal form of (A

1

u A

2

) t � � � t (A

2n�1

u A

2n

) is of size

exponential in n.

3.2 Extra
ting Indu
ed Information from ALCN -Con
epts

Example 3 illustrates that we need to take 
are of indu
ed 
on
epts of the

top-level t-free ALCN -
on
ept des
riptions C

i

(
f. De�nition 4) in order to 
om-

pute approximations. We now show how these indu
ed 
on
epts 
an be deter-

mined. In what follows, let C be a top-level t-free ALCN -
on
ept des
ription.

As mentioned above, the indu
ed number restri
tions of C are (� min

r

(C) r)

and (� max

r

(C) r). In the example, we have obtained the indu
ed number re-

stri
tions (� 2 r) and (� 2 r) for C

ex1

and (� 1 r) for C

ex2

(there does not exist

an indu
ed at-most restri
tion for C

ex2

).

Indu
ed existential and value restri
tions are not that easy to obtain. We

will need to 
ompute the l
s of 
ertain sub
on
epts on embedded role-levels.

Su
h sub
on
epts are still ALCN -
on
epts whi
h must be approximated before

applying the ALEN -l
s.

Indu
ed existential restri
tions. We need to formalize the merging of ex-

istential restri
tions, whi
h we en
ountered for C

ex1

. This is done by so-
alled

existential mappings �. Intuitively, ea
h � re
e
ts one way to merge all expli
it

existential restri
tions to exa
tly as many r-su

essors as allowed by the number

restri
tion for r. Formally, � is de�ned as

� : f1; : : : ; ng �! 2

f1;:::;mg

;

where n := minfmax

r

(C); jex

r

(C)jg and m := jex

r

(C)j. Moreover, for every �

we want to enfor
e that no trivial r-su

essors (9r:>) are produ
ed and that



every mapping � partitions the set ex

r

(C) into exa
tly n sets. Furthermore,

merging existential restri
tions must not lead to in
onsisten
ies. This leads to

the following 
onditions on �:

1. �(i) 6= ; for all 1 � i � n;

2.

S

1�i�n

�(i) = f1; : : : ; mg and �(i) \ �(j) = ; for all 1 � i < j � n;

3. u

j2�(i)

C

0

j

u val

r

(C) 6� ? for all 1 � i � n with ex

r

(C) = fC

0

1

; : : : ; C

0

m

g.

As we have seen, there may be several of these mappings for one 
on
ept des
rip-

tion. The set of all existential mappings on C satisfying the 
onditions (1){(3)

is denoted by �

r

(C), where �

r

(C) := ; if ex

r

(C) = ;. Given an existential

mapping �, the 
orresponding set of merged 
on
ept des
riptions is denoted by

ex

r

(C)

�

:= fu

j2�(i)

C

0

j

j 1 � i � ng

with ex

r

(C) = fC

0

1

; : : : ; C

0

m

g. With a given set of k mapping fun
tions �

r

(C) =

f�

1

; : : : ; �

k

g the set of indu
ed existential restri
tions ind-ex

r

(C) of C is de�ned

as follows:

� if ex

r

(C) 6= ;, then

ind-ex

r

(C) :=

�

l
s(fapprox

ALEN

(C

l

u val

r

(C)) j 1 � l � kg)

j C

j

2 ex

r

(C)

�

j

; 1 � j � k

	

;

� if ex

r

(C) = ; and min

r

(C) � 1, then ind-ex

r

(C) := fval

r

(C)g;

� otherwise, ind-ex

r

(C) := ;.

In our running example, for C

ex1

the �rst 
ase applies. We have two existential

mappings, say �

1

and �

2

, with ex

r

(C

ex1

)

�

1

= fP u A

1

u A

2

uQ;:P u A

1

g and

ex

r

(C

ex1

)

�

2

= fP uA

1

uA

2

;:P uA

1

uQg. Extra
ting the 
ommonalities of all

valid existential mappings yields:

ind-ex

r

(C

ex1

) =

�

l
sfP u A

1

u A

2

uQ; P u A

1

u A

2

g;

l
sfP u A

1

u A

2

uQ; :P u A

1

uQg;

l
sf:P u A

1

; P u A

1

u A

2

g;

l
sf:P u A

1

; :P u A

1

uQg

	

= fP u A

1

u A

2

; A

1

uQ; A

1

; :P u A

1

g.

For C

ex2

, the se
ond 
ase applies: ind-ex

r

(C

ex2

) = f(A

1

uA

2

uP )t(A

1

uA

2

u:P )g.

Indu
ed value restri
tions. New value restri
tions 
an only be indu
ed for

two reasons. First, if max

r

(C) = 0, then C v 8r:?, and thus, C v 8r:C

0

for all

C

0

. Se
ond, the merging of existential restri
tions in 
ombination with at-most

restri
tions may indu
e value restri
tions. In 
ontrast to indu
ed existential



restri
tions, however, one further needs to take 
are of at-least restri
tions in-

du
ed by \in
ompatible" existential restri
tions. To this end we need to know

the number of r-su

essors indu
ed by existential restri
tions:

�

r

(C) :=

�

min

r

(8r:val

r

(C) u u

C

0

2ex

r

(C)

9r:C

0

) if ex

r

(C) 6= ;;

0 otherwise.

In our running example, we have �

r

(C

ex1

) = 2. Now, only if �

r

(C) = max

r

(C),

value restri
tions 
an be indu
ed, sin
e only then we \know" all r-su

essors

of instan
es of C. With all merged existential restri
tions obtained from all

existential mappings � 2 �

r

(C) 
olle
ted in the set ex

r

(C)

�

=

S

�2�

r

(C)

ex

r

(C)

�

the indu
ed value restri
tion ind-val

r

(C) of C is de�ned as follows:

� if max

r

(C) = 0, then ind-val

r

(C) := ?;

� if 0 < �

r

(C) < max

r

(C), then ind-val

r

(C) := val

r

(C);

� if 0 < �

r

(C) = max

r

(C), then

ind-val

r

(C) := l
s(fapprox

ALEN

(val

r

(C) u C

0

) j C

0

2 ex

r

(C)

�

g)

In our example, we have �(C

ex1

) = max

r

(C

ex1

) = 2 and ex

r

(C

ex1

)

�

= fP u A

1

u

A

2

u Q; :P u A

1

; P u A

1

u A

2

; :P u A

1

u Qg. Thus, ind-val

r

(C

ex1

) = A

1

. For

C

ex2

, no new value restri
tion is indu
ed sin
e �

r

(C

ex2

) = 0 <1 = max

r

(C

ex2

).

3.3 Chara
terization of Subsumption

In the previous subse
tions, we have introdu
ed a normal form forALCN -
on
ept

des
riptions and presented means to deal with indu
ed 
on
ept des
riptions.

With these methods at hand, we 
an provide a stru
tural 
hara
terization of

subsumption for the 
ase of an ALCN -
on
ept des
ription C subsumed by an

ALEN -
on
ept des
ription D. This 
hara
terization is later used to prove 
or-

re
tness of our approximation algorithm. Assuming C in ALCN -normal form

it is easy to see that C is subsumed by D if and only if every 
onjun
t C

i

in

C is subsumed. For a single 
onjun
t C

i

, the subsumption C

i

v D 
an be


hara
terized similarly to the 
ase where both 
on
epts 
ome from ALEN [9℄.

Theorem 5 Let C be an ALCN -
on
ept des
ription in ALCN -normal form with

n disjun
ts C

1

; : : : ; C

n

and let D be an ALEN -
on
ept des
ription in ALEN -

normal form. Then, C v D i� C � ?, D � >, or for every i 2 f1; : : : ; ng it

holds that

1. prim(D) � prim(C

i

) , and

2. max

r

(C

i

) � max

r

(D) , and

3. min

r

(C

i

) � min

r

(D) , and



4. for all D

0

2 ex

r

(D),

(a) ex

r

(C

i

) = ;;min

r

(C

i

) � 1, and val

r

(C

i

) v D

0

, or

(b) ex

r

(C

i

) 6= ; and for ea
h � 2 �

r

(C

i

), there exists C

0

i

2 ex

r

(C

i

)

�

su
h

that C

0

i

u val

r

(C

i

) v D

0

, and

5. if val

r

(D) 6� >, then

(a) max

r

(C

i

) = 0; or

(b) �

r

(C

i

) < max

r

(C

i

) and val

r

(C

i

) v val

r

(D), or

(
) 0 < �

r

(C

i

) = max

r

(C

i

) and val

r

(C

i

) u C

0

i

v val

r

(D), for all C

0

i

2

ex

r

(C

i

)

�

.

Consider our example 
on
ept C

ex

= C

ex1

t C

ex2

and the ALEN -
on
ept

des
ription D := 9r:(A

1

u A

2

) u (� 1 r). In order to 
he
k whether C

ex

is

subsumed by D, we only have to 
he
k Conditions 3 and 4 be
ause D has neither

primitive 
on
epts nor at-most or value restri
tions. As seen in Se
tion 3, C

ex1

and C

ex2

have (� 2 r) and (� 1 r) as at-least restri
tions, respe
tively, so that

Condition 3 is satis�ed. Condition 4 holds for C

ex1

be
ause every existential

mapping produ
es an existential restri
tion with A

1

u A

2

(thus satisfying 4b).

For C

ex2

, an appropriate existential restri
tion is indu
ed by (� 1 r) and the

value restri
tion (satisfying 4a).

3.4 The Approximation Algorithm for ALCN -Con
epts

Based on the re
ursive 
omputation of indu
ed number, value, and existential

restri
tions as well as the l
s operation, our approximation algorithm is de�ned

as follows. It is quite similar to the l
s algorithm for ALEN -
on
ept des
riptions

presented in [9℄.

De�nition 6 Approximation of ALCN by ALEN .

Input: ALCN -
on
ept des
ription C. Output: ALEN -approximation of C.

1. If C � ? then 
-approx

ALEN

(C) := ? or

if C � > then 
-approx

ALEN

(C) := >.

2. Otherwise, transform C into ALCN -normal form C

1

t � � � tC

n

and return


-approx

ALEN

(C) :=

u

A2

T

i

prim(C

i

)

A

u (� minfmin

r

(C

i

) j 1 � i � ng r)

u (� maxfmax

r

(C

i

) j 1 � i � ng r)

u u

(C

0

1

;:::;C

0

n

)2

ind-ex

r

(C

1

)�����ind-ex

r

(C

n

)

9r:l
sf
-approx

ALEN

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

u 8r:l
sf
-approx

ALEN

(ind-val

r

(C

i

)) j 1 � i � ng



Returning to our running example, it is easy to 
he
k that 
-approx

ALEN

(C

ex

) �

(� 1 r) u 9r:(A

1

uA

2

) u 8r:A

1

� approx

ALEN

(C

ex

). More generally, we 
an show

the following theorem. The proof 
ombines the ideas from the proof of the 
or-

re
tness of the l
s algorithm for ALEN -
on
ept des
riptions and the 
orre
tness

of the algorithm for ALE-approximations.

Theorem 7 Let C be an ALCN -
on
ept des
ription in ALCN -normal form.

Then 
-approx

ALEN

(C) is the upper ALEN -approximation of C, i.e.,

approx

ALEN

(C) � 
-approx

ALEN

(C).

In parti
ular, ALEN -approximations of ALCN -
on
ept des
riptions always exist

and 
an be 
omputed e�e
tively.

One 
an prove C v 
-approx

ALEN

(C) by stru
tural indu
tion on C using Theo-

rem 5, where 
-approx

ALEN

(C) takes the pla
e of D. In order to prove minimality

of 
-approx

ALEN

(C) (w.r.t. subsumption), one assumes another ALEN -
on
ept E

subsuming C. Again, using Theorem 5, one 
an show that 
-approx

ALEN

(C) v E.

By omitting some of the sub
on
epts 
omputed by 
-approx

ALEN

, we obtain

approximations in sublanguages ofALEN . For example, if we dis
ard the number

restri
tions 
omputed by 
-approx

ALEN

, we obtain an ALE-approximation of the

given ALCN -
on
ept des
ription.

As for the 
omputational 
omplexity of 
omputing ALEN -approximations,

we note that the 
omplexity of 
omputing the l
s of ALEN -
on
ept des
riptions

yields a lower bound sin
e the ALEN -approximation of C

1

t C

2

for two ALEN -


on
ept des
riptions C

1

and C

2

is exa
tly the l
s of C

1

and C

2

in ALEN . For the

l
s, a double-exponential time upper bound has been shown in [9℄. However, it

is not know whether this bound is tight, and whether tight 
omplexity bounds

for the l
s would 
arry over to the approximation problem.

4 Con
lusion

We have devised an algorithm to approximate ALCN 
on
epts by 
on
epts in

ALEN or sublanguages thereof. It remains to determine the exa
t 
omplexity

bound for this problem. From a pra
ti
al point of view, an interesting question is

whether, similar to the ALC 
ase, our algorithm 
an be implemented eÆ
iently.

On
e one has given an approximation of a 
on
ept, a natural question regards

the loss of information, i.e., what aspe
ts of the approximated 
on
ept are not


aptured by its approximation. In [5℄, we proposed an algorithm for 
omputing

the di�eren
e between ALC and ALE 
on
epts. Extending this algorithm to

ALCN and ALEN remains future work.
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