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Abstrat

Approximating a onept, de�ned in one DL, means to translate this

onept to another onept, de�ned in a seond typially less expressive

DL, suh that both onepts are as losely related as possible with respet

to subsumption. In a previous work, we have provided an algorithm for

approximating ALC-onept desriptions by ALE-onept desriptions. In

the present paper, motivated by an appliation in hemial proess engi-

neering, we extend this result by taking number restritions into aount.

1 Introdution

Approximation is a new inferene servie in Desription Logis (DLs) �rst men-

tioned by Baader, K�usters, and Molitor [2℄. Approximating a onept, de�ned in

one DL, means to translate this onept to another onept, de�ned in a seond

typially less expressive DL, suh that both onepts are as losely related as

possible with respet to subsumption. There are a number of di�erent applia-

tions of this inferene problem, some of whih we will briey mention here; see

[4℄ for others, suh as the translation of knowledge-bases, and knowledge-base

vivi�ation.

Non-standard inferenes in expressive DLs. Non-standard inferenes in DLs,

suh as omputing the least ommon subsumer (ls), mathing, and uni�ation

of onepts, have been introdued to support the onstrution and maintenane

of DL knowledge-bases (see [8, 6℄ for an overview). However, up to now they

are mostly restrited to quite inexpressive DLs, for example to those that do

not allow for onept disjuntion. Approximation an be used to overome this
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problem to some extent. The general idea is to �rst approximate onepts given

in an expressive DL, whih yields onepts represented in a less expressive DL,

and then apply the non-standard inferenes to the approximations.

For example, the existing mathing algorithms an be lifted up to handle

more expressive DLs as follows: instead of diretly mathing onept patterns

(de�ned in a small DL) against onepts (de�ned in a DL that an not be

handled by existing mathing algorithms), one an �rst approximate the onept

(in the small DL) and then math against its approximation. Even though some

information may be lost, e.g., the mather is more general than the orret one,

the auray of the result may still suÆe.

Another example, whih was in fat the main motivation for us to investi-

gate approximation in the �rst plae, is the omputation of ommonalities of

onepts. This inferene servie is used in our hemial proess engineering ap-

pliation [10℄ to support the bottom-up onstrution of knowledge-bases [1, 6℄.

Typially, the ls is employed to aomplish this task. Formally, the ls of two

onepts, say C

1

and C

2

, de�ned in some DL L, is the most spei� onept

(w.r.t. subsumption) in L that subsumes both onepts. In ase L provides on-

ept disjuntion, the ls is just the disjuntion of C

1

and C

2

(C

1

t C

2

). Thus,

the problem is that a user inspeting this onept does not learn anything about

the ommonalities between C

1

and C

2

. By using approximation, however, one

an make the ommonalities expliit by �rst approximating C

1

and C

2

in a sub-

language of L whih does not allow to express onept disjuntion, and then

omputing the ls of the approximations in this sublanguage.

Supporting frame-based user interfaes of DL systems. In the interation with

DL systems, users with little knowledge representation expertise may have diÆ-

ulties to understand and make use of the full expressive power of the underlying

DLs. To overome this problem, some knowledge representation systems have

been equipped with a simpli�ed frame-based user interfae built on top of a

more powerful DL system. One Example for suh a system is the ontology edi-

tor OilEd [3℄ built on top of the FaCT DL system [7℄. On many oasions, these

systems have to present onept desriptions to the user for editing, inspetion,

or as a solution of inferene problems. Suh onept desriptions, however, need

not always �t into the restrited representation of the frame-based user interfae

or might overwhelm an inexperiened user. In suh ases, approximation may

be helpful as a means to represent onept desriptions in a simpli�ed fashion

suited to the user interfae and the users level of expertise.

In [5℄, a �rst in-depth investigation of the approximation problem has been

presented. Partiularly, a double-exponential time algorithm has been devised

to approximate ALC-onepts by ALE-onepts. Despite of the high omplexity,

our prototypial implementation showed a quite promising performane on run-

time and onept sizes, see [4℄.

Sine most appliations (like our hemial proess engineering appliation),



Construt name Syntax Semantis

prim. negation, A 2 N

C

:A �

I

n A

I

onjuntion C uD C

I

\D

I

A

existential restritions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g L A

value restritions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g E L

number restritions, (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng, N C

r 2 N

R

, n 2 IN (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng N

full negation :C �

I

n C

I

disjuntion C tD C

I

[D

I

Table 1: Syntax and semantis of ALEN - and ALCN -onept desriptions.

require number restritions, in this paper we extend the results for ALC to ALCN

and show how ALCN -onepts an be approximated by onepts in ALEN or

sublanguages thereof. It turns out that the approximation algorithm beomes

muh more involved.

The struture of the paper is as follows. In the next setion, we de�ne the

DLs used and introdue the least ommon subsumer, a key operation in our

approximation algorithm. We then (Setion 3) formally de�ne the notion of ap-

proximation and illustrate it by an example. Our approximation algorithm will

be based on a so-alled ALCN -normal form, whih is introdued in Setion 3.1.

The main diÆulty in omputing approximations is to extrat indued onept

desriptions from given ALCN -onept desriptions. Setion 3.2 is devoted to

this problem. The proof of orretness of our algorithm uses a haraterization

of subsumption between ALCN - and ALEN -onept desription. Suh a har-

aterization is provided in Setion 3.3. The approximation algorithm is then

presented in Setion 3.4. We onlude in Setion 4.

2 Preliminaries

Conept desriptions are de�ned indutively with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names.

For the sake of simpliity, we assume N

R

to be the singleton frg. However, all

de�nitions and results an easily be generalized to arbitrary sets of role names.

In this work, we onsider the DLs ALEN and ALCN . Both of these DLs provide

the top onept (>), the bottom onept (?), onjuntion (C u D), number

restritions ((� n r), (� n r)), existential (9r:C) and value restritions (8r:C).

In addition, ALEN o�ers primitive negation, i.e., negation appears only in front

of onept names (:A, for a onept name A 2 N

C

), ALCN o�ers disjuntion

(C t D) and full negation (:C). The semantis of ALCN - and ALEN -onept

desriptions is de�ned in the usual model-theoreti way in terms of an inter-



pretation I = (�

I

; �

I

). The extension of �

I

to arbitrary onept desriptions is

de�ned indutively, as shown in Table 1.

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C is

subsumed by the desription D (C v D) i� C

I

� D

I

holds for all interpretations

I. The onept desriptions C and D are equivalent (C � D) i� they subsume

eah other. In this paper, we are interested in the omputation of approximations

of ALCN -onept desriptions by ALEN -onept desriptions, for this purpose

we need to ompute least ommon subsumers of ALEN -onept desriptions.

De�nition 1 (ls) Given n � 1 and ALEN -onept desriptions C

1

; : : : ; C

n

,

the ALEN -onept desription C is the least ommon subsumer (ls) of C

1

; : : : ;

C

n

(C = ls(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 � i � n, and (ii) C is

the least onept desription with this property, i.e., if C

0

satis�es C

i

v C

0

for

all 1 � i � n, then C v C

0

.

Depending on the DL under onsideration, the ls of two or more desriptions

need not always exist, but if it exists, then it is unique up to equivalene. It

has been shown in [9℄ that for ALEN the ls always exists and that it an be

omputed in double exponential time.

3 ALEN -Approximation of ALCN -Conepts

In this setion, we show how ALCN -onept desriptions an be approximated

(from above) by ALEN -onept desriptions. Let us �rst de�ne the notion of an

upper ALEN -approximation formally.

De�nition 2 Let C be an ALCN -onept desription. An ALEN -onept de-

sription D is an (upper) ALEN -approximation of C (approx

ALEN

(C)) i� (i)

C v D, and (ii) D is minimal with this property, i.e., C v D

0

and D

0

v D

implies D

0

� D for all ALEN -onept desriptions D

0

.

Analogously, an ALCN -onept desription an be approximated from below.

Sine we fous only on upper approximations in this paper, approximation in

the following always means upper approximation. Sine ALEN allows for on-

ept onjuntion it immediately follows that ALEN -approximations are uniquely

determined up to equivalene, if they exist: If D

1

and D

2

are two upper ALEN -

approximations of the same ALCN -onept, then so is D

1

u D

2

. But then, by

de�nition of upper approximation, D

1

u D

2

v D

1

and D

1

u D

2

v D

2

implies

D

1

uD

2

� D

1

� D

2

.

In [5℄, for the ase of approximating ALC- by ALE-onept desriptions, it

was shown that, naive approahes for omputing the approximation return too

general onept desriptions. For example one might think that every ALCN -

onept desription D an be approximated by simply replaing every onept



disjuntion in D by the ls operator and evaluating the ls operators from inside

out. However, the ALCN -onept desription

D =

�

(9r:B u (� 2 r)) t (9r:B u 9r:A)

�

u 8r:A;

with onept names A and B, illustrates that this is not the ase: The obtained

approximation would be

approx

ALEN

(D) � ls

�

9r:B u (� 2r); (9r:B u 9r:A)

�

u 8r:A

� 9r:B u 8r:A:

However, as one an easily hek, C v

�

9r:(BuA)u9r:Au8r:A

�

� 9r:Bu8r:A.

In fat, (9r:(B u A) u 9r:A u 8r:A

�

is the orret ALEN -approximation of C.

To avoid these e�ets it has already been shown in [5℄ for the approximation

of an ALC-onept desription by an ALE-onept desription that in order to

ompute approximations, one needs to turn onepts into a kind of disjuntive

normal form and make impliit fats expliit, i.e., ompute indued onepts.

For ALC, the latter step is rather easy (from a oneptual point of view), sine

it suÆes to make inonsistenies expliit and propagate value restritions to

existential restritions. For ALCN , things are muh more involved sine number

restritions an indue new value and existential restritions. To illustrate the

main diÆulties one enounters, we onsider the following running example.

Example 3 Consider the ALCN -onept desription C

ex

over the set of onept

names N

C

:= fA

1

; A

2

; P; Qg with

C

ex

:=

�

9r:(P uA

1

) u 9r:(P uA

2

) u 9r:(:P uA

1

) u 9r:Q u (� 2 r)

�

(C

ex1

)

t

�

8r:((A

1

u A

2

u P ) t (A

1

u A

2

u :P )) u (� 1 r)

�

: (C

ex2

)

We want to ompute the ALEN -approximation of C

ex

. To this end, we have

to �nd the number restritions, existential restritions, and value restritions

ommon to both top-level disjunts C

ex1

and C

ex2

.

Indued number restritions. As expliit number restritions, we �nd (�

2 r) in C

ex1

and (� 1 r) in C

ex2

. Sine C

ex1

has one existential restrition with P

and another with :P , we know that at least two r-suessors must exist. Thus,

C

ex1

indues (� 2 r), and approx

ALEN

(C

ex

) will have (� 1 r) as indued at-least

restrition and no at-most restrition.

Indued existential restritions. The �rst disjunt C

ex1

has 4 existential

restritions while the number of r-suessors is limited to 2. Hene, the 4 ex-

istential restritions must be merged into 2 suh that onsisteny is preserved.



This an be done in two ways, yielding the possibilities

9r:(P u A

1

u A

2

uQ) u 9r:(:P u A

1

) or

9r:(P u A

1

u A

2

) u 9r:(:P u A

1

uQ):

Although C

ex2

has no expliit existential restritions, the at-least restrition (�

1 r) implies one r-suessor for whih the value restrition holds. It is easy

to see that the value restrition in C

ex2

is approximated by 8r:(A

1

u A

2

), so

9r:(A

1

uA

2

) is an indued ALEN -onept desription of C

ex2

. In both mappings,

A

1

uA

2

ours in one existential restrition. Hene, we know that 9r:(A

1

uA

2

)

will our in the approximation of C

ex

.

Indued value restritions. The �rst disjunt C

ex1

has no expliit value

restrition. Nevertheless, as seen above, C

ex1

has exatly 2 r-suessors and

every onsistent merging has A

1

in every existential restrition. Hene, 8r:A

1

is indued as a value restrition for C

ex1

. As the disjuntion in C

ex2

yields

8r:(A

1

u A

2

), the resulting value restrition for C

ex

is 8r:A

1

.

Summing up, we obtain (� 1 r)u9r:(A

1

uA

2

)u8r:A

1

as the approximation

of the onept desription C

ex

.

Our approximation algorithm is based on a normal form for ALCN -onept de-

sriptions, that will be de�ned next.

3.1 ALCN -Normal Form

We all a onept desription top-level t-free, if it is in negation normal form

(i.e., negation is pushed inwards until in front of a onept name) and does not

ontain any disjuntion on top-level (w.r.t. role-depth). Some notation is needed

to aess the di�erent parts of an ALEN -onept desription or a top-level t-free

ALCN -onept desription C:

� prim(C) denotes the set of all (negated) onept names and the bottom

onept ourring on the top-level of C;

� val

r

(C) := C

1

u � � � u C

n

, if there exist value restritions of the form

8r:C

1

; : : : ; 8r:C

n

on the top-level of C; otherwise, val

r

(C) := >;

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg;

� min

r

(C) := maxfk j C v (� k r)g (Note that min

r

(C) is always �nite.);

� max

r

(C) := minfk j C v (� k r)g; if there exists no k with C v (� k r),

then max

r

(C) :=1.



Note that min

r

(C) and max

r

(C) an be omputed in polynomial time with an

orale for subsumption. Also, these numbers do not neessarily refer to number

restritions expliitly represented in C, but rather to those indued by C.

De�nition 4 Let C be an ALCN -onept desription. C is in ALCN -normal

form i� C = ?, C = >, or C is of the form C = C

1

t : : : t C

n

with C

i

:=

u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

) u (� min

r

(C

i

) r) u (� max

r

(C

i

) r);

for all i = 1; : : : n, where the onepts val

r

(C

i

) and C

0

again are in ALCN -normal

form; C

i

is removed from the disjuntion in ase C

i

� ?.

It is easy to see that every ALCN -onept desription an be turned into an

equivalent onept desription in ALCN -normal form. Note, however, that be-

ause disjuntions need to be distributed over onjuntions, the resulting normal

form may be of size exponential in the size of the given onept desription; for

example, the ALCN -normal form of (A

1

u A

2

) t � � � t (A

2n�1

u A

2n

) is of size

exponential in n.

3.2 Extrating Indued Information from ALCN -Conepts

Example 3 illustrates that we need to take are of indued onepts of the

top-level t-free ALCN -onept desriptions C

i

(f. De�nition 4) in order to om-

pute approximations. We now show how these indued onepts an be deter-

mined. In what follows, let C be a top-level t-free ALCN -onept desription.

As mentioned above, the indued number restritions of C are (� min

r

(C) r)

and (� max

r

(C) r). In the example, we have obtained the indued number re-

stritions (� 2 r) and (� 2 r) for C

ex1

and (� 1 r) for C

ex2

(there does not exist

an indued at-most restrition for C

ex2

).

Indued existential and value restritions are not that easy to obtain. We

will need to ompute the ls of ertain subonepts on embedded role-levels.

Suh subonepts are still ALCN -onepts whih must be approximated before

applying the ALEN -ls.

Indued existential restritions. We need to formalize the merging of ex-

istential restritions, whih we enountered for C

ex1

. This is done by so-alled

existential mappings �. Intuitively, eah � reets one way to merge all expliit

existential restritions to exatly as many r-suessors as allowed by the number

restrition for r. Formally, � is de�ned as

� : f1; : : : ; ng �! 2

f1;:::;mg

;

where n := minfmax

r

(C); jex

r

(C)jg and m := jex

r

(C)j. Moreover, for every �

we want to enfore that no trivial r-suessors (9r:>) are produed and that



every mapping � partitions the set ex

r

(C) into exatly n sets. Furthermore,

merging existential restritions must not lead to inonsistenies. This leads to

the following onditions on �:

1. �(i) 6= ; for all 1 � i � n;

2.

S

1�i�n

�(i) = f1; : : : ; mg and �(i) \ �(j) = ; for all 1 � i < j � n;

3. u

j2�(i)

C

0

j

u val

r

(C) 6� ? for all 1 � i � n with ex

r

(C) = fC

0

1

; : : : ; C

0

m

g.

As we have seen, there may be several of these mappings for one onept desrip-

tion. The set of all existential mappings on C satisfying the onditions (1){(3)

is denoted by �

r

(C), where �

r

(C) := ; if ex

r

(C) = ;. Given an existential

mapping �, the orresponding set of merged onept desriptions is denoted by

ex

r

(C)

�

:= fu

j2�(i)

C

0

j

j 1 � i � ng

with ex

r

(C) = fC

0

1

; : : : ; C

0

m

g. With a given set of k mapping funtions �

r

(C) =

f�

1

; : : : ; �

k

g the set of indued existential restritions ind-ex

r

(C) of C is de�ned

as follows:

� if ex

r

(C) 6= ;, then

ind-ex

r

(C) :=

�

ls(fapprox

ALEN

(C

l

u val

r

(C)) j 1 � l � kg)

j C

j

2 ex

r

(C)

�

j

; 1 � j � k

	

;

� if ex

r

(C) = ; and min

r

(C) � 1, then ind-ex

r

(C) := fval

r

(C)g;

� otherwise, ind-ex

r

(C) := ;.

In our running example, for C

ex1

the �rst ase applies. We have two existential

mappings, say �

1

and �

2

, with ex

r

(C

ex1

)

�

1

= fP u A

1

u A

2

uQ;:P u A

1

g and

ex

r

(C

ex1

)

�

2

= fP uA

1

uA

2

;:P uA

1

uQg. Extrating the ommonalities of all

valid existential mappings yields:

ind-ex

r

(C

ex1

) =

�

lsfP u A

1

u A

2

uQ; P u A

1

u A

2

g;

lsfP u A

1

u A

2

uQ; :P u A

1

uQg;

lsf:P u A

1

; P u A

1

u A

2

g;

lsf:P u A

1

; :P u A

1

uQg

	

= fP u A

1

u A

2

; A

1

uQ; A

1

; :P u A

1

g.

For C

ex2

, the seond ase applies: ind-ex

r

(C

ex2

) = f(A

1

uA

2

uP )t(A

1

uA

2

u:P )g.

Indued value restritions. New value restritions an only be indued for

two reasons. First, if max

r

(C) = 0, then C v 8r:?, and thus, C v 8r:C

0

for all

C

0

. Seond, the merging of existential restritions in ombination with at-most

restritions may indue value restritions. In ontrast to indued existential



restritions, however, one further needs to take are of at-least restritions in-

dued by \inompatible" existential restritions. To this end we need to know

the number of r-suessors indued by existential restritions:

�

r

(C) :=

�

min

r

(8r:val

r

(C) u u

C

0

2ex

r

(C)

9r:C

0

) if ex

r

(C) 6= ;;

0 otherwise.

In our running example, we have �

r

(C

ex1

) = 2. Now, only if �

r

(C) = max

r

(C),

value restritions an be indued, sine only then we \know" all r-suessors

of instanes of C. With all merged existential restritions obtained from all

existential mappings � 2 �

r

(C) olleted in the set ex

r

(C)

�

=

S

�2�

r

(C)

ex

r

(C)

�

the indued value restrition ind-val

r

(C) of C is de�ned as follows:

� if max

r

(C) = 0, then ind-val

r

(C) := ?;

� if 0 < �

r

(C) < max

r

(C), then ind-val

r

(C) := val

r

(C);

� if 0 < �

r

(C) = max

r

(C), then

ind-val

r

(C) := ls(fapprox

ALEN

(val

r

(C) u C

0

) j C

0

2 ex

r

(C)

�

g)

In our example, we have �(C

ex1

) = max

r

(C

ex1

) = 2 and ex

r

(C

ex1

)

�

= fP u A

1

u

A

2

u Q; :P u A

1

; P u A

1

u A

2

; :P u A

1

u Qg. Thus, ind-val

r

(C

ex1

) = A

1

. For

C

ex2

, no new value restrition is indued sine �

r

(C

ex2

) = 0 <1 = max

r

(C

ex2

).

3.3 Charaterization of Subsumption

In the previous subsetions, we have introdued a normal form forALCN -onept

desriptions and presented means to deal with indued onept desriptions.

With these methods at hand, we an provide a strutural haraterization of

subsumption for the ase of an ALCN -onept desription C subsumed by an

ALEN -onept desription D. This haraterization is later used to prove or-

retness of our approximation algorithm. Assuming C in ALCN -normal form

it is easy to see that C is subsumed by D if and only if every onjunt C

i

in

C is subsumed. For a single onjunt C

i

, the subsumption C

i

v D an be

haraterized similarly to the ase where both onepts ome from ALEN [9℄.

Theorem 5 Let C be an ALCN -onept desription in ALCN -normal form with

n disjunts C

1

; : : : ; C

n

and let D be an ALEN -onept desription in ALEN -

normal form. Then, C v D i� C � ?, D � >, or for every i 2 f1; : : : ; ng it

holds that

1. prim(D) � prim(C

i

) , and

2. max

r

(C

i

) � max

r

(D) , and

3. min

r

(C

i

) � min

r

(D) , and



4. for all D

0

2 ex

r

(D),

(a) ex

r

(C

i

) = ;;min

r

(C

i

) � 1, and val

r

(C

i

) v D

0

, or

(b) ex

r

(C

i

) 6= ; and for eah � 2 �

r

(C

i

), there exists C

0

i

2 ex

r

(C

i

)

�

suh

that C

0

i

u val

r

(C

i

) v D

0

, and

5. if val

r

(D) 6� >, then

(a) max

r

(C

i

) = 0; or

(b) �

r

(C

i

) < max

r

(C

i

) and val

r

(C

i

) v val

r

(D), or

() 0 < �

r

(C

i

) = max

r

(C

i

) and val

r

(C

i

) u C

0

i

v val

r

(D), for all C

0

i

2

ex

r

(C

i

)

�

.

Consider our example onept C

ex

= C

ex1

t C

ex2

and the ALEN -onept

desription D := 9r:(A

1

u A

2

) u (� 1 r). In order to hek whether C

ex

is

subsumed by D, we only have to hek Conditions 3 and 4 beause D has neither

primitive onepts nor at-most or value restritions. As seen in Setion 3, C

ex1

and C

ex2

have (� 2 r) and (� 1 r) as at-least restritions, respetively, so that

Condition 3 is satis�ed. Condition 4 holds for C

ex1

beause every existential

mapping produes an existential restrition with A

1

u A

2

(thus satisfying 4b).

For C

ex2

, an appropriate existential restrition is indued by (� 1 r) and the

value restrition (satisfying 4a).

3.4 The Approximation Algorithm for ALCN -Conepts

Based on the reursive omputation of indued number, value, and existential

restritions as well as the ls operation, our approximation algorithm is de�ned

as follows. It is quite similar to the ls algorithm for ALEN -onept desriptions

presented in [9℄.

De�nition 6 Approximation of ALCN by ALEN .

Input: ALCN -onept desription C. Output: ALEN -approximation of C.

1. If C � ? then -approx

ALEN

(C) := ? or

if C � > then -approx

ALEN

(C) := >.

2. Otherwise, transform C into ALCN -normal form C

1

t � � � tC

n

and return

-approx

ALEN

(C) :=

u

A2

T

i

prim(C

i

)

A

u (� minfmin

r

(C

i

) j 1 � i � ng r)

u (� maxfmax

r

(C

i

) j 1 � i � ng r)

u u

(C

0

1

;:::;C

0

n

)2

ind-ex

r

(C

1

)�����ind-ex

r

(C

n

)

9r:lsf-approx

ALEN

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

u 8r:lsf-approx

ALEN

(ind-val

r

(C

i

)) j 1 � i � ng



Returning to our running example, it is easy to hek that -approx

ALEN

(C

ex

) �

(� 1 r) u 9r:(A

1

uA

2

) u 8r:A

1

� approx

ALEN

(C

ex

). More generally, we an show

the following theorem. The proof ombines the ideas from the proof of the or-

retness of the ls algorithm for ALEN -onept desriptions and the orretness

of the algorithm for ALE-approximations.

Theorem 7 Let C be an ALCN -onept desription in ALCN -normal form.

Then -approx

ALEN

(C) is the upper ALEN -approximation of C, i.e.,

approx

ALEN

(C) � -approx

ALEN

(C).

In partiular, ALEN -approximations of ALCN -onept desriptions always exist

and an be omputed e�etively.

One an prove C v -approx

ALEN

(C) by strutural indution on C using Theo-

rem 5, where -approx

ALEN

(C) takes the plae of D. In order to prove minimality

of -approx

ALEN

(C) (w.r.t. subsumption), one assumes another ALEN -onept E

subsuming C. Again, using Theorem 5, one an show that -approx

ALEN

(C) v E.

By omitting some of the subonepts omputed by -approx

ALEN

, we obtain

approximations in sublanguages ofALEN . For example, if we disard the number

restritions omputed by -approx

ALEN

, we obtain an ALE-approximation of the

given ALCN -onept desription.

As for the omputational omplexity of omputing ALEN -approximations,

we note that the omplexity of omputing the ls of ALEN -onept desriptions

yields a lower bound sine the ALEN -approximation of C

1

t C

2

for two ALEN -

onept desriptions C

1

and C

2

is exatly the ls of C

1

and C

2

in ALEN . For the

ls, a double-exponential time upper bound has been shown in [9℄. However, it

is not know whether this bound is tight, and whether tight omplexity bounds

for the ls would arry over to the approximation problem.

4 Conlusion

We have devised an algorithm to approximate ALCN onepts by onepts in

ALEN or sublanguages thereof. It remains to determine the exat omplexity

bound for this problem. From a pratial point of view, an interesting question is

whether, similar to the ALC ase, our algorithm an be implemented eÆiently.

One one has given an approximation of a onept, a natural question regards

the loss of information, i.e., what aspets of the approximated onept are not

aptured by its approximation. In [5℄, we proposed an algorithm for omputing

the di�erene between ALC and ALE onepts. Extending this algorithm to

ALCN and ALEN remains future work.
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