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Abstract

Approximating a concept, defined in one DL, means to translate this
concept to another concept, defined in a second typically less expressive
DL, such that both concepts are as closely related as possible with respect
to subsumption. In a previous work, we have provided an algorithm for
approximating ALC-concept descriptions by ALE-concept descriptions. In
the present paper, motivated by an application in chemical process engi-
neering, we extend this result by taking number restrictions into account.

1 Introduction

Approximation is a new inference service in Description Logics (DLs) first men-
tioned by Baader, Kiisters, and Molitor [2]. Approximating a concept, defined in
one DL, means to translate this concept to another concept, defined in a second
typically less expressive DL, such that both concepts are as closely related as
possible with respect to subsumption. There are a number of different applica-
tions of this inference problem, some of which we will briefly mention here; see
[4] for others, such as the translation of knowledge-bases, and knowledge-base
vivification.

Non-standard inferences in expressive DLs. Non-standard inferences in DLs,
such as computing the least common subsumer (lcs), matching, and unification
of concepts, have been introduced to support the construction and maintenance
of DL knowledge-bases (see [8, 6] for an overview). However, up to now they
are mostly restricted to quite inexpressive DLs, for example to those that do
not allow for concept disjunction. Approximation can be used to overcome this
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problem to some extent. The general idea is to first approximate concepts given
in an expressive DL, which yields concepts represented in a less expressive DL,
and then apply the non-standard inferences to the approximations.

For example, the existing matching algorithms can be lifted up to handle
more expressive DLs as follows: instead of directly matching concept patterns
(defined in a small DL) against concepts (defined in a DL that can not be
handled by existing matching algorithms), one can first approximate the concept
(in the small DL) and then match against its approximation. Even though some
information may be lost, e.g., the matcher is more general than the correct one,
the accuracy of the result may still suffice.

Another example, which was in fact the main motivation for us to investi-
gate approximation in the first place, is the computation of commonalities of
concepts. This inference service is used in our chemical process engineering ap-
plication [10] to support the bottom-up construction of knowledge-bases [1, 6].
Typically, the lcs is employed to accomplish this task. Formally, the lcs of two
concepts, say C7 and (s, defined in some DL L, is the most specific concept
(w.r.t. subsumption) in £ that subsumes both concepts. In case £ provides con-
cept disjunction, the les is just the disjunction of C} and Cy (Cy U Cs). Thus,
the problem is that a user inspecting this concept does not learn anything about
the commonalities between €'} and C5. By using approximation, however, one
can make the commonalities explicit by first approximating C'; and C5 in a sub-
language of £ which does not allow to express concept disjunction, and then
computing the lcs of the approximations in this sublanguage.

Supporting frame-based user interfaces of DL systems. In the interaction with
DL systems, users with little knowledge representation expertise may have diffi-
culties to understand and make use of the full expressive power of the underlying
DLs. To overcome this problem, some knowledge representation systems have
been equipped with a simplified frame-based user interface built on top of a
more powerful DL system. One Example for such a system is the ontology edi-
tor OilEd [3] built on top of the FaCT DL system [7]. On many occasions, these
systems have to present concept descriptions to the user for editing, inspection,
or as a solution of inference problems. Such concept descriptions, however, need
not always fit into the restricted representation of the frame-based user interface
or might overwhelm an inexperienced user. In such cases, approximation may
be helpful as a means to represent concept descriptions in a simplified fashion
suited to the user interface and the users level of expertise.

In [5], a first in-depth investigation of the approximation problem has been
presented. Particularly, a double-exponential time algorithm has been devised
to approximate ALC-concepts by ALE-concepts. Despite of the high complexity,
our prototypical implementation showed a quite promising performance on run-
time and concept sizes, see [4].

Since most applications (like our chemical process engineering application),



|| Construct name | Syntax | Semantics ||

prim. negation, A € No | —A Ar\ AT

conjunction cnb ctnD?* A
existential restrictions I.C | {reAr|Ty:(v,y) erfAyelt} || L] A
value restrictions Vr.C [{relAr|Vy:(v,y) et wyecCtL | €| L
number restrictions, >nr) | {reAr|#{y: (xv,y)€rtt >n}, [N | C
re Np,neN (<nr) | {zeAr|#{y:(z,y) €rt} <n} N
full negation -C A7\ C*

disjunction Cub ctuD?

Table 1: Syntax and semantics of ACEN- and ALCN -concept descriptions.

require number restrictions, in this paper we extend the results for A to ACCN
and show how ALCN-concepts can be approximated by concepts in ALEN or
sublanguages thereof. It turns out that the approximation algorithm becomes
much more involved.

The structure of the paper is as follows. In the next section, we define the
DLs used and introduce the least common subsumer, a key operation in our
approximation algorithm. We then (Section 3) formally define the notion of ap-
proximation and illustrate it by an example. Our approximation algorithm will
be based on a so-called ACCN -normal form, which is introduced in Section 3.1.
The main difficulty in computing approximations is to extract induced concept
descriptions from given ALCN -concept descriptions. Section 3.2 is devoted to
this problem. The proof of correctness of our algorithm uses a characterization
of subsumption between ALCN- and ALEN-concept description. Such a char-
acterization is provided in Section 3.3. The approximation algorithm is then
presented in Section 3.4. We conclude in Section 4.

2 Preliminaries

Concept descriptions are defined inductively with the help of a set of construc-
tors, starting with a set N of concept names and a set Nr of role names.
For the sake of simplicity, we assume Ng to be the singleton {r}. However, all
definitions and results can easily be generalized to arbitrary sets of role names.
In this work, we consider the DLs ACEN and ALCN'. Both of these DLs provide
the top concept (T), the bottom concept (L), conjunction (C' M D), number
restrictions ((>nr), (< nr)), existential (Ir.C') and value restrictions (Vr.C).
In addition, ALEN offers primitive negation, i.e., negation appears only in front
of concept names (—A, for a concept name A € N¢ ), AN offers disjunction
(C'U D) and full negation (—C'). The semantics of ALCN- and ALEN -concept
descriptions is defined in the usual model-theoretic way in terms of an inter-



pretation T = (Az,-T). The extension of -Z to arbitrary concept descriptions is
defined inductively, as shown in Table 1.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C' is
subsumed by the description D (C' C D) iff C*T C D? holds for all interpretations
Z. The concept descriptions C' and D are equivalent (C' = D) iff they subsume
each other. In this paper, we are interested in the computation of approximations
of ALCN -concept descriptions by ALEN -concept descriptions, for this purpose
we need to compute least common subsumers of ACEN -concept descriptions.

Definition 1 (les) Given n > 1 and ACEN -concept descriptions Cy,...,Ch,
the ACEN -concept description C is the least common subsumer (Ics) of C4, ...,
Cy, (C =lcs(Ch,...,Cy) for short) iff (i) C; E C for all1 < i <n, and (i) C is
the least concept description with this property, i.e., if C' satisfies C; T C" for
all1 <i<n, then C C C".

Depending on the DL under consideration, the lcs of two or more descriptions
need not always exist, but if it exists, then it is unique up to equivalence. It
has been shown in [9] that for ACEN the lcs always exists and that it can be
computed in double exponential time.

3 ACLEN-Approximation of ACCN-Concepts

In this section, we show how ALCN -concept descriptions can be approximated
(from above) by ALEN -concept descriptions. Let us first define the notion of an
upper ALEN -approximation formally.

Definition 2 Let C' be an ALCN -concept description. An ALEN -concept de-
scription D is an (upper) ACEN-approximation of C' (approx aen(C)) iff (i)
C C D, and (i) D is minimal with this property, i.e., C T D' and D' T D
implies D' = D for all ACEN -concept descriptions D'.

Analogously, an ALCN -concept description can be approximated from below.
Since we focus only on upper approximations in this paper, approximation in
the following always means upper approximation. Since ALEN allows for con-
cept conjunction it immediately follows that ACEN -approximations are uniquely
determined up to equivalence, if they exist: If D; and D, are two upper ALEN/-
approximations of the same ALCN-concept, then so is D; M Dy. But then, by
definition of upper approximation, D; M Dy & Dy and Dy M Dy C D, implies
DM Dy =D, = D,.

In [5], for the case of approximating ALC- by ALE-concept descriptions, it
was shown that, naive approaches for computing the approximation return too
general concept descriptions. For example one might think that every ALCN-
concept description D can be approximated by simply replacing every concept



disjunction in D by the lcs operator and evaluating the lcs operators from inside
out. However, the ALCN -concept description

D= (3r.BN(>2r) U (IrBN3Ir.A)) nvrA,

with concept names A and B, illustrates that this is not the case: The obtained
approximation would be

approT e (D) = les(Ir. BN (> 2r), (Ir.BM13r.A)) NVr.A
= dr.BMNVr.A.

However, as one can easily check, C' C (3r.(BNA)N3r.ANVr.A) C Ir.BNVr.A.
In fact, (Ir.(B 1 A) M 3Ir.ANVr.A) is the correct ACEN -approximation of C'.
To avoid these effects it has already been shown in [5] for the approximation
of an ALC-concept description by an ALE-concept description that in order to
compute approximations, one needs to turn concepts into a kind of disjunctive
normal form and make implicit facts explicit, i.e., compute induced concepts.
For ALC, the latter step is rather easy (from a conceptual point of view), since
it suffices to make inconsistencies explicit and propagate value restrictions to
existential restrictions. For ACCN, things are much more involved since number
restrictions can induce new value and existential restrictions. To illustrate the
main difficulties one encounters, we consider the following running example.

Example 3 Consider the ACCN -concept description Coy over the set of concept
names N¢ = {Ay, Ay, P,Q} with

Cop:=(Ir.(PNA;) N I (PNA) N I (=PNA) N QM (£27)) (Cext)
U (Vr((AiMANP) U (A A T=P)) 11 (>17)). (Cloxz)

We want to compute the ALEN -approximation of C.,. To this end, we have
to find the number restrictions, existential restrictions, and value restrictions
common to both top-level disjuncts Cep and Clos.

Induced number restrictions. As explicit number restrictions, we find (<
27)in Cep and (> 1 1) in Coy. Since Cop has one existential restriction with P
and another with ~P, we know that at least two r-successors must exist. Thus,
Clon induces (> 2 1), and approx jeepn (Cer) will have (> 1 1) as induced at-least
restriction and no at-most restriction.

Induced existential restrictions. The first disjunct C,u has 4 existential
restrictions while the number of r-successors is limited to 2. Hence, the 4 ex-
istential restrictions must be merged into 2 such that consistency is preserved.



This can be done in two ways, yielding the possibilities

Ir(PNAMNANQ) N Ir(-PMA) or
Ir(PMAMA) N Ir(-PNANQ).

Although C'n has no explicit existential restrictions, the at-least restriction (>
1 r) implies one r-successor for which the value restriction holds. It is easy
to see that the value restriction in Cepm is approzimated by Vr.(A; M Az), so
Ar.(A1 M Ay) is an induced ACEN -concept description of Cem. In both mappings,
A M Ay occurs in one existential restriction. Hence, we know that Jr.(A; M Ay)
will occur in the approximation of C,.

Induced value restrictions. The first disjunct Cep has no explicit value
restriction. Newvertheless, as seen above, C.u has exactly 2 r-successors and
every consistent merging has Ay in every existential restriction. Hence, Yr.A;
is induced as a value restriction for Cuy. As the disjunction in Cum yields
Vr.(Ay M Ay), the resulting value restriction for Ce, is Vr.Aj.

Summing up, we obtain (> 1 r) M 3r.(A; M Az) MVr.Ay as the approzimation
of the concept description C,.

Our approximation algorithm is based on a normal form for AN -concept de-
scriptions, that will be defined next.

3.1 AN -Normal Form

We call a concept description top-level Li-free, if it is in negation normal form
(i.e., negation is pushed inwards until in front of a concept name) and does not
contain any disjunction on top-level (w.r.t. role-depth). Some notation is needed
to access the different parts of an ALEN -concept description or a top-level L-free
ALCN -concept description C':

e prim(C') denotes the set of all (negated) concept names and the bottom
concept occurring on the top-level of C

e val,(C) := Cy M ---MC,, if there exist value restrictions of the form
Vr.Cy,...,Vr.C, on the top-level of C'; otherwise, val.(C) := T;

e ex,(C) := {C"| there exists Ir.C" on the top-level of C'};
e min,.(C) :=mazx{k | C C (> kr)} (Note that min,(C) is always finite.);

e max,(C) := min{k | C C (< kr)}; if there exists no & with C C (< kr),
then max,(C) := co.



Note that min,(C') and max,(C') can be computed in polynomial time with an
oracle for subsumption. Also, these numbers do not necessarily refer to number
restrictions explicitly represented in C', but rather to those induced by C.

Definition 4 Let C be an ALCN -concept description. C is in ACCN -normal
form iff C =1L, C' =T, or C is of the form C' =CyU...UC, with C; :=

M An M I’ N Vrval(C;) N (> min.(C;) r) M (< max.(C;) ),
Aeprim(Cy) C'cex, (C;)
foralli=1,...n, where the concepts val,(C;) and C" again are in ACCN -normal
form; C; is removed from the disjunction in case C; = L.

It is easy to see that every ALCN-concept description can be turned into an
equivalent concept description in AN -normal form. Note, however, that be-
cause disjunctions need to be distributed over conjunctions, the resulting normal
form may be of size exponential in the size of the given concept description; for
example, the AN -normal form of (A; M Ay) U -+ U (Ag, 1 M Ay,) is of size
exponential in n.

3.2 Extracting Induced Information from ACN -Concepts

Example 3 illustrates that we need to take care of induced concepts of the
top-level Li-free ACCN -concept descriptions C; (cf. Definition 4) in order to com-
pute approximations. We now show how these induced concepts can be deter-
mined. In what follows, let C' be a top-level Li-free ACCN -concept description.
As mentioned above, the induced number restrictions of C' are (> min,(C) r)
and (< max,(C) r). In the example, we have obtained the induced number re-
strictions (>2 r) and (<2 r) for Ceq and (> 17) for Cexo (there does not exist
an induced at-most restriction for Cexs).

Induced existential and value restrictions are not that easy to obtain. We
will need to compute the lcs of certain subconcepts on embedded role-levels.
Such subconcepts are still ALCN -concepts which must be approximated before
applying the ACEN -Ics.

Induced existential restrictions. We need to formalize the merging of ex-
istential restrictions, which we encountered for Cey. This is done by so-called
existential mappings a. Intuitively, each a reflects one way to merge all explicit
existential restrictions to exactly as many r-successors as allowed by the number
restriction for r. Formally, « is defined as

a:{1,...,n} — 2{1""””},

where n := min{max,(C),|ex,(C)|} and m := |ex,(C)|. Moreover, for every «
we want to enforce that no trivial r-successors (Ir.T) are produced and that



every mapping « partitions the set ex,(C') into exactly n sets. Furthermore,
merging existential restrictions must not lead to inconsistencies. This leads to
the following conditions on a:

a(i) #0 for all 1 <i < n;
2. Urcicpa(i) ={1,...,m} and a(i) Na(j) =0 for all 1 <i < j <n;
3. M Cinval,(C) # L forall 1 <i <n with ex,(C) = {C],...,C,}.

jEa(i)

As we have seen, there may be several of these mappings for one concept descrip-
tion. The set of all existential mappings on C' satisfying the conditions (1)—(3)
is denoted by T',(C), where I',(C) := 0 if ex,(C) = (. Given an existential
mapping «, the corresponding set of merged concept descriptions is denoted by

ex, (C)" == {jea O | 1 <0 <n}

with ex,(C') = {C1,...,C/,}. With a given set of k£ mapping functions I',(C') =

{a1,...,ax} the set of induced existential restrictions ind-ex, (C') of C'is defined
as follows:
o if ex,(C )7&(2) then
ind-ex,. (C') := { les({approx qoepr (C) Mval, (C)) | 1 < 1 < k})

| Cj € ex,(C), 1< j < k};
e if ex,(C) = 0 and min,(C') > 1, then ind-ex, (C) := {val,.(C)};

e otherwise, ind-ex,(C') := ().

In our running example, for Ce; the first case applies. We have two existential
mappings, say a; and as, with ex,(Cex)® = {P M A; M AN Q,—P M A} and
exp(Coex1)® = {PMA; M Ay, PN A; M Q}. Extracting the commonalities of all
valid existential mappings yields:

ind-ex, (Cex1) = {les{P T A; M A, 11Q, P A; 1Ay},
les{PMM A MANQ, -PMANQ},
les{—=PM A, PN A; N Ay},
les{=P M A4, -P11 A NQ}}
={PNA NA, AiNQ, A, P A}

For Ceya, the second case applies: ind-ex,(Cexs) = {(A1MANP)U(AMAN-P)}.

Induced value restrictions. New value restrictions can only be induced for
two reasons. First, if max,(C') = 0, then C' C Vr.L, and thus, C' C Vr.C" for all
C'. Second, the merging of existential restrictions in combination with at-most
restrictions may induce value restrictions. In contrast to induced existential



restrictions, however, one further needs to take care of at-least restrictions in-
duced by “incompatible” existential restrictions. To this end we need to know
the number of r-successors induced by existential restrictions:

(C) L minT(Vr.valr(C) M HC’eexr(C) EI’I“.CI) if €Xy (C) 7é (Z),
For 10 otherwise.

In our running example, we have k,(Cex1) = 2. Now, only if ,(C) = max,(C),
value restrictions can be induced, since only then we “know” all r-successors
of instances of C'. With all merged existential restrictions obtained from all
existential mappings o € I',(C') collected in the set ex,(C)* = U ,cr, (o) ex-(C)"
the induced value restriction ind-val,(C') of C'is defined as follows:

e if max,(C) = 0, then ind-val,.(C) := L;
e if 0 < k,(C) < max,(C), then ind-val,(C) := val,.(C);

e if 0 < £,(C) = max,(C), then
ind-val,(C') := les({ approx yepr(val, (C) M C") | C" € ex,.(C)*})

In our example, we have k(Cex1) = max,(Cex1) = 2 and ex,(Cexr)* = {P 11 Ay 11
A2 M Q, -Pn Al, Pn Al 1 AQ, =P Al 1 Q} ThUS, ind—valr(Cexl) = Al- For

Cex2, N0 new value restriction is induced since k,(Cexa) = 0 < 00 = max,(Cexa).

3.3 Characterization of Subsumption

In the previous subsections, we have introduced a normal form for ACCN -concept
descriptions and presented means to deal with induced concept descriptions.
With these methods at hand, we can provide a structural characterization of
subsumption for the case of an ALCN -concept description C' subsumed by an
ACEN -concept, description D. This characterization is later used to prove cor-
rectness of our approximation algorithm. Assuming C' in AN -normal form
it is easy to see that C' is subsumed by D if and only if every conjunct C; in
C' is subsumed. For a single conjunct C}, the subsumption C; © D can be
characterized similarly to the case where both concepts come from ACEN [9].

Theorem 5 Let C' be an ALCN -concept description in ACCN -normal form with

n disjuncts Cy,...,C, and let D be an ALEN -concept description in ALEN -

normal form. Then, C T D iff C = L, D =T, or for everyi € {1,...,n} it
holds that

(D) C prim(C5)

2. max,(C;) < max, (D)

3. min.(C;) > min,(D) , and

1. prim , and
, and



4. for all D" € ex, (D),
(a) ex.(C;) =0, min,.(C;) > 1, and val.(C;) C D', or
(b) ex.(C;) # 0 and for each o € T',.(C;), there exists C! € ex,(C;)* such
that C! Mval.(C;) C D', and

5. ifval.(D) £ T, then

(a) max,.(C;) =0,o0r

(b) k.(C;) < max,(C;) and val,.(C;) C val,. (D), or

(c) 0 < Kk (C;) = max,(C;) and val,.(C;) N C] C val.(D), for all C! €
EXT(CZ')*.

Consider our example concept Cox = Coxi U Coxo and the ALEN -concept
description D := Jr.(A; M A2) M (> 1 r). In order to check whether Ci is
subsumed by D, we only have to check Conditions 3 and 4 because D has neither
primitive concepts nor at-most or value restrictions. As seen in Section 3, Cey
and Cey have (> 2 r) and (> 1 r) as at-least restrictions, respectively, so that
Condition 3 is satisfied. Condition 4 holds for Ce because every existential
mapping produces an existential restriction with A; M A, (thus satisfying 4b).

For Cey, an appropriate existential restriction is induced by (> 1 r) and the
value restriction (satisfying 4a).

3.4 The Approximation Algorithm for ALCN-Concepts

Based on the recursive computation of induced number, value, and existential
restrictions as well as the lcs operation, our approximation algorithm is defined
as follows. It is quite similar to the lcs algorithm for ACEN -concept descriptions
presented in [9].

Definition 6 Approzimation of ACCN" by ACEN .
Input: ACLCN -concept description C'. Output: ACEN -approzimation of C.

1. If C = L then c-approxX ey (C) := L or
if C =T then c-approx o (C) :==T.
2. Otherwise, transform C into ACCN -normal form Cy U ---UC, and return

c-approx ey (C) 1=
Maen, prim(c;) A
M (= min{min,(C;) |1 < i <n} r)
M (< maz{max,(C;) | 1 <i < n}r)
T oL Frlesleapproxe(CiNval (C) [ 1< i < n}
ind-ex, (C )X - xind-ex, (Ci)

M Vr.les{c-approx 4een (ind-val, (C;)) | 1 <i < n}



Returning to our running example, it is easy to check that c-approxX e (Cex) =
(>1r)03r. (A, N Ag) MVr. AL = approg gren (Cex). More generally, we can show
the following theorem. The proof combines the ideas from the proof of the cor-
rectness of the lcs algorithm for ACEN -concept descriptions and the correctness
of the algorithm for ALE-approximations.

Theorem 7 Let C' be an ALCN -concept description in ALCN -normal form.
Then c-approx e (C) is the upper ACEN -approzimation of C, i.e.,

approx geen (C') = c-approXyeen (C).

In particular, ACEN -approzimations of ACCN -concept descriptions always exist
and can be computed effectively.

One can prove C' T c-approx.cy(C) by structural induction on C' using Theo-
rem 5, where c-approx o\ (C') takes the place of D. In order to prove minimality
of c-approx e (C) (w.r.t. subsumption), one assumes another ACEN -concept F
subsuming C'. Again, using Theorem 5, one can show that c-approx 4.y (C) C E.

By omitting some of the subconcepts computed by c-approx,.c\;, we obtain
approximations in sublanguages of ACEN. For example, if we discard the number
restrictions computed by c-approx,.c\s, we obtain an ALE-approximation of the
given ALCN -concept description.

As for the computational complexity of computing ALEN -approximations,
we note that the complexity of computing the les of ACEN -concept descriptions
yields a lower bound since the ALEN -approximation of C LI Cy for two ALEN-
concept descriptions C and C, is exactly the les of C and Cs in ACEN'. For the
lcs, a double-exponential time upper bound has been shown in [9]. However, it
is not know whether this bound is tight, and whether tight complexity bounds
for the lcs would carry over to the approximation problem.

4 Conclusion

We have devised an algorithm to approximate ALCN concepts by concepts in
ALEN or sublanguages thereof. It remains to determine the exact complexity
bound for this problem. From a practical point of view, an interesting question is
whether, similar to the ALC case, our algorithm can be implemented efficiently.

Once one has given an approximation of a concept, a natural question regards
the loss of information, i.e., what aspects of the approximated concept are not
captured by its approximation. In [5], we proposed an algorithm for computing
the difference between AL and ALE concepts. Extending this algorithm to
ACCN and ACEN remains future work.
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