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Abstract

Approximation is a new inference service
in Description Logics first mentioned by
Baader, Kiisters, and Molitor. Approximat-
ing a concept, defined in one Description
Logic, means to translate this concept to an-
other concept, defined in a second typically
less expressive Description Logic, such that
both concepts are as closely related as possi-
ble with respect to subsumption. The present
paper provides the first in-depth investiga-
tion of this inference task. We prove that ap-
proximations from the Description Logic AL
to ALE always exist and propose an algorithm
computing them.

As a measure for the accuracy of the ap-
proximation, we introduce a syntax-oriented
difference operator, which yields a concept
that contains all aspects of the approximated
concept that are not present in the approxi-
mation. It is also argued that a purely se-
mantical difference operator, as introduced
by Teege, is less suited for this purpose. Fi-
nally, for the logics under consideration, we
propose an algorithm computing the differ-
ence.

1 Introduction

Approximation in Description Logics (DLs) was first
mentioned by Baader, Kiisters, and Molitor [2] as a
possible new inference problem. The present paper is
the first to investigate this problem in depth. Infor-
mally, approximation is defined as follows: given a con-
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cept C defined in a DL £, (“s” for source) find a con-
cept D, the upper/lower approximation of C, in a DL
Lq (“d” for destination) such that i) D subsumes/is
subsumed by C, and ii) D is a minimal/maximal con-
cept in L4 (w.r.t. subsumption) with this property.
Throughout this paper we will mainly focus on up-
per approximations. There are a number of different
applications of this inference problem, from which we
will briefly mention two here (see [7] for others, such
as the translation of knowledge-bases and knowledge-
base vivification, an application already mentioned in

[5, 9]).

Translation of knowledge-bases

Approximation can be used to (automatically) trans-
late a knowledge-base written in an expressive DL into
a another (semantically closely related) knowledge-
base in a less expressive DL. The translation may be-
come necessary to port knowledge-bases between dif-
ferent knowledge representation systems or to inte-
grate different knowledge-bases.

Non-standard inferences for expressive DLs. Non-
standard inferences in DLs, such as computing the
least common subsumer (lcs), matching and unifica-
tion of concepts, have been introduced to support the
construction and maintenance of DL knowledge-bases
(see [12] for an overview). However, up to now they are
mostly restricted to quite inexpressive DLs, for exam-
ple to those that do not allow for concept disjunction.
Approximation can be used to overcome this problem
to some extent. For example, the existing matching
algorithms can be lifted up to handle more expressive
DLs as follows: instead of directly matching concept
patterns (defined in a small DL) against concepts (de-
fined in a DL that can not be handled by existing
matching algorithms), one can first approximate the
concept (in the small DL) and then match against its
approximation. Even though some information may
be lost, e.g., the matcher is more general than the cor-



rect one, the accuracy of the result may still suffice.

Another example, which was in fact the main mo-
tivation for us to investigate approximation in the
first place, is the computation of commonalities be-
tween concepts. This inference service is used in our
chemical process engineering application [14] to sup-
port the bottom-up construction of knowledge-bases
[1, 6]. Typically, the lcs is employed to accomplish
this task. Formally, the lcs of two concepts, say C}
and Cs, defined in some DL L, is the most specific
concept (w.r.t. subsumption) in £ that subsumes both
concepts. In case L allows for concept disjunction, the
lcs is just the disjunction of C; and Cy (C1UC5). Thus,
the problem is that a user inspecting this concept does
not learn anything about the actual commonalities be-
tween C7 and Cs. By using approximation, however,
one can make the commonalities explicit by first ap-
proximating C} and C> in a sublanguage of £ which
does not allow to express concept disjunction, and then
computing the lcs of the approximations in this sub-
language.

Supporting frame-based user interfaces of DL systems.
In the interaction with DL systems, users with little
knowledge representation expertise may have difficul-
ties to understand and make use of the full expressive
power of the underlying DLs. To overcome this prob-
lem, some knowledge representation systems have been
equipped with a simplified frame-based user interface
built on top of a more powerful DL system. Examples
for such systems are the TAMBIS system [3] and the
ontology editor OilEd [4] built on top of the FaCT DL
system [11]. On many occasions, these systems have to
present, concept descriptions to the user for editing, in-
spection, or as a solution of inference problems. Such
concept descriptions, however, need not always fit into
the restricted representation of the frame-based user
interface or might overwhelm an inexperienced user.
In such cases, approximation might be helpful as a
means to represent concept descriptions in a simpli-
fied fashion suited to the user interface and the users
level of expertise.

The main technical result of this paper (Section 3) is
to show that concept descriptions defined in the stan-
dard DL ALC, which allows for concept conjunction
and disjunction, value and existential restrictions, and
full negation, can be approximated (from above) in the
DL ALE, a DL that does not allow for concept disjunc-
tion and full negation.

Once one has given an (upper) approximation D of C
a natural question regards the loss of information, i.e.,
what aspects of C' are not captured by D. Therefore we
propose a difference operator, which given C' (in Ly)

and D (in L) yields a concept E (the difference of C'
and D) in L, such that E conjoint with D is equiva-
lent to C (EN D = C). In other words, E contains
the information that is missing in the approximation
D of C. Such an operator has already been defined
by Teege [16]. He requires that E is the most gen-
eral concept description in L; w.r.t. subsumption that
satisfies the above equivalence. However, as we will
see, such a purely semantical definition of difference
yields very unintuitive concepts. We therefore propose
a new syntax-based definition, which better captures
the intuition behind difference. Roughly speaking, the
difference E between C' and D will be obtained by syn-
tactically removing those parts of C' that are already
present in D. In Section 4, we provide a formal defini-
tion and give an algorithm for computing the difference
between an ALC- and an ALE-concept description.

In Section 5 we present some experiences with our pro-
totypical implementations of the algorithms presented
here and conclude with some remarks on future work.
All details and full proofs of our results can be found
in our technical report [7].

2 Description Logics

Concept descriptions are inductively defined with the
help of a set of concept constructors, starting with a set
Ne¢ of concept names and a set Ng of role names. The
available constructors determine the expressive power
of the DL in question. In this paper, we consider con-
cept descriptions built from the constructors shown
in Table 1. In the DL ALE, concept descriptions are
formed using the constructors top-concept (T), con-
cept conjunction (CTD), existential restriction (Ir.C'),
value restriction (Vr.C'), primitive negation (—A4), and
the bottom-concept (L). The DL AL additionally
provides us with concept disjunction (C U D) and full
negation (—C). Note that in AL every concept de-
scription can be negated whereas in ALE negation is
only allowed in front of concept names. For a DL L,
such as ACE and ALC, a concept description formed
with the constructors allowed in £ is called L£-concept
description in the following.

As usual, the semantics of a concept description is de-
fined in terms of an interpretation T = (A,-T). The
domain A of 7 is a non-empty set and the interpreta-
tion function - maps each concept name A € N¢ to
a set AT C A and each role name r € Ng to a binary
relation r’ C AxA. The extension of -’ to arbitrary
concept descriptions is defined inductively, as shown
in the second column of Table 1.

One of the most important traditional inference ser-
vices provided by DL systems is computing the sub-



| Syntax | Semantics | ACE | ALC |
T A X X
cnbD c'nD! X X
Ir.C {reA|Fy: (v,y) erf AyeCT} b'e X
vr.C {reA|Vy:(n,y)er’ 5yeCl} | x X
-A, A€ N¢ A\ AT X X
L 0 X X
cubD ctubp! x
- A\ CT X

Table 1: Syntax and semantics of concept descriptions.

sumption hierarchy. The concept description C'is sub-
sumed by the description D (C C D) iff CT C DI
holds for all interpretations Z; C and D are equivalent
(C=D)iff C C D and D C Cj C is strictly subsumed
by D (C C D) iff C £ D and C # D. Subsumption
and equivalence in A are PSPACE-complete [15] and
NP-complete in ACE [10].

In order to approximate ALC-concept descriptions by
ALE-concept descriptions, we will need to compute the
least common subsumer in ALE.

Definition 1 Given L-concept descriptions
Ci,...,Cy,for some description logic L, the L-
concept description C is the least common subsumer
(les) of Cy,...,Cp (C = lcs(Cy,...,Cy) for short)
iff (i) C; T C foralll < i < n, and (ii) C is the
least concept description with this property, i.e., if C"
satisfies C; T C' for all 1 <i<n, then C C C'.

Depending on the DL under consideration, the lcs of
two or more concept descriptions need not always ex-
ist, but if it exists, then, by definition, it is unique
up to equivalence. For instance, in AL the lcs triv-
ially exists since les(C, D) = C' U D. For ALE, which
does not allow for concept disjunction, the existence
is not obvious. However, as shown in [1], the lcs of
two or more ALE-concept descriptions always exists,
its size may grow exponentially in the size of the input
descriptions, and it can be computed in exponential
time.

3 Computing Approximations

In this section, we show how ALC-concept descriptions
can be approximated (from above) by ALE-concept de-
scriptions. Let us first define the notion of approxima-
tion formally.

Definition 2 Let L1 and L5 be two DLs, and let C' be
an L1- and D be an Ly-concept description. Then, D
is called upper (lower) Ly-approximation of C (D =

approx., (C) for short) if (i) C T D (D C C), and
(i) D is minimal (maximal) with this property, i.e.,
CLC D' and D'C D (D C D') implies D' = D for all
Lo-concept descriptions D'.

Note that approximations need not exist in general.
Consider for example the DLs £, = {MN} and L
{U}, i.e., the DLs that only allow for concept conjunc-
tion and concept disjunction, respectively. Let A and
B denote concept names. Then, there does not exist
an upper Li-approximation of the £s-concept descrip-
tion A LI B. Conversely, there does not exist a lower
Ls-approximation of the £1-concept description ANB.
Also note that approximations need not be uniquely
determined. For example, both A and B are lower
L1-approximations of AL B with £, defined as above.

In this paper, we restrict our investigations to upper
approximations. Therefore, whenever we speak of ap-
proximations in the following, we mean upper approx-
imations. Moreover, we concentrate on upper ALE-
approximations of ALC-concept descriptions. Since
ALE allows for concept conjunction it immediately fol-
lows that if upper ALE-approximations exist, they are
uniquely determined up to equivalence: If D and D
are two upper ALE-approximations of the same ALC-
concept, then so is D1 M Ds. But then, by definition of
upper approximation, D1MDy C Dy and D1MDs C Dy
implies D1 M D2 = D1 = DQ.

3.1 The naive Approximation Approach

Now, let us turn to the question of how upper ALE-
approximations can be computed from ALC-concept
descriptions. We first present a naive approach to
this problem and show that it fails. This will then
motivate the definition of the (correct) approximation
algorithm.

The naive approach. It is easy to see that, given an
ALC-concept description C' = E' U F with ALE-concept
descriptions E and F', the ALE-approximation of C' is



lcs(E, F). Having observed this, one might think that
every ALC-concept description C' can be approximated
by simply replacing every concept disjunction in C by
the lcs operator and evaluating the Ics operators from
inside out. However, the ALC-concept description

Cex,1 = (Vr.BU (Ir.BNVr.A)) N3r.A,

with concept names A and B, illustrates that this is
not, the case: The obtained approximation would be
les(Vr.B,(Ir.BOVr.A) Nar.A = TNIrA = Ir.A
However, as one can easily check, Cex1 C Ir.(ANB) C
Ir.A. In fact, Ir.(A N B) is the correct upper ALE-
approximation of Ce 1.

As it turns out, we will have to turn the concept
descriptions into a certain normal form before sub-
stituting disjunctions by the lcs. Roughly speaking,
the normal forms are obtained by distributing concept
conjunctions over concept disjunctions. In the exam-
ple, this yields the concept description (Vr.BM3r.A) L
(Fr.BNVr.An 3Ir.A) and replacing the disjunction by
the lcs yields les(Vr.B M 3r.A,Ir.BNVr. AN 3r.A) =
Ir.(AN B), which is the correct result.

Still, the following example illustrates that normaliz-
ing concepts in this way does not suffice in the general
case. The description

Cexo =3Ir. ANIr.BOVr(-AU-B)

is already in normal form, but substituting the con-
cept disjunction with the lcs yields Ir.A M Ir.B M
Vr.les(—A,-B) = Ir AN Ir.BOVr.T = Ir. AN Ir.B.
However, the ALE-approximation of Cex o is Ir.(4A M
-B) N 3r.(B M -A). The reason is that we need to
propagate value restrictions on existential restrictions
in order to obtain the correct approximations of the
existential restrictions.

In what follows, we will first introduce the normal
forms and then present the approximation algorithm,
which works on these normal forms and does the prop-
agation on-the-fly.

3.2 AX-Normalform

For the sake of simplicity, we assume that the set
Ng of role names is the singleton {r}. However, all
definitions and results can easily be generalized to
arbitrary sets of role names. We also assume that
each conjunction in an ALE-concept description con-
tains at most one value restriction of the form Vr.C'
(this is w.l.o.g. due to the equivalence Vr.E NVr.F =
Vr.(E M F)). Some notation is needed to access the
different parts of an ALE-concept description C' (and

an ALC-concept description where disjunction only oc-
curs within value or existential restrictions): prim(C')
denotes the set of all (negated) concept names and the
bottom concept occurring on the top-level conjunction
of C; if there exists a value restriction of the form Vr.C’
on the top-level conjunction of C, then val(C) := C’;
otherwise, val(C) := T; ex(C) := {C" | there exists
Ir.C" on the top-level conjunction of C'}.

Definition 3 An AL -concept description C is in
ALC-normal form iff

1.ifC=1,thenC=1;if C=T, then C =T;
2. otherwise, C is of the form C' = CyU---UC, with

C; = M AN 1

— Ar.C' NVr.val(C;),
A€prim(C;) C'eex(C5)

C; # L, and val(C;) and every concept descrip-
tion in ex(C;) is in AL -normal form, for all
1=1,...,n.

Obviously, every ALC-concept description can be
turned into an equivalent concept description in ALC-
normal form. Unfortunately, this may take exponen-
tial time, as the example (A1 |_|A2)|_|' . 'H(AQn—l |—|A2n)
shows, whose ALC-normal form is of size exponential
in n.

3.3 Computing Approximations

Our approximation algorithm is based on the following
structural characterization of subsumption between an
ALC-concept, description, say C, in AC-normal form
and an ALE-concept description, say D. The idea is
that D is compared to every disjunct C; in C'. This
comparison in turn is very similar to the structural
characterization of subsumption between ALE-concept
descriptions [1].

Theorem 4 Let C be an AL -concept description in
ALC-normal form (as specified in Definition 3) and D
an ALE -concept description. Then, CC D iff C = L,
or D=T, or forall i =1,...,n it holds that

1. prim(D) C prim(C;), and

2. for all D' € ex(D) there exists C' € ex(C;) such
that C' Mval(C;) C D', and

3. val(C;) Cval(D).

The approximation  algorithm, denoted by
c-approx 4 ,¢, is depicted in Figure 1. Given C,
it finds an ALE-concept description, which is as
specific as possible and satisfies the conditions of



Input: ALC-concept description C
Output: upper ALE-approximation of C'

c-approx 4 £(C) =

An
AeNr_, prim(C;)

(Cf oo O ) EeX(Cr) X xex(Cin)

1. If C = 1, then c-approx 4, (C) := L; if C = T, then c-approx 4,¢(C) :=T

2. Otherwise, transform C into A{C-normal form C; U --- U C,, and return

Jr.les{c-approx 40 (Ci Mval(C;)) |1 <i <n}n

Vr.les{c-approx 4 0¢(val(C;)) | 1 < i < n}

Figure 1: The recursive algorithm c-approx 4. ¢(C').

Theorem 10. For C = 1 and C' = T this is trivial. In
case C'# L and D := c-approx 4.+(C) Z T, one needs
to show that i) the Conditions 1, 2, and 3 of Theo-
rem 10 are satisfied for C' and D, and that ii) D is a
minimal concept description with this property. Here
we only give an idea of how to prove i) by structural
induction on C (see [7] for the full proof). Condition
1: prim(D) is the intersection of the sets prim(C;), thus
Condition 1 holds; Condition 2: An element in ex(D)
is of the form lcs{c-approx,.¢(C} M val(Cy)) |
1 < j < n}h Choosing C' = C| yields
Ci M val(C;) C  capprox.¢(Ci 1 val(C;)), thus
also C; Mval(C;) C les{c-approx 4.¢(C} M val(Cj)) |
1 < j < n}. The reasoning for Condition 3 is similar.

Theorem 5 For every ALC-concept description C' the
ALE -approximation exists, is uniquely determined up
to equivalence, and can be computed by c-approx 4.¢,
i.e., c-approx 4 r£(C) = approx 4.¢(C).

Applying this to our examples, we obtain for Ce 1 the
normal form:

Cex,1 = ((Fr.ANVr.B)U (Ir. AN Ir.BNVr.A)),
and for Cey 2

Cexo =3Ir ANFIr.BOVr.(-AU-B)

one verifies that c-approx 4 ¢ (Cex,1) = Ir.(A N B) and
c-approX 4 £ (Cex,2) = Ir. (AN =B) N3r. (BN —A).

In [1], it has been shown that the lcs of two ALE-
concept descriptions can grow exponentially in the size
of the given concept descriptions. Since approx 4.¢(E LI
F) =lcs(E, F) for ALE-concept descriptions E and F,
it immediately follows that the ALE-approximation can
grow exponentially as well. Moreover, one can show
that c-approx 4,¢ runs in double exponential time [7].

Whether or not there also exists an exponential time
approximation algorithm is an open problem.

Corollary 6 The ALE-approzimation of ALC-concept
descriptions may grow exponentially and there is a
double-exponential time algorithm computing it.

4 The difference operator

In the previous section we have seen how to com-
pute the ALE-approximation of a given ALC-concept
description. For such a pair C,D of approximated
and approximating concept, a very natural question
regards the loss of information, i.e., what aspects of C
are not captured by D.

An answer to such questions requires a notion of the
“difference” between concept descriptions. For in-
stance, a comparison between the example concept
Cex,2 and its approximation 3r.(AN—B)MN3r.(BMN-A)
should reveal that the value restriction Vr.(—=A U =B)
is not, captured by the approximation.

A first approach for a difference operator has been pro-
posed by Teege [16]. Here, the difference C'— D of two
given L-concept descriptions with C' T D has been
defined as

maz{E € L|END=C}

where the maximum is defined with respect to sub-
sumption. Since AL provides full negation, a most
general concept E with EM D = C is always C' U —D.
Consequently, Teege’s difference operator would re-
turn

(Fr.AnNIr.BNVr.(mAU-DB))
LJ —I(El’l"(A m —|B) M E'T(B M _IA))

as the difference between Ce 2 and its approximation,




which obviously does not help a human user to ascer-
tain the information lost by the approximation.

The example illustrates that it may be promising to
look for a syntactic minimum instead of a semantic
maximum in order to find a compact representation of
the difference of two concepts.

4.1 Subdescription Ordering

In [12, 2], a so-called subdescription ordering on ALE-
concept descriptions has been proposed to deal with
syntactical redundancies. In order to extend this to
our case we need to introduce an analogous ordering
on ALC-concepts. The idea is to obtain a subdescrip-
tion of some ALC-concept description C' by means of
two kinds of modifications. Firstly, by making incon-
sistencies explicit; and secondly, by removing disjuncts
and conjuncts, and by replacing some existential or
value restrictions by their respective subdescriptions.
Formally, this leads to the following definition.

Definition 7 Let C, D be AL -concept descriptions in
ALC-normal form. Let C = CiU---UC,. Then, D <4
C iff D= 1 or D is obtained from C' by performing
some of the following steps:

1. Remove some disjuncts C; for 1 <i <n,
2. for every remaining C;:

(a) remove some conjuncts A € prim(C;),

(b) remove some conjuncts Ir.C} with C] €
ex(C’i),

(c) remove the conjunct Yr.val(C;),

(d) for every remaining C| € ex(C;) U {val(C;)}:
replace C} by C!' with C}' <4 C}

If everything is removed from C, the resulting concept
is T. As an example, consider the equivalent concept
descriptions C' := Ir.ANVr.-B and D := (Ir.(A U
B) NVr.=B) U (Ir.mANVr.A). By removing the last
disjunct from D and the last disjunct in the remaining
existential restriction we find C' <4 D.

Based on the subdescription ordering, we can provide
the new definition of the difference operator.

Definition 8 Let C' be an ALC-concept description
and D an ALE-concept description. The difference
C — D of C and D is defined as a minimal (w.r.t.
=<a) ALC-concept description E with EMD =CnND.

Intuitively, the idea is to remove all subdescriptions
from C which are either redundant or already present
in D. It should be noted that in case of C' C D,

and thus, C M D = C, the only difference to Teege’s
difference operator is that the minimum w.r.t. <; is
used instead of the maximum w.r.t. C. Finally, note
that the difference between C' and D is not a priori
uniquely determined. By abuse of language and no-
tation, we will still refer to the difference C' — D (see
also Theorem 9). Coming back to the example at the
beginning of the section, the difference (according to

Definition 8) between Ce 2 and its approximation is
Vr.(mA L -B), as desired.

4.2 Computing Differences

Having defined our difference operator, we need to de-
vise an algorithm to actually compute the difference
C — D. In [12], an algorithm has been proposed to
compute the difference C' — D of ALE-concept descrip-
tions C and D. Extending this algorithm to the case
of ALC-concept descriptions C yields our definition of
the algorithm c-diff as depicted in Figure 2.

If C is a disjunction of subconcepts C; then the differ-
ence between C' and D is obtained by firstly computing
the differences between the disjuncts and D and then
eliminating the semantically redundant resulting dis-
juncts. In general, the following three properties can
be shown for every computation of c-diff(C, D).

Theorem 9 Let C be an AL -concept description in
ALC -normal form and D be an ALE-concept descrip-
tion. Then,

1. cdiff(C,D)ND=CND.

2. If C is an ALE-concept description, then C' — D is
uniquely determined modulo associativity and com-

mutativity of concept conjunction, and C — D and
c-diff(C, D) coincide.

3. Given an oracle for subsumption, c-diff(C, D) runs
in polynomial time in the size of C and D.

Thus, in case C is an ALE-concept description, c-diff
exactly computes the difference C'— D (Theorem 9, 2.).
If C is an AC-concept description, we know that c-diff
does not remove too much from C' (Theorem 9, 1.).
However, c-diff might not have computed the exact
difference C' — D. Thus, c-diff is a heuristic algorithm
for computing the difference between an ALC- and an
ALE-concept description. Nevertheless, the following
examples illustrate that c-diff works quite satisfacto-
rily even in the general case. This is also supported by
our experiences with a prototype implementation of
c-diff in the chemical process engineering application.

Consider the example concept Ceq and its ALE-
approximation 3Ir.(A M B). In order to compute
the difference c-diff(Cex,1,3r.(A M B)), Cex,1 firstly



ALE-concept description D
Output: c-diff(C, D)

e If CND = L, then diff(C, D) := 1;

in case c-diff(C;, D) C | |, ; c-diff(Cy, D);
e If n =1, then c-diff(C, D) :=

Aeprim(C)\prim(D)

Let & ={C},...,C}} = ex(C).
For ¢ = 1 to n do begin

then & := &, \ {C}}

end

E* := cdiff (E, val(D)) otherwise.

Input: ALC-concept description C' = Cy U --- U C, in AL-normal form,

e If n > 1, then let c-diff (C, D) := | |I_, c-diff(C;, D) and iteratively remove c-diff (C;, D) from the disjunction

A N Vr.cdiff(val(C),val(D)) N [ 3r.E

Ec&

1
r

where the value restriction is omitted in case c-diff(val(C),val(D)) = T and &/ is computed as follows:

If (i) there exists C' € &, \ {C}} with val(D) Mval(C)NC' € C;, or
(ii) there exists D' € ex(D) with val(D) Mval(C) M D' C C}

El :={E* | E € &} where E* := c-diff(E, val(C) Mval(D)), if val(C) is an ALE-concept description, and

Figure 2: The algorithm c-diff(C, D).

has to be transformed into A{C-normal form, yield-
ing (Vvr.BMN 3Ir.A) U (3r.BNVr.AN 3Ir.A). We now
have to compute c-diff(¥Vr.B M 3r.A,3r.(A N B)) and
c-diff(3r.B M Vr.A M 3Ir.A,3r.(A N B)). For the first
expression, Condition 3(b) causes Ir.A to be removed.
As no other existential restriction is left, the first ex-
pression evaluates to Vr.B. The second expression sim-
ilarly yields Vr.A. We finally obtain Vr.AUVr.B, which
is exactly Cex,1 — c-approx 4.s(Cex,1).  Analogously,
one can verify that c-diff(Cex 2, c-approx 4. (Cex,2)) =
Cex,2 — c-approxX 4 pg (Cex,2) = Vr.(mA U —-B).

5 Prototypical Implementations

We have evaluated a first prototypical implementation
of c-approx 4. realized in Lisp and using the FaCT
system [11] as an underlying subsumption tester.
Our implementation of c-approx ¢ utilizes the
optimized lcs implementation described in [17]. In
contrast to the c-approx 4. algorithm specified in
Figure 1 our implementation reduces the number of
lcs calls in advance. For many concept descriptions in
ALC-normal form it is likely that disjuncts share the
same existential restrictions due to the normalization.
These existential restrictions cause unnecessary lcs
calls when approximating the existential restrictions.
Some of the combinations from the Cartesian product
of the existential restrictions yield argument sets
for the lcs that are supersets of other combinations.

These supersets yield more general and therefore
redundant lcs concept descriptions. For example com-
puting the approximation of the concept description
((A U 3r.A) N (Ir.B N IrC) induces the lcs calls:

les(A, B),les(A, C),les(B, B),les(B, C), les(C, B),les(C, C)

in a naive realization. However, only the trivial com-
binations lcs(B,B) and lcs(C,C) add existential
restrictions to the approximation which are not
subsumed by the other combinations. Therefore, in
this case, the existential restrictions can be obtained
without using the lcs at all. So, in order to obtain
the correct approximation in general, it suffices to
compute the lcs only of those combinations that
do not have a superset among the combinations.
This method is employed in our implementation, we
compute first the minima (w.r.t. subset) of the set of
combinations and then apply the lcs to the remaining
combinations.

We applied c-approx 4 ¢ to ALC-concepts from a TBox
derived from our application in chemical process en-
gineering. This application TBox contains 120 con-
cepts and 40 roles. Surprisingly, for our unfolded in-
put concepts with concept sizes up to 740, it turned
out that the approximations were always smaller than
their unfolded input concepts. The approximations
had an average concept size of 81 and they had just
a third of the size of the unfolded input concepts on
the average. Each of the test concept descriptions was




approximated within less than 3 seconds runtime. Un-
fortunately, our implementation ran out of memory
computing approximations of some randomly gener-
ated ALC-concepts of similar size, but consisting of big
disjunctions with more than 6 disjuncts.

So, our prototypical implementation of c-approx 4,.¢
indicates that, despite the high theoretical complex-
ity, the approximation inference might be practicable
for cases relevant in applications. Further optimiza-
tions are of course necessary. Standard optimization
techniques as lazy unfolding are very likely to highly
improve the performance for run-times as well as for
sizes of returned concepts.

We have implemented a prototype for the c-diff al-
gorithm in Lisp. For a first evaluation we applied the
c-diff implementation to test concepts derived from our
process engineering TBox. More precisely, we applied
c-diff to the same ALC-concept descriptions used for
the evaluation of c-approx 4,.¢ together with their ap-
proximations generated by our c-approx 4 ¢ implemen-
tation. For these test cases the c-diff implementation
returned concept descriptions with an average size of
170 and a maximum size of 630. Thus, it turned out
that the concept size of the difference between origi-
nal concept description and its approximation is bigger
than the approximation itself in many cases. Com-
puting the difference took 2 seconds on the average
and each difference was computed within 6.5 seconds
runtime. Unlike c-approx 4.¢ this prototypical imple-
mentation behaved also well on randomly generated
concept descriptions. But for practical applications of
this non-standard inference powerful optimizations are
still necessary. Moreover, the output concept descrip-
tions need to be smaller and more compact in order to
be readable and comprehensible for a human user.

6 Conclusion and Future Work

We have investigated approximation as a new inference
problem for DLs. As a main technical result, a double-
exponential time algorithm computing upper approxi-
mations of ALC-concepts in ALE has been devised. We
have also introduced a syntax-based difference opera-
tor to measure the accuracy of approximations and an
efficient heuristic algorithm, which uses subsumption
testing as an oracle, to actually compute the difference
of concepts.

Our first evaluation of the implementations of
c-approx 4 ¢ and c-diff indicates that there is need for
further optimization. Even more important, since the
concepts returned by both algorithms are quite big
and hard to read and comprehend by a human user, it

is necessary to rewrite the concepts using the concept
definitions from the underlying AL-TBox to obtain
smaller concepts. To this purpose, one needs to extend
the existing rewriting approach for ALE [2] to ALC.

Another direction for future work is of course to ex-
tend our results to more expressive DLs. Since there
already exists an lcs algorithm for ACEN [13], i.e., ALE
plus number restrictions, the approximation algorithm
presented here can be extended to the approximation
of ALCN -concept descriptions by concept descriptions
in ACEN (or sublanguages thereof) as shown in [8]. Tt
remains as future work to adapt the difference opera-
tor to this pair of description logics.
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7 Appendix

Theorem 10 Let C be an ALC-concept description in
ALC-normal form (as specified in Definition 3) and D
an ALE -concept description. Then, C C D iff C = L,
or D=T, or forall i =1,...,n it holds that

1. prim(D) C prim(C;), and

2. for all D' € ex(D) there exists C' € ex(C;) such
that C' Mval(C;) C D', and

3. val(C;) C val(D).

PROOF. (=) Assume L CCCEDLCT.

e Assume prim(D) & prim(C;) for one i. Then there
exists an A € prim(D) \ prim(C;). By definition of
the ALC-normal form, C; is consistent. We may
therefore consider a canonical interpretation I of
C;. By definition, the individual dc, € AT for C;
does not occur in A, since A ¢ prim(C;). Thus,
d ¢ D' and therefore C' Z D, in contradiction to
our assumption.

e Assume for one D' € ex(D) that one i ex-
ists such that for all C' € ex(C;) it holds that
C' Nval(C;) Z D'. Since C; is consistent, ev-
ery C' € ex(C;) has a tree model Io» where
dor € (C' Mval(Cy))fer \ (D")fer. Without loss of
generality, we may assume disjoint domains, i.e.,
AlernAler = () for two different C', C"" € ex(C}).
We may now construct a new model I over the
domain AT = {d} W Upreex(cy) A with the
following properties: (1) For the role r, define
’I‘I = {(d, dcﬂ) | (o= eX(C,)} U UC’Gex(C’i) rIc’.
(2) For every (negated) atomic concept A € N U
{=A | A € N¢}, define the interpretation of A as
Al .= {d| A € prim(C;)} U Ucrcexcn) Aler | Note
that the first expression only states that d € A’
iff A € prim(C}).

It is easy to see that d € C!. On the other
hand d ¢ D!, because (D')fc’ was excluded ex-

plicitly from every Ics. Consequently, we have
d¢ (3r.D).

e Assume val(C;) [Z val(D) for one i. Thus, val(C;)
has a tree model I,4; such that dyq € val(C;)T\
val(D)%». We can now extend the model I intro-
duced for the previous case by adding d,, as an
r-successor of d. Again, assume AT N Al = (),
Then, define I" as follows: AT := AT U ATwt. (1)
For the role r, we define r’ := {(d,dyq)} Ur’ U
rlt(2) For every (negated) atomic concept A,
AT is simply the union of the previous models,
ie., A" := AT U Al As a result, we still have

d € (CI') for all i and thus d € CT' but on the
other hand d ¢ D”'.

(<) If C = L or D =T then it is easy to see that
the claim holds. Otherwise, let ¢ € {1,...,n}. It is
sufficient to show that C; C D. Let x € C} for any
interpretation I of C;. Show: = € D'.

e By assumption, z € A’ for every A € prim(C;).
The inclusion prim(D) C prim(C;) thus implies
z € Al for every A € prim(D).

e Consider an arbitrary D' € ex(D). By assump-
tion, we know that there is an C' € ex(C;) with
C'Mval(C;) C D'. Since z € (Ir.C' NVr.val(Cy))!,
this implies = € (Ir.D')1.

e Asval(C;) C val(D) and z € (val(C;))7, it holds
that = € (val(D))".

The definition of conjunction yields D! =
mAEprim(D) Al n ﬂD’Eex(D) (HT'DI)I n (V8|(D))[,
concluding the argument.

Theorem 5

ProoF. Without loss of generality, we may as-
sume C in AC-normal form since (1) the algorithm
C-approx 4 ¢ starts by computing the A{C-normal form
of its input and (2) T and L are represented uniquely
in AZC-normal form.

1. Show C' C c-approx 4.¢(C). To this end, we show by
induction over the structure of C' that the conditions
for subsumption from Theorem 10 hold.

If C € {1, T} then c-approx4.¢(C) = C which triv-
ially satisfies the subsumption conditions. Otherwise,
we may assume as induction hypothesis that the claim
holds for the subterms of C' occurring in existential
and value restrictions. For C we therefore find that:

e By definition of c-approx,.s, the set
prim(c-approx 4 ¢(C)) of primitive concepts
equals (_, prim(C;) which is always a subset of
C prim(C).

e Show: for les{c-approx 4,¢(Ci Mval(C;)) | 1 <i <
n} and for all i there exists some existential re-
striction ¢’ € ex(C;) such that C' M val(C;) is
subsumed by lcs(c-approx 4+ (Cf Mval(C;)) | 1 <
i <n}.

Pick C' = C}. By induction hypothesis it holds
that C' Mval(C;) is subsumed by the approxima-
tion c-approx 4.¢(C: Mval(C;)). The definition of
the lcs now guarantees that C' M val(C;) is also



subsumed by lcs{c-approx 4. (Ci Mval(C;)) | 1 <

i<n}.
e Show: val(C;) C val(c-approx 4.¢(C)) for every
i. By induction hypothesis we already know that
the value restriction val(C;) is subsumed by the
approximation c-approx 4.¢(val(C;)) for every i.
Consequently, for the lcs we find that val(C;) is
subsumed by les{c-approx 4,.¢(val(C;)) | 1 < i <

n} for every i.

2. Show c-approx 4,.¢(C) C C. Without loss of gener-
ality, let D be in ALE-normal form. Proof by induction
over the structure of C'.

If C € {1, T}, then c-approx 4 ¢(C) = C which is the

least concept subsuming C.

Otherwise, we may assume that the claim holds for the
subterms of C' occurring in existential and value re-
strictions. If D = T, then trivially c-approx 4,¢(C) C
D. Otherwise, the subsumption C' C D induces the
following facts:

e prim(D) C prim(C;) for every i. As the set
prim(c-approx 4 £¢(C)) of primitive concepts is de-
fined as the intersection of every prim(C;), this
implies prim(D) C prim(c-approx 4.¢(C)).

e Forall D' € ex(D) and for all ¢ there is an existen-
tial restriction C” € ex(C;) with C'Mval(C;) C D'.
The induction hypothesis now guarantees that
C' M val(C;) is subsumed by c-approx 4,.¢(C' M
val(C;)) C D for every i. Consequently, for the
les it holds that lcs{c-approx 4.¢(C' M val(Cy)) |
1<i<n}LCD.

e For all i we have val(C;) C val(D). By induc-
tion hypothesis we know that the value restric-
tion val(C;) is subsumed by the approximation
c-approx 4 ¢ (val(C;)) C val(D). Hence, we simi-
larly find les{c-approx 4,¢(val(C;)) | 1 <i <n} C

val(D).

||
Corollary 11 The algorithm c-approx,.c is a
double-exponential time algorithm, i.e., for a

giwen ALC-concept description the computation of
c-approx 4 ¢ (C) takes at most double exponential time
in the size of C'.

ProOOF. The algorithm c-approx 4, expects its in-
put in AL-normal form. Nevertheless, instead of
transforming C' into normal form before applying
c-approx 4. we may also do the necessary transfor-
mation on the fly for every role level currently visited.

Let |C| = n. The computation of c-approx 4.¢(C)
starts by transforming C into D := CU- - -UC,,—such
that every C; has no disjunction on the topmost role
level—but does not modify the lower role levels. The
concept D can thus have exponentially many (2°(")
for some polynomial p) disjuncts on the topmost level
each of which is limited in size by n.

According to the recursive structure of c-approx4,.¢
the following expressions must be computed:

1. the conjunction M A of primitive con-

A€, prim(Ct)
cepts;

2. an existential restriction Jr.lcs{c-approx 4. (C} M
val(C;)) | 1 <4 < m} for every tuple (C1,...,C],
with C} € ex(C;);

3. one value restriction Vr.lcs{c-approx 4 ¢ (val(C})) |
1<i<m}.

Obviously, Step 1 can be computed in polynomial time
in the size of D and thus in exponential time in n.

As D has exponentially many disjuncts C; with a lin-
ear number of existential restrictions C}, the number
of existential restrictions to be computed in Step 2
is double exponential in n. For every such existen-
tial restriction an lcs of a set of exponential cardi-
nality must be computed. Each element of such a
set is of the form c-approx 4,.¢(C} Mval(C;)). Hence,
c-approx 40¢ is recursively invoked on a concept de-
scription of size bounded by the size of C' and with a
role depth decreased by one. Thus, the computation
tree of c-approx 4. (with the lcs’s not evaluated for
the time being), is of size double exponential in the
size of C. In other words, if the lcs is not evaluated,
c-approx 4 ¢ runs in double exponential time. We need
to show that evaluating the lcs’s occurring in the com-
putation tree, does not increase the complexity.

We start to evaluate the lcs’s from the bottom to the
top of the computation tree for c-approx 4.¢(C). Ev-
ery lcs operation in the tree has an exponential number
of arguments and every argument is of size double ex-
ponential in |C|. Moreover, one can easily show that
every argument is not only in ALE-normal form, but
also has the following properties:

e It contains no subexpression of the form P M —P
(where P € N¢), ENL, ENT, 3r.L, or Vr.T.

e For every subexpression of the form Jr.E M Vr. F
it holds that E C F, i.e., the value restriction has
been propagated into the existential restriction al-
ready.



This holds because according to the definition, all con-
cepts returned by c-approx 4.¢ are have these proper-
ties. As shown in [1], the size of the lcs can therefore be
bounded by the product of the sizes of the arguments.
Thus, evaluating the lcs’s on the bottom level yields
concept descriptions of size at most double exponen-
tial. This evaluation process is iterated on every level
of the computation tree for c-approx 4 .¢(C) where lcs’s
occur. Since the depth of this tree is bounded by |C|
(more precisely, by the role depth of C), the whole
evaluation can be carried out in double-exponential
time. [ |

Theorem 9
PRrROOF. 1. Proof by ind. over the structure of C.

e C € prim(C): Then the conjunction c-diff(C, D)
D is equivalent to Po\p M D, where Po\p is
the conjunction over all primitive concepts in
prim(C) \ prim(D). Let Pcnp denote the con-
cjunction over all primitive concepts in prim(C') M
prim(D). As D C Ponp, the term c-diff(C, D) M
D is still equivalent to the conjunction Po\p I
Ponap M D. This expression, however, is equiva-
lent to C M D.

e C = (1 U (Cs: Without loss of generality, we
may assume exactly two disjuncts on the top-level
of C'. By definition, even after removing redun-
dant disjuncts, c-diff((Cy U Cy), D) is equivalent
to c-diff(Cy, D) U c-diff(C2, D). Hence, the con-
junction c-diff ((C; LU C3), D)M D can be simplified
to (c-diff(Cy, D) N D) U (c-diff(C2, D) N D). Ac-
cording to the induction hypothesis, this is equiv-
alent to (C; M D) U (C2 N D) which simplifies to
(Cl LJ 02) nD.

e No disjunction on the top-level of C: Show
c-diff(C, D) D = C N D. According to the char-
acterization of subsumption (Theorem 10), three
conditions must hold for equivalence:

(1.)  The set prim(c-diff(C, D) M D) of prim-
itive concepts is equal to the intersection
prim(c-diff(C, D)) N prim(D) which by definition
is the intersection of (prim(C) \ prim(D)) and
prim(D). This is equal to prim(C) N prim(D), the
set, of primitive concepts in the conjunction C'MD.

(2.) Show (C). Consider an existential restriction
F' € ex(C N D). We have to find an existential
restriction E' € ex(c-diff(C, D) N D) with E' M
val(c-diff(C, D)D) C F'. From the previous case
we know that val(c-diff(C, D)D) is equivalent to
val(C 1 D). Since ex(C'M D) is equal to the union

ex(c-diff (C, D)) U ex(D) we may distinguish two
cases.

If F' € ex(D) then we can select E' := F’, because
it also occurs in the set ex(c-diff (C, D) M D) which
is the conjunction of the concept descriptions in
ex(c-diff(C, D)) U ex(D). We thus find that the
conjunction E'Mval(c-diff(C, D)MD) is subsumed
by F'.

If F' € ex(C) \ ex(D), then Conditions (i) and
(ii) in the definition of the algorithm c-diff(C, D)
guarantee that there exists an existential restric-
tion ' € ex(c-diff(C, D)) with the following prop-
erties. If val(C) is an ALE-concept description
then E' is of the form c-diff (E’, (val(D) Mval(C)))
and the conjunction E' Mval(D) Nval(C) is sub-
sumed by F'. According to the induction hypoth-
esis, c-diff (E', (val(D)Mval(C)))Mval(D)Mval(C) is
equivalent to E' Mval(D) Nval(C). Consequently,
we find that E' M val(C) M val(D) is subsumed
by F'. It is easy to see that val(C) Mval(D) is
equivalent to val(C'M D) which again is equivalent
to val(c-diff(C, D) M D) as we know from above.
Hence, we have found an existential restriction E’
such that the conjunction E'Mval(c-diff (C', D)D)
is subsumed by F'. If D is no ALE-concept de-
scription then E' is of the form E' Mval(D). This
case is analogous to the previous one.

Show (J). In analogy to the case (C), consider
some existential restriction E’ € ex(c-diff(C, D) M
D). We have to find an existential restriction F"' €
ex(C'M D) such that F' Mval(C N D) is subsumed
by E’. Again, we have two cases to discriminate.

If E' € ex(D), then we can again select F' := E'
which also occurs in the set ex(CMD) of existential
restrictions.

If E' € ex(c-diff(C,D)) \ ex(D), then Condi-
tion (ii) guarantees that an existential restriction
F' € ex(D) C ex(C' N D) exists such that the con-
juntion F' Mval(C) M val(D) is subsumed by E'.
As seen above, val(C) Mval(D) is equivalent to
val(C M D) which concludes the argument.

(3.) By induction hypothesis, the conjunction
c-diff(val(C'),val(D)) M val(D) is equivalent to
val(C)nval(D). By definition, val(CT D) is equiv-
alent to val(C)Mval(D), which concludes this case.

2. This result was already shown in [12].

3. The proof can be found in our technical report,
see [7].



