
Approximation and Di�erene in Desription Logis

�

Sebastian Brandt

Theoretial Computer Siene,

RWTH Aahen

Ralf K�usters

Theoretial Computer Siene,

University of Kiel

Anni-Yasmin Turhan

Theoretial Computer Siene,

RWTH Aahen

Abstrat

Approximation is a new inferene servie

in Desription Logis �rst mentioned by

Baader, K�usters, and Molitor. Approximat-

ing a onept, de�ned in one Desription

Logi, means to translate this onept to an-

other onept, de�ned in a seond typially

less expressive Desription Logi, suh that

both onepts are as losely related as possi-

ble with respet to subsumption. The present

paper provides the �rst in-depth investiga-

tion of this inferene task. We prove that ap-

proximations from the Desription Logi ALC

to ALE always exist and propose an algorithm

omputing them.

As a measure for the auray of the ap-

proximation, we introdue a syntax-oriented

di�erene operator, whih yields a onept

that ontains all aspets of the approximated

onept that are not present in the approxi-

mation. It is also argued that a purely se-

mantial di�erene operator, as introdued

by Teege, is less suited for this purpose. Fi-

nally, for the logis under onsideration, we

propose an algorithm omputing the di�er-

ene.

1 Introdution

Approximation in Desription Logis (DLs) was �rst

mentioned by Baader, K�usters, and Molitor [2℄ as a

possible new inferene problem. The present paper is

the �rst to investigate this problem in depth. Infor-

mally, approximation is de�ned as follows: given a on-

�

This work has been partially supported by the

Deutshe Forshungsgemeinshaft, DFG Projet BA

1122/4-1.

ept C de�ned in a DL L

s

(\s" for soure) �nd a on-

ept D, the upper/lower approximation of C, in a DL

L

d

(\d" for destination) suh that i) D subsumes/is

subsumed by C, and ii) D is a minimal/maximal on-

ept in L

d

(w.r.t. subsumption) with this property.

Throughout this paper we will mainly fous on up-

per approximations. There are a number of di�erent

appliations of this inferene problem, from whih we

will briey mention two here (see [7℄ for others, suh

as the translation of knowledge-bases and knowledge-

base vivi�ation, an appliation already mentioned in

[5, 9℄).

Translation of knowledge-bases

Approximation an be used to (automatially) trans-

late a knowledge-base written in an expressive DL into

a another (semantially losely related) knowledge-

base in a less expressive DL. The translation may be-

ome neessary to port knowledge-bases between dif-

ferent knowledge representation systems or to inte-

grate di�erent knowledge-bases.

Non-standard inferenes for expressive DLs. Non-

standard inferenes in DLs, suh as omputing the

least ommon subsumer (ls), mathing and uni�a-

tion of onepts, have been introdued to support the

onstrution and maintenane of DL knowledge-bases

(see [12℄ for an overview). However, up to now they are

mostly restrited to quite inexpressive DLs, for exam-

ple to those that do not allow for onept disjuntion.

Approximation an be used to overome this problem

to some extent. For example, the existing mathing

algorithms an be lifted up to handle more expressive

DLs as follows: instead of diretly mathing onept

patterns (de�ned in a small DL) against onepts (de-

�ned in a DL that an not be handled by existing

mathing algorithms), one an �rst approximate the

onept (in the small DL) and then math against its

approximation. Even though some information may

be lost, e.g., the mather is more general than the or-

ret one, the auray of the result may still suÆe.

Another example, whih was in fat the main mo-

tivation for us to investigate approximation in the

�rst plae, is the omputation of ommonalities be-

tween onepts. This inferene servie is used in our

hemial proess engineering appliation [14℄ to sup-

port the bottom-up onstrution of knowledge-bases

[1, 6℄. Typially, the ls is employed to aomplish

this task. Formally, the ls of two onepts, say C

1

and C

2

, de�ned in some DL L, is the most spei�

onept (w.r.t. subsumption) in L that subsumes both

onepts. In ase L allows for onept disjuntion, the

ls is just the disjuntion of C

1

and C

2

(C

1

tC

2

). Thus,

the problem is that a user inspeting this onept does

not learn anything about the atual ommonalities be-

tween C

1

and C

2

. By using approximation, however,

one an make the ommonalities expliit by �rst ap-

proximating C

1

and C

2

in a sublanguage of L whih

does not allow to express onept disjuntion, and then

omputing the ls of the approximations in this sub-

language.

Supporting frame-based user interfaes of DL systems.

In the interation with DL systems, users with little

knowledge representation expertise may have diÆul-

ties to understand and make use of the full expressive

power of the underlying DLs. To overome this prob-

lem, some knowledge representation systems have been

equipped with a simpli�ed frame-based user interfae

built on top of a more powerful DL system. Examples

for suh systems are the TAMBIS system [3℄ and the

ontology editor OilEd [4℄ built on top of the FaCT DL

system [11℄. On many oasions, these systems have to

present onept desriptions to the user for editing, in-

spetion, or as a solution of inferene problems. Suh

onept desriptions, however, need not always �t into

the restrited representation of the frame-based user

interfae or might overwhelm an inexperiened user.

In suh ases, approximation might be helpful as a

means to represent onept desriptions in a simpli-

�ed fashion suited to the user interfae and the users

level of expertise.

The main tehnial result of this paper (Setion 3) is

to show that onept desriptions de�ned in the stan-

dard DL ALC, whih allows for onept onjuntion

and disjuntion, value and existential restritions, and

full negation, an be approximated (from above) in the

DL ALE , a DL that does not allow for onept disjun-

tion and full negation.

One one has given an (upper) approximation D of C

a natural question regards the loss of information, i.e.,

what aspets of C are not aptured byD. Therefore we

propose a di�erene operator, whih given C (in L

s

)

and D (in L

d

) yields a onept E (the di�erene of C

and D) in L

s

suh that E onjoint with D is equiva-

lent to C (E u D � C). In other words, E ontains

the information that is missing in the approximation

D of C. Suh an operator has already been de�ned

by Teege [16℄. He requires that E is the most gen-

eral onept desription in L

s

w.r.t. subsumption that

satis�es the above equivalene. However, as we will

see, suh a purely semantial de�nition of di�erene

yields very unintuitive onepts. We therefore propose

a new syntax-based de�nition, whih better aptures

the intuition behind di�erene. Roughly speaking, the

di�erene E between C and D will be obtained by syn-

tatially removing those parts of C that are already

present in D. In Setion 4, we provide a formal de�ni-

tion and give an algorithm for omputing the di�erene

between an ALC- and an ALE -onept desription.

In Setion 5 we present some experienes with our pro-

totypial implementations of the algorithms presented

here and onlude with some remarks on future work.

All details and full proofs of our results an be found

in our tehnial report [7℄.

2 Desription Logis

Conept desriptions are indutively de�ned with the

help of a set of onept onstrutors, starting with a set

N

C

of onept names and a set N

R

of role names. The

available onstrutors determine the expressive power

of the DL in question. In this paper, we onsider on-

ept desriptions built from the onstrutors shown

in Table 1. In the DL ALE , onept desriptions are

formed using the onstrutors top-onept (>), on-

ept onjuntion (CuD), existential restrition (9r:C),

value restrition (8r:C), primitive negation (:A), and

the bottom-onept (?). The DL ALC additionally

provides us with onept disjuntion (C tD) and full

negation (:C). Note that in ALC every onept de-

sription an be negated whereas in ALE negation is

only allowed in front of onept names. For a DL L,

suh as ALE and ALC, a onept desription formed

with the onstrutors allowed in L is alled L-onept

desription in the following.

As usual, the semantis of a onept desription is de-

�ned in terms of an interpretation I = (�; �

I

). The

domain � of I is a non-empty set and the interpreta-

tion funtion �

I

maps eah onept name A 2 N

C

to

a set A

I

� � and eah role name r 2 N

R

to a binary

relation r

I

� ���. The extension of �

I

to arbitrary

onept desriptions is de�ned indutively, as shown

in the seond olumn of Table 1.

One of the most important traditional inferene ser-

vies provided by DL systems is omputing the sub-

Syntax Semantis ALE ALC

> � x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� nA

I

x x

? ; x x

C tD C

I

[D

I

x

:C � n C

I

x

Table 1: Syntax and semantis of onept desriptions.

sumption hierarhy. The onept desription C is sub-

sumed by the desription D (C v D) i� C

I

� D

I

holds for all interpretations I; C and D are equivalent

(C � D) i� C v D and D v C; C is stritly subsumed

by D (C < D) i� C v D and C 6� D. Subsumption

and equivalene in ALC are PSPACE-omplete [15℄ and

NP-omplete in ALE [10℄.

In order to approximate ALC-onept desriptions by

ALE-onept desriptions, we will need to ompute the

least ommon subsumer in ALE .

De�nition 1 Given L-onept desriptions

C

1

; : : : ; C

n

,for some desription logi L, the L-

onept desription C is the least ommon subsumer

(ls) of C

1

; : : : ; C

n

(C = ls(C

1

; : : : ; C

n

) for short)

i� (i) C

i

v C for all 1 � i � n, and (ii) C is the

least onept desription with this property, i.e., if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

Depending on the DL under onsideration, the ls of

two or more onept desriptions need not always ex-

ist, but if it exists, then, by de�nition, it is unique

up to equivalene. For instane, in ALC the ls triv-

ially exists sine ls(C;D) � C t D. For ALE , whih

does not allow for onept disjuntion, the existene

is not obvious. However, as shown in [1℄, the ls of

two or more ALE-onept desriptions always exists,

its size may grow exponentially in the size of the input

desriptions, and it an be omputed in exponential

time.

3 Computing Approximations

In this setion, we show how ALC-onept desriptions

an be approximated (from above) by ALE-onept de-

sriptions. Let us �rst de�ne the notion of approxima-

tion formally.

De�nition 2 Let L

1

and L

2

be two DLs, and let C be

an L

1

- and D be an L

2

-onept desription. Then, D

is alled upper (lower) L

2

-approximation of C (D =

approx

L

2

(C) for short) if (i) C v D (D v C), and

(ii) D is minimal (maximal) with this property, i.e.,

C v D

0

and D

0

v D (D v D

0

) implies D

0

� D for all

L

2

-onept desriptions D

0

.

Note that approximations need not exist in general.

Consider for example the DLs L

1

= fug and L

2

=

ftg, i.e., the DLs that only allow for onept onjun-

tion and onept disjuntion, respetively. Let A and

B denote onept names. Then, there does not exist

an upper L

1

-approximation of the L

2

-onept desrip-

tion A t B. Conversely, there does not exist a lower

L

2

-approximation of the L

1

-onept desription AuB.

Also note that approximations need not be uniquely

determined. For example, both A and B are lower

L

1

-approximations of AtB with L

1

de�ned as above.

In this paper, we restrit our investigations to upper

approximations. Therefore, whenever we speak of ap-

proximations in the following, we mean upper approx-

imations. Moreover, we onentrate on upper ALE-

approximations of ALC-onept desriptions. Sine

ALE allows for onept onjuntion it immediately fol-

lows that if upper ALE-approximations exist, they are

uniquely determined up to equivalene: If D

1

and D

2

are two upper ALE -approximations of the same ALC-

onept, then so is D

1

uD

2

. But then, by de�nition of

upper approximation,D

1

uD

2

v D

1

andD

1

uD

2

v D

2

implies D

1

uD

2

� D

1

� D

2

.

3.1 The na��ve Approximation Approah

Now, let us turn to the question of how upper ALE-

approximations an be omputed from ALC-onept

desriptions. We �rst present a na��ve approah to

this problem and show that it fails. This will then

motivate the de�nition of the (orret) approximation

algorithm.

The na��ve approah. It is easy to see that, given an

ALC-onept desription C = E tF with ALE -onept

desriptions E and F , the ALE-approximation of C is

ls(E;F). Having observed this, one might think that

every ALC-onept desription C an be approximated

by simply replaing every onept disjuntion in C by

the ls operator and evaluating the ls operators from

inside out. However, the ALC-onept desription

C

ex;1

= (8r:B t (9r:B u 8r:A)) u 9r:A;

with onept names A and B, illustrates that this is

not the ase: The obtained approximation would be

ls(8r:B; (9r:B u 8r:A)) u 9r:A � > u 9r:A � 9r:A.

However, as one an easily hek, C

ex;1

v 9r:(AuB) <

9r:A. In fat, 9r:(A u B) is the orret upper ALE-

approximation of C

ex;1

.

As it turns out, we will have to turn the onept

desriptions into a ertain normal form before sub-

stituting disjuntions by the ls. Roughly speaking,

the normal forms are obtained by distributing onept

onjuntions over onept disjuntions. In the exam-

ple, this yields the onept desription (8r:Bu9r:A)t

(9r:B u 8r:A u 9r:A) and replaing the disjuntion by

the ls yields ls(8r:B u 9r:A; 9r:B u 8r:A u 9r:A) �

9r:(A u B), whih is the orret result.

Still, the following example illustrates that normaliz-

ing onepts in this way does not suÆe in the general

ase. The desription

C

ex;2

= 9r:A u 9r:B u 8r:(:A t :B)

is already in normal form, but substituting the on-

ept disjuntion with the ls yields 9r:A u 9r:B u

8r:ls(:A;:B) � 9r:A u 9r:B u 8r:> � 9r:A u 9r:B.

However, the ALE-approximation of C

ex;2

is 9r:(A u

:B) u 9r:(B u :A). The reason is that we need to

propagate value restritions on existential restritions

in order to obtain the orret approximations of the

existential restritions.

In what follows, we will �rst introdue the normal

forms and then present the approximation algorithm,

whih works on these normal forms and does the prop-

agation on-the-y.

3.2 ALC-Normalform

For the sake of simpliity, we assume that the set

N

R

of role names is the singleton frg. However, all

de�nitions and results an easily be generalized to

arbitrary sets of role names. We also assume that

eah onjuntion in an ALE-onept desription on-

tains at most one value restrition of the form 8r:C

0

(this is w.l.o.g. due to the equivalene 8r:E u 8r:F �

8r:(E u F)). Some notation is needed to aess the

di�erent parts of an ALE-onept desription C (and

an ALC-onept desription where disjuntion only o-

urs within value or existential restritions): prim(C)

denotes the set of all (negated) onept names and the

bottom onept ourring on the top-level onjuntion

of C; if there exists a value restrition of the form 8r:C

0

on the top-level onjuntion of C, then val(C) := C

0

;

otherwise, val(C) := >; ex(C) := fC

0

j there exists

9r:C

0

on the top-level onjuntion of Cg.

De�nition 3 An ALC-onept desription C is in

ALC-normal form i�

1. if C � ?, then C = ?; if C � >, then C = >;

2. otherwise, C is of the form C = C

1

t� � �tC

n

with

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex(C

i

)

9r:C

0

u 8r:val(C

i

);

C

i

6� ?, and val(C

i

) and every onept desrip-

tion in ex(C

i

) is in ALC-normal form, for all

i = 1; : : : ; n.

Obviously, every ALC-onept desription an be

turned into an equivalent onept desription in ALC-

normal form. Unfortunately, this may take exponen-

tial time, as the example (A

1

tA

2

)u� � �u(A

2n�1

tA

2n

)

shows, whose ALC-normal form is of size exponential

in n.

3.3 Computing Approximations

Our approximation algorithm is based on the following

strutural haraterization of subsumption between an

ALC-onept desription, say C, in ALC-normal form

and an ALE-onept desription, say D. The idea is

that D is ompared to every disjunt C

i

in C. This

omparison in turn is very similar to the strutural

haraterization of subsumption between ALE -onept

desriptions [1℄.

Theorem 4 Let C be an ALC-onept desription in

ALC-normal form (as spei�ed in De�nition 3) and D

an ALE-onept desription. Then, C v D i� C � ?,

or D � >, or for all i = 1; : : : ; n it holds that

1. prim(D) � prim(C

i

), and

2. for all D

0

2 ex(D) there exists C

0

2 ex(C

i

) suh

that C

0

u val(C

i

) v D

0

, and

3. val(C

i

) v val(D).

The approximation algorithm, denoted by

-approx

ALE

, is depited in Figure 1. Given C,

it �nds an ALE -onept desription, whih is as

spei� as possible and satis�es the onditions of

Input: ALC-onept desription C

Output: upper ALE-approximation of C

1. If C � ?, then -approx

ALE

(C) := ?; if C � >, then -approx

ALE

(C) := >

2. Otherwise, transform C into ALC-normal form C

1

t � � � t C

n

and return

-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u

u

(C

0

1

;:::;C

0

n

)2ex(C

1

)�����ex(C

n

)

9r:lsf-approx

ALE

(C

0

i

u val(C

i

)) j 1 � i � ng u

8r:lsf-approx

ALE

(val(C

i

)) j 1 � i � ng

Figure 1: The reursive algorithm -approx

ALE

(C).

Theorem 10. For C � ? and C � > this is trivial. In

ase C 6� ? and D := -approx

ALE

(C) 6� >, one needs

to show that i) the Conditions 1, 2, and 3 of Theo-

rem 10 are satis�ed for C and D, and that ii) D is a

minimal onept desription with this property. Here

we only give an idea of how to prove i) by strutural

indution on C (see [7℄ for the full proof). Condition

1: prim(D) is the intersetion of the sets prim(C

i

), thus

Condition 1 holds; Condition 2: An element in ex(D)

is of the form lsf-approx

ALE

(C

0

j

u val(C

j

)) j

1 � j � ng. Choosing C

0

= C

0

i

yields

C

0

i

u val(C

i

) v -approx

ALE

(C

0

i

u val(C

i

)), thus

also C

0

i

u val(C

i

) v lsf-approx

ALE

(C

0

j

u val(C

j

)) j

1 � j � ng. The reasoning for Condition 3 is similar.

Theorem 5 For every ALC-onept desription C the

ALE-approximation exists, is uniquely determined up

to equivalene, and an be omputed by -approx

ALE

,

i.e., -approx

ALE

(C) � approx

ALE

(C).

Applying this to our examples, we obtain for C

ex;1

the

normal form:

C

ex;1

� ((9r:A u 8r:B) t (9r:A u 9r:B u 8r:A));

and for C

ex;2

C

ex;2

� 9r:A u 9r:B u 8r:(:A t :B)

one veri�es that -approx

ALE

(C

ex;1

) � 9r:(A u B) and

-approx

ALE

(C

ex;2

) � 9r:(A u :B) u 9r:(B u :A).

In [1℄, it has been shown that the ls of two ALE-

onept desriptions an grow exponentially in the size

of the given onept desriptions. Sine approx

ALE

(Et

F) � ls(E;F) for ALE-onept desriptions E and F ,

it immediately follows that theALE-approximation an

grow exponentially as well. Moreover, one an show

that -approx

ALE

runs in double exponential time [7℄.

Whether or not there also exists an exponential time

approximation algorithm is an open problem.

Corollary 6 The ALE-approximation of ALC-onept

desriptions may grow exponentially and there is a

double-exponential time algorithm omputing it.

4 The di�erene operator

In the previous setion we have seen how to om-

pute the ALE-approximation of a given ALC-onept

desription. For suh a pair C;D of approximated

and approximating onept, a very natural question

regards the loss of information, i.e., what aspets of C

are not aptured by D.

An answer to suh questions requires a notion of the

\di�erene" between onept desriptions. For in-

stane, a omparison between the example onept

C

ex;2

and its approximation 9r:(Au:B)u9r:(B u:A)

should reveal that the value restrition 8r:(:A t :B)

is not aptured by the approximation.

A �rst approah for a di�erene operator has been pro-

posed by Teege [16℄. Here, the di�erene C�D of two

given L-onept desriptions with C v D has been

de�ned as

maxfE 2 L j E uD � Cg

where the maximum is de�ned with respet to sub-

sumption. Sine ALC provides full negation, a most

general onept E with E uD � C is always C t :D.

Consequently, Teege's di�erene operator would re-

turn

(9r:A u 9r:B u 8r:(:A t :B))

t :(9r:(A u :B) u 9r:(B u :A))

as the di�erene between C

ex;2

and its approximation,

whih obviously does not help a human user to aser-

tain the information lost by the approximation.

The example illustrates that it may be promising to

look for a syntati minimum instead of a semanti

maximum in order to �nd a ompat representation of

the di�erene of two onepts.

4.1 Subdesription Ordering

In [12, 2℄, a so-alled subdesription ordering on ALE-

onept desriptions has been proposed to deal with

syntatial redundanies. In order to extend this to

our ase we need to introdue an analogous ordering

on ALC-onepts. The idea is to obtain a subdesrip-

tion of some ALC-onept desription C by means of

two kinds of modi�ations. Firstly, by making inon-

sistenies expliit; and seondly, by removing disjunts

and onjunts, and by replaing some existential or

value restritions by their respetive subdesriptions.

Formally, this leads to the following de�nition.

De�nition 7 Let C;D be ALC-onept desriptions in

ALC-normal form. Let C = C

1

t� � �tC

n

. Then, D �

d

C i� D = ? or D is obtained from C by performing

some of the following steps:

1. Remove some disjunts C

i

for 1 � i � n,

2. for every remaining C

i

:

(a) remove some onjunts A 2 prim(C

i

),

(b) remove some onjunts 9r:C

0

i

with C

0

i

2

ex(C

i

),

() remove the onjunt 8r:val(C

i

),

(d) for every remaining C

0

i

2 ex(C

i

) [fval(C

i

)g:

replae C

0

i

by C

00

i

with C

00

i

�

d

C

0

i

If everything is removed from C, the resulting onept

is >. As an example, onsider the equivalent onept

desriptions C := 9r:A u 8r::B and D := (9r:(A t

B) u 8r::B) t (9r::A u 8r:A). By removing the last

disjunt from D and the last disjunt in the remaining

existential restrition we �nd C �

d

D.

Based on the subdesription ordering, we an provide

the new de�nition of the di�erene operator.

De�nition 8 Let C be an ALC-onept desription

and D an ALE-onept desription. The di�erene

C � D of C and D is de�ned as a minimal (w.r.t.

�

d

) ALC-onept desription E with E uD � C uD.

Intuitively, the idea is to remove all subdesriptions

from C whih are either redundant or already present

in D. It should be noted that in ase of C v D,

and thus, C u D � C, the only di�erene to Teege's

di�erene operator is that the minimum w.r.t. �

d

is

used instead of the maximum w.r.t. v. Finally, note

that the di�erene between C and D is not a priori

uniquely determined. By abuse of language and no-

tation, we will still refer to the di�erene C �D (see

also Theorem 9). Coming bak to the example at the

beginning of the setion, the di�erene (aording to

De�nition 8) between C

ex;2

and its approximation is

8r:(:A t :B), as desired.

4.2 Computing Di�erenes

Having de�ned our di�erene operator, we need to de-

vise an algorithm to atually ompute the di�erene

C � D. In [12℄, an algorithm has been proposed to

ompute the di�erene C �D of ALE-onept desrip-

tions C and D. Extending this algorithm to the ase

of ALC-onept desriptions C yields our de�nition of

the algorithm -di� as depited in Figure 2.

If C is a disjuntion of subonepts C

i

then the di�er-

ene between C andD is obtained by �rstly omputing

the di�erenes between the disjunts and D and then

eliminating the semantially redundant resulting dis-

junts. In general, the following three properties an

be shown for every omputation of -di�(C;D).

Theorem 9 Let C be an ALC-onept desription in

ALC-normal form and D be an ALE-onept desrip-

tion. Then,

1. -di�(C;D) uD � C uD.

2. If C is an ALE -onept desription, then C �D is

uniquely determined modulo assoiativity and om-

mutativity of onept onjuntion, and C � D and

-di�(C;D) oinide.

3. Given an orale for subsumption, -di�(C;D) runs

in polynomial time in the size of C and D.

Thus, in ase C is an ALE-onept desription, -di�

exatly omputes the di�erene C�D (Theorem 9, 2.).

If C is an ALC-onept desription, we know that -di�

does not remove too muh from C (Theorem 9, 1.).

However, -di� might not have omputed the exat

di�erene C �D. Thus, -di� is a heuristi algorithm

for omputing the di�erene between an ALC- and an

ALE-onept desription. Nevertheless, the following

examples illustrate that -di� works quite satisfato-

rily even in the general ase. This is also supported by

our experienes with a prototype implementation of

-di� in the hemial proess engineering appliation.

Consider the example onept C

ex;1

and its ALE-

approximation 9r:(A u B). In order to ompute

the di�erene -di�(C

ex;1

; 9r:(A u B)), C

ex;1

�rstly

Input: ALC-onept desription C = C

1

t � � � t C

n

in ALC-normal form,

ALE-onept desription D

Output: -di�(C;D)

� If C uD � ?, then -di�(C;D) := ?;

� If n > 1, then let -di�(C;D) :=

F

n

i=1

-di�(C

i

; D) and iteratively remove -di�(C

j

; D) from the disjuntion

in ase -di�(C

j

; D) v

F

i 6=j

-di�(C

i

; D);

� If n = 1, then -di�(C;D) :=

u

A2prim(C)nprim(D)

A u 8r:-di�(val(C); val(D)) u u

E2E

0

r

9r:E

where the value restrition is omitted in ase -di�(val(C); val(D)) � > and E

0

r

is omputed as follows:

Let E

r

= fC

0

1

; : : : ; C

0

n

g := ex(C).

For i = 1 to n do begin

If (i) there exists C

0

2 E

r

n fC

0

i

g with val(D) u val(C) u C

0

v C

0

i

, or

(ii) there exists D

0

2 ex(D) with val(D) u val(C) uD

0

v C

0

i

then E

r

:= E

r

n fC

0

i

g

end

E

0

r

:= fE

�

j E 2 E

r

g where E

�

:= -di�(E; val(C) u val(D)), if val(C) is an ALE-onept desription, and

E

�

:= -di�(E; val(D)) otherwise.

Figure 2: The algorithm -di�(C;D).

has to be transformed into ALC-normal form, yield-

ing (8r:B u 9r:A) t (9r:B u 8r:A u 9r:A). We now

have to ompute -di�(8r:B u 9r:A; 9r:(A u B)) and

-di�(9r:B u 8r:A u 9r:A; 9r:(A u B)). For the �rst

expression, Condition 3(b) auses 9r:A to be removed.

As no other existential restrition is left, the �rst ex-

pression evaluates to 8r:B. The seond expression sim-

ilarly yields 8r:A. We �nally obtain 8r:At8r:B, whih

is exatly C

ex;1

� -approx

ALE

(C

ex;1

). Analogously,

one an verify that -di�(C

ex;2

; -approx

ALE

(C

ex;2

)) =

C

ex;2

� -approx

ALE

(C

ex;2

) = 8r:(:A t :B).

5 Prototypial Implementations

We have evaluated a �rst prototypial implementation

of -approx

ALE

realized in Lisp and using the FaCT

system [11℄ as an underlying subsumption tester.

Our implementation of -approx

ALE

utilizes the

optimized ls implementation desribed in [17℄. In

ontrast to the -approx

ALE

algorithm spei�ed in

Figure 1 our implementation redues the number of

ls alls in advane. For many onept desriptions in

ALC-normal form it is likely that disjunts share the

same existential restritions due to the normalization.

These existential restritions ause unneessary ls

alls when approximating the existential restritions.

Some of the ombinations from the Cartesian produt

of the existential restritions yield argument sets

for the ls that are supersets of other ombinations.

These supersets yield more general and therefore

redundant ls onept desriptions. For example om-

puting the approximation of the onept desription

((A t 9r:A) u (9r:B u 9r:C) indues the ls alls:

ls(A;B); ls(A;C); ls(B;B); ls(B;C); ls(C;B); ls(C;C)

in a naive realization. However, only the trivial om-

binations ls(B;B) and ls(C;C) add existential

restritions to the approximation whih are not

subsumed by the other ombinations. Therefore, in

this ase, the existential restritions an be obtained

without using the ls at all. So, in order to obtain

the orret approximation in general, it suÆes to

ompute the ls only of those ombinations that

do not have a superset among the ombinations.

This method is employed in our implementation, we

ompute �rst the minima (w.r.t. subset) of the set of

ombinations and then apply the ls to the remaining

ombinations.

We applied -approx

ALE

to ALC-onepts from a TBox

derived from our appliation in hemial proess en-

gineering. This appliation TBox ontains 120 on-

epts and 40 roles. Surprisingly, for our unfolded in-

put onepts with onept sizes up to 740, it turned

out that the approximations were always smaller than

their unfolded input onepts. The approximations

had an average onept size of 81 and they had just

a third of the size of the unfolded input onepts on

the average. Eah of the test onept desriptions was

approximated within less than 3 seonds runtime. Un-

fortunately, our implementation ran out of memory

omputing approximations of some randomly gener-

ated ALC-onepts of similar size, but onsisting of big

disjuntions with more than 6 disjunts.

So, our prototypial implementation of -approx

ALE

indiates that, despite the high theoretial omplex-

ity, the approximation inferene might be pratiable

for ases relevant in appliations. Further optimiza-

tions are of ourse neessary. Standard optimization

tehniques as lazy unfolding are very likely to highly

improve the performane for run-times as well as for

sizes of returned onepts.

We have implemented a prototype for the -di� al-

gorithm in Lisp. For a �rst evaluation we applied the

-di� implementation to test onepts derived from our

proess engineering TBox. More preisely, we applied

-di� to the same ALC-onept desriptions used for

the evaluation of -approx

ALE

together with their ap-

proximations generated by our -approx

ALE

implemen-

tation. For these test ases the -di� implementation

returned onept desriptions with an average size of

170 and a maximum size of 630. Thus, it turned out

that the onept size of the di�erene between origi-

nal onept desription and its approximation is bigger

than the approximation itself in many ases. Com-

puting the di�erene took 2 seonds on the average

and eah di�erene was omputed within 6.5 seonds

runtime. Unlike -approx

ALE

this prototypial imple-

mentation behaved also well on randomly generated

onept desriptions. But for pratial appliations of

this non-standard inferene powerful optimizations are

still neessary. Moreover, the output onept desrip-

tions need to be smaller and more ompat in order to

be readable and omprehensible for a human user.

6 Conlusion and Future Work

We have investigated approximation as a new inferene

problem for DLs. As a main tehnial result, a double-

exponential time algorithm omputing upper approxi-

mations of ALC-onepts in ALE has been devised. We

have also introdued a syntax-based di�erene opera-

tor to measure the auray of approximations and an

eÆient heuristi algorithm, whih uses subsumption

testing as an orale, to atually ompute the di�erene

of onepts.

Our �rst evaluation of the implementations of

-approx

ALE

and -di� indiates that there is need for

further optimization. Even more important, sine the

onepts returned by both algorithms are quite big

and hard to read and omprehend by a human user, it

is neessary to rewrite the onepts using the onept

de�nitions from the underlying ALC-TBox to obtain

smaller onepts. To this purpose, one needs to extend

the existing rewriting approah for ALE [2℄ to ALC.

Another diretion for future work is of ourse to ex-

tend our results to more expressive DLs. Sine there

already exists an ls algorithm for ALEN [13℄, i.e., ALE

plus number restritions, the approximation algorithm

presented here an be extended to the approximation

of ALCN -onept desriptions by onept desriptions

in ALEN (or sublanguages thereof) as shown in [8℄. It

remains as future work to adapt the di�erene opera-

tor to this pair of desription logis.

Referenes

[1℄ F. Baader, R. K�usters, and R. Molitor. Comput-

ing least ommon subsumers in desription log-

is with existential restritions. In T. Dean, ed-

itor, Proeedings of the 16th International Joint

Conferene on Arti�ial Intelligene (IJCAI'99),

pages 96{101. Morgan Kaufmann, 1999.

[2℄ F. Baader, R. K�usters, and R. Molitor. Rewrit-

ing onepts using terminologies. In A. G. Cohn,

F. Giunhiglia, and B. Selman, editors, KR2000:

Priniples of Knowledge Representation and Rea-

soning, pages 297{308, San Franiso, 2000. Mor-

gan Kaufmann.

[3℄ P. G. Baker, A. Brass, S. Behhofer, C. Goble,

N. Paton, and R. Stevens. TAMBIS: Transpar-

ent aess to multiple bioinformatis information

soures. In J. Glasgow, T. Littlejohn, F. Major,

R. Lathrop, D. Sanko�, and C. Sensen, editors,

6th Int. Conf. on Intelligent Systems for Moleu-

lar Biology, pages 25{34, Montreal, Canada, 1998.

AAAI Press, Menlo Park.

[4℄ S. Behhofer, I. Horroks, C. Goble, and R.

Stevens. Oiled: a reason-able ontology editor

for the semanti web. In F. Baader, G. Brewka,

and Th. Eiter, editors, Proeedings of the Joint

German/Austrian Conferene on AI (KI 2001),

volume 2174 of Leture Notes in Arti�ial Intel-

ligene, pages 396{408, Vienna, Austria, 2001.

Springer{Verlag.

[5℄ A. Borgida and D. W. Etherington. Hierarhial

knowledge bases and eÆient disjuntive reason-

ing. In H. J. Levesque, R. J. Brahman and R. Re-

iter, editors, Proeedings of the 1st International

Conferene on Priniples of Knowledge Repre-

sentation and Reasoning, pages 33{43, Toronto,

Canada, May 1989. Morgan Kaufmann.

[6℄ S. Brandt and A.-Y. Turhan. Using non-

standard inferenes in desription logis |

what does it buy me? In Proeedings of

the KI-2001 Workshop on Appliations of De-

sription Logis (KIDLWS'01), number 44 in

CEUR-WS, Vienna, Austria, September 2001.

RWTH Aahen. Proeedings online avail-

able from http://SunSITE.Informatik.RWTH-

Aahen.DE/Publiations/CEUR-WS/Vol-44/.

[7℄ S. Brandt, R. K�usters, and A.-Y. Turhan. Ap-

proximation and di�erene in desription log-

is. LTCS-Report 01-06, LuFG Theoreti-

al Computer Siene, RWTH Aahen, Ger-

many, 2001. See http://www-lti.informatik.rwth-

aahen.de/Forshung/Reports.html.

[8℄ S. Brandt, R. K�usters, and A.-Y. Turhan.

Approximating ALCN -Conept Desrip-

tions. See http://www-lti.informatik.rwth-

aahen.de/Forshung/Papers.html. To appear.

[9℄ W. W. Cohen, A. Borgida, and H. Hirsh. Com-

puting least ommon subsumers in desription

logis. In W. Swartout, editor, Proeedings of

the 10th National Conferene on Arti�ial Intel-

ligene, pages 754{760, San Jose, CA, July 1992.

MIT Press.

[10℄ F. M. Donini, M. Lenzerini, D. Nardi, B. Hollun-

der, W. Nutt, and A. Spaamela. The omplexity

of existential quanti�ation in onept languages.

Arti�ial Intelligene, 53(2{3):309{327, 1992.

[11℄ I. Horroks. Using an expressive desription logi:

FaCT or �tion? In A. G. Cohn, L. Shubert,

and S. C. Shapiro, editors, KR'98: Priniples of

Knowledge Representation and Reasoning, pages

636{645. Morgan Kaufmann, San Franiso, Cal-

ifornia, 1998.

[12℄ R. K�usters. Non-Standard Inferenes in Desrip-

tion Logis, volume 2100 of Leture Notes in Ar-

ti�ial Intelligene. Springer-Verlag, 2001.

[13℄ R. K�usters and R. Molitor. Computing least om-

mon subsumers in ALEN . In B. Nebel, edi-

tor, Proeedings of the Seventeenth International

Joint Conferene on Arti�ial Intelligene (IJCAI

2001), pages 219{224. Morgan Kaufman, 2001.

[14℄ U. Sattler. Terminologial knowledge representa-

tion systems in a proess engineering appliation.

PhD thesis, LuFG Theoretial Computer Siene,

RWTH-Aahen, Germany, 1998.

[15℄ M. Shmidt-Shau� and G. Smolka. Attributive

onept desriptions with omplements. Arti�ial

Intelligene, 48(1):1{26, 1991.

[16℄ G. Teege. Making the di�erene: A subtration

operation for desription logis. In P. Torasso J.

Doyle, E. Sandewall, editor, Proeedings of the 4th

International Conferene on Priniples of Knowl-

edge Representation and Reasoning, pages 540{

550, Bonn, FRG, May 1994. Morgan Kaufmann.

[17℄ A.-Y. Turhan and R. Molitor. Using lazy un-

folding for the omputation of least ommon sub-

sumers. In Proeedings of the International Work-

shop in Desription Logis 2001 (DL2001), Stan-

ford, USA, August 2001.

7 Appendix

Theorem 10 Let C be an ALC-onept desription in

ALC-normal form (as spei�ed in De�nition 3) and D

an ALE-onept desription. Then, C v D i� C � ?,

or D � >, or for all i = 1; : : : ; n it holds that

1. prim(D) � prim(C

i

), and

2. for all D

0

2 ex(D) there exists C

0

2 ex(C

i

) suh

that C

0

u val(C

i

) v D

0

, and

3. val(C

i

) v val(D).

Proof. ()) Assume ? < C v D < >.

� Assume prim(D) 6� prim(C

i

) for one i. Then there

exists an A 2 prim(D)nprim(C

i

). By de�nition of

the ALC-normal form, C

i

is onsistent. We may

therefore onsider a anonial interpretation I of

C

i

. By de�nition, the individual d

C

i

2 �

I

for C

i

does not our in A

I

, sine A 62 prim(C

i

). Thus,

d 62 D

I

and therefore C 6v D, in ontradition to

our assumption.

� Assume for one D

0

2 ex(D) that one i ex-

ists suh that for all C

0

2 ex(C

i

) it holds that

C

0

u val(C

i

) 6v D

0

. Sine C

i

is onsistent, ev-

ery C

0

2 ex(C

i

) has a tree model I

C

0

where

d

C

0

2 (C

0

u val(C

i

))

I

C

0

n (D

0

)

I

C

0

. Without loss of

generality, we may assume disjoint domains, i.e.,

�

I

C

0

\�

I

C

00

= ; for two di�erent C

0

; C

00

2 ex(C

i

).

We may now onstrut a new model I over the

domain �

I

= fdg ℄

S

C

0

2ex(C

i

)

�

I

C

0

with the

following properties: (1) For the role r, de�ne

r

I

:= f(d; d

C

0

) j C

0

2 ex(C

i

)g [

S

C

0

2ex(C

i

)

r

I

C

0

.

(2) For every (negated) atomi onept A 2 N

C

[

f:A j A 2 N

C

g, de�ne the interpretation of A as

A

I

:= fd j A 2 prim(C

i

)g [

S

C

0

2ex(C

i

)

A

I

C

0

. Note

that the �rst expression only states that d 2 A

I

i� A 2 prim(C

i

).

It is easy to see that d 2 C

I

. On the other

hand d 62 D

I

, beause (D

0

)

I

C

0

was exluded ex-

pliitly from every I

C

0

. Consequently, we have

d 62 (9r:D)

I

.

� Assume val(C

i

) 6v val(D) for one i. Thus, val(C

i

)

has a tree model I

val

suh that d

val

2 val(C

i

)

I

val

n

val(D)

I

val

. We an now extend the model I intro-

dued for the previous ase by adding d

val

as an

r-suessor of d. Again, assume �

I

\ �

I

val

= ;.

Then, de�ne I

0

as follows: �

I

0

:= �

I

[�

I

val

. (1)

For the role r, we de�ne r

I

0

:= f(d; d

val

)g [r

I

[

r

I

val

. (2) For every (negated) atomi onept A,

A

I

0

is simply the union of the previous models,

i.e., A

I

0

:= A

I

[A

I

val

. As a result, we still have

d 2 (C

I

0

i

) for all i and thus d 2 C

I

0

but on the

other hand d 62 D

I

0

.

(() If C � ? or D � > then it is easy to see that

the laim holds. Otherwise, let i 2 f1; : : : ; ng. It is

suÆient to show that C

i

v D. Let x 2 C

I

i

for any

interpretation I of C

i

. Show: x 2 D

I

.

� By assumption, x 2 A

I

for every A 2 prim(C

i

).

The inlusion prim(D) � prim(C

i

) thus implies

x 2 A

I

for every A 2 prim(D).

� Consider an arbitrary D

0

2 ex(D). By assump-

tion, we know that there is an C

0

2 ex(C

i

) with

C

0

uval(C

i

) v D

0

. Sine x 2 (9r:C

0

u8r:val(C

i

))

I

,

this implies x 2 (9r:D

0

)

I

.

� As val(C

i

) v val(D) and x 2 (val(C

i

))

I

, it holds

that x 2 (val(D))

I

.

The de�nition of onjuntion yields D

I

=

T

A2prim(D)

A

I

\

T

D

0

2ex(D)

(9r:D

0

)

I

\ (val(D))

I

,

onluding the argument.

Theorem 5

Proof. Without loss of generality, we may as-

sume C in ALC-normal form sine (1) the algorithm

-approx

ALE

starts by omputing the ALC-normal form

of its input and (2) > and ? are represented uniquely

in ALC-normal form.

1. Show C v -approx

ALE

(C). To this end, we show by

indution over the struture of C that the onditions

for subsumption from Theorem 10 hold.

If C 2 f?;>g then -approx

ALE

(C) = C whih triv-

ially satis�es the subsumption onditions. Otherwise,

we may assume as indution hypothesis that the laim

holds for the subterms of C ourring in existential

and value restritions. For C we therefore �nd that:

� By de�nition of -approx

ALE

, the set

prim(-approx

ALE

(C)) of primitive onepts

equals

T

n

i=1

prim(C

i

) whih is always a subset of

� prim(C).

� Show: for lsf-approx

ALE

(C

0

i

u val(C

i

)) j 1 � i �

ng and for all i there exists some existential re-

strition C

0

2 ex(C

i

) suh that C

0

u val(C

i

) is

subsumed by ls(-approx

ALE

(C

0

i

u val(C

i

)) j 1 �

i � ng.

Pik C

0

= C

0

i

. By indution hypothesis it holds

that C

0

u val(C

i

) is subsumed by the approxima-

tion -approx

ALE

(C

0

i

u val(C

i

)). The de�nition of

the ls now guarantees that C

0

u val(C

i

) is also

subsumed by lsf-approx

ALE

(C

0

i

u val(C

i

)) j 1 �

i � ng.

� Show: val(C

i

) v val(-approx

ALE

(C)) for every

i. By indution hypothesis we already know that

the value restrition val(C

i

) is subsumed by the

approximation -approx

ALE

(val(C

i

)) for every i.

Consequently, for the ls we �nd that val(C

i

) is

subsumed by lsf-approx

ALE

(val(C

i

)) j 1 � i �

ng for every i.

2. Show -approx

ALE

(C) v C. Without loss of gener-

ality, let D be in ALE-normal form. Proof by indution

over the struture of C.

If C 2 f?;>g, then -approx

ALE

(C) = C whih is the

least onept subsuming C.

Otherwise, we may assume that the laim holds for the

subterms of C ourring in existential and value re-

stritions. If D = >, then trivially -approx

ALE

(C) v

D. Otherwise, the subsumption C v D indues the

following fats:

� prim(D) � prim(C

i

) for every i. As the set

prim(-approx

ALE

(C)) of primitive onepts is de-

�ned as the intersetion of every prim(C

i

), this

implies prim(D) � prim(-approx

ALE

(C)).

� For all D

0

2 ex(D) and for all i there is an existen-

tial restrition C

0

2 ex(C

i

) with C

0

uval(C

i

) v D

0

.

The indution hypothesis now guarantees that

C

0

u val(C

i

) is subsumed by -approx

ALE

(C

0

u

val(C

i

)) v D for every i. Consequently, for the

ls it holds that lsf-approx

ALE

(C

0

u val(C

i

)) j

1 � i � ng v D.

� For all i we have val(C

i

) v val(D). By indu-

tion hypothesis we know that the value restri-

tion val(C

i

) is subsumed by the approximation

-approx

ALE

(val(C

i

)) v val(D). Hene, we simi-

larly �nd lsf-approx

ALE

(val(C

i

)) j 1 � i � ng v

val(D).

Corollary 11 The algorithm -approx

ALE

is a

double-exponential time algorithm, i.e., for a

given ALC-onept desription the omputation of

-approx

ALE

(C) takes at most double exponential time

in the size of C.

Proof. The algorithm -approx

ALE

expets its in-

put in ALC-normal form. Nevertheless, instead of

transforming C into normal form before applying

-approx

ALE

we may also do the neessary transfor-

mation on the y for every role level urrently visited.

Let jCj = n. The omputation of -approx

ALE

(C)

starts by transforming C intoD := C

1

t� � �tC

m

|suh

that every C

i

has no disjuntion on the topmost role

level|but does not modify the lower role levels. The

onept D an thus have exponentially many (2

p(n)

for some polynomial p) disjunts on the topmost level

eah of whih is limited in size by n.

Aording to the reursive struture of -approx

ALE

the following expressions must be omputed:

1. the onjuntion u

A2

T

i

prim(C

i

)

A of primitive on-

epts;

2. an existential restrition 9r:lsf-approx

ALE

(C

0

i

u

val(C

i

)) j 1 � i � mg for every tuple (C

0

1

; : : : ; C

0

m

)

with C

0

i

2 ex(C

i

);

3. one value restrition 8r:lsf-approx

ALE

(val(C

i

)) j

1 � i � mg.

Obviously, Step 1 an be omputed in polynomial time

in the size of D and thus in exponential time in n.

As D has exponentially many disjunts C

i

with a lin-

ear number of existential restritions C

0

i

, the number

of existential restritions to be omputed in Step 2

is double exponential in n. For every suh existen-

tial restrition an ls of a set of exponential ardi-

nality must be omputed. Eah element of suh a

set is of the form -approx

ALE

(C

0

i

u val(C

i

)). Hene,

-approx

ALE

is reursively invoked on a onept de-

sription of size bounded by the size of C and with a

role depth dereased by one. Thus, the omputation

tree of -approx

ALE

(with the ls's not evaluated for

the time being), is of size double exponential in the

size of C. In other words, if the ls is not evaluated,

-approx

ALE

runs in double exponential time. We need

to show that evaluating the ls's ourring in the om-

putation tree, does not inrease the omplexity.

We start to evaluate the ls's from the bottom to the

top of the omputation tree for -approx

ALE

(C). Ev-

ery ls operation in the tree has an exponential number

of arguments and every argument is of size double ex-

ponential in jCj. Moreover, one an easily show that

every argument is not only in ALE -normal form, but

also has the following properties:

� It ontains no subexpression of the form P u :P

(where P 2 N

C

), E u ?, E u >, 9r:?, or 8r:>.

� For every subexpression of the form 9r:E u 8r:F

it holds that E v F , i.e., the value restrition has

been propagated into the existential restrition al-

ready.

This holds beause aording to the de�nition, all on-

epts returned by -approx

ALE

are have these proper-

ties. As shown in [1℄, the size of the ls an therefore be

bounded by the produt of the sizes of the arguments.

Thus, evaluating the ls's on the bottom level yields

onept desriptions of size at most double exponen-

tial. This evaluation proess is iterated on every level

of the omputation tree for -approx

ALE

(C) where ls's

our. Sine the depth of this tree is bounded by jCj

(more preisely, by the role depth of C), the whole

evaluation an be arried out in double-exponential

time.

Theorem 9

Proof. 1. Proof by ind. over the struture of C.

� C 2 prim(C): Then the onjuntion -di�(C;D)u

D is equivalent to P

CnD

u D, where P

CnD

is

the onjuntion over all primitive onepts in

prim(C) n prim(D). Let P

C\D

denote the on-

juntion over all primitive onepts in prim(C)u

prim(D). As D v P

C\D

, the term -di�(C;D) u

D is still equivalent to the onjuntion P

CnD

u

P

C\D

u D. This expression, however, is equiva-

lent to C uD.

� C = C

1

t C

2

: Without loss of generality, we

may assume exatly two disjunts on the top-level

of C. By de�nition, even after removing redun-

dant disjunts, -di�((C

1

t C

2

); D) is equivalent

to -di�(C

1

; D) t -di�(C

2

; D). Hene, the on-

juntion -di�((C

1

tC

2

); D)uD an be simpli�ed

to (-di�(C

1

; D) u D) t (-di�(C

2

; D) u D). A-

ording to the indution hypothesis, this is equiv-

alent to (C

1

u D) t (C

2

u D) whih simpli�es to

(C

1

t C

2

) uD.

� No disjuntion on the top-level of C: Show

-di�(C;D) uD � C uD. Aording to the har-

aterization of subsumption (Theorem 10), three

onditions must hold for equivalene:

(1.) The set prim(-di�(C;D) u D) of prim-

itive onepts is equal to the intersetion

prim(-di�(C;D)) \ prim(D) whih by de�nition

is the intersetion of (prim(C) n prim(D)) and

prim(D). This is equal to prim(C) \ prim(D), the

set of primitive onepts in the onjuntion CuD.

(2.) Show (v). Consider an existential restrition

F

0

2 ex(C u D). We have to �nd an existential

restrition E

0

2 ex(-di�(C;D) u D) with E

0

u

val(-di�(C;D)uD) v F

0

. From the previous ase

we know that val(-di�(C;D)uD) is equivalent to

val(C uD). Sine ex(C uD) is equal to the union

ex(-di�(C;D)) [ex(D) we may distinguish two

ases.

If F

0

2 ex(D) then we an seletE

0

:= F

0

, beause

it also ours in the set ex(-di�(C;D)uD) whih

is the onjuntion of the onept desriptions in

ex(-di�(C;D)) [ex(D). We thus �nd that the

onjuntion E

0

uval(-di�(C;D)uD) is subsumed

by F

0

.

If F

0

2 ex(C) n ex(D), then Conditions (i) and

(ii) in the de�nition of the algorithm -di�(C;D)

guarantee that there exists an existential restri-

tion

~

E

0

2 ex(-di�(C;D)) with the following prop-

erties. If val(C) is an ALE-onept desription

then

~

E

0

is of the form -di�(E

0

; (val(D)u val(C)))

and the onjuntion E

0

u val(D) u val(C) is sub-

sumed by F

0

. Aording to the indution hypoth-

esis, -di�(E

0

; (val(D)uval(C)))uval(D)uval(C) is

equivalent to E

0

u val(D) u val(C). Consequently,

we �nd that

~

E

0

u val(C) u val(D) is subsumed

by F

0

. It is easy to see that val(C) u val(D) is

equivalent to val(C uD) whih again is equivalent

to val(-di�(C;D) u D) as we know from above.

Hene, we have found an existential restrition

~

E

0

suh that the onjuntion

~

E

0

uval(-di�(C;D)uD)

is subsumed by F

0

. If D is no ALE-onept de-

sription then

~

E

0

is of the form E

0

u val(D). This

ase is analogous to the previous one.

Show (w). In analogy to the ase (v), onsider

some existential restrition E

0

2 ex(-di�(C;D) u

D). We have to �nd an existential restrition F

0

2

ex(C uD) suh that F

0

u val(C uD) is subsumed

by E

0

. Again, we have two ases to disriminate.

If E

0

2 ex(D), then we an again selet F

0

:= E

0

whih also ours in the set ex(CuD) of existential

restritions.

If E

0

2 ex(-di�(C;D)) n ex(D), then Condi-

tion (ii) guarantees that an existential restrition

F

0

2 ex(D) � ex(C uD) exists suh that the on-

juntion F

0

u val(C) u val(D) is subsumed by E

0

.

As seen above, val(C) u val(D) is equivalent to

val(C uD) whih onludes the argument.

(3.) By indution hypothesis, the onjuntion

-di�(val(C); val(D)) u val(D) is equivalent to

val(C)uval(D). By de�nition, val(CuD) is equiv-

alent to val(C)uval(D), whih onludes this ase.

2. This result was already shown in [12℄.

3. The proof an be found in our tehnial report,

see [7℄.

