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Abstra
t

Approximation is a new inferen
e servi
e

in Des
ription Logi
s �rst mentioned by

Baader, K�usters, and Molitor. Approximat-

ing a 
on
ept, de�ned in one Des
ription

Logi
, means to translate this 
on
ept to an-

other 
on
ept, de�ned in a se
ond typi
ally

less expressive Des
ription Logi
, su
h that

both 
on
epts are as 
losely related as possi-

ble with respe
t to subsumption. The present

paper provides the �rst in-depth investiga-

tion of this inferen
e task. We prove that ap-

proximations from the Des
ription Logi
 ALC

to ALE always exist and propose an algorithm


omputing them.

As a measure for the a

ura
y of the ap-

proximation, we introdu
e a syntax-oriented

di�eren
e operator, whi
h yields a 
on
ept

that 
ontains all aspe
ts of the approximated


on
ept that are not present in the approxi-

mation. It is also argued that a purely se-

manti
al di�eren
e operator, as introdu
ed

by Teege, is less suited for this purpose. Fi-

nally, for the logi
s under 
onsideration, we

propose an algorithm 
omputing the di�er-

en
e.

1 Introdu
tion

Approximation in Des
ription Logi
s (DLs) was �rst

mentioned by Baader, K�usters, and Molitor [2℄ as a

possible new inferen
e problem. The present paper is

the �rst to investigate this problem in depth. Infor-

mally, approximation is de�ned as follows: given a 
on-

�
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ept C de�ned in a DL L

s

(\s" for sour
e) �nd a 
on-


ept D, the upper/lower approximation of C, in a DL

L

d

(\d" for destination) su
h that i) D subsumes/is

subsumed by C, and ii) D is a minimal/maximal 
on-


ept in L

d

(w.r.t. subsumption) with this property.

Throughout this paper we will mainly fo
us on up-

per approximations. There are a number of di�erent

appli
ations of this inferen
e problem, from whi
h we

will brie
y mention two here (see [7℄ for others, su
h

as the translation of knowledge-bases and knowledge-

base vivi�
ation, an appli
ation already mentioned in

[5, 9℄).

Translation of knowledge-bases

Approximation 
an be used to (automati
ally) trans-

late a knowledge-base written in an expressive DL into

a another (semanti
ally 
losely related) knowledge-

base in a less expressive DL. The translation may be-


ome ne
essary to port knowledge-bases between dif-

ferent knowledge representation systems or to inte-

grate di�erent knowledge-bases.

Non-standard inferen
es for expressive DLs. Non-

standard inferen
es in DLs, su
h as 
omputing the

least 
ommon subsumer (l
s), mat
hing and uni�
a-

tion of 
on
epts, have been introdu
ed to support the


onstru
tion and maintenan
e of DL knowledge-bases

(see [12℄ for an overview). However, up to now they are

mostly restri
ted to quite inexpressive DLs, for exam-

ple to those that do not allow for 
on
ept disjun
tion.

Approximation 
an be used to over
ome this problem

to some extent. For example, the existing mat
hing

algorithms 
an be lifted up to handle more expressive

DLs as follows: instead of dire
tly mat
hing 
on
ept

patterns (de�ned in a small DL) against 
on
epts (de-

�ned in a DL that 
an not be handled by existing

mat
hing algorithms), one 
an �rst approximate the


on
ept (in the small DL) and then mat
h against its

approximation. Even though some information may

be lost, e.g., the mat
her is more general than the 
or-



re
t one, the a

ura
y of the result may still suÆ
e.

Another example, whi
h was in fa
t the main mo-

tivation for us to investigate approximation in the

�rst pla
e, is the 
omputation of 
ommonalities be-

tween 
on
epts. This inferen
e servi
e is used in our


hemi
al pro
ess engineering appli
ation [14℄ to sup-

port the bottom-up 
onstru
tion of knowledge-bases

[1, 6℄. Typi
ally, the l
s is employed to a

omplish

this task. Formally, the l
s of two 
on
epts, say C

1

and C

2

, de�ned in some DL L, is the most spe
i�



on
ept (w.r.t. subsumption) in L that subsumes both


on
epts. In 
ase L allows for 
on
ept disjun
tion, the

l
s is just the disjun
tion of C

1

and C

2

(C

1

tC

2

). Thus,

the problem is that a user inspe
ting this 
on
ept does

not learn anything about the a
tual 
ommonalities be-

tween C

1

and C

2

. By using approximation, however,

one 
an make the 
ommonalities expli
it by �rst ap-

proximating C

1

and C

2

in a sublanguage of L whi
h

does not allow to express 
on
ept disjun
tion, and then


omputing the l
s of the approximations in this sub-

language.

Supporting frame-based user interfa
es of DL systems.

In the intera
tion with DL systems, users with little

knowledge representation expertise may have diÆ
ul-

ties to understand and make use of the full expressive

power of the underlying DLs. To over
ome this prob-

lem, some knowledge representation systems have been

equipped with a simpli�ed frame-based user interfa
e

built on top of a more powerful DL system. Examples

for su
h systems are the TAMBIS system [3℄ and the

ontology editor OilEd [4℄ built on top of the FaCT DL

system [11℄. On many o

asions, these systems have to

present 
on
ept des
riptions to the user for editing, in-

spe
tion, or as a solution of inferen
e problems. Su
h


on
ept des
riptions, however, need not always �t into

the restri
ted representation of the frame-based user

interfa
e or might overwhelm an inexperien
ed user.

In su
h 
ases, approximation might be helpful as a

means to represent 
on
ept des
riptions in a simpli-

�ed fashion suited to the user interfa
e and the users

level of expertise.

The main te
hni
al result of this paper (Se
tion 3) is

to show that 
on
ept des
riptions de�ned in the stan-

dard DL ALC, whi
h allows for 
on
ept 
onjun
tion

and disjun
tion, value and existential restri
tions, and

full negation, 
an be approximated (from above) in the

DL ALE , a DL that does not allow for 
on
ept disjun
-

tion and full negation.

On
e one has given an (upper) approximation D of C

a natural question regards the loss of information, i.e.,

what aspe
ts of C are not 
aptured byD. Therefore we

propose a di�eren
e operator, whi
h given C (in L

s

)

and D (in L

d

) yields a 
on
ept E (the di�eren
e of C

and D) in L

s

su
h that E 
onjoint with D is equiva-

lent to C (E u D � C). In other words, E 
ontains

the information that is missing in the approximation

D of C. Su
h an operator has already been de�ned

by Teege [16℄. He requires that E is the most gen-

eral 
on
ept des
ription in L

s

w.r.t. subsumption that

satis�es the above equivalen
e. However, as we will

see, su
h a purely semanti
al de�nition of di�eren
e

yields very unintuitive 
on
epts. We therefore propose

a new syntax-based de�nition, whi
h better 
aptures

the intuition behind di�eren
e. Roughly speaking, the

di�eren
e E between C and D will be obtained by syn-

ta
ti
ally removing those parts of C that are already

present in D. In Se
tion 4, we provide a formal de�ni-

tion and give an algorithm for 
omputing the di�eren
e

between an ALC- and an ALE -
on
ept des
ription.

In Se
tion 5 we present some experien
es with our pro-

totypi
al implementations of the algorithms presented

here and 
on
lude with some remarks on future work.

All details and full proofs of our results 
an be found

in our te
hni
al report [7℄.

2 Des
ription Logi
s

Con
ept des
riptions are indu
tively de�ned with the

help of a set of 
on
ept 
onstru
tors, starting with a set

N

C

of 
on
ept names and a set N

R

of role names. The

available 
onstru
tors determine the expressive power

of the DL in question. In this paper, we 
onsider 
on-


ept des
riptions built from the 
onstru
tors shown

in Table 1. In the DL ALE , 
on
ept des
riptions are

formed using the 
onstru
tors top-
on
ept (>), 
on-


ept 
onjun
tion (CuD), existential restri
tion (9r:C),

value restri
tion (8r:C), primitive negation (:A), and

the bottom-
on
ept (?). The DL ALC additionally

provides us with 
on
ept disjun
tion (C tD) and full

negation (:C). Note that in ALC every 
on
ept de-

s
ription 
an be negated whereas in ALE negation is

only allowed in front of 
on
ept names. For a DL L,

su
h as ALE and ALC, a 
on
ept des
ription formed

with the 
onstru
tors allowed in L is 
alled L-
on
ept

des
ription in the following.

As usual, the semanti
s of a 
on
ept des
ription is de-

�ned in terms of an interpretation I = (�; �

I

). The

domain � of I is a non-empty set and the interpreta-

tion fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to

a set A

I

� � and ea
h role name r 2 N

R

to a binary

relation r

I

� ���. The extension of �

I

to arbitrary


on
ept des
riptions is de�ned indu
tively, as shown

in the se
ond 
olumn of Table 1.

One of the most important traditional inferen
e ser-

vi
es provided by DL systems is 
omputing the sub-



Syntax Semanti
s ALE ALC

> � x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� nA

I

x x

? ; x x

C tD C

I

[D

I

x

:C � n C

I

x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

sumption hierar
hy. The 
on
ept des
ription C is sub-

sumed by the des
ription D (C v D) i� C

I

� D

I

holds for all interpretations I; C and D are equivalent

(C � D) i� C v D and D v C; C is stri
tly subsumed

by D (C < D) i� C v D and C 6� D. Subsumption

and equivalen
e in ALC are PSPACE-
omplete [15℄ and

NP-
omplete in ALE [10℄.

In order to approximate ALC-
on
ept des
riptions by

ALE-
on
ept des
riptions, we will need to 
ompute the

least 
ommon subsumer in ALE .

De�nition 1 Given L-
on
ept des
riptions

C

1

; : : : ; C

n

,for some des
ription logi
 L, the L-


on
ept des
ription C is the least 
ommon subsumer

(l
s) of C

1

; : : : ; C

n

(C = l
s(C

1

; : : : ; C

n

) for short)

i� (i) C

i

v C for all 1 � i � n, and (ii) C is the

least 
on
ept des
ription with this property, i.e., if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

Depending on the DL under 
onsideration, the l
s of

two or more 
on
ept des
riptions need not always ex-

ist, but if it exists, then, by de�nition, it is unique

up to equivalen
e. For instan
e, in ALC the l
s triv-

ially exists sin
e l
s(C;D) � C t D. For ALE , whi
h

does not allow for 
on
ept disjun
tion, the existen
e

is not obvious. However, as shown in [1℄, the l
s of

two or more ALE-
on
ept des
riptions always exists,

its size may grow exponentially in the size of the input

des
riptions, and it 
an be 
omputed in exponential

time.

3 Computing Approximations

In this se
tion, we show how ALC-
on
ept des
riptions


an be approximated (from above) by ALE-
on
ept de-

s
riptions. Let us �rst de�ne the notion of approxima-

tion formally.

De�nition 2 Let L

1

and L

2

be two DLs, and let C be

an L

1

- and D be an L

2

-
on
ept des
ription. Then, D

is 
alled upper (lower) L

2

-approximation of C (D =

approx

L

2

(C) for short) if (i) C v D (D v C), and

(ii) D is minimal (maximal) with this property, i.e.,

C v D

0

and D

0

v D (D v D

0

) implies D

0

� D for all

L

2

-
on
ept des
riptions D

0

.

Note that approximations need not exist in general.

Consider for example the DLs L

1

= fug and L

2

=

ftg, i.e., the DLs that only allow for 
on
ept 
onjun
-

tion and 
on
ept disjun
tion, respe
tively. Let A and

B denote 
on
ept names. Then, there does not exist

an upper L

1

-approximation of the L

2

-
on
ept des
rip-

tion A t B. Conversely, there does not exist a lower

L

2

-approximation of the L

1

-
on
ept des
ription AuB.

Also note that approximations need not be uniquely

determined. For example, both A and B are lower

L

1

-approximations of AtB with L

1

de�ned as above.

In this paper, we restri
t our investigations to upper

approximations. Therefore, whenever we speak of ap-

proximations in the following, we mean upper approx-

imations. Moreover, we 
on
entrate on upper ALE-

approximations of ALC-
on
ept des
riptions. Sin
e

ALE allows for 
on
ept 
onjun
tion it immediately fol-

lows that if upper ALE-approximations exist, they are

uniquely determined up to equivalen
e: If D

1

and D

2

are two upper ALE -approximations of the same ALC-


on
ept, then so is D

1

uD

2

. But then, by de�nition of

upper approximation,D

1

uD

2

v D

1

andD

1

uD

2

v D

2

implies D

1

uD

2

� D

1

� D

2

.

3.1 The na��ve Approximation Approa
h

Now, let us turn to the question of how upper ALE-

approximations 
an be 
omputed from ALC-
on
ept

des
riptions. We �rst present a na��ve approa
h to

this problem and show that it fails. This will then

motivate the de�nition of the (
orre
t) approximation

algorithm.

The na��ve approa
h. It is easy to see that, given an

ALC-
on
ept des
ription C = E tF with ALE -
on
ept

des
riptions E and F , the ALE-approximation of C is



l
s(E;F ). Having observed this, one might think that

every ALC-
on
ept des
ription C 
an be approximated

by simply repla
ing every 
on
ept disjun
tion in C by

the l
s operator and evaluating the l
s operators from

inside out. However, the ALC-
on
ept des
ription

C

ex;1

= (8r:B t (9r:B u 8r:A)) u 9r:A;

with 
on
ept names A and B, illustrates that this is

not the 
ase: The obtained approximation would be

l
s(8r:B; (9r:B u 8r:A)) u 9r:A � > u 9r:A � 9r:A.

However, as one 
an easily 
he
k, C

ex;1

v 9r:(AuB) <

9r:A. In fa
t, 9r:(A u B) is the 
orre
t upper ALE-

approximation of C

ex;1

.

As it turns out, we will have to turn the 
on
ept

des
riptions into a 
ertain normal form before sub-

stituting disjun
tions by the l
s. Roughly speaking,

the normal forms are obtained by distributing 
on
ept


onjun
tions over 
on
ept disjun
tions. In the exam-

ple, this yields the 
on
ept des
ription (8r:Bu9r:A)t

(9r:B u 8r:A u 9r:A) and repla
ing the disjun
tion by

the l
s yields l
s(8r:B u 9r:A; 9r:B u 8r:A u 9r:A) �

9r:(A u B), whi
h is the 
orre
t result.

Still, the following example illustrates that normaliz-

ing 
on
epts in this way does not suÆ
e in the general


ase. The des
ription

C

ex;2

= 9r:A u 9r:B u 8r:(:A t :B)

is already in normal form, but substituting the 
on-


ept disjun
tion with the l
s yields 9r:A u 9r:B u

8r:l
s(:A;:B) � 9r:A u 9r:B u 8r:> � 9r:A u 9r:B.

However, the ALE-approximation of C

ex;2

is 9r:(A u

:B) u 9r:(B u :A). The reason is that we need to

propagate value restri
tions on existential restri
tions

in order to obtain the 
orre
t approximations of the

existential restri
tions.

In what follows, we will �rst introdu
e the normal

forms and then present the approximation algorithm,

whi
h works on these normal forms and does the prop-

agation on-the-
y.

3.2 ALC-Normalform

For the sake of simpli
ity, we assume that the set

N

R

of role names is the singleton frg. However, all

de�nitions and results 
an easily be generalized to

arbitrary sets of role names. We also assume that

ea
h 
onjun
tion in an ALE-
on
ept des
ription 
on-

tains at most one value restri
tion of the form 8r:C

0

(this is w.l.o.g. due to the equivalen
e 8r:E u 8r:F �

8r:(E u F )). Some notation is needed to a

ess the

di�erent parts of an ALE-
on
ept des
ription C (and

an ALC-
on
ept des
ription where disjun
tion only o
-


urs within value or existential restri
tions): prim(C)

denotes the set of all (negated) 
on
ept names and the

bottom 
on
ept o

urring on the top-level 
onjun
tion

of C; if there exists a value restri
tion of the form 8r:C

0

on the top-level 
onjun
tion of C, then val(C) := C

0

;

otherwise, val(C) := >; ex(C) := fC

0

j there exists

9r:C

0

on the top-level 
onjun
tion of Cg.

De�nition 3 An ALC-
on
ept des
ription C is in

ALC-normal form i�

1. if C � ?, then C = ?; if C � >, then C = >;

2. otherwise, C is of the form C = C

1

t� � �tC

n

with

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex(C

i

)

9r:C

0

u 8r:val(C

i

);

C

i

6� ?, and val(C

i

) and every 
on
ept des
rip-

tion in ex(C

i

) is in ALC-normal form, for all

i = 1; : : : ; n.

Obviously, every ALC-
on
ept des
ription 
an be

turned into an equivalent 
on
ept des
ription in ALC-

normal form. Unfortunately, this may take exponen-

tial time, as the example (A

1

tA

2

)u� � �u(A

2n�1

tA

2n

)

shows, whose ALC-normal form is of size exponential

in n.

3.3 Computing Approximations

Our approximation algorithm is based on the following

stru
tural 
hara
terization of subsumption between an

ALC-
on
ept des
ription, say C, in ALC-normal form

and an ALE-
on
ept des
ription, say D. The idea is

that D is 
ompared to every disjun
t C

i

in C. This


omparison in turn is very similar to the stru
tural


hara
terization of subsumption between ALE -
on
ept

des
riptions [1℄.

Theorem 4 Let C be an ALC-
on
ept des
ription in

ALC-normal form (as spe
i�ed in De�nition 3) and D

an ALE-
on
ept des
ription. Then, C v D i� C � ?,

or D � >, or for all i = 1; : : : ; n it holds that

1. prim(D) � prim(C

i

), and

2. for all D

0

2 ex(D) there exists C

0

2 ex(C

i

) su
h

that C

0

u val(C

i

) v D

0

, and

3. val(C

i

) v val(D).

The approximation algorithm, denoted by


-approx

ALE

, is depi
ted in Figure 1. Given C,

it �nds an ALE -
on
ept des
ription, whi
h is as

spe
i�
 as possible and satis�es the 
onditions of



Input: ALC-
on
ept des
ription C

Output: upper ALE-approximation of C

1. If C � ?, then 
-approx

ALE

(C) := ?; if C � >, then 
-approx

ALE

(C) := >

2. Otherwise, transform C into ALC-normal form C

1

t � � � t C

n

and return


-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u

u

(C

0

1

;:::;C

0

n

)2ex(C

1

)�����ex(C

n

)

9r:l
sf
-approx

ALE

(C

0

i

u val(C

i

)) j 1 � i � ng u

8r:l
sf
-approx

ALE

(val(C

i

)) j 1 � i � ng

Figure 1: The re
ursive algorithm 
-approx

ALE

(C).

Theorem 10. For C � ? and C � > this is trivial. In


ase C 6� ? and D := 
-approx

ALE

(C) 6� >, one needs

to show that i) the Conditions 1, 2, and 3 of Theo-

rem 10 are satis�ed for C and D, and that ii) D is a

minimal 
on
ept des
ription with this property. Here

we only give an idea of how to prove i) by stru
tural

indu
tion on C (see [7℄ for the full proof). Condition

1: prim(D) is the interse
tion of the sets prim(C

i

), thus

Condition 1 holds; Condition 2: An element in ex(D)

is of the form l
sf
-approx

ALE

(C

0

j

u val(C

j

)) j

1 � j � ng. Choosing C

0

= C

0

i

yields

C

0

i

u val(C

i

) v 
-approx

ALE

(C

0

i

u val(C

i

)), thus

also C

0

i

u val(C

i

) v l
sf
-approx

ALE

(C

0

j

u val(C

j

)) j

1 � j � ng. The reasoning for Condition 3 is similar.

Theorem 5 For every ALC-
on
ept des
ription C the

ALE-approximation exists, is uniquely determined up

to equivalen
e, and 
an be 
omputed by 
-approx

ALE

,

i.e., 
-approx

ALE

(C) � approx

ALE

(C).

Applying this to our examples, we obtain for C

ex;1

the

normal form:

C

ex;1

� ((9r:A u 8r:B) t (9r:A u 9r:B u 8r:A));

and for C

ex;2

C

ex;2

� 9r:A u 9r:B u 8r:(:A t :B)

one veri�es that 
-approx

ALE

(C

ex;1

) � 9r:(A u B) and


-approx

ALE

(C

ex;2

) � 9r:(A u :B) u 9r:(B u :A).

In [1℄, it has been shown that the l
s of two ALE-


on
ept des
riptions 
an grow exponentially in the size

of the given 
on
ept des
riptions. Sin
e approx

ALE

(Et

F ) � l
s(E;F ) for ALE-
on
ept des
riptions E and F ,

it immediately follows that theALE-approximation 
an

grow exponentially as well. Moreover, one 
an show

that 
-approx

ALE

runs in double exponential time [7℄.

Whether or not there also exists an exponential time

approximation algorithm is an open problem.

Corollary 6 The ALE-approximation of ALC-
on
ept

des
riptions may grow exponentially and there is a

double-exponential time algorithm 
omputing it.

4 The di�eren
e operator

In the previous se
tion we have seen how to 
om-

pute the ALE-approximation of a given ALC-
on
ept

des
ription. For su
h a pair C;D of approximated

and approximating 
on
ept, a very natural question

regards the loss of information, i.e., what aspe
ts of C

are not 
aptured by D.

An answer to su
h questions requires a notion of the

\di�eren
e" between 
on
ept des
riptions. For in-

stan
e, a 
omparison between the example 
on
ept

C

ex;2

and its approximation 9r:(Au:B)u9r:(B u:A)

should reveal that the value restri
tion 8r:(:A t :B)

is not 
aptured by the approximation.

A �rst approa
h for a di�eren
e operator has been pro-

posed by Teege [16℄. Here, the di�eren
e C�D of two

given L-
on
ept des
riptions with C v D has been

de�ned as

maxfE 2 L j E uD � Cg

where the maximum is de�ned with respe
t to sub-

sumption. Sin
e ALC provides full negation, a most

general 
on
ept E with E uD � C is always C t :D.

Consequently, Teege's di�eren
e operator would re-

turn

(9r:A u 9r:B u 8r:(:A t :B))

t :(9r:(A u :B) u 9r:(B u :A))

as the di�eren
e between C

ex;2

and its approximation,



whi
h obviously does not help a human user to as
er-

tain the information lost by the approximation.

The example illustrates that it may be promising to

look for a synta
ti
 minimum instead of a semanti


maximum in order to �nd a 
ompa
t representation of

the di�eren
e of two 
on
epts.

4.1 Subdes
ription Ordering

In [12, 2℄, a so-
alled subdes
ription ordering on ALE-


on
ept des
riptions has been proposed to deal with

synta
ti
al redundan
ies. In order to extend this to

our 
ase we need to introdu
e an analogous ordering

on ALC-
on
epts. The idea is to obtain a subdes
rip-

tion of some ALC-
on
ept des
ription C by means of

two kinds of modi�
ations. Firstly, by making in
on-

sisten
ies expli
it; and se
ondly, by removing disjun
ts

and 
onjun
ts, and by repla
ing some existential or

value restri
tions by their respe
tive subdes
riptions.

Formally, this leads to the following de�nition.

De�nition 7 Let C;D be ALC-
on
ept des
riptions in

ALC-normal form. Let C = C

1

t� � �tC

n

. Then, D �

d

C i� D = ? or D is obtained from C by performing

some of the following steps:

1. Remove some disjun
ts C

i

for 1 � i � n,

2. for every remaining C

i

:

(a) remove some 
onjun
ts A 2 prim(C

i

),

(b) remove some 
onjun
ts 9r:C

0

i

with C

0

i

2

ex(C

i

),

(
) remove the 
onjun
t 8r:val(C

i

),

(d) for every remaining C

0

i

2 ex(C

i

) [ fval(C

i

)g:

repla
e C

0

i

by C

00

i

with C

00

i

�

d

C

0

i

If everything is removed from C, the resulting 
on
ept

is >. As an example, 
onsider the equivalent 
on
ept

des
riptions C := 9r:A u 8r::B and D := (9r:(A t

B) u 8r::B) t (9r::A u 8r:A). By removing the last

disjun
t from D and the last disjun
t in the remaining

existential restri
tion we �nd C �

d

D.

Based on the subdes
ription ordering, we 
an provide

the new de�nition of the di�eren
e operator.

De�nition 8 Let C be an ALC-
on
ept des
ription

and D an ALE-
on
ept des
ription. The di�eren
e

C � D of C and D is de�ned as a minimal (w.r.t.

�

d

) ALC-
on
ept des
ription E with E uD � C uD.

Intuitively, the idea is to remove all subdes
riptions

from C whi
h are either redundant or already present

in D. It should be noted that in 
ase of C v D,

and thus, C u D � C, the only di�eren
e to Teege's

di�eren
e operator is that the minimum w.r.t. �

d

is

used instead of the maximum w.r.t. v. Finally, note

that the di�eren
e between C and D is not a priori

uniquely determined. By abuse of language and no-

tation, we will still refer to the di�eren
e C �D (see

also Theorem 9). Coming ba
k to the example at the

beginning of the se
tion, the di�eren
e (a

ording to

De�nition 8) between C

ex;2

and its approximation is

8r:(:A t :B), as desired.

4.2 Computing Di�eren
es

Having de�ned our di�eren
e operator, we need to de-

vise an algorithm to a
tually 
ompute the di�eren
e

C � D. In [12℄, an algorithm has been proposed to


ompute the di�eren
e C �D of ALE-
on
ept des
rip-

tions C and D. Extending this algorithm to the 
ase

of ALC-
on
ept des
riptions C yields our de�nition of

the algorithm 
-di� as depi
ted in Figure 2.

If C is a disjun
tion of sub
on
epts C

i

then the di�er-

en
e between C andD is obtained by �rstly 
omputing

the di�eren
es between the disjun
ts and D and then

eliminating the semanti
ally redundant resulting dis-

jun
ts. In general, the following three properties 
an

be shown for every 
omputation of 
-di�(C;D).

Theorem 9 Let C be an ALC-
on
ept des
ription in

ALC-normal form and D be an ALE-
on
ept des
rip-

tion. Then,

1. 
-di�(C;D) uD � C uD.

2. If C is an ALE -
on
ept des
ription, then C �D is

uniquely determined modulo asso
iativity and 
om-

mutativity of 
on
ept 
onjun
tion, and C � D and


-di�(C;D) 
oin
ide.

3. Given an ora
le for subsumption, 
-di�(C;D) runs

in polynomial time in the size of C and D.

Thus, in 
ase C is an ALE-
on
ept des
ription, 
-di�

exa
tly 
omputes the di�eren
e C�D (Theorem 9, 2.).

If C is an ALC-
on
ept des
ription, we know that 
-di�

does not remove too mu
h from C (Theorem 9, 1.).

However, 
-di� might not have 
omputed the exa
t

di�eren
e C �D. Thus, 
-di� is a heuristi
 algorithm

for 
omputing the di�eren
e between an ALC- and an

ALE-
on
ept des
ription. Nevertheless, the following

examples illustrate that 
-di� works quite satisfa
to-

rily even in the general 
ase. This is also supported by

our experien
es with a prototype implementation of


-di� in the 
hemi
al pro
ess engineering appli
ation.

Consider the example 
on
ept C

ex;1

and its ALE-

approximation 9r:(A u B). In order to 
ompute

the di�eren
e 
-di�(C

ex;1

; 9r:(A u B)), C

ex;1

�rstly



Input: ALC-
on
ept des
ription C = C

1

t � � � t C

n

in ALC-normal form,

ALE-
on
ept des
ription D

Output: 
-di�(C;D)

� If C uD � ?, then 
-di�(C;D) := ?;

� If n > 1, then let 
-di�(C;D) :=

F

n

i=1


-di�(C

i

; D) and iteratively remove 
-di�(C

j

; D) from the disjun
tion

in 
ase 
-di�(C

j

; D) v

F

i 6=j


-di�(C

i

; D);

� If n = 1, then 
-di�(C;D) :=

u

A2prim(C)nprim(D)

A u 8r:
-di�(val(C); val(D)) u u

E2E

0

r

9r:E

where the value restri
tion is omitted in 
ase 
-di�(val(C); val(D)) � > and E

0

r

is 
omputed as follows:

Let E

r

= fC

0

1

; : : : ; C

0

n

g := ex(C).

For i = 1 to n do begin

If (i) there exists C

0

2 E

r

n fC

0

i

g with val(D) u val(C) u C

0

v C

0

i

, or

(ii) there exists D

0

2 ex(D) with val(D) u val(C) uD

0

v C

0

i

then E

r

:= E

r

n fC

0

i

g

end

E

0

r

:= fE

�

j E 2 E

r

g where E

�

:= 
-di�(E; val(C) u val(D)), if val(C) is an ALE-
on
ept des
ription, and

E

�

:= 
-di�(E; val(D)) otherwise.

Figure 2: The algorithm 
-di�(C;D).

has to be transformed into ALC-normal form, yield-

ing (8r:B u 9r:A) t (9r:B u 8r:A u 9r:A). We now

have to 
ompute 
-di�(8r:B u 9r:A; 9r:(A u B)) and


-di�(9r:B u 8r:A u 9r:A; 9r:(A u B)). For the �rst

expression, Condition 3(b) 
auses 9r:A to be removed.

As no other existential restri
tion is left, the �rst ex-

pression evaluates to 8r:B. The se
ond expression sim-

ilarly yields 8r:A. We �nally obtain 8r:At8r:B, whi
h

is exa
tly C

ex;1

� 
-approx

ALE

(C

ex;1

). Analogously,

one 
an verify that 
-di�(C

ex;2

; 
-approx

ALE

(C

ex;2

)) =

C

ex;2

� 
-approx

ALE

(C

ex;2

) = 8r:(:A t :B).

5 Prototypi
al Implementations

We have evaluated a �rst prototypi
al implementation

of 
-approx

ALE

realized in Lisp and using the FaCT

system [11℄ as an underlying subsumption tester.

Our implementation of 
-approx

ALE

utilizes the

optimized l
s implementation des
ribed in [17℄. In


ontrast to the 
-approx

ALE

algorithm spe
i�ed in

Figure 1 our implementation redu
es the number of

l
s 
alls in advan
e. For many 
on
ept des
riptions in

ALC-normal form it is likely that disjun
ts share the

same existential restri
tions due to the normalization.

These existential restri
tions 
ause unne
essary l
s


alls when approximating the existential restri
tions.

Some of the 
ombinations from the Cartesian produ
t

of the existential restri
tions yield argument sets

for the l
s that are supersets of other 
ombinations.

These supersets yield more general and therefore

redundant l
s 
on
ept des
riptions. For example 
om-

puting the approximation of the 
on
ept des
ription

((A t 9r:A) u (9r:B u 9r:C) indu
es the l
s 
alls:

l
s(A;B); l
s(A;C); l
s(B;B); l
s(B;C); l
s(C;B); l
s(C;C)

in a naive realization. However, only the trivial 
om-

binations l
s(B;B) and l
s(C;C) add existential

restri
tions to the approximation whi
h are not

subsumed by the other 
ombinations. Therefore, in

this 
ase, the existential restri
tions 
an be obtained

without using the l
s at all. So, in order to obtain

the 
orre
t approximation in general, it suÆ
es to


ompute the l
s only of those 
ombinations that

do not have a superset among the 
ombinations.

This method is employed in our implementation, we


ompute �rst the minima (w.r.t. subset) of the set of


ombinations and then apply the l
s to the remaining


ombinations.

We applied 
-approx

ALE

to ALC-
on
epts from a TBox

derived from our appli
ation in 
hemi
al pro
ess en-

gineering. This appli
ation TBox 
ontains 120 
on-


epts and 40 roles. Surprisingly, for our unfolded in-

put 
on
epts with 
on
ept sizes up to 740, it turned

out that the approximations were always smaller than

their unfolded input 
on
epts. The approximations

had an average 
on
ept size of 81 and they had just

a third of the size of the unfolded input 
on
epts on

the average. Ea
h of the test 
on
ept des
riptions was



approximated within less than 3 se
onds runtime. Un-

fortunately, our implementation ran out of memory


omputing approximations of some randomly gener-

ated ALC-
on
epts of similar size, but 
onsisting of big

disjun
tions with more than 6 disjun
ts.

So, our prototypi
al implementation of 
-approx

ALE

indi
ates that, despite the high theoreti
al 
omplex-

ity, the approximation inferen
e might be pra
ti
able

for 
ases relevant in appli
ations. Further optimiza-

tions are of 
ourse ne
essary. Standard optimization

te
hniques as lazy unfolding are very likely to highly

improve the performan
e for run-times as well as for

sizes of returned 
on
epts.

We have implemented a prototype for the 
-di� al-

gorithm in Lisp. For a �rst evaluation we applied the


-di� implementation to test 
on
epts derived from our

pro
ess engineering TBox. More pre
isely, we applied


-di� to the same ALC-
on
ept des
riptions used for

the evaluation of 
-approx

ALE

together with their ap-

proximations generated by our 
-approx

ALE

implemen-

tation. For these test 
ases the 
-di� implementation

returned 
on
ept des
riptions with an average size of

170 and a maximum size of 630. Thus, it turned out

that the 
on
ept size of the di�eren
e between origi-

nal 
on
ept des
ription and its approximation is bigger

than the approximation itself in many 
ases. Com-

puting the di�eren
e took 2 se
onds on the average

and ea
h di�eren
e was 
omputed within 6.5 se
onds

runtime. Unlike 
-approx

ALE

this prototypi
al imple-

mentation behaved also well on randomly generated


on
ept des
riptions. But for pra
ti
al appli
ations of

this non-standard inferen
e powerful optimizations are

still ne
essary. Moreover, the output 
on
ept des
rip-

tions need to be smaller and more 
ompa
t in order to

be readable and 
omprehensible for a human user.

6 Con
lusion and Future Work

We have investigated approximation as a new inferen
e

problem for DLs. As a main te
hni
al result, a double-

exponential time algorithm 
omputing upper approxi-

mations of ALC-
on
epts in ALE has been devised. We

have also introdu
ed a syntax-based di�eren
e opera-

tor to measure the a

ura
y of approximations and an

eÆ
ient heuristi
 algorithm, whi
h uses subsumption

testing as an ora
le, to a
tually 
ompute the di�eren
e

of 
on
epts.

Our �rst evaluation of the implementations of


-approx

ALE

and 
-di� indi
ates that there is need for

further optimization. Even more important, sin
e the


on
epts returned by both algorithms are quite big

and hard to read and 
omprehend by a human user, it

is ne
essary to rewrite the 
on
epts using the 
on
ept

de�nitions from the underlying ALC-TBox to obtain

smaller 
on
epts. To this purpose, one needs to extend

the existing rewriting approa
h for ALE [2℄ to ALC.

Another dire
tion for future work is of 
ourse to ex-

tend our results to more expressive DLs. Sin
e there

already exists an l
s algorithm for ALEN [13℄, i.e., ALE

plus number restri
tions, the approximation algorithm

presented here 
an be extended to the approximation

of ALCN -
on
ept des
riptions by 
on
ept des
riptions

in ALEN (or sublanguages thereof) as shown in [8℄. It

remains as future work to adapt the di�eren
e opera-

tor to this pair of des
ription logi
s.
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7 Appendix

Theorem 10 Let C be an ALC-
on
ept des
ription in

ALC-normal form (as spe
i�ed in De�nition 3) and D

an ALE-
on
ept des
ription. Then, C v D i� C � ?,

or D � >, or for all i = 1; : : : ; n it holds that

1. prim(D) � prim(C

i

), and

2. for all D

0

2 ex(D) there exists C

0

2 ex(C

i

) su
h

that C

0

u val(C

i

) v D

0

, and

3. val(C

i

) v val(D).

Proof. ()) Assume ? < C v D < >.

� Assume prim(D) 6� prim(C

i

) for one i. Then there

exists an A 2 prim(D)nprim(C

i

). By de�nition of

the ALC-normal form, C

i

is 
onsistent. We may

therefore 
onsider a 
anoni
al interpretation I of

C

i

. By de�nition, the individual d

C

i

2 �

I

for C

i

does not o

ur in A

I

, sin
e A 62 prim(C

i

). Thus,

d 62 D

I

and therefore C 6v D, in 
ontradi
tion to

our assumption.

� Assume for one D

0

2 ex(D) that one i ex-

ists su
h that for all C

0

2 ex(C

i

) it holds that

C

0

u val(C

i

) 6v D

0

. Sin
e C

i

is 
onsistent, ev-

ery C

0

2 ex(C

i

) has a tree model I

C

0

where

d

C

0

2 (C

0

u val(C

i

))

I

C

0

n (D

0

)

I

C

0

. Without loss of

generality, we may assume disjoint domains, i.e.,

�

I

C

0

\�

I

C

00

= ; for two di�erent C

0

; C

00

2 ex(C

i

).

We may now 
onstru
t a new model I over the

domain �

I

= fdg ℄

S

C

0

2ex(C

i

)

�

I

C

0

with the

following properties: (1) For the role r, de�ne

r

I

:= f(d; d

C

0

) j C

0

2 ex(C

i

)g [

S

C

0

2ex(C

i

)

r

I

C

0

.

(2) For every (negated) atomi
 
on
ept A 2 N

C

[

f:A j A 2 N

C

g, de�ne the interpretation of A as

A

I

:= fd j A 2 prim(C

i

)g [

S

C

0

2ex(C

i

)

A

I

C

0

. Note

that the �rst expression only states that d 2 A

I

i� A 2 prim(C

i

).

It is easy to see that d 2 C

I

. On the other

hand d 62 D

I

, be
ause (D

0

)

I

C

0

was ex
luded ex-

pli
itly from every I

C

0

. Consequently, we have

d 62 (9r:D)

I

.

� Assume val(C

i

) 6v val(D) for one i. Thus, val(C

i

)

has a tree model I

val

su
h that d

val

2 val(C

i

)

I

val

n

val(D)

I

val

. We 
an now extend the model I intro-

du
ed for the previous 
ase by adding d

val

as an

r-su

essor of d. Again, assume �

I

\ �

I

val

= ;.

Then, de�ne I

0

as follows: �

I

0

:= �

I

[�

I

val

. (1)

For the role r, we de�ne r

I

0

:= f(d; d

val

)g [ r

I

[

r

I

val

. (2) For every (negated) atomi
 
on
ept A,

A

I

0

is simply the union of the previous models,

i.e., A

I

0

:= A

I

[ A

I

val

. As a result, we still have

d 2 (C

I

0

i

) for all i and thus d 2 C

I

0

but on the

other hand d 62 D

I

0

.

(() If C � ? or D � > then it is easy to see that

the 
laim holds. Otherwise, let i 2 f1; : : : ; ng. It is

suÆ
ient to show that C

i

v D. Let x 2 C

I

i

for any

interpretation I of C

i

. Show: x 2 D

I

.

� By assumption, x 2 A

I

for every A 2 prim(C

i

).

The in
lusion prim(D) � prim(C

i

) thus implies

x 2 A

I

for every A 2 prim(D).

� Consider an arbitrary D

0

2 ex(D). By assump-

tion, we know that there is an C

0

2 ex(C

i

) with

C

0

uval(C

i

) v D

0

. Sin
e x 2 (9r:C

0

u8r:val(C

i

))

I

,

this implies x 2 (9r:D

0

)

I

.

� As val(C

i

) v val(D) and x 2 (val(C

i

))

I

, it holds

that x 2 (val(D))

I

.

The de�nition of 
onjun
tion yields D

I

=

T

A2prim(D)

A

I

\

T

D

0

2ex(D)

(9r:D

0

)

I

\ (val(D))

I

,


on
luding the argument.

Theorem 5

Proof. Without loss of generality, we may as-

sume C in ALC-normal form sin
e (1) the algorithm


-approx

ALE

starts by 
omputing the ALC-normal form

of its input and (2) > and ? are represented uniquely

in ALC-normal form.

1. Show C v 
-approx

ALE

(C). To this end, we show by

indu
tion over the stru
ture of C that the 
onditions

for subsumption from Theorem 10 hold.

If C 2 f?;>g then 
-approx

ALE

(C) = C whi
h triv-

ially satis�es the subsumption 
onditions. Otherwise,

we may assume as indu
tion hypothesis that the 
laim

holds for the subterms of C o

urring in existential

and value restri
tions. For C we therefore �nd that:

� By de�nition of 
-approx

ALE

, the set

prim(
-approx

ALE

(C)) of primitive 
on
epts

equals

T

n

i=1

prim(C

i

) whi
h is always a subset of

� prim(C).

� Show: for l
sf
-approx

ALE

(C

0

i

u val(C

i

)) j 1 � i �

ng and for all i there exists some existential re-

stri
tion C

0

2 ex(C

i

) su
h that C

0

u val(C

i

) is

subsumed by l
s(
-approx

ALE

(C

0

i

u val(C

i

)) j 1 �

i � ng.

Pi
k C

0

= C

0

i

. By indu
tion hypothesis it holds

that C

0

u val(C

i

) is subsumed by the approxima-

tion 
-approx

ALE

(C

0

i

u val(C

i

)). The de�nition of

the l
s now guarantees that C

0

u val(C

i

) is also



subsumed by l
sf
-approx

ALE

(C

0

i

u val(C

i

)) j 1 �

i � ng.

� Show: val(C

i

) v val(
-approx

ALE

(C)) for every

i. By indu
tion hypothesis we already know that

the value restri
tion val(C

i

) is subsumed by the

approximation 
-approx

ALE

(val(C

i

)) for every i.

Consequently, for the l
s we �nd that val(C

i

) is

subsumed by l
sf
-approx

ALE

(val(C

i

)) j 1 � i �

ng for every i.

2. Show 
-approx

ALE

(C) v C. Without loss of gener-

ality, let D be in ALE-normal form. Proof by indu
tion

over the stru
ture of C.

If C 2 f?;>g, then 
-approx

ALE

(C) = C whi
h is the

least 
on
ept subsuming C.

Otherwise, we may assume that the 
laim holds for the

subterms of C o

urring in existential and value re-

stri
tions. If D = >, then trivially 
-approx

ALE

(C) v

D. Otherwise, the subsumption C v D indu
es the

following fa
ts:

� prim(D) � prim(C

i

) for every i. As the set

prim(
-approx

ALE

(C)) of primitive 
on
epts is de-

�ned as the interse
tion of every prim(C

i

), this

implies prim(D) � prim(
-approx

ALE

(C)).

� For all D

0

2 ex(D) and for all i there is an existen-

tial restri
tion C

0

2 ex(C

i

) with C

0

uval(C

i

) v D

0

.

The indu
tion hypothesis now guarantees that

C

0

u val(C

i

) is subsumed by 
-approx

ALE

(C

0

u

val(C

i

)) v D for every i. Consequently, for the

l
s it holds that l
sf
-approx

ALE

(C

0

u val(C

i

)) j

1 � i � ng v D.

� For all i we have val(C

i

) v val(D). By indu
-

tion hypothesis we know that the value restri
-

tion val(C

i

) is subsumed by the approximation


-approx

ALE

(val(C

i

)) v val(D). Hen
e, we simi-

larly �nd l
sf
-approx

ALE

(val(C

i

)) j 1 � i � ng v

val(D).

Corollary 11 The algorithm 
-approx

ALE

is a

double-exponential time algorithm, i.e., for a

given ALC-
on
ept des
ription the 
omputation of


-approx

ALE

(C) takes at most double exponential time

in the size of C.

Proof. The algorithm 
-approx

ALE

expe
ts its in-

put in ALC-normal form. Nevertheless, instead of

transforming C into normal form before applying


-approx

ALE

we may also do the ne
essary transfor-

mation on the 
y for every role level 
urrently visited.

Let jCj = n. The 
omputation of 
-approx

ALE

(C)

starts by transforming C intoD := C

1

t� � �tC

m

|su
h

that every C

i

has no disjun
tion on the topmost role

level|but does not modify the lower role levels. The


on
ept D 
an thus have exponentially many (2

p(n)

for some polynomial p) disjun
ts on the topmost level

ea
h of whi
h is limited in size by n.

A

ording to the re
ursive stru
ture of 
-approx

ALE

the following expressions must be 
omputed:

1. the 
onjun
tion u

A2

T

i

prim(C

i

)

A of primitive 
on-


epts;

2. an existential restri
tion 9r:l
sf
-approx

ALE

(C

0

i

u

val(C

i

)) j 1 � i � mg for every tuple (C

0

1

; : : : ; C

0

m

)

with C

0

i

2 ex(C

i

);

3. one value restri
tion 8r:l
sf
-approx

ALE

(val(C

i

)) j

1 � i � mg.

Obviously, Step 1 
an be 
omputed in polynomial time

in the size of D and thus in exponential time in n.

As D has exponentially many disjun
ts C

i

with a lin-

ear number of existential restri
tions C

0

i

, the number

of existential restri
tions to be 
omputed in Step 2

is double exponential in n. For every su
h existen-

tial restri
tion an l
s of a set of exponential 
ardi-

nality must be 
omputed. Ea
h element of su
h a

set is of the form 
-approx

ALE

(C

0

i

u val(C

i

)). Hen
e,


-approx

ALE

is re
ursively invoked on a 
on
ept de-

s
ription of size bounded by the size of C and with a

role depth de
reased by one. Thus, the 
omputation

tree of 
-approx

ALE

(with the l
s's not evaluated for

the time being), is of size double exponential in the

size of C. In other words, if the l
s is not evaluated,


-approx

ALE

runs in double exponential time. We need

to show that evaluating the l
s's o

urring in the 
om-

putation tree, does not in
rease the 
omplexity.

We start to evaluate the l
s's from the bottom to the

top of the 
omputation tree for 
-approx

ALE

(C). Ev-

ery l
s operation in the tree has an exponential number

of arguments and every argument is of size double ex-

ponential in jCj. Moreover, one 
an easily show that

every argument is not only in ALE -normal form, but

also has the following properties:

� It 
ontains no subexpression of the form P u :P

(where P 2 N

C

), E u ?, E u >, 9r:?, or 8r:>.

� For every subexpression of the form 9r:E u 8r:F

it holds that E v F , i.e., the value restri
tion has

been propagated into the existential restri
tion al-

ready.



This holds be
ause a

ording to the de�nition, all 
on-


epts returned by 
-approx

ALE

are have these proper-

ties. As shown in [1℄, the size of the l
s 
an therefore be

bounded by the produ
t of the sizes of the arguments.

Thus, evaluating the l
s's on the bottom level yields


on
ept des
riptions of size at most double exponen-

tial. This evaluation pro
ess is iterated on every level

of the 
omputation tree for 
-approx

ALE

(C) where l
s's

o

ur. Sin
e the depth of this tree is bounded by jCj

(more pre
isely, by the role depth of C), the whole

evaluation 
an be 
arried out in double-exponential

time.

Theorem 9

Proof. 1. Proof by ind. over the stru
ture of C.

� C 2 prim(C): Then the 
onjun
tion 
-di�(C;D)u

D is equivalent to P

CnD

u D, where P

CnD

is

the 
onjun
tion over all primitive 
on
epts in

prim(C) n prim(D). Let P

C\D

denote the 
on-


jun
tion over all primitive 
on
epts in prim(C)u

prim(D). As D v P

C\D

, the term 
-di�(C;D) u

D is still equivalent to the 
onjun
tion P

CnD

u

P

C\D

u D. This expression, however, is equiva-

lent to C uD.

� C = C

1

t C

2

: Without loss of generality, we

may assume exa
tly two disjun
ts on the top-level

of C. By de�nition, even after removing redun-

dant disjun
ts, 
-di�((C

1

t C

2

); D) is equivalent

to 
-di�(C

1

; D) t 
-di�(C

2

; D). Hen
e, the 
on-

jun
tion 
-di�((C

1

tC

2

); D)uD 
an be simpli�ed

to (
-di�(C

1

; D) u D) t (
-di�(C

2

; D) u D). A
-


ording to the indu
tion hypothesis, this is equiv-

alent to (C

1

u D) t (C

2

u D) whi
h simpli�es to

(C

1

t C

2

) uD.

� No disjun
tion on the top-level of C: Show


-di�(C;D) uD � C uD. A

ording to the 
har-

a
terization of subsumption (Theorem 10), three


onditions must hold for equivalen
e:

(1.) The set prim(
-di�(C;D) u D) of prim-

itive 
on
epts is equal to the interse
tion

prim(
-di�(C;D)) \ prim(D) whi
h by de�nition

is the interse
tion of (prim(C) n prim(D)) and

prim(D). This is equal to prim(C) \ prim(D), the

set of primitive 
on
epts in the 
onjun
tion CuD.

(2.) Show (v). Consider an existential restri
tion

F

0

2 ex(C u D). We have to �nd an existential

restri
tion E

0

2 ex(
-di�(C;D) u D) with E

0

u

val(
-di�(C;D)uD) v F

0

. From the previous 
ase

we know that val(
-di�(C;D)uD) is equivalent to

val(C uD). Sin
e ex(C uD) is equal to the union

ex(
-di�(C;D)) [ ex(D) we may distinguish two


ases.

If F

0

2 ex(D) then we 
an sele
tE

0

:= F

0

, be
ause

it also o

urs in the set ex(
-di�(C;D)uD) whi
h

is the 
onjun
tion of the 
on
ept des
riptions in

ex(
-di�(C;D)) [ ex(D). We thus �nd that the


onjun
tion E

0

uval(
-di�(C;D)uD) is subsumed

by F

0

.

If F

0

2 ex(C) n ex(D), then Conditions (i) and

(ii) in the de�nition of the algorithm 
-di�(C;D)

guarantee that there exists an existential restri
-

tion

~

E

0

2 ex(
-di�(C;D)) with the following prop-

erties. If val(C) is an ALE-
on
ept des
ription

then

~

E

0

is of the form 
-di�(E

0

; (val(D)u val(C)))

and the 
onjun
tion E

0

u val(D) u val(C) is sub-

sumed by F

0

. A

ording to the indu
tion hypoth-

esis, 
-di�(E

0

; (val(D)uval(C)))uval(D)uval(C) is

equivalent to E

0

u val(D) u val(C). Consequently,

we �nd that

~

E

0

u val(C) u val(D) is subsumed

by F

0

. It is easy to see that val(C) u val(D) is

equivalent to val(C uD) whi
h again is equivalent

to val(
-di�(C;D) u D) as we know from above.

Hen
e, we have found an existential restri
tion

~

E

0

su
h that the 
onjun
tion

~

E

0

uval(
-di�(C;D)uD)

is subsumed by F

0

. If D is no ALE-
on
ept de-

s
ription then

~

E

0

is of the form E

0

u val(D). This


ase is analogous to the previous one.

Show (w). In analogy to the 
ase (v), 
onsider

some existential restri
tion E

0

2 ex(
-di�(C;D) u

D). We have to �nd an existential restri
tion F

0

2

ex(C uD) su
h that F

0

u val(C uD) is subsumed

by E

0

. Again, we have two 
ases to dis
riminate.

If E

0

2 ex(D), then we 
an again sele
t F

0

:= E

0

whi
h also o

urs in the set ex(CuD) of existential

restri
tions.

If E

0

2 ex(
-di�(C;D)) n ex(D), then Condi-

tion (ii) guarantees that an existential restri
tion

F

0

2 ex(D) � ex(C uD) exists su
h that the 
on-

juntion F

0

u val(C) u val(D) is subsumed by E

0

.

As seen above, val(C) u val(D) is equivalent to

val(C uD) whi
h 
on
ludes the argument.

(3.) By indu
tion hypothesis, the 
onjun
tion


-di�(val(C); val(D)) u val(D) is equivalent to

val(C)uval(D). By de�nition, val(CuD) is equiv-

alent to val(C)uval(D), whi
h 
on
ludes this 
ase.

2. This result was already shown in [12℄.

3. The proof 
an be found in our te
hni
al report,

see [7℄.


