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Abstrat

Approximation is a new inferene servie investigated in [4℄. An ap-

proximation of an ALC-onept by an ALE-onept an be omputed in

double exponential time. Consequently, one needs powerful optimization

tehniques for approximating an entire unfoldable TBox. Addressing this

issue we identify a speial form of ALC-onepts that an be divided into

parts s.t. eah part an be approximated independently.

1 Motivation

This paper presents preliminary results on optimization tehniques for the om-

putation of approximations. Approximation is a new non-standard inferene

servie in Desription Logis (DLs) introdued in [4℄. Approximating a onept,

de�ned in one DL, means to translate this onept to another onept, de�ned

in a seond, typially less expressive DL, suh that both onepts are as losely

related as possible with respet to subsumption. Like other non-standard infer-

enes suh as the least ommon subsumer (ls) or mathing, approximation has

been introdued to support the onstrution and maintenane of DL knowledge-

bases (see [9, 5℄). Approximation has a number of di�erent appliations some of

whih we will mention here, see [4℄ for others.

Computation of ommonalities of onepts. Given a set of onepts the problem

is to extrat the ommonalities of the input onepts. Typially, the ls is

employed for this task. In ase a DL L provides onept disjuntion, the ls

is just the disjuntion of C

1

and C

2

(C

1

t C

2

). Thus, a user inspeting this

onept does not learn anything about the ommonalities between C

1

and C

2

.

By using approximation, however, one an make the ommonalities expliit to

some extent by �rst approximating C

1

and C

2

in a sublanguage of L whih does

not provide disjuntion, and then omputing the ls of the approximations in L.

�
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Translation of knowledge-bases. Approximation an be used to (automatially)

translate a knowledge-base written in an expressive DL into another (seman-

tially losely related) knowledge-base in a less expressive DL. The translation

may beome neessary to port knowledge-bases between di�erent knowledge

representation systems or to integrate di�erent knowledge-bases.

We investigate the ase of translating an ALC-TBox into an ALE-TBox by

omputing the approximation of eah onept de�ned in the ALC-TBox. In [4℄,

a �rst in-depth investigation of the approximation inferene has been presented.

In partiular, a double-exponential time algorithm has been devised to approx-

imate ALC-onepts by ALE-onepts. Consequently, approximating an entire

TBox requires substantial optimizations. We address this problem by identify-

ing a form of ALC-onept desriptions whose onjunts an be approximated

independently. This approah speeds-up the omputation of a single approxima-

tion. Moreover, it also allows to re-use an obtained approximation in subsequent

approximations by simply inserting the approximation of a subonept in the

urrent approximation. Therefore the splitting of onepts in independent parts

is a prerequisite for applying ahing tehniques to approximation. The full

proofs of the results presented here an be found in our tehnial report [6℄.

2 Preliminaries

Conept desriptions are indutively de�ned based on a set of onept onstru-

tors starting with a set N

C

of onept names and a set N

R

of role names. In

this paper, we onsider onept desriptions built from the onstrutors shown

in Table 1 where C and D denote arbitrary onepts, A a onept name, and

r a role. Note that in ALC every onept desription an be negated whereas

in ALE negation is only allowed in front of onept names. In the following a

onept desription formed with the onstrutors allowed in a DL L is alled

L-onept desription.

As usual, the semantis of a onept desription is de�ned in terms of an

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation funtion �

I

maps eah onept name A 2 N

C

to a set A

I

� � and

eah role name r 2 N

R

to a binary relation r

I

� ���. The extension of �

I

to

arbitrary onept desriptions is de�ned indutively, as shown in Table 1.

For the sake of simpliity, we assume that the set N

R

of role names is the

singleton frg. However, all de�nitions and results an easily be generalized to

arbitrary sets of role names. We also assume that eah onjuntion in an ALE-

onept desription ontains at most one value restrition of the form 8r:C

0

(this

is w.l.o.g. due to the equivalene 8r:E u 8r:F � 8r:(E u F )).

A TBox is a �nite set of onept de�nitions of the form A

:

= C, where

A 2 N

C

and C is a onept desription. In addition, we require that TBoxes
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Syntax Semantis ALE ALC

> � x x

? ; x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� nA

I

x x

:C � n C

I

x

C tD C

I

[D

I

x

Table 1: Syntax and semantis of onept desriptions.

are unfoldable, i.e., they are ayli and do not ontain multiple de�nitions (see,

e.g., [10℄). Conept names ourring on the left-hand side of a de�nition are

alled de�ned onepts. All other onept names are alled primitive onepts.

In TBoxes of the DL ALE, negation may only be applied to primitive onepts.

An interpretation I is a model of the TBox T i� it satis�es all its onept

de�nitions, i.e., A

I

= C

I

for all de�nitions A

:

= C in T .

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C is

subsumed by the desription D (C v D) i� C

I

� D

I

holds for all interpretations

I; C and D are equivalent (C � D) i� C v D and D v C. Subsumption and

equivalene in ALC is PSPACE-omplete [11℄ and NP-omplete in ALE [7℄.

2.1 ALE-Approximation for ALC

In order to approximate ALC-onept desriptions by ALE-onept desriptions,

we need to ompute the ls in ALE .

De�nition 1 Given L-onept desriptions C

1

; : : : ; C

n

with n � 2 for some

desription logi L, the L-onept desription C is the least ommon subsumer

(ls) of C

1

; : : : ; C

n

(C = ls(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 �

i � n, and (ii) C is the least onept desription with this property, i.e., if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

As already mentioned, inALC the ls trivially exists sine ls(C;D) � CtD. For

ALE the existene is not obvious. It was shown in [2℄ that the ls of two or more

ALE-onept desriptions always exists, that its size may grow exponentially in

the size of the input desriptions, and that it an be omputed in exponential

time.

Intuitively, to approximate an ALC-onept desription from \above" means

to ompute an ALE-onept desription that is more general than the input

onept desription but minimal w.r.t. subsumption.
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De�nition 2 Let L

1

and L

2

be two DLs, and let C be an L

1

- and D be an L

2

-

onept desription. Then, D is alled an upper L

2

-approximation of C (D =

approx

L

2

(C) for short) i� (i) C v D, and (ii) D is minimal with this property,

i.e., C v D

0

and D

0

v D implies D

0

� D for all L

2

-onept desriptions D

0

.

Although de�ned in [4℄ lower approximations are not yet further investigated.

In this paper, we restrit our investigations to upper ALE-approximations of

ALC-onept desriptions. Therefore, whenever we speak of approximations, we

mean upper ALE-approximations. Thus, having de�ned approximation we turn

now to how to atually ompute them.

2.2 The Approximation Algorithm

Before a de�ned onept from a TBox an be approximated it has to be unfolded

w.r.t. the underlying TBox to make the information aptured in the onept def-

initions expliit. To this end, every de�ned onept is replaed by the onept

desription on the right-hand side of its onept de�nition until no de�ned on-

ept ours in the onept desription. It is well known that this proess an

ause an exponential blow-up of the onept desription, see [10℄. To reapit-

ulate the approximation algorithm presented in [4℄, we need to introdue the

ALC-normal form.

For an unfolded onept desription C the role-depth rd(C) is indutively

de�ned as follows:

rd(N) := 0 , where N 2 N

C

[ f?;>g

rd(:C) := rd(C)

rd(C

1

� C

2

) := maxfrd(C

1

); rd(C

2

)g , where � 2 fu;tg

rd(Qr:C) := 1 + rd(C) , where Q 2 f9; 8g

A role-level of a onept C is the set of all onept desriptions ourring on the

same role-depth in C. The topmost role-level of a onept desription is alled

its top-level.

We all a onept desription top-level t-free if it is in negation normal form

(NNF), i.e., negation is pushed inwards until in front of a onept name, and does

not ontain any disjuntion on top-level. Some notation is needed to aess the

di�erent parts of an ALE-onept desription or a top-level t-free ALC-onept

desription C:

� prim(C) denotes the set of all (negated) onept names and the bottom

onept ourring on the top-level of C;

� val

r

(C) := C

1

u � � � u C

n

, if there exist value restritions of the form

8r:C

1

; : : : ; 8r:C

n

on the top-level of C; otherwise, val

r

(C) := >;
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Input: unfolded ALC-onept desription C

Output: ALE-approximation of C

1. If C � ?, then -approx

ALE

(C) := ?;

if C � >, then -approx

ALE

(C) := >

2. Otherwise, transform C into ALC-normal form C

1

t � � � t C

n

and return

-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u 8r:lsf-approx

ALE

(val

r

(C

i

)) j 1 � i � ng u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:lsf-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

Figure 1: The reursive algorithm -approx

ALE

.

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg.

Equipped with these we an de�ne the ALC-normal form in whih onjunts are

distributed over the disjunts. An arbitrary ALC-onept desription is trans-

formed into a onept desription with at most one disjuntion on top-level of

every onept of eah role-level.

De�nition 3 An ALC-onept desription C is in ALC-normal form i�

1. if C � ?, then C = ?; if C � >, then C = >;

2. otherwise, C is of the form C = C

1

t � � � t C

n

with

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

);

C

i

6� ?, and val

r

(C

i

) and every onept desription in ex

r

(C

i

) is in ALC-

normal form, for all i = 1; : : : ; n.

Obviously, every ALC-onept desription an be turned into an equivalent on-

ept desription in ALC-normal form. Every disjunt of a onept in ALC-normal

form is top-level t-free. Unfortunately, the normalization may take exponential

time. For instane, the normal form of (A

1

tA

2

)u � � � u (A

2n�1

tA

2n

) is of size

exponential in n.

The approximation algorithm displayed in Figure 1 heks if the input is

a onept equivalent to > or ?|in this ase the approximation is trivial|

otherwise it proeeds reursively on the ALC-normal form of the input and ex-

trats the ommonalities of all disjunts. Unfortunately, the algorithm needs

double-exponential time for arbitrary ALC-onepts in the worst ase. Despite
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its high omplexity, our prototypial implementation of the algorithm showed a

quite promising performane in respet to run-time and resulting onept sizes,

for details see [4℄.

3 Optimizing ALE-Approximations

A TBox an be translated by omputing the approximation of the onept de-

sription on the right-hand side of every onept de�nition in the TBox. Eah

de�ned onept has to be unfolded and transformed into ALC-normal form be-

fore the approximation algorithm an be applied. Unfortunately, both of these

steps ause an exponential growth of the onept desription.

For standard reasoning tasks [1, 8℄ and also for the omputation of the ls [3℄

the �rst soure of omplexity an often be alleviated by lazy unfolding. Here the

idea is to replae a de�ned onept in a onept desription only if examination

of that part of the desription is neessary. Lazy unfolding unfolds all de�ned

onepts appearing on the top-level of the onept desription under onsider-

ation while de�ned onepts on deeper role-levels remain unhanged as long as

possible.

When omputing the ls the main bene�t of lazy unfolding is that in some

ases de�ned onepts an be used diretly in the ls onept desription. If,

for example a de�ned onept C appears in all input onept desriptions on

the same role-level, the onept de�nition of C does not need to be proessed,

but C an be inserted into the ls diretly, see [3℄ for details. In the ase of

approximation, however, this e�et of lazy unfolding an not be utilized even

if a de�ned onept is obviously ommon to all disjunts. For example, in

(A u C) t (C u (:B)) the onept name C annot be used diretly as a name

in the approximation beause the ALC-onept desription C stands for must

be approximated. Thus unfolding a onept ompletely annot be avoided for

approximation.

The double-exponential time omplexity of the approximation algorithm,

however, suggests another approah to optimization. Instead of approximating

an input onept C as a whole a signi�ant amount of time ould be saved by

splitting C into its onjunts and approximating them separately. If, for in-

stane, C onsists of two onjunts of size n then the approximation of C takes

some a

b

2n

steps while the onjunt-wise approah would just take 2a

b

n

. Unfor-

tunately, splitting an arbitrary input onept at onjuntions leads to inorret

approximations, as examples show [4℄. In the following setion we will there-

fore introdue a lass of so-alled nie ALC-onepts for whih the onjunt-wise

approximation still produes the orret result.
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3.1 Nie Conepts

In the following we assume that all onept desriptions are unfolded and in

NNF. For an ALC-onept desription C and i 2 N the quantor set Q

r

(C; i)

denotes the set of quantors used on the role-level i of C (referring to role r).

Hene, for 0 � i � rd(C) the quantor set Q

r

(C; i) is a nonempty subset of

f8; 9g. Similarly, the name set N

r

(C; i) denotes the atomi onepts used on a

spei� role-level. Formally, Q and N are de�ned as follows.

De�nition 4 Let C := t

k

i=1

C

i

be an ALC-onept desription in ALC-normal

form. For d 2 N, the sets Q

r

(C; d) and N

r

(C; d) are indutively de�ned by:

� Q

r

(C; 0) := f9 j

k

S

i=1

ex

r

(C

i

) 6= ;g [ f8 j u

k

i=1

val

r

(C

i

) 6� >g

N

r

(C; 0) :=

k

S

i=1

prim(C

i

)

� Q

r

(C; d+ 1) :=

k

S

i=1

S

C

0

2ex

r

(C

i

)

Q

r

(C

0

; d) [

k

S

i=1

Q

r

(val

r

(C

i

); d)

N

r

(C; d+ 1) :=

k

S

i=1

S

C

0

2ex

r

(C

i

)

N

r

(C

0

; d) [

k

S

i=1

N

r

(val

r

(C

i

); d).

For a onept desription C not in ALC-normal form, Q and N are de-

�ned in terms of the ALC-normal form of C. For example the unfolded onept

C = (9r:(A u B) u 8r:(D t (9r::E))) has the quantor sets Q

r

(C; 0) = f8; 9g,

Q

r

(C; 1) = f9g and Q

r

(C; i) = ; for i � 2. For the name sets, we have

N(C; 0) = ;, N(C; 1) = fA;B;Dg, and N(C; 2) = f:Eg.

We are now ready to speify in detail what nie onepts are. In general,

an approximation approx

ALE

(C uD) annot be split at the onjuntion beause

of possible interations between existential and value restritions on the one

hand and inonsistenies indued by negation on the other. For example, the

approximation approx

ALE

(9r:>u(8r:At9r:A)) yields 9r:A while the split version

approx

ALE

(9r:>) u approx

ALE

(8r:A t 9r:A) only produes 9r:>. Similarly, the

onjuntion A u (:A tB) annot be approximated separately.

We now all those onepts nie for whih this simpli�ed strategy still pro-

dues the orret result and for whih a simple syntati disrimination rule

exists. Firstly, the role quantors ourring in nie onepts are restrited to

one type per role-level. Hene, on every role-level of a nie onept either no

8-restritions or no 9-restritions our. Seondly, a onept name and its nega-

tion may not our on the same role-level. Consider Figure 2 for an illustration

of these rules. Formally, we an de�ne nie onepts by means of the syntatial

operators from De�nition 4.
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Condition 1. Condition 2.

C D C D

8

9

:A! A�

Figure 2: What nie onepts look like

De�nition 5 Let C be an ALC-onept desription in NNF. Then C is nie i�

for every d 2 N it holds that

1. jQ

r

(C; d)j � 1 and

2. N

r

(C; d) does not ontain a onept name and its negation.

It remains to be shown that nie onepts as de�ned above in fat have the

desired property. In preparation for this we �rstly present a simple set-theoreti

result whih later on will allow us to redue the number of existential restritions

omputed in an approximation of ertain nie onepts.

The distribution of a onjuntion over a disjuntion in the ALC-normalization

produes onjuntions of a very regular struture. As an example, onsider the

onept E := (C

1

t C

2

) u (D

1

t D

2

) with C

i

:= 9r:C

0

i

and D

j

:= 9r:D

0

j

. As-

suming that all existential restritions are ALE-onepts, the normalization re-

turns t

i;j

(C

i

u D

j

). The approximation algorithm then omputes the ls over

every ombination of existential restritions from the four disjunts. Never-

theless, every existential restrition in the result approx

ALE

(E) either subsumes

9r:lsfC

0

1

; C

0

2

g or 9r:lsfD

0

1

; D

0

2

g beause it orresponds to the ls of a superset

of one of the above sets. The following lemma shows that this subset-superset

property an be generalized.

Lemma 6 Let m;n 2 N. For every i 2 f1; : : : ; mg and j 2 f1; : : : ; ng, let A

i

and B

j

be arbitrary �nite sets, let U

ij

:= A

i

[ B

j

, and let u

ij

2 U

ij

. Denote by

U the set of all u

ij

, i.e., U := fu

ij

j 1 � i � m; 1 � j � ng. Then one of the

following laims holds: either, for every i there exist elements a

i

2 A

i

with fa

i

j

1 � i � mg � U ; or, for every j there exist b

j

2 B

j

with fb

j

j 1 � j � ng � U .

For all j 2 f1; : : : ; mg and all j 2 f1; : : : ; ng onsider arbitrary u

ij

2 U

ij

.

Assume that the seond laim for the sets B

1

; : : : ; B

n

does not hold. Then there

is one j

0

with B

j

0

\ U = ;, otherwise b

j

0

ould be hosen from this intersetion

to satisfy the laim. Sine u

ij

0

2 A

i

[B

j

0

for all i it follows that u

ij

0

2 A

i

for all

i, satisfying the �rst laim for A

1

; : : : ; A

m

.
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The hoie of sets in the unions U

ij

in the above lemma orresponds to tuples

in the produt fA

1

; : : : ; A

m

g � fB

1

; : : : ; B

n

g. The laim an be generalized to

n-ary produts where every union orresponds to a tuple from fS

11

; : : : ; S

1k

1

g�

� � � � fS

n1

; : : : ; S

nk

n

g. A proof of this generalized version an be found in the

tehnial report [6℄. In the following lemma the above result is applied to the

atual omputation of the ls.

Lemma 7 For 1 � i � 2, let C

i

and D

i

be ALE-onept desriptions suh that

C

1

u C

2

u D

1

u D

2

is a nie onept. Then it holds that lsfC

i

u D

j

j i; j 2

f1; 2gg � lsfC

1

; C

2

g u lsfD

1

; D

2

g.

The above laim an again be generalized to larger onjuntions. Let 1 �

i � n and 1 � j � k

i

and let C

ij

be ALE-onepts whose overall onjuntion

is nie. For every tuple

�

t 2 f1; : : : ; k

1

g � � � � � f1; : : : ; k

n

g =: T denote by C

�

t

the onjuntion u

n

i=1

C

i

�

t(i)

. Then the least ommon subsumer lsfC

�

t

j

�

t 2 Tg is

equivalent to the onjuntion u

n

i=1

lsfC

ij

j 1 � j � k

i

g. The proof is analogous

to the one shown above.

We are now ready to show that approximating nie onepts, as de�ned in

De�nition 5, an be simpli�ed to a onjuntion of approximations. For the sake

of simpliity we restrit our attention to binary onjuntions. The proof for

n-ary onjuntions is analogous.

Theorem 8 Let C uD be a nie ALC-onept desription. Then approx

ALE

(Cu

D) � approx

ALE

(C) u approx

ALE

(D).

For the full proof refer to [6℄. The laim is proved by indution over the

sum of the nesting depths of u and t on every role-level in C and D. For the

indution step a ase distintion is made depending on whether C or D are

onjuntions or disjuntions. If at least one onept desription is a disjuntion

the approximation is de�ned as the ls of all ALC-normalized and approximated

disjunts (if one of the onepts is a onjuntion, it �rstly has to be distributed

over the disjuntion). The main idea then is to use Lemma 7 to transform single

ls alls of a ertain form into a onjuntion of ls alls whih eventually leads

to the onjuntion of the approximations of C and D.

Due to Theorem 8 it is now possible to split the omputation of approxi-

mations into independent parts. Although this does of ourse not hange the

omplexity lass of the approximation algorithm it is still a signi�ant bene�t

for pratial appliations. The improved approximation algorithm is displayed

in Figure 3. The algorithm requires the unfolded input onept to be in NNF.

In the �rst step the -approx

ALE

funtion heks whether the approximation is

trivial. If it is not the next step is to hek whether the onept is nie. For nie

onepts the -nie-approx

ALE

funtion is invoked. For all other onepts the

ALC-normal form is omputed lazily, i.e., the onjuntions are distributed over
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Input: unfolded ALC-onept desription C already in NNF

Output: upper ALE-approximation of C

-approx

ALE

1. If C � ?, then -approx

ALE

(C) := ?;

if C � >, then -approx

ALE

(C) := >

2. If nie-onept-p(C) then return -approx

ALE

(C) := -nie-approx

ALE

(C)

3. Otherwise, transform the top-level of C into ALC-normal form C

1

t� � �tC

n

and return

-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u 8r:lsf-approx

ALE

(val

r

(C

i

)) j 1 � i � ng u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:lsf-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

-nie-approx

ALE

1. If C � ?, then -nie-approx

ALE

(C) := ?;

if C � >, then -nie-approx

ALE

(C) := >

2. If C = C

1

u � � � u C

n

, then return

-nie-approx

ALE

(C) := u

n

i=1

-nie-approx

ALE

(C

i

)

3. Otherwise, return

-nie-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u 8r:lsf-nie-approx

ALE

(val

r

(C

i

)) j 1 � i � ng u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:lsf-nie-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

Figure 3: The improved algorithm -approx

ALE

and -nie-approx

ALE

.

the disjuntions only for the urrent top-level. Then the -approx

ALE

algorithm

proeeds as before. The -nie-approx

ALE

funtion for nie onepts works simi-

lar. Having treated the trivial ases, the seond step is to test if the onept is a

onjuntion. In that ase the approximation is obtained by splitting the onept

onjunt-wise and making a reursive all for eah onjunt. For all other nie

onepts the approximation is omputed as in -approx

ALE

, besides the reursive

alls refer to -nie-approx

ALE

.

Observe that the test onditions for nie onepts an be heked in linear

time one the onept desription is unfolded and in NNF. Unfolding and trans-

10



forming the onept desription into NNF always have to be performed to apply

-approx

ALE

, so that testing whether a onept is nie is hardly any extra e�ort

when approximating a onept.

3.2 Approximating Nie Conepts in TBoxes

If anALC-TBox is to be translated into anALE-TBox, the onept desription on

the right-hand side of eah onept de�nition has to be replaed by its approxi-

mation. For pratial appliations it is not feasible to perform suh a translation

in a naive way. The idea for optimizing this proedure is to re-use the approx-

imation of a de�ned onept when approximating onept desriptions that in

turn make use of this de�ned onept. More preisely, if we have already ob-

tained the approximation of C and want to ompute the approximation of, e.g.,

(Du9r:C), we would like to be able to insert the onept desription approx(C)

diretly into the right plae in the onept desription of approx(Du9r:C). Un-

fortunately, this approah does not work for arbitrary ALC-onept desriptions

due to possible interations between di�erent parts of the onept desription.

Nie onepts, however, are de�ned to rule out this kind of interation. Hene,

besides speeding-up the omputation of a single approximation, the property of

being a nie onept also is a prerequisite for ahing and the re-use of already

omputed approximations. For example, if the de�ned onepts C

1

; C

2

; C

3

from

the following TBox (with A;B and D as primitive onepts)

T = f C

1

= (9r::A) t (9r:B);

C

2

= 9r:(8r:D t :E) u C

1

u :B;

C

3

= : (8r:9r:(:D u A) t :C

1

t :C

2

) g

are to be approximated and C

1

is approximated �rst, then this onept desrip-

tion an be re-used in subsequent approximations. If unfolded and transformed

into NNF the onepts C

2

and C

3

are nie onepts. Hene, the approximation of

C

2

is the onjuntion of approx(9r:(8r:D t:E)) and approx(C

1

) and approx(B),

where the already omputed approximation of C

1

an be inserted diretly. For

C

3

we an re-use both approximations of C

1

and C

2

diretly and only have to

ompute the approximation of 9r:8r:(Dt:A). Thus, the ost for approximating

the entire TBox is redued heavily.

4 Conlusion and Future Work

In this paper we have presented some �rst steps towards optimizing the om-

putation of approximations. The main idea is to identify onepts that an be

deomposed into parts whih then an be approximated independently. These

so-alled nie onepts are strutured in suh a way that the top-level onjunts

11



annot interat with one another. Therefore, eah onjunt an be approximated

separately. Deteting nie onepts and approximating eah of their onjunts

independently should be espeially powerful in the ontext of translating entire

ALC-TBoxes into ALE-TBoxes beause it enables the diret re-use of already

omputed approximations and ahing. Unfortunately, the onditions for nie

onepts are very strit.

It is an open problem whether the rather strit onditions for nie onepts

an be relaxed. To determine if independent approximation of nie onepts is

a real bene�t for pratial appliations, requires an implementation of modular

approximation. Moreover, it is unknown if nie onepts our frequently in

appliation TBoxes.

Another open problem is whether the given onditions for nie onepts an

be extended to the ase where ALCN -onept desriptions are approximated by

ALEN -onept desriptions.
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