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Abstrat. Automata-theoreti deision proedures for solving model-

heking and satis�ability problems for temporal, dynami, and desrip-

tion logis have ourished during the past deades. In the paper we de�ne

an ExpTime deision proedure based on the emptiness problem of B�uhi

automata on in�nite trees for the very expressive information logi SIM

designed for reasoning about information systems. This logi involves

modal parameters satisfying ertain properties to apture the relevant

properties of information systems, and provides nominals at the formula

level, Boolean expressions and nominals at the modal level, an impliit

intersetion operation for relations, and a universal modality. The origi-

nal ombination of known tehniques allows us to solve the open question

related to the ExpTime-ompleteness of SIM. Furthermore, we disuss

how variants of SIM an be treated similarly although the deidability

status of some of them is still unknown.

Keywords: omputational omplexity, B�uhi tree automaton, information logi,

hybrid logi

1 Introdution

From logi to automata. After the works of B�uhi and Rabin [B�u62,Rab69℄, var-

ious lasses of automata turned out to be well-suited to solve deision proedures

for logial problems, inluding some for temporal logis (see e.g., [VW94,Var97,KVW00℄),

for the �-alulus and its fragments (see e.g., [EJ99,SE89,VW86,EJS01,Var98℄),

and for desription logis (see e.g., [CDGL99,CGL02℄) to quote three families

of logis. For instane, translating formulae in temporal logis to automata is a

standard approah for implementing model heking, see e.g., the model-heking

tool SPIN [Hol97℄. More reently, suh tehniques have also been applied su-

essfully in [LS01℄ to fragments of the Boolean modal logi BML introdued in

?
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[GP90℄ and to hybrid full �-alulus in [SV01℄ (see also [KSV02℄) opening an av-

enue to design similar deision proedures for other hybrid logis [Bla00b℄. In this

paper, we will use automata-theoreti deision proedures to prove omplexity

results for information logis.

Information logis. Suh logis were introdued in [Paw81℄, and we refer the

reader to [Or lo98,DO02℄ for a omprehensive survey on information logis. In-

formation logis are designed to model and reason about information systems.

To this purpose, information logis provide a formal spei�ation language to

talk about relations in information systems. An information system S is de-

�ned as a struture S = hOB;AT i suh that OB is a non-empty set of objets,

AT is a non-empty set of attributes, and every attribute a 2 AT is a mapping

a : OB ! P(V AL

a

) n f;g, where V AL

a

is a non-empty set of values. For every

objet x and for every attribute a, a(x) an be read as the set of possible values

of the attribute a for the objet x. In that setting, various derived relations be-

tween objets an be de�ned. We reall some of them below (see e.g. [Or lo98℄).

For all x

1

; x

2

2 OB, for every A � AT ,

(I) hx

1

; x

2

i 2 ind

A

i� for every a 2 A, a(x

1

) = a(x

2

) (indisernability);

(II) hx

1

; x

2

i 2 fin

A

i� for every a 2 A, a(x

1

) � a(x

2

) (forward inlusion);

(III) hx

1

; x

2

i 2 bin

A

i� for every a 2 A, a(x

2

) � a(x

1

) (bakward inlusion);

(IV) hx

1

; x

2

i 2 sim

A

i� for every a 2 A, a(x

1

) \ a(x

2

) 6= ; (similarity).

hx

1

; x

2

i 2 ind

A

an be read as follows: the objets x

1

and x

2

annot be distin-

guished modulo the set A of attributes. Similarly, hx

1

; x

2

i 2 sim

A

i� x

1

and x

2

are similar modulo A. The other relations fin

A

and bin

A

admit a reading in a

similar vein.

Given an information system S = hOB;AT i, we an de�ne a struture

hOB; (R

A

)

A�AT

i, where (R

A

)

A�AT

is a family of relations derived from S (see

e.g., the above lauses (I)-(IV)). In a more abstrat setting, an information

frame is a pair hW; (R

P

)

P�PAR

i suh that W and PAR are non-empty sets

and (R

P

)

P�PAR

is a family of binary relations indexed by subsets of PAR. An

information logi is de�ned as a multi-modal logi haraterised by a lass of

information frames. Sine the relations derived from information systems satisfy

ertain properties, the information frames usually satisfy additional onditions.

For example, it is not hard to see that, for every R 2 find; fin; bin; simg, we

have

R

P[Q

= R

P

\R

Q

for all P;Q � PAR; and (1)

R

;

is the artesian produt of the domain. (2)

Moreover, every relation R

P

satis�es ertain loal onditions: for instane, the

indisernability relations are equivalene relations, and the similarity relations

are reexive and symmetri. The �rst information logi has been introdued in

[OP81℄ and many others appeared later (see e.g., [Vak91,Bal96,Kon97,Vak98,Ste98℄).

Most information logis inlude further expressive means suh a nominals whose



ombination with the intersetion of modal parameters and the universal modal-

ity are known to make reasoning rather omplex. In the following, we will on-

entrate ourselves on one suh logi, SIM, and show how a ombination of a

suitable normal form for modal expressions, a tree model property, and tree au-

tomata an be used to overome this diÆulty and de�ne an optimal deision

proedure for SIM satis�ability.

The logi SIM. Among the lass of information logis, the logi SIM introdued

in [Kon97℄ plays a speial role sine it provides various expressive ingredients:

an impliit universal modality, nominals at both levels of formulae and modal

expressions, and Boolean operators in modal expressions. This highly expres-

sive logi was designed to represent and reason about relevant properties of

similarity relations sim

A

. Additionally, it turned out that this logi is also well-

suited for the internalization of dedution in proof systems [Kon97℄ (see also

[Dem99b,Tza99,Bla00a,Sel01℄). A SIM-model is a Kripke struture with reex-

ive and symmetri aessibility relations (sim

P

)

P�PAR

as abstrat ounterparts

of the similarity relations derived from information systems. Hene the relations

in (sim

P

)

P�PAR

interat aording to the above onditions (1) and (2).

Our ontribution. In this paper, we show that the satis�ability problem for the

logi SIM is ExpTime-omplete. The ExpTime lower bound is a onsequene

of more general results sine SIM ontains a universal modal onnetive with a

family of B modal onnetives (see e.g., [Spa93,CL94,Hem96℄). The ExpTime

upper bound is established by an exponential redution into the emptiness prob-

lem for B�uhi automata on in�nite trees that is known to be in PTime (see e.g.,

[VW86,EJ88℄). As mentioned previously, this tehnique is nowadays standard for

logis of programs, but it has never been applied to information logis. Indeed,

relative information logis ontain features that are not traditionally present

in most logis of programs (e.g., the presene of nominals on the formula and

modal level, and Boolean operators in modal expressions). Reently in [LS01℄,

the fragment of Boolean modal logi (BML) with only the omplement operator

: on relations is shown to be in ExpTime by a redution into the emptiness

problem for B�uhi automata on in�nite trees. In [SV01℄, suh an upper bound

is also established for the hybrid full �-alulus by redution into the emptiness

problem for parity alternating automata on in�nite trees. A ombination of suh

reent results and an appropriate extension to handle intersetion and nominals

at the level of modal expressions allows us to prove the ExpTime lower bound

for SIM. Observe that, in [LS01℄, it is already shown that the fragment of BML

with only omplement and intersetion is NExpTime-hard even if no : is in

the sope of \ and no \ is in the sope of : (see e.g., [LS01, Figure 1℄). We

show that the information logi SIM is of a lower omplexity: it is in ExpTime

even though it provides full Boolean operators in modal expressions.

1

This lower

omplexity is due to the restritions of the semantis of the modal expressions

1

Please note that this di�erene is not due to an bounded/unbounded number of

atomi modal expressions|this number is unbounded in both logis mentioned.



designed to represent derived relations in information systems. A remarkable

side-e�et of our result for SIM is the following. The multi-modal logi with a

universal modality [U ℄, modal onnetives of the form [

1

\ � � � \ 

n

℄, where \ is

interpreted as intersetion on binary relations, eah 

i

is interpreted as a reex-

ive and symmetri relation, and the logi ontains propositional variables and

nominals an be shown to have an ExpTime-omplete satis�ability problem.

Figure 1 shows the presene of ingredients in the logis SIM, BML, and in the

hybrid �-alulus. The operators : and \ refers respetively to omplementation

and intersetion operated on binary aessibility relations. SIM also ontains

Boolean operators but only at the level of parameters (see Set. 2) and of ourse

at the level of formulae. Moreover, in Figure 1, FO2[=℄ refers to the existene

of a relational translation into FO2[=℄, the fragment of lassial logi with two

variables and equality. As an outome, the logi SIM has features that prevent

from having a natural translation into BML or the hybrid �-alulus

SIM BML hybrid �-alulus

nominals X X

universal modality X X X

\ X X

: X

FO2[=℄ X [DK98℄ X

in ExpTime X, this paper X [SV01℄

Fig. 1. Comparing SIM, BML, and the hybrid �-alulus

Our tehnial developments for SIM an be extended to the logis FORIN

and IND (see e.g., [Kon98℄), where the similarity relations are replaed by for-

ward inlusion relations and indisernability relations, respetively but with-

out nominals at the objet level. This improves signi�antly the upper bound

from [DK98℄ whereas deidability for FORIN and IND ould not be obtained

from the redution into the (undeidable) fragment of �rst order logi with three

variables [Kah62℄. The deidability status of full FORIN and IND is still open.

Plan of the paper. The rest of the paper is strutured as follows. Set. 2 presents

the logis for whih the omputational omplexity is studied in the paper. Set. 3

deals with normal forms for SIM formulae whereas Set. 4 introdues the onept

of the global information for SIM-models that will play an important role. In

Sets. 5 and 6 we provide a notion of Hintikka trees for SIM-models preparing

the automata onstrution. For the logi SIM and variants of it, the satis�ability

problem is redued to the emptiness problem for B�uhi automata on in�nite trees

in Set. 7. Finally, we give some onluding remarks in Set. 8.

The paper has been designed to be self-ontained. Standard de�nitions we use

onerning automata on in�nite objets an be found in [Tho90℄, and onerning

omputational omplexity in [Pap94℄.



2 Information Logis

In this setion, we �rst introdue syntax and semantis of the logi SIM, then

desribe the losely onneted logis FORIN and IND.

The set of primitive symbols of the language for SIM is omposed of

{ a ountably in�nite set PRP = fp

1

; p

2

; : : :g of propositional variables,

{ a ountably in�nite set NOM = fx

1

; x

2

; : : :g of objet nominals,

{ a set P of parameter expressions, whih is the smallest set ontaining a

ountably in�nite set PNOM = fE

1

;E

2

; : : :g of parameter nominals and a

ountably in�nite set PVAR = fC

1

;C

2

; : : :g of parameter variables,

and that is losed under the Boolean operators \;[;�.

The formation rules of the set FOR(SIM) of SIM-formulae are those of propo-

sitional logi, where objet nominals an be used in the plae of propositional

variables, plus the rule: if � 2 FOR(SIM) and A 2 P, then [A℄� 2 FOR(SIM).

The following is an example of a (valid) SIM-formula:

[E

2

\ �E

2

℄x ) [E

1

[C

1

℄(x _ p):

Moreover, for every syntati objet O, we write jOj to denote its length (or

size), that is the number of symbol ourrenes in O viewed as a string. As usual,

sub(�) denotes the set of subformulae of the formula � (inluding � itself). For

every X 2 fNOM;PNOM;PVAR;Pg, we write X(�) to denote the elements of

X ourring in the formula �. Obviously, ard(X(�)) < j�j.

De�nition 1. Let PAR be a non-empty set. A P-interpretation m is a map

m : P ! P(PAR) suh that, for all A

1

;A

2

2 P,

{ if A

1

;A

2

2 PNOM and A

1

6= A

2

, then m(A

1

) 6= m(A

2

);

{ if A

1

2 PNOM, then m(A

1

) is a singleton;

{ m(A

1

\A

2

) = m(A

1

) \m(A

2

) and m(A

1

[A

2

) = m(A

1

) [m(A

2

);

{ m(�A

1

) = PAR nm(A

1

).

PAR is referred to as a set of parameters that is the obvious ounterpart of

the set of attributes in information systems. Given parameter expressions A and

B, we write A � B i� for every P-interpretation m, we have m(A) = m(B).

De�nition 2. A SIM-model M is a struture M = hW; (R

P

)

P�PAR

;mi, where

W and PAR are non-empty sets and (R

P

)

P�PAR

is a family of binary relations

on W suh that

(uni) R

;

is the artesian produt W �W ;

(re) R

P

is reexive for every P � PAR;

(sym) R

P

is symmetri for every P � PAR;

(inter) R

P[Q

= R

P

\R

Q

for all P;Q � PAR.

Moreover, m is a mapping m : NOM [ PRP [ P ! P(W ) [ P(PAR) suh that

m(p) � W for every p 2 PRP, m(x) = fwg, where w 2 W for every x 2 NOM,

and the restrition of m to P is a P-interpretation.



Consequently, two levels of interpretation are used to de�ne the relations in

the SIM-models. On the one hand, the parameter expressions are interpreted

within the Boolean algebra

B = hP(PAR);[;\;�; 1; 0i

for some non-empty set PAR. On the other hand, the onditions on (R

P

)

P�PAR

indue a semi-lattie struture of L = hfR

P

: P 2 Bg;\i with zero element

W �W .

Condition (inter) allows SIM to apture intersetion on relations. Indeed,

let us write R

A

for R

m(A)

. Then, for all parameter expressions A;B, we have

R

A[B

= R

A

\R

B

. By ontrast, omplementation and union annot be expressed

in a similar fashion (otherwise we would get operators similar to those in BML).

Additionally, SIM ontains universal modality sine R

A\�A

is preisely the prod-

ut W �W .

The objet nominals an be viewed as onstants for objets and parameter

nominals as onstants for attributes in information systems. Similarly, (R

P

)

P�PAR

is an abstration of the family (sim

A

)

A�PAR

derived from information systems.

Please note that, for parameter nominals, we assume that di�erent nominals

are interpreted as di�erent relations, i.e., we admit the so-alled unique name

assumption. In ontrast, objet nominals an be interpreted as arbitrary sin-

gletons, i.e., we do not admit the unique name assumption. Sine the set of

parameter nominals is ountably in�nite, an obvious onsequene of the de�ni-

tion of the SIM-models is that every SIM-model has an in�nite set of parameters.

Let M = hW; (R

P

)

P�PAR

;mi be a model. As usual, we say that a formula �

is satis�ed by w 2 W in M (written M; w j= �) if the following onditions are

satis�ed.

M; w j= p i� w 2 m(p) for p 2 PRP [NOM;

M; w j= :� i� not M; w j= �;

M; w j= � ^  i� M; w j= � and M; w j=  ;

M; w j= [A℄� i� for every w

0

2W , if hw;w

0

i 2 R

m(A)

, then M; w

0

j= �.

A formula � is true in a SIM-model M (written M j= �) i� for every w 2

W; M; w j= �. A formula � is said to be SIM-valid i� � is true in every SIM-

model. A formula � is said to be SIM-satis�able i� :� is not SIM-valid.

Theorem 3. [Vak87℄ The lass of information frames hOB; (sim

A

)

A�AT

i de-

rived from information systems is preisely the lass of SIM-frames.

The frames are understood as parts of the models without the meaning fun-

tion m. Hene, from a SIM-model for a given SIM-formula �, one an extrat

an information system satisfying the spei�ation �. Theorem 3 guarantees that

the SIM-models are the adequate strutures to deal with the information frames

based on similarity derived from information systems.

The similarity logi with an in�nite set of parameters de�ned in [Kon98℄

is not stritly the logi SIM de�ned above but one an show that both logis

have the same set of valid formulae [DK98, Proposition 9℄. Variants of SIM an

be easily designed by onsidering relations derived from information systems



di�erent from similarity (e.g., forward inlusion, indisernability). Let FORIN

[resp. IND℄ be the relative logi sharing its language with SIM suh that a

FORIN-model [resp. IND-model℄ is obtained from De�nition 2 by adding the

ondition (trans) and by withdrawing (sym) [resp. from De�nition 2 by adding

the ondition (trans)℄:

(trans) R

P

is transitive for every P � PAR.

Deidability of the satis�ability problem for the logi SIM is shown in [DK98℄

by translating SIM satis�ability into satis�ability for FO2[=℄, the fragment of

lassial logi with two variables and equality. The redution inreases exponen-

tially the size of the formulae and FO2[=℄ satis�ability is inNExpTime [GKV97℄.

Hene, the best known upper bound for SIM satis�ability is N2ExpTime. Addi-

tionally, the proof in [DK98℄ annot be adapted to show the deidability of IND

and FORIN sine transitivity requires three variables.

More about the logi SIM and analogous information logis an be found

in [DO02℄.

3 Normal Forms for Parameter Expressions

In this setion, we reall a notion of normal form for parameter expressions

inspired by the anonial disjuntive normal form for propositional logi. Suh

normal forms play a speial role for the relative information logis. Normal forms

for Boolean modal expressions with nominals have been introdued in [Kon98℄

in order to failitate the design of Rasiowa{Sikorski-style proof systems (dual

tableaux) for SIM. Suh a tehnique has been also useful to show deidability of

SIM [DK98℄ and for some fragments of Boolean modal logi BML [LS01, Set.

5℄ (see also [DG00℄). In this paper, we use a normal form for the Boolean modal

expressions with nominals. We reall below some de�nitions.

For l � 1 and n � 1, let Y = fE

1

; : : : ;E

l

g be distint parameter nominals

and be X = fC

1

; : : : ;C

n

g distint parameter variables. For every integer k 2

f0; : : : ; 2

n

� 1g, we denote by B

k

the parameter expression B

k

def

= A

1

\ : : : \

A

n

where, for every s 2 f1; : : : ; ng, A

s

= C

s

if bit

s

(k) = 0 and A

s

= �C

s

otherwise, and bit

s

(k) denotes the sth bit in the binary representation of k with

n bits. Although not essential, the use of binary representation will failitate

the presentation of tehnial developments. For every integer k

0

2 f0; : : : ; lg, we

denote by D

k

0

the parameter expression

D

k

0

def

=

�

�E

1

\ : : : \ �E

l

if k

0

= 0;

E

k

0

otherwise.

For every integer k 2 f0; : : : ; 2

n

� 1g and for every k

0

2 f0; : : : ; lg, A

k;k

0

def

=

B

k

\ D

k

0

. For instane, if n = l = 2, then A

3;2

= �C

1

\ �C

2

\ E

2

. The set

Comp(X;Y ) of hX;Y i-omponents, is de�ned as follows:

Comp(X;Y )

def

= fA

k;k

0

j k 2 f0; : : : ; 2

n

� 1g; k

0

2 f0; : : : ; lgg:



The set Comp(X;Y ) of hX;Y i-omponents enables us to partition every set of

parameters. Indeed, for every P-interpretation m : P ! P(PAR), the family

fm(A) j A 2 Comp(X;Y )g is a partition of PAR [Kon98℄. As a onsequene,

we obtain the following property.

Lemma 4. Let A be a parameter expression built from X [ Y . Then either

A � �A\A or there is a unique non-empty subset fA

0

1

; : : : ;A

0

u

g of Comp(X;Y )

suh that A � A

0

1

[ : : : [A

0

u

.

Lemma 4 enables us to de�ne normal forms of parameter expressions. Let A

be a parameter expression built from X [ Y . The normal form of A, N

X;Y

(A),

is de�ned as follows:

N

X;Y

(A)

def

=

�

; if A � (A \ �A);

fA

k

1

;k

0

1

; : : : ;A

k

u

;k

0

u

g if A � A

k

1

;k

0

1

[ : : : [A

k

u

;k

0

u

.

Observe that there exists an e�etive proedure that omputes N

X;Y

(A) in deter-

ministi time exponential in jAj+n+l. Moreover, it is known that, for all param-

eter expressions A;B built from X [Y , we have A � B i� N

X;Y

(A) = N

X;Y

(B).

Please note that this normal form is not thought to be applied to all parameter

expressions in a SIM-formula to be tested for satis�ability (sine this would ob-

viously yield an exponential blow-up), but it is used in the following setion to

deide the impliation relation between parameter expressions.

4 Global Information for SIM-models

Due to the presene of nominals, SIM does not have the tree model property.

Hene, to use automata-based tehniques, we will de�ne appropriate tree ab-

strations of models, so-alled Hintikka-trees. However, the expressive power of

SIM is suh that the Hintikka-trees will be de�ned w.r.t. \global" information.

In this setion, we desribe this global information in SIM models. Intuitively,

global information is true at any point of the model or onerns edges whih

are omitted when onsidering tree abstrations of (non-tree) models, i.e., edges

relating an individual to the instane of a nominal.

For instane, given an objet nominal x ourring in �, the set of subformulae

of � that hold true in the unique state satisfying x is a global information. In

this setion, we generalize the global information about objet nominals and the

universal modality from [SV01℄. Guessing a global information for a given for-

mula � will orrespond to the primary non-deterministi hoie in the automata

built for � (see Set. 7).

Let � be a SIM-formula, C a parameter onstant, E a parameter nominal,

and x an objet nominal. To avoid onsidering formulae ontaining no parameter

nominals or no parameter variables, in the remainder, we assume w.l.o.g that (1)

eah formula ontains at least one objet nominal, and (2) eah formula is of the

form �

0

^

V



i=1

:[(C\�C\E)℄:x

i

, where x

1

; : : : ; x



are all the objet nominals

ourring in �

0

. The �rst assumption is without loss of generality beause we



an transform eah SIM-formula without objet nominals into an equi-satis�able

one by onjoining it with x. The seond assumption is without loss of generality

beause eah SIM-model interprets both C\�C and C\�C\E as the universal

relation.

In the remainder of this setion, we disuss all aspets of global information

whih we use to design the B�uhi tree automaton aepting all (tree abstra-

tions of) models of a SIM formula �. To do so, we �rst onsider a �xed model

M = hW; (R

P

)

P�PAR

;mi of � and ollet, step by step, all information we

keep globally trak of when abstrating from this model to the orresponding

Hintikka-tree.

4.1 Parameter Nominals

Let PNOM(�) = fE

1

; : : : ;E

l

g be the set of parameter nominals and PVAR(�) =

fC

1

; : : : ;C

n

g be the set of parameter variables ourring in �. Reall that n; l �

1. Given a P-interpretationm, there is a unique map f : f1; : : : ; lg ! f0; : : : ; 2

n

�

1g suh that, for every k

0

2 f1; : : : ; lg, we have

fk 2 f0; : : : ; 2

n

� 1g j m(E

k

0

) 2 m(B

k

)g = ff(k

0

)g (UNI)

sine we assume the unique name assumption for parameter nominals, and more-

over the set

fm(B

k

) j k 2 f0; : : : ; 2

n

� 1gg

is a partition of PAR. Suh a map f an be enoded with O(n� l� log(l)) bits.

Moreover, for every k

0

2 f1; : : : ; lg, for every set X � f0; : : : ; 2

n

� 1g, at most

one parameter expression in fA

k;k

0

j k 2 Xg is not interpreted as the universal

relation. Hene we have a variety of di�erent parameter expressions that are

all interpreted as the universal relation|a situation obviously more omplex

than the one in whih one expliit universal modal onnetive [U ℄ is part of the

language.

Let A;B be parameter expressions built on PNOM(�) [ PVAR(�). Given

the map f : f1; : : : ; lg ! f0; : : : ; 2

n

� 1g, we write A v

f

B i� for every P-

interpretation m satisfying (UNI), we have m(A) � m(B). We have hosen to

de�ne v

f

rather than v

m

beause there are far less mappings f than there are

ms, and this di�erene will be ruial in the following. The relation A v

f

B an

be heked in exponential-time in jAj+ jBj+ n+ l sine A v

f

B i�

N

PVAR(�);PNOM(�)

(A) n (

S

l

k

0

=1

fA

k;k

0

2 Comp(PVAR(�);PNOM(�)) j k 6= f(k

0

)g)

�

N

PVAR(�);PNOM(�)

(B) n (

S

l

k

0

=1

fA

k;k

0

2 Comp(PVAR(�);PNOM(�)) j k 6= f(k

0

)g):

Indeed, the problem an be shown to be o-NP-omplete sine it is a slight

variant of the validity problem of propositional logi. We write A �

f

; to denote

A v

f

A \�A. Obviously, A v

f

B i�, for every SIM-model hW; (R

P

)

P�PAR

;mi

with m satisfying (UNI), we have R

m(B)

� R

m(A)

.



4.2 Universal Modalities

Set UF = f[A℄ 2 sub(�) j A �

f

;; M j=  g and EF = f[A℄ 2 sub(�) j A �

f

;; M 6j=  g. Observe that UF and EF depend on the map f but for a given

model M, the struture hf; UF;EF i is unique. The struture hUF;EF i an be

also enoded using O(j�j � log(j�j)) bits.

4.3 Objet Nominals

Let NOM(�) be the set of objet nominals and P(�) the parameter expressions

ourring in �. We will �x whih nominals are interpreted by the same objet,

what formulae are satis�ed by these objets, and how they are inter-related.

Let EQ be the unique equivalene relation on NOM(�), NOM be the unique

map NOM : NOM(�) ! P(sub(�)) and R

N

be the unique ternary relation in

NOM(�)

2

� P(�) suh that

{ for all x; y 2 NOM(�), hx; yi 2 EQ i� m(x) = m(y);

{ for every x 2 NOM(�),

NOM(x)

def

= f 2 sub(�) j for m(x) = fwg; M; w j=  g;

{ for all x; y 2 NOM(�), A 2 P(�), if m(x) = fwg and m(y) = fw

0

g, then

hx; y;Ai 2 R

N

i� hw;w

0

i 2 R

m(A)

.

The triple hEQ;NOM;R

N

i an be enoded using O(j�j

3

) bits. Suh a global

information about the model M is atually a variant of the global information

used in [SV01℄.

4.4 Abstrat Global Information

Next, we summarize the above mentioned aspets of global information and

de�ne it independently of a spei� model.

A global information G for � is a struture hf; UF;EF;EQ;NOM;R

N

i suh

that

1. f is a map f : f1; : : : ; lg ! f0; : : : ; 2

n

� 1g (it desribes how parameter

nominals are interpreted);

2. UF and EF are subsets of f' 2 sub(�) : ' = [A℄ g (UF ontains the

formulae quanti�ed universally that are true in a model, and EF ontains

those formulae quanti�ed universally in � that are not true);

3. EQ � NOM(�)

2

(it desribes whih objet nominals are interpreted by the

same individual);

4. NOM is a map NOM : NOM(�) ! P(sub(�)) (it desribes the formulae

satis�ed by the interpretations of nominals);

5. R

N

� NOM(�)

2

� P(�) (it desribes the inter-relationship between nomi-

nals).



We write R

N

(A) to denote the binary relation fhx; x

0

i j hx; x

0

;Ai 2 R

N

g. A global

information G for � an be easily enoded using O(j�j

3

) bits.

Next, we de�ne onsisteny of global informations. So far, a global informa-

tion G is simply a struture of a ertain type, whereas the SIM-onsisteny of

G reets the semantis of SIM.

A global information G = hf; UF;EF;EQ;NOM;R

N

i is said to be SIM-

onsistent i� G satis�es the following onditions:

(G1) EQ is an equivalene relation;

(G2) for every x 2 NOM(�), NOM(x) is loally SIM-onsistent (to be de�ned

in De�nition 6 below) and x 2 NOM(x);

(G3) fUF;EFg is a bipartition of f[A℄ 2 sub(�) j A �

f

;g;

(G4) for all x; y 2 NOM(�), hx; yi 2 EQ i� NOM(x) = NOM(y);

(G5) for all A;B 2 P(�), A v

f

B implies R

N

(B) � R

N

(A);

(G6) for every A 2 P(�), EQ is a ongruene for R

N

(A), and the relation

R

N

(A) is reexive and symmetri;

(G7) for all x; y 2 NOM(�), if [A℄ 2 NOM(x) and hx; y;Bi 2 R

N

for some

A v

f

B, then  2 NOM(y);

(G8) for all hx; y;A

1

i; : : : ; hx; y;A

n

i 2 R

N

, n � 1, and B 2 P(�),

if B v

f

A

1

[ : : : [A

n

, then hx; y;Bi 2 R

N

;

(G9) for every A 2 P(�), for all x; y 2 NOM(�), A �

f

; implies hx; y;Ai 2 R

N

.

Please note that (G6) is the plae where it is important that we are onsid-

ering SIM, and whih would need to be modi�ed when adapting the approah

to FORIN or IND. In order the establish the ExpTime upper bound for SIM,

we need the result below.

Lemma 5. Cheking whether a global information for � is SIM-onsistent an

be done in time in 2

O(j�j)

.

The exponential bound is due to the relation v

f

and to the exponential

amount of triple in (G8) sine in (G8), 1 � n � ard(P(�)). We write GCONS(�)

to denote the set of SIM-onsistent global informations for �.

5 Symboli States

In this setion, we de�ne the notion of symboli states whih represent objets

in SIM-models.

De�nition 6. Let X be a subset of sub(�) for some formula �. The set X is said

to be loally SIM-onsistent i� eah  2 sub(�) satis�es the following onditions:

(L1) if  = :', then ' 2 X i�  62 X;

(L2) if  = '

1

^ '

2

, then f'

1

; '

2

g � X i�  2 X;

(L3) if  = [A℄' and  2 X, then ' 2 X.



Let G be a SIM-onsistent global information. Given two loally SIM-onsistent

sets X and Y and a parameter expression A ourring in �, we write X �

G;A

Y

to denote that, for every [B℄ 2 X, if B v

f

A, then  2 Y and, for every

[B℄ 2 Y , if B v

f

A, then  2 X.

Observe that �

G;A

depends on G by the map f . The relation �

G;A

is the

abstrat ounterpart of a maximal relationR

m(A)

in SIM-models. More preisely,

let M = hW; (R

P

)

P�PAR

;mi be a SIM-model, let hw;w

0

i 2 R

m(A)

for some A

ourring in �, and let G be a SIM-onsistent global information for � built from

M as done in Set. 4. Then

f 2 sub(�) j M; w j=  g �

G;A

f 2 sub(�) j M; w

0

j=  g:

We are now ready to de�ne symboli states. Eah suh state ontains infor-

mation on the relation between the assoiated node and its (unique) predeessor,

the formulae the respetive objet satis�es, and how it is related to (instanes

of) objet nominals. The latter information is ruial sine these edges will be

omitted when abstrating/unravelling models to Hintikka trees (if they were not

omitted, unravelling would either not yield trees or instanes of objet nominals

would not be unique).

A symboli state for � is either? or a triple q = hA; X; T i suh that A 2 P(�),

X 2 P(sub(�)), and T � P(�)�NOM(�).

In q = hA; X; T i, A refers to the relation R

m(A)

whih relates q's (unique)

predeessor to q, X is the set of formulae satis�ed in q, and T is a table suh that,

for every hB; xi 2 T , hq; wi 2 R

m(A)

for m(x) = fwg. We often use hA

q

; X

q

; T

q

i.

The \dummy" value ? is used for those nodes in a tree not representing objets,

and we all a symboli state q dummy if q =?. Similarly, a symboli state

hA; X; T i is a named state if X \ NOM(�) is non-empty. We will also write

 2 q = hA; X; T i [resp. hA; xi 2 q℄ instead of  2 X [resp. hA; xi 2 T ℄.

LetG be a (SIM-onsistent) global information. A symboli state q = hA; X; T i

is said to be loally SIM-onsistent with respet to G i� q is dummy or if it sat-

is�es the following onditions:

(SC1) X is loally SIM-onsistent;

(SC2) for every x 2 NOM(�), x 2 q implies X = NOM(x) and T = fhB; yi j

hx; y;Bi 2 R

N

g;

(SC3) for every hA; xi 2 T , X �

G;A

NOM(x);

(SC4) for all hA

1

; x

1

i; : : : ; hA

n

; x

n

i 2 T with n � 1, if x

1

= : : : = x

n

then, for

every A 2 P(�) with A v

f

A

1

[ : : : [A

n

, we have hA; x

1

i 2 T ;

(SC5) for every B 2 P(�) suh that B �

f

;, for every x 2 NOM(�), hB; xi 2 T ;

(SC6) UF � X and EF \X = ;.

We use SYMB(�) to denote the set of symboli states of �, and SYMB

G

(�)

to denote the set of symboli states of � that are loally SIM-onsistent with

respet to a (SIM-onsistent) global information G.

(SC3) ensures that the \omitted" edges to instanes of nominals are seman-

tially possible. In order to establish the ExpTime upper bound for SIM, we

need also the result below.



Lemma 7. Deiding whether a symboli state is loally SIM-onsistent with re-

spet to a (SIM-onsistent) global information an be done in time 2

O(j�j)

.

6 Hintikka Trees

We are now ready to introdue Hintikka trees for SIM with respet to a given

global information G. As usual, suh trees are abstrations of SIM-models that

allow a further treatment with B�uhi automata on in�nite trees. A nie ex-

ample of existing suh abstrations are those for the �-alulus (see e.g., the

well-founded pre-models in [SE89℄). We will show that eah SIM-model an be

unravelled into a Hintikka tree, and thus prove a tree model property for SIM

(suh properties are known to be helpful for the deidability of modal logis

[Gr�a99℄). This setion is the ore of the paper sine it ombines the preliminary

results from the previous setions with the ideas underlying the introdution of

Hintikka trees.

For � a SIM-formula, a Hintikka-tree for � is labelled with symboli states,

has a dummy root node, and, at its �rst level, we �nd a node satisfying � as

well as nodes for all nominals ourring in �. Sine a negated box formulae an

be either witnessed by an \anonymous" suessor node in the tree or by a node

labelled with named states representing an instane of a nominal, (H7) is split

into two onditions, one for eah ase.

We reall that, given K � 1 and a �nite alphabet �, an in�nite �;K-tree T

is a mapping T : f1; : : : ;Kg

�

! �.

Let � be a SIM-formula with K = j�j, PNOM(�) the set of parameter nom-

inals ourring in � with l = ard(PNOM(�)) � 1, and PVAR(�) the set of

parameter variables ourring in � with n = ard(PVAR(�)) � 1.

De�nition 8. A SYMB(�);K-tree T is a Hintikka tree for � i� there exists a

SIM-onsistent global informationG = hf; UF;EF;EQ;NOM;R

N

i 2 GCONS(�)

for � suh that

(H1) T (�) is dummy;

(H2) there is i 2 f1; : : : ;Kg suh that � 2 T (i);

(H3) for every x 2 NOM(�), there is a unique i 2 f1; : : : ;Kg suh that x 2 T (i)

(this i is then written i

x

);

and eah s 2 f1; : : : ;Kg

+

satis�es the following onditions:

(H4) T (s) is loally SIM-onsistent with respet to G;

(H5) if T (s) is dummy, then T (s � 1); : : : ; T (s �K) are also dummy;

(H6) if s is of length at least 2, then T (s) is not a named symboli state;

(H7) if T (s) = hA; X; T i is not dummy and [B℄ 2 sub(�) nX, then

1. either there is i 2 f1; : : : ;Kg with T (s � i) = hB; X

0

; T

0

i, T (s � i) is not

dummy, and  62 X

0

or

2. there is x 2 NOM(�) suh that hB; xi 2 T and  62 T (i

x

);

(H8) for every i 2 f1; : : : ;Kg, if both T (s) = hA; X; T i and T (s�i) = hB; X

0

; T

0

i

are not dummy, then X �

G;B

X

0

.



Suh a Hintikka tree is said to respet G.

All the preliminary work done so far yields Lemma 9 below.

Lemma 9. For every SIM-formula �, (I) � is SIM-satis�able i� (II) � has a

Hintikka tree.

Proof. (II) ! (I). Let T be a Hintikka tree respeting the SIM-onsistent global

information G.

The onstrution of M. We onstrut a SIM-model M = hW; (R

P

)

P�PAR

;mi

of � as follows:

{ W

def

= fs 2 f1; : : : ;Kg

+

: T (s) is not dummyg;

{ PAR

def

= N ;

{ for every i 2 N , m(E

i

)

def

= f2

n

� 1 + ig;

{ for every i 2 f1; : : : ; ng,

m(C

i

)

def

= f2

n

� 1 + j j j 2 f1; : : : ; lg; bit

i

(f(j)) = 0g [

fk 2 f0; : : : ; 2

n

� 1g j bit

i

(k) = 0g

(the other parameter variables are interpreted as the empty set);

{ for every s 2W , for every p 2 PRP, s 2 m(p) i� p 2 T (s);

{ for every A 2 P(�), let R

A

be the binary relation on W �W de�ned as the

reexive and symmetri losure of the union of the following three sets

1: R

N

(A) ;

2: R(A) = fhs; s � ii 2W

2

j s 2 f1; : : : ;Kg

+

; i 2 f1; : : : ;Kg;

T (s � i) = hA; X; T ig;

3: R

0

(A) = fhs; i

x

i 2W

2

j s 2 f1; : : : ;Kg

+

; hA; xi 2 T (s)g;

{ for every i 2 N n f0; : : : ; 2

n

� 1 + lg, R

fig

def

= W �W ;

{ for every i 2 f0; : : : ; 2

n

� 1 + lg, R

fig

def

=

S

fR

A

j A 2 P(�); i 2 m(A)g;

{ for every P � N suh that ard(P ) � 2, R

P

def

=

T

i2P

R

fig

;

{ for every x 2 NOM(�), m(x) = fi

x

g (objet nominals not ourring in � are

interpreted as arbitrary singletons).

Basi properties of M. By onstrution, eah relation R

A

is reexive and sym-

metri. The same holds for eah relation R

P

sine symmetry and reexivity are

properties preserved by taking arbitrary intersetion.

It is not diÆult to hek that M is a SIM-model, that M respets G, and

that, moreover, the following properties are satis�ed:

1. for every k 2 f0; : : : ; 2

n

� 1g, m(A

k;0

) = fkg;

2. for every k

0

2 f1; : : : ; lg, m(A

f(k

0

);k

0

) = f2

n

� 1 + k

0

g;

3. if hs; s

0

i 2 R

m(A)

and [A℄ 2 T (s), then  2 T (s

0

).



A nie onsequene of the points (1) and (2) is that reasoning about the normal

form of A an be redued to reasoning on the elements in m(A). By way of

example, we show the Property (3).

Assume hs; s

0

i 2 R

m(A)

and [A℄ 2 T (s).

Case 1: A �

f

;.

Hene m(A) = ;. If [A℄ 2 T (s), then (SC6) implies [A℄ 2 UF . Sine s

0

is not dummy and T (s

0

) is also loally SIM-onsistent with respet to G, we

obtain [A℄ 2 T (s

0

). By (L3), we thus get  2 T (s

0

).

Case 2: m(A) = fi

1

; : : : ; i

k

g 6= ;.

Then hs; s

0

i 2 R

m(A)

i� for every i 2 fi

1

; : : : ; i

k

g, hs; s

0

i 2 R

fig

.

Case 2.0: If s = s

0

then (L3) implies  2 T (s

0

) = T (s).

Case 2.1: s 6= s

0

and both T (s) and T (s

0

) are named symboli states.

Let s = i

x

and s

0

= i

y

for some x; y 2 NOM(�). Sine hs; s

0

i 2 R

fig

for

every i 2 fi

1

; : : : ; i

k

g, we have that, for every i 2 fi

1

; : : : ; i

k

g, there is

A

i

2 P(�), suh that i 2 m(A

i

) and hx; y;A

i

i 2 R

N

. Thus (G8) together

with A v

f

A

i

1

[ : : :[A

i

k

implies that hx; y;Ai 2 R

N

, and (G7) implies

 2 T (s

0

).

Case 2.2: s 6= s

0

and neither T (s) = hA

s

; X

s

; T

s

i nor T (s

0

) = hA

s

0

; X

s

0

; T

s

0

i

are named symboli states.

W.l.o.g. , let s

0

= s � i for some i 2 f1; : : : ;Kg. Then hs; s

0

i 2 R

A

s

0

and,

for every i 2 f0; : : : ; 2

n

� 1 + lg, hs; s

0

i 2 R

fig

i� i 2 m(A

s

0

).

Sine hs; s

0

i 2 R

m(A)

, we have A v

f

A

s

0

. (H8) implies that X

s

�

G;A

s

0

X

s

0

, and thus  2 T (s

0

).

Case 2.3: s 6= s

0

, T (s) = hA

s

; X

s

; T

s

i is not a named symboli state, and

T (s

0

) = hA

s

0

; X

s

0

; T

s

0

i is a named symboli state.

Let i

x

= s

0

for some x 2 NOM(�). For every i 2 fi

1

; : : : ; i

k

g, hs; s

0

i 2

R

fig

implies that, for every i 2 fi

1

; : : : ; i

k

g, there is A

i

2 P(�) suh that

i 2 m(A

i

) and hA

i

; xi 2 T

s

. (SC4) and A v

f

A

i

1

[ : : : [A

i

k

imply that

hA; xi 2 T

s

. Finally, (H4) and (SC3) imply that X

s

�

G;A

X

s

0

, and thus

 2 T (s

0

).

Case 2.4: s 6= s

0

and T (s) is a named symboli state and T (s

0

) is not a

named symboli state.

Due to the symmetry of �

G;A

, this ase is similar to Case 2.3.

The indution. Sine T is a Hintikka tree, there is i 2 f1; : : : ;Kg suh that

� 2 T (i). In order to show that M; i j= � (and therefore M is a model for

�), we prove by indution on the formula struture that, for every  2 sub(�),

for every s 2 W , we have  2 T (s) i� M; s j=  . The base ase (with objet

nominals and propositional variables) and the indution steps for onjuntion

and negation are by an easy veri�ation. Let us treat in detail the remaining

ase. Let [A℄ be a subformula of � and assume that [A℄ 2 T (s). As we have

seen above, this implies that, for every hs; s

0

i 2 R

m(A)

, we have  2 T (s

0

). By

the indution hypothesis, we have M; s

0

j=  . So, M; s j= [A℄ .

Now let [A℄ be a subformula of � and assume that M; s j= [A℄ and that

[A℄ 62 T (s). Due to (H7),



{ either  62 T (s � i) for some i 2 f1; : : : ;Kg and T (s � i) is not dummy

{ or for some x 2 NOM(�),  62 T (i

x

) and hA; xi is a pair of the table of T (s).

By the indution hypothesis, either M; s �i 6j=  or M; i

x

6j=  . However, hs; s

0

i 2

R

m(A)

sine hs; s

0

i 2 R

A

by onstrution. Consequently, M; s 6j= [A℄ whih

leads to a ontradition.

(I) ! (II) Let M = hW; (R

P

)

P�PAR

;mi be a SIM-model and w

0

2W suh

that M; w

0

j= �. Let G

0

= hf; UF;EF;EQ;NOM;R

N

i be a SIM-onsistent

global information for � built from M as desribed in Set. 4. We de�ne a

Hintikka tree T for � respeting G

0

. In the onstrution of T , we use an auxiliary

mapping � : f1; : : : ;Kg

�

!W [ f?g whih is de�ned indutively together with

T as follows.

We �rst need some notation. Let � be the number of equivalene lasses

of EQ, and let h : NOM(�) ! f1; : : : ; �g be a mapping that assoiates eah

nominal x 2 NOM(�) with the unique element w

i

2 W with m(x) = fw

h(x)

g.

Let [A

1

℄ 

1

; : : : ; [A

�

℄ 

�

be all box formulae in sub(�). For every w 2W , we write

X

w

to denote f 2 sub(�) j M; w j=  g and T

w

to denote

fhA; xi 2 P(�)�NOM(�) j hw;w

h(x)

i 2 R

m(A)

g:

As usual, T is obtained unravelling M, but taking speial are with objets

w

1

; : : : ; w

�

. We de�ne � and T as follows.

{ �(�)

def

=? and T (�)

def

=?.

{ If w

0

= w

j

for some j 2 f1; : : : ; �g, then, for every i 2 f1; : : : ; �g, �(i)

def

= w

i

and T (i)

def

= hA; X

w

i

; T

w

i

i for some arbitrary A 2 P(�) and, for every i 2

f�+ 1; : : : ;Kg, �(i)

def

=? and T (i)

def

=?.

{ Otherwise (w

0

6= w

i

for every i 2 f1; : : : ; �g), for every i 2 f1; : : : ; � + 1g,

�(i)

def

= w

i�1

and T (i)

def

= hA; X

w

i�1

; T

w

i�1

i for some arbitrary A 2 P(�), and

for every i 2 f�+ 2; : : : ;Kg, �(i)

def

=? and T (i)

def

=?.

{ For every s 2 f1; : : : ;Kg

+

,

� for every i 2 f� + 1; : : : ;Kg, �(s � i)

def

=? and T (s � i)

def

=?;

� if �(s) =? then, for every i 2 f1; : : : ; �g, �(s � i)

def

=? and T (s � i)

def

=?;

� otherwise, if [A

i

℄ 

i

62 T (s) for some i 2 f1; : : : ; �g, then

� either for some j 2 f1; : : : ; �g, h�(s); w

j

i 2 R

m(A

i

)

and M; w

j

6j=  

i

;

in that ase �(s � i)

def

=? and T (s � i)

def

=?;

� or there is w

0

2W n fw

1

; : : : ; w

�

g suh that h�(s); w

0

i 2 R

m(A

i

)

and

M; w

0

6j=  

i

; in that ase �(s � i)

def

= w

0

and T (s � i)

def

= hA

i

; X

w

0

; T

w

0

i.

If [A

i

℄ 

i

2 T (s) for some i 2 f1; : : : ; �g, then �(s�i)

def

=? and T (s�i)

def

=?.

We an easily hek that T is a Hintikka tree for � respeting G

0

.

7 Tree Automata for Relative Formulae

In the seond part of the proof of Lemma 9, a SIM-model M is unravelled in

an almost standard way to a Hintikka tree. Thus we have proved a tree model



property for SIM|whih ould also be alled a forest model property. In this

setion, we will exploit this forest model property and desribe a deision pro-

edure based on automata on in�nite trees, so-alled B�uhi tree automata. For a

given SIM-formula �, we onstrut a B�uhi tree automaton A

�

that aepts ex-

atly all Hintikka trees for �. At �rst glane, the onstrution may look intriate

but it simply mimiks the loal onditions of the Hintikka trees.

We reall that a B�uhi tree automaton A = h�;Q; Æ; I; F i for �;K-trees is

an operational model where Q is a non-empty, �nite set of states, � is a �nite

alphabet, Æ � Q � � � Q

K

is a transition relation, I and F are non-empty

subsets of Q, the set of initial states and the set of terminal states, respetively.

A run r on a �;K-tree T is a Q;K-tree suh that, for every s 2 f1; : : : ;Kg

�

,

hr(s); T (s); r(s � 1); : : : ; r(s � K)i 2 Æ. A run r on T is aepting i� for every

path in T there is a state in F that ours in�nitely often. Deiding whether

a B�uhi tree automaton for �;K-trees has an aepting run an be done in

polynomial-time [VW86℄ (see also [Rab70,EJ88℄). For SIM, we only need to

onsider a restrited lass of tree automata, namely those automata in whih all

the states are terminal, often referred to as safety automata.

7.1 The Constrution

Before giving the formal de�nition of A

�

, we give an intuitive desription of it

and the onditions it imposes on the trees it aepts:

{ Eah state onsists of a symboli state and a global information G, and A

�

ensures that the global information part of all states involved in an aepting

run oinide.

{ � and eah objet nominal in � is found in the label of one of the nodes at

the �rst level of the input tree. Moreover, objet nominals are found in the

label of the same node if they belong to the same equivalene lass aording

to the EQ omponent of G.

{ Nodes at level � 2 do not have objet nominals in their labels.

{ If a node is labelled with ?, then so are all its desendants.

{ Suessors of a node s satisfy onditions imposed by the box formulae in s's

label.

{ Diamond formulae in a node s's label (i.e., box formulae not in s's label)

are either witnessed by one of s's suessors or by a node on the �rst level

representing an objet nominal.

For those familiar with tree automata, it an be easily seen that the above

onditions are all loal and an thus be \enoded" in the transition funtion

of a tree automaton. Let us now give the formal de�nition for A

�

when � is

a SIM-formula satisfying the hypotheses at the beginning of Set. 6. A

�

is the

B�uhi tree automaton h�;Q; Æ; I;Qi de�ned as follows.

1. �

def

= SYMB(�).

2. Q

def

= f�g [ fhq;Gi j q 2 SYMB

G

(�); G 2 GCONS(�)g.



3. I

def

= f�g;

4. hq

0

; a; q

0

1

; : : : ; q

0

K

i 2 Æ i� either

(�rst) q

0

= �, a =?, and there is G = hf; UF;EF;EQ;NOM;R

N

i 2

GCONS(�) suh that, for every i 2 f1; : : : ;Kg, q

0

i

= hq

i

; Gi for some

q

i

2 SYMB

G

(�),

(H2

0

) there is i 2 f1; : : : ;Kg, suh that � 2 q

i

, and

(H3

0

) for every x 2 NOM(�), there is a unique i 2 f1; : : : ;Kg, suh

that x 2 q

i

, or

(H5

0

) q

0

= h?; Gi for some G 2 GCONS(�), a =? and, for every i 2

f1; : : : ;Kg, q

0

i

= q

0

; or

(witnesses) q

0

= hq;Gi for some non-dummy q 2 SYMB

G

(�),G 2 GCONS(�),

a = q and, for every i 2 f1; : : : ;Kg, q

0

i

= hq

i

; Gi and the following on-

ditions are satis�ed:

(H6

0

) for every i 2 f1; : : : ;Kg, q

i

is not a named symboli state;

(H7

0

) if [B℄ 2 sub(�) n q, then

(a) either there is i 2 f1; : : : ;Kg suh that q

i

= hB; X

0

; T

0

i is not

dummy and  62 q

i

;

(b) or there is x 2 NOM(�) suh that hB; xi 2 T

q

and  62 NOM(x)

(where NOM is the �fth omponent of G);

(H8

0

) for every i 2 f1; : : : ;Kg, if q

i

is not dummy, then X

q

�

G;A

q

i

X

q

i

.

The onditions (Hi

0

) are the obvious ounterparts of the onditions (Hi).

It is worth noting that although Hintikka trees for � require the satisfation

of onditions between trees of the forest, this an be handled by a B�uhi tree

automaton. Indeed, the symboli links are enoded loally by the table and by

the global information G, whih is ensured to oinide on all nodes in a tree

aepted by the automaton.

Lemma 10. A SYMB(�);K-tree T is a Hintikka tree for � i� A

�

has an a-

epting run on T .

Proof. Let T be a Hintikka tree for � respeting the SIM-onsistent global in-

formation G and r : f1; : : : ;Kg

�

! Q be the Q;K-tree suh that r(�) = � and,

for every s 2 f1; : : : ;Kg

+

, r(s) = hT (s); Gi. One an hek easily that r is an

aepting run for T .

For the onverse, let T be an in�nite tree aepted by A

�

, and let r :

f1; : : : ;Kg

�

! Q be an aepting run of A

�

on T . Then r(i) = hq

0

; G

0

i with

� 2 q

0

for some i 2 f1; : : : ;Kg and, for every s 2 f1; : : : ;Kg

+

, if r(s) = hq;Gi,

then G = G

0

and q = T (s). By onstrution, T is a Hintikka tree for � respeting

the SIM-onsistent global information G

0

.

We are now in the position to establish the main result of the paper.

Theorem 11. The satis�ability problem for the logi SIM is ExpTime-omplete.

Proof. The lower bound is by an easy veri�ation from the results in [CL94℄ and

[Hem96, Theorem 5.1℄. Let us establish the ExpTime upper bound. Lemma 9



together with Lemma 10 implies that every SIM-formula � is SIM-satis�able

i� A

�

aepts at least one tree. Sine ard(SYMB(�)) � j�j � 2

j�j+j�j

2

and

ard(GCONS(�)) is in 2

O(j�j

3

)

, A

�

has 2

O(j�j

3

)

states. Moreover, ard(Æ) is in

2

O(j�j

4

)

and heking whether hq; a; q

1

; : : : ; q

K

i 2 Æ an be done in time 2

O(j�j)

(using Lemmas 5 and 7). Consequently, omputing A

�

requires time in 2

O(j�j

4

)

.

Sine the emptiness problem for B�uhi tree automata of the form A

�

an be

heked in time O(jÆj

2

), SIM-satis�ability an be heked in time 2

O(j�j

4

)

.

7.2 Other onstraints on nominals

The parameter nominals in SIM are strong in the sense that two distint pa-

rameter nominals are interpreted by di�erent parameters. This is a onstraint

introdued in [Kon97,Kon98℄. Alternatively, it is possible to relax this ondition

by allowing that two di�erent parameter nominals an be interpreted identi-

ally while preserving the ExpTime-ompleteness of SIM-satis�ability. Indeed,

it is suÆient to add, in a global information G, an equivalene relation for the

parameter nominals and to slightly modify the de�nition of the normal forms

N

X;Y

(A) (see Set. 3). Two parameter nominals in the same equivalene lass

are then interpreted identially. Additionally, onstraints of the form \M distint

objet [resp. parameter℄ nominals, M � 2, annot be interpreted by the same

objets [resp. parameters℄" an also be handled by the present framework by

requiring, in the equivalene relations for nominals, that eah equivalene lass

has less than M elements.

7.3 A standard version of SIM

Let SIM

st

be the multi-modal logi with a universal modality [U ℄, modal on-

netives of the form [

1

\ � � � \ 

n

℄, where \ is interpreted as intersetion on

binary relations, eah 

i

is interpreted as a reexive and symmetri relation,

and the logi ontains propositional variables and nominals. The logi SIM

st

an

be viewed as the standard (and simpli�ed) version of SIM; more details about

the relationsip between SIM and SIM

st

an be found in [Dem99a,DG00℄. More

importantly, by slightly adapting the ExpTime-ompleteness proof for SIM one

an show the following result.

Corollary 12. The satis�ability problem for the logi SIM

st

is ExpTime-omplete.

However, it is open whether replaing symmetry by transitivity in SIM

st

preserves deidability (see also Set. 7.4 below).

7.4 Extensions for FORIN and IND?

At a �rst glane, it seems as if the deision proedure for SIM ould be easily

adapted to IND and FORIN sine transitivity an be handled for the following

aspets:



{ the onstraints on R

N

(by imposing the appropriate frame ondition);

{ the de�nition of�

G;A

(by updating the propagation rules for the [A℄-formulae);

{ the de�nition of the family (R

P

)

P�PAR

in the proof of Lemma 9((II) ! (I))

(by onsidering the appropriate losure operation on relations).

However, suh an adaptation does not allow us to prove the point (3) in the

proof of Lemma 9((II) ! (I)). More preisely, Case (2) is problemati.

By way of example, onsider the logi FORIN. Suppose that we have updated

the onditions for R

N

and �

G;A

adequately. In the proof of Lemma 9((II) ! (I)),

assume that R

A

was de�ned as the reexive and transitive losure of S(A) =

R

N

(A) [ R

A

[ R

0

A

. Let us onsider the subases 2.3 (T (s) is not and T (s

0

) is a

named symboli state). Then hs; s

0

i 2 R

m(A)

entails, for every i 2 fi

1

; : : : ; i

k

g,

hs; s

0

i 2 R

fig

, whih implies the existene of the following paths:

s = s

i

1

1

S(A

i

1

1

)

���! s

i

1

2

S(A

i

1

2

)

���! : : :

S(A

i

1

n

i

1

)

����! s

i

1

n

i

1

+1

= s

0

.

.

.

s = s

i

j

1

S(A

i

j

1

)

���! s

i

j

2

S(A

i

j

2

)

���! : : :

S(A

i

j

n

i

j

)

����! s

i

j

n

i

j

+1

= s

0

.

.

.

s = s

i

k

1

S(A

i

k

1

)

���! s

i

1

2

S(A

i

k

2

)

���! : : :

S(A

i

k

n

i

k

)

����! s

i

k

n

i

k

+1

= s

0

where, for every j 2 f1; : : : ; kg, n

i

j

� 0 and for every j

0

2 f0; : : : ; n

i

j

g, i

j

2

m(A

i

j

j

0

). Beause of the presene of named symboli states (and therefore objet

nominals in the language) and the transitive losure involved, the above paths

are of unbounded length and they may be di�erent. By ontrast, for SIM, only

paths of length one need to be handled simultaneously, whih an be done loally.

If [A℄ 2 T (s), we need to ensure  2 T (s

0

), whih would involve a path of the

form

s = s

1

S(B

1

)

��! s

2

S(B

2

)

��! : : :

S(B

n

)

���! s

n+1

= s

0

where, for every j 2 f1; : : : ; kg and j

0

2 f0; : : : ; ng, i

j

2 m(B

j

0

). Obviously, this

is not possible using a simple \loal" propagation.

By ontrast, in the absene of objet nominals in the language, in the remain-

ing subase 2.2 (without named symboli states), the existene of suh a path

� is guaranteed. Indeed, if hs; s

0

i 2 R

m(A)

, then there is unique path � of min-

imal length of the above form satisfying the required ondition. Consequently,

by slightly adapting the developments for SIM, we an show:

Theorem 13. The satis�ability problem for the logis FORIN and IND without

objet nominals is ExpTime-omplete.



8 Conlusion

On the basis of existing automata-theoreti tehniques for logial problems,

we have shown that the logi SIM introdued in [Kon98℄ has an ExpTime-

omplete satis�ability problem, improving signi�antly the best known upper

bound from [DK98℄. The proof is by a redution to the emptiness problem for

B�uhi automata on in�nite trees. The most original parts of this redution rely

on the normalisation of parameter expressions for nominals, on the introdu-

tion of global information for models (extending what is done in [SV01℄ for

nominals and the universal modality), and on our treatment of intersetion for

relations. The proof for SIM an be suessfully adapted to the logis IND and

FORIND [Kon98, Set. 8℄ with minor hanges only in the ase we disard objet

nominals from the language. By ontrast, the deidability status of full IND and

full FORIN remains a hallenging open question. This highlights the tehnial

diÆulty enountered to establish the ExpTime upper bound for SIM satis�a-

bility.

These new results obtained with automata-theoreti tehniques show that

suh tehniques are also powerful for information logis. Indeed, the automata

framework an ope uniformely with objet and parameter nominals, with Boolean

parameter expressions, with the universal modality and with loal onditions

suh as reexivity and symmetry. For transitivity, the adaptation of the method

is still unkown. In this paper, we have atually used a small fragment of the

automata mahinery, namely the B�uhi tree automata in whih all the states

are terminal, leaving some room for further extensions with riher operational

models suh as the tree automata with parity aeptane onditions [Var98℄.
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