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Abstra
t. Automata-theoreti
 de
ision pro
edures for solving model-


he
king and satis�ability problems for temporal, dynami
, and des
rip-

tion logi
s have 
ourished during the past de
ades. In the paper we de�ne

an ExpTime de
ision pro
edure based on the emptiness problem of B�u
hi

automata on in�nite trees for the very expressive information logi
 SIM

designed for reasoning about information systems. This logi
 involves

modal parameters satisfying 
ertain properties to 
apture the relevant

properties of information systems, and provides nominals at the formula

level, Boolean expressions and nominals at the modal level, an impli
it

interse
tion operation for relations, and a universal modality. The origi-

nal 
ombination of known te
hniques allows us to solve the open question

related to the ExpTime-
ompleteness of SIM. Furthermore, we dis
uss

how variants of SIM 
an be treated similarly although the de
idability

status of some of them is still unknown.
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1 Introdu
tion

From logi
 to automata. After the works of B�u
hi and Rabin [B�u
62,Rab69℄, var-

ious 
lasses of automata turned out to be well-suited to solve de
ision pro
edures

for logi
al problems, in
luding some for temporal logi
s (see e.g., [VW94,Var97,KVW00℄),

for the �-
al
ulus and its fragments (see e.g., [EJ99,SE89,VW86,EJS01,Var98℄),

and for des
ription logi
s (see e.g., [CDGL99,CGL02℄) to quote three families

of logi
s. For instan
e, translating formulae in temporal logi
s to automata is a

standard approa
h for implementing model 
he
king, see e.g., the model-
he
king

tool SPIN [Hol97℄. More re
ently, su
h te
hniques have also been applied su
-


essfully in [LS01℄ to fragments of the Boolean modal logi
 BML introdu
ed in

?
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[GP90℄ and to hybrid full �-
al
ulus in [SV01℄ (see also [KSV02℄) opening an av-

enue to design similar de
ision pro
edures for other hybrid logi
s [Bla00b℄. In this

paper, we will use automata-theoreti
 de
ision pro
edures to prove 
omplexity

results for information logi
s.

Information logi
s. Su
h logi
s were introdu
ed in [Paw81℄, and we refer the

reader to [Or lo98,DO02℄ for a 
omprehensive survey on information logi
s. In-

formation logi
s are designed to model and reason about information systems.

To this purpose, information logi
s provide a formal spe
i�
ation language to

talk about relations in information systems. An information system S is de-

�ned as a stru
ture S = hOB;AT i su
h that OB is a non-empty set of obje
ts,

AT is a non-empty set of attributes, and every attribute a 2 AT is a mapping

a : OB ! P(V AL

a

) n f;g, where V AL

a

is a non-empty set of values. For every

obje
t x and for every attribute a, a(x) 
an be read as the set of possible values

of the attribute a for the obje
t x. In that setting, various derived relations be-

tween obje
ts 
an be de�ned. We re
all some of them below (see e.g. [Or lo98℄).

For all x

1

; x

2

2 OB, for every A � AT ,

(I) hx

1

; x

2

i 2 ind

A

i� for every a 2 A, a(x

1

) = a(x

2

) (indis
ernability);

(II) hx

1

; x

2

i 2 fin

A

i� for every a 2 A, a(x

1

) � a(x

2

) (forward in
lusion);

(III) hx

1

; x

2

i 2 bin

A

i� for every a 2 A, a(x

2

) � a(x

1

) (ba
kward in
lusion);

(IV) hx

1

; x

2

i 2 sim

A

i� for every a 2 A, a(x

1

) \ a(x

2

) 6= ; (similarity).

hx

1

; x

2

i 2 ind

A


an be read as follows: the obje
ts x

1

and x

2


annot be distin-

guished modulo the set A of attributes. Similarly, hx

1

; x

2

i 2 sim

A

i� x

1

and x

2

are similar modulo A. The other relations fin

A

and bin

A

admit a reading in a

similar vein.

Given an information system S = hOB;AT i, we 
an de�ne a stru
ture

hOB; (R

A

)

A�AT

i, where (R

A

)

A�AT

is a family of relations derived from S (see

e.g., the above 
lauses (I)-(IV)). In a more abstra
t setting, an information

frame is a pair hW; (R

P

)

P�PAR

i su
h that W and PAR are non-empty sets

and (R

P

)

P�PAR

is a family of binary relations indexed by subsets of PAR. An

information logi
 is de�ned as a multi-modal logi
 
hara
terised by a 
lass of

information frames. Sin
e the relations derived from information systems satisfy


ertain properties, the information frames usually satisfy additional 
onditions.

For example, it is not hard to see that, for every R 2 find; fin; bin; simg, we

have

R

P[Q

= R

P

\R

Q

for all P;Q � PAR; and (1)

R

;

is the 
artesian produ
t of the domain. (2)

Moreover, every relation R

P

satis�es 
ertain lo
al 
onditions: for instan
e, the

indis
ernability relations are equivalen
e relations, and the similarity relations

are re
exive and symmetri
. The �rst information logi
 has been introdu
ed in

[OP81℄ and many others appeared later (see e.g., [Vak91,Bal96,Kon97,Vak98,Ste98℄).

Most information logi
s in
lude further expressive means su
h a nominals whose




ombination with the interse
tion of modal parameters and the universal modal-

ity are known to make reasoning rather 
omplex. In the following, we will 
on-


entrate ourselves on one su
h logi
, SIM, and show how a 
ombination of a

suitable normal form for modal expressions, a tree model property, and tree au-

tomata 
an be used to over
ome this diÆ
ulty and de�ne an optimal de
ision

pro
edure for SIM satis�ability.

The logi
 SIM. Among the 
lass of information logi
s, the logi
 SIM introdu
ed

in [Kon97℄ plays a spe
ial role sin
e it provides various expressive ingredients:

an impli
it universal modality, nominals at both levels of formulae and modal

expressions, and Boolean operators in modal expressions. This highly expres-

sive logi
 was designed to represent and reason about relevant properties of

similarity relations sim

A

. Additionally, it turned out that this logi
 is also well-

suited for the internalization of dedu
tion in proof systems [Kon97℄ (see also

[Dem99b,Tza99,Bla00a,Sel01℄). A SIM-model is a Kripke stru
ture with re
ex-

ive and symmetri
 a

essibility relations (sim

P

)

P�PAR

as abstra
t 
ounterparts

of the similarity relations derived from information systems. Hen
e the relations

in (sim

P

)

P�PAR

intera
t a

ording to the above 
onditions (1) and (2).

Our 
ontribution. In this paper, we show that the satis�ability problem for the

logi
 SIM is ExpTime-
omplete. The ExpTime lower bound is a 
onsequen
e

of more general results sin
e SIM 
ontains a universal modal 
onne
tive with a

family of B modal 
onne
tives (see e.g., [Spa93,CL94,Hem96℄). The ExpTime

upper bound is established by an exponential redu
tion into the emptiness prob-

lem for B�u
hi automata on in�nite trees that is known to be in PTime (see e.g.,

[VW86,EJ88℄). As mentioned previously, this te
hnique is nowadays standard for

logi
s of programs, but it has never been applied to information logi
s. Indeed,

relative information logi
s 
ontain features that are not traditionally present

in most logi
s of programs (e.g., the presen
e of nominals on the formula and

modal level, and Boolean operators in modal expressions). Re
ently in [LS01℄,

the fragment of Boolean modal logi
 (BML) with only the 
omplement operator

: on relations is shown to be in ExpTime by a redu
tion into the emptiness

problem for B�u
hi automata on in�nite trees. In [SV01℄, su
h an upper bound

is also established for the hybrid full �-
al
ulus by redu
tion into the emptiness

problem for parity alternating automata on in�nite trees. A 
ombination of su
h

re
ent results and an appropriate extension to handle interse
tion and nominals

at the level of modal expressions allows us to prove the ExpTime lower bound

for SIM. Observe that, in [LS01℄, it is already shown that the fragment of BML

with only 
omplement and interse
tion is NExpTime-hard even if no : is in

the s
ope of \ and no \ is in the s
ope of : (see e.g., [LS01, Figure 1℄). We

show that the information logi
 SIM is of a lower 
omplexity: it is in ExpTime

even though it provides full Boolean operators in modal expressions.

1

This lower


omplexity is due to the restri
tions of the semanti
s of the modal expressions

1

Please note that this di�eren
e is not due to an bounded/unbounded number of

atomi
 modal expressions|this number is unbounded in both logi
s mentioned.



designed to represent derived relations in information systems. A remarkable

side-e�e
t of our result for SIM is the following. The multi-modal logi
 with a

universal modality [U ℄, modal 
onne
tives of the form [


1

\ � � � \ 


n

℄, where \ is

interpreted as interse
tion on binary relations, ea
h 


i

is interpreted as a re
ex-

ive and symmetri
 relation, and the logi
 
ontains propositional variables and

nominals 
an be shown to have an ExpTime-
omplete satis�ability problem.

Figure 1 shows the presen
e of ingredients in the logi
s SIM, BML, and in the

hybrid �-
al
ulus. The operators : and \ refers respe
tively to 
omplementation

and interse
tion operated on binary a

essibility relations. SIM also 
ontains

Boolean operators but only at the level of parameters (see Se
t. 2) and of 
ourse

at the level of formulae. Moreover, in Figure 1, FO2[=℄ refers to the existen
e

of a relational translation into FO2[=℄, the fragment of 
lassi
al logi
 with two

variables and equality. As an out
ome, the logi
 SIM has features that prevent

from having a natural translation into BML or the hybrid �-
al
ulus

SIM BML hybrid �-
al
ulus

nominals X X

universal modality X X X

\ X X

: X

FO2[=℄ X [DK98℄ X

in ExpTime X, this paper X [SV01℄

Fig. 1. Comparing SIM, BML, and the hybrid �-
al
ulus

Our te
hni
al developments for SIM 
an be extended to the logi
s FORIN

and IND (see e.g., [Kon98℄), where the similarity relations are repla
ed by for-

ward in
lusion relations and indis
ernability relations, respe
tively but with-

out nominals at the obje
t level. This improves signi�
antly the upper bound

from [DK98℄ whereas de
idability for FORIN and IND 
ould not be obtained

from the redu
tion into the (unde
idable) fragment of �rst order logi
 with three

variables [Kah62℄. The de
idability status of full FORIN and IND is still open.

Plan of the paper. The rest of the paper is stru
tured as follows. Se
t. 2 presents

the logi
s for whi
h the 
omputational 
omplexity is studied in the paper. Se
t. 3

deals with normal forms for SIM formulae whereas Se
t. 4 introdu
es the 
on
ept

of the global information for SIM-models that will play an important role. In

Se
ts. 5 and 6 we provide a notion of Hintikka trees for SIM-models preparing

the automata 
onstru
tion. For the logi
 SIM and variants of it, the satis�ability

problem is redu
ed to the emptiness problem for B�u
hi automata on in�nite trees

in Se
t. 7. Finally, we give some 
on
luding remarks in Se
t. 8.

The paper has been designed to be self-
ontained. Standard de�nitions we use


on
erning automata on in�nite obje
ts 
an be found in [Tho90℄, and 
on
erning


omputational 
omplexity in [Pap94℄.



2 Information Logi
s

In this se
tion, we �rst introdu
e syntax and semanti
s of the logi
 SIM, then

des
ribe the 
losely 
onne
ted logi
s FORIN and IND.

The set of primitive symbols of the language for SIM is 
omposed of

{ a 
ountably in�nite set PRP = fp

1

; p

2

; : : :g of propositional variables,

{ a 
ountably in�nite set NOM = fx

1

; x

2

; : : :g of obje
t nominals,

{ a set P of parameter expressions, whi
h is the smallest set 
ontaining a


ountably in�nite set PNOM = fE

1

;E

2

; : : :g of parameter nominals and a


ountably in�nite set PVAR = fC

1

;C

2

; : : :g of parameter variables,

and that is 
losed under the Boolean operators \;[;�.

The formation rules of the set FOR(SIM) of SIM-formulae are those of propo-

sitional logi
, where obje
t nominals 
an be used in the pla
e of propositional

variables, plus the rule: if � 2 FOR(SIM) and A 2 P, then [A℄� 2 FOR(SIM).

The following is an example of a (valid) SIM-formula:

[E

2

\ �E

2

℄x ) [E

1

[C

1

℄(x _ p):

Moreover, for every synta
ti
 obje
t O, we write jOj to denote its length (or

size), that is the number of symbol o

urren
es in O viewed as a string. As usual,

sub(�) denotes the set of subformulae of the formula � (in
luding � itself). For

every X 2 fNOM;PNOM;PVAR;Pg, we write X(�) to denote the elements of

X o

urring in the formula �. Obviously, 
ard(X(�)) < j�j.

De�nition 1. Let PAR be a non-empty set. A P-interpretation m is a map

m : P ! P(PAR) su
h that, for all A

1

;A

2

2 P,

{ if A

1

;A

2

2 PNOM and A

1

6= A

2

, then m(A

1

) 6= m(A

2

);

{ if A

1

2 PNOM, then m(A

1

) is a singleton;

{ m(A

1

\A

2

) = m(A

1

) \m(A

2

) and m(A

1

[A

2

) = m(A

1

) [m(A

2

);

{ m(�A

1

) = PAR nm(A

1

).

PAR is referred to as a set of parameters that is the obvious 
ounterpart of

the set of attributes in information systems. Given parameter expressions A and

B, we write A � B i� for every P-interpretation m, we have m(A) = m(B).

De�nition 2. A SIM-model M is a stru
ture M = hW; (R

P

)

P�PAR

;mi, where

W and PAR are non-empty sets and (R

P

)

P�PAR

is a family of binary relations

on W su
h that

(uni) R

;

is the 
artesian produ
t W �W ;

(re
) R

P

is re
exive for every P � PAR;

(sym) R

P

is symmetri
 for every P � PAR;

(inter) R

P[Q

= R

P

\R

Q

for all P;Q � PAR.

Moreover, m is a mapping m : NOM [ PRP [ P ! P(W ) [ P(PAR) su
h that

m(p) � W for every p 2 PRP, m(x) = fwg, where w 2 W for every x 2 NOM,

and the restri
tion of m to P is a P-interpretation.



Consequently, two levels of interpretation are used to de�ne the relations in

the SIM-models. On the one hand, the parameter expressions are interpreted

within the Boolean algebra

B = hP(PAR);[;\;�; 1; 0i

for some non-empty set PAR. On the other hand, the 
onditions on (R

P

)

P�PAR

indu
e a semi-latti
e stru
ture of L = hfR

P

: P 2 Bg;\i with zero element

W �W .

Condition (inter) allows SIM to 
apture interse
tion on relations. Indeed,

let us write R

A

for R

m(A)

. Then, for all parameter expressions A;B, we have

R

A[B

= R

A

\R

B

. By 
ontrast, 
omplementation and union 
annot be expressed

in a similar fashion (otherwise we would get operators similar to those in BML).

Additionally, SIM 
ontains universal modality sin
e R

A\�A

is pre
isely the prod-

u
t W �W .

The obje
t nominals 
an be viewed as 
onstants for obje
ts and parameter

nominals as 
onstants for attributes in information systems. Similarly, (R

P

)

P�PAR

is an abstra
tion of the family (sim

A

)

A�PAR

derived from information systems.

Please note that, for parameter nominals, we assume that di�erent nominals

are interpreted as di�erent relations, i.e., we admit the so-
alled unique name

assumption. In 
ontrast, obje
t nominals 
an be interpreted as arbitrary sin-

gletons, i.e., we do not admit the unique name assumption. Sin
e the set of

parameter nominals is 
ountably in�nite, an obvious 
onsequen
e of the de�ni-

tion of the SIM-models is that every SIM-model has an in�nite set of parameters.

Let M = hW; (R

P

)

P�PAR

;mi be a model. As usual, we say that a formula �

is satis�ed by w 2 W in M (written M; w j= �) if the following 
onditions are

satis�ed.

M; w j= p i� w 2 m(p) for p 2 PRP [NOM;

M; w j= :� i� not M; w j= �;

M; w j= � ^  i� M; w j= � and M; w j=  ;

M; w j= [A℄� i� for every w

0

2W , if hw;w

0

i 2 R

m(A)

, then M; w

0

j= �.

A formula � is true in a SIM-model M (written M j= �) i� for every w 2

W; M; w j= �. A formula � is said to be SIM-valid i� � is true in every SIM-

model. A formula � is said to be SIM-satis�able i� :� is not SIM-valid.

Theorem 3. [Vak87℄ The 
lass of information frames hOB; (sim

A

)

A�AT

i de-

rived from information systems is pre
isely the 
lass of SIM-frames.

The frames are understood as parts of the models without the meaning fun
-

tion m. Hen
e, from a SIM-model for a given SIM-formula �, one 
an extra
t

an information system satisfying the spe
i�
ation �. Theorem 3 guarantees that

the SIM-models are the adequate stru
tures to deal with the information frames

based on similarity derived from information systems.

The similarity logi
 with an in�nite set of parameters de�ned in [Kon98℄

is not stri
tly the logi
 SIM de�ned above but one 
an show that both logi
s

have the same set of valid formulae [DK98, Proposition 9℄. Variants of SIM 
an

be easily designed by 
onsidering relations derived from information systems



di�erent from similarity (e.g., forward in
lusion, indis
ernability). Let FORIN

[resp. IND℄ be the relative logi
 sharing its language with SIM su
h that a

FORIN-model [resp. IND-model℄ is obtained from De�nition 2 by adding the


ondition (trans) and by withdrawing (sym) [resp. from De�nition 2 by adding

the 
ondition (trans)℄:

(trans) R

P

is transitive for every P � PAR.

De
idability of the satis�ability problem for the logi
 SIM is shown in [DK98℄

by translating SIM satis�ability into satis�ability for FO2[=℄, the fragment of


lassi
al logi
 with two variables and equality. The redu
tion in
reases exponen-

tially the size of the formulae and FO2[=℄ satis�ability is inNExpTime [GKV97℄.

Hen
e, the best known upper bound for SIM satis�ability is N2ExpTime. Addi-

tionally, the proof in [DK98℄ 
annot be adapted to show the de
idability of IND

and FORIN sin
e transitivity requires three variables.

More about the logi
 SIM and analogous information logi
s 
an be found

in [DO02℄.

3 Normal Forms for Parameter Expressions

In this se
tion, we re
all a notion of normal form for parameter expressions

inspired by the 
anoni
al disjun
tive normal form for propositional logi
. Su
h

normal forms play a spe
ial role for the relative information logi
s. Normal forms

for Boolean modal expressions with nominals have been introdu
ed in [Kon98℄

in order to fa
ilitate the design of Rasiowa{Sikorski-style proof systems (dual

tableaux) for SIM. Su
h a te
hnique has been also useful to show de
idability of

SIM [DK98℄ and for some fragments of Boolean modal logi
 BML [LS01, Se
t.

5℄ (see also [DG00℄). In this paper, we use a normal form for the Boolean modal

expressions with nominals. We re
all below some de�nitions.

For l � 1 and n � 1, let Y = fE

1

; : : : ;E

l

g be distin
t parameter nominals

and be X = fC

1

; : : : ;C

n

g distin
t parameter variables. For every integer k 2

f0; : : : ; 2

n

� 1g, we denote by B

k

the parameter expression B

k

def

= A

1

\ : : : \

A

n

where, for every s 2 f1; : : : ; ng, A

s

= C

s

if bit

s

(k) = 0 and A

s

= �C

s

otherwise, and bit

s

(k) denotes the sth bit in the binary representation of k with

n bits. Although not essential, the use of binary representation will fa
ilitate

the presentation of te
hni
al developments. For every integer k

0

2 f0; : : : ; lg, we

denote by D

k

0

the parameter expression

D

k

0

def

=

�

�E

1

\ : : : \ �E

l

if k

0

= 0;

E

k

0

otherwise.

For every integer k 2 f0; : : : ; 2

n

� 1g and for every k

0

2 f0; : : : ; lg, A

k;k

0

def

=

B

k

\ D

k

0

. For instan
e, if n = l = 2, then A

3;2

= �C

1

\ �C

2

\ E

2

. The set

Comp(X;Y ) of hX;Y i-
omponents, is de�ned as follows:

Comp(X;Y )

def

= fA

k;k

0

j k 2 f0; : : : ; 2

n

� 1g; k

0

2 f0; : : : ; lgg:



The set Comp(X;Y ) of hX;Y i-
omponents enables us to partition every set of

parameters. Indeed, for every P-interpretation m : P ! P(PAR), the family

fm(A) j A 2 Comp(X;Y )g is a partition of PAR [Kon98℄. As a 
onsequen
e,

we obtain the following property.

Lemma 4. Let A be a parameter expression built from X [ Y . Then either

A � �A\A or there is a unique non-empty subset fA

0

1

; : : : ;A

0

u

g of Comp(X;Y )

su
h that A � A

0

1

[ : : : [A

0

u

.

Lemma 4 enables us to de�ne normal forms of parameter expressions. Let A

be a parameter expression built from X [ Y . The normal form of A, N

X;Y

(A),

is de�ned as follows:

N

X;Y

(A)

def

=

�

; if A � (A \ �A);

fA

k

1

;k

0

1

; : : : ;A

k

u

;k

0

u

g if A � A

k

1

;k

0

1

[ : : : [A

k

u

;k

0

u

.

Observe that there exists an e�e
tive pro
edure that 
omputes N

X;Y

(A) in deter-

ministi
 time exponential in jAj+n+l. Moreover, it is known that, for all param-

eter expressions A;B built from X [Y , we have A � B i� N

X;Y

(A) = N

X;Y

(B).

Please note that this normal form is not thought to be applied to all parameter

expressions in a SIM-formula to be tested for satis�ability (sin
e this would ob-

viously yield an exponential blow-up), but it is used in the following se
tion to

de
ide the impli
ation relation between parameter expressions.

4 Global Information for SIM-models

Due to the presen
e of nominals, SIM does not have the tree model property.

Hen
e, to use automata-based te
hniques, we will de�ne appropriate tree ab-

stra
tions of models, so-
alled Hintikka-trees. However, the expressive power of

SIM is su
h that the Hintikka-trees will be de�ned w.r.t. \global" information.

In this se
tion, we des
ribe this global information in SIM models. Intuitively,

global information is true at any point of the model or 
on
erns edges whi
h

are omitted when 
onsidering tree abstra
tions of (non-tree) models, i.e., edges

relating an individual to the instan
e of a nominal.

For instan
e, given an obje
t nominal x o

urring in �, the set of subformulae

of � that hold true in the unique state satisfying x is a global information. In

this se
tion, we generalize the global information about obje
t nominals and the

universal modality from [SV01℄. Guessing a global information for a given for-

mula � will 
orrespond to the primary non-deterministi
 
hoi
e in the automata

built for � (see Se
t. 7).

Let � be a SIM-formula, C a parameter 
onstant, E a parameter nominal,

and x an obje
t nominal. To avoid 
onsidering formulae 
ontaining no parameter

nominals or no parameter variables, in the remainder, we assume w.l.o.g that (1)

ea
h formula 
ontains at least one obje
t nominal, and (2) ea
h formula is of the

form �

0

^

V




i=1

:[(C\�C\E)℄:x

i

, where x

1

; : : : ; x




are all the obje
t nominals

o

urring in �

0

. The �rst assumption is without loss of generality be
ause we




an transform ea
h SIM-formula without obje
t nominals into an equi-satis�able

one by 
onjoining it with x. The se
ond assumption is without loss of generality

be
ause ea
h SIM-model interprets both C\�C and C\�C\E as the universal

relation.

In the remainder of this se
tion, we dis
uss all aspe
ts of global information

whi
h we use to design the B�u
hi tree automaton a

epting all (tree abstra
-

tions of) models of a SIM formula �. To do so, we �rst 
onsider a �xed model

M = hW; (R

P

)

P�PAR

;mi of � and 
olle
t, step by step, all information we

keep globally tra
k of when abstra
ting from this model to the 
orresponding

Hintikka-tree.

4.1 Parameter Nominals

Let PNOM(�) = fE

1

; : : : ;E

l

g be the set of parameter nominals and PVAR(�) =

fC

1

; : : : ;C

n

g be the set of parameter variables o

urring in �. Re
all that n; l �

1. Given a P-interpretationm, there is a unique map f : f1; : : : ; lg ! f0; : : : ; 2

n

�

1g su
h that, for every k

0

2 f1; : : : ; lg, we have

fk 2 f0; : : : ; 2

n

� 1g j m(E

k

0

) 2 m(B

k

)g = ff(k

0

)g (UNI)

sin
e we assume the unique name assumption for parameter nominals, and more-

over the set

fm(B

k

) j k 2 f0; : : : ; 2

n

� 1gg

is a partition of PAR. Su
h a map f 
an be en
oded with O(n� l� log(l)) bits.

Moreover, for every k

0

2 f1; : : : ; lg, for every set X � f0; : : : ; 2

n

� 1g, at most

one parameter expression in fA

k;k

0

j k 2 Xg is not interpreted as the universal

relation. Hen
e we have a variety of di�erent parameter expressions that are

all interpreted as the universal relation|a situation obviously more 
omplex

than the one in whi
h one expli
it universal modal 
onne
tive [U ℄ is part of the

language.

Let A;B be parameter expressions built on PNOM(�) [ PVAR(�). Given

the map f : f1; : : : ; lg ! f0; : : : ; 2

n

� 1g, we write A v

f

B i� for every P-

interpretation m satisfying (UNI), we have m(A) � m(B). We have 
hosen to

de�ne v

f

rather than v

m

be
ause there are far less mappings f than there are

ms, and this di�eren
e will be 
ru
ial in the following. The relation A v

f

B 
an

be 
he
ked in exponential-time in jAj+ jBj+ n+ l sin
e A v

f

B i�

N

PVAR(�);PNOM(�)

(A) n (

S

l

k

0

=1

fA

k;k

0

2 Comp(PVAR(�);PNOM(�)) j k 6= f(k

0

)g)

�

N

PVAR(�);PNOM(�)

(B) n (

S

l

k

0

=1

fA

k;k

0

2 Comp(PVAR(�);PNOM(�)) j k 6= f(k

0

)g):

Indeed, the problem 
an be shown to be 
o-NP-
omplete sin
e it is a slight

variant of the validity problem of propositional logi
. We write A �

f

; to denote

A v

f

A \�A. Obviously, A v

f

B i�, for every SIM-model hW; (R

P

)

P�PAR

;mi

with m satisfying (UNI), we have R

m(B)

� R

m(A)

.



4.2 Universal Modalities

Set UF = f[A℄ 2 sub(�) j A �

f

;; M j=  g and EF = f[A℄ 2 sub(�) j A �

f

;; M 6j=  g. Observe that UF and EF depend on the map f but for a given

model M, the stru
ture hf; UF;EF i is unique. The stru
ture hUF;EF i 
an be

also en
oded using O(j�j � log(j�j)) bits.

4.3 Obje
t Nominals

Let NOM(�) be the set of obje
t nominals and P(�) the parameter expressions

o

urring in �. We will �x whi
h nominals are interpreted by the same obje
t,

what formulae are satis�ed by these obje
ts, and how they are inter-related.

Let EQ be the unique equivalen
e relation on NOM(�), NOM be the unique

map NOM : NOM(�) ! P(sub(�)) and R

N

be the unique ternary relation in

NOM(�)

2

� P(�) su
h that

{ for all x; y 2 NOM(�), hx; yi 2 EQ i� m(x) = m(y);

{ for every x 2 NOM(�),

NOM(x)

def

= f 2 sub(�) j for m(x) = fwg; M; w j=  g;

{ for all x; y 2 NOM(�), A 2 P(�), if m(x) = fwg and m(y) = fw

0

g, then

hx; y;Ai 2 R

N

i� hw;w

0

i 2 R

m(A)

.

The triple hEQ;NOM;R

N

i 
an be en
oded using O(j�j

3

) bits. Su
h a global

information about the model M is a
tually a variant of the global information

used in [SV01℄.

4.4 Abstra
t Global Information

Next, we summarize the above mentioned aspe
ts of global information and

de�ne it independently of a spe
i�
 model.

A global information G for � is a stru
ture hf; UF;EF;EQ;NOM;R

N

i su
h

that

1. f is a map f : f1; : : : ; lg ! f0; : : : ; 2

n

� 1g (it des
ribes how parameter

nominals are interpreted);

2. UF and EF are subsets of f' 2 sub(�) : ' = [A℄ g (UF 
ontains the

formulae quanti�ed universally that are true in a model, and EF 
ontains

those formulae quanti�ed universally in � that are not true);

3. EQ � NOM(�)

2

(it des
ribes whi
h obje
t nominals are interpreted by the

same individual);

4. NOM is a map NOM : NOM(�) ! P(sub(�)) (it des
ribes the formulae

satis�ed by the interpretations of nominals);

5. R

N

� NOM(�)

2

� P(�) (it des
ribes the inter-relationship between nomi-

nals).



We write R

N

(A) to denote the binary relation fhx; x

0

i j hx; x

0

;Ai 2 R

N

g. A global

information G for � 
an be easily en
oded using O(j�j

3

) bits.

Next, we de�ne 
onsisten
y of global informations. So far, a global informa-

tion G is simply a stru
ture of a 
ertain type, whereas the SIM-
onsisten
y of

G re
e
ts the semanti
s of SIM.

A global information G = hf; UF;EF;EQ;NOM;R

N

i is said to be SIM-


onsistent i� G satis�es the following 
onditions:

(G1) EQ is an equivalen
e relation;

(G2) for every x 2 NOM(�), NOM(x) is lo
ally SIM-
onsistent (to be de�ned

in De�nition 6 below) and x 2 NOM(x);

(G3) fUF;EFg is a bipartition of f[A℄ 2 sub(�) j A �

f

;g;

(G4) for all x; y 2 NOM(�), hx; yi 2 EQ i� NOM(x) = NOM(y);

(G5) for all A;B 2 P(�), A v

f

B implies R

N

(B) � R

N

(A);

(G6) for every A 2 P(�), EQ is a 
ongruen
e for R

N

(A), and the relation

R

N

(A) is re
exive and symmetri
;

(G7) for all x; y 2 NOM(�), if [A℄ 2 NOM(x) and hx; y;Bi 2 R

N

for some

A v

f

B, then  2 NOM(y);

(G8) for all hx; y;A

1

i; : : : ; hx; y;A

n

i 2 R

N

, n � 1, and B 2 P(�),

if B v

f

A

1

[ : : : [A

n

, then hx; y;Bi 2 R

N

;

(G9) for every A 2 P(�), for all x; y 2 NOM(�), A �

f

; implies hx; y;Ai 2 R

N

.

Please note that (G6) is the pla
e where it is important that we are 
onsid-

ering SIM, and whi
h would need to be modi�ed when adapting the approa
h

to FORIN or IND. In order the establish the ExpTime upper bound for SIM,

we need the result below.

Lemma 5. Che
king whether a global information for � is SIM-
onsistent 
an

be done in time in 2

O(j�j)

.

The exponential bound is due to the relation v

f

and to the exponential

amount of triple in (G8) sin
e in (G8), 1 � n � 
ard(P(�)). We write GCONS(�)

to denote the set of SIM-
onsistent global informations for �.

5 Symboli
 States

In this se
tion, we de�ne the notion of symboli
 states whi
h represent obje
ts

in SIM-models.

De�nition 6. Let X be a subset of sub(�) for some formula �. The set X is said

to be lo
ally SIM-
onsistent i� ea
h  2 sub(�) satis�es the following 
onditions:

(L1) if  = :', then ' 2 X i�  62 X;

(L2) if  = '

1

^ '

2

, then f'

1

; '

2

g � X i�  2 X;

(L3) if  = [A℄' and  2 X, then ' 2 X.



Let G be a SIM-
onsistent global information. Given two lo
ally SIM-
onsistent

sets X and Y and a parameter expression A o

urring in �, we write X �

G;A

Y

to denote that, for every [B℄ 2 X, if B v

f

A, then  2 Y and, for every

[B℄ 2 Y , if B v

f

A, then  2 X.

Observe that �

G;A

depends on G by the map f . The relation �

G;A

is the

abstra
t 
ounterpart of a maximal relationR

m(A)

in SIM-models. More pre
isely,

let M = hW; (R

P

)

P�PAR

;mi be a SIM-model, let hw;w

0

i 2 R

m(A)

for some A

o

urring in �, and let G be a SIM-
onsistent global information for � built from

M as done in Se
t. 4. Then

f 2 sub(�) j M; w j=  g �

G;A

f 2 sub(�) j M; w

0

j=  g:

We are now ready to de�ne symboli
 states. Ea
h su
h state 
ontains infor-

mation on the relation between the asso
iated node and its (unique) prede
essor,

the formulae the respe
tive obje
t satis�es, and how it is related to (instan
es

of) obje
t nominals. The latter information is 
ru
ial sin
e these edges will be

omitted when abstra
ting/unravelling models to Hintikka trees (if they were not

omitted, unravelling would either not yield trees or instan
es of obje
t nominals

would not be unique).

A symboli
 state for � is either? or a triple q = hA; X; T i su
h that A 2 P(�),

X 2 P(sub(�)), and T � P(�)�NOM(�).

In q = hA; X; T i, A refers to the relation R

m(A)

whi
h relates q's (unique)

prede
essor to q, X is the set of formulae satis�ed in q, and T is a table su
h that,

for every hB; xi 2 T , hq; wi 2 R

m(A)

for m(x) = fwg. We often use hA

q

; X

q

; T

q

i.

The \dummy" value ? is used for those nodes in a tree not representing obje
ts,

and we 
all a symboli
 state q dummy if q =?. Similarly, a symboli
 state

hA; X; T i is a named state if X \ NOM(�) is non-empty. We will also write

 2 q = hA; X; T i [resp. hA; xi 2 q℄ instead of  2 X [resp. hA; xi 2 T ℄.

LetG be a (SIM-
onsistent) global information. A symboli
 state q = hA; X; T i

is said to be lo
ally SIM-
onsistent with respe
t to G i� q is dummy or if it sat-

is�es the following 
onditions:

(SC1) X is lo
ally SIM-
onsistent;

(SC2) for every x 2 NOM(�), x 2 q implies X = NOM(x) and T = fhB; yi j

hx; y;Bi 2 R

N

g;

(SC3) for every hA; xi 2 T , X �

G;A

NOM(x);

(SC4) for all hA

1

; x

1

i; : : : ; hA

n

; x

n

i 2 T with n � 1, if x

1

= : : : = x

n

then, for

every A 2 P(�) with A v

f

A

1

[ : : : [A

n

, we have hA; x

1

i 2 T ;

(SC5) for every B 2 P(�) su
h that B �

f

;, for every x 2 NOM(�), hB; xi 2 T ;

(SC6) UF � X and EF \X = ;.

We use SYMB(�) to denote the set of symboli
 states of �, and SYMB

G

(�)

to denote the set of symboli
 states of � that are lo
ally SIM-
onsistent with

respe
t to a (SIM-
onsistent) global information G.

(SC3) ensures that the \omitted" edges to instan
es of nominals are seman-

ti
ally possible. In order to establish the ExpTime upper bound for SIM, we

need also the result below.



Lemma 7. De
iding whether a symboli
 state is lo
ally SIM-
onsistent with re-

spe
t to a (SIM-
onsistent) global information 
an be done in time 2

O(j�j)

.

6 Hintikka Trees

We are now ready to introdu
e Hintikka trees for SIM with respe
t to a given

global information G. As usual, su
h trees are abstra
tions of SIM-models that

allow a further treatment with B�u
hi automata on in�nite trees. A ni
e ex-

ample of existing su
h abstra
tions are those for the �-
al
ulus (see e.g., the

well-founded pre-models in [SE89℄). We will show that ea
h SIM-model 
an be

unravelled into a Hintikka tree, and thus prove a tree model property for SIM

(su
h properties are known to be helpful for the de
idability of modal logi
s

[Gr�a99℄). This se
tion is the 
ore of the paper sin
e it 
ombines the preliminary

results from the previous se
tions with the ideas underlying the introdu
tion of

Hintikka trees.

For � a SIM-formula, a Hintikka-tree for � is labelled with symboli
 states,

has a dummy root node, and, at its �rst level, we �nd a node satisfying � as

well as nodes for all nominals o

urring in �. Sin
e a negated box formulae 
an

be either witnessed by an \anonymous" su

essor node in the tree or by a node

labelled with named states representing an instan
e of a nominal, (H7) is split

into two 
onditions, one for ea
h 
ase.

We re
all that, given K � 1 and a �nite alphabet �, an in�nite �;K-tree T

is a mapping T : f1; : : : ;Kg

�

! �.

Let � be a SIM-formula with K = j�j, PNOM(�) the set of parameter nom-

inals o

urring in � with l = 
ard(PNOM(�)) � 1, and PVAR(�) the set of

parameter variables o

urring in � with n = 
ard(PVAR(�)) � 1.

De�nition 8. A SYMB(�);K-tree T is a Hintikka tree for � i� there exists a

SIM-
onsistent global informationG = hf; UF;EF;EQ;NOM;R

N

i 2 GCONS(�)

for � su
h that

(H1) T (�) is dummy;

(H2) there is i 2 f1; : : : ;Kg su
h that � 2 T (i);

(H3) for every x 2 NOM(�), there is a unique i 2 f1; : : : ;Kg su
h that x 2 T (i)

(this i is then written i

x

);

and ea
h s 2 f1; : : : ;Kg

+

satis�es the following 
onditions:

(H4) T (s) is lo
ally SIM-
onsistent with respe
t to G;

(H5) if T (s) is dummy, then T (s � 1); : : : ; T (s �K) are also dummy;

(H6) if s is of length at least 2, then T (s) is not a named symboli
 state;

(H7) if T (s) = hA; X; T i is not dummy and [B℄ 2 sub(�) nX, then

1. either there is i 2 f1; : : : ;Kg with T (s � i) = hB; X

0

; T

0

i, T (s � i) is not

dummy, and  62 X

0

or

2. there is x 2 NOM(�) su
h that hB; xi 2 T and  62 T (i

x

);

(H8) for every i 2 f1; : : : ;Kg, if both T (s) = hA; X; T i and T (s�i) = hB; X

0

; T

0

i

are not dummy, then X �

G;B

X

0

.



Su
h a Hintikka tree is said to respe
t G.

All the preliminary work done so far yields Lemma 9 below.

Lemma 9. For every SIM-formula �, (I) � is SIM-satis�able i� (II) � has a

Hintikka tree.

Proof. (II) ! (I). Let T be a Hintikka tree respe
ting the SIM-
onsistent global

information G.

The 
onstru
tion of M. We 
onstru
t a SIM-model M = hW; (R

P

)

P�PAR

;mi

of � as follows:

{ W

def

= fs 2 f1; : : : ;Kg

+

: T (s) is not dummyg;

{ PAR

def

= N ;

{ for every i 2 N , m(E

i

)

def

= f2

n

� 1 + ig;

{ for every i 2 f1; : : : ; ng,

m(C

i

)

def

= f2

n

� 1 + j j j 2 f1; : : : ; lg; bit

i

(f(j)) = 0g [

fk 2 f0; : : : ; 2

n

� 1g j bit

i

(k) = 0g

(the other parameter variables are interpreted as the empty set);

{ for every s 2W , for every p 2 PRP, s 2 m(p) i� p 2 T (s);

{ for every A 2 P(�), let R

A

be the binary relation on W �W de�ned as the

re
exive and symmetri
 
losure of the union of the following three sets

1: R

N

(A) ;

2: R(A) = fhs; s � ii 2W

2

j s 2 f1; : : : ;Kg

+

; i 2 f1; : : : ;Kg;

T (s � i) = hA; X; T ig;

3: R

0

(A) = fhs; i

x

i 2W

2

j s 2 f1; : : : ;Kg

+

; hA; xi 2 T (s)g;

{ for every i 2 N n f0; : : : ; 2

n

� 1 + lg, R

fig

def

= W �W ;

{ for every i 2 f0; : : : ; 2

n

� 1 + lg, R

fig

def

=

S

fR

A

j A 2 P(�); i 2 m(A)g;

{ for every P � N su
h that 
ard(P ) � 2, R

P

def

=

T

i2P

R

fig

;

{ for every x 2 NOM(�), m(x) = fi

x

g (obje
t nominals not o

urring in � are

interpreted as arbitrary singletons).

Basi
 properties of M. By 
onstru
tion, ea
h relation R

A

is re
exive and sym-

metri
. The same holds for ea
h relation R

P

sin
e symmetry and re
exivity are

properties preserved by taking arbitrary interse
tion.

It is not diÆ
ult to 
he
k that M is a SIM-model, that M respe
ts G, and

that, moreover, the following properties are satis�ed:

1. for every k 2 f0; : : : ; 2

n

� 1g, m(A

k;0

) = fkg;

2. for every k

0

2 f1; : : : ; lg, m(A

f(k

0

);k

0

) = f2

n

� 1 + k

0

g;

3. if hs; s

0

i 2 R

m(A)

and [A℄ 2 T (s), then  2 T (s

0

).



A ni
e 
onsequen
e of the points (1) and (2) is that reasoning about the normal

form of A 
an be redu
ed to reasoning on the elements in m(A). By way of

example, we show the Property (3).

Assume hs; s

0

i 2 R

m(A)

and [A℄ 2 T (s).

Case 1: A �

f

;.

Hen
e m(A) = ;. If [A℄ 2 T (s), then (SC6) implies [A℄ 2 UF . Sin
e s

0

is not dummy and T (s

0

) is also lo
ally SIM-
onsistent with respe
t to G, we

obtain [A℄ 2 T (s

0

). By (L3), we thus get  2 T (s

0

).

Case 2: m(A) = fi

1

; : : : ; i

k

g 6= ;.

Then hs; s

0

i 2 R

m(A)

i� for every i 2 fi

1

; : : : ; i

k

g, hs; s

0

i 2 R

fig

.

Case 2.0: If s = s

0

then (L3) implies  2 T (s

0

) = T (s).

Case 2.1: s 6= s

0

and both T (s) and T (s

0

) are named symboli
 states.

Let s = i

x

and s

0

= i

y

for some x; y 2 NOM(�). Sin
e hs; s

0

i 2 R

fig

for

every i 2 fi

1

; : : : ; i

k

g, we have that, for every i 2 fi

1

; : : : ; i

k

g, there is

A

i

2 P(�), su
h that i 2 m(A

i

) and hx; y;A

i

i 2 R

N

. Thus (G8) together

with A v

f

A

i

1

[ : : :[A

i

k

implies that hx; y;Ai 2 R

N

, and (G7) implies

 2 T (s

0

).

Case 2.2: s 6= s

0

and neither T (s) = hA

s

; X

s

; T

s

i nor T (s

0

) = hA

s

0

; X

s

0

; T

s

0

i

are named symboli
 states.

W.l.o.g. , let s

0

= s � i for some i 2 f1; : : : ;Kg. Then hs; s

0

i 2 R

A

s

0

and,

for every i 2 f0; : : : ; 2

n

� 1 + lg, hs; s

0

i 2 R

fig

i� i 2 m(A

s

0

).

Sin
e hs; s

0

i 2 R

m(A)

, we have A v

f

A

s

0

. (H8) implies that X

s

�

G;A

s

0

X

s

0

, and thus  2 T (s

0

).

Case 2.3: s 6= s

0

, T (s) = hA

s

; X

s

; T

s

i is not a named symboli
 state, and

T (s

0

) = hA

s

0

; X

s

0

; T

s

0

i is a named symboli
 state.

Let i

x

= s

0

for some x 2 NOM(�). For every i 2 fi

1

; : : : ; i

k

g, hs; s

0

i 2

R

fig

implies that, for every i 2 fi

1

; : : : ; i

k

g, there is A

i

2 P(�) su
h that

i 2 m(A

i

) and hA

i

; xi 2 T

s

. (SC4) and A v

f

A

i

1

[ : : : [A

i

k

imply that

hA; xi 2 T

s

. Finally, (H4) and (SC3) imply that X

s

�

G;A

X

s

0

, and thus

 2 T (s

0

).

Case 2.4: s 6= s

0

and T (s) is a named symboli
 state and T (s

0

) is not a

named symboli
 state.

Due to the symmetry of �

G;A

, this 
ase is similar to Case 2.3.

The indu
tion. Sin
e T is a Hintikka tree, there is i 2 f1; : : : ;Kg su
h that

� 2 T (i). In order to show that M; i j= � (and therefore M is a model for

�), we prove by indu
tion on the formula stru
ture that, for every  2 sub(�),

for every s 2 W , we have  2 T (s) i� M; s j=  . The base 
ase (with obje
t

nominals and propositional variables) and the indu
tion steps for 
onjun
tion

and negation are by an easy veri�
ation. Let us treat in detail the remaining


ase. Let [A℄ be a subformula of � and assume that [A℄ 2 T (s). As we have

seen above, this implies that, for every hs; s

0

i 2 R

m(A)

, we have  2 T (s

0

). By

the indu
tion hypothesis, we have M; s

0

j=  . So, M; s j= [A℄ .

Now let [A℄ be a subformula of � and assume that M; s j= [A℄ and that

[A℄ 62 T (s). Due to (H7),



{ either  62 T (s � i) for some i 2 f1; : : : ;Kg and T (s � i) is not dummy

{ or for some x 2 NOM(�),  62 T (i

x

) and hA; xi is a pair of the table of T (s).

By the indu
tion hypothesis, either M; s �i 6j=  or M; i

x

6j=  . However, hs; s

0

i 2

R

m(A)

sin
e hs; s

0

i 2 R

A

by 
onstru
tion. Consequently, M; s 6j= [A℄ whi
h

leads to a 
ontradi
tion.

(I) ! (II) Let M = hW; (R

P

)

P�PAR

;mi be a SIM-model and w

0

2W su
h

that M; w

0

j= �. Let G

0

= hf; UF;EF;EQ;NOM;R

N

i be a SIM-
onsistent

global information for � built from M as des
ribed in Se
t. 4. We de�ne a

Hintikka tree T for � respe
ting G

0

. In the 
onstru
tion of T , we use an auxiliary

mapping � : f1; : : : ;Kg

�

!W [ f?g whi
h is de�ned indu
tively together with

T as follows.

We �rst need some notation. Let � be the number of equivalen
e 
lasses

of EQ, and let h : NOM(�) ! f1; : : : ; �g be a mapping that asso
iates ea
h

nominal x 2 NOM(�) with the unique element w

i

2 W with m(x) = fw

h(x)

g.

Let [A

1

℄ 

1

; : : : ; [A

�

℄ 

�

be all box formulae in sub(�). For every w 2W , we write

X

w

to denote f 2 sub(�) j M; w j=  g and T

w

to denote

fhA; xi 2 P(�)�NOM(�) j hw;w

h(x)

i 2 R

m(A)

g:

As usual, T is obtained unravelling M, but taking spe
ial 
are with obje
ts

w

1

; : : : ; w

�

. We de�ne � and T as follows.

{ �(�)

def

=? and T (�)

def

=?.

{ If w

0

= w

j

for some j 2 f1; : : : ; �g, then, for every i 2 f1; : : : ; �g, �(i)

def

= w

i

and T (i)

def

= hA; X

w

i

; T

w

i

i for some arbitrary A 2 P(�) and, for every i 2

f�+ 1; : : : ;Kg, �(i)

def

=? and T (i)

def

=?.

{ Otherwise (w

0

6= w

i

for every i 2 f1; : : : ; �g), for every i 2 f1; : : : ; � + 1g,

�(i)

def

= w

i�1

and T (i)

def

= hA; X

w

i�1

; T

w

i�1

i for some arbitrary A 2 P(�), and

for every i 2 f�+ 2; : : : ;Kg, �(i)

def

=? and T (i)

def

=?.

{ For every s 2 f1; : : : ;Kg

+

,

� for every i 2 f� + 1; : : : ;Kg, �(s � i)

def

=? and T (s � i)

def

=?;

� if �(s) =? then, for every i 2 f1; : : : ; �g, �(s � i)

def

=? and T (s � i)

def

=?;

� otherwise, if [A

i

℄ 

i

62 T (s) for some i 2 f1; : : : ; �g, then

� either for some j 2 f1; : : : ; �g, h�(s); w

j

i 2 R

m(A

i

)

and M; w

j

6j=  

i

;

in that 
ase �(s � i)

def

=? and T (s � i)

def

=?;

� or there is w

0

2W n fw

1

; : : : ; w

�

g su
h that h�(s); w

0

i 2 R

m(A

i

)

and

M; w

0

6j=  

i

; in that 
ase �(s � i)

def

= w

0

and T (s � i)

def

= hA

i

; X

w

0

; T

w

0

i.

If [A

i

℄ 

i

2 T (s) for some i 2 f1; : : : ; �g, then �(s�i)

def

=? and T (s�i)

def

=?.

We 
an easily 
he
k that T is a Hintikka tree for � respe
ting G

0

.

7 Tree Automata for Relative Formulae

In the se
ond part of the proof of Lemma 9, a SIM-model M is unravelled in

an almost standard way to a Hintikka tree. Thus we have proved a tree model



property for SIM|whi
h 
ould also be 
alled a forest model property. In this

se
tion, we will exploit this forest model property and des
ribe a de
ision pro-


edure based on automata on in�nite trees, so-
alled B�u
hi tree automata. For a

given SIM-formula �, we 
onstru
t a B�u
hi tree automaton A

�

that a

epts ex-

a
tly all Hintikka trees for �. At �rst glan
e, the 
onstru
tion may look intri
ate

but it simply mimi
ks the lo
al 
onditions of the Hintikka trees.

We re
all that a B�u
hi tree automaton A = h�;Q; Æ; I; F i for �;K-trees is

an operational model where Q is a non-empty, �nite set of states, � is a �nite

alphabet, Æ � Q � � � Q

K

is a transition relation, I and F are non-empty

subsets of Q, the set of initial states and the set of terminal states, respe
tively.

A run r on a �;K-tree T is a Q;K-tree su
h that, for every s 2 f1; : : : ;Kg

�

,

hr(s); T (s); r(s � 1); : : : ; r(s � K)i 2 Æ. A run r on T is a

epting i� for every

path in T there is a state in F that o

urs in�nitely often. De
iding whether

a B�u
hi tree automaton for �;K-trees has an a

epting run 
an be done in

polynomial-time [VW86℄ (see also [Rab70,EJ88℄). For SIM, we only need to


onsider a restri
ted 
lass of tree automata, namely those automata in whi
h all

the states are terminal, often referred to as safety automata.

7.1 The Constru
tion

Before giving the formal de�nition of A

�

, we give an intuitive des
ription of it

and the 
onditions it imposes on the trees it a

epts:

{ Ea
h state 
onsists of a symboli
 state and a global information G, and A

�

ensures that the global information part of all states involved in an a

epting

run 
oin
ide.

{ � and ea
h obje
t nominal in � is found in the label of one of the nodes at

the �rst level of the input tree. Moreover, obje
t nominals are found in the

label of the same node if they belong to the same equivalen
e 
lass a

ording

to the EQ 
omponent of G.

{ Nodes at level � 2 do not have obje
t nominals in their labels.

{ If a node is labelled with ?, then so are all its des
endants.

{ Su

essors of a node s satisfy 
onditions imposed by the box formulae in s's

label.

{ Diamond formulae in a node s's label (i.e., box formulae not in s's label)

are either witnessed by one of s's su

essors or by a node on the �rst level

representing an obje
t nominal.

For those familiar with tree automata, it 
an be easily seen that the above


onditions are all lo
al and 
an thus be \en
oded" in the transition fun
tion

of a tree automaton. Let us now give the formal de�nition for A

�

when � is

a SIM-formula satisfying the hypotheses at the beginning of Se
t. 6. A

�

is the

B�u
hi tree automaton h�;Q; Æ; I;Qi de�ned as follows.

1. �

def

= SYMB(�).

2. Q

def

= f�g [ fhq;Gi j q 2 SYMB

G

(�); G 2 GCONS(�)g.



3. I

def

= f�g;

4. hq

0

; a; q

0

1

; : : : ; q

0

K

i 2 Æ i� either

(�rst) q

0

= �, a =?, and there is G = hf; UF;EF;EQ;NOM;R

N

i 2

GCONS(�) su
h that, for every i 2 f1; : : : ;Kg, q

0

i

= hq

i

; Gi for some

q

i

2 SYMB

G

(�),

(H2

0

) there is i 2 f1; : : : ;Kg, su
h that � 2 q

i

, and

(H3

0

) for every x 2 NOM(�), there is a unique i 2 f1; : : : ;Kg, su
h

that x 2 q

i

, or

(H5

0

) q

0

= h?; Gi for some G 2 GCONS(�), a =? and, for every i 2

f1; : : : ;Kg, q

0

i

= q

0

; or

(witnesses) q

0

= hq;Gi for some non-dummy q 2 SYMB

G

(�),G 2 GCONS(�),

a = q and, for every i 2 f1; : : : ;Kg, q

0

i

= hq

i

; Gi and the following 
on-

ditions are satis�ed:

(H6

0

) for every i 2 f1; : : : ;Kg, q

i

is not a named symboli
 state;

(H7

0

) if [B℄ 2 sub(�) n q, then

(a) either there is i 2 f1; : : : ;Kg su
h that q

i

= hB; X

0

; T

0

i is not

dummy and  62 q

i

;

(b) or there is x 2 NOM(�) su
h that hB; xi 2 T

q

and  62 NOM(x)

(where NOM is the �fth 
omponent of G);

(H8

0

) for every i 2 f1; : : : ;Kg, if q

i

is not dummy, then X

q

�

G;A

q

i

X

q

i

.

The 
onditions (Hi

0

) are the obvious 
ounterparts of the 
onditions (Hi).

It is worth noting that although Hintikka trees for � require the satisfa
tion

of 
onditions between trees of the forest, this 
an be handled by a B�u
hi tree

automaton. Indeed, the symboli
 links are en
oded lo
ally by the table and by

the global information G, whi
h is ensured to 
oin
ide on all nodes in a tree

a

epted by the automaton.

Lemma 10. A SYMB(�);K-tree T is a Hintikka tree for � i� A

�

has an a
-


epting run on T .

Proof. Let T be a Hintikka tree for � respe
ting the SIM-
onsistent global in-

formation G and r : f1; : : : ;Kg

�

! Q be the Q;K-tree su
h that r(�) = � and,

for every s 2 f1; : : : ;Kg

+

, r(s) = hT (s); Gi. One 
an 
he
k easily that r is an

a

epting run for T .

For the 
onverse, let T be an in�nite tree a

epted by A

�

, and let r :

f1; : : : ;Kg

�

! Q be an a

epting run of A

�

on T . Then r(i) = hq

0

; G

0

i with

� 2 q

0

for some i 2 f1; : : : ;Kg and, for every s 2 f1; : : : ;Kg

+

, if r(s) = hq;Gi,

then G = G

0

and q = T (s). By 
onstru
tion, T is a Hintikka tree for � respe
ting

the SIM-
onsistent global information G

0

.

We are now in the position to establish the main result of the paper.

Theorem 11. The satis�ability problem for the logi
 SIM is ExpTime-
omplete.

Proof. The lower bound is by an easy veri�
ation from the results in [CL94℄ and

[Hem96, Theorem 5.1℄. Let us establish the ExpTime upper bound. Lemma 9



together with Lemma 10 implies that every SIM-formula � is SIM-satis�able

i� A

�

a

epts at least one tree. Sin
e 
ard(SYMB(�)) � j�j � 2

j�j+j�j

2

and


ard(GCONS(�)) is in 2

O(j�j

3

)

, A

�

has 2

O(j�j

3

)

states. Moreover, 
ard(Æ) is in

2

O(j�j

4

)

and 
he
king whether hq; a; q

1

; : : : ; q

K

i 2 Æ 
an be done in time 2

O(j�j)

(using Lemmas 5 and 7). Consequently, 
omputing A

�

requires time in 2

O(j�j

4

)

.

Sin
e the emptiness problem for B�u
hi tree automata of the form A

�


an be


he
ked in time O(jÆj

2

), SIM-satis�ability 
an be 
he
ked in time 2

O(j�j

4

)

.

7.2 Other 
onstraints on nominals

The parameter nominals in SIM are strong in the sense that two distin
t pa-

rameter nominals are interpreted by di�erent parameters. This is a 
onstraint

introdu
ed in [Kon97,Kon98℄. Alternatively, it is possible to relax this 
ondition

by allowing that two di�erent parameter nominals 
an be interpreted identi-


ally while preserving the ExpTime-
ompleteness of SIM-satis�ability. Indeed,

it is suÆ
ient to add, in a global information G, an equivalen
e relation for the

parameter nominals and to slightly modify the de�nition of the normal forms

N

X;Y

(A) (see Se
t. 3). Two parameter nominals in the same equivalen
e 
lass

are then interpreted identi
ally. Additionally, 
onstraints of the form \M distin
t

obje
t [resp. parameter℄ nominals, M � 2, 
annot be interpreted by the same

obje
ts [resp. parameters℄" 
an also be handled by the present framework by

requiring, in the equivalen
e relations for nominals, that ea
h equivalen
e 
lass

has less than M elements.

7.3 A standard version of SIM

Let SIM

st

be the multi-modal logi
 with a universal modality [U ℄, modal 
on-

ne
tives of the form [


1

\ � � � \ 


n

℄, where \ is interpreted as interse
tion on

binary relations, ea
h 


i

is interpreted as a re
exive and symmetri
 relation,

and the logi
 
ontains propositional variables and nominals. The logi
 SIM

st


an

be viewed as the standard (and simpli�ed) version of SIM; more details about

the relationsip between SIM and SIM

st


an be found in [Dem99a,DG00℄. More

importantly, by slightly adapting the ExpTime-
ompleteness proof for SIM one


an show the following result.

Corollary 12. The satis�ability problem for the logi
 SIM

st

is ExpTime-
omplete.

However, it is open whether repla
ing symmetry by transitivity in SIM

st

preserves de
idability (see also Se
t. 7.4 below).

7.4 Extensions for FORIN and IND?

At a �rst glan
e, it seems as if the de
ision pro
edure for SIM 
ould be easily

adapted to IND and FORIN sin
e transitivity 
an be handled for the following

aspe
ts:



{ the 
onstraints on R

N

(by imposing the appropriate frame 
ondition);

{ the de�nition of�

G;A

(by updating the propagation rules for the [A℄-formulae);

{ the de�nition of the family (R

P

)

P�PAR

in the proof of Lemma 9((II) ! (I))

(by 
onsidering the appropriate 
losure operation on relations).

However, su
h an adaptation does not allow us to prove the point (3) in the

proof of Lemma 9((II) ! (I)). More pre
isely, Case (2) is problemati
.

By way of example, 
onsider the logi
 FORIN. Suppose that we have updated

the 
onditions for R

N

and �

G;A

adequately. In the proof of Lemma 9((II) ! (I)),

assume that R

A

was de�ned as the re
exive and transitive 
losure of S(A) =

R

N

(A) [ R

A

[ R

0

A

. Let us 
onsider the sub
ases 2.3 (T (s) is not and T (s

0

) is a

named symboli
 state). Then hs; s

0

i 2 R

m(A)

entails, for every i 2 fi

1

; : : : ; i

k

g,

hs; s

0

i 2 R

fig

, whi
h implies the existen
e of the following paths:

s = s

i

1

1

S(A

i

1

1

)

���! s

i

1

2

S(A

i

1

2

)

���! : : :

S(A

i

1

n

i

1

)

����! s

i

1

n

i

1

+1

= s

0

.

.

.

s = s

i

j

1

S(A

i

j

1

)

���! s

i

j

2

S(A

i

j

2

)

���! : : :

S(A

i

j

n

i

j

)

����! s

i

j

n

i

j

+1

= s

0

.

.

.

s = s

i

k

1

S(A

i

k

1

)

���! s

i

1

2

S(A

i

k

2

)

���! : : :

S(A

i

k

n

i

k

)

����! s

i

k

n

i

k

+1

= s

0

where, for every j 2 f1; : : : ; kg, n

i

j

� 0 and for every j

0

2 f0; : : : ; n

i

j

g, i

j

2

m(A

i

j

j

0

). Be
ause of the presen
e of named symboli
 states (and therefore obje
t

nominals in the language) and the transitive 
losure involved, the above paths

are of unbounded length and they may be di�erent. By 
ontrast, for SIM, only

paths of length one need to be handled simultaneously, whi
h 
an be done lo
ally.

If [A℄ 2 T (s), we need to ensure  2 T (s

0

), whi
h would involve a path of the

form

s = s

1

S(B

1

)

��! s

2

S(B

2

)

��! : : :

S(B

n

)

���! s

n+1

= s

0

where, for every j 2 f1; : : : ; kg and j

0

2 f0; : : : ; ng, i

j

2 m(B

j

0

). Obviously, this

is not possible using a simple \lo
al" propagation.

By 
ontrast, in the absen
e of obje
t nominals in the language, in the remain-

ing sub
ase 2.2 (without named symboli
 states), the existen
e of su
h a path

� is guaranteed. Indeed, if hs; s

0

i 2 R

m(A)

, then there is unique path � of min-

imal length of the above form satisfying the required 
ondition. Consequently,

by slightly adapting the developments for SIM, we 
an show:

Theorem 13. The satis�ability problem for the logi
s FORIN and IND without

obje
t nominals is ExpTime-
omplete.



8 Con
lusion

On the basis of existing automata-theoreti
 te
hniques for logi
al problems,

we have shown that the logi
 SIM introdu
ed in [Kon98℄ has an ExpTime-


omplete satis�ability problem, improving signi�
antly the best known upper

bound from [DK98℄. The proof is by a redu
tion to the emptiness problem for

B�u
hi automata on in�nite trees. The most original parts of this redu
tion rely

on the normalisation of parameter expressions for nominals, on the introdu
-

tion of global information for models (extending what is done in [SV01℄ for

nominals and the universal modality), and on our treatment of interse
tion for

relations. The proof for SIM 
an be su

essfully adapted to the logi
s IND and

FORIND [Kon98, Se
t. 8℄ with minor 
hanges only in the 
ase we dis
ard obje
t

nominals from the language. By 
ontrast, the de
idability status of full IND and

full FORIN remains a 
hallenging open question. This highlights the te
hni
al

diÆ
ulty en
ountered to establish the ExpTime upper bound for SIM satis�a-

bility.

These new results obtained with automata-theoreti
 te
hniques show that

su
h te
hniques are also powerful for information logi
s. Indeed, the automata

framework 
an 
ope uniformely with obje
t and parameter nominals, with Boolean

parameter expressions, with the universal modality and with lo
al 
onditions

su
h as re
exivity and symmetry. For transitivity, the adaptation of the method

is still unkown. In this paper, we have a
tually used a small fragment of the

automata ma
hinery, namely the B�u
hi tree automata in whi
h all the states

are terminal, leaving some room for further extensions with ri
her operational

models su
h as the tree automata with parity a

eptan
e 
onditions [Var98℄.
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