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Abstract. In this paper we present SAGA, an implementation of a tableau-based
Satisfiability Algorithm for the Guarded Fragment (GF). Satisfiability for GF with
finite signature is EXPTIME-complete and therefore intractable in the worst case, but
existing tableau-based systems for EXPTIME-complete description and modal logics per-
form reasonably well for “realistic” knowledge bases. We implemented and evaluated
several optimizations used in description logic systems, and our results show that, with
an efficient combination, SAGA can compete with existing highly optimized systems for
description logics.

1 Preliminaries

The Guarded Fragment of first order predicate logic (GF) [1] restricts the appearance of
quantifiers to formulae of the kind

Vz(G(z,y) = p(z,y))
Jz(G(z,y) A o(z,Y)) ,

where x and y are tuples of variables, and G(x,y) is an atom (the guard of the formula). This
fragment has many desirable properties: satisfiability is decidable [1] in 2-EXPTIME, which
is reduced to EXPTIME if the arity of the relations is bounded [11]. It has the finite model
property [1] and a tree model property for a special kind of tree [11].

GF can be regarded as a generalization of modal or description logics to n-ary relations
(roles). The more expressive such logics have a comparably high worst-case complexity, e.g.
PDL [5] and SHZQ [21] are EXPTIME-complete [27, 20]. However, with systems deciding one
of these logics using an optimized tableau algorithm, e.g. DLP [25], FaCT [18], and RACER
[13], satisfiability becomes tractable for a variety of realistic knowledge bases [18, 19, 14]. This
suggests that a tableau algorithm for GF-satisfiability might lead to an implementation that
does not consume exponential time for “realistic” formulae.

GF is also decidable by resolution [9]. To the best of our knowledge, the efficiency of this
approach for realistic formulae has not yet been analyzed.

2 A Tableau Algorithm for GF

In [16], a tableau algorithm is presented for the Clique Guarded Fragment (CGF) [10], a
generalization of GF. Its worst-case complexity is 2-NExPTIME (NExXPTIME for signatures
with bounded arity), and therefore higher than that of GF itself, but it allows for many of
the optimizations known from description logics and therefore promises to lead to an efficient
implementation. SAGA only implements those parts of the algorithm that are relevant for GF.



Due to space limitations, we cannot present the entire algorithm here. Instead, we will
only describe how it differs from “standard” tableau algorithms for description logics (for
an introduction and examples, see e.g. [2]). A node in a GF tableau does not stand for a
single constant (individual), but for a set of constants that appear together in a guard atom.
Therefore, a node n is labeled with a set C'(n) of constants and a set A(n) of formulae which
contain only constants in C(n).

A tree model for a GF formula need not be finite. For that reason, termination of the
tableau generation is ensured by blocking, i.e. no successors are created for a node n if there
exists an ancestor m of n which contains the same formulae as n (modulo a mapping 7 between
the constants of n and m). For this purpose, n is labeled upon creation with a natural number
N(n) which is larger than N(I) for every node [ that was created previously.

Formally, a node n is directly blocked if there exists a node m such that N(m) < N(n), m is
not blocked, and there exists an injective mapping 7: C'(n) — C'(m) such that for all constants
c € C(n)NC(m), m(c) = ¢ and for the extension of w to formulae, m(A(n)) = A(m) |r(c(n))
holds. A node n is blocked if it is directly blocked or if its predecessor is blocked. This notion
of blocking is not, equivalent to subset blocking, where a node n is blocked by a node m if the
label of n is a subset of the label of m: for GF, the image of 7 need only be a subset of C'(m),
but restricted to these constants, the labels of v and v have to be equal (modulo 7).

3 Optimization

In Section 2, we mentioned that optimizations are necessary to obtain practical decidability
for description logics. In the following, the optimizations included in SAGA are described.

Syntactic Simplification. Before SAGA tries to construct a tableau for the input formula ¢
it simplifies the syntactic structure of ¢ to speed up the tableau generation process: tautologies
and contradictions are made explicit, a normal form is used which supports their detection,
and the variables contained in a formula ¢ are normalized when ¢ is added to a node. Details
can be found in [17] or [18].

Semantic Branching. The naive method to satisfy a disjunction ¢ V x is to add ¢ first
and, if this causes a clash, add x afterwards (syntactic branching). This is rather inefficient
because resources have been spent to find out that ¢ is unsatisfiable in the current tree, but
this information is not used any more. Semantic branching [7] adds =y A x to the tree if ¢
leads to a clash. This makes explicit the information that ¢ is unsatisfiable and prunes the
search space because a tree in which ¢ is satisfiable is never tested again.

Backjumping. After a clash, naive backtracking returns to the most recent branching point
(BP). Dependency directed backtracking (backjumping) [3] instead returns to the most recent
BP one of the clashing formulae depends on. Thus, the intermediate BPs, which did not have
any influence on the clash, are skipped. To make backjumping possible, every formula ¢ in a
node n is labeled with a dependency set D(p,n), the set of branching points the presence of ¢
in n depends on. After a clash between ¢ and x in n, the most recent BP b in D(p,n)UD(x,n)
is determined and the backjump to b is performed.

Boolean Constraint Propagation. Before choosing a disjunct ¢ from a disjunction ¢ V x
in a node n and performing a branch for v, every disjunct is tested for being closed: a disjunct
is closed if its negation is already contained in n; otherwise, it is open. If ) is closed, it is



removed from the disjunction (because adding ¢ would lead to an immediate clash), and only
the remaining disjuncts are considered for branching (boolean constraint propagation [6]). In
particular, if there is only one open disjunct, it is added deterministically to n, and the branch
is avoided.

4 Heuristics

There are two kinds of non-determinism involved in the GF-algorithm: the decision on which
one of several available formulae to process first is don’t-care non-deterministic, i.e. every choice
will lead to a correct behaviour of the algorithm, whereas the decision on which disjunct of a
disjunction to add to the corresponding node (branching) is don’t-know non-deterministic, i.e.
only certain choices will lead to the discovery of a tableau. In both cases, the heuristic used
to make the decision obviously has a significant influence on performance.

Branching. In SAGA, three different heuristics for choosing the disjunct for the next branch
are implemented. Each one tries to improve the efficiency of one of the other optimizations.

MOMS The heuristic “Maximum Occurrence in disjunctions of Minimum Size” [6] considers
all disjunctions of minimum size in the corresponding node and counts the positive and
negated appearances of the disjuncts. The disjunct ¢ to branch on is the one with the
largest counter. If the counter for ¢ is larger than the one for —p, —p is tested first. If
this leads to a clash, ¢ is tested afterwards. (MOMS therefore implicitly requires semantic
branching.) The goal is to optimize BCP by increasing the number of closed disjuncts
and reaching deterministic expansion as soon as possible. One disadvantage of MOMS lies
in the fact that it tries the more constrained alternative first, i.e. the alternative that is
more likely to fail [17]. Furthermore, it was observed that MOMS interacts adversely with
backjumping [18].

iMOMS Inverted MOMS [17] tries to avoid the disadvantage of being likely to fail with
the first alternative by testing ¢ and = in the opposite order. Thus, it first chooses the
disjunct which satisfies most of the (smallest) disjunctions.

Maximize-jump This heuristic was developed for the FaCT system [19]. From all disjunc-
tions of a node, it selects the one for which the maximum element in the dependency set
is minimal, i.e. the one leading to the furthest backjump. In order to find the first disjunct
to try, FaCT uses a MOMS-style heuristic. In SAGA, the syntactically shortest disjunct
is selected because a short formula probably can be tested faster than a long one which
is likely to contain existential or universal formulae. Since this approach does not rely on
counts of disjuncts like MOMS, we also expect to see the differences in efficiency more
clearly.

Choosing the Next Formula. There are two kinds of formulae which are significantly more
expensive to process than the other ones: disjunctions require branching and backtracking,
which includes creating backups of nodes and restoring them after a clash, and for existential
formulae in a node n, each predecessor m; of n has to be compared with all nodes /; with
N(l;) < N(m;). For the blocking test itself, all mappings from C'(n;) to C'(l;) have to be tested
(in the worst case). Therefore, either disjunctions or existential formulae should be processed
last. These two heuristics are implemented in SAGA.

Blocking The blocking condition for a node n as defined in Section 2 requires w(A(n)) to be
equal to a restriction A(m) |(c(ny) for a predecessor node m. The algorithm also works for



an alternative definition of blocking where the same number of constants is required for n and
m, i.e. equality of A(n) and A(m) modulo 7. This may lead to postponing blocking because
the blocking test only succeeds after the creation of some additional nodes, but the test itself
becomes significantly more efficient: if the number of constants, atoms, universal formulae etc.
is not identical for m and n, it can be aborted immediately without generating a mapping =.
In the following, we will refer to the different blocking conditions as subset-equality blocking
and equality blocking respectively.

5 Comparison of Heuristics

In this section, we present an analysis of the efficiency of the heuristics and optimizations
described in the previous sections. We used two sets from the “Tableaux 2000 Non-Classical
Systems Comparison” (TANCS-2000) [24] benchmark suite and some GF formulae to see how
the heuristics behave for formulae of different complexity.

QBF-INV The “quantified boolean formulae” benchmark consists of sets of 8 random QBF
formulae which satisfy given parameters. These formulae are translated into the logic K~
(K with inverse modality). For this comparison, we used the sets “p-qbf-inv-cnfSSS-K4-
Ce-V4-D4” with ¢ € {10, 20, 30,40, 50}.

PSAT-INV The random generated “periodic satisfiability” formulae are translated into the
logic K~ with global axioms. We used the sets “p-psat-inv-cnf-K4-Cc-V4-D4” with ¢ €
{20, 30, 40, 50}.

GFB The QBF and PSAT formulae do not allow us to evaluate the different blocking con-
ditions (equality or subset-equality blocking, cf. Section 4) because every node in a tree
constructed for these formulae contains exactly two constants. Therefore, we generated
some (simple) “GF Benchmark” (GFB) formulae. Each set consists of 8 formulae and is
characterized by the width w and depth d of the formula and the maximum arity r of the
relations.

The QBF benchmark does not require blocking because termination of the algorithm is
ensured by the properties of the K~ logic: the complexity of formulae continuously decreases
from predecessor to successor nodes. This property makes it possible to regard the blocking
test as another heuristic for these logics and evaluate its efficiency by turning it on or off.

To evaluate the heuristics by themselves as well as their interactions, we ran every bench-
mark with every possible combination of heuristics. The figures in the following sections show
how many formulae could be solved for the corresponding combination. The benchmarks were
run on the following system: hardware: Pentium-IIT (733 MHz), 384 MB RAM, 512 MB swap
space; software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600 sec (TANCS);
100 sec (GFB).

QBF Results (Figure 1). Surprisingly, blocking is the most efficient heuristic. With blocking
enabled, up to 26 formulae can be solved, compared to at most 4 without blocking. Although
the blocking test is very expensive in the worst case, it is obviously far more efficient than the
expansion of the nodes that can be blocked.

Semantic branching and backjumping also provide a significant speedup. While backjump-
ing delivers a rather constant improvement independent of the other optimizations, semantic
branching works particularly well with efficient combinations. iIMOMS is slightly worse than
maximize-jump, and MOMS is far worse than the other branching heuristics. This is true even
when backjumping is disabled, i.e. when maximize-jump effectively chooses a random disjunct
(because there is no backjump to maximize). Processing 3- or V-formulae last does not have a
significant influence, and syntactic simplification has none at all (it is therefore not recorded
in the figures).



40 | ‘ blocking and backjurﬁping — | 40 | blocking and backjuhping —
blocking - blocking -
35 1 backjumping - | 35 ¢ backjumping -
o 307 no optimizations 1 o 307 no optimizations
L:‘: 25 ‘_:‘j 25
€ 20 £ 20
L 15 e e £ 15
BT, J e * 10
0 0 i
Synt. Br. Max.-Jump iMOMS MOMS Synt. Br. Max.-Jump iMOMS MOMS
branching heuristic branching heuristic

Fig. 1: Heuristics Comparison for QBF with “V Last” (Left) and “3 Last” (Right)

PSAT Results (Figure 2). Semantic branching is by far the most important heuristic, and
backjumping is also very efficient. Furthermore, we can observe a significant speedup if 3-
formulae are processed last. IMOMS is slightly better than maximize-jump, but the difference
is irrelevant for efficient combinations of the other heuristics. The same holds for syntactic
simplification: if we have an efficient combination of heuristics, disabling syntactic simplifi-
cation does not significantly slow down the system. This indicates that, in the presence of
semantic branching and backjumping, a complicated syntax of a formula does not affect the
overall efficiency.
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Fig. 2: Heuristics Comparison for PSAT with “V Last” (Left) and “J Last” (Right)

GFB Results. The results for QBF indicate that blocking, although expensive, results in a
speedup. This raises the question if searching for more blocking situations by using subset-
equality blocking instead of equality blocking might lead to a further speedup. The tests show
that this is is not the case: subset-equality blocking leads to a higher average time and to
fewer solvable formulae. Syntactic simplification has more influence for GFB than for the other
benchmarks, which is probably caused by the simple and random structure of the formulae.
The remaining heuristics behave similarly (therefore we do not include a figure).



6 Comparison with Other Systems

In this section, we compare the results of the TANCS-2000 competition with those we obtained
with SAGA. This allows us to examine how well SAGA scales compared to other systems, i.e.
how fast it can solve formulae from GF and less expressive logics. Since most of the TANCS
systems used the formulae without inverse roles for benchmarking, the results presented in
Figure 3 were produced with the “PSAT” rather than with the “PSAT-INV” formulae.

RACE [12, 15] is a TBox and ABox reasoner for the description logic ALCNHg+. DLP
[26, 25] is a DL system for several expressive description logics, including K and PDL. In
addition to the optimizations used in SAGA, these two systems perform caching, i.e. they
remember the satisfiability status of a node to avoid the expansion of another node with
the same label. The third competitor Spass [28, 29] is a resolution based system testing
satisfiability of first order formulae. It also contains several optimizations, some of which
resemble those mentioned in Section 3 (e.g. “branch condensing” corresponds to backjumping
[22]). MSpASs [23] is a SPASS module translating formulae from the syntax of of modal and
description logics to first order logic so they can be tested with SPASs.

For this comparison, we used the formulae “p-psat-cnf-K4-Ce-Vo-Dd” with ¢ €
{20, 30,40,50},v € {4,8},d € {1,2} and the GFB formulae. The figures show for every sys-
tem how many formulae of each set could be solved. The SAGA benchmark was run on the
following system: hardware: Pentium-III (1 GHz), 512 MB RAM, 1 GB swap space; software:
Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 1000 sec.

PSAT Results (Figure 3). Although the results presented in this paragraph were produced
on different hardware with different timeouts and are not directly comparable, the differences
between the systems are relatively small. With depth 1, the formulae were easy for all of the
systems. For the harder formulae with depth 2, the differences become visible and it turns out
that SAGA is slightly slower than RACE and slightly faster than DLP and MSpass.
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Fig. 3: System Comparison for PSAT

GFB Results (Figure 4). The formula sets are characterized by their w, d and r values
(cf. Section 5). Among the comparison systems, SPASS is the only one that can decide GF
formulae, but its characteristics are quite different from SAGA’s. Therefore, it is no surprise
that the results are also different: while SAGA handles a large depth (d16) of a formula well, it



has problems with relations of a higher arity (r4). Spass shows the opposite behaviour. The
sum of decidable formulae is similar.
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Fig. 4: System Comparison for GFB

7 Conclusion

In this paper, we presented SAGA, an implementation of a GF tableau algorithm. It turned out
that in spite of its high worst-case complexity, it performs well for existing benchmark formulae
if an efficient combination of optimizations is used: semantic branching and backjumping are
particularly useful. The blocking test speeds up the program even when blocking is not required
to ensure termination.

Among the branching heuristics, maximizing the backjump or satisfying many disjunctions
at once is most efficient. Whether disjunctions or existential formulae should be processed last
depends on the logic of the formula to test. In comparison to other systems, SAGA is slightly
faster than DLP and SpAss/MSPAss and slightly slower than RACE.
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