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Abstrat. In this paper we present Saga, an implementation of a tableau-based

Satis�ability Algorithm for the Guarded Fragment (GF). Satis�ability for GF with

�nite signature is ExpTime-omplete and therefore intratable in the worst ase, but

existing tableau-based systems for ExpTime-omplete desription and modal logis per-

form reasonably well for \realisti" knowledge bases. We implemented and evaluated

several optimizations used in desription logi systems, and our results show that, with

an eÆient ombination, Saga an ompete with existing highly optimized systems for

desription logis.

1 Preliminaries

The Guarded Fragment of �rst order prediate logi (GF) [1℄ restrits the appearane of

quanti�ers to formulae of the kind

8x(G(x;y)! '(x;y))

9x(G(x;y) ^ '(x;y)) ;

where x and y are tuples of variables, and G(x;y) is an atom (the guard of the formula). This

fragment has many desirable properties: satis�ability is deidable [1℄ in 2-ExpTime, whih

is redued to ExpTime if the arity of the relations is bounded [11℄. It has the �nite model

property [1℄ and a tree model property for a speial kind of tree [11℄.

GF an be regarded as a generalization of modal or desription logis to n-ary relations

(roles). The more expressive suh logis have a omparably high worst-ase omplexity, e.g.

PDL [5℄ and SHIQ [21℄ are ExpTime-omplete [27, 20℄. However, with systems deiding one

of these logis using an optimized tableau algorithm, e.g. DLP [25℄, FaCT [18℄, and RACER

[13℄, satis�ability beomes tratable for a variety of realisti knowledge bases [18, 19, 14℄. This

suggests that a tableau algorithm for GF -satis�ability might lead to an implementation that

does not onsume exponential time for \realisti" formulae.

GF is also deidable by resolution [9℄. To the best of our knowledge, the eÆieny of this

approah for realisti formulae has not yet been analyzed.

2 A Tableau Algorithm for GF

In [16℄, a tableau algorithm is presented for the Clique Guarded Fragment (CGF) [10℄, a

generalization of GF . Its worst-ase omplexity is 2-NExpTime (NExpTime for signatures

with bounded arity), and therefore higher than that of GF itself, but it allows for many of

the optimizations known from desription logis and therefore promises to lead to an eÆient

implementation. Saga only implements those parts of the algorithm that are relevant for GF .



Due to spae limitations, we annot present the entire algorithm here. Instead, we will

only desribe how it di�ers from \standard" tableau algorithms for desription logis (for

an introdution and examples, see e.g. [2℄). A node in a GF tableau does not stand for a

single onstant (individual), but for a set of onstants that appear together in a guard atom.

Therefore, a node n is labeled with a set C(n) of onstants and a set �(n) of formulae whih

ontain only onstants in C(n).

A tree model for a GF formula need not be �nite. For that reason, termination of the

tableau generation is ensured by bloking, i.e. no suessors are reated for a node n if there

exists an anestorm of n whih ontains the same formulae as n (modulo a mapping � between

the onstants of n and m). For this purpose, n is labeled upon reation with a natural number

N(n) whih is larger than N(l) for every node l that was reated previously.

Formally, a node n is diretly bloked if there exists a node m suh that N(m) < N(n), m is

not bloked, and there exists an injetive mapping � : C(n)! C(m) suh that for all onstants

 2 C(n) \ C(m), �() =  and for the extension of � to formulae, �(�(n)) = �(m) j

�(C(n))

holds. A node n is bloked if it is diretly bloked or if its predeessor is bloked. This notion

of bloking is not equivalent to subset bloking, where a node n is bloked by a node m if the

label of n is a subset of the label of m: for GF , the image of � need only be a subset of C(m),

but restrited to these onstants, the labels of u and v have to be equal (modulo �).

3 Optimization

In Setion 2, we mentioned that optimizations are neessary to obtain pratial deidability

for desription logis. In the following, the optimizations inluded in Saga are desribed.

Syntati Simpli�ation. Before Saga tries to onstrut a tableau for the input formula '

it simpli�es the syntati struture of ' to speed up the tableau generation proess: tautologies

and ontraditions are made expliit, a normal form is used whih supports their detetion,

and the variables ontained in a formula ' are normalized when ' is added to a node. Details

an be found in [17℄ or [18℄.

Semanti Branhing. The naive method to satisfy a disjuntion ' _ � is to add ' �rst

and, if this auses a lash, add � afterwards (syntati branhing). This is rather ineÆient

beause resoures have been spent to �nd out that ' is unsatis�able in the urrent tree, but

this information is not used any more. Semanti branhing [7℄ adds :' ^ � to the tree if '

leads to a lash. This makes expliit the information that ' is unsatis�able and prunes the

searh spae beause a tree in whih ' is satis�able is never tested again.

Bakjumping. After a lash, naive baktraking returns to the most reent branhing point

(BP). Dependeny direted baktraking (bakjumping) [3℄ instead returns to the most reent

BP one of the lashing formulae depends on. Thus, the intermediate BPs, whih did not have

any inuene on the lash, are skipped. To make bakjumping possible, every formula ' in a

node n is labeled with a dependeny set D('; n), the set of branhing points the presene of '

in n depends on. After a lash between ' and � in n, the most reent BP b in D('; n)[D(�; n)

is determined and the bakjump to b is performed.

Boolean Constraint Propagation. Before hoosing a disjunt  from a disjuntion ' _ �

in a node n and performing a branh for  , every disjunt is tested for being losed : a disjunt

is losed if its negation is already ontained in n; otherwise, it is open. If  is losed, it is



removed from the disjuntion (beause adding  would lead to an immediate lash), and only

the remaining disjunts are onsidered for branhing (boolean onstraint propagation [6℄). In

partiular, if there is only one open disjunt, it is added deterministially to n, and the branh

is avoided.

4 Heuristis

There are two kinds of non-determinism involved in the GF-algorithm: the deision on whih

one of several available formulae to proess �rst is don't-are non-deterministi, i.e. every hoie

will lead to a orret behaviour of the algorithm, whereas the deision on whih disjunt of a

disjuntion to add to the orresponding node (branhing) is don't-know non-deterministi, i.e.

only ertain hoies will lead to the disovery of a tableau. In both ases, the heuristi used

to make the deision obviously has a signi�ant inuene on performane.

Branhing. In Saga, three di�erent heuristis for hoosing the disjunt for the next branh

are implemented. Eah one tries to improve the eÆieny of one of the other optimizations.

MOMS The heuristi \MaximumOurrene in disjuntions of Minimum Size" [6℄ onsiders

all disjuntions of minimum size in the orresponding node and ounts the positive and

negated appearanes of the disjunts. The disjunt ' to branh on is the one with the

largest ounter. If the ounter for ' is larger than the one for :', :' is tested �rst. If

this leads to a lash, ' is tested afterwards. (MOMS therefore impliitly requires semanti

branhing.) The goal is to optimize BCP by inreasing the number of losed disjunts

and reahing deterministi expansion as soon as possible. One disadvantage of MOMS lies

in the fat that it tries the more onstrained alternative �rst, i.e. the alternative that is

more likely to fail [17℄. Furthermore, it was observed that MOMS interats adversely with

bakjumping [18℄.

iMOMS Inverted MOMS [17℄ tries to avoid the disadvantage of being likely to fail with

the �rst alternative by testing ' and :' in the opposite order. Thus, it �rst hooses the

disjunt whih satis�es most of the (smallest) disjuntions.

Maximize-jump This heuristi was developed for the FaCT system [19℄. From all disjun-

tions of a node, it selets the one for whih the maximum element in the dependeny set

is minimal, i.e. the one leading to the furthest bakjump. In order to �nd the �rst disjunt

to try, FaCT uses a MOMS-style heuristi. In Saga, the syntatially shortest disjunt

is seleted beause a short formula probably an be tested faster than a long one whih

is likely to ontain existential or universal formulae. Sine this approah does not rely on

ounts of disjunts like MOMS, we also expet to see the di�erenes in eÆieny more

learly.

Choosing the Next Formula. There are two kinds of formulae whih are signi�antly more

expensive to proess than the other ones: disjuntions require branhing and baktraking,

whih inludes reating bakups of nodes and restoring them after a lash, and for existential

formulae in a node n, eah predeessor m

i

of n has to be ompared with all nodes l

j

with

N(l

j

) < N(m

i

). For the bloking test itself, all mappings from C(n

i

) to C(l

j

) have to be tested

(in the worst ase). Therefore, either disjuntions or existential formulae should be proessed

last. These two heuristis are implemented in Saga.

Bloking The bloking ondition for a node n as de�ned in Setion 2 requires �(�(n)) to be

equal to a restrition �(m) j

�(C(n))

for a predeessor node m. The algorithm also works for



an alternative de�nition of bloking where the same number of onstants is required for n and

m, i.e. equality of �(n) and �(m) modulo �. This may lead to postponing bloking beause

the bloking test only sueeds after the reation of some additional nodes, but the test itself

beomes signi�antly more eÆient: if the number of onstants, atoms, universal formulae et.

is not idential for m and n, it an be aborted immediately without generating a mapping �.

In the following, we will refer to the di�erent bloking onditions as subset-equality bloking

and equality bloking respetively.

5 Comparison of Heuristis

In this setion, we present an analysis of the eÆieny of the heuristis and optimizations

desribed in the previous setions. We used two sets from the \Tableaux 2000 Non-Classial

Systems Comparison" (TANCS-2000) [24℄ benhmark suite and some GF formulae to see how

the heuristis behave for formulae of di�erent omplexity.

QBF-INV The \quanti�ed boolean formulae" benhmark onsists of sets of 8 random QBF

formulae whih satisfy given parameters. These formulae are translated into the logi K

�

(K with inverse modality). For this omparison, we used the sets \p-qbf-inv-nfSSS-K4-

C-V4-D4" with  2 f10; 20; 30; 40; 50g.

PSAT-INV The random generated \periodi satis�ability" formulae are translated into the

logi K

�

with global axioms. We used the sets \p-psat-inv-nf-K4-C-V4-D4" with  2

f20; 30; 40; 50g.

GFB The QBF and PSAT formulae do not allow us to evaluate the di�erent bloking on-

ditions (equality or subset-equality bloking, f. Setion 4) beause every node in a tree

onstruted for these formulae ontains exatly two onstants. Therefore, we generated

some (simple) \GF Benhmark" (GFB) formulae. Eah set onsists of 8 formulae and is

haraterized by the width w and depth d of the formula and the maximum arity r of the

relations.

The QBF benhmark does not require bloking beause termination of the algorithm is

ensured by the properties of the K

�

logi: the omplexity of formulae ontinuously dereases

from predeessor to suessor nodes. This property makes it possible to regard the bloking

test as another heuristi for these logis and evaluate its eÆieny by turning it on or o�.

To evaluate the heuristis by themselves as well as their interations, we ran every benh-

mark with every possible ombination of heuristis. The �gures in the following setions show

how many formulae ould be solved for the orresponding ombination. The benhmarks were

run on the following system: hardware: Pentium-III (733 MHz), 384 MB RAM, 512 MB swap

spae; software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600 se (TANCS);

100 se (GFB).

QBF Results (Figure 1). Surprisingly, bloking is the most eÆient heuristi. With bloking

enabled, up to 26 formulae an be solved, ompared to at most 4 without bloking. Although

the bloking test is very expensive in the worst ase, it is obviously far more eÆient than the

expansion of the nodes that an be bloked.

Semanti branhing and bakjumping also provide a signi�ant speedup. While bakjump-

ing delivers a rather onstant improvement independent of the other optimizations, semanti

branhing works partiularly well with eÆient ombinations. iMOMS is slightly worse than

maximize-jump, and MOMS is far worse than the other branhing heuristis. This is true even

when bakjumping is disabled, i.e. when maximize-jump e�etively hooses a random disjunt

(beause there is no bakjump to maximize). Proessing 9- or _-formulae last does not have a

signi�ant inuene, and syntati simpli�ation has none at all (it is therefore not reorded

in the �gures).
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Fig. 1: Heuristis Comparison for QBF with \_ Last" (Left) and \9 Last" (Right)

PSAT Results (Figure 2). Semanti branhing is by far the most important heuristi, and

bakjumping is also very eÆient. Furthermore, we an observe a signi�ant speedup if 9-

formulae are proessed last. iMOMS is slightly better than maximize-jump, but the di�erene

is irrelevant for eÆient ombinations of the other heuristis. The same holds for syntati

simpli�ation: if we have an eÆient ombination of heuristis, disabling syntati simpli�-

ation does not signi�antly slow down the system. This indiates that, in the presene of

semanti branhing and bakjumping, a ompliated syntax of a formula does not a�et the

overall eÆieny.
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Fig. 2: Heuristis Comparison for PSAT with \_ Last" (Left) and \9 Last" (Right)

GFB Results. The results for QBF indiate that bloking, although expensive, results in a

speedup. This raises the question if searhing for more bloking situations by using subset-

equality bloking instead of equality bloking might lead to a further speedup. The tests show

that this is is not the ase: subset-equality bloking leads to a higher average time and to

fewer solvable formulae. Syntati simpli�ation has more inuene for GFB than for the other

benhmarks, whih is probably aused by the simple and random struture of the formulae.

The remaining heuristis behave similarly (therefore we do not inlude a �gure).



6 Comparison with Other Systems

In this setion, we ompare the results of the TANCS-2000 ompetition with those we obtained

with Saga. This allows us to examine how well Saga sales ompared to other systems, i.e.

how fast it an solve formulae from GF and less expressive logis. Sine most of the TANCS

systems used the formulae without inverse roles for benhmarking, the results presented in

Figure 3 were produed with the \PSAT" rather than with the \PSAT-INV" formulae.

RACE [12, 15℄ is a TBox and ABox reasoner for the desription logi ALCNH

R

+
. DLP

[26, 25℄ is a DL system for several expressive desription logis, inluding K and PDL. In

addition to the optimizations used in Saga, these two systems perform ahing, i.e. they

remember the satis�ability status of a node to avoid the expansion of another node with

the same label. The third ompetitor Spass [28, 29℄ is a resolution based system testing

satis�ability of �rst order formulae. It also ontains several optimizations, some of whih

resemble those mentioned in Setion 3 (e.g. \branh ondensing" orresponds to bakjumping

[22℄). MSpass [23℄ is a Spass module translating formulae from the syntax of of modal and

desription logis to �rst order logi so they an be tested with Spass.

For this omparison, we used the formulae \p-psat-nf-K4-C-Vv-Dd" with  2

f20; 30; 40; 50g; v 2 f4; 8g; d 2 f1; 2g and the GFB formulae. The �gures show for every sys-

tem how many formulae of eah set ould be solved. The Saga benhmark was run on the

following system: hardware: Pentium-III (1 GHz), 512 MB RAM, 1 GB swap spae; software:

Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 1000 se.

PSAT Results (Figure 3). Although the results presented in this paragraph were produed

on di�erent hardware with di�erent timeouts and are not diretly omparable, the di�erenes

between the systems are relatively small. With depth 1, the formulae were easy for all of the

systems. For the harder formulae with depth 2, the di�erenes beome visible and it turns out

that Saga is slightly slower than RACE and slightly faster than DLP and MSpass.
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Fig. 3: System Comparison for PSAT

GFB Results (Figure 4). The formula sets are haraterized by their w, d and r values

(f. Setion 5). Among the omparison systems, Spass is the only one that an deide GF

formulae, but its harateristis are quite di�erent from Saga's. Therefore, it is no surprise

that the results are also di�erent: while Saga handles a large depth (d16) of a formula well, it



has problems with relations of a higher arity (r4). Spass shows the opposite behaviour. The

sum of deidable formulae is similar.
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7 Conlusion

In this paper, we presented Saga, an implementation of a GF tableau algorithm. It turned out

that in spite of its high worst-ase omplexity, it performs well for existing benhmark formulae

if an eÆient ombination of optimizations is used: semanti branhing and bakjumping are

partiularly useful. The bloking test speeds up the program even when bloking is not required

to ensure termination.

Among the branhing heuristis, maximizing the bakjump or satisfying many disjuntions

at one is most eÆient. Whether disjuntions or existential formulae should be proessed last

depends on the logi of the formula to test. In omparison to other systems, Saga is slightly

faster than DLP and Spass/MSpass and slightly slower than RACE.
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