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Abstra
t. In this paper we present Saga, an implementation of a tableau-based

Satis�ability Algorithm for the Guarded Fragment (GF). Satis�ability for GF with

�nite signature is ExpTime-
omplete and therefore intra
table in the worst 
ase, but

existing tableau-based systems for ExpTime-
omplete des
ription and modal logi
s per-

form reasonably well for \realisti
" knowledge bases. We implemented and evaluated

several optimizations used in des
ription logi
 systems, and our results show that, with

an eÆ
ient 
ombination, Saga 
an 
ompete with existing highly optimized systems for

des
ription logi
s.

1 Preliminaries

The Guarded Fragment of �rst order predi
ate logi
 (GF) [1℄ restri
ts the appearan
e of

quanti�ers to formulae of the kind

8x(G(x;y)! '(x;y))

9x(G(x;y) ^ '(x;y)) ;

where x and y are tuples of variables, and G(x;y) is an atom (the guard of the formula). This

fragment has many desirable properties: satis�ability is de
idable [1℄ in 2-ExpTime, whi
h

is redu
ed to ExpTime if the arity of the relations is bounded [11℄. It has the �nite model

property [1℄ and a tree model property for a spe
ial kind of tree [11℄.

GF 
an be regarded as a generalization of modal or des
ription logi
s to n-ary relations

(roles). The more expressive su
h logi
s have a 
omparably high worst-
ase 
omplexity, e.g.

PDL [5℄ and SHIQ [21℄ are ExpTime-
omplete [27, 20℄. However, with systems de
iding one

of these logi
s using an optimized tableau algorithm, e.g. DLP [25℄, FaCT [18℄, and RACER

[13℄, satis�ability be
omes tra
table for a variety of realisti
 knowledge bases [18, 19, 14℄. This

suggests that a tableau algorithm for GF -satis�ability might lead to an implementation that

does not 
onsume exponential time for \realisti
" formulae.

GF is also de
idable by resolution [9℄. To the best of our knowledge, the eÆ
ien
y of this

approa
h for realisti
 formulae has not yet been analyzed.

2 A Tableau Algorithm for GF

In [16℄, a tableau algorithm is presented for the Clique Guarded Fragment (CGF) [10℄, a

generalization of GF . Its worst-
ase 
omplexity is 2-NExpTime (NExpTime for signatures

with bounded arity), and therefore higher than that of GF itself, but it allows for many of

the optimizations known from des
ription logi
s and therefore promises to lead to an eÆ
ient

implementation. Saga only implements those parts of the algorithm that are relevant for GF .



Due to spa
e limitations, we 
annot present the entire algorithm here. Instead, we will

only des
ribe how it di�ers from \standard" tableau algorithms for des
ription logi
s (for

an introdu
tion and examples, see e.g. [2℄). A node in a GF tableau does not stand for a

single 
onstant (individual), but for a set of 
onstants that appear together in a guard atom.

Therefore, a node n is labeled with a set C(n) of 
onstants and a set �(n) of formulae whi
h


ontain only 
onstants in C(n).

A tree model for a GF formula need not be �nite. For that reason, termination of the

tableau generation is ensured by blo
king, i.e. no su

essors are 
reated for a node n if there

exists an an
estorm of n whi
h 
ontains the same formulae as n (modulo a mapping � between

the 
onstants of n and m). For this purpose, n is labeled upon 
reation with a natural number

N(n) whi
h is larger than N(l) for every node l that was 
reated previously.

Formally, a node n is dire
tly blo
ked if there exists a node m su
h that N(m) < N(n), m is

not blo
ked, and there exists an inje
tive mapping � : C(n)! C(m) su
h that for all 
onstants


 2 C(n) \ C(m), �(
) = 
 and for the extension of � to formulae, �(�(n)) = �(m) j

�(C(n))

holds. A node n is blo
ked if it is dire
tly blo
ked or if its prede
essor is blo
ked. This notion

of blo
king is not equivalent to subset blo
king, where a node n is blo
ked by a node m if the

label of n is a subset of the label of m: for GF , the image of � need only be a subset of C(m),

but restri
ted to these 
onstants, the labels of u and v have to be equal (modulo �).

3 Optimization

In Se
tion 2, we mentioned that optimizations are ne
essary to obtain pra
ti
al de
idability

for des
ription logi
s. In the following, the optimizations in
luded in Saga are des
ribed.

Synta
ti
 Simpli�
ation. Before Saga tries to 
onstru
t a tableau for the input formula '

it simpli�es the synta
ti
 stru
ture of ' to speed up the tableau generation pro
ess: tautologies

and 
ontradi
tions are made expli
it, a normal form is used whi
h supports their dete
tion,

and the variables 
ontained in a formula ' are normalized when ' is added to a node. Details


an be found in [17℄ or [18℄.

Semanti
 Bran
hing. The naive method to satisfy a disjun
tion ' _ � is to add ' �rst

and, if this 
auses a 
lash, add � afterwards (synta
ti
 bran
hing). This is rather ineÆ
ient

be
ause resour
es have been spent to �nd out that ' is unsatis�able in the 
urrent tree, but

this information is not used any more. Semanti
 bran
hing [7℄ adds :' ^ � to the tree if '

leads to a 
lash. This makes expli
it the information that ' is unsatis�able and prunes the

sear
h spa
e be
ause a tree in whi
h ' is satis�able is never tested again.

Ba
kjumping. After a 
lash, naive ba
ktra
king returns to the most re
ent bran
hing point

(BP). Dependen
y dire
ted ba
ktra
king (ba
kjumping) [3℄ instead returns to the most re
ent

BP one of the 
lashing formulae depends on. Thus, the intermediate BPs, whi
h did not have

any in
uen
e on the 
lash, are skipped. To make ba
kjumping possible, every formula ' in a

node n is labeled with a dependen
y set D('; n), the set of bran
hing points the presen
e of '

in n depends on. After a 
lash between ' and � in n, the most re
ent BP b in D('; n)[D(�; n)

is determined and the ba
kjump to b is performed.

Boolean Constraint Propagation. Before 
hoosing a disjun
t  from a disjun
tion ' _ �

in a node n and performing a bran
h for  , every disjun
t is tested for being 
losed : a disjun
t

is 
losed if its negation is already 
ontained in n; otherwise, it is open. If  is 
losed, it is



removed from the disjun
tion (be
ause adding  would lead to an immediate 
lash), and only

the remaining disjun
ts are 
onsidered for bran
hing (boolean 
onstraint propagation [6℄). In

parti
ular, if there is only one open disjun
t, it is added deterministi
ally to n, and the bran
h

is avoided.

4 Heuristi
s

There are two kinds of non-determinism involved in the GF-algorithm: the de
ision on whi
h

one of several available formulae to pro
ess �rst is don't-
are non-deterministi
, i.e. every 
hoi
e

will lead to a 
orre
t behaviour of the algorithm, whereas the de
ision on whi
h disjun
t of a

disjun
tion to add to the 
orresponding node (bran
hing) is don't-know non-deterministi
, i.e.

only 
ertain 
hoi
es will lead to the dis
overy of a tableau. In both 
ases, the heuristi
 used

to make the de
ision obviously has a signi�
ant in
uen
e on performan
e.

Bran
hing. In Saga, three di�erent heuristi
s for 
hoosing the disjun
t for the next bran
h

are implemented. Ea
h one tries to improve the eÆ
ien
y of one of the other optimizations.

MOMS The heuristi
 \MaximumO

urren
e in disjun
tions of Minimum Size" [6℄ 
onsiders

all disjun
tions of minimum size in the 
orresponding node and 
ounts the positive and

negated appearan
es of the disjun
ts. The disjun
t ' to bran
h on is the one with the

largest 
ounter. If the 
ounter for ' is larger than the one for :', :' is tested �rst. If

this leads to a 
lash, ' is tested afterwards. (MOMS therefore impli
itly requires semanti


bran
hing.) The goal is to optimize BCP by in
reasing the number of 
losed disjun
ts

and rea
hing deterministi
 expansion as soon as possible. One disadvantage of MOMS lies

in the fa
t that it tries the more 
onstrained alternative �rst, i.e. the alternative that is

more likely to fail [17℄. Furthermore, it was observed that MOMS intera
ts adversely with

ba
kjumping [18℄.

iMOMS Inverted MOMS [17℄ tries to avoid the disadvantage of being likely to fail with

the �rst alternative by testing ' and :' in the opposite order. Thus, it �rst 
hooses the

disjun
t whi
h satis�es most of the (smallest) disjun
tions.

Maximize-jump This heuristi
 was developed for the FaCT system [19℄. From all disjun
-

tions of a node, it sele
ts the one for whi
h the maximum element in the dependen
y set

is minimal, i.e. the one leading to the furthest ba
kjump. In order to �nd the �rst disjun
t

to try, FaCT uses a MOMS-style heuristi
. In Saga, the synta
ti
ally shortest disjun
t

is sele
ted be
ause a short formula probably 
an be tested faster than a long one whi
h

is likely to 
ontain existential or universal formulae. Sin
e this approa
h does not rely on


ounts of disjun
ts like MOMS, we also expe
t to see the di�eren
es in eÆ
ien
y more


learly.

Choosing the Next Formula. There are two kinds of formulae whi
h are signi�
antly more

expensive to pro
ess than the other ones: disjun
tions require bran
hing and ba
ktra
king,

whi
h in
ludes 
reating ba
kups of nodes and restoring them after a 
lash, and for existential

formulae in a node n, ea
h prede
essor m

i

of n has to be 
ompared with all nodes l

j

with

N(l

j

) < N(m

i

). For the blo
king test itself, all mappings from C(n

i

) to C(l

j

) have to be tested

(in the worst 
ase). Therefore, either disjun
tions or existential formulae should be pro
essed

last. These two heuristi
s are implemented in Saga.

Blo
king The blo
king 
ondition for a node n as de�ned in Se
tion 2 requires �(�(n)) to be

equal to a restri
tion �(m) j

�(C(n))

for a prede
essor node m. The algorithm also works for



an alternative de�nition of blo
king where the same number of 
onstants is required for n and

m, i.e. equality of �(n) and �(m) modulo �. This may lead to postponing blo
king be
ause

the blo
king test only su

eeds after the 
reation of some additional nodes, but the test itself

be
omes signi�
antly more eÆ
ient: if the number of 
onstants, atoms, universal formulae et
.

is not identi
al for m and n, it 
an be aborted immediately without generating a mapping �.

In the following, we will refer to the di�erent blo
king 
onditions as subset-equality blo
king

and equality blo
king respe
tively.

5 Comparison of Heuristi
s

In this se
tion, we present an analysis of the eÆ
ien
y of the heuristi
s and optimizations

des
ribed in the previous se
tions. We used two sets from the \Tableaux 2000 Non-Classi
al

Systems Comparison" (TANCS-2000) [24℄ ben
hmark suite and some GF formulae to see how

the heuristi
s behave for formulae of di�erent 
omplexity.

QBF-INV The \quanti�ed boolean formulae" ben
hmark 
onsists of sets of 8 random QBF

formulae whi
h satisfy given parameters. These formulae are translated into the logi
 K

�

(K with inverse modality). For this 
omparison, we used the sets \p-qbf-inv-
nfSSS-K4-

C
-V4-D4" with 
 2 f10; 20; 30; 40; 50g.

PSAT-INV The random generated \periodi
 satis�ability" formulae are translated into the

logi
 K

�

with global axioms. We used the sets \p-psat-inv-
nf-K4-C
-V4-D4" with 
 2

f20; 30; 40; 50g.

GFB The QBF and PSAT formulae do not allow us to evaluate the di�erent blo
king 
on-

ditions (equality or subset-equality blo
king, 
f. Se
tion 4) be
ause every node in a tree


onstru
ted for these formulae 
ontains exa
tly two 
onstants. Therefore, we generated

some (simple) \GF Ben
hmark" (GFB) formulae. Ea
h set 
onsists of 8 formulae and is


hara
terized by the width w and depth d of the formula and the maximum arity r of the

relations.

The QBF ben
hmark does not require blo
king be
ause termination of the algorithm is

ensured by the properties of the K

�

logi
: the 
omplexity of formulae 
ontinuously de
reases

from prede
essor to su

essor nodes. This property makes it possible to regard the blo
king

test as another heuristi
 for these logi
s and evaluate its eÆ
ien
y by turning it on or o�.

To evaluate the heuristi
s by themselves as well as their intera
tions, we ran every ben
h-

mark with every possible 
ombination of heuristi
s. The �gures in the following se
tions show

how many formulae 
ould be solved for the 
orresponding 
ombination. The ben
hmarks were

run on the following system: hardware: Pentium-III (733 MHz), 384 MB RAM, 512 MB swap

spa
e; software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600 se
 (TANCS);

100 se
 (GFB).

QBF Results (Figure 1). Surprisingly, blo
king is the most eÆ
ient heuristi
. With blo
king

enabled, up to 26 formulae 
an be solved, 
ompared to at most 4 without blo
king. Although

the blo
king test is very expensive in the worst 
ase, it is obviously far more eÆ
ient than the

expansion of the nodes that 
an be blo
ked.

Semanti
 bran
hing and ba
kjumping also provide a signi�
ant speedup. While ba
kjump-

ing delivers a rather 
onstant improvement independent of the other optimizations, semanti


bran
hing works parti
ularly well with eÆ
ient 
ombinations. iMOMS is slightly worse than

maximize-jump, and MOMS is far worse than the other bran
hing heuristi
s. This is true even

when ba
kjumping is disabled, i.e. when maximize-jump e�e
tively 
hooses a random disjun
t

(be
ause there is no ba
kjump to maximize). Pro
essing 9- or _-formulae last does not have a

signi�
ant in
uen
e, and synta
ti
 simpli�
ation has none at all (it is therefore not re
orded

in the �gures).
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Fig. 1: Heuristi
s Comparison for QBF with \_ Last" (Left) and \9 Last" (Right)

PSAT Results (Figure 2). Semanti
 bran
hing is by far the most important heuristi
, and

ba
kjumping is also very eÆ
ient. Furthermore, we 
an observe a signi�
ant speedup if 9-

formulae are pro
essed last. iMOMS is slightly better than maximize-jump, but the di�eren
e

is irrelevant for eÆ
ient 
ombinations of the other heuristi
s. The same holds for synta
ti


simpli�
ation: if we have an eÆ
ient 
ombination of heuristi
s, disabling synta
ti
 simpli�-


ation does not signi�
antly slow down the system. This indi
ates that, in the presen
e of

semanti
 bran
hing and ba
kjumping, a 
ompli
ated syntax of a formula does not a�e
t the

overall eÆ
ien
y.
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Fig. 2: Heuristi
s Comparison for PSAT with \_ Last" (Left) and \9 Last" (Right)

GFB Results. The results for QBF indi
ate that blo
king, although expensive, results in a

speedup. This raises the question if sear
hing for more blo
king situations by using subset-

equality blo
king instead of equality blo
king might lead to a further speedup. The tests show

that this is is not the 
ase: subset-equality blo
king leads to a higher average time and to

fewer solvable formulae. Synta
ti
 simpli�
ation has more in
uen
e for GFB than for the other

ben
hmarks, whi
h is probably 
aused by the simple and random stru
ture of the formulae.

The remaining heuristi
s behave similarly (therefore we do not in
lude a �gure).



6 Comparison with Other Systems

In this se
tion, we 
ompare the results of the TANCS-2000 
ompetition with those we obtained

with Saga. This allows us to examine how well Saga s
ales 
ompared to other systems, i.e.

how fast it 
an solve formulae from GF and less expressive logi
s. Sin
e most of the TANCS

systems used the formulae without inverse roles for ben
hmarking, the results presented in

Figure 3 were produ
ed with the \PSAT" rather than with the \PSAT-INV" formulae.

RACE [12, 15℄ is a TBox and ABox reasoner for the des
ription logi
 ALCNH

R

+
. DLP

[26, 25℄ is a DL system for several expressive des
ription logi
s, in
luding K and PDL. In

addition to the optimizations used in Saga, these two systems perform 
a
hing, i.e. they

remember the satis�ability status of a node to avoid the expansion of another node with

the same label. The third 
ompetitor Spass [28, 29℄ is a resolution based system testing

satis�ability of �rst order formulae. It also 
ontains several optimizations, some of whi
h

resemble those mentioned in Se
tion 3 (e.g. \bran
h 
ondensing" 
orresponds to ba
kjumping

[22℄). MSpass [23℄ is a Spass module translating formulae from the syntax of of modal and

des
ription logi
s to �rst order logi
 so they 
an be tested with Spass.

For this 
omparison, we used the formulae \p-psat-
nf-K4-C
-Vv-Dd" with 
 2

f20; 30; 40; 50g; v 2 f4; 8g; d 2 f1; 2g and the GFB formulae. The �gures show for every sys-

tem how many formulae of ea
h set 
ould be solved. The Saga ben
hmark was run on the

following system: hardware: Pentium-III (1 GHz), 512 MB RAM, 1 GB swap spa
e; software:

Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 1000 se
.

PSAT Results (Figure 3). Although the results presented in this paragraph were produ
ed

on di�erent hardware with di�erent timeouts and are not dire
tly 
omparable, the di�eren
es

between the systems are relatively small. With depth 1, the formulae were easy for all of the

systems. For the harder formulae with depth 2, the di�eren
es be
ome visible and it turns out

that Saga is slightly slower than RACE and slightly faster than DLP and MSpass.
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Fig. 3: System Comparison for PSAT

GFB Results (Figure 4). The formula sets are 
hara
terized by their w, d and r values

(
f. Se
tion 5). Among the 
omparison systems, Spass is the only one that 
an de
ide GF

formulae, but its 
hara
teristi
s are quite di�erent from Saga's. Therefore, it is no surprise

that the results are also di�erent: while Saga handles a large depth (d16) of a formula well, it



has problems with relations of a higher arity (r4). Spass shows the opposite behaviour. The

sum of de
idable formulae is similar.
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7 Con
lusion

In this paper, we presented Saga, an implementation of a GF tableau algorithm. It turned out

that in spite of its high worst-
ase 
omplexity, it performs well for existing ben
hmark formulae

if an eÆ
ient 
ombination of optimizations is used: semanti
 bran
hing and ba
kjumping are

parti
ularly useful. The blo
king test speeds up the program even when blo
king is not required

to ensure termination.

Among the bran
hing heuristi
s, maximizing the ba
kjump or satisfying many disjun
tions

at on
e is most eÆ
ient. Whether disjun
tions or existential formulae should be pro
essed last

depends on the logi
 of the formula to test. In 
omparison to other systems, Saga is slightly

faster than DLP and Spass/MSpass and slightly slower than RACE.
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