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Abstra
t. In this paper, we present Saga, the implementation of a

tableau-based Satis�ability Algorithm for the Guarded Fragment (GF).

Satis�ability for GF with �nite signature is ExpTime-
omplete and

therefore theoreti
ally intra
table, but existing tableau-based systems for

ExpTime-
omplete des
ription and modal logi
s perform well for many

realisti
 knowledge bases. We implemented and evaluated several opti-

misations used in des
ription logi
 systems, and our results show that

with an eÆ
ient 
ombination, Saga 
an 
ompete with existing highly

optimised systems for des
ription logi
s and �rst order logi
.

1 Preliminaries

The Guarded Fragment of �rst order predi
ate logi
 (GF) [1℄ restri
ts the ap-

pearan
e of quanti�ers to formulas of the kind

8x(G(x;y)! '(x;y))

and 9x(G(x;y) ^ '(x;y)) ;

where x and y are tuples of variables, and G(x;y) is an atom, whi
h is 
alled

the guard of the formula, whereas '(x;y) is 
alled the body. This fragment has

many desirable properties: satis�ability is de
idable [1℄ in 2-ExpTime, whi
h is

redu
ed to ExpTime if the arity of the relations is bounded [12℄. It also has the

�nite model property [1℄ and a tree model property for a spe
ial notion of a tree

[12℄.

GF 
an be regarded as a generalisation of modal or des
ription logi
s to n-

ary relations (roles) [1, 10℄. The more expressive su
h logi
s have a 
omparably

high worst-
ase 
omplexity, e.g. PDL [4℄ and SHIQ [23℄ are ExpTime-
omplete

[29, 22℄. However, with optimised tableau algorithms like DLP [28℄, whi
h de
ides

PDL, and FaCT [19℄ or RACER [14℄, whi
h de
ide SHIQ, satis�ability be
omes

tra
table for various realisti
 knowledge bases [19, 21, 15℄. This suggests that a

tableau algorithm for GF-satis�ability might lead to an implementation that

does not 
onsume exponential time in pra
ti
e.

GF is also de
idable by resolution [9℄. To the best of our knowledge, the

eÆ
ien
y of this approa
h for realisti
 formulas has not yet been analysed.



2 A Tableau Algorithm for GF

In [17℄, a tableau algorithm is presented for the Clique Guarded Fragment

(CGF) [11℄, a generalisation of GF . Its worst-
ase 
omplexity is 2-NExpTime

(NExpTime for signatures with bounded arity), and therefore higher than that

of the automata algorithm in [12℄, but it allows for many of the optimisations

known from des
ription logi
s and therefore promises to lead to an eÆ
ient im-

plementation.

Before des
ribing this algorithm, we re
all some de�nitions from [17℄. Sin
e

our implementation Saga de
ides satis�ability of GF and not of CGF , the de�ni-

tions and the des
ription of the tableau algorithm are restri
ted to GF formulas.

De�nition 1 (NNF, 
losure). A formula ' 2 GF is in negation normal form

(NNF) if negation o

urs only in front of atoms.

For a GF-senten
e ' in NNF, the 
losure 
l(') is the set of all subformulas

of '. For a set C of 
onstants, 
l(';C) is the set 
ontaining all instantiations of


l(') with 
onstants in C.

Table 1: Completion Rules for GF

R^ if ' ^ � 2 �(v)

then �(v) := �(v) [ f'; �g

unless f'; �g � �(v)

R_ if ' _ � 2 �(v)

then �(v) := �(v) [ f g for a  
hosen non-deterministi
ally from f'; �g

unless f'; �g \�(v) 6= ;

R

:

= if a

:

= b 2 �(v)

then for all nodes w that 
ontain a:

C(w) := (C(w) n fag) [ fbg and �(w) := �(w)[a 7! b℄

unless a = b

R8 if 8x(G(x; 
)! '(x; 
)) 2 �(v),

and there exists a b � C(v) su
h that G(b; 
) 2 �(v)

then �(v) := �(v) [ f'(b; 
)g

unless '(b; 
) 2 �(v)

R9 if 9x(G(x; 
) ^ '(x; 
)) 2 �(v)

then let b be a sequen
e of new 
onstants with the same length as x


reate a son w of v with C(w) := b [ 
; �(w) := fG(b; 
); '(b; 
)g

N(w) := 1 +maxfN(v) : v 2 V n fwgg

unless there is a b; 
 � �(v) with fG(b; 
); '(b; 
)g � �(v),

there is a son w of v with fG(b; 
); '(b; 
)g � �(w) for some b; 
 � �(w),

or v is blo
ked

Rl if '(
) 2 �(v) is an atomi
 or universally quanti�ed formula,

and w is a neighbour of v with 
 � C(w)

then �(w) := �(w) [ f'(
)g

unless '(
) 2 �(w)



The GF tableau algorithm operates on a 
ompletion tree, a vertex labeled

tree in whi
h every node stands for a set of 
onstants whi
h appear together in

a guard atom.

De�nition 2 (Completion Tree, Blo
king, Tableau). Let ' 2 GF be a

senten
e in NNF. A 
ompletion tree T = (V;E;C;�;N) for ' is a vertex labeled

tree (V;E) with the fun
tion C labeling ea
h node v 2 V with a set of 
onstants,

� labeling ea
h v 2 V with a subset of 
l(';C(v)), and N mapping ea
h node to

a distin
t natural number su
h that if v is an an
estor of w, then N(v) < N(w).

A node v 2 V is 
alled dire
tly blo
ked by a node u 2 V if u is not blo
ked,

N(u) < N(v), and there is an inje
tive mapping � from C(v) to C(u) su
h

that for all 
onstants 
 2 C(v) \ C(u), �(
) = 
 and for the extension of �

to formulas, �(�(v)) = �(u)j

�(C(v))

, where �(u)j

�(C(v))

denotes the set of all

formulas in �(u) 
ontaining only 
onstants in �(C(v)). A node is 
alled blo
ked

if it is dire
tly blo
ked or if its father is blo
ked.

A 
ompletion tree T 
ontains a 
lash if there is a node v 2 V su
h that

:(


:

= 
) 2 �(v) for a 
onstant 
 2 C(v) or there is an atomi
 formula ' su
h

that f';:'g � �(v). Otherwise, T is 
alled 
lash-free. A 
ompletion tree T is


alled 
omplete if none of the 
ompletion rules given in Table 1 
an be applied

to T . A tableau is a 
omplete and 
lash-free 
ompletion tree.

For a formula set � and 
onstant symbols a; b, we use the notation �[a 7! b℄

to denote the set of formulas in � where all o

urren
es of a are repla
ed by b.

The blo
king 
ondition is dynami
, i.e. blo
kings are not established forever,

but they 
an be 
an
eled later if one of the nodes involved 
hanges (and reappear

if the other one 
hanges a

ordingly).

To de
ide the satis�ability of a formula ', a root node n

0

is 
reated with

N(n

0

) := 0, C(n

0

) := f
g for a random 
onstant 
 (to prevent empty stru
-

tures), and �(n

0

) := f'g. Then the 
ompletion rules in Table 1 are applied

until a tableau is found or a 
lash o

urs. If the rules 
an be applied in su
h a

way that a tableau is found, \' is satisfiable" is output, otherwise \' is

unsatisfiable".

Sin
e a satis�able GF -formula need not have a �nite tree model, the blo
k-

ing 
ondition is ne
essary to ensure termination. It prevents new nodes from

being 
reated if there is already another node 
ontaining \similar" formulas. If

a tableau is found, it 
an be transformed into a model by unraveling the blo
k-

ings, i.e. repla
ing a blo
ked node v with a 
opy of the node u blo
king v. Note

that the blo
king 
ondition is not equivalent to subset blo
king, where a node

v is blo
ked by a node u if the label of v is a subset of the label of u: for GF ,

the image of � need only be a subset of C(u), but restri
ted to these 
onstants,

the labels of u and v have to be equal (modulo �). The proof of 
orre
tness,


ompleteness and termination of the algorithm 
an be found in [17℄.

3 Implementation

The algorithm des
ribed in Se
tion 2 leaves many possibilities for an implemen-

tation. To obtain an eÆ
ient program, the following issues have to be 
onsidered:



Non-Determinism. There are two kinds of non-determinism involved in the

GF-algorithm: the de
ision whi
h rule to apply �rst if several ones are appli
able

is don't-
are non-deterministi
, i.e. every 
hoi
e will lead to a 
orre
t behaviour

of the algorithm, but its eÆ
ien
y will depend on a good heuristi
. The two

heuristi
s implemented in Saga are des
ribed in Se
tion 5.

The de
ision whi
h disjun
t of a disjun
tion to add to the 
orresponding node

is don't-know non-deterministi
, i.e. only 
ertain 
hoi
es will lead to the dis
overy

of a tableau. Therefore, a bran
hing and ba
ktra
king te
hnique is ne
essary to

undo the 
hanges made by the last de
ision after a 
lash has o

urred. EÆ
ien
y

will again depend on a good strategy whi
h disjun
t to try �rst.

The data stru
ture bran
hing point des
ribed in Se
tion 3 is used to enable

bran
hing and ba
ktra
king: before adding the �rst disjun
t ' to the 
orrespond-

ing node, a new bran
hing point is 
reated that subsequently stores ba
kups of all

nodes that are 
hanged as a 
onsequen
e of adding '. Three di�erent heuristi
s

for 
hoosing the �rst disjun
t are implemented (
f. Se
tion 5).

Data Stru
tures. The data stru
ture for a node n 
ontains the labels C(n),

�(n), andN(n) des
ribed in Se
tion 2. Additionally, blo
kings that were already

dete
ted are re
orded in the blo
king node as well as in the blo
ked one su
h

that unne
essary testing is avoided.

A bran
hing point b is 
reated by R_ after 
hoosing a disjun
t  from a

disjun
tion ' _ �. It 
ontains a unique bran
hing identi�er (BID) I(b), a list

C(b) of nodes that were 
reated, and a list M(b) of ba
kups of nodes that were

modi�ed as a 
onsequen
e of adding ', and the other disjun
t O(b) = � that

has to be added to the tree if ' 
auses a 
lash.

For a node n, every formula ' 2 �(n) is labeled with the dependen
y set

D('; n) of bran
hing points it depends on. This enables us to �nd the right

bran
hing point for the ba
kup of a node n if a rule appli
ation for ' modi�es

n, and to use ba
kjumping (
f. Se
tion 4).

Fun
tions. Figure 1 shows the fun
tion hierar
hy: an arrow from f1 to f2means

that f1 invokes f2. The main fun
tion 
onstru
t-tableau(') re
eives a GF

formula as input. It 
reates a new node n

0

and adds ' to �(n

0

). Subsequently,

it iteratively 
alls 
hoose-next-formula(), whi
h uses one of the heuristi
s

des
ribed in Se
tion 5 to determine the next formula ' to pro
ess and the node

n 
ontaining '. The fun
tion satisfy(n; ') applies the 
orresponding rule by


hoosing the appropriate fun
tion satisfy-and(n; '), satisfy-all(n; ') et
.

Most of these fun
tions will add new formulas to n, whi
h is performed by

add-formula(n; '). If there are bran
hing points asso
iated with ', i.e. D('; n)

is not empty, a ba
kup of n is 
reated in the bran
hing point b with I(b) =

max(D('; n)). A possible blo
king of n by another node or of another node by

n is removed.

For an existential formula ' = 9x(G(
;x)^�(
;x)), satisfy-ex(n; ') �rst

invokes blo
ked(n

i

) for n and its an
estors to 
he
k if n is blo
ked. For this

purpose, the fun
tion equivalent(n

i

; n

j

) tries to �nd a mapping � for two nodes



n

i

; n

j

from C(n

i

) to C(n

j

) as des
ribed in De�nition 2. If su
h a mapping is

found, the fun
tion blo
k(n

i

) blo
ks the node n

i

and its su

essors. Otherwise,

a new son n

k

of n is 
reated with C(n

k

) = C

old

[ C

new

, where d is a ve
tor of

new 
onstants for the variables in x, C

old

are the 
onstants in 
, and C

new

are

the 
onstants in d. The guard G(
;d) and body �(
;d) are added to �(n

k

), and

formulas in �(n) whi
h 
ontain only 
onstants in C

old

are propagated to �(n

k

).

For a disjun
tion ', satisfy-or(n; ') invokes 
hoose-alternative(') to

�nd the �rst disjun
t  to add to n. It then 
alls bran
h(n;  ), whi
h 
reates

a new bran
hing point b

new

and a ba
kup of n in M(b

new

), and �nally adds  

to n. When a 
lash o

urs, 
onstru
t-tableau 
alls ba
ktra
k() to return to

the last bran
hing point b

i

for whi
h there is another alternative, i.e. O(b

i

) is

not empty: all nodes n 
reated as a 
onsequen
e of the last bran
h are removed

by delete-node(n), and all nodes modi�ed are repla
ed with their ba
kups

by restore-tree(fn

1

; : : : ; n

k

g). Then the remaining alternative from O(b

i

) is

added to the 
orresponding node and removed from O(b

i

).

Rl is not implemented as a separate rule, but is applied impli
itly whenever

a formula is added to a node: when add-formula is invoked for a formula '

and a node n, it 
alls propagate('; fn

1

; : : : ; n

i

g), whi
h 
he
ks if the 
onstants

in ' are also 
ontained in the neighbours n

1

; : : : ; n

i

of n and adds ' to the


orresponding nodes.

If a 
lash o

urs and ba
ktra
king is impossible, i.e there is no bran
h-

ing point 
ontaining another alternative, 
onstru
t-tableau returns \' is

unsatisfiable"; if 
hoose-next-formula �nds no more formulas to pro
ess,

the tree is 
omplete and \' is satisfiable" is returned together with the

tableau that was generated.

satisfy−or

block

branch

choose−alternative

equivalent

satisfy−atom
satisfy−eq
satisfy−and
satisfy−allrestore−tree

delete−node

satisfybacktrack

construct−tableau

add−formula

blocked

satisfy−ex

choose−next−formula

propagate

backup unblock

set−node

Fig. 1: Fun
tion Hierar
hy



4 Optimisation

Se
tion 3 des
ribes only a very basi
 implementation whose performan
e 
annot


ompete with existing systems for 
omparably 
omplex logi
s. To obtain an

eÆ
ient program, sophisti
ated optimisation te
hniques are ne
essary.

Synta
ti
 Prepro
essing. Before Saga tries to 
onstru
t a tableau for the

input formula ', it simpli�es the synta
ti
 stru
ture of ' to speed up the tableau

generation pro
ess: obvious tautologies and 
ontradi
tions are made expli
it, a

normal form is used whi
h supports their dete
tion by eliminating _ and 9

and using n-ary 
onjun
tions, and the variables 
ontained in a formula ' are

normalised when ' is added to a node. Details 
an be found in [18℄ or [19℄.

Semanti
 Bran
hing. The naive method to satisfy a disjun
tion ' _ � is to

add ' �rst and, if this 
auses a 
lash, add � afterwards (Synta
ti
 Bran
hing).

This is rather ineÆ
ient be
ause resour
es have been spent to �nd out that ' is

unsatis�able in the 
urrent tree, but this information is forgotten.

Semanti
 Bran
hing [7℄ adds :' ^ � to the tree if ' leads to a 
lash. This

makes the information that ' is unsatis�able expli
it and possibly prunes the

sear
h spa
e be
ause a tree in whi
h ' is satis�able is never tested again.

The drawba
k of semanti
 bran
hing lies in adding formulas to the tree that

are super
uous for a model. If these formulas are 
omplex, they 
an slow down

the tableau generation pro
ess be
ause super
uous rule appli
ations take pla
e

and super
uous nodes are 
reated. An assessment of the advantages and disad-

vantages of semanti
 bran
hing is presented in Se
tion 6.

Ba
kjumping. After a 
lash, naive ba
ktra
king returns to the most re
ent

bran
hing point. Dependen
y dire
ted ba
ktra
king (ba
kjumping) [2℄ instead

returns to the most re
ent bran
hing point one of the 
lashing formulas depends

on. Thus, the intermediate BPs, whi
h did not have any in
uen
e on the 
lash,

are skipped. The dependen
y sets des
ribed in Se
tion 3 are used to �nd the

right bran
hing point to return to: after a 
lash between ' and � in node n, the

most re
ent BP b in D('; n) [ D(�; n) is determined and the ba
kjump to b is

performed.

Boolean Constraint Propagation. Before 
hoosing a disjun
t  from a dis-

jun
tion ' _ � in a node n and performing a bran
h for  , every disjun
t is

tested regarding whether it is 
losed, i.e. its negation is already 
ontained in n,

or whether it is open. If  is 
losed, it is removed from the disjun
tion (be
ause

adding it would lead to an immediate 
lash), and only the remaining disjun
ts

are 
onsidered for bran
hing (this te
hnique is known as boolean 
onstraint prop-

agation, BCP [6℄). In parti
ular, if there is only one open disjun
t, it is added

deterministi
ally to n, and the bran
h is avoided.



To-do Lists. To eÆ
iently �nd the next formula to pro
ess (i.e. without sear
h-

ing the whole tree 
onstru
ted so far), a data stru
ture to-do list is used. For

every kind of formula (atoms, 
onjun
tions, existential restri
tions et
.), it 
on-

tains a list of unblo
ked nodes whi
h 
ontain un-pro
essed formulas of that kind.

These lists are sorted by the node identi�ers, whi
h makes it possible to �nd the

\oldest" node 
ontaining e.g. an un-pro
essed 
onjun
tion in 
onstant time.

5 Heuristi
s

In this se
tion, the di�erent heuristi
s implementing the non-deterministi
 de
i-

sions (
f. Se
tion 3) and the di�erent blo
king te
hniques are des
ribed.

Bran
hing. The de
ision whi
h disjun
tion to 
hoose for the next bran
h and

whi
h one of its disjun
ts to test �rst is 
ru
ial for eÆ
ien
y (
f. Se
tion 6). In

Saga, three di�erent heuristi
s pursuing di�erent goals are implemented.

MOMS. The heuristi
 \Maximum O

urren
e in disjun
tions of Minimum

Size" [6℄ was developed for propositional logi
. It 
onsiders all 
lauses (dis-

jun
tions) of minimum size and 
ounts the appearan
es of positive and neg-

ative literals (disjun
ts). The variable A to bran
h on is the one with the

largest 
ount of A and :A. If the 
ount for A is larger than the one for :A,

:A is tested �rst and, if this leads to a 
lash, A is tested afterwards. (MOMS

therefore impli
itly requires semanti
 bran
hing.)

The goal is to optimise BCP by in
reasing the number of 
losed disjun
ts

and rea
hing deterministi
 expansion as soon as possible. To adapt MOMS

for GF , we 
onsider every disjun
t appearing in a disjun
tion of a parti
u-

lar node as a literal and 
hoose the disjun
t ' or :' for bran
hing in the


orresponding way.

One disadvantage of MOMS lies in the fa
t that it tries the more 
onstrained

alternative �rst, i.e. the alternative that is more likely to fail. This means

that it performs ni
ely for unsatis�able formulas, but badly for satis�able

ones [18℄. Furthermore, it was observed that MOMS intera
ts adversely with

ba
kjumping [19℄.

iMOMS. Inverted MOMS [18℄ tries to avoid the disadvantage of being likely

to fail with the �rst alternative by testing ' and :' in the opposite order,

i.e. it 
hooses the disjun
t whi
h satis�es most of the smallest disjun
tions.

Maximise-jump. This heuristi
 was �rst used in FaCT [21℄. From all disjun
-

tions of a node, it sele
ts the one for whi
h the maximum element in the

dependen
y set is minimal, i.e. the one leading to the furthest ba
kjump. To

�nd the �rst disjun
t to try, FaCT uses a MOMS-style heuristi
. In Saga,

the synta
ti
ally shortest disjun
t is sele
ted be
ause a short formula proba-

bly 
an be tested faster than a long one whi
h is likely to 
ontain existential

or universal formulas. Sin
e this approa
h does not rely on 
ounts of dis-

jun
ts like MOMS, we also expe
t to see the di�eren
es in eÆ
ien
y more


learly.



Choosing the Next Formula. There are two kinds of formulas whi
h are

signi�
antly more expensive to pro
ess than the remaining ones. Firstly, dis-

jun
tions require the 
reation of a bran
hing point and ba
kups of nodes and,

after a 
lash, all modi�ed nodes have to be restored to their original state. Se
-

ondly, for an existential formula in a node n, the blo
king test for n has to be

performed. Sin
e the blo
king 
ondition is de�ned re
ursively, ea
h an
estor m

i

of n has to be 
ompared with all nodes `

j

with N(`

j

) < N(m

i

). For the blo
king

test itself, all mappings from C(m

i

) to C(`

j

) have to be tested (in the worst


ase). Therefore, either disjun
tions or existential formulas are pro
essed last.

Blo
king. The blo
king 
ondition for a node n as de�ned in Se
tion 2 requires

�(�(n)) to be equal to a restri
tion �(m) j

�(C(n))

for an an
estor node m. The

algorithm also works for an alternate de�nition of blo
king where the same num-

ber of 
onstants is required for n and m, i.e. equality of �(n) and �(m) modulo

�. This may lead to postponing blo
king be
ause the blo
king test only su

eeds

after the 
reation of some additional nodes, but the test itself be
omes signi�-


antly more eÆ
ient: if the number of 
onstants, atoms, universal formulas et
.

is not identi
al for m and n, it 
an be aborted immediately without generating

a mapping �. In the following, we will refer to the di�erent blo
king 
onditions

as subset-equality blo
king and equality blo
king respe
tively.

6 Evaluation of Optimisations and Heuristi
s

In this se
tion, we present an analysis of the eÆ
ien
y and the intera
tion of the

heuristi
s and optimisations des
ribed in the previous se
tions. We used several

ben
hmarks for logi
s of di�erent expressiveness to see how the heuristi
s behave

for formulas of di�erent 
omplexity: two sets from the \Tableaux 2000 Non-

Classi
al Systems Comparison" (TANCS-2000) [27℄ ben
hmark suite and some

GF formulas.

QBF-inv. The \quanti�ed boolean formulas with inverse" ben
hmark 
on-

sists of sets of random generated QBF formulas satisfying given parame-

ters, whi
h are translated into the logi
 K

�

(K with inverse modality). For

this 
omparison, we used the sets \p-QBF-inv-
nfSSS-K4-C
-V4-D4" with


 2 f10; 20; 30; 40; 50g, whi
h are the easiest ones, so that even very ineÆ-


ient 
ombinations of heuristi
s 
an still de
ide some formulas.

PSAT-inv. The random generated \periodi
 satis�ability with inverse" formu-

las are translated into the logi
 K

�

with global axioms. Again, we used the

easiest sets \p-psat-inv-
nf-K4-C
-V4-D4" with 
 2 f20; 30; 40; 50g.

GFB. Sin
e the QBF and PSAT formulas 
ontain only unary and binary re-

lations, they do not use the 
omplete expressive power of GF . To see how

Saga performs for \proper" GF formulas, we generated some (simple) \GF

Ben
hmark" (GFB) formulas. Ea
h set 
onsists of eight random generated

formulas with the same width, depth, and maximum arity of the relations.



The QBF ben
hmark does not require blo
king be
ause termination of the

algorithm is ensured by the properties of K

�

: ea
h 
onstant exists in at most

two nodes, and for every grandson n of a node m the maximum modal depth of

a formula in �(n) is stri
tly shorter than it is in �(m). This property makes it

possible to regard the blo
king test as another heuristi
 for this ben
hmark and

thus evaluate its eÆ
ien
y. For the more expressive logi
s, this is not possible

be
ause blo
king must be permanently enabled to ensure termination.

The di�erent blo
king 
onditions equality and subset-equality (
f. Se
tion 5)


an only be 
ompared for GFB be
ause in a tree for QBF or PSAT every node


ontains exa
tly two 
onstants and the 
ase of subset-equality blo
king for a

proper subset 
annot o

ur.

To evaluate the heuristi
s by themselves as well as their intera
tions, we ran

every ben
hmark with every possible 
ombination of heuristi
s. The �gures in the

following se
tions show how many formulas 
ould be solved with the 
orrespond-

ing 
ombination. On the x-axis, the di�erent bran
hing me
hanisms are shown:

synta
ti
 bran
hing �rst, then semanti
 bran
hing with the di�erent bran
hing

heuristi
s. For every 
ombination of the other optimisations, a separate graph

is printed. The di�erent measuring points are 
onne
ted by lines to improve

readability.

The ben
hmarks were run on the following system: Hardware: Pentium-III

(733 MHz), 384 MB RAM, 512 MB swap spa
e; Software: Linux (Kernel 2.2),

Allegro Common Lisp 6.0.

QBF. Surprisingly, blo
king is the most eÆ
ient heuristi
. With enabled blo
k-

ing test, up to 26 formulas 
an be solved, 
ompared to at most 4 without blo
k-

ing. Although it is very expensive in the worst 
ase, it is obviously still far more

eÆ
ient than the expansion of the nodes that 
ould be blo
ked. This indi
ates

that the simple heuristi
 of 
omparing the number of 
onstants, atoms, exis-

tential formulas et
. before generating a mapping � (
f. Se
tion 5) is suÆ
ient

to a
hieve an eÆ
ient blo
king test. The speedup 
ould also be explained by

regarding the blo
king test as a kind of partial model 
a
hing (e.g. [21℄), whi
h

was observed to be very eÆ
ient for the TANCS ben
hmark [13℄.

Semanti
 bran
hing and ba
kjumping also provide a signi�
ant speedup.

While ba
kjumping leads to a rather 
onstant improvement independent of the

other optimisations, the speedup delivered by semanti
 bran
hing is parti
ularly

high for eÆ
ient 
ombinations of the other heuristi
s. iMOMS is slightly worse

than maximise-jump, and MOMS is far worse than the other bran
hing heuris-

ti
s. This is true even if ba
kjumping is disabled, i.e. if sele
ting maximise-jump

e�e
tively means 
hoosing a random disjun
t, whi
h shows that the main draw-

ba
k of MOMS is not the interferen
e with ba
kjumping, but the high probability

of failing with the �rst alternative.

Pro
essing R9 or R_ �rst does not have a signi�
ant in
uen
e, and synta
ti


simpli�
ation has none at all (it is therefore not re
orded in the �gures). This is

probably 
aused by the stru
ture of the formulas.
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Fig. 2: Heuristi
s Comparison for QBF with \R_ Last" (Left) and \R9 Last" (Right)

PSAT. Semanti
 bran
hing is by far the most important heuristi
, and ba
k-

jumping is also very eÆ
ient. Regarding the optimal rule sequen
e, we 
an ob-

serve a signi�
ant speedup if R_ is applied before R9. An explanation for this

behaviour is the blo
king test: if it is applied only to propositionally expanded

nodes, the probability for blo
king is higher.

iMOMS is slightly better than maximise-jump, but the di�eren
e is irrelevant

for eÆ
ient 
ombinations of the other heuristi
s. The same is true for synta
ti


simpli�
ation: if we have an eÆ
ient 
ombination of heuristi
s, disabling syn-

ta
ti
 simpli�
ation does not signi�
antly slow down the system. This indi
ates

that, in the presen
e of semanti
 bran
hing and ba
kjumping, the eÆ
ien
y is

not a�e
ted by minor di�eren
es in the bran
hing 
ondition or synta
ti
 redun-

dan
y of a formula.
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Fig. 3: Heuristi
s Comparison for PSAT with \R_ Last" (Left) and \R9 Last" (Right)



GFB. The results for QBF indi
ate that blo
king, although expensive, results

in a speedup. This raises the question if sear
hing for more blo
king situations

by using subset-equality blo
king instead of equality blo
king might lead to a

further speedup, although the blo
king test be
omes even more expensive. The

measurements show that this is is not the 
ase: subset-equality blo
king leads

to a higher average time and to fewer solvable formulas. The reason is that in

this 
ase, we 
annot use the heuristi
s enabling us to abort the test if a node

n is blo
ked by a node m early if C(m) > C(n), but have to test all subsets of

C(m) whi
h have the size of C(n). Synta
ti
 simpli�
ation has more in
uen
e

for GFB than for the other ben
hmarks, whi
h is probably 
aused by the simple

and random stru
ture of the formulas. The other heuristi
s behave similarly.

(Therefore we do not in
lude a �gure.)

Summary. Semanti
 bran
hing and ba
kjumping deliver a signi�
ant speedup

for all of our ben
hmarks. Blo
king is useful even when it is not ne
essary. Among

the bran
hing heuristi
s, maximise-jump and iMOMS perform well, whereas

MOMS is slower than 
hoosing a random disjun
t. Synta
ti
 simpli�
ation does

not provide a signi�
ant speedup, and the optimal sequen
e of rule appli
ations

di�ers for the various ben
hmarks.

7 Comparison with Other Systems

In this se
tion, we examine how well Saga s
ales 
ompared to other systems for

logi
s of di�erent 
omplexity, i.e. how fast it 
an solve formulas from GF and less

expressive logi
s. We 
ompare our own results with those that were presented in

the TANCS-2000 
omparison [3℄ for the QBF-inv/PSAT/PSAT-inv ben
hmarks.

The 
omparison systems are DLP [28℄, a satis�ability tester for PDL [4℄;

FaCT [20℄, a tableau algorithm for the des
ription logi
 SHIQ [23℄; RACE, a

TBox and ABox reasoner for the logi
 ALCNH

R

+
[16℄; and Gost [18℄, a tableau

algorithm for the logi
 GF1

�

[26℄, whi
h is a PSpa
e-fragment of GF . Gost

di�ers from Saga in two important aspe
ts: it does not in
lude a blo
king test

(be
ause it is not ne
essary to ensure termination for GF1

�

), and it uses a sim-

pler ba
kup algorithm: before a bran
h is performed, the entire tree 
onstru
ted

so far is 
opied, and during ba
ktra
king, the tree is repla
ed with that 
opy.

While these systems are tableau algorithms like Saga and also share most

of its optimisations, the last 
ompetitor Spass [30, 31℄ is a resolution-based

�rst-order theorem prover.MSpass [24℄ is a Spass module translating formulas

from the syntax of modal or des
ription logi
s to �rst order logi
 so that their

satis�ability 
an be de
ided with Spass.

For this 
omparison, we used a larger set of the QBF and PSAT formulas

than in Se
tion 6. The results for DLP, FaCT, MSpass and RACE were taken

from [3℄ and those forGost from [18℄. The �gures in the following se
tions show,

for every system, how many formulas of ea
h set 
ould be solved.

The Saga ben
hmarks and the GF ben
hmark for Spass were run on the

following system: Hardware: Pentium-III (1 GHz), 512 MB RAM, 1 GB swap



spa
e; Software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600se


(QBF), 1000se
 (PSAT), 100se
 (GFB).

QBF. Figure 4 shows that Saga is more eÆ
ient than Gost and FaCT for

most of the sets. While FaCT fails to solve many of the satis�able formulas from

the �rst sets, (C10/20/30-V4-D4), it performs better for some of the unsatis�-

able formulas (C50-V4-D6). It seems that FaCT prunes the sear
h spa
e more

eÆ
iently, but needs more time to 
olle
t the ne
essary information.

The 
omparison with Gost again shows that the blo
king test has a positive

impa
t on performan
e. Furthermore, the more sophisti
ated ba
kup strategy,

though slower for very easy formulas, pays for 
omplex ones: Saga never aborts

be
ause of memory exhaustion, whereas this is often the 
ase for Gost. Obvi-

ously, this behaviour is a result of the more spa
e-
onsuming ba
kup strategy.
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Fig. 4: System Comparison for QBF

PSAT. In order to 
ompare Saga with as many systems as possible, we ran the

the PSAT as well as the PSAT-inv ben
hmark. Although the results presented

in this se
tion were produ
ed on di�erent hardware with di�erent timeouts, the

di�eren
es between the systems are relatively small. The PSAT formulas with

depth 1 were easy for all of the systems. For the harder formulas with depth 2,

the di�eren
es be
ome visible and it turns out that Saga is slightly slower than

RACE and slightly faster than DLP andMSpass. For PSAT-inv, Saga is faster

than FaCT and similar toMSpass. Again, the di�eren
e to FaCT is parti
ularly

large for satis�able formulas.

GFB. Figure 6 shows for every set 
hara
terised by the width (w) and depth

(d) of the formulas and by the maximum arity (r) of the relations how many

formulas 
ould be solved. Among the 
omparison systems, Spass is the only
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Fig. 5: System Comparison for PSAT (Left) and PSAT-inv (Right)

one that 
an de
ide GF formulas, but, as mentioned before, its 
hara
teristi
s

are quite di�erent from Saga's. Therefore, it is no surprise that the results

are also di�erent: while Saga handles a large depth (d16) of a formula well,

it has problems with relations of a higher arity (r4). Spass shows the opposite

behaviour. The sum of de
idable formulas is similar.

Though Saga works only for a fragment of FO and is not signi�
antly faster

than Spass, the bene�t of using a tableau algorithm is having a de
ision pro
e-

dure, i.e. termination is guaranteed (even if it may 
onsume exponential time).
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8 Con
lusion

In this paper, we presented an implementation and empiri
al analysis of a

GF tableau algorithm. It turned out that, in spite of its worst-
ase 
omplex-

ity of NExpTime (for bounded arity), it performs well for existing ben
h-



mark formulas and the GF formulas we generated. Compared to other systems,

Saga's performan
e is slightly better than FaCT and similar to DLP, RACE

an Spass/MSpass. Sophisti
ated optimisations, in parti
ular ba
kjumping and

semanti
 bran
hing, are ne
essary to a
hieve this result. The blo
king test, even

when it is not ne
essary to ensure termination, signi�
antly speeds up the pro-

gram. However, this depends on the heuristi
s implemented to abort the test

early.

The performan
e analysis presented in this paper is based on random gener-

ated formulas, most of whi
h belong to a small fragment of GF . This enables us

to 
ompare Saga with several existing systems, but it also means that it may

not be representative for real-life problems. The behaviour for realisti
 knowledge

bases is subje
t to further study.
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