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Abstract. In this paper, we present SAGA, the implementation of a
tableau-based Satisfiability Algorithm for the Guarded Fragment (GF).
Satisfiability for GF with finite signature is ExPTIME-complete and
therefore theoretically intractable, but existing tableau-based systems for
ExPTIME-complete description and modal logics perform well for many
realistic knowledge bases. We implemented and evaluated several opti-
misations used in description logic systems, and our results show that
with an efficient combination, SAGA can compete with existing highly
optimised systems for description logics and first order logic.

1 Preliminaries

The Guarded Fragment of first order predicate logic (GF) [1] restricts the ap-
pearance of quantifiers to formulas of the kind

Ve (G(z,y) = ¢(z,y))
and Jz(G(z,y) A ¢(z,y)) ,

where & and y are tuples of variables, and G(«,y) is an atom, which is called
the guard of the formula, whereas ¢(x,y) is called the body. This fragment has
many desirable properties: satisfiability is decidable [1] in 2-ExXPTIME, which is
reduced to EXPTIME if the arity of the relations is bounded [12]. It also has the
finite model property [1] and a tree model property for a special notion of a tree
[12].

GF can be regarded as a generalisation of modal or description logics to n-
ary relations (roles) [1, 10]. The more expressive such logics have a comparably
high worst-case complexity, e.g. PDL [4] and SHZQ [23] are EXPTIME-complete
[29, 22]. However, with optimised tableau algorithms like DLP [28], which decides
PDL, and FaCT [19] or RACER [14], which decide SHZQ, satisfiability becomes
tractable for various realistic knowledge bases [19, 21, 15]. This suggests that a
tableau algorithm for GF-satisfiability might lead to an implementation that
does not consume exponential time in practice.

GF is also decidable by resolution [9]. To the best of our knowledge, the
efficiency of this approach for realistic formulas has not yet been analysed.



2 A Tableau Algorithm for GF

In [17], a tableau algorithm is presented for the Clique Guarded Fragment
(CGF) [11], a generalisation of GF. Its worst-case complexity is 2-NEXPTIME
(NExPTIME for signatures with bounded arity), and therefore higher than that
of the automata algorithm in [12], but it allows for many of the optimisations
known from description logics and therefore promises to lead to an efficient im-
plementation.

Before describing this algorithm, we recall some definitions from [17]. Since
our implementation SAGA decides satisfiability of GF and not of CGF, the defini-
tions and the description of the tableau algorithm are restricted to GF formulas.

Definition 1 (NNF, closure). A formula ¢ € GF is in negation normal form
(NNF) if negation occurs only in front of atoms.

For a GF-sentence ¢ in NNF, the closure cl(p) is the set of all subformulas
of ¢. For a set C of constants, cl(p, C) is the set containing all instantiations of
cl(y) with constants in C'.

Table 1: Completion Rules for GF

RA| if pAx € A(v)

then A(v):= A(v) U{p, x}

unless {p, x} C A(v)

Rv| if pVyxeA[)

then A(v) := A(v) U {¢} for a ¢ chosen non-deterministically from {p, x}

unless {¢, x} N A(v) #0

R=| if a=be A(v

then for all nodes w that contain a:
C(w) := (C(w) \ {a}) U {b} and A(w) := A(w)[a — b]

unless a = b

RY| if Ve(G(z,c)— o(z,c)) € A(v),
and there exists a b C C'(v) such that G(b,¢) € A(v)

then A(v) := A(v) U {p(b,c)}

unless ¢(b, ¢) € A(v)

R3| if 3Fz(G(z,c) Aoz, c)) € A(v)

then let b be a sequence of new constants with the same length as x
create a son w of v with C(w) := bU ¢, A(w) := {G(b, ¢), p(b,c)}
N(w) :=1+max{N(v) :v € V\ {w}}

unless there is a b, ¢ C A(v) with {G(b, ¢), p(b,c)} C A(v),
there is a son w of v with {G(b, ¢), ¢(b,c)} C A(w) for some b,c C A(w),
or v is blocked

Ry| if ¢(e) € A(v) is an atomic or universally quantified formula,
and w is a neighbour of v with ¢ C C(w)

then A(w) := A(w) U {¢(c)}

unless ¢(¢) € A(w)




The GF tableau algorithm operates on a completion tree, a vertex labeled
tree in which every node stands for a set of constants which appear together in
a guard atom.

Definition 2 (Completion Tree, Blocking, Tableau). Let ¢ € GF be a
sentence in NNF. A completion tree T = (V, E,C, A, N) for ¢ is a vertex labeled
tree (V, E) with the function C labeling each node v € V with a set of constants,
Alabeling each v € V with a subset of cl(p, C'(v)), and N mapping each node to
a distinct natural number such that if v is an ancestor of w, then N(v) < N(w).

A node v € V is called directly blocked by a node u € V if u is not blocked,
N(u) < N(v), and there is an injective mapping = from C(v) to C(u) such
that for all constants ¢ € C(v) N C(u), w(c) = ¢ and for the extension of «
to formulas, T(A(v)) = A(u)|r(c(v)), Where A(u)|r(c(v)) denotes the set of all
formulas in A(u) containing only constants in 7(C'(v)). A node is called blocked
if it is directly blocked or if its father is blocked.

A completion tree T' contains a clash if there is a node v € V such that
—(c = ¢) € A(v) for a constant ¢ € C'(v) or there is an atomic formula ¢ such
that {, ¢} C A(v). Otherwise, T is called clash-free. A completion tree T is
called complete if none of the completion rules given in Table 1 can be applied
to T. A tableau is a complete and clash-free completion tree.

For a formula set ¢ and constant symbols a, b, we use the notation @[a — b)
to denote the set of formulas in @ where all occurrences of a are replaced by b.

The blocking condition is dynamic, i.e. blockings are not established forever,
but they can be canceled later if one of the nodes involved changes (and reappear
if the other one changes accordingly).

To decide the satisfiability of a formula ¢, a root node ng is created with
N(ng) := 0, C(ng) := {c} for a random constant ¢ (to prevent empty struc-
tures), and A(ng) := {p}. Then the completion rules in Table 1 are applied
until a tableau is found or a clash occurs. If the rules can be applied in such a
way that a tableau is found, “p is satisfiable” is output, otherwise “p is
unsatisfiable”.

Since a satisfiable GF-formula need not have a finite tree model, the block-
ing condition is necessary to ensure termination. It prevents new nodes from
being created if there is already another node containing “similar” formulas. If
a tableau is found, it can be transformed into a model by unraveling the block-
ings, i.e. replacing a blocked node v with a copy of the node u blocking v. Note
that the blocking condition is not equivalent to subset blocking, where a node
v is blocked by a node wu if the label of v is a subset of the label of u: for GF,
the image of 7 need only be a subset of C(u), but restricted to these constants,
the labels of 4 and v have to be equal (modulo 7). The proof of correctness,
completeness and termination of the algorithm can be found in [17].

3 Implementation

The algorithm described in Section 2 leaves many possibilities for an implemen-
tation. To obtain an efficient program, the following issues have to be considered:



Non-Determinism. There are two kinds of non-determinism involved in the
GF-algorithm: the decision which rule to apply first if several ones are applicable
is don’t-care non-deterministic, i.e. every choice will lead to a correct behaviour
of the algorithm, but its efficiency will depend on a good heuristic. The two
heuristics implemented in SAGA are described in Section 5.

The decision which disjunct of a disjunction to add to the corresponding node
is don’t-know non-deterministic, i.e. only certain choices will lead to the discovery
of a tableau. Therefore, a branching and backtracking technique is necessary to
undo the changes made by the last decision after a clash has occurred. Efficiency
will again depend on a good strategy which disjunct to try first.

The data structure branching point described in Section 3 is used to enable
branching and backtracking: before adding the first disjunct ¢ to the correspond-
ing node, a new branching point is created that subsequently stores backups of all
nodes that are changed as a consequence of adding ¢. Three different heuristics
for choosing the first disjunct are implemented (cf. Section 5).

Data Structures. The data structure for a node n contains the labels C(n),
A(n), and N(n) described in Section 2. Additionally, blockings that were already
detected are recorded in the blocking node as well as in the blocked one such
that unnecessary testing is avoided.

A branching point b is created by RV after choosing a disjunct ¢ from a
disjunction ¢ V . It contains a unique branching identifier (BID) I(b), a list
C(b) of nodes that were created, and a list M (b) of backups of nodes that were
modified as a consequence of adding ¢, and the other disjunct O(b) = x that
has to be added to the tree if ¢ causes a clash.

For a node n, every formula ¢ € A(n) is labeled with the dependency set
D(p,n) of branching points it depends on. This enables us to find the right
branching point for the backup of a node n if a rule application for ¢ modifies
n, and to use backjumping (cf. Section 4).

Functions. Figure 1 shows the function hierarchy: an arrow from f£1 to £2 means
that f£1 invokes £2. The main function construct-tableau(y) receives a GF
formula as input. It creates a new node ng and adds ¢ to A(ng). Subsequently,
it iteratively calls choose-next-formula(), which uses one of the heuristics
described in Section 5 to determine the next formula ¢ to process and the node
n containing ¢. The function satisfy(n, ) applies the corresponding rule by
choosing the appropriate function satisfy-and(n, ), satisfy-all(n, ) etc.
Most of these functions will add new formulas to n, which is performed by
add-formula(n, ). If there are branching points associated with ¢, i.e. D(p,n)
is not empty, a backup of n is created in the branching point b with I(b) =
max(D(p,n)). A possible blocking of n by another node or of another node by
n is removed.

For an existential formula ¢ = 32(G(c, ) Ax(c, x)), satisfy-ex(n, ) first
invokes blocked(n;) for n and its ancestors to check if n is blocked. For this
purpose, the function equivalent (n;,n;) tries to find a mapping 7 for two nodes



n;,n; from C(n;) to C(n;) as described in Definition 2. If such a mapping is
found, the function block(n;) blocks the node n; and its successors. Otherwise,
a new son ny of n is created with C'(ng) = Coiq U Chew, where d is a vector of
new constants for the variables in @, Cy;q are the constants in ¢, and Cley are
the constants in d. The guard G(c¢, d) and body x(¢, d) are added to A(ny), and
formulas in A(n) which contain only constants in Cy1q are propagated to A(ny).

For a disjunction ¢, satisfy-or(n, ) invokes choose-alternative(p) to
find the first disjunct ¢ to add to n. It then calls branch(n,), which creates
a new branching point byeyw and a backup of n in M (bpey), and finally adds v
to n. When a clash occurs, construct-tableau calls backtrack() to return to
the last branching point b; for which there is another alternative, i.e. O(b;) is
not empty: all nodes n created as a consequence of the last branch are removed
by delete-node(n), and all nodes modified are replaced with their backups
by restore-tree({ni,...,ni}). Then the remaining alternative from O(b;) is
added to the corresponding node and removed from O(b;).

R{ is not implemented as a separate rule, but is applied implicitly whenever
a formula is added to a node: when add-formula is invoked for a formula ¢
and a node n, it calls propagate(p, {ny,...,n;}), which checks if the constants
in ¢ are also contained in the neighbours ny,...,n; of n and adds ¢ to the
corresponding nodes.

If a clash occurs and backtracking is impossible, i.e there is no branch-
ing point containing another alternative, construct-tableau returns “p is
unsatisfiable”; if choose-next-formula finds no more formulas to process,
the tree is complete and “p is satisfiable” is returned together with the
tableau that was generated.

construct-tableau

i

( satisty ) ( choose-next-formula )

backtrack

delete-node satisfy—or satisfy—atom satisfy—ex
Y satisfy-eq YJ
satisfy-and
restore—-tree choose-alternative satisfy-all
[ set-node ] [brunch] block@

[ add-formula ]

propagate

m equivalent

Fig. 1: Function Hierarchy



4 Optimisation

Section 3 describes only a very basic implementation whose performance cannot
compete with existing systems for comparably complex logics. To obtain an
efficient program, sophisticated optimisation techniques are necessary.

Syntactic Preprocessing. Before SAGA tries to construct a tableau for the
input formula ¢, it simplifies the syntactic structure of ¢ to speed up the tableau
generation process: obvious tautologies and contradictions are made explicit, a
normal form is used which supports their detection by eliminating V and 3
and using n-ary conjunctions, and the variables contained in a formula ¢ are
normalised when ¢ is added to a node. Details can be found in [18] or [19].

Semantic Branching. The naive method to satisfy a disjunction ¢ V x is to
add ¢ first and, if this causes a clash, add x afterwards (Syntactic Branching).
This is rather inefficient because resources have been spent to find out that ¢ is
unsatisfiable in the current tree, but this information is forgotten.

Semantic Branching [7] adds —p A x to the tree if ¢ leads to a clash. This
makes the information that ¢ is unsatisfiable explicit and possibly prunes the
search space because a tree in which ¢ is satisfiable is never tested again.

The drawback of semantic branching lies in adding formulas to the tree that
are superfluous for a model. If these formulas are complex, they can slow down
the tableau generation process because superfluous rule applications take place
and superfluous nodes are created. An assessment of the advantages and disad-
vantages of semantic branching is presented in Section 6.

Backjumping. After a clash, naive backtracking returns to the most recent
branching point. Dependency directed backtracking (backjumping) [2] instead
returns to the most recent branching point one of the clashing formulas depends
on. Thus, the intermediate BPs, which did not have any influence on the clash,
are skipped. The dependency sets described in Section 3 are used to find the
right branching point to return to: after a clash between ¢ and x in node n, the
most recent BP b in D(p,n) U D(x,n) is determined and the backjump to b is
performed.

Boolean Constraint Propagation. Before choosing a disjunct ¢ from a dis-
junction ¢ V x in a node n and performing a branch for 1, every disjunct is
tested regarding whether it is closed, i.e. its negation is already contained in 7,
or whether it is open. If ¢ is closed, it is removed from the disjunction (because
adding it would lead to an immediate clash), and only the remaining disjuncts
are considered for branching (this technique is known as boolean constraint prop-
agation, BCP [6]). In particular, if there is only one open disjunct, it is added
deterministically to n, and the branch is avoided.



To-do Lists. To efficiently find the next formula to process (i.e. without search-
ing the whole tree constructed so far), a data structure to-do list is used. For
every kind of formula (atoms, conjunctions, existential restrictions etc.), it con-
tains a list of unblocked nodes which contain un-processed formulas of that kind.
These lists are sorted by the node identifiers, which makes it possible to find the
“oldest” node containing e.g. an un-processed conjunction in constant time.

5 Heuristics

In this section, the different heuristics implementing the non-deterministic deci-
sions (cf. Section 3) and the different blocking techniques are described.

Branching. The decision which disjunction to choose for the next branch and
which one of its disjuncts to test first is crucial for efficiency (cf. Section 6). In
SAGA, three different heuristics pursuing different goals are implemented.

MOMS. The heuristic “Maximum Occurrence in disjunctions of Minimum
Size” [6] was developed for propositional logic. It considers all clauses (dis-
junctions) of minimum size and counts the appearances of positive and neg-
ative literals (disjuncts). The variable A to branch on is the one with the
largest count of A and —A. If the count for A is larger than the one for = A,
—A is tested first and, if this leads to a clash, A is tested afterwards. (MOMS
therefore implicitly requires semantic branching.)

The goal is to optimise BCP by increasing the number of closed disjuncts
and reaching deterministic expansion as soon as possible. To adapt MOMS
for GF, we consider every disjunct appearing in a disjunction of a particu-
lar node as a literal and choose the disjunct ¢ or =y for branching in the
corresponding way.

One disadvantage of MOMS lies in the fact that it tries the more constrained
alternative first, i.e. the alternative that is more likely to fail. This means
that it performs nicely for unsatisfiable formulas, but badly for satisfiable
ones [18]. Furthermore, it was observed that MOMS interacts adversely with
backjumping [19].

iMOMS. Inverted MOMS [18] tries to avoid the disadvantage of being likely
to fail with the first alternative by testing ¢ and —¢ in the opposite order,
i.e. it chooses the disjunct which satisfies most of the smallest disjunctions.

Maximise-jump. This heuristic was first used in FaCT [21]. From all disjunc-
tions of a node, it selects the one for which the maximum element in the
dependency set is minimal, i.e. the one leading to the furthest backjump. To
find the first disjunct to try, FaCT uses a MOMS-style heuristic. In SAGA,
the syntactically shortest disjunct is selected because a short formula proba-
bly can be tested faster than a long one which is likely to contain existential
or universal formulas. Since this approach does not rely on counts of dis-
juncts like MOMS, we also expect to see the differences in efficiency more
clearly.



Choosing the Next Formula. There are two kinds of formulas which are
significantly more expensive to process than the remaining ones. Firstly, dis-
junctions require the creation of a branching point and backups of nodes and,
after a clash, all modified nodes have to be restored to their original state. Sec-
ondly, for an existential formula in a node n, the blocking test for n has to be
performed. Since the blocking condition is defined recursively, each ancestor m;
of n has to be compared with all nodes ¢; with N(¢;) < N(m;). For the blocking
test itself, all mappings from C(m;) to C(¢;) have to be tested (in the worst
case). Therefore, either disjunctions or existential formulas are processed last.

Blocking. The blocking condition for a node n as defined in Section 2 requires
m(A(n)) to be equal to a restriction A(m) |z(c(n)) for an ancestor node m. The
algorithm also works for an alternate definition of blocking where the same num-
ber of constants is required for n and m, i.e. equality of A(n) and A(m) modulo
7. This may lead to postponing blocking because the blocking test only succeeds
after the creation of some additional nodes, but the test itself becomes signifi-
cantly more efficient: if the number of constants, atoms, universal formulas etc.
is not identical for m and n, it can be aborted immediately without generating
a mapping 7. In the following, we will refer to the different blocking conditions
as subset-equality blocking and equality blocking respectively.

6 Evaluation of Optimisations and Heuristics

In this section, we present an analysis of the efficiency and the interaction of the
heuristics and optimisations described in the previous sections. We used several
benchmarks for logics of different expressiveness to see how the heuristics behave
for formulas of different complexity: two sets from the “Tableaux 2000 Non-
Classical Systems Comparison” (TANCS-2000) [27] benchmark suite and some
GF formulas.

QBF-inv. The “quantified boolean formulas with inverse” benchmark con-
sists of sets of random generated QBF formulas satisfying given parame-
ters, which are translated into the logic K~ (K with inverse modality). For
this comparison, we used the sets “p-QBF-inv-cnfSSS-K4-Ce-V4-D4” with
¢ € {10,20, 30,40,50}, which are the easiest ones, so that even very ineffi-
cient combinations of heuristics can still decide some formulas.

PSAT-inv. The random generated “periodic satisfiability with inverse” formu-
las are translated into the logic K~ with global axioms. Again, we used the
easiest sets “p-psat-inv-cnf-K4-Ce-V4-D4” with ¢ € {20, 30, 40, 50}.

GFB. Since the QBF and PSAT formulas contain only unary and binary re-
lations, they do not use the complete expressive power of GF. To see how
SacA performs for “proper” GF formulas, we generated some (simple) “GF
Benchmark” (GFB) formulas. Each set consists of eight random generated
formulas with the same width, depth, and maximum arity of the relations.



The QBF benchmark does not require blocking because termination of the
algorithm is ensured by the properties of K™: each constant exists in at most
two nodes, and for every grandson n of a node m the maximum modal depth of
a formula in A(n) is strictly shorter than it is in A(m). This property makes it
possible to regard the blocking test as another heuristic for this benchmark and
thus evaluate its efficiency. For the more expressive logics, this is not possible
because blocking must be permanently enabled to ensure termination.

The different blocking conditions equality and subset-equality (cf. Section 5)
can only be compared for GFB because in a tree for QBF or PSAT every node
contains exactly two constants and the case of subset-equality blocking for a
proper subset cannot occur.

To evaluate the heuristics by themselves as well as their interactions, we ran
every benchmark with every possible combination of heuristics. The figures in the
following sections show how many formulas could be solved with the correspond-
ing combination. On the x-axis, the different branching mechanisms are shown:
syntactic branching first, then semantic branching with the different branching
heuristics. For every combination of the other optimisations, a separate graph
is printed. The different measuring points are connected by lines to improve
readability.

The benchmarks were run on the following system: Hardware: Pentium-III
(733 MHz), 384 MB RAM, 512 MB swap space; Software: Linux (Kernel 2.2),
Allegro Common Lisp 6.0.

QBF. Surprisingly, blocking is the most efficient heuristic. With enabled block-
ing test, up to 26 formulas can be solved, compared to at most 4 without block-
ing. Although it is very expensive in the worst case, it is obviously still far more
efficient than the expansion of the nodes that could be blocked. This indicates
that the simple heuristic of comparing the number of constants, atoms, exis-
tential formulas etc. before generating a mapping 7 (cf. Section 5) is sufficient
to achieve an efficient blocking test. The speedup could also be explained by
regarding the blocking test as a kind of partial model caching (e.g. [21]), which
was observed to be very efficient for the TANCS benchmark [13].

Semantic branching and backjumping also provide a significant speedup.
While backjumping leads to a rather constant improvement independent of the
other optimisations, the speedup delivered by semantic branching is particularly
high for efficient combinations of the other heuristics. iMOMS is slightly worse
than maximise-jump, and MOMS is far worse than the other branching heuris-
tics. This is true even if backjumping is disabled, i.e. if selecting maximise-jump
effectively means choosing a random disjunct, which shows that the main draw-
back of MOMS is not the interference with backjumping, but the high probability
of failing with the first alternative.

Processing R3 or RV first does not have a significant influence, and syntactic
simplification has none at all (it is therefore not recorded in the figures). This is
probably caused by the structure of the formulas.
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Fig. 2: Heuristics Comparison for QBF with “RV Last” (Left) and “R3 Last” (Right)

PSAT. Semantic branching is by far the most important heuristic, and back-
jumping is also very efficient. Regarding the optimal rule sequence, we can ob-
serve a significant speedup if RV is applied before R3. An explanation for this
behaviour is the blocking test: if it is applied only to propositionally expanded
nodes, the probability for blocking is higher.

iMOMS is slightly better than maximise-jump, but the difference is irrelevant
for efficient combinations of the other heuristics. The same is true for syntactic
simplification: if we have an efficient combination of heuristics, disabling syn-
tactic simplification does not significantly slow down the system. This indicates
that, in the presence of semantic branching and backjumping, the efficiency is
not affected by minor differences in the branching condition or syntactic redun-
dancy of a formula.
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GFB. The results for QBF indicate that blocking, although expensive, results
in a speedup. This raises the question if searching for more blocking situations
by using subset-equality blocking instead of equality blocking might lead to a
further speedup, although the blocking test becomes even more expensive. The
measurements show that this is is not the case: subset-equality blocking leads
to a higher average time and to fewer solvable formulas. The reason is that in
this case, we cannot use the heuristics enabling us to abort the test if a node
n is blocked by a node m early if C(m) > C(n), but have to test all subsets of
C(m) which have the size of C'(n). Syntactic simplification has more influence
for GFB than for the other benchmarks, which is probably caused by the simple
and random structure of the formulas. The other heuristics behave similarly.
(Therefore we do not include a figure.)

Summary. Semantic branching and backjumping deliver a significant speedup
for all of our benchmarks. Blocking is useful even when it is not necessary. Among
the branching heuristics, maximise-jump and iMOMS perform well, whereas
MOMS is slower than choosing a random disjunct. Syntactic simplification does
not provide a significant speedup, and the optimal sequence of rule applications
differs for the various benchmarks.

7 Comparison with Other Systems

In this section, we examine how well SAGA scales compared to other systems for
logics of different complexity, i.e. how fast it can solve formulas from GF and less
expressive logics. We compare our own results with those that were presented in
the TANCS-2000 comparison [3] for the QBF-inv/PSAT /PSAT-inv benchmarks.

The comparison systems are DLP [28], a satisfiability tester for PDL [4];
FaCT [20], a tableau algorithm for the description logic SHZQ [23]; RACE, a
TBox and ABox reasoner for the logic ACCNH g+ [16]; and GOST [18], a tableau
algorithm for the logic GF1~ [26], which is a PSPACE-fragment of GF. GOST
differs from SAGA in two important aspects: it does not include a blocking test
(because it is not necessary to ensure termination for GF17), and it uses a sim-
pler backup algorithm: before a branch is performed, the entire tree constructed
so far is copied, and during backtracking, the tree is replaced with that copy.

While these systems are tableau algorithms like SAGA and also share most
of its optimisations, the last competitor SPAss [30, 31] is a resolution-based
first-order theorem prover. MSPASS [24] is a SPASS module translating formulas
from the syntax of modal or description logics to first order logic so that their
satisfiability can be decided with SPASS.

For this comparison, we used a larger set of the QBF and PSAT formulas
than in Section 6. The results for DLP, FaCT, MSPASS and RACE were taken
from [3] and those for GOST from [18]. The figures in the following sections show,
for every system, how many formulas of each set could be solved.

The SAGA benchmarks and the GF benchmark for SPASS were run on the
following system: Hardware: Pentium-IIT (1 GHz), 512 MB RAM, 1 GB swap



space; Software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600sec
(QBF), 1000sec (PSAT), 100sec (GFB).

QBF. Figure 4 shows that SAGA is more efficient than GosT and FaCT for
most of the sets. While FaCT fails to solve many of the satisfiable formulas from
the first sets, (C10/20/30-V4-D4), it performs better for some of the unsatisfi-
able formulas (C50-V4-D6). It seems that FaCT prunes the search space more
efficiently, but needs more time to collect the necessary information.

The comparison with GOST again shows that the blocking test has a positive
impact on performance. Furthermore, the more sophisticated backup strategy,
though slower for very easy formulas, pays for complex ones: SAGA never aborts
because of memory exhaustion, whereas this is often the case for GosT. Obvi-
ously, this behaviour is a result of the more space-consuming backup strategy.
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Fig. 4: System Comparison for QBF

PSAT. In order to compare SAGA with as many systems as possible, we ran the
the PSAT as well as the PSAT-inv benchmark. Although the results presented
in this section were produced on different hardware with different timeouts, the
differences between the systems are relatively small. The PSAT formulas with
depth 1 were easy for all of the systems. For the harder formulas with depth 2,
the differences become visible and it turns out that SAGA is slightly slower than
RACE and slightly faster than DLP and M SpAsS. For PSAT-inv, SAGA is faster
than FaCT and similar to MSPASS. Again, the difference to FaCT is particularly
large for satisfiable formulas.

GFB. Figure 6 shows for every set characterised by the width (w) and depth
(d) of the formulas and by the maximum arity (r) of the relations how many
formulas could be solved. Among the comparison systems, SPASS is the only
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Fig. 5: System Comparison for PSAT (Left) and PSAT-inv (Right)

one that can decide GF formulas, but, as mentioned before, its characteristics
are quite different from SAGA’s. Therefore, it is no surprise that the results
are also different: while SAGA handles a large depth (d16) of a formula well,
it has problems with relations of a higher arity (r4). SPASS shows the opposite
behaviour. The sum of decidable formulas is similar.

Though SAGA works only for a fragment of FO and is not significantly faster
than SPASS, the benefit of using a tableau algorithm is having a decision proce-
dure, i.e. termination is guaranteed (even if it may consume exponential time).
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Fig. 6: System Comparison for GFB

8 Conclusion

In this paper, we presented an implementation and empirical analysis of a
GF tableau algorithm. It turned out that, in spite of its worst-case complex-
ity of NExPTIME (for bounded arity), it performs well for existing bench-



mark formulas and the GF formulas we generated. Compared to other systems,
SAGA’s performance is slightly better than FaCT and similar to DLP, RACE
an SPASS/MSPASS. Sophisticated optimisations, in particular backjumping and
semantic branching, are necessary to achieve this result. The blocking test, even
when it is not necessary to ensure termination, significantly speeds up the pro-
gram. However, this depends on the heuristics implemented to abort the test
early.

The performance analysis presented in this paper is based on random gener-
ated formulas, most of which belong to a small fragment of GF. This enables us
to compare SAGA with several existing systems, but it also means that it may
not be representative for real-life problems. The behaviour for realistic knowledge
bases is subject to further study.
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