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Abstrat. In this paper, we present Saga, the implementation of a

tableau-based Satis�ability Algorithm for the Guarded Fragment (GF).

Satis�ability for GF with �nite signature is ExpTime-omplete and

therefore theoretially intratable, but existing tableau-based systems for

ExpTime-omplete desription and modal logis perform well for many

realisti knowledge bases. We implemented and evaluated several opti-

misations used in desription logi systems, and our results show that

with an eÆient ombination, Saga an ompete with existing highly

optimised systems for desription logis and �rst order logi.

1 Preliminaries

The Guarded Fragment of �rst order prediate logi (GF) [1℄ restrits the ap-

pearane of quanti�ers to formulas of the kind

8x(G(x;y)! '(x;y))

and 9x(G(x;y) ^ '(x;y)) ;

where x and y are tuples of variables, and G(x;y) is an atom, whih is alled

the guard of the formula, whereas '(x;y) is alled the body. This fragment has

many desirable properties: satis�ability is deidable [1℄ in 2-ExpTime, whih is

redued to ExpTime if the arity of the relations is bounded [12℄. It also has the

�nite model property [1℄ and a tree model property for a speial notion of a tree

[12℄.

GF an be regarded as a generalisation of modal or desription logis to n-

ary relations (roles) [1, 10℄. The more expressive suh logis have a omparably

high worst-ase omplexity, e.g. PDL [4℄ and SHIQ [23℄ are ExpTime-omplete

[29, 22℄. However, with optimised tableau algorithms like DLP [28℄, whih deides

PDL, and FaCT [19℄ or RACER [14℄, whih deide SHIQ, satis�ability beomes

tratable for various realisti knowledge bases [19, 21, 15℄. This suggests that a

tableau algorithm for GF-satis�ability might lead to an implementation that

does not onsume exponential time in pratie.

GF is also deidable by resolution [9℄. To the best of our knowledge, the

eÆieny of this approah for realisti formulas has not yet been analysed.



2 A Tableau Algorithm for GF

In [17℄, a tableau algorithm is presented for the Clique Guarded Fragment

(CGF) [11℄, a generalisation of GF . Its worst-ase omplexity is 2-NExpTime

(NExpTime for signatures with bounded arity), and therefore higher than that

of the automata algorithm in [12℄, but it allows for many of the optimisations

known from desription logis and therefore promises to lead to an eÆient im-

plementation.

Before desribing this algorithm, we reall some de�nitions from [17℄. Sine

our implementation Saga deides satis�ability of GF and not of CGF , the de�ni-

tions and the desription of the tableau algorithm are restrited to GF formulas.

De�nition 1 (NNF, losure). A formula ' 2 GF is in negation normal form

(NNF) if negation ours only in front of atoms.

For a GF-sentene ' in NNF, the losure l(') is the set of all subformulas

of '. For a set C of onstants, l(';C) is the set ontaining all instantiations of

l(') with onstants in C.

Table 1: Completion Rules for GF

R^ if ' ^ � 2 �(v)

then �(v) := �(v) [ f'; �g

unless f'; �g � �(v)

R_ if ' _ � 2 �(v)

then �(v) := �(v) [ f g for a  hosen non-deterministially from f'; �g

unless f'; �g \�(v) 6= ;

R

:

= if a

:

= b 2 �(v)

then for all nodes w that ontain a:

C(w) := (C(w) n fag) [ fbg and �(w) := �(w)[a 7! b℄

unless a = b

R8 if 8x(G(x; )! '(x; )) 2 �(v),

and there exists a b � C(v) suh that G(b; ) 2 �(v)

then �(v) := �(v) [ f'(b; )g

unless '(b; ) 2 �(v)

R9 if 9x(G(x; ) ^ '(x; )) 2 �(v)

then let b be a sequene of new onstants with the same length as x

reate a son w of v with C(w) := b [ ; �(w) := fG(b; ); '(b; )g

N(w) := 1 +maxfN(v) : v 2 V n fwgg

unless there is a b;  � �(v) with fG(b; ); '(b; )g � �(v),

there is a son w of v with fG(b; ); '(b; )g � �(w) for some b;  � �(w),

or v is bloked

Rl if '() 2 �(v) is an atomi or universally quanti�ed formula,

and w is a neighbour of v with  � C(w)

then �(w) := �(w) [ f'()g

unless '() 2 �(w)



The GF tableau algorithm operates on a ompletion tree, a vertex labeled

tree in whih every node stands for a set of onstants whih appear together in

a guard atom.

De�nition 2 (Completion Tree, Bloking, Tableau). Let ' 2 GF be a

sentene in NNF. A ompletion tree T = (V;E;C;�;N) for ' is a vertex labeled

tree (V;E) with the funtion C labeling eah node v 2 V with a set of onstants,

� labeling eah v 2 V with a subset of l(';C(v)), and N mapping eah node to

a distint natural number suh that if v is an anestor of w, then N(v) < N(w).

A node v 2 V is alled diretly bloked by a node u 2 V if u is not bloked,

N(u) < N(v), and there is an injetive mapping � from C(v) to C(u) suh

that for all onstants  2 C(v) \ C(u), �() =  and for the extension of �

to formulas, �(�(v)) = �(u)j

�(C(v))

, where �(u)j

�(C(v))

denotes the set of all

formulas in �(u) ontaining only onstants in �(C(v)). A node is alled bloked

if it is diretly bloked or if its father is bloked.

A ompletion tree T ontains a lash if there is a node v 2 V suh that

:(

:

= ) 2 �(v) for a onstant  2 C(v) or there is an atomi formula ' suh

that f';:'g � �(v). Otherwise, T is alled lash-free. A ompletion tree T is

alled omplete if none of the ompletion rules given in Table 1 an be applied

to T . A tableau is a omplete and lash-free ompletion tree.

For a formula set � and onstant symbols a; b, we use the notation �[a 7! b℄

to denote the set of formulas in � where all ourrenes of a are replaed by b.

The bloking ondition is dynami, i.e. blokings are not established forever,

but they an be aneled later if one of the nodes involved hanges (and reappear

if the other one hanges aordingly).

To deide the satis�ability of a formula ', a root node n

0

is reated with

N(n

0

) := 0, C(n

0

) := fg for a random onstant  (to prevent empty stru-

tures), and �(n

0

) := f'g. Then the ompletion rules in Table 1 are applied

until a tableau is found or a lash ours. If the rules an be applied in suh a

way that a tableau is found, \' is satisfiable" is output, otherwise \' is

unsatisfiable".

Sine a satis�able GF -formula need not have a �nite tree model, the blok-

ing ondition is neessary to ensure termination. It prevents new nodes from

being reated if there is already another node ontaining \similar" formulas. If

a tableau is found, it an be transformed into a model by unraveling the blok-

ings, i.e. replaing a bloked node v with a opy of the node u bloking v. Note

that the bloking ondition is not equivalent to subset bloking, where a node

v is bloked by a node u if the label of v is a subset of the label of u: for GF ,

the image of � need only be a subset of C(u), but restrited to these onstants,

the labels of u and v have to be equal (modulo �). The proof of orretness,

ompleteness and termination of the algorithm an be found in [17℄.

3 Implementation

The algorithm desribed in Setion 2 leaves many possibilities for an implemen-

tation. To obtain an eÆient program, the following issues have to be onsidered:



Non-Determinism. There are two kinds of non-determinism involved in the

GF-algorithm: the deision whih rule to apply �rst if several ones are appliable

is don't-are non-deterministi, i.e. every hoie will lead to a orret behaviour

of the algorithm, but its eÆieny will depend on a good heuristi. The two

heuristis implemented in Saga are desribed in Setion 5.

The deision whih disjunt of a disjuntion to add to the orresponding node

is don't-know non-deterministi, i.e. only ertain hoies will lead to the disovery

of a tableau. Therefore, a branhing and baktraking tehnique is neessary to

undo the hanges made by the last deision after a lash has ourred. EÆieny

will again depend on a good strategy whih disjunt to try �rst.

The data struture branhing point desribed in Setion 3 is used to enable

branhing and baktraking: before adding the �rst disjunt ' to the orrespond-

ing node, a new branhing point is reated that subsequently stores bakups of all

nodes that are hanged as a onsequene of adding '. Three di�erent heuristis

for hoosing the �rst disjunt are implemented (f. Setion 5).

Data Strutures. The data struture for a node n ontains the labels C(n),

�(n), andN(n) desribed in Setion 2. Additionally, blokings that were already

deteted are reorded in the bloking node as well as in the bloked one suh

that unneessary testing is avoided.

A branhing point b is reated by R_ after hoosing a disjunt  from a

disjuntion ' _ �. It ontains a unique branhing identi�er (BID) I(b), a list

C(b) of nodes that were reated, and a list M(b) of bakups of nodes that were

modi�ed as a onsequene of adding ', and the other disjunt O(b) = � that

has to be added to the tree if ' auses a lash.

For a node n, every formula ' 2 �(n) is labeled with the dependeny set

D('; n) of branhing points it depends on. This enables us to �nd the right

branhing point for the bakup of a node n if a rule appliation for ' modi�es

n, and to use bakjumping (f. Setion 4).

Funtions. Figure 1 shows the funtion hierarhy: an arrow from f1 to f2means

that f1 invokes f2. The main funtion onstrut-tableau(') reeives a GF

formula as input. It reates a new node n

0

and adds ' to �(n

0

). Subsequently,

it iteratively alls hoose-next-formula(), whih uses one of the heuristis

desribed in Setion 5 to determine the next formula ' to proess and the node

n ontaining '. The funtion satisfy(n; ') applies the orresponding rule by

hoosing the appropriate funtion satisfy-and(n; '), satisfy-all(n; ') et.

Most of these funtions will add new formulas to n, whih is performed by

add-formula(n; '). If there are branhing points assoiated with ', i.e. D('; n)

is not empty, a bakup of n is reated in the branhing point b with I(b) =

max(D('; n)). A possible bloking of n by another node or of another node by

n is removed.

For an existential formula ' = 9x(G(;x)^�(;x)), satisfy-ex(n; ') �rst

invokes bloked(n

i

) for n and its anestors to hek if n is bloked. For this

purpose, the funtion equivalent(n

i

; n

j

) tries to �nd a mapping � for two nodes



n

i

; n

j

from C(n

i

) to C(n

j

) as desribed in De�nition 2. If suh a mapping is

found, the funtion blok(n

i

) bloks the node n

i

and its suessors. Otherwise,

a new son n

k

of n is reated with C(n

k

) = C

old

[ C

new

, where d is a vetor of

new onstants for the variables in x, C

old

are the onstants in , and C

new

are

the onstants in d. The guard G(;d) and body �(;d) are added to �(n

k

), and

formulas in �(n) whih ontain only onstants in C

old

are propagated to �(n

k

).

For a disjuntion ', satisfy-or(n; ') invokes hoose-alternative(') to

�nd the �rst disjunt  to add to n. It then alls branh(n;  ), whih reates

a new branhing point b

new

and a bakup of n in M(b

new

), and �nally adds  

to n. When a lash ours, onstrut-tableau alls baktrak() to return to

the last branhing point b

i

for whih there is another alternative, i.e. O(b

i

) is

not empty: all nodes n reated as a onsequene of the last branh are removed

by delete-node(n), and all nodes modi�ed are replaed with their bakups

by restore-tree(fn

1

; : : : ; n

k

g). Then the remaining alternative from O(b

i

) is

added to the orresponding node and removed from O(b

i

).

Rl is not implemented as a separate rule, but is applied impliitly whenever

a formula is added to a node: when add-formula is invoked for a formula '

and a node n, it alls propagate('; fn

1

; : : : ; n

i

g), whih heks if the onstants

in ' are also ontained in the neighbours n

1

; : : : ; n

i

of n and adds ' to the

orresponding nodes.

If a lash ours and baktraking is impossible, i.e there is no branh-

ing point ontaining another alternative, onstrut-tableau returns \' is

unsatisfiable"; if hoose-next-formula �nds no more formulas to proess,

the tree is omplete and \' is satisfiable" is returned together with the

tableau that was generated.

satisfy−or

block

branch

choose−alternative

equivalent

satisfy−atom
satisfy−eq
satisfy−and
satisfy−allrestore−tree

delete−node

satisfybacktrack

construct−tableau

add−formula

blocked

satisfy−ex

choose−next−formula

propagate

backup unblock

set−node

Fig. 1: Funtion Hierarhy



4 Optimisation

Setion 3 desribes only a very basi implementation whose performane annot

ompete with existing systems for omparably omplex logis. To obtain an

eÆient program, sophistiated optimisation tehniques are neessary.

Syntati Preproessing. Before Saga tries to onstrut a tableau for the

input formula ', it simpli�es the syntati struture of ' to speed up the tableau

generation proess: obvious tautologies and ontraditions are made expliit, a

normal form is used whih supports their detetion by eliminating _ and 9

and using n-ary onjuntions, and the variables ontained in a formula ' are

normalised when ' is added to a node. Details an be found in [18℄ or [19℄.

Semanti Branhing. The naive method to satisfy a disjuntion ' _ � is to

add ' �rst and, if this auses a lash, add � afterwards (Syntati Branhing).

This is rather ineÆient beause resoures have been spent to �nd out that ' is

unsatis�able in the urrent tree, but this information is forgotten.

Semanti Branhing [7℄ adds :' ^ � to the tree if ' leads to a lash. This

makes the information that ' is unsatis�able expliit and possibly prunes the

searh spae beause a tree in whih ' is satis�able is never tested again.

The drawbak of semanti branhing lies in adding formulas to the tree that

are superuous for a model. If these formulas are omplex, they an slow down

the tableau generation proess beause superuous rule appliations take plae

and superuous nodes are reated. An assessment of the advantages and disad-

vantages of semanti branhing is presented in Setion 6.

Bakjumping. After a lash, naive baktraking returns to the most reent

branhing point. Dependeny direted baktraking (bakjumping) [2℄ instead

returns to the most reent branhing point one of the lashing formulas depends

on. Thus, the intermediate BPs, whih did not have any inuene on the lash,

are skipped. The dependeny sets desribed in Setion 3 are used to �nd the

right branhing point to return to: after a lash between ' and � in node n, the

most reent BP b in D('; n) [ D(�; n) is determined and the bakjump to b is

performed.

Boolean Constraint Propagation. Before hoosing a disjunt  from a dis-

juntion ' _ � in a node n and performing a branh for  , every disjunt is

tested regarding whether it is losed, i.e. its negation is already ontained in n,

or whether it is open. If  is losed, it is removed from the disjuntion (beause

adding it would lead to an immediate lash), and only the remaining disjunts

are onsidered for branhing (this tehnique is known as boolean onstraint prop-

agation, BCP [6℄). In partiular, if there is only one open disjunt, it is added

deterministially to n, and the branh is avoided.



To-do Lists. To eÆiently �nd the next formula to proess (i.e. without searh-

ing the whole tree onstruted so far), a data struture to-do list is used. For

every kind of formula (atoms, onjuntions, existential restritions et.), it on-

tains a list of unbloked nodes whih ontain un-proessed formulas of that kind.

These lists are sorted by the node identi�ers, whih makes it possible to �nd the

\oldest" node ontaining e.g. an un-proessed onjuntion in onstant time.

5 Heuristis

In this setion, the di�erent heuristis implementing the non-deterministi dei-

sions (f. Setion 3) and the di�erent bloking tehniques are desribed.

Branhing. The deision whih disjuntion to hoose for the next branh and

whih one of its disjunts to test �rst is ruial for eÆieny (f. Setion 6). In

Saga, three di�erent heuristis pursuing di�erent goals are implemented.

MOMS. The heuristi \Maximum Ourrene in disjuntions of Minimum

Size" [6℄ was developed for propositional logi. It onsiders all lauses (dis-

juntions) of minimum size and ounts the appearanes of positive and neg-

ative literals (disjunts). The variable A to branh on is the one with the

largest ount of A and :A. If the ount for A is larger than the one for :A,

:A is tested �rst and, if this leads to a lash, A is tested afterwards. (MOMS

therefore impliitly requires semanti branhing.)

The goal is to optimise BCP by inreasing the number of losed disjunts

and reahing deterministi expansion as soon as possible. To adapt MOMS

for GF , we onsider every disjunt appearing in a disjuntion of a partiu-

lar node as a literal and hoose the disjunt ' or :' for branhing in the

orresponding way.

One disadvantage of MOMS lies in the fat that it tries the more onstrained

alternative �rst, i.e. the alternative that is more likely to fail. This means

that it performs niely for unsatis�able formulas, but badly for satis�able

ones [18℄. Furthermore, it was observed that MOMS interats adversely with

bakjumping [19℄.

iMOMS. Inverted MOMS [18℄ tries to avoid the disadvantage of being likely

to fail with the �rst alternative by testing ' and :' in the opposite order,

i.e. it hooses the disjunt whih satis�es most of the smallest disjuntions.

Maximise-jump. This heuristi was �rst used in FaCT [21℄. From all disjun-

tions of a node, it selets the one for whih the maximum element in the

dependeny set is minimal, i.e. the one leading to the furthest bakjump. To

�nd the �rst disjunt to try, FaCT uses a MOMS-style heuristi. In Saga,

the syntatially shortest disjunt is seleted beause a short formula proba-

bly an be tested faster than a long one whih is likely to ontain existential

or universal formulas. Sine this approah does not rely on ounts of dis-

junts like MOMS, we also expet to see the di�erenes in eÆieny more

learly.



Choosing the Next Formula. There are two kinds of formulas whih are

signi�antly more expensive to proess than the remaining ones. Firstly, dis-

juntions require the reation of a branhing point and bakups of nodes and,

after a lash, all modi�ed nodes have to be restored to their original state. Se-

ondly, for an existential formula in a node n, the bloking test for n has to be

performed. Sine the bloking ondition is de�ned reursively, eah anestor m

i

of n has to be ompared with all nodes `

j

with N(`

j

) < N(m

i

). For the bloking

test itself, all mappings from C(m

i

) to C(`

j

) have to be tested (in the worst

ase). Therefore, either disjuntions or existential formulas are proessed last.

Bloking. The bloking ondition for a node n as de�ned in Setion 2 requires

�(�(n)) to be equal to a restrition �(m) j

�(C(n))

for an anestor node m. The

algorithm also works for an alternate de�nition of bloking where the same num-

ber of onstants is required for n and m, i.e. equality of �(n) and �(m) modulo

�. This may lead to postponing bloking beause the bloking test only sueeds

after the reation of some additional nodes, but the test itself beomes signi�-

antly more eÆient: if the number of onstants, atoms, universal formulas et.

is not idential for m and n, it an be aborted immediately without generating

a mapping �. In the following, we will refer to the di�erent bloking onditions

as subset-equality bloking and equality bloking respetively.

6 Evaluation of Optimisations and Heuristis

In this setion, we present an analysis of the eÆieny and the interation of the

heuristis and optimisations desribed in the previous setions. We used several

benhmarks for logis of di�erent expressiveness to see how the heuristis behave

for formulas of di�erent omplexity: two sets from the \Tableaux 2000 Non-

Classial Systems Comparison" (TANCS-2000) [27℄ benhmark suite and some

GF formulas.

QBF-inv. The \quanti�ed boolean formulas with inverse" benhmark on-

sists of sets of random generated QBF formulas satisfying given parame-

ters, whih are translated into the logi K

�

(K with inverse modality). For

this omparison, we used the sets \p-QBF-inv-nfSSS-K4-C-V4-D4" with

 2 f10; 20; 30; 40; 50g, whih are the easiest ones, so that even very ineÆ-

ient ombinations of heuristis an still deide some formulas.

PSAT-inv. The random generated \periodi satis�ability with inverse" formu-

las are translated into the logi K

�

with global axioms. Again, we used the

easiest sets \p-psat-inv-nf-K4-C-V4-D4" with  2 f20; 30; 40; 50g.

GFB. Sine the QBF and PSAT formulas ontain only unary and binary re-

lations, they do not use the omplete expressive power of GF . To see how

Saga performs for \proper" GF formulas, we generated some (simple) \GF

Benhmark" (GFB) formulas. Eah set onsists of eight random generated

formulas with the same width, depth, and maximum arity of the relations.



The QBF benhmark does not require bloking beause termination of the

algorithm is ensured by the properties of K

�

: eah onstant exists in at most

two nodes, and for every grandson n of a node m the maximum modal depth of

a formula in �(n) is stritly shorter than it is in �(m). This property makes it

possible to regard the bloking test as another heuristi for this benhmark and

thus evaluate its eÆieny. For the more expressive logis, this is not possible

beause bloking must be permanently enabled to ensure termination.

The di�erent bloking onditions equality and subset-equality (f. Setion 5)

an only be ompared for GFB beause in a tree for QBF or PSAT every node

ontains exatly two onstants and the ase of subset-equality bloking for a

proper subset annot our.

To evaluate the heuristis by themselves as well as their interations, we ran

every benhmark with every possible ombination of heuristis. The �gures in the

following setions show how many formulas ould be solved with the orrespond-

ing ombination. On the x-axis, the di�erent branhing mehanisms are shown:

syntati branhing �rst, then semanti branhing with the di�erent branhing

heuristis. For every ombination of the other optimisations, a separate graph

is printed. The di�erent measuring points are onneted by lines to improve

readability.

The benhmarks were run on the following system: Hardware: Pentium-III

(733 MHz), 384 MB RAM, 512 MB swap spae; Software: Linux (Kernel 2.2),

Allegro Common Lisp 6.0.

QBF. Surprisingly, bloking is the most eÆient heuristi. With enabled blok-

ing test, up to 26 formulas an be solved, ompared to at most 4 without blok-

ing. Although it is very expensive in the worst ase, it is obviously still far more

eÆient than the expansion of the nodes that ould be bloked. This indiates

that the simple heuristi of omparing the number of onstants, atoms, exis-

tential formulas et. before generating a mapping � (f. Setion 5) is suÆient

to ahieve an eÆient bloking test. The speedup ould also be explained by

regarding the bloking test as a kind of partial model ahing (e.g. [21℄), whih

was observed to be very eÆient for the TANCS benhmark [13℄.

Semanti branhing and bakjumping also provide a signi�ant speedup.

While bakjumping leads to a rather onstant improvement independent of the

other optimisations, the speedup delivered by semanti branhing is partiularly

high for eÆient ombinations of the other heuristis. iMOMS is slightly worse

than maximise-jump, and MOMS is far worse than the other branhing heuris-

tis. This is true even if bakjumping is disabled, i.e. if seleting maximise-jump

e�etively means hoosing a random disjunt, whih shows that the main draw-

bak of MOMS is not the interferene with bakjumping, but the high probability

of failing with the �rst alternative.

Proessing R9 or R_ �rst does not have a signi�ant inuene, and syntati

simpli�ation has none at all (it is therefore not reorded in the �gures). This is

probably aused by the struture of the formulas.
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Fig. 2: Heuristis Comparison for QBF with \R_ Last" (Left) and \R9 Last" (Right)

PSAT. Semanti branhing is by far the most important heuristi, and bak-

jumping is also very eÆient. Regarding the optimal rule sequene, we an ob-

serve a signi�ant speedup if R_ is applied before R9. An explanation for this

behaviour is the bloking test: if it is applied only to propositionally expanded

nodes, the probability for bloking is higher.

iMOMS is slightly better than maximise-jump, but the di�erene is irrelevant

for eÆient ombinations of the other heuristis. The same is true for syntati

simpli�ation: if we have an eÆient ombination of heuristis, disabling syn-

tati simpli�ation does not signi�antly slow down the system. This indiates

that, in the presene of semanti branhing and bakjumping, the eÆieny is

not a�eted by minor di�erenes in the branhing ondition or syntati redun-

dany of a formula.
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GFB. The results for QBF indiate that bloking, although expensive, results

in a speedup. This raises the question if searhing for more bloking situations

by using subset-equality bloking instead of equality bloking might lead to a

further speedup, although the bloking test beomes even more expensive. The

measurements show that this is is not the ase: subset-equality bloking leads

to a higher average time and to fewer solvable formulas. The reason is that in

this ase, we annot use the heuristis enabling us to abort the test if a node

n is bloked by a node m early if C(m) > C(n), but have to test all subsets of

C(m) whih have the size of C(n). Syntati simpli�ation has more inuene

for GFB than for the other benhmarks, whih is probably aused by the simple

and random struture of the formulas. The other heuristis behave similarly.

(Therefore we do not inlude a �gure.)

Summary. Semanti branhing and bakjumping deliver a signi�ant speedup

for all of our benhmarks. Bloking is useful even when it is not neessary. Among

the branhing heuristis, maximise-jump and iMOMS perform well, whereas

MOMS is slower than hoosing a random disjunt. Syntati simpli�ation does

not provide a signi�ant speedup, and the optimal sequene of rule appliations

di�ers for the various benhmarks.

7 Comparison with Other Systems

In this setion, we examine how well Saga sales ompared to other systems for

logis of di�erent omplexity, i.e. how fast it an solve formulas from GF and less

expressive logis. We ompare our own results with those that were presented in

the TANCS-2000 omparison [3℄ for the QBF-inv/PSAT/PSAT-inv benhmarks.

The omparison systems are DLP [28℄, a satis�ability tester for PDL [4℄;

FaCT [20℄, a tableau algorithm for the desription logi SHIQ [23℄; RACE, a

TBox and ABox reasoner for the logi ALCNH

R

+
[16℄; and Gost [18℄, a tableau

algorithm for the logi GF1

�

[26℄, whih is a PSpae-fragment of GF . Gost

di�ers from Saga in two important aspets: it does not inlude a bloking test

(beause it is not neessary to ensure termination for GF1

�

), and it uses a sim-

pler bakup algorithm: before a branh is performed, the entire tree onstruted

so far is opied, and during baktraking, the tree is replaed with that opy.

While these systems are tableau algorithms like Saga and also share most

of its optimisations, the last ompetitor Spass [30, 31℄ is a resolution-based

�rst-order theorem prover.MSpass [24℄ is a Spass module translating formulas

from the syntax of modal or desription logis to �rst order logi so that their

satis�ability an be deided with Spass.

For this omparison, we used a larger set of the QBF and PSAT formulas

than in Setion 6. The results for DLP, FaCT, MSpass and RACE were taken

from [3℄ and those forGost from [18℄. The �gures in the following setions show,

for every system, how many formulas of eah set ould be solved.

The Saga benhmarks and the GF benhmark for Spass were run on the

following system: Hardware: Pentium-III (1 GHz), 512 MB RAM, 1 GB swap



spae; Software: Linux (Kernel 2.2), Allegro Common Lisp 6.0. Timeout: 600se

(QBF), 1000se (PSAT), 100se (GFB).

QBF. Figure 4 shows that Saga is more eÆient than Gost and FaCT for

most of the sets. While FaCT fails to solve many of the satis�able formulas from

the �rst sets, (C10/20/30-V4-D4), it performs better for some of the unsatis�-

able formulas (C50-V4-D6). It seems that FaCT prunes the searh spae more

eÆiently, but needs more time to ollet the neessary information.

The omparison with Gost again shows that the bloking test has a positive

impat on performane. Furthermore, the more sophistiated bakup strategy,

though slower for very easy formulas, pays for omplex ones: Saga never aborts

beause of memory exhaustion, whereas this is often the ase for Gost. Obvi-

ously, this behaviour is a result of the more spae-onsuming bakup strategy.
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Fig. 4: System Comparison for QBF

PSAT. In order to ompare Saga with as many systems as possible, we ran the

the PSAT as well as the PSAT-inv benhmark. Although the results presented

in this setion were produed on di�erent hardware with di�erent timeouts, the

di�erenes between the systems are relatively small. The PSAT formulas with

depth 1 were easy for all of the systems. For the harder formulas with depth 2,

the di�erenes beome visible and it turns out that Saga is slightly slower than

RACE and slightly faster than DLP andMSpass. For PSAT-inv, Saga is faster

than FaCT and similar toMSpass. Again, the di�erene to FaCT is partiularly

large for satis�able formulas.

GFB. Figure 6 shows for every set haraterised by the width (w) and depth

(d) of the formulas and by the maximum arity (r) of the relations how many

formulas ould be solved. Among the omparison systems, Spass is the only
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Fig. 5: System Comparison for PSAT (Left) and PSAT-inv (Right)

one that an deide GF formulas, but, as mentioned before, its harateristis

are quite di�erent from Saga's. Therefore, it is no surprise that the results

are also di�erent: while Saga handles a large depth (d16) of a formula well,

it has problems with relations of a higher arity (r4). Spass shows the opposite

behaviour. The sum of deidable formulas is similar.

Though Saga works only for a fragment of FO and is not signi�antly faster

than Spass, the bene�t of using a tableau algorithm is having a deision proe-

dure, i.e. termination is guaranteed (even if it may onsume exponential time).
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8 Conlusion

In this paper, we presented an implementation and empirial analysis of a

GF tableau algorithm. It turned out that, in spite of its worst-ase omplex-

ity of NExpTime (for bounded arity), it performs well for existing benh-



mark formulas and the GF formulas we generated. Compared to other systems,

Saga's performane is slightly better than FaCT and similar to DLP, RACE

an Spass/MSpass. Sophistiated optimisations, in partiular bakjumping and

semanti branhing, are neessary to ahieve this result. The bloking test, even

when it is not neessary to ensure termination, signi�antly speeds up the pro-

gram. However, this depends on the heuristis implemented to abort the test

early.

The performane analysis presented in this paper is based on random gener-

ated formulas, most of whih belong to a small fragment of GF . This enables us

to ompare Saga with several existing systems, but it also means that it may

not be representative for real-life problems. The behaviour for realisti knowledge

bases is subjet to further study.
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