
The Complexity of the Graded�-Calculus

Orna Kupferman1, Ulrike Sattler2, Moshe Y. Vardi3?

1 School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

2 Institut für Theoretische Informatik, TU Dresden, Germany
sattler@tcs.inf.tu-dresden.de

3 Department of Computer Science, Rice University, Houston,TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract. In classical logic, existential and universal quantifiers express that
there exists at least one individual satisfying a formula, or that all individuals sat-
isfy a formula. In many logics, these quantifiers have been generalized to express
that, for a non-negative integern, at leastn individuals or all butn individuals
satisfy a formula. In modal logics,graded modalitiesgeneralize standard existen-
tial and universal modalities in that they express, e.g., that there exist at leastn
accessible worlds satisfying a certain formula. Graded modalities are useful ex-
pressive means in knowledge representation; they are present in a variety of other
knowledge representation formalisms closely related to modal logic.
A natural question that arises is how the generalization of the existential and
universal modalities affects the satisfiability problem for the logic and its com-
putational complexity, especially when the numbers in the graded modalities are
coded in binary. In this paper we study thegraded�-calculus, which extends
graded modal logic with fixed-point operators, or, equivalently, extends classi-
cal �-calculus with graded modalities. We prove that the satisfiability problem
for graded�-calculus is EXPTIME-complete – not harder than the satisfiabil-
ity problem for�-calculus, even when the numbers in the graded modalities are
coded in binary.

1 Introduction

In classical logic, existential and universal quantifiers express that there existsat least
one individual satisfying a formula, or thatall individuals satisfy a formula. In many
logics, these quantifiers have been generalized to express that, for a non-negative in-
tegern, at leastn individuals orall but n individuals satisfy a formula. For example,
predicate logic has been extended with so-calledcounting quantifiers9�n and9�n

[GOR97,PST00]. In modal logics,graded modalities[Fin72,vD95,Tob01] generalize
standard existential and universal modalities in that theyexpress, e.g., that there exist
at leastn accessible worlds satisfying a certain formula. In description logics,num-
ber restrictionshave always played a central role; e.g., they are present in almost all
knowledge-representationsystems based on description logic [PSMB+91,BFH+94,Hor98,HM01].

? Supported in Part by NSF grants CCR-9988322, IIS-9908435, IIS-9978135, and EIA-
0086264, and by BSF grant 9800096.

Indeed, in a typical such system, one can describe cars as those vehicles having at least
four wheels, and bicycles as those vehicles having exactly two wheels.

A natural question that arises is how the generalization of the existential and uni-
versal quantifiers affects the satisfiability problem for the logic and its computational
complexity. The complexity of a variety of description logics with different forms of
number restrictions has been investigated; see, e.g. [DLNdN91,HB91,DL94b,BS99].
It turned out that, in many cases, one can extend a logic with these forms of counting
quantifiers without increasing its computational complexity. On the other hand, in some
cases the extension makes the logic much more complex. A prominent example is the
guarded fragment of first order logic, which becomes undecidable when extended with
a very weak form of counting quantifiers (global functionality conditions on binary
relations) [Grä99].

When investigating the complexity of a logic with a form of counting quantifiers,
one must decide how the numbers in these quantifiers contribute to the length of a
formula, i.e., to the input of a decision procedure. Assuming that these numbers are
coded in unary (i.e.,j9�nx:'(x)j = n + j'(x)j) might seem odd, but is an assump-
tion often made, for example in description and predicate logics. It reflects the way in
which many decision procedures for these logic work: they explicitly generaten in-
dividuals for9�n. In contrast, the assumption that the numbers are coded in binary
(i.e.,j9�nx:'(x)j = dlogne+ j'(x)j) corresponds more closely to our intuition on the
length of a formula, but it is not clear whether and how decision procedures can avoid
the exponential blow up that a translation from the binary tothe unary coding involves.

It is an interesting question whether the complexity of a logic is sensitive to the
coding of numbers in counting quantifiers. It seems as if manylogics are insensitive to
the coding, i.e., both complexities coincide, even though one has to “work harder” for
binary coding. For many logics with counting quantifiers, the complexity of the satis-
fiability problem is known for unary coding only, and is unknown for binary coding.
For example,C2 (two-variable first-order logic with counting) is known to be NEXP-
TIME-complete if numbers in counting quantifiers are coded in unary [PST00]. While
this coincides with the complexity of first-order two-variable logic without counting
[GKV97], the complexity ofC2 with binary coding is, to the best of our knowledge,
unknown so far. Similarly, all the above mentioned complexity results for description
and modal logics, with the exception of [Tob00,Tob01], assume unary coding of num-
bers.

In [Tob00,Tob01], Tobies studiesgraded modal logic, the extension of modal logic
with graded modalities. He proves that the satisfiability problem for this logic is PSPACE-
complete — not harder than the satisfiability problem for classical modal logic [Lad77],
even when the numbers in the graded modalities are coded in binary. The binary coding
requires additional technical machinery. Indeed, since the number of individuals that
satisfy a graded modality is exponential in the length of themodality, one cannot sim-
ply generate the individuals, but use some form of book keeping to keep track and count
the individuals required by counting quantifiers.

The�-calculus[Koz83] extends modal logic with least and greatest fixpointoper-
ators. The extension makes�-calculus a highly expressive logic, of great theoretical
and practical interest (cf. [Eme97]). In this paper, we study the graded�-calculus,

i.e., �-calculus with graded modalities. We show that the satisfiability problem for
graded�-calculus is EXPTIME-complete — not harder than the satisfiability prob-
lem for classical�-calculus [FL79], even if the numbers are coded in binary. Our re-
sult substantiates the above hypothesis that most logics are insensitive to the coding
of numbers, and is interesting for two additional reasons. Firstly, many relevant de-
scription, modal, and dynamic logics are fragments of the graded�-calculus; see, e.g.,
[Sch94,DL94b,DL94a]. Hence we obtain corresponding EXPTIME upper bounds for
these fragments for free. Secondly, other relevant description, modal, and dynamic log-
ics such asDLR

�

,SHIQ, graded modal logics, andDN [CDL99,HST00,Fin72,De 95]
are close “relatives” of the graded�-calculus. Thus we could use the techniques devel-
oped here to prove EXPTIME upper bounds and develop optimal reasoning algorithms
for these relatives using similar techniques.

Our techniques are based on the automata-theoretic approach [VW86,SE89,Var97]:
to develop a decision procedure for a logic with the tree-model property, one first de-
velops an appropriate notion of tree automata and studies their emptiness problem. The
satisfiability problem for the logic is then reduced to the automata emptiness problem.
We show here that the appropriate notion of automata is that of graded alternating
tree automata, which generalize standard alternating tree automata by having the abil-
ity to count the number of successors that satisfy a certain condition4 We show that
graded�-calculus has a tree model property and that, given a formula', we can con-
struct a graded alternating automatonA

'

that accepts exactly the (tree abstractions of)
models of'. The size ofA

'

is linear in j'j, even if numbers in graded modalities
are coded in binary. We then present an EXPTIME decision procedure for the empti-
ness of graded alternating automaton by an appropriate translation intograded non-
deterministic automata(with an exponential blow-up in the size of the automaton), and
show that emptiness of graded non-deterministic automata can be decided in polyno-
mial time. Like other automata-based decision procedures,the techniques developed
here can be re-used: once a suitable class of automata for a certain class of logics is
designed (together with the corresponding emptiness test), these automata can be easily
re-used for similar logics. In particular, our technique can be easily extended to han-
dle in EXPTIME �-calculus withfractional modalities, where we can express, e.g., that
at least half of the accessible worlds satisfy some predicate, as well as all modalities
that involve polynomially-checkable conditions on the number of accessible words that
satisfy a formula.

2 The Graded�-Calculus

Thegraded�-calculusis a propositional modal logic augmented with least and greatest
fixpoint operators [Koz83]. Specifically, we consider a�-calculus where formulas are
constructed from atomic propositions with Boolean connectives, thegraded modalities
hn; �i (“exist at leastn �-successors”) and[n; �℄ (“all but at mostn �-successors”), as

4 Some variants of alternating automata that support counting are studied in the literature (c.f.,
[Wal96]). Unlike these variants, where counting is done in the transition function of the au-
tomaton, our graded automata count by maintaining binary counters that should satisfy count-
ing constraints. This is essential for the efficient treatment of constraints coded in binary.

well as least (�) and greatest (�) fixpoint operators. We assume that�-calculus formulas
are written in positive normal form (negation is applied only to atomic propositions).
Formally, given a setAP of atomic propositions, a setVar of propositional variables,
and a setProg of (atomic) programs, the set of formulas of the graded�-calculus is the
smallest set such that the following holds.

– true, false, p and:p, for p 2 AP, are formulas,
– x 2 Var is a formula, and
– if '

1

and'
2

are formulas,� is a program,n is a non-negative integer, andx is a
propositional variable, then'

1

^ '

2

, '
1

_ '

2

, hn; �i'
1

, [n; �℄'
1

, �y:'
1

(y), and
�y:'

1

(y) are formulas.

A propositional variablex occursfree in a formula if it is not in the scope of a fixpoint
operator. Note thatxmay occur both bound and free in a formula. Asentenceis formula
that contains no free variables. We use� to denote a fixpoint operator� or �. For a
�-formula�x:'(x), we write'(�x:'(x)) to denote the formula that is obtained by
replacing each free occurrence ofx in ' with �x:'(x). We refer to formulas of the
form hn; �i'

1

and[n; �℄'
1

asatleastandallbut formulas, respectively.
We say that a formula' counts up tob if the maximal integer occurring in graded

modalities in' is b� 1. We refer tob as thecounting boundof '. We assume that the
integers in graded modalities are given in binary. Thelengthof ', denotedj'j, reflects
this fact. Formally,j'j is defined by induction on the structure of' in a standard way,
with j hn; �i'

1

j = dlogne+ 1 + j'

1

j, and similarly forj [n; �℄'
1

j.
We define the semantics of graded�-calculus with respect toKripke structures. The

semantics is similar to the one for standard�-calculus (see [Koz83]), with the exception
of the graded modalities: a statew of a Kripke structureK satisfies the atleast formula
hn; �i' iff at leastn + 1 successors ofw in � satisfy'. Dually,w satisfies the allbut
formula[n; �℄' iff all but at mostn successors ofw in � satisfy'. Note that: hn; �i'
is equivalent to[n; �℄:'. Indeed,: hn; �i'means that less thann+1 successors ofw
satisfy', that is, at mostn successors do not satisfy:'. The least and greatest fixpoint
operators are interpreted as in�-calculus; thus, for example,�y:p _ h1; �iy is satisfied
in a pointw if eitherw satisfiesp or w has two different�-successors each of which
either satisfiesp or has two different�-successors etc., or equivalently,w is a root of
a binary tree embedded in the transition relation of� in which each path eventually
reaches a point that satisfiesp. Note that the interpretation of a sentence is independent
of valuations. A sentence is calledsatisfiableiff there is a Kripke structureK and a
stateu of K such thatu satisfies .

The modalitieshn; �i' and[n; �℄' are natural generalizations of the standard ex-
istential and universal next modalities. In particular,h�i' and[�℄' of modal logic are
equivalent toh0; �i' and[0; �℄', respectively, and thenumber restrictions(� n r ')

and(� n r ') for a roler in description logics [HB91] are equivalent tohn� 1; ri'

and[n; r℄:', respectively (note that(� 0 r ') is equivalent totrue).
For technical convenience, we restrict our attention to formulas and Kripke struc-

tures in which only one program occurs. By adding atomic propositions associated with
programs, one can reduce formulas and structures with several programs to our setting.
Note that we can also add new atomic propositions that would take care of the counting
done in graded modalities. Formally, if' counts up tob, we add propositions

1

; : : : ;

b

,

conjoin' with a requirement that exactly one

i

holds in each point, that successors that
are labeled by the same

i

agree on their label with respect to all the subformulas of',
and replace an atleast modalityhn; i by a

W

fj

1

;:::;j

n+1

g�f1;:::;bg

V

1�i�n+1

3(^

j

i

),
and dually for allbut modalities. The�-calculus formula we get is satisfiable iff' is sat-
isfiable, yet the length of each disjunct that replaces a graded modality is exponential
in b. Since the bounds in the graded modalities are written in binary, the length of the
formula we get is doubly exponential in the length of'.

A tree is a setT � IN� such that ifx �
 2 T wherex 2 IN� and
 2 IN, then
alsox 2 T . The elements ofT are callednodes, and the empty word" is theroot of
T . For everyx 2 T , the nodesx �
 where
 2 IN are thechildrenof x. The number of
children ofx is called thedegreeof x, and is denoteddeg(x). Thedegreeof a tree is
the maximum degree of a node in the tree. A node is aleaf if it has no children. Apath
� of a treeT is a set� � T such that" 2 � and for everyx 2 �, eitherx is a leaf or
there exists a unique
 2 IN such thatx �
 2 �. Given an alphabet�, a�-labeled tree
is a pairhT; V i whereT is a tree andV : T ! � maps each node ofT to a letter in�.

In the full version, we show that the graded�-calculus has the tree model property.
Thus, if a formula' is satisfiable, it is also satisfiable in a tree. Moreover, thenumber
of atleast formulas in' and its counting bound induce a sufficient degree for the tree.
Formally, we have the following.

Theorem 1. Consider a sentence such that hasl atleast subsentences, each count-
ing to at mostb. If is satisfiable, then is satisfied in a tree whose degree is at most
l � (b+ 1).

3 Graded Automata

Automata over infinite trees(tree automata) run over�-labeled trees that have no leaves
[Tho90].Alternating automatageneralize nondeterministic tree automata and were first
introduced in [MS87]. Intuitively, while a nondeterministic automaton that visits a node
x of the input tree send one copy of itself to each of the successors ofx, an alternating
automata can several copies of itself to the same successor.

3.1 Graded Alternating Parity Tree Automata

For a given setY , let B+

(Y) be the set of positive Boolean formulas overY (i.e.,
Boolean formulas built from elements inY using^ and_), where we also allow the
formulastrue andfalseand, as usual,̂ has precedence over_. For a setX � Y and a
formula� 2 B

+

(Y), we say thatX satisfies� iff assigningtrue to elements inX and
assigningfalse to elements inY nX makes� true.

For b � 0, let h[b℄i = fh0i; h1i; : : : ; hbig and [[b℄℄ = f[0℄; [1℄; : : : ; [b℄g, and let
D

b

= f"g[h[b℄i[[[b℄℄. A graded alternating tree automatonis an automaton in which
the transition functionÆ maps a stateq and a letter� to a formula inB+

(D

b

� Q).
Intuitively, an atom("; q) means that the automaton sends a copy of itself in stateq to
the current node, an atom(hni; q) means that the automaton sends copies in statesq

to n + 1 different children of the current node, and([n℄; q) means that the automaton

sends copies in stateq to all butn children of the current node. When, for instance, the
automaton is in stateq, reads a nodex andÆ(q; V (x)) = (h3i; q

1

) ^ ("; q

2

) _ ([2℄; q

3

),
it can either send four copies in stateq

1

to four different children ofx and send a
copy in stateq

2

to x, or send copies in stateq
3

to deg(x) � 2 children ofx. So, while
nondeterministic tree automata send exactly one copy to each child, graded automata
can send several copies to the same child, they have" transitions, and extendsymmetric
automata[JW95,Wil99] by specifying the number of children that needto satisfy an
existential requirement or are exempt from satisfying a universal one.

Formally, a graded automaton is a tupleA = h�; b;Q; Æ; q

0

; �i, where�,Q, q
0

, and
� are as in alternating automata,b is acounting bound, andÆ : Q�� ! B

+

(D

b

�Q)

is a transition function. Arun of A on an input�-labeled treehT; V i is a treehT
r

; ri

(to be formally defined shortly) in which each node corresponds to a node ofT and is
labeled by an element of IN� �Q. A node inT

r

, labeled by(x; q), describes a copy of
the automaton that reads the nodex of T and visits the stateq. Note that many nodes
of T

r

can correspond to the same node ofT ; in contrast, in a run of a nondeterministic
automaton onhT; V i there is a one-to-one correspondence between the nodes of the
run and the nodes of the tree. The labels of a node and its children have to satisfy the
transition function. Formally, the runhT

r

; ri is an(IN�

� Q)-labeled IN-tree such that
" 2 T

r

andr(") = ("; q

0

), and for ally 2 T

r

with r(y) = (x; q) andÆ(q; V (x)) = �,
there is a (possibly empty) setS � D

b

�Q, such thatS satisfies�, and for all(
; s) 2 S,
the following holds:

– If
 = ", then there isj 2 IN such thaty � j 2 T
r

andr(y � j) = (x; s).
– If
 = hni, then there are distincti

1

; : : : ; i

n+1

2 IN such that for all1 � j � n+1,
there isj0 2 IN such thaty � j0 2 T

r

andr(y � j0) = (x � i

j

; s).
– If
 = [n℄, then there are distincti

1

; : : : ; i

deg(x)�n

2 IN such that for all1 � j �

deg(x) � n, there isj0 2 IN such thaty � j0 2 T
r

andr(y � j0) = (x � i

j

; s).

Note that if� = true, theny need not have children. This is the reason whyT

r

may
have leaves. Also, since there exists no setS as required for� = false, we cannot have
a run that takes a transition with� = false.

A run hT
r

; ri is acceptingif all its infinite paths satisfy the acceptance condition.
We consider here theparity acceptance condition, where� = fF

1

; F

2

; : : : ; F

k

g is such
thatF

1

� F

2

� � � � � F

k

= Q. The numberk of sets in� is called theindexof the
automaton. Given a runhT

r

; ri and an infinite path� � T

r

, let inf(�) � Q be such that
q 2 inf(�) if and only if there are infinitely manyy 2 � for whichr(y) 2 IN�

� fqg.
That is,inf(�) contains exactly all the states that appear infinitely oftenin �. A path�
satisfies a parity acceptance condition� = fF

1

; F

2

; : : : ; F

k

g iff the minimal indexi for
which inf(�) \ F

i

6= ; is even. An automaton accepts a tree if and only if there exists
a run that accepts it. We denote byL(A) the set of all�-labeled trees thatA accepts.

Theorem 2. Given a sentence of the graded�-calculus5 that counts up tob, we can
construct a graded alternating parity automatonA

such that

5 A graded�-calculus sentence isguardedif for all y 2 Var, all the occurrences ofy that are
in a scope of a fixpoint modality� are also in a scope of a graded modality that is itself in the
scope of�. Thus, a�-calculus sentence is guarded if for ally 2 Var, all the occurrences of
y are in the scope of a graded modality. For example, the formula �y:(p _ h0iy) is guarded

1. A

accepts exactly all trees that satisfy .
2. A

hasj j states, indexj j, and counting boundb.

Proof. The construction generalizes the one for�-calculus sentences and parity au-
tomata [KVW00]. Given , we defineA

= h2

AP

; b;
l(); Æ; ; �i, where for all
� 2 2

AP, we define:
Æ(p; �) = true if p 2 �, Æ(p; �) = false if p 62 �,

Æ(:p; �) = true if p 62 �, Æ(:p; �) = false if p 2 �,
Æ('

1

^ '

2

; �) = ("; '

1

) ^ ("; '

2

), Æ('

1

_ '

2

; �) = ("; '

1

) _ ("; '

2

),
Æ(hni'; �) = (hni; '), Æ([n℄'; �) = ([n℄; '),

Æ(�y:f(y); �) = Æ(f(�y:f(y)); �), Æ(�y:f(y); �) = Æ(f(�y:f(y)); �)).
The acceptance condition� is defined as in the automata for standard�-calculus, ac-

cording to thealternation levelof the formulas in
l(). For details, see [BC96,KVW00].

3.2 Graded Nondeterministic Parity Tree Automata

For an integerb, a b-bound is pair in B
b

= f(>; 0); (�; 0); (>; 1); (�; 1); : : : ; (>

; b); (�; b)g. For a setX , a subsetP � X , anm > 0, and a tuplet = hx

1

; : : : ; x

m

i 2

X

m, theweightof P in t, denotedweight(P; t), is the number of elements int that are
members ofP . That is,weight(P; t) = jfi : x

i

2 Pgj. For example,weight(f1; 2; 3g;
h1; 2; 2; 4; 2i) = 4. We say thatt satisfies ab-bound(>;n)with respect toP if weight(P; t) >
n, andt satisfies ab-bound(�; n) with respect toP if weight(P; t) � n.

For a setY , we useB(Y) to denote the set of all Boolean formulas over atoms inY .
Each formula� 2 B(Y) induces a setsat(�) � 2

Y such thatx 2 sat(�) iff x satisfies
�. For an integerb � 0, a b-counting constraintfor 2Y is a relationC � B(Y) � B

b

.
For example, ifY = fy

1

; y

2

; y

3

g, then we can haveC = fhy

1

_ :y

2

; (�; 3)i; hy

3

; (�

; 2)i; hy

1

^ y

3

; (>; 1)ig: A tuple t = hx

1

; : : : ; x

m

i 2 (2

Y

)

m satisfies theb-counting
constraintC if for all h�; �i 2 C, the tuplet satisfies� with respect tosat(�). Thus,
when� 2 B(Y) is paired with(>;n), at leastn+ 1 elements oft should satisfy�, and
when� is paired with(�; n), at mostn elements in the tuple satisfy�.

For a constraintC, thewidthof C is the number of� 2 B(Y) for which there is ab-
bound� such thath�; �i 2 C. Note that�may be paired with severalb-bounds. Still, it is
easy to replaceC by an equivalent constraintC 0 (that is, a tuplet satisfiesC iff t satisfies
C

0) in which� is paired with at most one constraint of the form(>;n) and at most one
constraint of the form(�; n). We assume that we work with suchminimizedconstraints.
For twob-counting constraintsC

1

andC
2

, we denote byC
1

� C

2

the minimization of
C

1

[C

2

. That is, if h�; (>;n
1

)i 2 C

1

andh�; (>;n
2

)i 2 C

2

, thenC
1

� C

2

contains
only h�; (>;maxfn

1

; n

2

g)i, and dually for constraints of the form(�; n)6.

and the formulah0i�y:(p _ y) is not guarded. Given a graded�-calculus formula, we can
construct, in linear time, an equivalent guarded formula (see [BB87,KVW00] for a proof for
�-calculus, which is easily extendible to graded�-calculus). Accordingly, we assume that all
formulas are guarded. This is essential for the correctnessof the construction in the proof.

6 To keep the� operator efficient, we do not care for redundancies and contradictions that
originate from the relation between the formulas in the constraints. For example, a minimized
C may contain bothh�

1

; (>; n)i andh�
2

; (>; n)i for �
1

that implies�
2

, and it may contain
bothh�; (>;n)i andh�; (�; n)i

We say that a constraintC is short if all the formulas� that appear inC are of size
linear in jY j and the width ofC is at mostjY j. We useC(Y; b) to denote the set of all
shortb-counting constraints for2Y . We assume that the integers in the constraints are
coded in binary. Thus, the size ofC 2 C(Y; b) isO(jY j

2

dlog be).

Lemma 1. Given a constraintC 2 C(Y; b) and a setS � 2

Y , deciding whether there
is a tuplet 2 (2

Y

)

� such thatt satisfiesC can be done in space(1 + dlog(b+ 1)e)jY j

or time(2b+ 2)

jY j.

Proof. Since the width ofC is at mostjY j, an algorithm that guessest (element by
element) and updates a counter for each� that participate inC requires space for storing
the guess for the current element in2Y , and for storing the values of the counters. The
algorithm terminates with a positive decision when the values of the counters are such
that all theb-bounds inC are satisfied. There are at mostjY j counters, each may count
up to at mostb + 1. Thus, the space required isjY j + jY jdlog(b + 1)e. In addition,
since the length of each formula� that participate inC is linear in jY j, its valuation
with respect to each element of the tuple can be done in spacelog jY j [Lyn77].

A graded nondeterministic parity tree automaton(GNPT, for short) isA = h�; b;Q; Æ; q

0

; �i,
where� andb, q

0

, and� are as in GAPT, and the other components are as follows.

– The state spaceQ is encoded by a finite setY of variables; that is,Q � 2

Y .
– The functionÆ : Q � � ! C(Y; b) maps a state and a letter to ab-counting

constraint for2Y .

Note that, like GAPT, a GNPT is symmetric, in the sense it cannot distinguish between
the different children of a node.

A run of the graded nondeterministic automatonA on a�-labeled treehT; V i is a
Q-labeled treehT; ri such thatr(") = q

0

and for everyx 2 T , the tuplehr(x � 1); r(x �
2); : : : ; r(x �deg(x))i satisfiesÆ(r(x); V (x)). The runhT; ri is accepting if all its paths
satisfy the parity acceptance condition.

We consider two special cases of GNPT.

– In forall automata, for eachq 2 Q and� 2 � there iss 2 Q such thatÆ(q; �) =
fh(:�

s

); (�; 0)ig, where�
s

2 B(Y) is such thatsat(�
s

) = fsg. Thus, a forall
automaton is a notational invariant of a deterministic treeautomaton, where the
transition function mapsq and� to hs; : : : ; si.

– In safetyautomata, there is no acceptance condition, and all runs areaccepting.
Note that this does not mean that safety automata accept all trees, as it may be that
on some trees the automaton does not have a run.

Lemma 2. Given a forall GNPTA
1

with n
1

states and indexk, and a safety GNPT
A

2

with n
2

states and counting boundb, we can define a GNPTA such thatL(A) =

L(A

1

) \ L(A

2

). Moreover,A hasn
1

n

2

states, indexk, and counting boundb.

4 The Nonemptiness Problem for GAPT

In this section we solve the nonemptiness problem for GAPT and conclude that the sat-
isfiability problem for graded�-calculus can be solved in EXPTIME. We first translate
GAPT to GNPT, and then solve the nonemptiness problem for GNPT. In the case of
standard�-calculus, the solution to the satisfiability problem follows the same plan: we
translate the formula to an alternating automatonA, and then check the nonemptiness
of A by first translating it to an equivalent nondeterministic automaton [MS95]. In our
case, the automatonA is graded, so its translation into a nondeterministic automaton
and the nonemptiness problem for the latter are more involved.

4.1 From GAPT to GNPT

Consider a GAPTA = h�; b;Q; Æ; q

0

; �i. LetD
b

= (f"g [h[b℄i [[[b℄℄). Recall that
the transition functionÆ : Q�� ! B

+

(D

b

�Q) maps a state and a letter to a formula
in B+

(D

b

� Q). A restriction of Æ is a partial function� : Q ! 2

D

b

�Q. For a letter
� 2 �, we say that a restriction� is relevantto � if for all q 2 Q for which Æ(q; �)
is satisfiable (i.e.,Æ(q; �) is not false), the set�(q) satisfiesÆ(q; �). If Æ(q; �) is not
satisfiable, then�(q) is undefined. Intuitively, by choosing the atoms that are going to
be satisfied,� removes the nondeterminism inÆ. Let F be the set of restrictions ofÆ.
A running strategyof A for a�-labeled treehT; V i is anF -labeled treehT; fi. We
say thathT; fi is relevant with respect tohT; V i if for all x 2 T , the restrictionf(x) is
relevant toV (x).

Consider a restriction� relevant to�. For q 2 Q, we say that a finite sequence
s = s

0

; s

1

; : : : ; s

l+1

is a step of� with q and � if s
0

= q, for all 0 � i < l, we
have("; s

i+1

) 2 �(s

i

), and(�; s
l+1

) 2 �(s

l

), for � 2 hbi [[b℄. Thus,s is a step of�
with q and� if by following the restriction� at a nodex labeled�, a run that visitsq
can continue by first takingl subsequent"-transitions and visitings

0

; : : : ; s

l

, and then
moving to a child ofx in states

l+1

. We refer to(�; s
l+1

) as the last atom taken in the
step. Note thatl may be0. We define thevalueof s, denotedval(s), as the minimali
such that there is0 < j � l + 1 with s

j

2 F

i

. Note that whens contains only two
states, its value is induced bys

1

.
We say that a finite sequences = s

0

; s

1

; : : : ; s

l

is an"-lasso of� with q and� if
s

0

= q, for all 0 � i � l � 1, we have("; s
i+1

) 2 �(s

i

), and there is0 �
 � l

such that("; s

) 2 �(s

l

) Thus,s is an"-lasso of� with q and� if by following the
restriction� at a nodex labeled�, there is0 �
 � l such that a run that visitsq can
eventually loop forever ins

; : : : ; s

l

by taking subsequent"-transitions. The value ofs
with a loop starting at
, denotedval(s;
), is the minimali such that there is
 � j � l

with s
j

2 F

i

. We say thats is rejecting if there is0 �
 � l such thatval(s) is odd.
A local promisefor the automatonA is a function� : Q ! 2

Q. We extend� to
sets of states, thus forP � Q, we have�(P) =

S

q2P

�(q). Let G be the set of all
local promises. Apromiseof A for a�-labeled treehT; V i is aG-labeled treehT; gi.
Intuitively, in a run that proceeds according tohT; gi, if a nodey � j hass 2 g(y � j)(q)
and the run visits its parenty in stateq and proceeds by choosing an atomhnis or [n℄s,
for some0 � n � b, theny � j is among the children ofy that inherits.

Consider a�-labeled treehT; V i, a running strategyhT; fi relevant tohT; V i, and
a promisehT; gi. A (T � Q)-labeled treehT

r

; ri is consistentwith f andg if hT
r

; ri

suggests a possible run ofA on hT; V i such that whenever the runhT
r

; ri is in stateq
as it reads a nodex 2 T , the restrictionf(x)(q) is defined, the run proceeds according
to f(x)(q), and it delivers requirements to each childx �j according tog(x �j)(q). Note
that since the counting constraints inf(x)(q) may not be satisfied,hT

r

; ri may not be a
legal run. Formally,hT

r

; ri is consistent withf andg iff the following hold.

1. " 2 T
r

andr(") = ("; q

0

).
2. Consider a nodey 2 T

r

with r(y) = (x; q). Then,f(x)(q) is defined, and for all
(
; s) 2 f(x)(q), the following hold:

– If
 = ", then there isj 2 IN such thaty � j 2 T
r

andr(y � j) = (x; s).
– If
 = hni or
 = [n℄, then for eachj 2 IN with s 2 g(x � j)(q), there isj0 2 IN

such thaty � j0 2 T
r

andr(y � j0) = (x � j; s).

For a nodex 2 T and a stateq 2 Q, we say thatx is obliged toq by f; g, andV if x is
visited byq in some labeled treehT

r

; ri consistent withf andg.
Let�0

� ��F �G be such that for allh�; �; �i 2 �0, we have that� is relevant to
�. For an infinite sequenceh�

0

; �

0

; �

0

i; h�

1

; �

1

; �

1

i; : : : of triples in�0 and a sequence
(either finite or infinite)q

0

; q

1

; : : : of states, we say thatq
0

; q

1

; : : : is a trace induced
by h�

0

; �

0

; �

0

i; h�

1

; �

1

; �

1

i; : : : if q
0

is the initial state ofA and there is a function
pos : IN ! IN such thatpos(0) = 0 and for everyi � 0, one of the following holds.

1. �
pos(i)

(q

i

) is empty, in which caseq
i

is the last state in the trace,
2. there is("; q

i+1

) 2 �

pos(i)

(q

i

) andpos(i+ 1) = pos(i), or
3. �

pos(i)

(q

i

) contains(hni; q
i+1

) or ([n℄; q
i+1

), q
i+1

2 �

pos(i)+1

(q

i

), andpos(i +
1) = pos(i) + 1.

Intuitively,q
0

; q

1

; : : : is a trace induced byh�
0

; �

0

; �

0

i; h�

1

; �

1

; �

1

i; : : :, if for every path
� � T and for every runhT

r

; ri on a�-labeled tree in which� is labeled by�
0

; �

1

; : : :,
if hT

r

; ri is consistent with a running strategy in which� is labeled�
0

; �

1

; : : : and a
promise in which� is labeled�

0

; �

1

; : : :, thenhT
r

; ri contains a path that visits the
statesq

0

; q

1

; : : :.
Recall that�0

� � � F �G. We refer to a�0-labeled tree ashT; (V; f; g)i, where
V; f , andg are the projections of the tree on�, F , andG, respectively. We say that a
running strategyhT; fi and a promisehT; gi aregoodfor hT; V i if all the infinite traces
induced by paths inhT; (V; f; g)i satisfy the acceptance condition�.

Consider a�-labeled treehT; V i, a running strategyhT; fi, and a promisehT; gi.
We say thatg fulfills f for V if the states promised to be visited byg satisfy the obliga-
tions induced byf as it runs onV . Formally,g fulfills f for V if for every nodex 2 T ,
and stateq such thatx is obliged toq by f , g, andV , the following hold:

1. For every atomhnis 2 f(x)(q), at leastn+1 childrenx�j of x haves 2 g(x�j)(q).
2. For every atom[n℄s 2 f(x)(q), at leastdeg(x) � n childrenx � j of x haves 2
g(x � j)(q).

Theorem 3. A GAPTA acceptshT; V i iff there exist a running strategyhT; fi and a
promisehT; gi such thatf is relevant forV , f andg are good forhT; V i, andg fulfills
f for V .

Intuitively, if f andg as above exist, the(T � Q)-labeled trees that are consistent
with f andg suggest legal accepting runs ofA on hT; V i.

Annotating input trees with restrictions and local promises enables us to transform
GAPT to GNPT, with an exponential blow up:

Theorem 4. Consider a GAPTA such thatA runs on�-labeled trees. There is a
GNPTA0 such thatA0 runs on�0-labeled trees and the following hold:

1. A0 accepts a tree iffA accepts its projection on�.
2. IfA hasn states, indexk, and counting boundb, thenA0 has2n(2+k lognk) states,

indexnk, andb-counting constraints.

Proof. Let A = h�; b;Q; Æ; q

0

; �i with � = fF

1

; : : : ; F

k

g. The automatonA0 is the
intersection of two automataA0

1

andA0

2

. The automatonA0

1

is a forall GNPT and it
accepts a treehT; (V; f; g)i iff f andg are good forV . The automatonA0

2

is a safety
GNPT, and it accepts a treehT; (V; f; g)i iff g fulfills f for V . Note that, since�0

contains only tripletsh�; �; �i for which � is relevant to�, it must be thatf is relevant
toV . Thus, by Theorem 3, it follows thatA0 acceptshT; (V; f; g)i iff A acceptshT; V i.

In order to defineA0

1

, we first define a nondeterministic co-parity word automaton
U over�0 such thatU accepts a word if some trace it induces is infinite and violates the
acceptance condition�. We defineU = h�

0

; S;M; s

0

; F

0

i, where

– S = (Q�Q� f1; : : : ; kg) [fq

a

g. Intuitively, a statehq; q
prev

; vi indicates that
the current state of the trace isq, that it was reached by following a step whose last
transition is from the stateq

prev

, and the value of the step isv (note that values are
calculated with respect to�). Thus,q corresponds to statesq

i+1

in traces for which
pos(i + 1) = pos(i) + 1. The numberv is used for the acceptance condition. In
addition,q

prev

is used for checking the obligation of the current position,given a
local promise in the input word.

– For everyhq; q
prev

; vi 2 S andh�; �; �i 2 �0, we distinguish between two cases. If
q 62 �(q

prev

), then the current position is not obliged toq andM(hq; q

prev

; vi; h�; �; �i) =

;. Otherwise, we again distinguish between two cases: if there is a rejecting"-
lasso of� with q and �, thenM(hq; q

prev

; vi; h�; �; �i) = fq

a

g. Otherwise,
hq

0

; q

0

prev

; v

0

i 2 M(hq; q

prev

; vi; h�; �; �i) iff there is a stepq; : : : ; q0
prev

; q

0 of �
with q and� such that the value of the step isv0.
In addition,M(q

a

; h�; �; �i) = fq

a

g for all h�; �; �i 2 �0. Intuitively,U checks
whether a possible step of� with q and� can participate in a rejecting trace. If the
current position is not obliged to the current state, no stepof � can participate in a
trace, soU gets stuck. Otherwise, if there is a rejecting"-lasso of� with q and�,
a rejecting trace is found andU moves to an accepting sink. Otherwise,U guesses
other possible steps of� with q and�, and moves to a state which remembers the
last two states visited in the step (possiblyq0

prev

= q), and the value of the step.
– s

0

0

= hq

0

; q

0

; li, wherel is such thatq
0

2 F

l

. Note that the choice of the second
element is arbitrary, as the local promise at the root of the input tree is irrelevant.

– The co-parity condition isF 0

= fF

0

1

; F

0

2

; : : : ; F

0

k

g, where forl � 2, we haveF 0

l

=

Q�Q�flg, andF 0

1

= (Q�Q�f1g)[fq

a

g. That is, acceptance is determined
with respect to the values of the steps taken along the trace.Also, sinceF 0 is a
co-parity condition, the accepting sinkq

a

is inF 0

1

.

In order to getA0

1

, we co-determinizeU (note thatU does not have"-transitions) and
expand it to a tree automaton on�0. That is, we first construct a deterministic parity
word automaton~U that complementsU , and then replace a transition~M(s; �) = s

0 in
~

U by a transition~

M

t

(s; �) = fh:�

s

0

; (�; 0)ig in A0

1

, where the states of~U are encoded
by some setY

1

of variables and for every states0, the formula�
s

0

2 B(Y

1

) holds only in
the subset ofY

1

that encodess0. By [Saf89,Tho97], the automaton~U has(nk)nk states
and indexnk, thus so doesA0

1

. HencejY
1

j = nk lognk.
It is left to define the safety GNPTA0

2

. LetQ
prev

= fq

prev

: q 2 Qg be a copy
of Q in which each state is tagged withprev . The state space ofA0

2

isQ0

= 2

Q[Q

prev .
Intuitively, each stateq0 of A0

2

corresponds to a pairhP; P
prev

i 2 Q � Q, with P =

q

0

\Q andP
prev

is obtained fromq0\Q
prev

by removing theprevtags. The elementP
of q0 is a set of “commitments” that the current node should satisfy. The elementP

prev

is used for remembering the state ofA that is visited in the parent node. WhenA0

2

is
in statehP; P

prev

i and reads the letterh�; �; �i, it checks that all the commitments inP
are covered by the local promise�(P

prev

) in the input, and it delivers, for eachq 2 P ,
the requirements on the children as specified in�(q).

Consider a statehP; P
prev

i 2 Q

0 and a letterh�; �; �i 2 �

0. For everyq 2 P , let
C

q

�;�

be theb-counting restriction inC(Q; b) imposed by�(q). (If �(q) is undefined, we
do not care aboutCq

�;�

, since, as we see shortly, in that caseA

0

2

simply gets stuck.) Thus,
C

q

�;�

= fhs; (>;n)i : hnis 2 �(q)g [fh:s; (�; n)i : [n℄s 2 �(q)g: Intuitively, Cq
�;�

restricts the tuple of the states that visit the children of the current node, which is visited
by hP; P

prev

i, so that�(q) is satisfied by the first elements of the states. In addition, the
second element of the states in the tuple should be the encoding ofP tagged withprev .
This is done by the counting constraintfh:�prev

P

; (�; 0)ig, where�prev
P

2 B(Q

prev

)

is such that the only set that satisfies�prev
P

is the encoding ofP tagged withprev .
Finally, for everyP 2 2

Q, letCP
�;�

= (�

q2P

C

q

�;�

) [fh:�

prev

P

; (�; 0)ig. Then,A0

2

=

h�

0

; Q

0

; Æ

0

; fq

0

; q

0

gi, where for everyhP; P
prev

i 2 Q

0 and h�; �; �i 2 �

0, we have
that Æ0(hP; P

prev

i; h�; �; �i) is empty if �(P
prev

) 6� P or there isq 2 P for which
�(q) is undefined, and isCP

�;�

otherwise. Note thatQ0 is defined with respect to the
2n variablesQ [Q

prev

. Also, all the formulas� that are paired to constraints inCP
�;�

are eithers or :s, for s 2 Q, or :�prev
P

. Hence, the counting constraints inA0

2

are in
C(Q [Q

prev

; b).
Now, by Lemma 2, we can define the the intersectionA

0 of A0

1

andA0

2

as a GNPT
with 2

n(2+k lognk) states, indexnk, andb-counting constraints.

4.2 The nonemptiness problem for GNPT

In a nondeterministic parity tree automatonU = h�;Q;M; q

0

; �i, the transition func-
tion M : Q � � ! 2

Q

�

maps a state and a letter to a set of possible tuples for the
children states. Thus, a run of nondeterministic tree automaton on a treehT; V i is a
Q-labeled treehT; ri in which r(") = q

0

and for allx 2 T , the tuplehr(x � 1); r(x �
2); : : : ; r(x � deg(x))i 2 M(r(x); V (x)). The nonemptiness test for parity tree au-
tomata then uses the local testis mother : 2

Q

� Q ! ftrue; falseg that given a
setS � Q and a stateq, returnstrue iff there is a tuplet 2 S

� and� 2 � such
that t 2 M(q; �). It is easy to see how theis mother test is used in a bottom-up
nonemptiness algorithm for automata on finite trees, where in order to find the set S

of states from which the automaton accepts some tree, one starts with the setS
0

of
accepting states then defineS

i+1

as the set of statesq such that eitherq is in S
i

or
is mother (t; q) = true. In parity automata, the algorithm is more complicated, as one
has to also keep track of the acceptance condition, but the same local test is used. Sev-
eral nonemptiness algorithms for nondeterministic paritytree automata are known. In
particular, the algorithms in [EJS93,KV98] useO(n

k

) calls tois mother, wheren is the
size ofQ andk is the index of the automaton.

Recall that in GNPT, a runhT; ri should satisfyr(") = q

0

and for allx 2 T ,
the tuplehr(x � 1); r(x � 2); : : : ; r(x � deg(x))i satisfiesÆ(r(x); V (x)), which is a
b-counting constraint. Thus, the nonemptiness test is similar, only that the local test
is mother : 2

Q

� Q ! ftrue; falseg now returnstrue for a setS � Q and a stateq,
iff there ist 2 S� and� 2 � such thatt satisfiesÆ(q; �). As with nondeterministic au-
tomata, the nonemptiness algorithm can doO(n

k

) calls tois mother . Unlike the case
for nondeterministic automata, however, here there is no simple transition function to
consult when we perform the local test. In addition, we should take into an account the
fact that the GNPT whose emptiness we check have larger alphabets than the GAPT we
have started with.

Consider a GAPTA = h�; b;Q; Æ; q

0

; �i with n states, indexk, and counting
boundb. Let us analyse carefully the complexity of the localis mother test in the
GNPTA0 we constructed fromA in Theorem 4. First,A0 has counting constraints in
C(Y

0

; b), forY 0 of sizen(2+k lognk). Hence, by Lemma 1, givenS, the check whether
there is a tuplet 2 S� such thatt satisfiesÆ(q; �0), for a particular�0 2 �0, can be done
in timeO(2b+2)

n(2+k log nk)

). Now,�0

� ��F�G, whereF is the set of restrictions
for Æ andG is the set of all local promises. Letj�j = l. Recall that a restriction relevant
to a letter� 2 � maps a stateq 2 Q to a subset ofD

b

� Q that satisfiesÆ(q; �). We
can restrict our attention to restrictions in which each state is paired with at most one
element ofhhbii, one element of[hbi℄, and". Thus,jF j is bounded by(2b + 4)

n

2

and
jGj is bounded by2n

2

. It follows that j�0

j � l(2b + 4)

n

2

2

n

2

, thusis mother can be
checked in timel(b+2)

O(n(n+2+k lognk). Since, as in [EJS93,KV98], the nonemptiness
problem can be solved byO(n

k

) applications ofis mother , we have the following.

Theorem 5. The nonemptiness problem forA0 can be solved in timenkl(b+2)

O(n(n+2+k lognk)).

For a graded�-calculus formula , we get, by Theorem 2, a GAPTA with n andk
bounded byj j, and the same counting boundb as . While b andl may be exponential
in j j, only n andk appear in the exponents in the expression in Theorem 5. This
implies the upper bound in the theorem below. The lower boundis due to the fact that
the�-calculus is known to be EXPTIME-hard [FL79].

Corollary 1. The satisfiability problem for graded�-calculus is EXPTIME-complete
even if the numbers in the graded modalities are coded in binary.

Note that the space and time bounds in Lemma 1 stay valid for counting constraints
that involve richer bounds than(>;n) and(�; n). For example, we can handle bounds
of the form(>;

1

2

) or (�; 1
2

), bounding the fraction of elements in the tuple that sat-
isfy a predicate (of course, this is applicable only to structures where all points have
only finitely many successors). In general, Lemma 1 can handle arbitrary polynomial

predicates� � IN2, where a tuplet 2 (2

Y

)

m satisfies such a constrainth�; �i if
�(weight (sat(�); t);m) holds. By defining the corresponding types of alternating au-
tomata, we can thus handle�-calculus formulas with richer types of modalities.

References

[BB87] B. Banieqbal and H. Barringer. Temporal logic with fixed points. InTemporal Logic
in Specification, volume 398 ofLNCS, pages 62–74. Springer-Verlag, 1987.

[BC96] G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the
modal�-calculus. InProc. of TACAS-96, LNCS1055. Springer-Verlag, 1996.

[BFH+94] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empirical
analysis of optimization techniques for terminological representation systems, or:
Making KRIS get a move on.Applied Artificial Intelligence, 4:109–132, 1994.

[BS99] F. Baader and U. Sattler. Expressive number restrictions in description logics.Jour-
nal of Logic and Computation, 9(3):319–350, 1999.

[CDL99] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive descrip-
tion logics with fixpoints based on automata on infinite trees. In IJCAI’99, 1999.

[De 95] G. De Giacomo. Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Università degli Studi di Roma “La Sapienza”,1995.

[DL94a] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. InProc. of AAAI-94, 1994.

[DL94b] G. De Giacomo and M. Lenzerini. Concept language with number restrictions and
fixpoints, and its relationship with mu-calculus. InProc. of ECAI-94, 1994.

[DLNdN91] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Thecomplexity of concept lan-
guages. InProc. of KR-91, 1991.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of�-
calculus. InProc. 4th CAV, LNCS 697, pages 385–396. Springer-Verlag, 1993.

[Eme97] E.A. Emerson. Model checking and the�-calculus. InDescriptive Complexity and
Finite Models, pages 185–214. American Mathematical Society, 1997.

[Fin72] K. Fine. In so many possible worlds.Notre Dame Journal of Formal Logics, 13:516–
520, 1972.

[FL79] M.J. Fischer and R.E. Ladner. Propositional dynamiclogic of regular programs.
Journal of Computer and Systems Sciences, 18:194–211, 1979.

[GKV97] E. Grädel, Ph. G. Kolaitis, and M. Y. Vardi. The decision problem for 2-variable
first-order logic.Bulletin of Symbolic Logic, 3:53–69, 1997.

[GOR97] E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable. In
Proc. of LICS-97, 1997.

[Grä99] E. Grädel. On the restraining power of guards.Journal of Symbolic Logic, 64, 1999.
[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.

In Proc. of KR-91, pages 335–346, 1991.
[HM01] V. Haarslev and R. Möller. RACER system description. In Proc. of IJCAR-01,

volume 2083 ofLNAI. Springer-Verlag, 2001.
[Hor98] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? InProc. of

KR-98, 1998.
[HST00] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description

logic shiq. InProc. of CADE-17, LNCS 1831, Germany, 2000. Springer-Verlag.
[JW95] D. Janin and I. Walukiewicz. Automata for the modal�-calculus and related results.

In Proc. of MFCS-95, LNCS, pages 552–562. Springer-Verlag, 1995.

[Koz83] D. Kozen. Results on the propositional�-calculus.Theoretical Computer Science,
27:333–354, 1983.

[KV98] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata empti-
ness. InProc. STOC-98, pages 224–233, 1998.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking.Journal of the ACM, 47(2):312–360, March 2000.

[Lad77] R. E. Ladner. The computational complexity of provability in systems of modal
propositional logic.SIAM Journal of Control and Optimization, 6(3):467–480, 1977.

[Lyn77] N. Lynch. Log space recognition and translation of parenthesis languages.Journal
of the ACM, 24:583–590, 1977.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata oninfinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternatingtree automata by nondetermin-
istic automata: New results and new proofs of theorems of Rabin, McNaughton and
Safra.Theoretical Computer Science, 141:69–107, 1995.

[PSMB+91] P. Patel-Schneider, D. McGuinness, R. Brachman, L. Resnick, and A. Borgida. The
CLASSIC knowledge representation system: Guiding principles and implementa-
tion rationale.SIGART Bulletin, 2(3):108–113, 1991.

[PST00] L. Pacholski, W. Szwast, and L. Tendera. Complexityresults for first-order two-
variable logic with counting.SIAM Journal of Computing, 29(4):1083–1117, 2000.

[Saf89] S. Safra.Complexity of automata on infinite objects. PhD thesis, Weizmann Institute
of Science, Rehovot, Israel, 1989.

[Sch94] K. Schild. Terminological cycles and the propositional�-calculus. InProc. of KR-
94, pages 509–520. Morgan Kaufmann, 1994.

[SE89] R.S. Streett and E.A. Emerson. An automata theoreticdecision procedure for the
propositional�-calculus.Information and Computation, 81(3):249–264, 1989.

[Tho90] W. Thomas. Automata on infinite objects. In J. Van Leeuwen, editor,Handbook of
Theoretical Computer Science, pages 165–191. North Holland, 1990.

[Tho97] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors,Handbook of Formal Language Theory, volume III, pages 389–455, 1997.

[Tob00] S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in
expressive description logics.Journal of Artificial Intelligence Research, 12:199–
217, 2000.

[Tob01] S. Tobies. PSPACE reasoning for graded modal logics. Journal of Logic and Com-
putation, 11(1):85–106, 2001.

[Var97] M.Y. Vardi. What makes modal logic so robustly decidable? InDescriptive Com-
plexity and Finite Models, pages 149–183. American Mathematical Society, 1997.

[vD95] W. van der Hoek and M. De Rijke. Counting objects.Journal of Logic and Compu-
tation, 5(3):325–345, 1995.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of pro-
grams.Journal of Computer and System Science, 32(2):182–221, 1986.

[Wal96] I. Walukiewicz. Monadic second order logic on tree-like structures. InProc. of
STACS-96, LNCS, pages 401–413. Springer-Verlag, 1996.

[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. InProc. of FSTTCS-99,
volume 1738 ofLNCS, pages 110–121. Springer-Verlag, 1999.

