The Complexity of the Graded p-Calculus

Orna Kupfermah, Ulrike Sattlef, Moshe Y. Vardt*

1 School of Computer Science and Engineering, Hebrew Urityederusalem, Israel
orna@s. huji.ac.il
2 Institut filr Theoretische Informatik, TU Dresden, Germpan
sattler@cs.inf.tu-dresden. de
3 Department of Computer Science, Rice University, Houstoh77251-1892, U.S.A.
vardi @s.rice. edu

Abstract. In classical logic, existential and universal quantifiexpress that
there exists at least one individual satisfying a formutdhat all individuals sat-
isfy a formula. In many logics, these quantifiers have beerggized to express
that, for a non-negative integer, at leastn individuals or all butn individuals
satisfy a formula. In modal logicgraded modalitiegeneralize standard existen-
tial and universal modalities in that they express, e.@t there exist at least
accessible worlds satisfying a certain formula. Gradedatitbes are useful ex-
pressive means in knowledge representation; they arentriese variety of other
knowledge representation formalisms closely related tdahimgic.

A natural question that arises is how the generalizatiorhefexistential and
universal modalities affects the satisfiability problem tioe logic and its com-
putational complexity, especially when the numbers in ttzelgd modalities are
coded in binary. In this paper we study theaded u-calculus which extends
graded modal logic with fixed-point operators, or, equiktlie extends classi-
cal u-calculus with graded modalities. We prove that the sabgfig problem
for gradedp-calculus is EXPTIME-complete — not harder than the sabdfia
ity problem for u-calculus, even when the numbers in the graded modalitees ar
coded in binary.

1 Introduction

In classical logic, existential and universal quantifiergress that there exisé least
oneindividual satisfying a formula, or thall individuals satisfy a formula. In many

logics, these quantifiers have been generalized to exgrassfor a non-negative in-

tegern, at leastn individuals orall but . individuals satisfy a formula. For example,
predicate logic has been extended with so-catlednting quantifiersl>” and 3"
[GOR97,PSTOQ]. In modal logicgraded modalitiegFin72,vD95,Tob01] generalize
standard existential and universal modalities in that #wqyress, e.g., that there exist

at leastn accessible worlds satisfying a certain formula. In desiaiplogics, num-

ber restrictionshave always played a central role; e.g., they are preseriimasa all
knowledge-representation systems based on descripanRPSMBt 91,BFH"94,Hor98,HMO01].
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Indeed, in a typical such system, one can describe cars s tedicles having at least
four wheels, and bicycles as those vehicles having exagtiyntheels.

A natural question that arises is how the generalizatiomefexistential and uni-
versal quantifiers affects the satisfiability problem fag thgic and its computational
complexity. The complexity of a variety of description logiwith different forms of
number restrictions has been investigated; see, e.g. [DI94HBI91,DL94b,BS99].
It turned out that, in many cases, one can extend a logic Wwébke forms of counting
quantifiers without increasing its computational compleXdn the other hand, in some
cases the extension makes the logic much more complex. Aipemtrexample is the
guarded fragment of first order logic, which becomes unddstelwhen extended with
a very weak form of counting quantifiers (global functiohalkonditions on binary
relations) [Gra99].

When investigating the complexity of a logic with a form ofurding quantifiers,
one must decide how the numbers in these quantifiers cotertbuthe length of a
formula, i.e., to the input of a decision procedure. Assugrtimt these numbers are
coded in unary (i.e[32"z.0(z)| = n + |p(z)]) might seem odd, but is an assump-
tion often made, for example in description and predicagéck It reflects the way in
which many decision procedures for these logic work: theylieitly generaten in-
dividuals for3=". In contrast, the assumption that the numbers are codecharnbi
(i.e.,|32"z.¢(x)| = [logn] + |¢(z)|) corresponds more closely to our intuition on the
length of a formula, but it is not clear whether and how decigirocedures can avoid
the exponential blow up that a translation from the binahtounary coding involves.

It is an interesting question whether the complexity of addg sensitive to the
coding of numbers in counting quantifiers. It seems as if nlagigs are insensitive to
the coding, i.e., both complexities coincide, even thougé leas to “work harder” for
binary coding. For many logics with counting quantifierse tomplexity of the satis-
fiability problem is known for unary coding only, and is unkwofor binary coding.
For exampleC? (two-variable first-order logic with counting) is known te N Exp-
TIME-complete if numbers in counting quantifiers are coded imyfRSTO00]. While
this coincides with the complexity of first-order two-vasia logic without counting
[GKV97], the complexity ofC? with binary coding is, to the best of our knowledge,
unknown so far. Similarly, all the above mentioned complerésults for description
and modal logics, with the exception of [Tob00,Tob01], asswnary coding of num-
bers.

In [Tob00,Tob01], Tobies studiggaded modal logicthe extension of modal logic
with graded modalities. He proves that the satisfiabilitylgpem for this logic is BPACE
complete — not harder than the satisfiability problem fossieal modal logic [Lad77],
even when the numbers in the graded modalities are codedambiT he binary coding
requires additional technical machinery. Indeed, sineenthmber of individuals that
satisfy a graded modality is exponential in the length ofrtraality, one cannot sim-
ply generate the individuals, but use some form of book ket keep track and count
the individuals required by counting quantifiers.

The p-calculus[Koz83] extends modal logic with least and greatest fixpojoer-
ators. The extension makgscalculus a highly expressive logic, of great theoretical
and practical interest (cf. [Eme97]). In this paper, we gttite graded p-calculus



i.e., u-calculus with graded modalities. We show that the satidifigtproblem for
gradedp-calculus is XPTIME-complete — not harder than the satisfiability prob-
lem for classicalu-calculus [FL79], even if the numbers are coded in binary: @u
sult substantiates the above hypothesis that most logicéaensitive to the coding
of numbers, and is interesting for two additional reasomstliz, many relevant de-
scription, modal, and dynamic logics are fragments of tlealgdu-calculus; see, e.g.,
[Sch94,DL94b,DL94a]. Hence we obtain correspondingEIME upper bounds for
these fragments for free. Secondly, other relevant desmmipmodal, and dynamic log-
icssucha®LR,, SHIQ, graded modallogics, arfd\ [CDL99,HST00,Fin72,De 95]
are close “relatives” of the gradedcalculus. Thus we could use the techniques devel-
oped here to prove X TIME upper bounds and develop optimal reasoning algorithms
for these relatives using similar techniques.

Our techniques are based on the automata-theoretic apyMaiB6,SE89,Var97]:
to develop a decision procedure for a logic with the tree-ehpdoperty, one first de-
velops an appropriate notion of tree automata and studéésgmptiness problem. The
satisfiability problem for the logic is then reduced to théoaata emptiness problem.
We show here that the appropriate notion of automata is thgraded alternating
tree automatawhich generalize standard alternating tree automata biyngghe abil-
ity to count the number of successors that satisfy a cert@maitiorf We show that
gradedu-calculus has a tree model property and that, given a formpulae can con-
struct a graded alternating automatdp that accepts exactly the (tree abstractions of)
models ofp. The size ofA, is linear in ||, even if numbers in graded modalities
are coded in binary. We then present axPEIME decision procedure for the empti-
ness of graded alternating automaton by an appropriatslétion intograded non-
deterministic automatéwith an exponential blow-up in the size of the automatony a
show that emptiness of graded non-deterministic autorreatiebe decided in polyno-
mial time. Like other automata-based decision proceduhestechniques developed
here can be re-used: once a suitable class of automata fotagnoglass of logics is
designed (together with the corresponding emptiness thee automata can be easily
re-used for similar logics. In particular, our techniqgua ¢ easily extended to han-
dle in EXPTIME pu-calculus withfractional modalitieswhere we can express, e.g., that
at least half of the accessible worlds satisfy some preglica well as all modalities
that involve polynomially-checkable conditions on the raanof accessible words that
satisfy a formula.

2 The Graded u-Calculus

Thegradedu-calculusis a propositional modal logic augmented with least andtgeta
fixpoint operators [Koz83]. Specifically, we consider-&alculus where formulas are
constructed from atomic propositions with Boolean coninest thegraded modalities

(n,a) (“exist at least a-successors”) anfh, ] (“all but at mostn a-successors”), as

4 Some variants of alternating automata that support coyiatia studied in the literature (c.f.,
[Wal96]). Unlike these variants, where counting is donehie transition function of the au-
tomaton, our graded automata count by maintaining binamters that should satisfy count-
ing constraints. This is essential for the efficient treathwd constraints coded in binary.



well as least ) and greatest/) fixpoint operators. We assume thatalculus formulas
are written in positive normal form (negation is appliedyotd atomic propositions).
Formally, given a seAP of atomic propositions, a s&far of propositional variables,
and a seProg of (atomic) programs, the set of formulas of the gradezhiculus is the
smallest set such that the following holds.

— true, false, p and—p, for p € AP, are formulas,

— x € Varis a formula, and

— if 1 andy, are formulasq is a programp is a non-negative integer, andis a
propositional variable, thep; A 2, 1 V 2, (n, @) @1, [0, a] p1, uy.e1(y), and
vy.p1(y) are formulas.

A propositional variable: occursfreein a formulaif it is not in the scope of a fixpoint
operator. Note that may occur both bound and free in a formulaséntencés formula
that contains no free variables. We usdo denote a fixpoint operatqr or v. For a
M-formula Az.p(x), we write p(Az.¢(z)) to denote the formula that is obtained by
replacing each free occurrence:ofin ¢ with Az.o(x). We refer to formulas of the
form (n, a) ¢; and[n, a] ¢ asatleastandallbut formulas, respectively.

We say that a formula counts up tad if the maximal integer occurring in graded
modalities inp is b — 1. We refer tob as thecounting bounaf p. We assume that the
integers in graded modalities are given in binary. Térgthof ¢, denoted|, reflects
this fact. Formally/| is defined by induction on the structurefn a standard way,
with | (n, a) p1| = [logn] 4+ 1 + |1, and similarly for| [n, o] ¢1 .

We define the semantics of gradeaalculus with respect thripke structuresThe
semantics is similar to the one for standardalculus (see [Koz83]), with the exception
of the graded modalities: a stateof a Kripke structurdy” satisfies the atleast formula
(n,a)yp iff at leastn + 1 successors ab in « satisfyp. Dually, w satisfies the allbut
formulaln, o]y iff all but at mostn successors ab in « satisfyp. Note that- (n, a) ¢
is equivalent tdn, a] —p. Indeed;~ (n, @) ¢ means that less than+ 1 successors ab
satisfyyp, that is, at most successors do not satisfyp. The least and greatest fixpoint
operators are interpreted asiircalculus; thus, for examplay.p V (1, a)y is satisfied
in a pointw if either w satisfiesp or w has two differenty-successors each of which
either satisfiep or has two different-successors etc., or equivalently,s a root of
a binary tree embedded in the transition relatiormvah which each path eventually
reaches a point that satisfipsNote that the interpretation of a sentence is independent
of valuations. A sentenceg is calledsatisfiableiff there is a Kripke structuré and a
stateu of K such thatu satisfies).

The modalitiegn, o) ¢ and[n, a] ¢ are natural generalizations of the standard ex-
istential and universal next modalities. In particular} and[a]e of modal logic are
equivalent to{0, o) p and|0, ] p, respectively, and theumber restrictiong> nr )
and (< nr ) for a roler in description logics [HB91] are equivalent {e — 1,7) ¢
and[n, r] ~y, respectively (note thdt> 0r ) is equivalent tdrue).

For technical convenience, we restrict our attention tonfdas and Kripke struc-
tures in which only one program occurs. By adding atomic psitipns associated with
programs, one can reduce formulas and structures withalguegrams to our setting.
Note that we can also add new atomic propositions that waiklel tare of the counting
done in graded modalities. Formallyifcounts up td, we add propositions, . . ., ¢,



conjoing with a requirement that exactly ongholds in each point, that successors that
are labeled by the samg agree on their label with respect to all the subformulag,of
and replace an atleast modalty, ) by avijl7---7j71.+1}g{17---,b} Ni<icni1 CWAc,),
and dually for allbut modalities. The-calculus formula we get is satisfiable {ffis sat-
isfiable, yet the length of each disjunct that replaces aegtadodality is exponential
in b. Since the bounds in the graded modalities are written iarginthe length of the
formula we get is doubly exponential in the lengthof

A treeis a setT’ C N* such that ifr - ¢ € T wherex € N* andc € N, then
alsox € T. The elements of" are calledhodes and the empty word is theroot of
T. For everyr € T, the nodes: - c wherec € N are thechildrenof x. The number of
children ofz is called thedegreeof z, and is denotedeg(x). Thedegreeof a tree is
the maximum degree of a node in the tree. A nodeléaif it has no children. Apath
m of atreeT is a setr C T such that € 7 and for everyr € 7, eitherx is a leaf or
there exists a uniquec N such thatr - ¢ € 7. Given an alphabeY, a ¥'-labeled tree
is a pair(T, V) whereT is atree and’ : T — Y maps each node @ to a letter inX'.

In the full version, we show that the gradgetalculus has the tree model property.
Thus, if a formulay is satisfiable, it is also satisfiable in a tree. Moreovertheaber
of atleast formulas ip and its counting bound induce a sufficient degree for the tree
Formally, we have the following.

Theorem 1. Consider a sentenag such that) hasl atleast subsentences, each count-
ing to at mosb. If ¢ is satisfiable, then is satisfied in a tree whose degree is at most
I-(b+1).

3 Graded Automata

Automata over infinite treg¢ree automata) run over-labeled trees that have no leaves
[Tho90]. Alternating automatgeneralize nondeterministic tree automata and were first
introduced in [MS87]. Intuitively, while a nondetermiricsautomaton that visits a node

x of the input tree send one copy of itself to each of the suoccess z, an alternating
automata can several copies of itself to the same successor.

3.1 Graded Alternating Parity Tree Automata

For a given se’, let B¥(Y') be the set of positive Boolean formulas ovér(i.e.,
Boolean formulas built from elements I usingA andV), where we also allow the
formulastrue andfalseand, as usual, has precedence over ForasetX C Y and a
formulad € BT (Y), we say thatX satisfies iff assigningtrue to elements inX and
assigningalseto elements it” \ X maked true.

Forb > 0, let ([b]) = {(0),(1),...,(b)} and[[b]] = {[0],[1],.--,[P]}, and let
Dy, = {e}U([b]) U[[D]]. A graded alternating tree automataman automaton in which
the transition functiod maps a statg and a letteir to a formula inB* (D, x Q).
Intuitively, an atom(e, ¢) means that the automaton sends a copy of itself in gtide
the current node, an atofin), ¢) means that the automaton sends copies in states
to n + 1 different children of the current node, afi&t], ¢) means that the automaton



sends copies in stateto all butn children of the current node. When, for instance, the
automaton is in statg, reads a node andd(q, V(z)) = ((3),q1) A (¢,¢2) V (2], ¢3),
it can either send four copies in state to four different children ofz and send a
copy in statey, to z, or send copies in statg to deg(x) — 2 children ofz. So, while
nondeterministic tree automata send exactly one copy to eaitd, graded automata
can send several copies to the same child, they hnamsitions, and extersymmetric
automata[JW95,Wil99] by specifying the number of children that needsatisfy an
existential requirement or are exempt from satisfying aensal one.

Formally, a graded automatonis a tuple= (¥, b, Q, 9, qo, ), whereX', @, qo, and
a are as in alternating automateis acounting boundands : Q x ¥ — BT (D, x Q)
is a transition function. Aun of A on an input¥-labeled tredT, V') is a tree(T;., r)
(to be formally defined shortly) in which each node corregfsaio a node of and is
labeled by an element of Nx Q. A node inT,., labeled by(z, ¢), describes a copy of
the automaton that reads the nadef T" and visits the statg. Note that many nodes
of T;. can correspond to the same noddin contrast, in a run of a nondeterministic
automaton on(T, V') there is a one-to-one correspondence between the nodes of th
run and the nodes of the tree. The labels of a node and itsrehiltave to satisfy the
transition function. Formally, the ru(¥., ) is an(N* x @)-labeled N-tree such that
¢ € T, andr(e) = (g,q0), and for ally € T, with r(y) = (z,¢) andd(q,V(x)) = 6,
there is a (possibly empty) stC D, x @, such thafS satisfied), and for all(c, s) € S,
the following holds:

— If ¢ = ¢, thenthereig € Nsuchthaty - j € T andr(y - j) = (z,s).

— If ¢ = (n), then there are distinét, . .. ,i,41 € Nsuchthatforall <j <n+1,
there isj’ € N suchthat - j' € T, andr(y - j') = (z - 4;, 5).

— If ¢ = [n], then there are distingt, . .. ,i4.4(z)—n € N such thatforalll < j <
deg(x) —n, thereisj’ € Nsuchthaty - j' € T, andr(y - j') = (z - ij, s).

Note that if¢ = true, theny need not have children. This is the reason Whymay
have leaves. Also, since there exists no$es required fof = false we cannot have
a run that takes a transition with= false

A run (T, r) is acceptingif all its infinite paths satisfy the acceptance condition.
We consider here thearity acceptance conditiowwherea = {F}, Fs, ..., F} } is such
thatFy C Fy C --- C F}, = (). The numbelk of sets in« is called thendexof the
automaton. Given a rufT-, ) and an infinite path C 7., letin f(7) C @ be such that
q € inf(m) if and only if there are infinitely many € = for whichr(y) € N* x {q}.
Thatis,inf(7) contains exactly all the states that appear infinitely offten A pathr
satisfies a parity acceptance conditios= {Fy, Fs, . .., F} } iff the minimal index: for
whichin f(r) N F; # () is even. An automaton accepts a tree if and only if there ®xist
a run that accepts it. We denote ByA) the set of all¥’-labeled trees thatl accepts.

Theorem 2. Given a sentence of the graded:-calculus that counts up td, we can
construct a graded alternating parity automately, such that

5 A gradedp.-calculus sentence guardedif for all y € Var, all the occurrences of that are
in a scope of a fixpoint modality are also in a scope of a graded modality that is itself in the
scope of\. Thus, au-calculus sentence is guarded if for glle Var, all the occurrences of
y are in the scope of a graded modality. For example, the famul(p v (0)y) is guarded



1. Ay accepts exactly all trees that satisfy
2. Ay has|y| states, index)|, and counting bound.

Proof. The construction generalizes the one focalculus sentences and parity au-
tomata [KVWO00]. Giveny, we defined, = (227, b,cl(v),4,,a), where for all
o € 2AP we define:

o(p,o) =trueif p € o, 0(p, o) = falseif p & o,
0(—p,0) =trueif p ¢ o, (ﬂp, o) =falseif p € o,
6(p1 A p2,0) = (g,01) A (€, 92), 61V p2,0) = (e, <m) (e, 2),
6({n)p, o) = ((n), ¥), ([n]p, o) = ([n], ¢
6(ny-f(y), o) = o(f(uy-f(y)), o), 6(vy.fy), o) = (f(vy f(y))vo'))-

The acceptance conditienis defined as in the automata for standarchlculus, ac-
cording to thalternation levebf the formulas ircl(v). For details, see [BC96,KVWO00].

3.2 Graded Nondeterministic Parity Tree Automata

For an intege, a b-boundis pair in B, = {(>,0),(<,0),(>,1),(<,1),...,(>
,b), (<, b)}. ForasetX, asubseP C X, anm > 0,and atuple = (x1,...,2,) €
X™, theweightof P in ¢, denotedweight(P,t), is the number of elements irthat are
members ofP. That is,weight (P, t) = |{i : x; € P}|. For exampleweight({1,2, 3},
(1,2,2,4,2)) = 4. We say that satisfies &-bound(>, n) with respecttd? if weight(P,t) >
n, andt satisfies a-bound(<, n) with respect taP if weight(P,t) < n.

Foraset’”, we use3(Y") to denote the set of all Boolean formulas over atonis in
Each formulad € B(Y') induces a setat(d) C 2¥ such thatr € sat(f) iff = satisfies
6. For an integeb > 0, ab-counting constrainfor 2" is a relationC' C B(Y) x By.
For example, ift” = {y1,y2,y3}, then we can hav€' = {(y1 V —y2, (<, 3)), (y3, (<
20, (yr Ays, (>,1))). Atuplet = (z1,...,2,) € (2¥)™ satisfies thé-counting
constraintC if for all (#,£) € C, the tuplet satisfies¢ with respect tosat(6). Thus,
whenf € B(Y') is paired with(>, n), at least: 4+ 1 elements of should satisfy, and
whend is paired with(<, n), at mostn elements in the tuple satisty

For a constrain€', thewidth of C'is the number off € B(Y") for which there is &-
bound¢ suchthat®, &) € C. Note that) may be paired with sever&glbounds. Still, itis
easy to replacé€' by an equivalent constraitt’ (thatis, a tuple satisfie< iff ¢ satisfies
C") in which @ is paired with at most one constraint of the fofm, n) and at most one
constraint of the forni<, n). We assume that we work with sugfinimizedconstraints.
For two b-counting constraint§’; andCs, we denote by’; & C5 the minimization of
C1 U Cy. That is, If<07 (>,’I’Ll)> € C, and <9, (>,TL2)> € Cs, thenC; @ C5 contains
only (8, (>, max{n,n»2})), and dually for constraints of the forfs<, n)®

and the formul&0)uy.(p V y) is not guarded. Given a gradedcalculus formula, we can
construct, in linear time, an equivalent guarded formuése ([8B87,KVWO0O] for a proof for
p-calculus, which is easily extendible to gradedalculus). Accordingly, we assume that all
formulas are guarded. This is essential for the correctoiethe construction in the proof.

6 To keep thed operator efficient, we do not care for redundancies and adiations that
originate from the relation between the formulas in the transts. For example, a minimized
C' may contain boti#:, (>,n)) and(f2, (>,n)) for #; that implies,, and it may contain
both (6, (>, n)) and(6, (<, n))



We say that a constraixit is shortif all the formulas that appear i are of size
linear in|Y'| and the width ofC' is at most|Y’|. We useC(Y’, b) to denote the set of all
shortb-counting constraints fa2*'. We assume that the integers in the constraints are
coded in binary. Thus, the size 6f€ C(Y,b) is O(|Y|*[logb]).

Lemma 1. Given a constrainC € C(Y,b) and a setS C 2, deciding whether there
is a tuplet € (2¥)* such that satisfiesC' can be done in spadg + [log(b + 1)])|Y|
or time (26 + 2)1Y1.

Proof. Since the width ofC is at most|Y|, an algorithm that guessegelement by
element) and updates a counter for eatthat participate it requires space for storing
the guess for the current elementih, and for storing the values of the counters. The
algorithm terminates with a positive decision when the galaf the counters are such
that all theb-bounds inC' are satisfied. There are at m¢BY counters, each may count
up to at mosb + 1. Thus, the space required|%| + |Y|[log(b + 1)]. In addition,
since the length of each formufathat participate inC' is linear in|Y’|, its valuation
with respect to each element of the tuple can be done in 3pg¢E| [Lyn77].

A graded nondeterministic parity tree automat{@NPT, for short) isd = (¥, b, @, 9, qo, @),
whereX andb, ¢, anda are as in GAPT, and the other components are as follows.

— The state spaa@ is encoded by a finite s&f of variables; that is@) C 2Y.

— The functiond : @ x ¥ — C(Y,b) maps a state and a letter tobaounting
constraint forY .

Note that, like GAPT, a GNPT is symmetric, in the sense it cadistinguish between
the different children of a node.

A run of the graded nondeterministic automatdron a X'-labeled treg7’, V') is a
Q-labeled tredT', r) such that'(¢) = ¢o and for every: € T, the tuple(r(z - 1), r(z -
2),...,r(x-deg(z))) satisfies)(r(x), V(x)). The run(T, r) is accepting if all its paths
satisfy the parity acceptance condition.

We consider two special cases of GNPT.

— In forall automata, for each € @ ando € X thereiss € ) such that)(q,o) =
{{(—6s), (<£,0))}, wheref; € B(Y) is such thatsat(;) = {s}. Thus, a forall
automaton is a notational invariant of a deterministic taeéomaton, where the
transition function mapg ando to (s, .. ., s).

— In safetyautomata, there is no acceptance condition, and all runacrepting.
Note that this does not mean that safety automata accepted, tas it may be that
on some trees the automaton does not have a run.

Lemma 2. Given a forall GNPT.A; with n, states and indek, and a safety GNPT
As with ny states and counting bourtd we can define a GNPA such thatZ(A) =
L(A1) N L(A2). Moreover,A hasnin, states, index, and counting boundl.



4 The Nonemptiness Problem for GAPT

In this section we solve the nonemptiness problem for GARTcamclude that the sat-
isfiability problem for gradegi-calculus can be solved in EXPTIME. We first translate
GAPT to GNPT, and then solve the nonemptiness problem for GINPthe case of
standard:-calculus, the solution to the satisfiability problem fellothe same plan: we
translate the formula to an alternating automathrand then check the nonemptiness
of A by first translating it to an equivalent nondeterministitoaiaton [MS95]. In our
case, the automataA is graded, so its translation into a nondeterministic aatiom
and the nonemptiness problem for the latter are more indolve

4.1 From GAPT to GNPT

Consider a GAPTA = (X,0,Q,0,qo, ). Let D, = ({} U ([b]) U [[b]]). Recall that
the transition function : Q x X — BT (D, x Q) maps a state and a letter to a formula
in BT(Dy x Q). A restrictionof § is a partial functiom : Q — 272, For a letter
o € X, we say that a restriction is relevantto ¢ if for all ¢ € @ for which §(q, o)
is satisfiable (i.e.9(q, o) is notfalse), the setn(q) satisfiesi(q, o). If §(q,0) is not
satisfiable, them(q) is undefined. Intuitively, by choosing the atoms that arengdo
be satisfiedy) removes the nondeterminismdn Let F' be the set of restrictions @f
A running strategyof A for a Y-labeled treg(T, V') is an F-labeled treg(T’, f). We
say tha{T', f) is relevant with respect t{I", V') if for all x € T, the restrictionf (z) is
relevant tol/ ().

Consider a restrictiom relevant too. Forg € @, we say that a finite sequence
S = S0,81,...,5+1 IS astep ofp with g ando if s = ¢, forall0 < i < [, we
have(e, si+1) € n(si), and(A, s;41) € n(s;), for X € (by U [b]. Thus,s is a step ofy
with ¢ ando if by following the restrictionn at a noder labeleds, a run that visits;
can continue by first takingsubsequernt-transitions and visitingy, . . ., s;, and then
moving to a child ofr in states; ;1. We refer to(\, ;1) as the last atom taken in the
step. Note that may be0. We define thevalueof s, denotedval(s), as the minimat
such that there i8 < j < [+ 1 with s; € F;. Note that whers contains only two
states, its value is induced by.

We say that a finite sequenge= so, s1, ..., 5 iS ane-lasso ofy with ¢ ando if
so = ¢, forall0 < ¢ <1 -1, we have(e,s;11) € n(s;), and there i) < ¢ < |
such that(e, s.) € n(s;) Thus,s is ane-lasso ofy with ¢ ande if by following the
restrictionn at a noder labeleds, there is0 < ¢ < [ such that a run that visitg can
eventually loop forever in,, . . ., s; by taking subsequesttransitions. The value of
with a loop starting at, denotedval(s, c), is the minimak such that there is < j <
with s; € F;. We say thak is rejecting if there i) < ¢ < [ such thawal(s) is odd.

A local promisefor the automator is a functionp : Q — 29. We extendp to
sets of states, thus fdP C @, we havep(P) = |, .pp(q). Let G be the set of all
local promises. Apromiseof A for a X'-labeled treeT, V') is aG-labeled tre€T, g).
Intuitively, in a run that proceeds according(fB, ¢), if a nodey - j hass € g(y - 7)(q)
and the run visits its pareptin stateq and proceeds by choosing an at¢ms or [n]s,
for some0 < n < b, theny - j is among the children qf that inherits.



Consider a¥-labeled tre€T, V'), a running strategyT, /) relevant to{T', V'), and
a promise(T, g). A (T x Q)-labeled tredT,., r) is consistenwith f andg if (T, r)
suggests a possible run dfon (T, V') such that whenever the ryf., r) is in stateq
as it reads a node € T, the restrictionf(x)(q) is defined, the run proceeds according
to f(z)(q), and it delivers requirements to each childj according tay(z - 7)(¢). Note
that since the counting constraintsfitic) (¢) may not be satisfied7’., 7y may notbe a
legal run. Formally{T;., r) is consistent withf andg iff the following hold.

1. e €T, andr(e) = (e,q0)-
2. Consider a nodg € T, with r(y) = (z,q). Then, f(x)(q) is defined, and for all
(c,s) € f(z)(q), the following hold:
— If ¢ = ¢, thenthereig € N suchthaty - j € T, andr(y - j) = (z, s).
— If ¢ = (n) orc = [n], then for eachy € Nwith s € g(z-j)(q), thereisj’ € N
suchthaty - j' € T, andr(y - j') = (z - 4, 5).

For a noder € T and a statg € @, we say that: is obliged tog by f, g, andV if x is
visited byq in some labeled tre€l’,., r) consistent withf andg.

Let X' C ¥' x F x G be such that for alfo, n, p) € X', we have that is relevant to
o. For an infinite sequende, 70, po), (o1, 1, p1), - . - of triples in X’ and a sequence
(either finite or infinite)qo, ¢1, - . . Of states, we say that, ¢4, - . . is atraceinduced
by {(00,m0,p0), {c1,m1,p1), .. If qo is the initial state ofA and there is a function
pos : N — N such thaipos(0) = 0 and for everyi > 0, one of the following holds.

1. npos(i) (i) is empty, in which casg; is the last state in the trace,

2. thereis(e, qi+1) € Npos(i)(¢:) @andpos(i + 1) = pos(i), or

3. Npos(i) (ql) ContainS(<n>7 Qi+1) or ([n]v%-l—l)y qi+1 € Ppos(i)+1 (Qz‘), andeS(i +
1) = pos(i) + 1.

Intuitively, go, q1, . . . isatrace induced b§po, 10, po), (o1, M1, p1), - - ., if for every path
= C T and for every rufT,, ry on aX-labeled tree in whichr is labeled by, 04, . . .,
if (T-,r) is consistent with a running strategy in whighis labeledry,n:,... and a
promise in whichr is labeledpg, p1, . . ., then(T,.,r) contains a path that visits the
statesyo, 1, - - -

Recall thaty’ C ¥ x F' x G. We refer to a~’-labeled tree aéT’, (V, f, g)), where
V, f, andg are the projections of the tree dn, F', andG, respectively. We say that a
running strategy7’, /) and a promis€T’, g) aregoodfor (T, V') if all the infinite traces
induced by paths ifT, (V, f, ¢g)) satisfy the acceptance conditian

Consider a¥-labeled tredT, V'), a running strategy7’, /), and a promiseT’, g).
We say thay fulfills f for V if the states promised to be visited patisfy the obliga-
tions induced byf as it runs ori/. Formally,g fulfills f for V' if for every nodex € T,
and statey such thatr is obliged tog by f, g, andV/, the following hold:

1. Foreveryatonfn)s € f(x)(q), atleasti+1 childrenz-j of z haves € g(z-7)(q).
2. For every atonfn]s € f(x)(q), at leastdeg(xz) — n childrenx - j of z haves €

g9(z-5)(q)-
Theorem 3. A GAPT.A accepts(T, V') iff there exist a running strateg{l’, f) and a

promise(T, g) such thatf is relevant forl’, f andg are good for(T', V'), andg fulfills
fforVv.



Intuitively, if f andg as above exist, thel' x Q)-labeled trees that are consistent
with f andg suggest legal accepting runs.dfon (7', V).

Annotating input trees with restrictions and local prorsiseables us to transform
GAPT to GNPT, with an exponential blow up:

Theorem 4. Consider a GAPTA such thatA runs on Y-labeled trees. There is a
GNPT A’ such that4d’ runs onX’-labeled trees and the following hold:

1. A’ accepts a tree iffd accepts its projection o&'.
2. If A hasn states, inde¥, and counting bound, then.A’ has2"(2+klognk) states,
indexnk, andb-counting constraints.

Proof. Let A = (¥, b,Q, 6, qo, &) with « = {F},..., F;.}. The automatord’ is the
intersection of two automatd) and.4}. The automatord; is a forall GNPT and it
accepts a tre€T’, (V, f, g)) iff f andg are good forV/. The automatord;, is a safety
GNPT, and it accepts a tred’, (V, f, g)) iff g fulfills f for V. Note that, sinceX’
contains only tripletgo, 1, p) for which 7 is relevant tos, it must be thatf is relevant

to V. Thus, by Theorem 3, it follows that’ acceptsT, (V, f, g)) iff A acceptgT, V).

In order to defined, we first define a nondeterministic co-parity word automaton

U over X’ such thai/ accepts a word if some trace it induces is infinite and visléie
acceptance condition. We defing/ = (X', S, M, so, F'), where

- S=(QxQx{1,....k}) U{qacc}- Intuitively, a statgq, gprev, v) indicates that
the current state of the tracegisthat it was reached by following a step whose last
transition is from the statg,,..,,, and the value of the step#s(note that values are
calculated with respect ). Thus,q corresponds to states,; in traces for which
pos(i + 1) = pos(i) + 1. The numbemw is used for the acceptance condition. In
addition, g, is used for checking the obligation of the current positiginen a
local promise in the input word.

— Forevery(q, gprev, v) € S and{o,n, p) € X', we distinguish between two cases. If
q & p(gprev), thenthe current position is not obligedtandM ((q, ¢prev, v), (0,1, p)) =
(). Otherwise, we again distinguish between two cases: ifetli®r rejecting-
lasso ofn with ¢ and o, then M ({q, ¢prev, V), (0,1, p)) = {qacc}. Otherwise,
(¢, qzvrevV v') € M({q, Aprev, v), (o,n, p)) iff there is a stepy, . .. quvrmﬂ q' of
with ¢ ando such that the value of the stepris
In addition,M (qucc, (7,1, p}) = {qacc} fOrall (o, n, p) € X’. Intuitively,U/ checks
whether a possible step gfwith ¢ ando can participate in a rejecting trace. If the
current position is not obliged to the current state, no sfepcan participate in a
trace, sd{ gets stuck. Otherwise, if there is a rejectivpsso ofy with ¢ ando,

a rejecting trace is found ardd moves to an accepting sink. Otherwiséguesses
other possible steps gfwith ¢ ando, and moves to a state which remembers the
last two states visited in the step (possigly., = ¢), and the value of the step.

- s4 = {40, qo0, 1), wherel is such thatjy, € F;. Note that the choice of the second
element is arbitrary, as the local promise at the root ofpat tree is irrelevant.

— The co-parity condition i = {F}, F;,..., F]}, where forl > 2, we haveF] =
Q x Q xA{l},andF] = (Q x Q x {1}) U{q.cc}- Thatis, acceptance is determined
with respect to the values of the steps taken along the tAdse, sinceF’ is a
co-parity condition, the accepting sigk.. is in F}.



In order to getA], we co-determinizé/ (note that/ does not have-transitions) and
expand it to a tree automaton dif. That is, we first construct a deterministic parity
word automatod/ that complement&/, and then replace a transitidid (s, 7) = s’ in
U by a transitionl; (s, 7) = {(—fy, (<,0))} in A}, where the states &f are encoded
by some seY; of variables and for every staté the formulad, € B(Y;) holds only in
the subset of; that encodes’. By [Saf89,Tho97], the automaténhas(nk)"™* states
and indexuk, thus so doegl;. HencelY; | = nklognk.

It is left to define the safety GNPHS. Let Qprev = {qprev : ¢ € Q} be a copy
of Q in which each state is tagged withev. The state space of} is Q' = 29V,
Intuitively, each statg’ of A} corresponds to a paiP, Pprev) € @ x @, with P =
¢'NQ andP,,., is obtained frony’ N Q,, by removing theprevtags. The elemeri®
of ¢ is a set of “commitments” that the current node should satigfie elemenf,,.,
is used for remembering the state.éfthat is visited in the parent node. Whetj is
in state(P, P,.,) and reads the lettdr, n, p), it checks that all the commitments in
are covered by the local promigéP,,.,) in the input, and it delivers, for eaghe P,
the requirements on the children as specifiel(if) .

Consider a statéP, P,,.,) € Q' and a lette{o,n,p) € X’. For everyg € P, let
C¢ ,, be theb-counting restriction it (Q, b) imposed by (q). (If n(q) is undefined, we
do not care about? , , since, as we see shortly, in that casesimply gets stuck.) Thus,

)

C2, = {{s.(>n)) : (m)s € nlg)} U{(=s,(<,n)) : [n]s € n(q)}. Intuitively, €2,
restricts the tuple of the states that visit the childrerefdurrent node, which is visited
by (P, Pyrev ), SO thaty(q) is satisfied by the first elements of the states. In addittom, t
second element of the states in the tuple should be the argoflP tagged withprev.
This is done by the counting constraifit=60%"", (<,0))}, where6>” € B(Qprev)
is such that the only set that satisfigs“" is the encoding of” tagged withprev.
Finally, for everyP € 29, letCL = (9,epC2,) U {(-05"",(<,0))}. Then, A} =
(X',Q",0",{q0,q0}), where for ever(P, P,,.,) € Q" and{o,n,p) € X', we have
that ' ((P, Pprev), (0,1, p)) is empty if p(Pprey) € P or there isq € P for which
n(q) is undefined, and i§’”, otherwise. Note thaf)’ is defined with respect to the
2n variablesQ) U Qprey- Also, all the formulad that are paired to constraints@fn
are eithers or s, for s € @, or =6%". Hence, the counting constraints.ity, are in
C(Q U QPTEIH b)

Now, by Lemma 2, we can define the the intersectitrof 4] and. A}, as a GNPT
with 2n(2+klognk) states, indexk, andb-counting constraints.

4.2 The nonemptiness problem for GNPT

In a nondeterministic parity tree automatdn= (¥, @, M, qo, o), the transition func-
tion M : Q x ¥ — 29" maps a state and a letter to a set of possible tuples for the
children states. Thus, a run of nondeterministic tree aatomon a tre€7, V) is a
Q-labeled tregT, r) in whichr(e) = ¢o and for allz € T, the tuple(r(z - 1),r(x -
2),...,r(x - deg(x))) € M(r(x),V(x)). The nonemptiness test for parity tree au-
tomata then uses the local testmother : 29 x Q — {true,false} that given a
setS C @ and a statey, returnstrue iff there is a tuplet € S* ando € X such
thatt € M(q,0). It is easy to see how th&_mother test is used in a bottom-up
nonemptiness algorithm for automata on finite trees, whe@der to find the set S



of states from which the automaton accepts some tree, orte atith the setS, of
accepting states then defise,; as the set of stategsuch that eitheg is in S; or
is-mother(t,q) = true. In parity automata, the algorithm is more complicated,rzs o
has to also keep track of the acceptance condition, but the &zcal test is used. Sev-
eral nonemptiness algorithms for nondeterministic pdritg automata are known. In
particular, the algorithms in [EJS93,KV98] udén*) calls tois_mothet wheren is the
size of@ andk is the index of the automaton.

Recall that in GNPT, a rufT, r) should satisfyr(¢) = ¢o and for allz € T,
the tuple(r(z - 1),r(z - 2),...,r(z - deg(x))) satisfiesd(r(z),V(z)), which is a
b-counting constraint. Thus, the nonemptiness test is aiminly that the local test
is_mother : 29 x Q — {true, false} now returngrue for a setS C @ and a state,
iff there ist € S* ando € ¥ such that satisfies)(q, o). As with nondeterministic au-
tomata, the nonemptiness algorithm can@@”) calls tois_mother. Unlike the case
for nondeterministic automata, however, here there is mplg transition function to
consult when we perform the local test. In addition, we stidake into an account the
fact that the GNPT whose emptiness we check have largertzdphthan the GAPT we
have started with.

Consider a GAPTA = (Xb,Q, 4, qo, ) with n states, index:, and counting
boundb. Let us analyse carefully the complexity of the lo¢almother test in the
GNPT A" we constructed fromd in Theorem 4. FirstA’ has counting constraints in
C(Y',b),forY’ of sizen(2+klognk). Hence, by Lemma 1, give$, the check whether
there is a tuplé € S* such that satisfiesi(¢, '), for a particulaw”’ € X', can be done
intime O(2b+2)"(2tklognk)y Now, ¥’ C ¥ x F x G, whereF is the set of restrictions
for 6 and@ is the set of all local promises. LEY| = [. Recall that a restriction relevant
to a letteroc € ¥ maps a statg € @ to a subset oD, x @ that satisfied(q, o). We
can restrict our attention to restrictions in which eacliesis paired with at most one
element of{(b)), one element of(b)], ande. Thus,|F| is bounded by2b + 4)"” and
|G| is bounded by2"’. It follows that|X’| < [(2b + 4)»" 27", thusis_mother can be
checked in timé(b+2)°(n(n+2+klognk) Since, as in [EJS93,KV98], the nonemptiness
problem can be solved by (n*) applications ofis_mother, we have the following.

Theorem 5. The nonemptiness problem fdf can be solved in time*1(b+4-2)O(n(n+2+klognk))

For a gradedi-calculus formula), we get, by Theorem 2, a GAPA with n andk
bounded by |, and the same counting boubdsy. While b and! may be exponential
in 4|, only n and k appear in the exponents in the expression in Theorem 5. This
implies the upper bound in the theorem below. The lower basinidie to the fact that
the u-calculus is known to be EXPTIME-hard [FL79].

Corollary 1. The satisfiability problem for graded-calculus is EXPTIME-complete
even if the numbers in the graded modalities are coded inrpina

Note that the space and time bounds in Lemma 1 stay valid fontomy constraints
that involve richer bounds than-, n) and(<, n). For example, we can handle bounds
of the form (>, 1) or (<, 1), bounding the fraction of elements in the tuple that sat-
isfy a predicate (of course, this is applicable only to stues where all points have
only finitely many successors). In general, Lemma 1 can leadiitrary polynomial



predicatess C N?, where a tuplet € (2¥)™ satisfies such a constraifft, o) if
a(weight (sat(0),t), m) holds. By defining the corresponding types of alternating au
tomata, we can thus handlecalculus formulas with richer types of modalities.
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