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Abstrat

Desription Logis (DLs), a family of formalisms for reasoning about oneptual knowledge, an

be extended with onrete domains to allow an adequate representation of \onrete qualities" of

real-worlds entities suh as their height, temperature, duration, and size. In this paper, we study

the omplexity of reasoning with the basi DL with onrete domains ALC(D) and its extension

with so-alled feature agreements and disagreements ALCF(D). We show that, for both logis,

the standard reasoning tasks onept satis�ability, onept subsumption, and ABox onsisteny are

PSpae-omplete if the onrete domain D satis�es some natural onditions.

Keywords: Desription Logis, Conrete Domains, Feature (Dis)Agreements, Computational Com-

plexity

1 Motivation

Desription Logis (DLs) are a popular family of logial formalisms for the representa-

tion of and reasoning about oneptual knowledge [8℄. The basi entity for knowledge

representation with DLs are so-alled onepts whih an be understood as logial

formulas and are onstruted from onept names (unary prediates), role names

(binary relations), and onept onstrutors. For example, the following onept is

formulated in the basi propositionally losed DL ALC [39℄ and desribes proesses

that are supervised by a human operator and involve only workpiees that are not

radioative:

Proess u 9operator:Human u 8workpiee::Radioative:

In this onept, Proess, Human, and Radioative are onept names while operator

and workpiee are role names.

A major limitation of knowledge representation with Desription Logis suh as

ALC is that \onrete qualities" of real world entities, suh as their weight, temper-

ature, and spatial extension, annot be adequately represented. For example, ALC

does not o�er suitable means of expressivity for extending the above desription of

a proess with information about its ost and duration, or about the relationship

between the proess' ost and the hourly wage of its operator. To allow an adequate

representation of onrete qualities of real-world entities, Desription Logis are fre-

quently extended by so-alled onrete domains, whih have �rst been proposed by

Baader and Hanshke in [4℄ and then further developed in several diretions, .f. the

survey artile [32℄. A onrete domain onsists of a set suh as the natural numbers

and a set of prediates suh as the unary \=

60

" and the binary \>" with the obvious,
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�xed extension. The integration of onrete domains into the Desription Logi ALC

is ahieved by adding

1. so-alled abstrat features, whih are funtional relations;

2. so-alled onrete features, whih are (partial) funtions assoiating values from

the onrete domain (e.g., natural numbers) to logial objets;

3. a onrete domain-based onept onstrutor.

The DL that is obtained by extending ALC in this way is alled ALC(D), where

D denotes a onrete domain that an be viewed as a parameter to the logi. For

example, when using a suitable onrete domain D, we an extend the above proess

desription as desired: the ALC(D)-onept

Proess u 9duration:=

60

u 9ost; operator wage:>

desribes a proess whose duration is 60 minutes and whih osts more than the

(hourly) wage of its operator. Here, the seond and third onjunt are instanes of

the onrete domain onept onstrutor, operator is an abstrat feature, and duration,

ost, and wage are onrete features.

The representation of onrete qualities has been identi�ed as a ruial task for a

vast number of appliations suh as mehanial engineering [6℄, temporal and spatial

reasoning [16, 27℄, the semanti web [23, 24℄, and reasoning about entity relationship

(ER) diagrams [31℄. Consequently, apart fromALC(D) many other Desription Logis

with onrete domains have been proposed [16, 18, 20, 24, 27, 30, 29℄ and several

implemented Desription Logi reasoners suh as lassi [11℄ and RACER [17℄ provide

for some kind of onrete domain. However, despite the onsiderable interest in DLs

with onrete domains and the fat that omplexity analysis plays an important role in

the area of Desription Logis, only very reently researhers have begun to investigate

the omputational omplexity of reasoning with suh logis [30℄. The urrent paper

is devoted to establishing tight omplexity bounds for reasoning with the fundamental

Desription Logi with onrete domains ALC(D). More preisely, we do not only

onsider the DL ALC(D), but also its extension with so-alled feature agreements

and feature disagreements, two onept onstrutors that are quite losely related

to onrete domains. Using feature (dis)agreements, one an for example desribe

proesses that have two subproesses, one of whih works on the same workpiee as

the mother proess, and the other on a di�erent one:

Proess u (workpiee # subproess1 workpiee) u (workpiee " subproess2 workpiee):

In this onept, the seond onjunt uses the feature agreement onstrutor, the third

onjunt uses the feature disagreement onstrutor, and all lowerase names denote

abstrat features.

There are several motivations for ombining onrete domains and feature (dis)agree-

ments in a single DL. First, there exists an obvious syntati similarity between feature

(dis)agreements and the onrete domain onept onstrutor: both take sequenes of

features as arguments. As we shall see in this paper, the similarity between onrete

domains and feature (dis)agreements is not only syntatial: they are also amenable

to similar algorithmi tehniques. Seond, the Desription Logi ALCF(D) resulting
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from the extension of ALC(D) with feature (dis)agreements has already found appli-

ations in knowledge representation [25℄. And third, the PSpae-ompleteness result

for reasoning withALCF(D) proved in Setion 3 allows to show PSpae-ompleteness

of a well-known temporal Desription Logi [3℄.

Let us now outline the organization of this paper and desribe the obtained results in

more detail.

In Setion 2, we formally introdue onrete domains and the Desription Logis

ALC(D) and ALCF(D). Some example onrete domains are de�ned.

In Setion 3, tight PSpae omplexity bounds for the satis�ability of ALC(D)-

onepts and ALCF(D)-onepts are established. More preisely, we devise a tableau

algorithm for deiding satis�ability of ALCF(D)-onepts whih uses the so-alled

traing tehnique. This algorithm yields a PSpae upper bound for ALCF(D)-

onept satis�ability if the following onditions are satis�ed:

� deiding the satis�ability of �nite onjuntions of prediates from the onrete

domain D (this task is alled \D-satis�ability" in what follows) is in PSpae;

� the onrete domain is \admissible", i.e., it satis�es some weak losure onditions

whih, in this paper, we will generally assume to hold.

The orresponding PSpae lower bound is easily obtained sine ALC-onept satis-

�ability is already PSpae-hard [39℄. Hene, both ALC(D)-onept satis�ability and

ALCF(D)-onept satis�ability are PSpae-omplete if D-satis�ability is in PSpae.

Sine onept subsumption, another important reasoning task for Desription Log-

is, an easily be redued to onept (un)satis�ability and vie versa, we also obtain

that ALC(D)-onept subsumption and ALCF(D)-onept subsumption are PSpae-

omplete if D-satis�ability is in PSpae. Note that adding onrete domains and

feature (dis)agreements to ALC does thus not inrease the omplexity of reasoning.

This is partiularly interesting sine there exist several seemingly \harmless" means

of expressivity like ayli TBoxes and inverse roles, whose addition to ALC(D) makes

reasoning signi�antly more diÆult|namely NExpTime-omplete [28, 30, 1℄. Thus,

the logi ALCF(D) is situated on the boundary of polynomial spae omplexity.

Setion 4 is devoted to extending the results from Setion 3 to another standard rea-

soning task alled ABox onsisteny. ABoxes are ommonly used to desribe snap-

shots of the real world [7, 12, 17, 38, 41℄. For example, the following ALC(D)-ABox

desribes a proess a and its subproess b:

a : Proess b : Proess (a; b) : subproess (a; x) : duration x : =

60

We use the preompletion tehnique from [13, 21℄ to show that ALCF(D)-ABox on-

sisteny is PSpae-omplete if D-satis�ability is in PSpae. As in the ase of onept

satis�ability, this implies that the same holds for ALC(D)-ABox onsisteny.

In Setion 5, we demonstrate the relevane of the results obtained in Setions 3 and 4

by onsidering two example onrete domains: the onrete domain A based on the

rational numbers with prediates suh as <

27

, �, and +; and the onrete domain S

based on the set of regions in two-dimensional spae with a binary prediate for eah

of the well-known RCC8 topologial relations [10℄. We show that both A-satis�ability

and S-satis�ability is in NP and thus obtain that, for D 2 fA; Sg, ALCF(D)-onept
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satis�ability, ALCF(D)-onept subsumption, and ALCF(D)-ABox onsisteny are

PSpae-omplete.

The paper ends with a onlusion in Setion 6.

2 Preliminaries

We start this setion with introduing onrete domains formally, then de�ne some

example onrete domains, and �nally desribe the Desription Logi ALCF(D) in

detail.

Definition 2.1 (Conrete Domain)

A onrete domain D is a pair (�

D

;�

D

), where �

D

is a set and �

D

a set of prediate

names. Eah prediate name P 2 �

D

is assoiated with an arity n and an n-ary

prediate P

D

� �

n

D

. Let V be a set of variables. A prediate onjuntion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary prediate for i < k and the x

(i)

j

are variables from V, is alled

satis�able i� there exists a funtion Æ mapping the variables in  to elements of �

D

suh that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for eah i < k. Suh a funtion is alled a

solution for . A onrete domain D is alled admissible if the following onditions

are satis�ed:

1. �

D

ontains a name >

D

for �

D

;

2. �

D

is losed under negation, i.e., for eah n-ary prediate P 2 �

D

, we �nd another

prediate P 2 �

D

of arity n suh that P

D

= �

n

D

n P

D

;

3. the satis�ability problem for �nite onjuntions of prediates is deidable.

When devising algorithms for reasoning with Desription Logis that are equipped

with a onrete domain D, one important subtask usually is to deide the satis�abil-

ity of �nite onjuntions of prediates from �

D

as desribed in De�nition 2.1 [4, 30℄.

For brevity, we refer to this task as D-satis�ability. It is obvious that D-satis�ability

should be deidable if the onrete domain D is to be used in a DL reasoning algo-

rithm. However, usually the slightly stronger requirement that D should be admissible

is adopted. In this artile, we follow this tradition and generally assume onrete do-

mains to be admissible.

Before we proeed to de�ning the Desription Logi ALCF(D) itself, let us in-

trodue two example onrete domains, an arithmeti one and a spatial one. The

arithmeti onrete domain A is de�ned by setting �

A

:= Q (i.e., the set of rational

numbers), and de�ning �

A

as the (smallest) set ontaining the following prediates:

� a unary prediate >

A

with (>

A

)

A

= Q and a unary prediate ?

A

with (?

A

)

A

= ;;

� unary prediates int and int with (int)

A

= Z (where Z denotes the integers) and

(int)

A

= Q n Z;

� unary prediates P

q

for eah P 2 f<;�;=; 6=;�; >g and eah q 2 Q with (P

q

)

A

=

fq

0

2 Q j q

0

P qg;

� binary prediates <;�;=; 6=;�; > with the obvious extension;
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a DC b a EC b a PO b a TPP b a NTPP b

ba
a

b

a

b
a b a b

Fig. 1. The RCC8 relations in two-dimensional spae.

� ternary prediates + and + with (+)

A

= f(q; q

0

; q

00

) 2 Q

3

j q + q

0

= q

00

g and

(+)

A

= Q

3

n (+)

A

.

As an example for an (unsatis�able) onjuntion of A-prediates, onsider the follow-

ing one:

=

3

(x) ^>

1

(y) ^ int(y) ^+(x; y; z) ^ �(x; y; z

0

) ^ �(z; z

0

):

It is easily heked that the onrete domain A satis�es Conditions 1 and 2 of ad-

missibility (Condition 3 will be treated in Setion 5). The other onrete domain

onsidered in this paper is related to the RCC-8 alulus and is alled S. RCC-8

provides a set of eight jointly exhaustive and pairwise disjoint relations that desribe

the possible relationships between any two regular losed regions

1

in a topologial

spae [34, 10, 36℄. For 2D spae, these relations are illustrated in Figure 1, where

the equality relation EQ, the inverse TPPI of TPP, and the inverse NTPPI of NTPP

have been omitted. The onrete domain S is de�ned by setting �

S

to the set RC

R

2

of all regular losed subsets of R

2

and de�ning �

S

as the (smallest) set ontaining the

following prediates:

� a unary prediate>

S

with (>

S

)

S

= RC

R

2

and a unary prediate?

S

with (?

S

)

S

= ;;

� binary prediates rel and rel for eah of the topologial relations rel suh that

(rel)

S

= f(r

1

; r

2

) 2 RC

R

2

�RC

R

2

j r

1

rel r

2

g.

An example (unsatis�able) S-onjuntion is

>

S

(x) ^DC(x; y) ^ EC(y; z) ^NTPP (z; x) ^ PO(y; y):

It is easily heked that S satis�es Conditions 1 and 2 of admissibility. For Property 3,

we again refer to Setion 5.

Based on onrete domains, we an now de�ne ALCF(D)-onepts.

Definition 2.2 (ALCF(D) syntax)

Let N

C

, N

R

, and N

F

be pairwise disjoint and ountably in�nite sets of onept names,

role names, and onrete features. Furthermore, let N

aF

be a ountably in�nite subset

of N

R

. The elements of N

aF

are alled abstrat features. An abstrat path p is a

omposition f

1

� � � f

n

of n abstrat features (n � 1). A onrete path u is a omposition

f

1

� � � f

n

g of n abstrat features f

1

; : : : ; f

n

(n � 0) and a onrete feature g. Let D be

a onrete domain. The set of ALCF(D)-onepts is the smallest set suh that

1. every onept name is a onept

1

A region r is regular losed if it satis�es ICr = r, where C is the topologial losure operator and I is the

topologial interior operator.
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2. if C and D are onepts, R is a role name, g is a onrete feature, p

1

and p

2

are

abstrat paths, u

1

; : : : ; u

n

are onrete paths, and P 2 �

D

is a prediate of arity

n, then the following expressions are also onepts:

:C; C uD; C tD; 9R:C; 8R:C; p

1

"p

2

; p

1

#p

2

; 9u

1

; : : : ; u

n

:P; and g":

We use > to abbreviate A t :A, where A is an arbitrary onept name, and ? to

abbreviate :>. Moreover, we write 8p:C for 8f

1

: � � � 8f

k

:C if p = f

1

� � � f

k

and u"

for 8f

1

: � � � 8f

k

:g" if u = f

1

� � � f

k

g. An ALCF(D)-onept that does not ontain

subonepts p

1

"p

2

and p

1

#p

2

is alled ALC(D)-onept. An ALC(D)-onept that

does not use any abstrat or onrete features is alled ALC-onept.

Throughout this paper, we use the letter A to denote onept names, C, D, and E

to denote (possibly omplex) onepts, R to denote role names, f to denote abstrat

features, g to denote onrete features, p to denote abstrat paths, u to denote onrete

paths, and P to denote prediate names from the onrete domain.

The Desription Logi ALCF(D) is equipped with a Tarski-style set-theoreti se-

mantis that inorporates the onrete domain D.

Definition 2.3 (ALCF(D) semantis)

An interpretation I is a pair (�

I

; �

I

), where �

I

is a set alled the domain and �

I

the

interpretation funtion. The interpretation funtion maps

� eah onept name C to a subset C

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

� eah onrete feature g to a partial funtion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a onrete path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � � ),

and similarly for abstrat paths. The interpretation funtion is extended to arbitrary

onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(p

1

"p

2

)

I

:= fd 2 �

I

j 9e

1

; e

2

2 �

I

: p

I

1

(d) = e

1

; p

I

2

(d) = e

2

; and e

1

6= e

2

g

(p

1

#p

2

)

I

:= fd 2 �

I

j 9e 2 �

I

: p

I

1

(d) = p

I

2

(d) = eg

(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

for 1 � i � n

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

An interpretation I is a model of a onept C i� C

I

6= ;. A onept C is satis�able

i� it has a model. C is subsumed by a onept D (written C v D) i� C

I

� D

I

for

all interpretations I.



PSpae Reasoning with the Desription Logi ALCF(D) 541

It is well-known that, in Desription Logis providing for full negation suh asALCF(D),

subsumption an be redued to (un)satis�ability and vie versa: C v D i� C u:D is

unsatis�able and C is satis�able i� C 6v ?. This allows us to onentrate on onept

satis�ability in the remainder of this paper.

Note that feature (dis)agreements p

1

"p

2

and p

1

#p

2

take abstrat paths as arguments

and are thus not onerned with elements from the onrete domain. However, if the

onrete domain provides for equality and inequality prediates (as both A and S do),

it is obvious that we an express (dis)agreement of onrete paths using the onrete

domain onstrutor. Also note that a 2 (p

1

"p

2

)

I

implies that p

I

1

(a) and p

I

1

(a) are

de�ned. Thus, p

1

"p

2

is not the negation of p

1

#p

2

(also see Setion 3.2 and Figure 3).

We should like to omment on a minor di�erene between our variant of ALCF(D)

and the original version of ALC(D) as de�ned by Baader and Hanshke [4℄: instead of

separating onrete and abstrat features, Baader and Hanshke de�ne only one type

of feature whih is interpreted as a partial funtion from �

I

to �

I

[�

D

. We prefer

the \typed" approah sine, in our opinion, it improves the readability of onepts.

Moreover, it is not hard to see that the ombined features an be \simulated" using

pairs of onrete and abstrat features.

3 Conept Satis�ability

In the following, we devise a tableau algorithm for deiding satis�ability of ALCF(D)-

onepts that needs at most polynomial spae if D is admissible and D-satis�ability

is in PSpae. The algorithm also yields tight omplexity bounds if D-satis�ability is

NExpTime-omplete or ExpSpae-omplete.

3.1 Overview

Sine there exist rather di�erent variants of tableau algorithms in Modal Logi and

First Order Logi, we all the family of tableau algorithms ommonly used for De-

sription Logis ompletion algorithms . The reader is referred to [9℄ for an overview

over suh algorithms. Completion algorithms are haraterized by an underlying data

struture, a set of ompletion rules operating on this data struture, and a (possibly

trivial) strategy for applying the rules. In priniple, a ompletion algorithm starts

with an initial data struture indued by the onept D whose satis�ability is to

be deided and repeatedly applies ompletion rules aording to the strategy. Re-

peated rule appliation an be thought of as making impliit knowledge expliit or

as onstruting a anonial model for the input onept (represented in terms of the

underlying data struture). The algorithm stops if it enounters a ontradition or if

no more ompletion rules are appliable. It returns satis�able i� the latter is the ase

and no obvious ontradition was found, i.e., if the algorithm sueeds in onstruting

a (witness for a) model of the input onept. Otherwise, it returns unsatis�able.

If a PSpae upper bound is to be proved using a ompletion algorithm, some

additional e�orts have to be made. To simplify disussion, let us onsider the logi

ALC for the moment [39℄. A naive ompletion algorithm for ALC does not yield a

PSpae upper bound sine there exist satis�able ALC-onepts all of whose models

are of size exponential in the onept length [19, 39℄. Thus, an algorithm keeping
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f

f#ff

f

Fig. 2. A model of the ALCF(D)-onept f#ff .

the entire (representation of a) model in memory needs exponential spae in the

worst ase. However, there exists a well-known way to overome this problem: the

key observation is that anonial models I onstruted by ompletion algorithms

are tree models, i.e., they have the form of a tree if viewed as a graph with �

I

the set of vertexes and

S

R2N

R

R

I

the set of edges. It is suÆient to onsider only

suh tree models sine ALC has the tree model property, whih means that eah

satis�able onept has a tree model [19℄. To hek for the existene of tree models for

a given onept, we may try to onstrut one by performing depth-�rst searh over

role suessors keeping only paths of the tree model in memory. Sine, in the ase of

ALC, the length of paths is at most polynomial in the length of the input onept

[19℄, this tehnique|whih is known as traing [39℄|yields an algorithm that needs

at most polynomial spae in the worst ase. Completion algorithms for ALC-onept

satis�ability that use traing are very similar to the well-known K-world algorithm

from Modal Logi [26℄.

The traing tehnique has to be modi�ed to deal with ALCF(D)-onepts for two

reasons:

(1) Due to the presene of feature (dis)agreements, ALCF(D) does not enjoy the

tree model property. For example, the onept f#ff is satis�able but, due to the

funtionality of the abstrat feature f , has only non-tree models suh as the one

depited in Figure 2.

(2) Due to the presene of the onrete domain onstrutor, even in tree models the

paths of the tree annot be onsidered in isolation. For example, the anonial tree

model for the onept 9(f

1

f

2

g); (f

0

1

f

0

2

g

0

):P is omprised of two paths with edge labels

f

1

; f

2

; g and f

0

1

; f

0

2

; g

0

, respetively. However, sine the �nal node of the �rst path and

the �nal node of the seond path are elements of the onrete domain that must be

related via the prediate P , we have to onsider both paths together.

Sine only abstrat features (but no role names from N

R

n N

aF

) are admitted in fea-

ture (dis)agreements and the onrete domain onstrutor, it is not hard to see that

the desribed problems are due to substrutures of models whose elements are on-

neted by abstrat features, only. Based on this observation, we de�ne generalized

tree models.
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Definition 3.1 (Generalized Tree Model)

Let I be a model of an ALCF(D)-onept C and de�ne a relation � on �

I

as follows:

d � e i� d = e or there exists an abstrat path f

1

� � � f

k

and domain elements

d

0

; : : : ; d

k

2 �

I

suh that d

0

= d; d

k

= e; and d

i+1

= f

I

i+1

(d

i

) or

d

i

= f

I

i+1

(d

i+1

) for i < k:

It is easy to see that � is an equivalene relation. By [d℄

�

, we denote the equivalene

lass of d 2 �

I

w.r.t. �. The model I is a generalized tree model of C i� I is a model

of C and the graph (V

I

; E

I

) de�ned as

V

I

:= f[d℄

�

j d 2 �

I

g

E

I

:= f([d℄

�

; [e℄

�

) j 9d

0

2 [d℄

�

; e

0

2 [e℄

�

suh that

(d

0

; e

0

) 2 R

I

for some R 2 N

R

n N

aF

g

is a tree.

It will be a byprodut of the results obtained in this setion that ALCF(D) has the

generalized tree model property, i.e., that every satis�able ALCF(D)-onept C has

a generalized tree model. Note that the identi�ation of some kind of tree model

property is usually very helpful for devising deision proedures [42, 15℄. Our om-

pletion algorithm for ALCF(D) uses traing on generalized tree models: it keeps

only fragments of models I in memory that indue paths in the abstration (V

I

; E

I

).

Intuitively, suh a fragment onsists of a sequene of \lusters" of domain elements,

where eah luster is an equivalene lass w.r.t. the relation �, i.e., a set of elements

onneted by abstrat features. Sueeding lusters in the sequene are onneted

by roles from N

R

n N

aF

. Fortunately, as we shall see later, there always exists a gen-

eralized tree model I in whih the ardinality of lusters and the depth of the tree

(V

I

; E

I

) is at most polynomial in the length of the input onept. We use these

fats to devise a ompletion algorithm for ALCF(D)-onept satis�ability running in

polynomial spae.

The polynomial size of objet lusters is also exploited for dealing with the on-

rete domain. Along with onstruting the \logial part" of the model for the input

onept, our ompletion algorithm will build up a prediate onjuntion desribing

its \onrete part". This prediate onjuntion is required to be satis�able in order

for the onstruted data struture to represent a model (see the general desription

of ompletion algorithms above). However, if this is done in a straightforward way,

the number of onjunts in the prediate onjuntion may beome exponential in the

length of the input onept|see e.g. the algorithm for ALC(D) onept satis�ability

presented in [4℄. In our algorithm, we address this problem as follows: domain ele-

ments that are in di�erent lusters of the generalized tree model are not onneted

through abstrat paths. Therefore, it annot be enfored that onrete suessors of

domain elements from di�erent lusters are related by a onrete prediate. This, in

turn, means that it is suÆient to separately hek the satis�ability of prediate on-

juntions assoiated with lusters. Sine the size of prediate onjuntions assoiated

with a luster is at most polynomial in the length of the input onept, this separate

heking allows to devise a PSpae algorithm (if D-satis�ability is in PSpae).
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:(C uD)  :C t :D :(C tD)  :C u :D

:(9R:C)  8R::C :(8R:C)  9R::C

:(p

1

"p

2

)  p

1

#p

2

t 8p

1

:? t 8p

2

:? :(p

1

#p

2

)  p

1

"p

2

t 8p

1

:? t 8p

2

:?

::C  C

:(9u

1

; : : : ; u

n

:P )  9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g")  9g:>

D

Fig. 3. The NNF rewrite rules.

3.2 The Completion Algorithm

In the following, we assume that onepts are in negation normal form (NNF), i.e.,

that negation ours only in front of onept names. Every ALCF(D)-onept C an

be transformed into an equivalent one in NNF by exhaustively applying the rewrite

rules displayed in Figure 3 (reall that P denotes the negation of the prediate P ).

Let us start the presentation of the ompletion algorithm by introduing ABoxes as

the underlying data struture.

Definition 3.2 (ABox Syntax)

Let O

a

and O



be ountably in�nite and mutually disjoint sets of abstrat objets and

onrete objets. If C is an ALCF(D)-onept, R 2 N

R

a role name, g a onrete

feature, a; b 2 O

a

, x; x

1

; : : : ; x

n

2 O



, and P 2 �

D

with arity n, then

a : C; (a; b) : R; (a; x) : g; (x

1

; : : : ; x

n

) : P; and a 6� b

are ABox assertions. An ABox is a �nite set of suh assertions.

Let A be an ABox, a; b 2 O

a

and x 2 O



. We write A(a) to denote the set of onepts

fC j a : C 2 Ag. The abstrat objet b is alled R-suessor of a in A i� (a; b) : R

is in A. The notions g-suessor (for onrete features g), p-suessor (for abstrat

paths p), and u-suessor (for onrete paths u) are de�ned analogously. In what

follows, we used a and b to denote abstrat objets and x to denote onrete objets.

For proving the soundness and ompleteness of the ompletion algorithm to be

devised, it is onvenient to equip ABoxes with a semantis:

Definition 3.3 (ABox Semantis)

In interpretations I, the interpretation funtion �

I

maps, additionally, abstrat ob-

jets a to elements a

I

2 �

I

and onrete objets x to elements x

I

2 �

D

. An

interpretation I satis�es an assertion

a : C i� a

I

2 C

I

;

(a; b) : R i� (a

I

; b

I

) 2 R

I

;

(a; x) : g i� g

I

(a

I

) = x

I

;

(x

1

; : : : ; x

n

) : P i� (x

I

1

; : : : ; x

I

n

) 2 P

D

;

a 6� b i� a

I

6= b

I

:

An interpretation I is alled a model of an ABox A i� it satis�es every assertion in A.

An ABox is alled onsistent i� it has a model.



PSpae Reasoning with the Desription Logi ALCF(D) 545

It should be obvious how ABoxes an be used to represent models. If the satis-

�ability of a onept D is to be deided, the ompletion algorithm is started with

the initial ABox for D de�ned as A

D

= fa : Dg. To keep the presentation of the

ompletion rules suint, we introdue an operation that allows to introdue new

objets on paths and onrete paths.

Definition 3.4 (\+" operation)

An abstrat or onrete objet is alled fresh w.r.t. an ABox A if it does not appear

in A. Let p = f

1

� � � f

n

be an abstrat path (resp. u = f

1

� � � f

n

g be a onrete path).

By A + apb (resp. A + aux), where a 2 O

a

is used in A and b 2 O

a

(resp. x 2 O



),

we denote the ABox A

0

whih an be obtained from A by hoosing distint objets

b

1

; : : : ; b

n

2 O

a

whih are fresh in A and setting

A

0

:= A[ f(a; b

1

) : f

1

; : : : ; (b

n�1

; b) : f

n

g

(resp. A

0

:= A[ f(a; b

1

) : f

1

; : : : ; (b

n�1

; b

n

) : f

n

; (b

n

; x) : gg:

When nesting the + operation, we omit brakets writing, e.g., A + ap

1

b + bp

2

 for

(A+ ap

1

b) + bp

2

.

The ompletion rules an be found in Figure 4. Note that the Rt rule is nondeter-

ministi, i.e., it has more than one possible outome. Thus, the desribed ompletion

algorithm is a nondeterministi deision proedure. Suh an algorithm aepts its

input (i.e. returns satis�able) i� there is some way to make the nondeterministi

deisions suh that a positive result is obtained. A onvenient way to think of nonde-

terministi rules is that they \guess" the orret outome, i.e., if there is an outome

whih, if hosen, leads to a positive result, then this outome is in fat onsidered.

Most ompletion rules are standard and known from, e.g., [5℄ and [22℄. The R9f and

R8f rules are speial in that they only deal with onepts 9f:C and 8f:C where f is

an abstrat feature. As we will see later, onepts 9R:C and 8R:C with R 2 N

R

nN

aF

are not treated by ompletion rules but through reursion alls of the algorithm. The

Rfe rule also deserves some attention: it ensures that, for any objet a 2 O

a

, there

exists at most a single f -suessor for eah f 2 N

aF

and at most a single g-suessor

for eah g 2 N

F

. Redundant suessors are eliminated by identi�ation. This proess

is often referred to as fork elimination (hene the name of the rule). In many ases,

fork elimination is not expliitly formulated as a ompletion rule but viewed as an

integral part of the other ompletion rules. In the presene of feature (dis)agreements,

this latter approah seems to be less transparent. Consider for example the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

g:

Assume the R9f rule is applied twie adding the assertions (a; b) : f

1

and (a; ) : f

2

.

Now, the R# rule is applied adding (a; b

0

) : f

1

and (a; b

0

) : f

2

. Clearly, we may now

apply the Rfe rule to the assertions (a; b) : f

1

and (a; b

0

) : f

1

. Say the rule appliation

replaes b

0

by b, and we obtain the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

; (a; b) : f

1

; (a; ) : f

2

; (a; b) : f

2

g:

Obviously, we may now apply Rfe to (a; ) : f

2

and (a; b) : f

2

replaing b by .

Observe that this latter fork elimination does not involve any objets generated by
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Ru if C

1

u C

2

2 A(a) and fC

1

; C

2

g 6� A(a)

then A := A [ fa : C

1

; a : C

2

g

Rt if C

1

t C

2

2 A(a) and fC

1

; C

2

g \ A(a) = ;

then A := A [ fa : Cg for some C 2 fC

1

; C

2

g

R9f if 9f:C 2 A(a) and there is no f -suessor b of a with C 2 A(b)

then set A := A[ f(a; b) : f; b : Cg for a b 2 O

a

fresh in A

R8f if 8f:C 2 A(a), b is an f -suessor of a, and C =2 A(b)

then set A := A[ fb : Cg

R if 9u

1

; : : : ; u

n

:P 2 A(a) and there exist no x

1

; : : : ; x

n

2 O



suh that

x

i

is u

i

-suessor of a for 1 � i � n and (x

1

; : : : ; x

n

) : P 2 A

then set A := (A+ au

1

x

1

+ � � �+ au

n

x

n

) [ f(x

1

; : : : ; x

n

) : Pg

with x

1

; : : : ; x

n

2 O



fresh in A

R# if p

1

#p

2

2 A(a) and there is no b that is both

a p

1

-suessor of a and a p

2

-suessor of a

then set A := A+ ap

1

b+ ap

2

b for a b 2 O

a

fresh in A

R" if p

1

"p

2

2 A(a) and there are no b

1

; b

2

with

b

1

p

1

-suessor of a, b

2

p

2

-suessor of a, and (b

1

6� b

2

) 2 A

then set A := (A+ ap

1

b

1

+ ap

2

b

2

) [ f(b

1

6� b

2

)g

for b

1

; b

2

2 O

a

fresh in A

Rfe if f(a; b) : f; (a; ) : fg � A and b 6= 

(resp. f(a; x) : g; (a; y) : gg � A and x 6= y)

then replae b by  in A (resp. x by y)

Fig. 4. Completion rules for ALCF(D).

the last \non-Rfe" rule appliation. To make suh e�ets more transparent, we hose

to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be ontraditory.

Definition 3.5 (Clash)

With eah ABox A, we assoiate a prediate onjuntion

�

A

=

^

(x

1

;:::;x

n

):P2A

P (x

1

; : : : ; x

n

):

The ABox A is alled onrete domain satis�able i� �

A

is satis�able. It is said to

ontain a lash i� one of the following onditions applies:

1. fA;:Ag � A(a) for a onept name A and objet a 2 O

a

,

2. (a 6� a) 2 A for some objet a 2 O

a

,

3. g" 2 A(a) for some a 2 O

a

suh that there exists a g-suessor of a, or

4. A is not onrete domain satis�able.

If A does not ontain a lash, then A is alled lash-free.



PSpae Reasoning with the Desription Logi ALCF(D) 547

de�ne proedure sat(A)

A := fompl(A)

if A ontains a lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : Cg [ fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne proedure fompl(A)

while a rule from Figure 4 is appliable to A do

Choose an appliable rule R s.t. R = Rfe if Rfe is appliable

Apply R to A

return A

Fig. 5. The ALCF(D)-onept satis�ability algorithm.

f

f

f

b

a

8f:9f:>



Fig. 6. The \yo-yo" e�et.

The ompletion algorithm itself an be found in Figure 5. We briey summarize

the strategy followed by the algorithm. The argument to sat is an ABox ontaining

exatly one objet a 2 O

a

and only assertions of the form a : C. The algorithm uses

the fompl funtion to reate all feature suessors of a, all feature suessors of these

feature suessors and so on. However, fompl does not generate any R-suessors

for role names R 2 N

R

n N

aF

. In other words, fompl generates a luster of objets

as desribed in Setion 3.1. After the all to the fompl funtion, the algorithm

makes a reursion all for eah role suessor enfored via an 9R:C assertion (with

R 2 N

R

n N

aF

). A single suh reursion all orresponds to moving along a path in

a generalized tree model, i.e, to moving to a suessor luster of the luster under

onsideration. Eah luster of objets is heked separately for ontraditions. Note

that, due to De�nition 3.5, heking for a lash involves heking whether the prediate

onjuntion �

A

is satis�able. This, in turn, is a deidable problem sine we assume

D to be admissible.
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R9r if 9R:C 2 A(a) with R 2 N

R

n N

aF

and

there is no R-suessor b of a with C 2 A(b)

then set A := A [ f(a; b) : R b : Cg for a b 2 O

a

fresh in A

R8r if 8R:C 2 A(a) with R 2 N

R

n N

aF

, b is a R-suessor of a, and C =2 A(b)

then set A := A [ fb : Cg

Fig. 7. Virtual ompletion rules for ALCF(D).

Observe that fompl applies the Rfe rule with highest priority. Without this strat-

egy, the algorithm would not terminate: onsider the ABox

A = fa : 8f:9f:>; (a; a) : f; (a; b) : fg:

This ABox, whih is depited in the upper part of Figure 6, is enountered if, for

example, the algorithm is started on the input onept f

0

#f

0

f u9f

0

:(8f:9f:>u9f:>).

Now assume that the ompletion rules are applied to A without giving Rfe the highest

priority. This means that we an apply the R8f rule and obtain b : 9f:>. We an

then apply R9f generating (b; ) : f;  : >. Fork elimination may now identify a and b

and thus we are bak at the initial situation (up to renaming). Clearly, this sequene

of rule appliations may be repeated inde�nitely|the algorithm does not terminate.

This \yo-yo" e�et was also desribed, e.g., in [9℄.

3.3 Corretness and Complexity

In this setion, we prove that the ompletion algorithm is sound, omplete, and termi-

nating and an be exeuted using only polynomial spae provided that D-satis�ability

is in PSpae. With D, we denote the input onept to the ompletion algorithm

whose satis�ability is to be deided.

We �rst prove termination of the algorithm. It is onvenient to start with estab-

lishing an upper bound for the number of rule appliations performed by the fompl

funtion and, losely related, an upper bound for the size of ABoxes generated by the

fompl funtion. Before we do this, let us introdue the two additional ompletion

rules displayed in Figure 7, whih will play an important role in the termination and

orretness proofs. These rules are not applied expliitly by the algorithm, but rather

an the reursion alls of the sat funtion be viewed as a single appliation of the

R9r rule together with multiple appliations of the R8r rule. Let us now return to

the upper bounds for the fompl funtion. With foresight to the ABox onsisteny

algorithm to be devised in the next setion, we onsider the preompl funtion instead

of the fompl funtion, where preompl is de�ned exatly as fompl exept that it also

applies the R8r rule. A formal de�nition of the preompl funtion an be found in

Figure 9. It is not hard to see that upper bounds for the number of rule appliations

performed by preompl or the size of ABoxes generated by preompl also apply to the

fompl funtion: if the fompl funtions perform a omputation on an input ABox

A, then preompl an perform preisely the same omputation on the input ABox

A

0

obtained from A by replaing all subonept 8R:C appearing in A with onept

names.
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In what follows, we use sub(C) to denote the set of subonepts of the onept C

and sub(A) to denote the union of the sets of subonepts of all those onepts C that

appear in assertions a : C in the ABox A. Moreover, we use jCj to denote the length

of a onept C, i.e., the number of symbols used to write it down. The size j�j of an

ABox assertion � is de�ned as jCj if � = a : C and 1 otherwise. The size jAj of an

ABox A is de�ned as the sum of the sizes of its assertions.

Lemma 3.6

For any input A, the funtion preompl terminates after at most jAj

4

rule appliations

and onstruts an ABox A

0

with jA

0

j � jAj

6

.

Proof. In the following, we all assertions of the form a : C onept assertions,

assertions of the form (a; b) : f or (a; x) : g feature assertions, and assertions of the

form (a; b) : R with R 2 N

R

n N

aF

role assertions.

The main task is to show that

preompl terminates after at most jAj

4

rule appliations. (�)

For suppose that (�) has been shown. We an then prove the lemma by making the

following two observations, whih learly imply that the size of the ABox A

0

generated

by preompl is bounded by jAj

6

.

(i) We have j�j < jAj for eah new assertion � added by rule appliation: onept

assertions are the only kind of assertions that may have a size greater than one

and, if a onept assertion a : C is added by rule appliation, then C 2 sub(A);

(ii) Eah rule appliation adds at most jAj new assertions: eah appliation adds

either no new assertions (the Rfe rule) or at most jCj new assertions, where a : C

is the onept assertion appearing in the (instantiated) rule premise. In the latter

ase, we have jCj � jAj sine C is in sub(A).

Hene, let us prove (�). Let A

0

;A

1

; : : : be the sequene of ABoxes omputed by

preompl. More preisely, A

0

= A and A

i+1

is obtained from A

i

by the i-th rule

appliation performed by preompl.

We �rst introdue some notions. For i � 0 and a 2 O

a

[ O



, we use nm

i

(a) to

denote the set of names that a had \until A

i

". More preisely, nm

0

(a) = fag for all

a 2 O

a

[O



. If the Rfe rule is applied to an ABox A

i

renaming an objet a to b, then

nm

i+1

(b) = nm

i

(a) [ nm

i

(b) and nm

i+1

() = nm

i

() for all  6= b. For all other rule

appliations, we simply have nm

i+1

(a) = nm

i

(a) for all a 2 O

a

[ O



. The following

properties, whih we summarize under the notion persistene, are easily proved using

the fat that assertions are never deleted:

� If a : C 2 A

i

and a 2 nm

j

(a

0

) for some j > i and a

0

2 O

a

, then a

0

: C 2 A

j

.

� if (a; b) : R 2 A

i

, a 2 nm

j

(a

0

), and b 2 nm

j

(b

0

) for some j > i and a

0

; b

0

2 O

a

, then

(a

0

; b

0

) : R 2 A

j

.

� If (a; x) : g 2 A

i

, a 2 nm

j

(a

0

), and x

0

2 nm

j

(x) for some j > i, a

0

2 O

a

, and

x

0

2 O



, then (a

0

; x

0

) : g 2 A

j

.

� If (x

1

; : : : ; x

n

) : P 2 A

i

and x

0

i

2 nm

j

(x

i

) for 1 � i � n, then (x

0

1

; : : : ; x

0

n

) : P 2 A

j

.

A onept assertion a : C is alled touhed in A

i

if there exists an a

0

2 nm

i

(a)

suh that one of the �rst i rule appliations involved a

0

: C in the (instantiated)
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rule premise and untouhed otherwise. By ℄

feat

(A), we denote the number of feature

assertions in A. For role assertions (a; b) : R with R 2 N

R

n N

aF

, we use �

A

i

(a; b : R)

to denote the number of onepts 8R:C in sub(A) for whih there exist no a

0

2 nm

i

(a)

and b

0

2 nm

i

(b) suh that one of the �rst i rule appliations involved both a

0

: 8R:C

and (a

0

; b

0

) : R in the (instantiated) rule premise.

For i � 0, de�ne

w(A

i

) :=

X

a:C is untouhed in A

i

ja : Cj + ℄

feat

(A

i

) + jAj �

X

(a;b):R2A

i

�

A

i

(a; b : R):

We show that w(A

i+1

) < w(A

i

) for i � 0, whih implies that the length of the

sequene A

0

;A

1

; : : : is bounded by jAj

4

sine it is readily heked that w(A

0

) � jAj

4

.

A ase distintion is made aording to the ompletion rule applied.

� Assume that A

i+1

is obtained from A

i

by an appliation of the Ru rule. By

de�nition of this rule and due to persistene, it is applied to an untouhed assertion

a : C

1

u C

2

in A

i

: for suppose that a : C

1

u C

2

is touhed in A

i

. By de�nition

of \touhed", this implies that there exists an a

0

2 nm

i

(a) suh that Ru has been

applied to a

0

: C

1

u C

2

in the j-th rule appliation for some j < i. By de�nition

of Ru, this implies fa

0

: C

1

; a

0

: C

2

g � A

j

. By persistene, we have fa : C

1

; a :

C

2

g � A

i

and, thus, the Ru rule is not appliable to a : C

1

u C

2

in A

i

whih

is a ontradition. Hene, we have shown that a : C

1

u C

2

is untouhed in A

i

.

Moreover, this assertion is learly touhed in A

i+1

. The rule appliation generates

new onept assertions a : C

1

and a : C

2

whih may both be untouhed in A

i+1

.

Moreover, it generates no new feature and role assertions. By de�nition of the size

of assertions and the length of onepts, we have ja : C

1

u C

2

j > ja : C

1

j+ ja : C

2

j.

Thus w(A

i+1

) < w(A

i

).

� The Rt ase is analogous to the previous ase.

� Assume that A

i+1

is obtained from A

i

by an appliation of the R8f rule. The rule

is applied to assertions a : 8f:C and (a; b) : f . Suppose that a : 8f:C is touhed

in A

i

, i.e., that the R8f rule has been applied in a previous step to an assertion

a

0

: 8f:C with a

0

2 nm

i

(a). It then added  : C for an f -suessor  of a

0

. The

fats that (i) Rfe is applied with highest priority, (ii) b is an f -suessor of a in

A

i+1

, and (iii) the R8f rule is appliable imply that we have  2 nm

i

(b). This,

in turn, implies b : C 2 A

i

by persistene and we have obtained a ontradition

to the assumption that R8f is appliable. Hene, we have shown that a : 8f:C is

untouhed in A

i

. The assertion is touhed in A

i+1

. Rule appliation generates a

new assertion b : C that is untouhed in A

i+1

. However, ja : 8f:Cj > jb : Cj. No

new feature or role assertions are generated.

� Assume that A

i+1

is obtained from A

i

by an appliation of the R8r rule. The rule

is applied to assertions a : 8R:C and (a; b) : R in A

i

. Due to persistene, there do

not exist a

0

2 nm

i

(a) and b

0

2 nm

i

(b) suh that the R8r rule has previously been

applied to a

0

: 8R:C and (a

0

; b

0

) : R. Hene, �

A

i+1

(a; b : R) = �

A

i

(a; b : R)�1 and

the third summand of w(A

i

) exeeds the third summand of w(A

i+1

) by jAj. The

rule appliation adds no feature or role assertions and a single onept assertion

b : C. Sine 8R:C 2 sub(A), we have jb : Cj < jAj and hene w(A

i+1

) < w(A

i

).

� Assume that A

i+1

is obtained from A

i

by an appliation of the R9f rule. As in

the Ru ase, it is easy to show that the rule is applied to an untouhed assertion
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a : 9f:C. It generates new assertions (a; b) : f and b : C (and no new role

assertions). The assertion b : C is untouhed in A

i+1

and a : 9f:C is touhed in

A

i+1

. The new feature assertion (a; b) : f yields ℄

feat

(A

i+1

) = ℄

feat

(A

i

)+1. On the

other hand, no role assertion is added and we learly have ja : 9f:Cj > jb : Cj+ 1.

� The R, R#, and R" rules touh a (due to persistene) previously untouhed onept

assertion a : C appearing in the instantiated premise and do not add new onept

or role assertions. It is readily heked that the number of feature assertions added

by rule appliation is smaller than ja : Cj.

� Assume that the Rfe rule is applied to an ABox A

i

. This obviously implies

℄

feat

(A

i+1

) < ℄

feat

(A

i

), i.e., the seond summand of w(A

i+1

) is stritly smaller

than the seond summand of w(A

i

). If the rule appliation renames a onrete

objet, these are the only hanges and we are done. If an abstrat objet is

renamed, some work is neessary to show that the �rst and third summand of

w(A

i+1

) are not greater than the orresponding summands of w(A

i

). Assume

that a 2 O

a

is renamed to b. We then have nm

i+1

(b) = nm

i

(a) [ nm

i

(b).

{ First summand. Let us �rst onsider onept assertions  : C 2 A

i+1

\ A

i

.

Suh an assertion is untouhed in A

i+1

only if it is untouhed in A

i

sine

(i) nm

i+1

() = nm

i

() if  6= b and (ii) nm

i

(b) � nm

i+1

(b) if  = b. More-

over, if there exists an assertion b : C 2 A

i+1

n A

i

due to variable renaming,

then a : C 2 A

i

n A

i+1

, and b : C being untouhed in A

i+1

implies a : C being

untouhed in A

i

sine nm

i

(a) � nm

i+1

(b). Hene, the �rst summand does not

inrease.

{ Third summand. Let (; d) : R 2 A

i+1

\ A

i

(implying  6= a and d 6= a). We

distinguish several subases:

1.  6= b and d 6= b. Then, learly, �

i

(; d : R) = �

i+1

(; d : R).

2.  = b and d 6= b. By de�nition of �

i

, nm

i

(b) � nm

i+1

(b) implies

�

i

(b; d : R) � �

i+1

(b; d : R).

3.  6= b and d = b. As previous ase.

4.  = d = b. As previous ase.

Now let (; d) : R 2 A

i+1

nA

i

(implying  = b or d = b). We an distinguish the

ases (i)  = b, d 6= b, (ii) d = b,  6= b, and (iii)  = d = b. Sine all ases are

similar, we onentrate on (i). In this ase, (a; d) : R 2 A

i

n A

i+1

. Moreover,

nm

i

(a) � nm

i+1

(b) implies �

A

i+1

(b; d : R) � �

A

i

(a; d : R).

Summing up, the third summand may only derease but not inrease.

The role depth of onepts is de�ned indutively as follows, where jpj denotes the

length of the abstrat path p and juj denotes the length of the onrete path u

(inluding the trailing onrete feature):

� rd(A) = rd(g") = 0;

� rd(9u

1

; : : : ; u

n

:P ) = max(ju

1

j; : : : ; ju

n

j);

� rd(p

1

#p

2

) = rd(p

1

"p

2

) = max(jp

1

j; jp

2

j);

� rd(:C) = rd(C);

� rd(C uD) = rd(C tD) = max(rd(C); rd(D));

� rd(9R:C) = rd(8R:C) = rd(C) + 1;
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We now prove a tehnial lemma that, together with Lemma 3.6, immediately yields

termination.

Lemma 3.7

Assume that the ompletion algorithm was started with input D. Then

1. in eah reursion all, the size jAj of the argument A passed to sat is bounded

by jDj

2

;

2. in eah reursion step of sat, at most p(jDj) reursion alls are made, where p is a

polynomial; and

3. the reursion depth of sat is bounded by jDj.

Proof. Let us �rst prove Point 1. ABoxes passed to sat ontain assertions of the

form a : C for a single objet a. Sine only onepts from sub(D) are generated

during rule appliation, the number of distint assertions of this form is bounded by

jsub(D)j � jDj. Obviously, the size of eah suh assertion is also bounded by jDj

whih yields an upper bound of jDj

2

for the size of arguments to sat.

For Point 2, note that in eah reursion step, the number of reursion alls made is

bounded by the number of assertions a : 9R:C in the ABox A obtained by appliation

of fompl. By Point 1, the size of argument ABoxes to sat is bounded by jDj

2

. Hene,

by Lemma 3.6, the size of A is bounded by p(jDj) where p is a polynomial and the

same bound applies to the number of reursion alls made in eah reursion step.

We now turn to Point 3. As a onsequene of (i) the fat that rule appliation

performed by fompl may not introdue onepts with a role depth greater than the

role depth of onepts that have already been in the ABox and (ii) the way in whih

the argument ABoxes for reursion alls to sat are onstruted, we have that the

role depth of onepts in the argument ABoxes passed to sat stritly dereases with

reursion depth. It follows that the role depth ofD is an upper bound for the reursion

depth, i.e., the reursion depth is bounded by jDj.

Proposition 3.8

The ompletion algorithm terminates on any input A

D

.

Proof. Immediate onsequene of Lemma 3.6 and Points 2 and 3 from Lemma 3.7.

We now ome to proving soundness and ompleteness of the ompletion algorithm.

Reall that, intuitively, the ompletion algorithm traverses a generalized tree model

in a depth-�rst manner without keeping the entire model in memory. For the proofs,

it is onvenient to make the model traversed by the algorithm expliit|or more

preisely the ABox representing it. To do this, we de�ne an extended version of

the ompletion algorithm. This extended algorithm is idential to the original one

but additionally onstruts a sequene of ABoxes A

0

[

;A

1

[

; : : : olleting all assertions

that the algorithm generates. Hene, it returns satis�able if and only if the original

algorithm does. We will show that, if the extended algorithm is started on an initial

ABox A

D

and terminates after n steps returning satis�able, then the ABox A

n

[

de�nes

a anonial model for A

D

. Sine the extended algorithm returns satis�able if the

original one does, this yields soundness. Completeness an also be shown using the

orrespondene between the two algorithms. Note that the extended version of the

algorithm is de�ned just to prove soundness and ompleteness of the original version
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* Initialization:

* r := s := 0

* A

0

[

:= fa

0

: Dg if A

D

= fa : Dg

de�ne proedure sat(A)

A := fompl(A)

if A ontains a lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

* s := s+ 1

* r := r+ 1

Fix b 2 O

a

* A

r

[

:= A

r�1

[

[ f(a

s�1

; b

s

) : Rg [ fb

s

: Cg [

* fb

s

: E j a : 8R:E 2 A(a)g

if sat(fb : Cg [ fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne proedure fompl(A)

* A

0

:= A

while a rule R from Figure 4 is appliable to A do

Choose an appliable rule R s.t. R = Rfe if Rfe is appliable

Apply R to A

* r := r+ 1

* N := A nA

0

* Replae eah a 2 O

a

(resp. x 2 O



) in N with a

s

(resp. x

s

)

* A

r

[

:= A

r�1

[

[ N

return A

Fig. 8. The extended satis�ability algorithm.

and we do not laim that the extended version itself an be exeuted in polynomial

spae.

The extended algorithm an be found in Figure 8. The extensions are marked

with asterisks. If the algorithm is started on the initial ABox A

D

= fa : Dg, we set

A

0

[

:= fa

0

: Dg. The algorithm uses two global variables s and r, whih are both

initialized with the value 0. The �rst one is a ounter for the number of alls to the sat

funtion. The seond one ounts the number of ABoxes A

i

[

that have already been

generated. The introdution of the global variable s is neessary due to the following

tehnial problem: the objet names reated by the algorithm are unique only within

the ABox onsidered in a single reursion step. For the aumulating ABoxes A

i

[

that ollet assertions from many reursion steps, we have to ensure that an objet a

from one reursion step an be distinguished from a in a di�erent step sine these two

objets do learly not represent the same domain element in the onstruted model.

To ahieve this, objets are renamed before new assertions are added to an ABox A

i

[

by indexing with the value of the ounter s.
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Observe that, for i > 0, the ABox A

i

[

is obtained either

1. by multiple appliations of ompletion rules from Figure 4 to the ABox A

i�1

[

or

2. by a reursion all made while the ounter r has value i� 1.

Let us be a little bit more preise about the seond point. W.r.t. the sequene of

ABoxes A

0

[

;A

1

[

; : : : , reursion alls an be viewed as appliations of the ompletion

rules displayed in Figure 7: if A

i

[

is obtained from A

i�1

[

by a reursion all, then this is

equivalent to a single appliation of the R9r rule together with exhaustive appliation

of the R8r rule.

Non-appliability of all ompletion rules to an ABox will be an important property

in what follows.

Definition 3.9 (Complete ABox)

An ABox A is omplete i� no ompletion rule from Figures 4 and 7 is appliable to A.

The following two lemmas are entral for proving soundness and ompleteness.

Lemma 3.10

Let A be an ABox and R a ompletion rule from Figure 4 or Figure 7 suh that R

is appliable to A. Then A is onsistent i� R an be applied suh that the resulting

ABox A

0

is onsistent.

Proof. Let us �rst deal with the \if" diretion. This is trivial if R 6= Rfe sine this

implies A � A

0

and, hene, every model of A

0

is also a model of A. Assume that the

Rfe rule is applied to assertions f(a; b) : f; (a; ) : fg 2 A and replaes  with b. Let

I be a model of A

0

. Construt an interpretation I

0

from I by setting 

I

0

:= b

I

. It

is straightforward to hek that I

0

is a model of A. The ase that Rfe is applied to

assertions f(a; x) : g; (a; y) : gg 2 A is analogous.

Now for the \only if" diretion. We make a ase distintion aording to the

ompletion rule R.

� The Ru rule is applied to an assertion a : C

1

u C

2

and A

0

= A [ fa : C

1

; a : C

2

g.

Let I be a model of A. Sine a

I

2 (C

1

u C

2

)

I

, we have a

I

2 C

I

1

and a

I

2 C

I

2

by

the semantis of ALCF(D), whih implies that I is also a model of A

0

.

� The Rt rule is applied to an assertion a : C

1

t C

2

. The rule an be applied suh

that either A

0

= A [ fa : C

1

g or A

0

= A [ fa : C

2

g. Let I be a model of A.

Sine a

I

2 (C

1

t C

2

)

I

, we have either a

I

2 C

I

1

or a

I

2 C

I

2

by the semantis of

ALCF(D). Hene, we an apply the rule suh that I is a model of A

0

.

� The R9f rule is applied to an assertion a : 9f:C yielding the ABox A

0

. Then

A

0

= A [ f(a; b) : f; b : Cg where b is fresh in A. Let I be a model of A. Sine

a

I

2 (9f:C)

I

, there exists a d 2 �

I

suh that f

I

(a

I

) = d and d 2 C

I

. Let I

0

be

the interpretation obtained from I by setting a

I

0

:= d. It is easily heked that

I

0

is a model of A

0

.

� The R9r rule is treated analogously to the previous ase.

� The R8f rule is applied to an assertion a : 8f:C and A

0

= A [ fb : Cg where b is

an f -suessor of a in A and A

0

. Let I be a model of A. Sine a

I

2 (8f:C)

I

and

f

I

(a

I

) = b

I

, we have b 2 C

I

. Hene, I is also a model of A

0

.

� The R8r rule is treated analogously to the previous ase.
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� The R rule is applied to an assertion a : 9u

1

; : : : ; u

n

:P with u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

yielding the ABox A

0

. Then there exist abstrat objets a

(i)

j

with 1 � i � n and

1 � j � k

i

whih are fresh in A and onrete objets x

1

; : : : ; x

n

whih are fresh in

A suh that, for 1 � i � n,

{ a

(i)

1

is f

(i)

1

-suessor of a,

{ a

(i)

j

is f

(i)

j

-suessor of a

(i)

j�1

for 1 < j � k

i

,

{ x

i

is g

i

-suessor of a

(i)

k

i

, and

{ (x

1

; : : : ; x

n

) : P 2 A

0

.

Let I be a model of A. Sine a

I

2 (9u

1

; : : : ; u

n

:P )

I

, there exist domain elements

d

(i)

j

2 �

I

with 1 � i � n and 1 � j � k

i

and z

1

; : : : ; z

n

2 �

D

suh that, for

1 � i � n, we have

{ (a

I

; d

(i)

1

) 2 (f

(i)

1

)

I

,

{ (d

(i)

j�1

; d

(i)

j

) 2 (f

(i)

j

)

I

for 1 < j � k

i

,

{ g

I

i

(d

(i)

k

i

) = z

i

, and

{ (z

1

; : : : ; z

n

) 2 P

D

.

De�ne I

0

as the interpretation obtained from I by setting

(a

(i)

j

)

I

0

:= d

(i)

j

for 1 � i � n and 1 < j � k

i

and

x

I

0

i

:= z

i

for all i with 1 � i � n:

It is straightforward to hek that I

0

is a model of A

0

.

� Appliations of the R# rule are treated similar to the previous ase.

� Appliations of the R" rule are also treated similar to the R ase.

� The Rfe rule is applied to assertions f(a; b) : f; (a; ) : fg 2 A and replaes  with b.

Let I be a model of A. Due to the presene of the above two assertions and sine

features are interpreted as partial funtions, we have b

I

= 

I

. It is readily heked

that this implies that I is a model of A

0

. The ase that two onrete objets are

identi�ed an be treated in the same way.

Lemma 3.11

Let A be an ABox. If A is omplete and lash-free, then it is onsistent.

Proof. Based on A, a anonial interpretation I an be de�ned as follows. Fix a

solution Æ for �

A

whih exists sine A is lash-free.

1. �

I

onsists of all abstrat objets used in A,

2. A

I

:= fa 2 O

a

j a : A 2 Ag for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag for all g 2 N

F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O



.
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Note that I is well-de�ned: Sine the Rfe rule is not appliable, f

I

and g

I

are

funtional for all f 2 N

aF

and g 2 N

F

. We prove that I is a model of A, i.e.,

that all assertions in A are satis�ed by I. It is an immediate onsequene of the

de�nition of I that (a; b) : R 2 A implies (a

I

; b

I

) 2 R

I

and (a; x) : g 2 A implies

g

I

(a

I

) = x

I

. Moreover, if (a: � b) 2 A, then a 6= b sine A is lash-free. Hene,

(a: � b) 2 A implies a

I

6= b

I

. Sine Æ is a solution for �

A

, (x

1

; : : : ; x

n

) : P 2 A

implies (x

I

1

; : : : ; x

I

n

) 2 P

D

. It thus remains to show that a : C 2 A implies a 2 C

I

.

This is done by indution on the struture of C. For the indution start, we make a

ase distintion aording to the form of C:

� If C 2 N

C

, then the above laim is an immediate onsequene of the de�nition

of C.

� C = :E. Sine we assume all onepts to be in negation normal form, E is a

onept name. Sine A is lash-free, a : E =2 A and, by de�nition of I, a =2 E

I

.

Hene, a 2 (:E)

I

.

� C = 9u

1

; : : : ; u

n

:P . Sine the R rule is not appliable toA, there exist x

1

; : : : ; x

n

2

O



suh that x

i

is u

i

-suessor of a in A for 1 < i � n. By de�nition of I, we have

u

I

i

(a) = Æ(x

i

) for 1 < i � n. Furthermore, we have (x

1

; : : : ; x

n

) : P 2 A and, sine

Æ is a solution for �

P

, (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

. Summing up, a 2 (9u

1

; : : : ; u

n

:P )

I

.

� C = p

1

#p

2

. Sine the R# rule is not appliable to A, there exists an objet b 2 O

a

whih is both a p

1

-suessor and a p

2

-suessor of a in A. By de�nition of I, we

have p

I

1

(a) = p

I

2

(a) = b and, hene, a 2 (p

1

#p

2

)

I

.

� C = p

1

"p

2

. Sine the R" rule is not appliable to A, there exist b

1

; b

2

2 O

a

suh

that b

1

is a p

1

-suessor of a in A, b

2

is a p

2

-suessor of a in A, and b

1

: � b

2

2 A.

Sine A is lash-free, we have b

1

6= b

2

. By de�nition of I, we have p

I

1

(a) = b

1

and

p

I

2

(a) = b

2

and, hene, a 2 (p

1

"p

2

)

I

.

� C = g". Sine A is lash-free, a has no g-suessor x in A. By de�nition of I,

g

I

(a) is unde�ned and hene a 2 (g")

I

.

For the indution step, we make a ase analysis aording to the topmost onstrutor

in C.

� C = C

1

uC

2

. Sine the Ru rule is not appliable to A, we have fC

1

; C

2

g � A(a).

By indution, a 2 C

I

1

and a 2 C

I

2

, whih implies a 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous ase.

� C = 9R:E. Sine neither the R9f nor the R9r rule is appliable to A, there exists

an objet b 2 O

a

suh that b is an R-suessor of a in A and E 2 A(b). By

de�nition of I, b being an R-suessor of a implies (a; b) 2 R

I

. By indution, we

have b 2 E

I

and may hene onlude a 2 (9R:E)

I

.

� C = 8R:E. Let b 2 �

I

suh that (a; b) 2 R

I

. By de�nition of I, b is an R-

suessor of a in A. Sine neither the R8f not the R8r rule is appliable to A, we

have E 2 A(b). By indution, it follows that b 2 E

I

. Sine this holds for all b, we

an onlude a 2 (8R:E)

I

.

In the following, the i-th reursion step denotes the reursion step of the extended

ompletion algorithm in whih the ounter s has value i.
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Proposition 3.12 (Soundness)

If the ompletion algorithm returns satis�able, then the input onept is satis�able.

Proof. Assume that the ompletion algorithm is started on an input onept D and

there exists a way to make the non-deterministi deisions suh that the algorithm

returns satis�able. Moreover assume that the extended algorithm onstruts the ABox

A

n

[

if the non-deterministi deisions are made in preisely the same way, i.e., the

ounter r has value n upon termination. We �rst establish the following laim:

Claim: A

n

[

is omplete and lash-free.

First for ompleteness. We distinguish several ases. First assume that a rule

R 2 fRu;Rt;R9f;R;R#;R";R9rg

is appliable to A

n

[

. This is due to the presene of an assertion a

i

: C in A

n

[

. If, e.g.,

R = Ru, then C has the form C

1

uC

2

. By onstrution of A

n

[

, this implies that a : C

is either part of the argument A to sat in the i-th reursion all or has been added to

A by the fompl funtion during the i-th reursion step. In either ase, if R 6= R9r,

the rule R has been applied to a : C by the fompl funtion during the i-th reursion

step, whih, again by onstrution of A

n

[

, implies that R is not appliable to a

i

: C

in A

n

[

: ontradition. If R = R9r, then C = 9R:E. Clearly, (a

i

; b

j

) : R and b

j

: C

(for some j > i) is added to A

n

[

due to a subsequent reursion all and we obtain a

ontradition to the appliability of R9r to a

i

: C in A

n

[

.

Now assume that the R8f rule is appliable to A

n

[

. This is due to the presene

of assertions a

i

: 8f:C and (a

i

; b

j

) : f in A

n

[

. Sine assertions (a

i

; b

j

) : f are only

added to A

n

[

beause of appliations of the rules R9f, R, R#, and R" performed by

the fompl funtion, we have i = j. It follows that a : 8f:C and (a; b) : f are in A in

the i-th reursion step. Hene, the R8f rule is applied by fompl to these assertions.

This implies that b : C is in A in the i-th reursion step whih allows us to onlude

b

i

: C 2 A

n

[

, a ontradition.

Assume that R8r is appliable to A

n

[

due to the presene of assertions a

i

: 8R:C

and (a

i

; b

j

) : R. By onstrution of A

n

[

, a

i

: 8R:C is in A in the i-th reursion step

and (a

i

; b

j

) : R has been added to A

n

[

due to a reursion all made during the i-th

reursion step. By de�nition of the annotated algorithm, these two fats imply that

b

j

: C has also been added to A

n

[

in the i-th reursion step. Again a ontradition.

To �nish the proof that A

n

[

is omplete, assume that Rfe is appliable to A

n

[

due to

the presene of assertions (a

i

; b

j

) : f and (a

i

; 

`

) : f . Sine assertions (a

i

; b

j

) : f are

only added to A

n

[

beause of appliations of the rules R9f, R, R#, and R" performed

by the fompl funtion, we have i = j = `. It follows that (a; b) : f and (a; ) : f

are in A in the i-th reursion step. Hene, the Rfe rule is applied by fompl. This,

however, implies that either (a

i

; b

j

) : f or (a

i

; 

`

) : f is not in A

n

[

.

We now prove thatA

n

[

(a

i

) is lash-free. Assume fA;:Ag � A

n

[

(a

i

). Then fA;:Ag �

A(a) in the i-th reursion step. Sine A is lash-free in every reursion step (the algo-

rithm returned satis�able), we obtain a ontradition. Clashes of the form a

i

: � a

i

2 A

n

[

are treated analogously. Now assume a

i

: g" and (a

i

; x

j

) : g are in A

n

[

. Sine asser-

tions (a

i

; x

j

) : g are only added due to appliations of the R rule by fompl, we have

i = j. It is again straightforward to derive a ontradition.

It remains to show that A

n

[

is onrete domain satis�able. For every i � n, let

A

i

be the ABox A in the i-th reursion step after the appliation of fompl and let
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Æ

i

be a solution for �

A

i

, whih exists sine A

i

is lash-free. De�ne Æ(x

i

) := Æ

i

(x

i

)

for all x

i

ourring in A

n

[

. It is readily heked that Æ is a solution for �

A

n

[

: �x an

assertion ((x

1

)

h

1

; : : : ; (x

k

)

h

k

) : P 2 A

n

[

. Sine suh assertions are only added due to

appliations of the R rule by fompl, there exists an i � n suh that h

j

= i for all

j with 1 � j � k. Hene, (x

1

; : : : ; x

k

) : P 2 A

i

and (Æ

i

(x

1

); : : : ; Æ

i

(x

k

)) 2 P

D

. By

de�nition of Æ, it follows that (Æ((x

1

)

i

1

); : : : ; Æ((x

k

)

i

k

)) 2 P

D

, as was to be shown.

The proof of the laim is now �nished and we return to the proof of soundness.

By Lemma 3.11, the laim implies that A

n

[

is onsistent. By onstrution, we have

a

0

: D 2 A

n

[

. It immediately follows that D is satis�able.

Proposition 3.13 (Completeness)

If the ompletion algorithm is started on a satis�able input onept, then it returns

satis�able.

Proof. Sine the ompletion algorithm returns satis�able i� the extended algorithm

does, it suÆes to onentrate on the extended algorithm. Let the extended omple-

tion algorithm be started on an input onept D that is satis�able. Then, the initial

ABox A

D

= fa : Dg is obviously onsistent. By Lemma 3.10 and due to the fat that

performing a reursion step orresponds to the appliation of rules from Figure 7, we

an make the non-deterministi deisions of the extended algorithm suh that every

ABox in the sequene A

0

[

;A

1

[

; : : : is onsistent. By Proposition 3.8 and sine the

extended algorithm terminates i� the original one does, this sequene is omprised

of a �nite number n of ABoxes. Moreover, the extended algorithm does not detet

a lash: if a lash is deteted in an ABox A, then we have A � A

n

[

up to variable

renaming whih learly ontradits the onsisteny of A

n

[

. Beause of this and again

due to Proposition 3.8, the algorithm terminates returning satis�able.

It may be viewed as a byprodut of the soundness and ompleteness proof that

ALCF(D) has the generalized tree model property de�ned in Setion 3.1: assume

that the extended algorithm is started with initial ABox A

D

= fa : Dg and that

D is satis�able. By Proposition 3.13 and the orrespondene of the original and the

extended algorithm, the extended algorithm returns satis�able. From the proof of

Proposition 3.12, we learn that in this ase the ABox A

n

[

(where n is the value of the

ounter s upon termination) is omplete and lash-free. In the proof of Lemma 3.11,

a anonial model I of A

n

[

is onstruted where �

I

is the set of abstrat objets used

in A

n

[

. It is straightforward to hek that this model is a generalized tree model for

D sine

1. a

0

: D is in A

n

[

,

2. the sets X

i

:= fa

i

j a

i

2 �

I

g for 0 � i � n are equivalene lasses w.r.t. I and �

as in De�nition 3.1, and

3. due to the reursive nature of the ompletion algorithm, the graph (V

I

; E

I

) (see

De�nition 3.1) is a tree.
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We now analyze the time and spae requirements of our algorithm.

Proposition 3.14

1. If D-satis�ability is in PSpae, then the ompletion algorithm an be exeuted in

polynomial spae.

2. If D-satis�ability is in NExpTime, then the ompletion algorithm an be exeuted

in nondeterministi exponential time.

3. If D-satis�ability is in ExpSpae, then the ompletion algorithm an be exeuted

in exponential spae.

Proof. By Point 1 of Lemma 3.7 and Lemma 3.6, the maximum size of ABoxes A

enountered in reursion steps is bounded by p(jDj), where p is a polynomial. Sine,

by Point 3 of Lemma 3.7, the reursion depth is bounded by jDj, sat an be exeuted

in polynomial spae if the hek for onrete domain satis�ability is not taken into

aount.

Assume that D-satis�ability is in PSpae. Sine the maximum size of ABoxes A

enountered in reursion steps is bounded by p(jDj), the maximum number of on-

junts in prediate onjuntions �

A

heked for onrete domain satis�ability is also

bounded by p(jDj). Together with the fat that the omplexity lass PSpae is oblivi-

ous for polynomial blowups of the input, it follows that the ompletion algorithm an

be exeuted in polynomial spae. Along the same lines, it an be shown that the

algorithm an be exeuted in exponential spae if D-satis�ability is in ExpSpae.

Now assume that D-satis�ability is in NExpTime. From Lemma 3.6, we know that

fompl terminates after at most jAj

4

rule appliations if started on input A. Sine,

by Point 1 of Lemma 3.7, the size of its input is bounded by jDj

2

, it terminates after

at most jDj

8

rule appliations. Sine the reursion depth is bounded by jDj, and, by

Point 2 of Lemma 3.7, at most q(jDj) reursion alls are made per reursion step for

some polynomial q, sat an be exeuted in nondeterministi exponential time if the

hek for onrete domain satis�ability is not taken into aount. By the bounds on

the reursion depth and the number of reursion alls per reursion steps, the number

of onrete domain satis�ability heks performed is at most exponential in jDj. Sine

the size of prediate onjuntions passed in eah step is bounded by p(D) and D-

satis�ability is in NExpTime, we an perform eah hek in (non-deterministi) time

exponential in jDj. Summing up, the sat algorithm an be exeuted in nondeterministi

exponential time.

Combining this result with the PSpae lower bound of ALC-onept satis�ability

[39℄ and using Savith's Theorem whih implies that PSpae = NPSpae and

ExpSpae = NExpSpae [37℄, we obtain the following theorem.

Theorem 3.15

Let D be an admissible onrete domain.

1. IfD-satis�ability is in PSpae, then ALC(D)-onept satis�ability andALCF(D)-

onept satis�ability are PSpae-omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpaeg, then ALC(D)-onept sat-

is�ability and ALCF(D)-onept satis�ability are also in C.

Sine lower omplexity bounds obviously transfer from D-satis�ability to ALCF(D)-

onept satis�ability, Point 2 of this theorem yields tight omplexity bounds if D-

satis�ability is NExpTime-omplete or ExpSpae-omplete (instead of just in the
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respetive lass). Moreover, sine subsumption an be redued to (un)satis�ability

and vie versa, we obtain orresponding omplexity bounds for subsumption:

Corollary 3.16

Let D be an admissible onrete domain.

1. If D-satis�ability is in PSpae, then ALC(D)-onept subsumption and

ALCF(D)-onept subsumption are PSpae-omplete.

2. If D-satis�ability is in NExpTime, then ALC(D)-onept subsumption and

ALCF(D)-onept subsumption are in o-NExpTime.

3. If D-satis�ability is in ExpSpae then ALC(D)-onept subsumption and

ALCF(D)-onept subsumption are in ExpSpae.

4 ABox Consisteny

In the preeding setion, we used ABoxes merely as a data struture. However,

ABoxes are interesting in their own right sine they are frequently used to represent

assertional knowledge about the state of a�airs in a partiular \world". In this se-

tion, we extend the omplexity results obtained in the previous setion from onept

satis�ability to ABox onsisteny by devising a preompletion algorithm in the style of

[13, 21℄. Most importantly, the extended algorithm yields a tight PSpae omplexity

bound for ALCF(D)-ABox onsisteny if D-satis�ability is in PSpae.

4.1 The Algorithm

The algorithm works by reduing ABox onsisteny to onept satis�ability. First,

a set of preompletion rules is exhaustively applied to the input ABox A yielding a

preompletion of A. Intuitively, rule appliation makes all impliit knowledge in the

ABox expliit exept that it does not generate new R-suessors for roles R 2 N

R

nN

aF

.

Then, several redution onepts are generated from the preompletion and passed to

the onept satis�ability algorithm devised in the previous setion. The input ABox

is satis�able i� the preompletion ontains no obvious ontradition and all redution

onepts are satis�able.

The preise formulation of the algorithm an be found in Figure 9. We assume

all onepts in the input ABox to be in NNF. As already mentioned in Setion 3.3,

the preompl funtion is idential to the fompl funtion in Figure 5 exept that it

additionally applies the R8r rule. This is neessary sine, in ontrast to ABoxes

proessed by the sat algorithm, the input ABox to ons may ontain assertions of the

form (a; b) : R with R 2 N

R

nN

aF

. Although not generating new R-suessors for roles

R 2 N

R

n N

aF

, the preompletion algorithm does generate new f -suessors and new

g-suessors for features f 2 N

aF

and g 2 N

F

. Intuitively, the input ABox indues a

set of lusters of objets as disussed in Setion 3.1 and these lusters are onstruted

by the preompl funtion.

Note that the onstrution of a redution onept orresponds to a single appliation

of the R9r rule together with exhaustive appliation of the R8r rule very similar to

reursion alls of the sat funtions in Figure 5.
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de�ne proedure ons(A)

A := preompl(A)

if A ontains a lash then

return inonsistent

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : C u u

8R:E2A(a)

b : E) = unsatis�able then

return inonsistent

return onsistent

de�ne proedure preompl(A)

while a rule from fRu;Rt;R8r;R8f;R9f;R;R#;R";Rfeg

is appliable to A do

Choose an appliable rule R s.t. R = Rfe if Rfe is appliable

Apply R to A

return A

Fig. 9. The ALCF(D)-ABox onsisteny algorithm.

4.2 Corretness and Complexity

Termination of the preompletion algorithm is easily obtained.

Proposition 4.1

The preompletion algorithm terminates on any input.

Proof. By Lemma 3.6, the preompl funtion terminates, and, by Proposition 3.8,

the sat funtion also terminates.

We now prove soundness and ompleteness. In the following, an ABox A

0

is alled a

preompletion of an ABox A i� A

0

an be obtained by applying the preompl funtion

to A. Note that preompl is non-deterministi (due to the use of the Rt rule) and

hene there may exist more than a single preompletion for a given ABox A.

Proposition 4.2 (Soundness)

If the preompletion algorithm returns onsistent, then the input ABox is onsistent.

Proof. If the algorithm is started on input ABox A returning onsistent, then there

exists a preompletion A

p

for A that does not ontain a lash and all redution

onepts C

1

; : : : ; C

n

of A

p

that are passed as arguments to the sat algorithm are

satis�able. We show that this implies that A

p

has a model, whih, by Lemma 3.10

and the de�nition of preompletion, proves the proposition.

Let I

1

; : : : ; I

n

be the models of the redution onepts C

1

; : : : ; C

n

and a

i

: 9R

i

:E

i

be the assertion in A

p

that triggered the onstrution of the redution onept C

i

.

W.l.o.g., we assume that

� �

I

i

\�

I

j

= ; for 1 � i < j � n and

� �

I

i

\ O

a

= ; for 1 � i � n.
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For eah i with 1 � i � n, we �x an element d

i

2 �

I

i

with d

i

2 C

I

i

i

. Moreover, we

�x a solution Æ for �

A

p

, whih exists sine A

p

is lash-free. De�ne an interpretation

I as follows:

1. �

I

:= O

a

℄�

I

1

℄ � � � ℄�

I

n

,

2. A

I

:= fa 2 O

a

j a : A 2 A

p

g [

S

1�i�n

A

I

i

for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag [ f(a

i

; d

i

) j 1 � i � n and R = R

i

g

[

S

1�i�n

R

I

i

for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag [

S

1�i�n

g

I

i

for all g 2 N

F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O



.

I is well-de�ned: due to the non-appliability of the Rfe rule to A

p

, f

I

and g

I

are

funtional for all f 2 N

aF

and g 2 N

F

. The following laim is an easy onsequene of

the onstrution of I:

Claim: Let 1 � i � n. For all d 2 �

I

i

and C 2 sub(A

p

), d 2 C

I

i

implies d 2 C

I

.

It remains to show that I is a model of A

p

, i.e., that all assertions in A

p

are satis�ed

by I. For assertions of the form (a; b) : R and (a; x) : g, this is an immediate

onsequene of the de�nition of I. Assertions a: � b are satis�ed sine A

p

is lash-

free and assertions (x

1

; : : : ; x

n

) : P are satis�ed sine Æ is a solution for �

A

p

. It thus

remains to show that a : C 2 A

p

implies a 2 C

I

. This is done by indution over

the struture of C as in the proof of Lemma 3.11. The only di�erenes are in the

following ases of the indution step:

� a : 9R:E 2 A

p

. Then there is an i with 1 � i � n suh that a = a

i

, R = R

i

, and

E = E

i

appears as a onjunt in the redution onept C

i

. By de�nition of I, we

have (a; d

i

) 2 R

I

. By the above laim together with d

i

2 C

I

i

i

, we have d

i

2 C

I

i

.

Sine E is a onjunt in C

i

, this learly implies d

i

2 E

I

and thus a 2 (9R:E)

I

.

� a : 8R:E 2 A

p

. Fix a b 2 �

I

suh that (a; b) 2 R

I

. Then either b is an R-

suessor of a in A

p

or a = a

i

, R = R

i

, and b = d

i

for some 1 � i � n. The �rst

ase was already treated in the proof of Lemma 3.11. Hene, let us stik to the

seond ase. By onstrution of C

i

, E appears as a onjunt in C

i

. By the laim,

we have d

i

2 C

I

i

and hene d

i

2 E

I

.

Proposition 4.3 (Completeness)

If the preompletion algorithm is started on a onsistent input ABox, then it returns

onsistent.

Proof. Suppose that the algorithm is started on a onsistent ABoxA. By Lemma 3.10,

the preompl funtion an apply the ompletion rules suh that only onsistent ABoxes

are obtained. Hene, by Lemma 3.6, the preompl funtion generates a onsistent pre-

ompletion A

p

of A. Consisteny of A

p

learly implies that the redution onepts

onstruted from A

p

are satis�able. Sine, by Proposition 3.8, the sat funtion ter-

minates, the preompletion algorithm also terminates and returns onsistent.

It remains to analyze the time and spae requirements of our algorithm.
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Proposition 4.4

1. If D-satis�ability is in PSpae, then the preompletion algorithm an be exeuted

in polynomial spae.

2. If D-satis�ability is in NExpTime, then the preompletion algorithm an be exe-

uted in nondeterministi exponential time.

3. If D-satis�ability is in ExpSpae, then the preompletion algorithm an be exe-

uted in exponential spae.

Proof. Let A be the input ABox to the preompletion algorithm. By Lemma 3.6, the

preompl funtion terminates after at most jAj

4

steps generating an ABox A

0

of size

at most jAj

6

. Sine all omplexity lasses mentioned in the proposition are oblivious

for polynomial blowups of the input, the onrete domain satis�ability hek does not

spoil the upper bound on the time/spae requirements. Conerning the alls to the

sat funtion, it suÆes to refer to Proposition 3.14.

As in the previous setion, we use the PSpae lower bound of ALC-onept satis�a-

bility and the fat that PSpae =NPSpae and ExpSpae =NExpSpae to obtain

the following theorem.

Theorem 4.5

Let D be an admissible onrete domain.

1. If D-satis�ability is in PSpae, then ALC(D)-ABox onsisteny and ALCF(D)-

ABox onsisteny are PSpae-omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpaeg, then ALC(D)-ABox on-

sisteny and ALCF(D)-ABox onsisteny are also in C.

5 Applying the Results

We give some example appliations of the results just obtained by reonsidering the

onrete domains A and S introdued in Setion 2. In order to apply Theorems 3.15

and 4.5, we need to determine the omplexity of A-satis�ability and S-satis�ability.

More preisely, we show that both problems are in NP.

Let us start with the onrete domain A. The proof is by a redution to mixed

integer programming (MIP), i.e., to linear programming where some of the variables

must take integer values. More preisely, a mixed integer programming problem has

the form Ax = b, where A is an m�n-matrix of rational numbers, x is an n-vetor of

variables, eah of them being either an integer variable or a rational variable, and b

is an m-vetor of rational numbers (see, e.g. [40℄). A solution of Ax = b is a mapping

Æ that assigns an integer to eah integer variable in x and a rational number to eah

rational variable in x suh that the equality Ax = b holds. Deiding the satis�ability

of a MIP problem means to deide whether suh a problem has a solution.

Proposition 5.1

A-satis�ability is in NP.

Proof.We sketh a non-deterministi polynomial time algorithm for A-satis�ability.

The algorithm is based on several normalization steps, simple inonsisteny heks,

and a �nal all to an algorithm whih is apable of deiding the satis�ability of MIP

problems.
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Let  be a �nite onjuntion of A prediates. The following steps are exeuted

sequentially to deide the satis�ability of :

1. Return unsatis�able if  ontains the ?

A

prediate.

2. Eliminate all ourrenes of the >

A

prediate from  and all the result 

1

.

3. Eliminate eah ourrene of prediates int, P

q

, and +:

� replae eah onjunt int(x) with the onjunts

>(x; f); int(f); =

1

(o); +(f; o; f

0

); <(x; f

0

);

where f; f

0

; o are fresh (i.e. previously unused) variables.

� replae eah onjunt P

q

(x) (where P 2 f<;�; 6=;�; >g and q 2 Q) with the

two onjunts =

q

(f) and P (x; f), where f is a fresh variable.

� replae eah onjunt +(x; y; z) with +(x; y; f) and 6=(f; z), where f is a fresh

variable.

Call the result 

2

4. Eliminate eah ourrene of the prediates �, 6=, �, and > in 

2

: onjunts

�(x; y) are non deterministially replaed with either <(x; y) or =(x; y). The

other prediates an be treated similarly. Call the result 

3

. Note that 

3

does

only ontain the prediates int, =

q

, <, =, and +.

5. Transform 

3

into a MIP problem in the obvious way:

� every variable x used in 

3

suh that int(x) is a onjunt of 

3

beomes an

integer variable in the MIP problem. All other variables appearing in 

3

beome

rational variables;

� every onjunt =

q

(x) is translated into an equation x = q;

� every onjunt =(x; y) is translated into an equation x� y = 0;

� every onjunt <(x; y) is translated into an equation x + s� y = 0, where s is

a fresh rational variable (also known as slak variable);

� every onjunt +(x; y; z) is translated into an equation x+ y � z = 0.

Use a standard NP algorithm to deide the satis�ability of this problem and return

the result.

It is straightforward to prove the orretness of the skethed algorithm by showing that

(i) eah of the normalization steps preserves (un)satis�ability, and (ii) the redution

to MIP is orret. Moreover, it is not hard to see that the algorithm an be exeuted

in nondeterministi polynomial time: eah of the normalization steps leads to at most

a polynomial blowup of the size of the prediate onjuntion. Finally, deiding the

satis�ability of MIP problems an be done in NP [14℄.

An appliation of Theorems 3.15 and 4.5 immediately yields the omplexity of rea-

soning with the Desription Logi ALCF(A).

Corollary 5.2

ALCF(A)-onept satis�ability andALCF(A)-ABox onsisteny arePSpae-omplete.

Now for the onrete domain S. It is straightforward to redue S-satis�ability to the

satis�ability problem of so-alled RCC8 networks [10, 36℄. Suh a network is simply

a �nite set of assertions rd(X;Y ), where rd is a disjuntion rel

0

_ � � � _ rel

k

of RCC8

relations and X and Y are region variables from some �xed set of variables V . A triple
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hU; T; Æi, where (U; T ) is a topology and Æ maps eah region variable from V to an

element of T , is a model of an RCC8 network N i�, for eah rel

0

_� � �_rel

k

(X;Y ) 2 N ,

there exists an i � k suh that Æ(X) rel

i

Æ(Y ). N is satis�able i� it has a model.

Proposition 5.3

S-satis�ability is in NP.

Proof. It is easy to redue S-satis�ability to the satis�ability of RCC8 networks:

given a �nite onjuntion  of prediates from �

S

, �rst eliminate any ourrenes of

the >

s

prediate and return unsatis�able if  ontains the ?

s

prediate; then replae

all prediates rel by the disjuntion of all elements of RCC8 n frelg, where RCC8 de-

notes the set of all eight RCC8 relations; �nally, translate eah onjunt in  into an

RCC8 assertion rd(X;Y ) in the obvious way. As shown by Renz and Nebel in [36℄,

the satis�ability of the resulting RCC8 network an be deided in nondeterministi

polynomial time. Moreover, every satis�able RCC8 network has a model in the topo-

logial spae RC

R

2

[35℄.

Again, we obtain the desired orollary by applying Theorems 3.15 and 4.5.

Corollary 5.4

ALCF(S)-onept satis�ability andALCF(S)-ABox onsisteny arePSpae-omplete.

6 Disussion and Related Work

In this paper, we have established tight omplexity bounds for onept- and ABox-

reasoning with the basi Desription Logi with onrete domains ALC(D) and its

extensions with feature (dis)agreements ALCF(D). The upper bound for onept sat-

is�ability has been obtained by a ompletion algorithm that uses the traing tehnique

while the upper bound for ABox onsisteny has been established by a preompletion-

style redution to onept satis�ability. We have stritly separated the algorithms for

these two reasoning problems sine this makes more expliit the additional means

neessary for dealing with ABoxes instead of with onepts. However, for the im-

plementation of DL reasoners that an deide ABox onsisteny, it may be more

appropriate to use a \diret" ABox onsisteny algorithm instead of reduing this

reasoning task to onept satis�ability. Considering the two algorithms developed in

this paper, it should be straightforward to devise suh a diret algorithm.

Using an arithmeti onrete domain A and a spatial onrete domain S, we have

demonstrated the relevane of the obtained omplexity results: sine A-satis�ability

and S-satis�ability are in NP, it follows from the established omplexity bounds

that onept- and ABox-reasoning with both ALCF(A) and ALCF(S) is PSpae-

omplete. We have also established upper bounds for the ase that D-satis�ability

is in NExpTime or ExpSpae. A rather expressive onrete domain R based on

Tarski algebra (also known as real losed �elds), for whih R-satis�ability is Ex-

pSpae-omplete, an be found in [30, 5℄. Using the results from this paper and the

obvious fat that D-satis�ability an be polynomially redued to ALC(D)-onept

satis�ability, we immediately obtain ExpSpae-ompleteness of onept- and ABox-

reasoning with the Desription Logi ALC(R). Other important onrete domains

that are aptured by the presented results are the temporal ones that an be found

in [33, 30, 27℄.
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The results presented in this paper have stimulated interesting further researh.

For example, in [3℄ the PSpae upper bound for ALCF(D)-onept satis�ability

has been used to obtain a PSpae upper bound for reasoning with the interval-based

temporal Desription Logi T L-ALCF , whih was �rst desribed in [2℄. Perhaps most

interesting, it has been found that the PSpae upper bounds established in this paper

are fragile in the following sense: there exist several standard means of expressivity

whose addition to ALC(D) leads to the omplexity of reasoning leaping from PSpae-

ompleteness to NExpTime-ompleteness|at least for so-alled arithmeti onrete

domains [28, 30, 1℄. Examples for suh means of expressivity inlude ayli TBoxes,

inverse roles, nominals, and role onjuntion. This is partiularly surprising sine

(i) the mentioned means of expressivity are usually onsidered \harmless" w.r.t. the

omplexity of reasoning, i.e., for most standard DLs, their addition does not hange

the omplexity of reasoning; (ii) many onrete domains suggested in the literature

are arithmeti; and (iii) there exist rather simple arithmeti onrete domains D|in

partiular some for whih D-satis�ability is in PTime.
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