PSPACE Reasoning with the
Description Logic ALCF(D)

CARSTEN LUTZ, Institute for Theoretical Computer Science,
Technical University Dresden, 01062 Dresden, Germany.
E-mail: lutz@tcs.inf.tu-dresden.de

Abstract

Description Logics (DLs), a family of formalisms for reasoning about conceptual knowledge, can
be extended with concrete domains to allow an adequate representation of “concrete qualities” of
real-worlds entities such as their height, temperature, duration, and size. In this paper, we study
the complexity of reasoning with the basic DL with concrete domains ALC(D) and its extension
with so-called feature agreements and disagreements ALCF(D). We show that, for both logics,
the standard reasoning tasks concept satisfiability, concept subsumption, and ABox consistency are
PSPACE-complete if the concrete domain D satisfies some natural conditions.

Keywords: Description Logics, Concrete Domains, Feature (Dis)Agreements, Computational Com-

plexity

1 DMotivation

Description Logics (DLs) are a popular family of logical formalisms for the representa-
tion of and reasoning about conceptual knowledge [8]. The basic entity for knowledge
representation with DLs are so-called concepts which can be understood as logical
formulas and are constructed from concept names (unary predicates), role names
(binary relations), and concept constructors. For example, the following concept is
formulated in the basic propositionally closed DL ALC [39] and describes processes
that are supervised by a human operator and involve only workpieces that are not
radioactive:

Process M Joperator.Human M Yworkpiece.—Radioactive.

In this concept, Process, Human, and Radioactive are concept names while operator
and workpiece are role names.

A major limitation of knowledge representation with Description Logics such as
ALC is that “concrete qualities” of real world entities, such as their weight, temper-
ature, and spatial extension, cannot be adequately represented. For example, ALC
does not offer suitable means of expressivity for extending the above description of
a process with information about its cost and duration, or about the relationship
between the process’ cost and the hourly wage of its operator. To allow an adequate
representation of concrete qualities of real-world entities, Description Logics are fre-
quently extended by so-called concrete domains, which have first been proposed by
Baader and Hanschke in [4] and then further developed in several directions, c.f. the
survey article [32]. A concrete domain consists of a set such as the natural numbers
and a set of predicates such as the unary “=¢y” and the binary “>” with the obvious,

L. J. of the IGPL, Vol. 10 No. 5, pp. 535-568 2002 53D @ Oxford University Press

536 PSPACE Reasoning with the Description Logic ALCF (D)

fixed extension. The integration of concrete domains into the Description Logic ALC
is achieved by adding

1. so-called abstract features, which are functional relations;

2. so-called concrete features, which are (partial) functions associating values from
the concrete domain (e.g., natural numbers) to logical objects;

3. a concrete domain-based concept constructor.

The DL that is obtained by extending ALC in this way is called ALC(D), where
D denotes a concrete domain that can be viewed as a parameter to the logic. For
example, when using a suitable concrete domain D, we can extend the above process
description as desired: the ALC(D)-concept

Process M Iduration.=gp M Jcost, operator wage.>

describes a process whose duration is 60 minutes and which costs more than the
(hourly) wage of its operator. Here, the second and third conjunct are instances of
the concrete domain concept constructor, operator is an abstract feature, and duration,
cost, and wage are concrete features.

The representation of concrete qualities has been identified as a crucial task for a
vast number of applications such as mechanical engineering [6], temporal and spatial
reasoning [16, 27], the semantic web [23, 24], and reasoning about entity relationship
(ER) diagrams [31]. Consequently, apart from .ALC (D) many other Description Logics
with concrete domains have been proposed [16, 18, 20, 24, 27, 30, 29] and several
implemented Description Logic reasoners such as cLASSIC [11] and RACER [17] provide
for some kind of concrete domain. However, despite the considerable interest in DLs
with concrete domains and the fact that complexity analysis plays an important role in
the area of Description Logics, only very recently researchers have begun to investigate
the computational complexity of reasoning with such logics [30]. The current paper
is devoted to establishing tight complexity bounds for reasoning with the fundamental
Description Logic with concrete domains ALC(D). More precisely, we do not only
consider the DL ALC(D), but also its extension with so-called feature agreements
and feature disagreements, two concept constructors that are quite closely related
to concrete domains. Using feature (dis)agreements, one can for example describe
processes that have two subprocesses, one of which works on the same workpiece as
the mother process, and the other on a different one:

Process M (workpiece | subprocessl workpiece) M (workpiece 1 subprocess2 workpiece).

In this concept, the second conjunct uses the feature agreement constructor, the third
conjunct uses the feature disagreement constructor, and all lowercase names denote
abstract features.

There are several motivations for combining concrete domains and feature (dis)agree-
ments in a single DL. First, there exists an obvious syntactic similarity between feature
(dis)agreements and the concrete domain concept constructor: both take sequences of
features as arguments. As we shall see in this paper, the similarity between concrete
domains and feature (dis)agreements is not only syntactical: they are also amenable
to similar algorithmic techniques. Second, the Description Logic ALCF (D) resulting

PSpACE Reasoning with the Description Logic ACCF(D) 537

from the extension of ALC(D) with feature (dis)agreements has already found appli-
cations in knowledge representation [25]. And third, the PSPACE-completeness result
for reasoning with ALCF (D) proved in Section 3 allows to show PSPACE-completeness
of a well-known temporal Description Logic [3].

Let us now outline the organization of this paper and describe the obtained results in
more detail.

In Section 2, we formally introduce concrete domains and the Description Logics
ALC(D) and ALCF (D). Some example concrete domains are defined.

In Section 3, tight PSPACE complexity bounds for the satisfiability of ALC(D)-
concepts and ALCF(D)-concepts are established. More precisely, we devise a tableau
algorithm for deciding satisfiability of ALCF(D)-concepts which uses the so-called
tracing technique. This algorithm yields a PSPACE upper bound for ALCF(D)-
concept satisfiability if the following conditions are satisfied:

e deciding the satisfiability of finite conjunctions of predicates from the concrete
domain D (this task is called “D-satisfiability” in what follows) is in PSPACE;

e the concrete domain is “admissible”, i.e., it satisfies some weak closure conditions
which, in this paper, we will generally assume to hold.

The corresponding PSPACE lower bound is easily obtained since ALC-concept satis-
fiability is already PSpPacE-hard [39]. Hence, both ALC(D)-concept satisfiability and
ALCF(D)-concept satisfiability are PSPACE-complete if D-satisfiability is in PSPACE.
Since concept subsumption, another important reasoning task for Description Log-
ics, can easily be reduced to concept (un)satisfiability and vice versa, we also obtain
that ALC(D)-concept subsumption and ALCF(D)-concept subsumption are PSPACE-
complete if D-satisfiability is in PSPACE. Note that adding concrete domains and
feature (dis)agreements to ALC does thus not increase the complexity of reasoning.
This is particularly interesting since there exist several seemingly “harmless” means
of expressivity like acyclic TBoxes and inverse roles, whose addition to ALC (D) makes
reasoning significantly more difficult—namely NEXPTIME-complete [28, 30, 1]. Thus,
the logic ALCF (D) is situated on the boundary of polynomial space complexity.

Section 4 is devoted to extending the results from Section 3 to another standard rea-
soning task called ABox consistency. ABoxes are commonly used to describe snap-
shots of the real world [7, 12, 17, 38, 41]. For example, the following ALC(D)-ABox
describes a process a and its subprocess b:

a: Process b:Process (a,b):subprocess (a,z):duration z:=g

We use the precompletion technique from [13, 21] to show that ALCF(D)-ABox con-
sistency is PSPACE-complete if D-satisfiability is in PSPACE. As in the case of concept
satisfiability, this implies that the same holds for ALC(D)-ABox consistency.

In Section 5, we demonstrate the relevance of the results obtained in Sections 3 and 4
by considering two example concrete domains: the concrete domain A based on the
rational numbers with predicates such as <s7, >, and +; and the concrete domain S
based on the set of regions in two-dimensional space with a binary predicate for each
of the well-known RCC8 topological relations [10]. We show that both A-satisfiability
and S-satisfiability is in NP and thus obtain that, for D € {A,S}, ALCF(D)-concept

538 PSPACE Reasoning with the Description Logic ALCF (D)

satisfiability, ALCF(D)-concept subsumption, and ALCF(D)-ABox consistency are
PSpACE-complete.

The paper ends with a conclusion in Section 6.

2 Preliminaries

We start this section with introducing concrete domains formally, then define some
example concrete domains, and finally describe the Description Logic ALCF(D) in
detail.

DEFINITION 2.1 (Concrete Domain)

A concrete domain D is a pair (Ap, Pp), where Ap is a set and ®p a set of predicate
names. Each predicate name P € ®p is associated with an arity n and an n-ary
predicate PP C A%L. Let V be a set of variables. A predicate conjunction of the form

c= /\(:U(()Z),...,:U,(ji)) : P,
i<k
where P; is an n;-ary predicate for i < k£ and the xg.l) are variables from V, is called
satisfiable iff there exists a function § mapping the variables in ¢ to elements of Ap
such that (6(:3(()’)),,5(:3,({))) € PP for each i < k. Such a function is called a
solution for c. A concrete domain D is called admissible if the following conditions
are satisfied:

1. ®p contains a name Tp for Ap;

2. ®p is closed under negation, i.e., for each n-ary predicate P € ®p, we find another
predicate P € ®p of arity n such that P’ = AR\ PP;

3. the satisfiability problem for finite conjunctions of predicates is decidable.

When devising algorithms for reasoning with Description Logics that are equipped
with a concrete domain D, one important subtask usually is to decide the satisfiabil-
ity of finite conjunctions of predicates from ®p as described in Definition 2.1 [4, 30].
For brevity, we refer to this task as D-satisfiability. It is obvious that D-satisfiability
should be decidable if the concrete domain D is to be used in a DL reasoning algo-
rithm. However, usually the slightly stronger requirement that D should be admissible
is adopted. In this article, we follow this tradition and generally assume concrete do-
mains to be admissible.

Before we proceed to defining the Description Logic ALCF(D) itself, let us in-
troduce two example concrete domains, an arithmetic one and a spatial one. The
arithmetic concrete domain A is defined by setting Aa := @ (i.e., the set of rational
numbers), and defining &5 as the (smallest) set containing the following predicates:

e a unary predicate Ta with (Ta)" = Q and a unary predicate L with (La)* = 0;

e unary predicates int and int with (int)A = 7Z (where 7Z denotes the integers) and
(in)* = Q\ Z;

e unary predicates P, for each P € {<,<,=,#,>,>} and each ¢ € Q with (P,))* =
{d€eQld Pq};

e binary predicates <, <,=,#,>,> with the obvious extension;

PSpPACE Reasoning with the Description Logic ACCF(D) 539

a

b

abDChb aEChb aPOb aTPPb aNTPPb

Fi1a. 1. The RCCS8 relations in two-dimensional space.

e ternary predicates + and + with (+)* = {(¢,¢',¢") € Q® | ¢+ ¢ = ¢"} and
(A =@\ (D)
As an example for an (unsatisfiable) conjunction of A-predicates, consider the follow-
ing one:
23(117) A >1(y) A mt(y) A +(£L”,y,Z) A *(wayazl) A Z(Za ZI)'

It is easily checked that the concrete domain A satisfies Conditions 1 and 2 of ad-
missibility (Condition 3 will be treated in Section 5). The other concrete domain
considered in this paper is related to the RCC-8 calculus and is called S. RCC-8
provides a set of eight jointly exhaustive and pairwise disjoint relations that describe
the possible relationships between any two regular closed regions' in a topological
space [34, 10, 36]. For 2D space, these relations are illustrated in Figure 1, where
the equality relation EQ, the inverse TPPI of TPP, and the inverse NTPPI of NTPP
have been omitted. The concrete domain S is defined by setting Ag to the set RCg2
of all regular closed subsets of R? and defining ® as the (smallest) set containing the
following predicates:

e a unary predicate Ts with (Ts)® = RCg> and a unary predicate Ls with (Lg)% = ;

e binary predicates rel and rel for each of the topological relations rel such that
(rel)> = {(r1,m2) € RCr2> x RCR> | 71 rel m2}.

An example (unsatisfiable) S-conjunction is
Ts(z) ADC(z,y) AN EC(y,z) NNTPP(z,2) A PO(y,y).

It is easily checked that S satisfies Conditions 1 and 2 of admissibility. For Property 3,
we again refer to Section 5.

Based on concrete domains, we can now define ALCF(D)-concepts.

DEFINITION 2.2 (ALCF(D) syntax)

Let N¢, Ng, and N¢g be pairwise disjoint and countably infinite sets of concept names,
role names, and concrete features. Furthermore, let N, be a countably infinite subset
of Ng. The elements of N,r are called abstract features. An abstract path p is a
composition fi - - - f,, of n abstract features (n > 1). A concrete path u is a composition
fi -+ fng of n abstract features fi,..., f, (n > 0) and a concrete feature g. Let D be
a concrete domain. The set of ALCF(D)-concepts is the smallest set such that

1. every concept name is a concept

LA region 7 is regular closed if it satisfies IC'r = r, where (' is the topological closure operator and I is the
topological interior operator.

540 PSPACE Reasoning with the Description Logic ALCF (D)

2.if C and D are concepts, R is a role name, g is a concrete feature, p; and py are
abstract paths, uq,...,u, are concrete paths, and P € ®p is a predicate of arity
n, then the following expressions are also concepts:

-C, CND, CUuD, 3R.C, VR.C, p11Tp2, p1lp2, Jui,...,u,.P, and g?.

We use T to abbreviate A LI = A, where A is an arbitrary concept name, and L to
abbreviate = T. Moreover, we write Vp.C' for Vfi.---Vf,.C if p = fi1--- fr, and u?t
for Vfi.---Vfigtif u = f1--- frg. An ALCF(D)-concept that does not contain
subconcepts p;Tp2 and plps is called ALC(D)-concept. An ALC(D)-concept that
does not use any abstract or concrete features is called ALC-concept.

Throughout this paper, we use the letter A to denote concept names, C, D, and FE
to denote (possibly complex) concepts, R to denote role names, f to denote abstract
features, g to denote concrete features, p to denote abstract paths, u to denote concrete
paths, and P to denote predicate names from the concrete domain.

The Description Logic ALCF (D) is equipped with a Tarski-style set-theoretic se-
mantics that incorporates the concrete domain D.

DEFINITION 2.3 (ALCF(D) semantics)
An interpretation T is a pair (Az,-7), where Az is a set called the domain and -Z the
interpretation function. The interpretation function maps

e cach concept name C to a subset C7 of Az,

e each role name R to a subset RZ of Az x Az,

e each abstract feature f to a partial function fZ from Az to Az, and
e cach concrete feature g to a partial function ¢ from Az to Ap.

If wu = fi--- fug is a concrete path, then u”(d) is defined as gZ(fZ---(fZ(d))---),
and similarly for abstract paths. The interpretation function is extended to arbitrary
concepts as follows:

T.={deAz|{e]|(de) e RT} CCT}
T.={de Az |Tei,es € Az :pl(d) = er, pi(d) = es, and e; # ey}
T.={de Az |TFec Az :pl(d) = pi(d) =e}
(Fui, .. un.P .= {de Az |3zy,...,zy € AD:uiI(d) =g;for1<i<n
and (21,...,7,) € PP}
(gP)T := {d € Az | g*(d) undefined}

)
)
)
(AR.C)T :={d € Az |{e| (d,e) € RF}nCT # 0}
)
)
)
)

An interpretation Z is a model of a concept C iff CT # (). A concept C' is satisfiable
iff it has a model. C is subsumed by a concept D (written C C D) iff C* C D7 for
all interpretations Z.

PSPACE Reasoning with the Description Logic ACCF(D) 541

It is well-known that, in Description Logics providing for full negation such as ALCF (D),
subsumption can be reduced to (un)satisfiability and vice versa: C' C D iff C M =D is
unsatisfiable and C is satisfiable iff C' Z L. This allows us to concentrate on concept
satisfiability in the remainder of this paper.

Note that feature (dis)agreements p; Tp2 and p; |p> take abstract paths as arguments
and are thus not concerned with elements from the concrete domain. However, if the
concrete domain provides for equality and inequality predicates (as both A and S do),
it is obvious that we can express (dis)agreement of concrete paths using the concrete
domain constructor. Also note that a € (p;1p2)? implies that pf(a) and pf(a) are
defined. Thus, p;1p2 is not the negation of p;|p> (also see Section 3.2 and Figure 3).

We should like to comment on a minor difference between our variant of ALCF (D)
and the original version of ALC(D) as defined by Baader and Hanschke [4]: instead of
separating concrete and abstract features, Baader and Hanschke define only one type
of feature which is interpreted as a partial function from Az to Az U Ap. We prefer
the “typed” approach since, in our opinion, it improves the readability of concepts.
Moreover, it is not hard to see that the combined features can be “simulated” using
pairs of concrete and abstract features.

3 Concept Satisfiability

In the following, we devise a tableau algorithm for deciding satisfiability of ALCF(D)-
concepts that needs at most polynomial space if D is admissible and D-satisfiability
is in PSPACE. The algorithm also yields tight complexity bounds if D-satisfiability is
NExPTIME-complete or EXPSPACE-complete.

3.1 Overview

Since there exist rather different variants of tableau algorithms in Modal Logic and
First Order Logic, we call the family of tableau algorithms commonly used for De-
scription Logics completion algorithms. The reader is referred to [9] for an overview
over such algorithms. Completion algorithms are characterized by an underlying data
structure, a set of completion rules operating on this data structure, and a (possibly
trivial) strategy for applying the rules. In principle, a completion algorithm starts
with an initial data structure induced by the concept D whose satisfiability is to
be decided and repeatedly applies completion rules according to the strategy. Re-
peated rule application can be thought of as making implicit knowledge explicit or
as constructing a canonical model for the input concept (represented in terms of the
underlying data structure). The algorithm stops if it encounters a contradiction or if
no more completion rules are applicable. It returns satisfiable iff the latter is the case
and no obvious contradiction was found, i.e., if the algorithm succeeds in constructing
a (witness for a) model of the input concept. Otherwise, it returns unsatisfiable.

If a PSPACE upper bound is to be proved using a completion algorithm, some
additional efforts have to be made. To simplify discussion, let us consider the logic
ALC for the moment [39]. A naive completion algorithm for ALC does not yield a
PSPACE upper bound since there exist satisfiable ALC-concepts all of whose models
are of size exponential in the concept length [19, 39]. Thus, an algorithm keeping

542 PSPACE Reasoning with the Description Logic ALCF (D)

5

U

F1G. 2. A model of the ALCF(D)-concept flff.

the entire (representation of a) model in memory needs exponential space in the
worst case. However, there exists a well-known way to overcome this problem: the
key observation is that canonical models Z constructed by completion algorithms
are tree models, i.e., they have the form of a tree if viewed as a graph with Az
the set of vertexes and (Jpep, RT the set of edges. It is sufficient to consider only
such tree models since ALC has the tree model property, which means that each
satisfiable concept has a tree model [19]. To check for the existence of tree models for
a given concept, we may try to construct one by performing depth-first search over
role successors keeping only paths of the tree model in memory. Since, in the case of
ALC, the length of paths is at most polynomial in the length of the input concept
[19], this technique—which is known as tracing [39]—yields an algorithm that needs
at most polynomial space in the worst case. Completion algorithms for ALC-concept
satisfiability that use tracing are very similar to the well-known K-world algorithm
from Modal Logic [26].

The tracing technique has to be modified to deal with ALCF(D)-concepts for two
reasons:

(1) Due to the presence of feature (dis)agreements, ALCF (D) does not enjoy the
tree model property. For example, the concept flff is satisfiable but, due to the
functionality of the abstract feature f, has only non-tree models such as the one
depicted in Figure 2.

(2) Due to the presence of the concrete domain constructor, even in tree models the
paths of the tree cannot be considered in isolation. For example, the canonical tree
model for the concept 3(f1f29), (fifsg').P is comprised of two paths with edge labels
fi, f2,g and f{, f3,g', respectively. However, since the final node of the first path and
the final node of the second path are elements of the concrete domain that must be
related via the predicate P, we have to consider both paths together.

Since only abstract features (but no role names from Ng \ N,¢) are admitted in fea-
ture (dis)agreements and the concrete domain constructor, it is not hard to see that
the described problems are due to substructures of models whose elements are con-
nected by abstract features, only. Based on this observation, we define generalized
tree models.

PSpPACE Reasoning with the Description Logic ACCF(D) 543

DEFINITION 3.1 (Generalized Tree Model)
Let 7 be a model of an ALCF(D)-concept C' and define a relation ~ on Az as follows:

d~e iff d= e orthere exists an abstract path f;--- fr and domain elements
do,...,dy € Az such that dy =d, d, =e, and d;y1 = fﬁ_l (dl) or
d; = fzI+1 (di—i-l) for i < k.

It is easy to see that ~ is an equivalence relation. By [d].., we denote the equivalence
class of d € Az w.r.t. ~. The model 7 is a generalized tree model of C iff 7 is a model
of C and the graph (Vz, E7) defined as

Vr = {ld.|de Az}
Er = {([d]~,]e]~) | 3d" € [d]~,€" € [€]~ such that
(d',e') € R” for some R € Ng \ Ns¢}

is a tree.

It will be a byproduct of the results obtained in this section that ALCF (D) has the
generalized tree model property, i.e., that every satisfiable ALCF(D)-concept C' has
a generalized tree model. Note that the identification of some kind of tree model
property is usually very helpful for devising decision procedures [42, 15]. Our com-
pletion algorithm for ALCF(D) uses tracing on generalized tree models: it keeps
only fragments of models Z in memory that induce paths in the abstraction (Vz, E7).
Intuitively, such a fragment consists of a sequence of “clusters” of domain elements,
where each cluster is an equivalence class w.r.t. the relation ~, i.e., a set of elements
connected by abstract features. Succeeding clusters in the sequence are connected
by roles from Ng \ N,g. Fortunately, as we shall see later, there always exists a gen-
eralized tree model Z in which the cardinality of clusters and the depth of the tree
(Vz, E7) is at most polynomial in the length of the input concept. We use these
facts to devise a completion algorithm for ALCF(D)-concept satisfiability running in
polynomial space.

The polynomial size of object clusters is also exploited for dealing with the con-
crete domain. Along with constructing the “logical part” of the model for the input
concept, our completion algorithm will build up a predicate conjunction describing
its “concrete part”. This predicate conjunction is required to be satisfiable in order
for the constructed data structure to represent a model (see the general description
of completion algorithms above). However, if this is done in a straightforward way,
the number of conjuncts in the predicate conjunction may become exponential in the
length of the input concept—see e.g. the algorithm for ALC (D) concept satisfiability
presented in [4]. In our algorithm, we address this problem as follows: domain ele-
ments that are in different clusters of the generalized tree model are not connected
through abstract paths. Therefore, it cannot be enforced that concrete successors of
domain elements from different clusters are related by a concrete predicate. This, in
turn, means that it is sufficient to separately check the satisfiability of predicate con-
junctions associated with clusters. Since the size of predicate conjunctions associated
with a cluster is at most polynomial in the length of the input concept, this separate
checking allows to devise a PSPACE algorithm (if D-satisfiability is in PSPACE).

544 PSPACE Reasoning with the Description Logic ALCF (D)

—|(C|_|D) ~ =CU=D —|(C|_|D) ~ =C =D

~(AR.C) ~ VRAC ~(VR.C) ~ 3RAC

A(pitp2) ~ pudpUVp. LUVpe. L —(pilpe) ~ pitpe UVpr. L UVps. L
—C - C

=(Juy,...,un.P) ~ Jug,...,upPUutU-- Uu,t
—(gt) ~ J9.Tp

F1Gc. 3. The NNF rewrite rules.

3.2 The Completion Algorithm

In the following, we assume that concepts are in negation normal form (NNF), i.e.,
that negation occurs only in front of concept names. Every ALCF(D)-concept C' can
be transformed into an equivalent one in NNF by exhaustively applying the rewrite
rules displayed in Figure 3 (recall that P denotes the negation of the predicate P).
Let us start the presentation of the completion algorithm by introducing ABoxes as
the underlying data structure.

DEFINITION 3.2 (ABox Syntax)

Let O, and O be countably infinite and mutually disjoint sets of abstract objects and
concrete objects. If C' is an ALCF(D)-concept, R € Ng a role name, g a concrete
feature, a,b € O,, z,21,...,2, € O, and P € &p with arity n, then

a:C, (a,b):R, (a,z):9, (1,...,2,): P, and a#b
are ABoz assertions. An ABoz is a finite set of such assertions.

Let A be an ABox, a,b € O, and z € O.. We write A(a) to denote the set of concepts
{C] a:C € A}. The abstract object b is called R-successor of a in A iff (a,b) : R
is in A. The notions g-successor (for concrete features g), p-successor (for abstract
paths p), and u-successor (for concrete paths u) are defined analogously. In what
follows, we used a and b to denote abstract objects and = to denote concrete objects.

For proving the soundness and completeness of the completion algorithm to be
devised, it is convenient to equip ABoxes with a semantics:

DEFINITION 3.3 (ABox Semantics)

In interpretations Z, the interpretation function -* maps, additionally, abstract ob-
jects a to elements a’ € Az and concrete objects z to elements 2 € Ap. An
interpretation 7 satisfies an assertion

z

a:C iff ol €C%

(a,b) : R iff (aT,b?) € R%;
(a,2) 1 g iff g*(a) =2
(x1,...,mp): P iff (zf,... 2L) € PP;

atb iff af #0bT.

An interpretation 7 is called a model of an ABox A iff it satisfies every assertion in A.
An ABox is called consistent iff it has a model.

PSPACE Reasoning with the Description Logic ACCF(D) 545

It should be obvious how ABoxes can be used to represent models. If the satis-
fiability of a concept D is to be decided, the completion algorithm is started with
the initial ABoz for D defined as Ap = {a : D}. To keep the presentation of the
completion rules succinct, we introduce an operation that allows to introduce new
objects on paths and concrete paths.

DEFINITION 3.4 (“+” operation)

An abstract or concrete object is called fresh w.r.t. an ABox A if it does not appear
in A. Let p= f1--- f, be an abstract path (resp. u = fi -+ fng be a concrete path).
By A + apb (resp. A + aux), where a € O, is used in A and b € O, (resp. z € O.),
we denote the ABox A’ which can be obtained from A4 by choosing distinct objects
bi,...,b, € O, which are fresh in A and setting

AI = AU{(aabl):fla ey (bnflab):fn}
(resp. A" = AU{(a,b1): f1, .-+, (bn_1,bn) : fn, (bn,) : g}

When nesting the + operation, we omit brackets writing, e.g., A + ap1b + bp2c for
(A + ap1b) + bpac.

The completion rules can be found in Figure 4. Note that the RU rule is nondeter-
ministic, i.e., it has more than one possible outcome. Thus, the described completion
algorithm is a nondeterministic decision procedure. Such an algorithm accepts its
input (i.e. returns satisfiable) iff there is some way to make the nondeterministic
decisions such that a positive result is obtained. A convenient way to think of nonde-
terministic rules is that they “guess” the correct outcome, i.e., if there is an outcome
which, if chosen, leads to a positive result, then this outcome is in fact considered.

Most completion rules are standard and known from, e.g., [5] and [22]. The R3f and
RVf rules are special in that they only deal with concepts 3f.C' and Vf.C where f is
an abstract feature. As we will see later, concepts IR.C and YR.C with R € Ng\ Nar
are not treated by completion rules but through recursion calls of the algorithm. The
Rfe rule also deserves some attention: it ensures that, for any object a € O,, there
exists at most a single f-successor for each f € Nag and at most a single g-successor
for each g € Ncp. Redundant successors are eliminated by identification. This process
is often referred to as fork elimination (hence the name of the rule). In many cases,
fork elimination is not explicitly formulated as a completion rule but viewed as an
integral part of the other completion rules. In the presence of feature (dis)agreements,
this latter approach seems to be less transparent. Consider for example the ABox

{a:3f1.T, a:3f.T, a: filfe}.

Assume the R3f rule is applied twice adding the assertions (a,b) : fi and (a,c) : fo.
Now, the RJ rule is applied adding (a,b’) : f; and (a,b’) : fo. Clearly, we may now
apply the Rfe rule to the assertions (a,b) : f1 and (a,b’) : fi. Say the rule application
replaces b’ by b, and we obtain the ABox

{a:3f1.T, a:3fo.T, a: filfe, (a,b): f1, (a,¢): fa, (a,b) : f2}.

Obviously, we may now apply Rfe to (a,¢) : fo and (a,b) : fo replacing b by c.
Observe that this latter fork elimination does not involve any objects generated by

546 PSPACE Reasoning with the Description Logic ALCF (D)

R if Gy N Cy € A(a) and {C1,Cs} € Ala)
then A:=AU{a:Ci,a:Cs}

RLI ifCiucCy e A(a) and {01,02} N A(a) =0
then A:= AU {a: C} for some C € {Cy,Cy}

R3f if 3f.C € A(a) and there is no f-successor b of a with C' € A(b)
then set A:= AU{(a,b): f, b: C} for a b€ O, fresh in A

Rvf if Vf.C € A(a), b is an f-successor of a, and C ¢ A(D)
then set 4A:= AU{b: C}

Rc if Juy,...,u,.P € A(a) and there exist no 1, ...,z, € Oc such that
x; is u;-successor of a for 1 <i <n and (z1,...,2,): PEA
then set A := (A + aurzy + - - + aupzyn) U {(z1,...,2y) : P}
with z1,...,z, € O¢ fresh in A

Rl if p1lp2 € A(a) and there is no b that is both
a pp-successor of a and a ps-successor of a
then set A := A+ ap1b + apsb for a b € O, fresh in A

Rt if p11p2 € A(a) and there are no by, by with
by p1-successor of a, by pa-successor of a, and (by # bs) € A
then set A := (A + apiby + apabs) U {(b1 # b2)}
for by,by € O, fresh in A

Rfe if {(a,b): f,(a,c): f} C Aandb#c

(vesp. {(a,7) : g, (a,y) : g} C A and & £ y)
then replace b by ¢ in A (resp. = by y)

Fi1a. 4. Completion rules for ALCF (D).

the last “non-Rfe” rule application. To make such effects more transparent, we chose
to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be contradictory.

DEFINITION 3.5 (Clash)
With each ABox A, we associate a predicate conjunction

C.A = /\ P(l‘l,...,xn).

(10): PEA

The ABox A is called concrete domain satisfiable iff (4 is satisfiable. It is said to
contain a clash iff one of the following conditions applies:

1. {A,-A} C A(a) for a concept name A and object a € O,,

2. (a # a) € A for some object a € O,,

3. g1 € A(a) for some a € O, such that there exists a g-successor of a, or

4. A is not concrete domain satisfiable.

If A does not contain a clash, then A is called clash-free.

PSpACE Reasoning with the Description Logic ACCF(D) 547

define procedure sat(A)
A := fcompl(A)
if A contains a clash then
return unsatisfiable
forall assertions IR.C' € A(a) with R € Ng \ Nor do
Fix b€ 0,
ifsat({b: CYU{b: E |VR.E € A(a)}) = unsatisfiable then
return unsatisfiable
return satisfiable

define procedure fcompl(A)
while a rule from Figure 4 is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply Rto A
return A

Fia. 5. The ACCF(D)-concept satisfiability algorithm.

V£ILT

a

f

(=

~

o<------9

o

FiG. 6. The “yo-yo” effect.

The completion algorithm itself can be found in Figure 5. We briefly summarize
the strategy followed by the algorithm. The argument to sat is an ABox containing
exactly one object a € O, and only assertions of the form a : C. The algorithm uses
the fcompl function to create all feature successors of a, all feature successors of these
feature successors and so on. However, fcompl does not generate any R-successors
for role names R € Ng \ Nap. In other words, fcompl generates a cluster of objects
as described in Section 3.1. After the call to the fcompl function, the algorithm
makes a recursion call for each role successor enforced via an IR.C' assertion (with
R € Nr \ N;r). A single such recursion call corresponds to moving along a path in
a generalized tree model, i.e, to moving to a successor cluster of the cluster under
consideration. Each cluster of objects is checked separately for contradictions. Note
that, due to Definition 3.5, checking for a clash involves checking whether the predicate
conjunction (4 is satisfiable. This, in turn, is a decidable problem since we assume
D to be admissible.

548 PSPACE Reasoning with the Description Logic ALCF (D)

R3r if IR.C € A(a) with R € Ng \ Nar and
there is no R-successor b of a with C € A(b)
then set A:= AU {(a,b) : Rb:C} for abe O, fresh in A

Rvr if VR.C € A(a) with R € Ng \ N,r, b is a R-successor of a, and C ¢ A(b)
then set A:= AU{b: C}

Fia. 7. Virtual completion rules for ALCF (D).

Observe that fcompl applies the Rfe rule with highest priority. Without this strat-
egy, the algorithm would not terminate: consider the ABox

A={a:Vf3f.T, (a,a): f, (a,b): f}.

This ABox, which is depicted in the upper part of Figure 6, is encountered if, for
example, the algorithm is started on the input concept f'|f'fO3f'.(Vf.3f.TNIAL.T).
Now assume that the completion rules are applied to A without giving Rfe the highest
priority. This means that we can apply the RVf rule and obtain b : 3f.T. We can
then apply R3f generating (b,¢) : f, ¢: T. Fork elimination may now identify a and b
and thus we are back at the initial situation (up to renaming). Clearly, this sequence
of rule applications may be repeated indefinitely—the algorithm does not terminate.
This “yo-yo” effect was also described, e.g., in [9].

3.3 Correctness and Complexity

In this section, we prove that the completion algorithm is sound, complete, and termi-
nating and can be executed using only polynomial space provided that D-satisfiability
is in PSpaceE. With D, we denote the input concept to the completion algorithm
whose satisfiability is to be decided.

We first prove termination of the algorithm. It is convenient to start with estab-
lishing an upper bound for the number of rule applications performed by the fcompl
function and, closely related, an upper bound for the size of ABoxes generated by the
fcompl function. Before we do this, let us introduce the two additional completion
rules displayed in Figure 7, which will play an important role in the termination and
correctness proofs. These rules are not applied explicitly by the algorithm, but rather
can the recursion calls of the sat function be viewed as a single application of the
R3r rule together with multiple applications of the RVr rule. Let us now return to
the upper bounds for the fcompl function. With foresight to the ABox consistency
algorithm to be devised in the next section, we consider the precompl function instead
of the fcompl function, where precompl is defined exactly as fcompl except that it also
applies the RVr rule. A formal definition of the precompl function can be found in
Figure 9. It is not hard to see that upper bounds for the number of rule applications
performed by precompl or the size of ABoxes generated by precompl also apply to the
fcompl function: if the fcompl functions perform a computation on an input ABox
A, then precompl can perform precisely the same computation on the input ABox
A" obtained from A by replacing all subconcept YR.C appearing in A4 with concept
names.

PSpPACE Reasoning with the Description Logic ACCF(D) 549

In what follows, we use sub(C) to denote the set of subconcepts of the concept C
and sub(A) to denote the union of the sets of subconcepts of all those concepts C' that
appear in assertions a : C' in the ABox A. Moreover, we use |C| to denote the length
of a concept C, i.e., the number of symbols used to write it down. The size |a| of an
ABox assertion « is defined as |C| if @ = a : C' and 1 otherwise. The size |A| of an
ABox A is defined as the sum of the sizes of its assertions.

LEMMA 3.6
For any input A, the function precompl terminates after at most |.4|* rule applications
and constructs an ABox A’ with |A'| < |AlS.

PRrROOF. In the following, we call assertions of the form a : C' concept assertions,
assertions of the form (a,b) : f or (a,z) : g feature assertions, and assertions of the
form (a,b) : R with R € Ng \ Nar role assertions.

The main task is to show that
precompl terminates after at most |.4|* rule applications. (%)

For suppose that (x) has been shown. We can then prove the lemma by making the
following two observations, which clearly imply that the size of the ABox A’ generated
by precompl is bounded by |.A|°.

(i) We have |a| < |A| for each new assertion a added by rule application: concept
assertions are the only kind of assertions that may have a size greater than one
and, if a concept assertion a : C' is added by rule application, then C € sub(.A);

(ii) Each rule application adds at most |.A| new assertions: each application adds
either no new assertions (the Rfe rule) or at most |C| new assertions, where a : C
is the concept assertion appearing in the (instantiated) rule premise. In the latter
case, we have |C| < |A] since C is in sub(A).

Hence, let us prove (x). Let Ag, A1,... be the sequence of ABoxes computed by
precompl. More precisely, A9 = A and A;11 is obtained from A; by the i-th rule
application performed by precompl.

We first introduce some notions. For i > 0 and a € O, U O, we use nm;(a) to
denote the set of names that a had “until A4;”. More precisely, nmg(a) = {a} for all
a € 0,UQ,. If the Rfe rule is applied to an ABox A; renaming an object a to b, then
nm;y1(b) = nm;(a) Unm;(b) and nm;y(c) = nm;(c) for all ¢ # b. For all other rule
applications, we simply have nm;y1(a) = nm;(a) for all ¢ € 05 U O¢. The following
properties, which we summarize under the notion persistence, are easily proved using
the fact that assertions are never deleted:

elfa:C € A; and a € nm;(a') for some j > i and a' € O,, then a’ : C € A;.

e if (a,b) : R € A;, a € nmj(a’), and b € nm; (') for some j > i and a’,b’ € O,, then
(a',b") : R € A,.

oIf (a,z) : g € A;, a € nm;(a'), and 2’ € nm;(z) for some j > i, o’ € O,, and
z' € Oc, then (a',2') : g € A;.

oIf (z1,...,2y) : P € A;and 2} € nmj(z;) for 1 <i <n,then (z},...,2)): P € A;.

A concept assertion a : C is called touched in A; if there exists an o' € nm;(a)
such that one of the first ¢ rule applications involved a’ : C in the (instantiated)

550 PSPACE Reasoning with the Description Logic ALCF (D)

rule premise and untouched otherwise. By ffeat(A), we denote the number of feature
assertions in A. For role assertions (a,b) : R with R € Ng \ Nag, we use A4, (a,b: R)
to denote the number of concepts VR.C in sub(A) for which there exist no a' € nm;(a)
and b € nm;(b) such that one of the first ¢ rule applications involved both a' : VR.C
and (a',b') : R in the (instantiated) rule premise.

For i > 0, define

w(A;) == Z la:C| + frat(Ai)) + [A]- Z A (a,b: R).

a:C' is untouched in A; (a,b):REA;

We show that w(A;+1) < w(A;) for i > 0, which implies that the length of the
sequence Ag, A1, ... is bounded by |A|* since it is readily checked that w(Ag) < |A*.
A case distinction is made according to the completion rule applied.

e Assume that A;11 is obtained from A; by an application of the RM rule. By
definition of this rule and due to persistence, it is applied to an untouched assertion
a: CyiMNCyin A;: for suppose that a : Cq 1 Cs is touched in A;. By definition
of “touched”, this implies that there exists an a’ € nm;(a) such that RM has been
applied to a' : C; M Cy in the j-th rule application for some j < i. By definition
of RM, this implies {a’ : Cy,a' : C2} C A;. By persistence, we have {a : C1,a :
C>} C A; and, thus, the RM rule is not applicable to a : C1 M Cy in A; which
is a contradiction. Hence, we have shown that a : C; M Cs is untouched in A;.
Moreover, this assertion is clearly touched in A4;y;. The rule application generates
new concept assertions a : C; and a : Co which may both be untouched in A4;41.
Moreover, it generates no new feature and role assertions. By definition of the size
of assertions and the length of concepts, we have |a : C; M Cs| > |a : Ci| + |a : Cs.
Thus w(A;+1) < w(A;).

e The RU case is analogous to the previous case.

Assume that A;11 is obtained from A; by an application of the RVf rule. The rule
is applied to assertions a : Vf.C' and (a,b) : f. Suppose that a : Vf.C' is touched
in A;, i.e., that the RVf rule has been applied in a previous step to an assertion
a' :Vf.C with o' € nm;(a). It then added ¢ : C for an f-successor ¢ of a’. The
facts that (i) Rfe is applied with highest priority, (ii) b is an f-successor of a in
Air1, and (iii) the RYf rule is applicable imply that we have ¢ € nm;(b). This,
in turn, implies b : C € A; by persistence and we have obtained a contradiction
to the assumption that RVf is applicable. Hence, we have shown that a : Vf.C' is
untouched in A4;. The assertion is touched in A;;1. Rule application generates a
new assertion b : C' that is untouched in A;;,. However, |a : Vf.C| > |b: C|. No
new feature or role assertions are generated.

Assume that A;11 is obtained from A; by an application of the RVr rule. The rule
is applied to assertions a : VR.C and (a,b) : R in A;. Due to persistence, there do
not exist a’ € nm;(a) and b € nm;(b) such that the RVr rule has previously been
applied to a’ : VR.C and (a’,b') : R. Hence, A4,,,(a,b: R) = A4,(a,b: R)—1and
the third summand of w(.A4;) exceeds the third summand of w(A;4+1) by |A]. The
rule application adds no feature or role assertions and a single concept assertion
b: C. Since VR.C € sub(A), we have |b: C| < |A| and hence w(A;11) < w(A;).

e Assume that A4;;1 is obtained from A4; by an application of the R3f rule. As in
the RM case, it is easy to show that the rule is applied to an untouched assertion

PSPACE Reasoning with the Description Logic ACCF(D) 551

a : Af.C. It generates new assertions (a,b) : f and b : C' (and no new role
assertions). The assertion b : C' is untouched in A;11 and a : 3f.C is touched in
A;ir1. The new feature assertion (a,b) : f yields fifeat (Air1) = freat (A;) +1. On the
other hand, no role assertion is added and we clearly have |a : 3f.C| > |b: C| + 1.
The Re, R{, and Rf rules touch a (due to persistence) previously untouched concept
assertion a : C' appearing in the instantiated premise and do not add new concept
or role assertions. It is readily checked that the number of feature assertions added
by rule application is smaller than |a : C/.

Agsume that the Rfe rule is applied to an ABox A;. This obviously implies
freat (Air1) < trear(A;), i-e., the second summand of w(A;y1) is strictly smaller
than the second summand of w(A;). If the rule application renames a concrete
object, these are the only changes and we are done. If an abstract object is
renamed, some work is necessary to show that the first and third summand of
w(A;+1) are not greater than the corresponding summands of w(A4;). Assume
that a € O, is renamed to b. We then have nm; 1 (b) = nm;(a) U nm;(b).

— First summand. Let us first consider concept assertions ¢ : C € A;11 N A;.
Such an assertion is untouched in A;y; only if it is untouched in A; since
(i) nm;p1(c) = nm;(c) if ¢ # b and (ii) nm;(b) C nm;y(b) if ¢ = b. More-
over, if there exists an assertion b: C € A;41 \ A; due to variable renaming,
then a: C' € A; \ Ait1, and b : C being untouched in A;y; implies a : C being
untouched in 4; since nm;(a) C nm;4;(b). Hence, the first summand does not
increase.

— Third summand. Let (¢,d) : R € A;31 N A; (implying ¢ # a and d # a). We
distinguish several subcases:

1. c# b and d # b. Then, clearly, \;(¢,d : R) = Ajt1(c,d : R).
2. ¢ =b and d # b. By definition of A\;, nm;(b) C nm;;(b) implies

/\Z(b,d : R) Z /\H_l(b,d : R)
3.c# band d =b. As previous case.
4. c¢=d = b. As previous case.
Now let (¢,d) : R € A;11 \ A; (implying ¢ = b or d = b). We can distinguish the
cases (i) c=b,d#b, (ii) d =b, ¢ # b, and (iii) ¢ = d = b. Since all cases are
similar, we concentrate on (i). In this case, (a,d) : R € A; \ A;+1. Moreover,
nm;(a) C nm;q;(b) implies A4, (b,d: R) < A4, (a,d: R).
Summing up, the third summand may only decrease but not increase.

The role depth of concepts is defined inductively as follows, where |p| denotes the
length of the abstract path p and |u| denotes the length of the concrete path u
(including the trailing concrete feature):

e rd(4) = rd(g1) = 0;

(4
o rd(Ju1, ..., up.P) = max(Juil, ..., |un|);
. rd(p1¢pz) rd(p1sz) = maX(Ip1| p21);
e rd(=) rd(C);
e rd(C M D) =rd(C LU D) = max(rd(C), rd(D));
e rd(3R.C) = rd(VR.C) =rd(C) + 1

552 PSPACE Reasoning with the Description Logic ALCF (D)

We now prove a technical lemma that, together with Lemma 3.6, immediately yields
termination.

LemMA 3.7
Assume that the completion algorithm was started with input D. Then

1. in each recursion call, the size |A| of the argument A passed to sat is bounded
by [D?;

2. in each recursion step of sat, at most p(|D|) recursion calls are made, where p is a
polynomial; and

3. the recursion depth of sat is bounded by |D|.

PROOF. Let us first prove Point 1. ABoxes passed to sat contain assertions of the
form a : C for a single object a. Since only concepts from sub(D) are generated
during rule application, the number of distinct assertions of this form is bounded by
|sub(D)| < |D|. Obviously, the size of each such assertion is also bounded by |D]
which yields an upper bound of |D|? for the size of arguments to sat.

For Point 2, note that in each recursion step, the number of recursion calls made is
bounded by the number of assertions a : IR.C' in the ABox A obtained by application
of fcompl. By Point 1, the size of argument ABoxes to sat is bounded by |D|2. Hence,
by Lemma 3.6, the size of A is bounded by p(|D|) where p is a polynomial and the
same bound applies to the number of recursion calls made in each recursion step.

We now turn to Point 3. As a consequence of (i) the fact that rule application
performed by fcompl may not introduce concepts with a role depth greater than the
role depth of concepts that have already been in the ABox and (ii) the way in which
the argument ABoxes for recursion calls to sat are constructed, we have that the
role depth of concepts in the argument ABoxes passed to sat strictly decreases with
recursion depth. It follows that the role depth of D is an upper bound for the recursion
depth, i.e., the recursion depth is bounded by |D|. [|

PROPOSITION 3.8
The completion algorithm terminates on any input Ap.

ProOOF. Immediate consequence of Lemma 3.6 and Points 2 and 3 from Lemma 3.7. 1

We now come to proving soundness and completeness of the completion algorithm.
Recall that, intuitively, the completion algorithm traverses a generalized tree model
in a depth-first manner without keeping the entire model in memory. For the proofs,
it is convenient to make the model traversed by the algorithm explicit—or more
precisely the ABox representing it. To do this, we define an extended version of
the completion algorithm. This extended algorithm is identical to the original one
but additionally constructs a sequence of ABoxes A%, Al,,... collecting all assertions
that the algorithm generates. Hence, it returns satisfiable if and only if the original
algorithm does. We will show that, if the extended algorithm is started on an initial
ABox Ap and terminates after n steps returning satisfiable, then the ABox A} defines
a canonical model for Ap. Since the extended algorithm returns satisfiable if the
original one does, this yields soundness. Completeness can also be shown using the
correspondence between the two algorithms. Note that the extended version of the
algorithm is defined just to prove soundness and completeness of the original version

PSpPACE Reasoning with the Description Logic ACCF(D) 553

Initialization:
rc:=sc:=0

AY :={ag: D} if Ap = {a: D}

define procedure sat(A)

A := fcompl(A)

if A contains a clash then
return unsatisfiable

forall assertions IR.C' € A(a) with R € Ng \ Nar do
sc:=sc+1
rc:=rc+1
Fix b€ 0,
Are = ATV U {(ase—1,Dse) : RYU {bge : CYU

{bsc :E|a:YR.E € A(a)}
ifsat({b: C}U{b: E|VR.E € A(a)}) = unsatisfiable then
return unsatisfiable
return satisfiable

define procedure fcompl(.A)
* Ao = A
while a rule R from Figure 4 is applicable to 4 do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable

Apply Rto A
rc:=rc+1
N:: A\Ao

Replace each a € O, (resp. x € O¢) in N with as. (resp. ws.)
Arf = AT UN

return A

* X X %

Fi1G. 8. The extended satisfiability algorithm.

and we do not claim that the extended version itself can be executed in polynomial
space.

The extended algorithm can be found in Figure 8. The extensions are marked
with asterisks. If the algorithm is started on the initial ABox Ap = {a : D}, we set
AY = {ao : D}. The algorithm uses two global variables sc and re, which are both
initialized with the value 0. The first one is a counter for the number of calls to the sat
function. The second one counts the number of ABoxes A}, that have already been
generated. The introduction of the global variable sc is necessary due to the following
technical problem: the object names created by the algorithm are unique only within
the ABox considered in a single recursion step. For the accumulating ABoxes Af,
that collect assertions from many recursion steps, we have to ensure that an object a
from one recursion step can be distinguished from a in a different step since these two
objects do clearly not represent the same domain element in the constructed model.
To achieve this, objects are renamed before new assertions are added to an ABox A/,
by indexing with the value of the counter sc.

554 PSPACE Reasoning with the Description Logic ALCF (D)
Observe that, for i > 0, the ABox A¢, is obtained either

1. by multiple applications of completion rules from Figure 4 to the ABox A" or
2. by a recursion call made while the counter rc has value i — 1.

Let us be a little bit more precise about the second point. W.r.t. the sequence of
ABoxes A2, AL, ..., recursion calls can be viewed as applications of the completion
rules displayed in Figure 7: if A?, is obtained from .A{" by a recursion call, then this is
equivalent to a single application of the R3r rule together with exhaustive application
of the RVr rule.

Non-applicability of all completion rules to an ABox will be an important property
in what follows.

DEFINITION 3.9 (Complete ABox)
An ABox A is complete iff no completion rule from Figures 4 and 7 is applicable to A.

The following two lemmas are central for proving soundness and completeness.

LEMMA 3.10

Let A be an ABox and R a completion rule from Figure 4 or Figure 7 such that R
is applicable to A. Then A is consistent iff R can be applied such that the resulting
ABox A’ is consistent.

PROOF. Let us first deal with the “if” direction. This is trivial if R # Rfe since this
implies 4 C A’ and, hence, every model of 4’ is also a model of A. Assume that the
Rfe rule is applied to assertions {(a,b) : f,(a,c) : f} € A and replaces ¢ with b. Let
7 be a model of A’. Construct an interpretation Z' from Z by setting ¢ := b%. Tt
is straightforward to check that 7' is a model of A. The case that Rfe is applied to
assertions {(a,x) : g, (a,y) : g} € A is analogous.

Now for the “only if” direction. We make a case distinction according to the
completion rule R.

e The RM rule is applied to an assertion a : C; M Cy and A" = AU{a: Ci,a: Ca}.
Let Z be a model of A. Since aZ € (C; M Cy)%, we have a € CT and o € CZ by
the semantics of ALCF (D), which implies that Z is also a model of A'.

e The RU rule is applied to an assertion a : C; LI Cy. The rule can be applied such
that either A’ = AU{a: C1} or A = AU {a : C3}. Let Z be a model of A.
Since a? € (Cy U Cy)%, we have either aZ € CT or a? € C¥ by the semantics of
ALCF(D). Hence, we can apply the rule such that Z is a model of A’.

e The R3f rule is applied to an assertion a : 3f.C yielding the ABox A’. Then
A= AU {(a,b) : f,b: C} where b is fresh in A. Let Z be a model of A. Since
a € (3f.0)%, there exists a d € Az such that fZ(a’) =d and d € C. Let T’ be
the interpretation obtained from Z by setting o' :=d. Tt is easily checked that
7' is a model of A'.

e The R3r rule is treated analogously to the previous case.

e The RYf rule is applied to an assertion a : Vf.C' and A" = AU {b: C} where b is
an f-successor of a in A and A'. Let Z be a model of A. Since a” € (Vf.C)? and
fE(a®) = bT, we have b € CT. Hence, T is also a model of A’.

e The RVr rule is treated analogously to the previous case.

PSpPACE Reasoning with the Description Logic ACCF(D) 555

e The Rc rule is applied to an assertion a : Juq,...,u,.P with u; = fl(i) ---f,gf)gi

yielding the ABox A’. Then there exist abstract objects agi) with 1 <7 <n and
1 < j < k; which are fresh in A and concrete objects z1, .. ., 2, which are fresh in
A such that, for 1 <4 < n,

(4)
1

— a(l) is -successor of a
1)

g-i) is f](i)—successor of ag.i_)l for 1 < j <k,
— x; is gs-successor of a,(g?,
—(#1,...,2,) : Pe A
Let Z be a model of A. Since a” € (Juy, ..., u,.P)%, there exist domain elements
dg-i) € Az withl1 <i<nand1l<j <k and 21,...,2, € Ap such that, for
1 <i < n, we have

-t d") e (1),

—(d2,,d") € (FI) for 1< j <Ky,

— gH(dy)) = z;, and

—(21,...,2,) € PP.

Define 7' as the interpretation obtained from 7 by setting

—Qa

and

(@) :=d? for1<i<mand1<j<k

and

aciI’ := z; for all ¢ with 1 <47 <n.

It is straightforward to check that 7’ is a model of A’.

Applications of the R| rule are treated similar to the previous case.

Applications of the Rt rule are also treated similar to the Rc case.

The Rfe rule is applied to assertions {(a,b) : f,(a,c) : f} € A and replaces ¢ with b.
Let Z be a model of A. Due to the presence of the above two assertions and since
features are interpreted as partial functions, we have b = ¢”. It is readily checked
that this implies that 7 is a model of A’. The case that two concrete objects are
identified can be treated in the same way.

LemMmA 3.11
Let A be an ABox. If A is complete and clash-free, then it is consistent.

PROOF. Based on A, a canonical interpretation Z can be defined as follows. Fix a
solution ¢ for (4 which exists since A is clash-free.

. Az consists of all abstract objects used in A,

AT :={a€0,|a: A€ A} forall A€ Nc,

. R :={(a,b) € 0, x 0, | (a,b) : R € A} for all R € Ng,
.97 :={(a,6(z)) € 0, x Ap | (a,z) : g € A} for all g € N,
.a’ :=afor all a € O,, and

.zl :=§(z) for all z € Oc.

S O s W N =

556 PSPACE Reasoning with the Description Logic ALCF (D)

Note that 7 is well-defined: Since the Rfe rule is not applicable, fZ and g7 are
functional for all f € Ny and ¢ € Neg. We prove that 7 is a model of A, i.e.,
that all assertions in A are satisfied by Z. It is an immediate consequence of the
definition of 7 that (a,b) : R € A implies (a,b?) € R? and (a,z) : g € A implies
g (a?) = 2Z. Moreover, if (a— ~ b) € A, then a # b since A is clash-free. Hence,
(a= ~ b) € A implies a” # bL. Since § is a solution for (4, (21,...,2,) : P € A
implies (z7,...,2L) € PP. It thus remains to show that a : C € A implies a € CT.
This is done by induction on the structure of C'. For the induction start, we make a
case distinction according to the form of C:

o If C' € N¢, then the above claim is an immediate consequence of the definition
of C.

e (' = =FE. Since we assume all concepts to be in negation normal form, F is a
concept name. Since A is clash-free, a : E ¢ A and, by definition of Z, a ¢ ET.
Hence, a € (—E)%.

e C' =3uy,...,u,.P. Since the Rcrule is not applicable to A, there exist z1,...,z, €
Oc such that z; is u;-successor of a in A for 1 < i < n. By definition of Z, we have
ul(a) = §(z;) for 1 < i < n. Furthermore, we have (z1,...,2,) : P € A and, since
§ is a solution for (p, (6(z1),...,8(x,)) € PP. Summing up, a € (Juy, ..., u,.P)T.

e C' = p1lps. Since the R] rule is not applicable to A, there exists an object b € O,
which is both a p;-successor and a ps-successor of a in 4. By definition of Z, we
have p7 (a) = p%(a) = b and, hence, a € (p1p>)”.

e C' = p11p>. Since the R? rule is not applicable to A, there exist by,by € O, such
that by is a py-successor of a in A, by is a pa-successor of a in A, and by— ~ by € A.
Since A is clash-free, we have by # by. By definition of Z, we have pf(a) = b; and
pE(a) = by and, hence, a € (pyTps)?.

e C = ¢g7. Since A is clash-free, a has no g-successor z in 4. By definition of Z,
g% (a) is undefined and hence a € (g1)%.

For the induction step, we make a case analysis according to the topmost constructor

in C.

e C = C; N (5. Since the RM rule is not applicable to A, we have {C,C>} C A(a).
By induction, a € C¥ and a € C¥, which implies a € (C} 1 Cs)Z.

e C' = (4 U (Cs. Similar to the previous case.

e (' = JR.E. Since neither the R3f nor the R3r rule is applicable to A, there exists
an object b € O, such that b is an R-successor of a in A and E € A(b). By
definition of Z, b being an R-successor of a implies (a,b) € RT. By induction, we
have b € ET and may hence conclude a € (3R.E)Z.

e C = VR.E. Let b € Az such that (a,b) € RT. By definition of Z, b is an R-
successor of a in A. Since neither the RVf not the RVr rule is applicable to A, we
have E € A(b). By induction, it follows that b € EZ. Since this holds for all b, we
can conclude a € (VR.E)Z.

In the following, the i-th recursion step denotes the recursion step of the extended
completion algorithm in which the counter sc has value 3.

PSpACE Reasoning with the Description Logic ACCF(D) 557

PROPOSITION 3.12 (Soundness)
If the completion algorithm returns satisfiable, then the input concept is satisfiable.

PROOF. Assume that the completion algorithm is started on an input concept D and
there exists a way to make the non-deterministic decisions such that the algorithm
returns satisfiable. Moreover assume that the extended algorithm constructs the ABox
Ap if the non-deterministic decisions are made in precisely the same way, i.e., the
counter rc¢ has value n upon termination. We first establish the following claim:

Claim: A(} is complete and clash-free.

First for completeness. We distinguish several cases. First assume that a rule
R € {RM, RU, R3f, Rc, R, Rt, R3r}

is applicable to A7. This is due to the presence of an assertion a; : C' in A7 If, e.g.,
R = R, then C has the form C; M C5. By construction of A, this implies that a : C
is either part of the argument A to sat in the i-th recursion call or has been added to
A by the fcompl function during the i-th recursion step. In either case, if R # R3r,
the rule R has been applied to a : C' by the fcompl function during the i-th recursion
step, which, again by construction of A}, implies that R is not applicable to a; : C
in A": contradiction. If R = R3r, then C = 3IR.E. Clearly, (a;,b;) : R and b; : C
(for some j > i) is added to A7} due to a subsequent recursion call and we obtain a
contradiction to the applicability of R3r to a; : C in AJ,.

Now assume that the RVf rule is applicable to A,. This is due to the presence
of assertions a; : Vf.C and (a;,b;) : f in AJ}. Since assertions (a;,b;) : f are only
added to A{} because of applications of the rules R3f, Rc, R|, and Rt performed by
the fcompl function, we have i = j. It follows that a : Vf.C and (a,b) : f are in A in
the i-th recursion step. Hence, the RVf rule is applied by fcompl to these assertions.
This implies that b : C' is in A in the i-th recursion step which allows us to conclude
b; : C € A}, a contradiction.

Assume that RVr is applicable to AJ} due to the presence of assertions a; : VR.C
and (a;,b;) : R. By construction of A, a; : VR.C is in A in the i-th recursion step
and (a;,b;) @ R has been added to A, due to a recursion call made during the i-th
recursion step. By definition of the annotated algorithm, these two facts imply that
b; : C has also been added to A7 in the i-th recursion step. Again a contradiction.

To finish the proof that A7 is complete, assume that Rfe is applicable to A} due to
the presence of assertions (a;,b;) : f and (a;,¢¢) @ f. Since assertions (a;,b;) : f are
only added to A{ because of applications of the rules R3f, Rc, R|, and Rt performed
by the fcompl function, we have i = j = £. Tt follows that (a,b) : f and (a,c) : f
are in A in the i-th recursion step. Hence, the Rfe rule is applied by fcompl. This,
however, implies that either (a;,b;) : f or (a;,ce) : f is not in A}

We now prove that Al'(a;) is clash-free. Assume {4,—-A} C A%(a;). Then {A,-A} C
A(a) in the i-th recursion step. Since A is clash-free in every recursion step (the algo-
rithm returned satisfiable), we obtain a contradiction. Clashes of the form a;— ~ a; € A?
are treated analogously. Now assume a; : g7 and (a;,z;) : ¢ are in A%. Since asser-
tions (a;,z;) : g are only added due to applications of the Rc rule by fcompl, we have
i = j. It is again straightforward to derive a contradiction.

It remains to show that A7 is concrete domain satisfiable. For every ¢ < n, let
A; be the ABox A in the i-th recursion step after the application of fcompl and let

558 PSPACE Reasoning with the Description Logic ALCF (D)

d; be a solution for (4,, which exists since A; is clash-free. Define §(x;) := d;(z;)
for all z; occurring in A7. It is readily checked that § is a solution for (4n: fix an
assertion ((z1)py,---, (zk)n,) : P € Al Since such assertions are only added due to

applications of the Rc rule by fcompl, there exists an i < n such that h; = i for all
j with 1 < j < k. Hence, (21,...,71) : P € A; and (6;(x1),...,8:(z)) € PP. By
definition of 4, it follows that (§((z1)s,),-..,0((x1):,)) € PP, as was to be shown.

The proof of the claim is now finished and we return to the proof of soundness.
By Lemma 3.11, the claim implies that A is consistent. By construction, we have
ap : D € A. It immediately follows that D is satisfiable. | |

ProposSITION 3.13 (Completeness)
If the completion algorithm is started on a satisfiable input concept, then it returns
satisfiable.

PROOF. Since the completion algorithm returns satisfiable iff the extended algorithm
does, it suffices to concentrate on the extended algorithm. Let the extended comple-
tion algorithm be started on an input concept D that is satisfiable. Then, the initial
ABox Ap = {a: D} is obviously consistent. By Lemma 3.10 and due to the fact that
performing a recursion step corresponds to the application of rules from Figure 7, we
can make the non-deterministic decisions of the extended algorithm such that every
ABox in the sequence A, Al,... is consistent. By Proposition 3.8 and since the
extended algorithm terminates iff the original one does, this sequence is comprised
of a finite number n of ABoxes. Moreover, the extended algorithm does not detect
a clash: if a clash is detected in an ABox A, then we have A C A, up to variable
renaming which clearly contradicts the consistency of A{}. Because of this and again
due to Proposition 3.8, the algorithm terminates returning satisfiable.

It may be viewed as a byproduct of the soundness and completeness proof that
ALCF(D) has the generalized tree model property defined in Section 3.1: assume
that the extended algorithm is started with initial ABox Ap = {a : D} and that
D is satisfiable. By Proposition 3.13 and the correspondence of the original and the
extended algorithm, the extended algorithm returns satisfiable. From the proof of
Proposition 3.12, we learn that in this case the ABox A"} (where n is the value of the
counter sc upon termination) is complete and clash-free. In the proof of Lemma 3.11,
a canonical model 7 of A7} is constructed where A7 is the set of abstract objects used
in A7. It is straightforward to check that this model is a generalized tree model for
D since

1l.ap : D isin A7,

2. the sets X; := {a; | a; € Az} for 0 < i < n are equivalence classes w.r.t. Z and ~
as in Definition 3.1, and

3. due to the recursive nature of the completion algorithm, the graph (Vz, E7) (see
Definition 3.1) is a tree.

PSpPACE Reasoning with the Description Logic ACCF(D) 559

We now analyze the time and space requirements of our algorithm.

PRroPOSITION 3.14
1. If D-satisfiability is in PSPACE, then the completion algorithm can be executed in
polynomial space.
2. If D-satisfiability is in NEXPTIME, then the completion algorithm can be executed
in nondeterministic exponential time.
3. If D-satisfiability is in EXPSPACE, then the completion algorithm can be executed
in exponential space.

PRrROOF. By Point 1 of Lemma 3.7 and Lemma 3.6, the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D]), where p is a polynomial. Since,
by Point 3 of Lemma 3.7, the recursion depth is bounded by |D|, sat can be executed
in polynomial space if the check for concrete domain satisfiability is not taken into
account.

Assume that D-satisfiability is in PSPACE. Since the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D|), the maximum number of con-
juncts in predicate conjunctions (4 checked for concrete domain satisfiability is also
bounded by p(|D|). Together with the fact that the complexity class PSPACE is oblivi-
ous for polynomial blowups of the input, it follows that the completion algorithm can
be executed in polynomial space. Along the same lines, it can be shown that the
algorithm can be executed in exponential space if D-satisfiability is in EXPSPACE.

Now assume that D-satisfiability is in NEXPTIME. From Lemma 3.6, we know that
fcompl terminates after at most |A[* rule applications if started on input 4. Since,
by Point 1 of Lemma 3.7, the size of its input is bounded by |D|?, it terminates after
at most |D|® rule applications. Since the recursion depth is bounded by |D|, and, by
Point 2 of Lemma 3.7, at most ¢(|D|) recursion calls are made per recursion step for
some polynomial ¢, sat can be executed in nondeterministic exponential time if the
check for concrete domain satisfiability is not taken into account. By the bounds on
the recursion depth and the number of recursion calls per recursion steps, the number
of concrete domain satisfiability checks performed is at most exponential in |D|. Since
the size of predicate conjunctions passed in each step is bounded by p(D) and D-
satisfiability is in NEXPTIME, we can perform each check in (non-deterministic) time
exponential in |D|. Summing up, the sat algorithm an be executed in nondeterministic
exponential time. [|

Combining this result with the PSPACE lower bound of ALC-concept satisfiability
[39] and using Savitch’s Theorem which implies that PSPACE = NPSPACE and
EXPSPACE = NEXPSPACE [37], we obtain the following theorem.

THEOREM 3.15
Let D be an admissible concrete domain.
1. If D-satisfiability is in PSPACE, then ALC(D)-concept satisfiability and ALCF(D)-
concept satisfiability are PSPACE-complete.
2. If D-satisfiability is in C € {NEXPTIME, EXPSPACE}, then ALC(D)-concept sat-
isfiability and ALCF(D)-concept satisfiability are also in C.

Since lower complexity bounds obviously transfer from D-satisfiability to ALCF(D)-
concept satisfiability, Point 2 of this theorem yields tight complexity bounds if D-
satisfiability is NEXPTIME-complete or EXPSPACE-complete (instead of just in the

560 PSPACE Reasoning with the Description Logic ALCF (D)

respective class). Moreover, since subsumption can be reduced to (un)satisfiability
and vice versa, we obtain corresponding complexity bounds for subsumption:

COROLLARY 3.16
Let D be an admissible concrete domain.

1. If D-satisfiability is in PSPACE, then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are PSPACE-complete.

2. If D-satisfiability is in NEXPTIME, then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are in CO-NEXPTIME.

3. If D-satisfiability is in EXPSPACE then ALC(D)-concept subsumption and
ALCF(D)-concept subsumption are in EXPSPACE.

4 ABox Consistency

In the preceding section, we used ABoxes merely as a data structure. However,
ABoxes are interesting in their own right since they are frequently used to represent
assertional knowledge about the state of affairs in a particular “world”. In this sec-
tion, we extend the complexity results obtained in the previous section from concept
satisfiability to ABox consistency by devising a precompletion algorithm in the style of
[13, 21]. Most importantly, the extended algorithm yields a tight PSPACE complexity
bound for ALCF(D)-ABox consistency if D-satisfiability is in PSPACE.

4.1 The Algorithm

The algorithm works by reducing ABox consistency to concept satisfiability. First,
a set, of precompletion rules is exhaustively applied to the input ABox A yielding a
precompletion of A. Intuitively, rule application makes all implicit knowledge in the
ABox explicit except that it does not generate new R-successors for roles R € Ng\N,r.
Then, several reduction concepts are generated from the precompletion and passed to
the concept satisfiability algorithm devised in the previous section. The input ABox
is satisfiable iff the precompletion contains no obvious contradiction and all reduction
concepts are satisfiable.

The precise formulation of the algorithm can be found in Figure 9. We assume
all concepts in the input ABox to be in NNF. As already mentioned in Section 3.3,
the precompl function is identical to the fcompl function in Figure 5 except that it
additionally applies the RVr rule. This is necessary since, in contrast to ABoxes
processed by the sat algorithm, the input ABox to cons may contain assertions of the
form (a,b) : R with R € Ng\ Nor. Although not generating new R-successors for roles
R € Nr \ N,g, the precompletion algorithm does generate new f-successors and new
g-successors for features f € Nyr and g € N¢g. Intuitively, the input ABox induces a
set of clusters of objects as discussed in Section 3.1 and these clusters are constructed
by the precompl function.

Note that the construction of a reduction concept corresponds to a single application
of the R3r rule together with exhaustive application of the RVr rule very similar to
recursion calls of the sat functions in Figure 5.

PSPACE Reasoning with the Description Logic ACCF(D) 561

define procedure cons(A)
A := precompl(A)
if A contains a clash then
return inconsistent
forall assertions IR.C' € A(a) with R € Ng \ Nor do
Fix b€ 0,

ifsat({b: C N |_| b: E) = unsatisfiable then
VR.Ec€A(a)

return inconsistent
return consistent

define procedure precompl(A)
while a rule from {RM, RU, RVr, RVf, R3f, Rc, R}, R, Rfe}
is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply Rto A

return A

F1G. 9. The ALCF(D)-ABox consistency algorithm.

4.2 Correctness and Complezity
Termination of the precompletion algorithm is easily obtained.

PROPOSITION 4.1
The precompletion algorithm terminates on any input.

PRrOOF. By Lemma 3.6, the precompl function terminates, and, by Proposition 3.8,
the sat function also terminates.

We now prove soundness and completeness. In the following, an ABox A’ is called a
precompletion of an ABox A iff A’ can be obtained by applying the precompl function
to A. Note that precompl is non-deterministic (due to the use of the RU rule) and
hence there may exist more than a single precompletion for a given ABox A.

PROPOSITION 4.2 (Soundness)
If the precompletion algorithm returns consistent, then the input ABox is consistent.

PRrOOF. If the algorithm is started on input ABox A returning consistent, then there
exists a precompletion A, for A that does not contain a clash and all reduction
concepts C1,...,C, of A, that are passed as arguments to the sat algorithm are
satisfiable. We show that this implies that .4, has a model, which, by Lemma 3.10
and the definition of precompletion, proves the proposition.

Let Z1,...,Z, be the models of the reduction concepts C4,...,C, and a; : AR;.E;
be the assertion in A4, that triggered the construction of the reduction concept C;.
W.lo.g., we assume that

OAIiﬂAIj=$f0r1§i<j§nand
e A7, N0, =0 for1<i<n.

562 PSPACE Reasoning with the Description Logic ALCF (D)

For each i with 1 < i < n, we fix an element d; € Az, with d; € C’iL. Moreover, we
fix a solution § for (4,, which exists since A, is clash-free. Define an interpretation
T as follows:

1.A7 =0, WA, W - WA7,,
2. AT :={a€0,]|a: A€ Ay} U Ui, A% for all A€ Nc,
3. R := {(a,b) € 0, x 0, | (a,b) : R€ A} U {(a;,d;) |1 <i<nand R=R;}
U Uyepe, BT forall R € N,
4. g7 .= {(a,8(z)) € 03 x Ap | (a,z) : g € A} U U;cjc,, g7 for all g € Ner,
.a’ :=afor all a € O,, and
6. 27 := §(z) for all x € Oc.

7 is well-defined: due to the non-applicability of the Rfe rule to A,, fZ and g% are
functional for all f € Nor and g € N¢g. The following claim is an easy consequence of
the construction of Z:

Claim: Let 1 <i <n. For all d € Az, and C € sub(A,), d € C% implies d € C7.

It remains to show that Z is a model of A, i.e., that all assertions in A, are satisfied
by Z. For assertions of the form (a,b) : R and (a,z) : g, this is an immediate
consequence of the definition of Z. Assertions a— ~ b are satisfied since A, is clash-
free and assertions (z1,...,7,) : P are satisfied since ¢ is a solution for (4,. It thus
remains to show that a : C € A, implies a € C%. This is done by induction over
the structure of C' as in the proof of Lemma 3.11. The only differences are in the
following cases of the induction step:

ea:3JR.E € A,. Then there is an ¢ with 1 < i < n such that a = a;, R = R;, and
FE = E; appears as a conjunct in the reduction concept C;. By definition of 7, we
have (a,d;) € R*. By the above claim together with d; € C¥, we have d; € CF.
Since E is a conjunct in C, this clearly implies d; € EZ and thus a € (3R.E)Z.

ea:VR.E € A, Fix ab € Az such that (a,b) € RT. Then either b is an R-
successor of @ in A, or a = a;, R = R;, and b = d; for some 1 < i < n. The first
case was already treated in the proof of Lemma 3.11. Hence, let us stick to the

second case. By construction of C;, E appears as a conjunct in C;. By the claim,
we have d; € CT and hence d; € EZ.

PRrROPOSITION 4.3 (Completeness)
If the precompletion algorithm is started on a consistent input ABox, then it returns
consistent.

PROOF. Suppose that the algorithm is started on a consistent ABox 4. By Lemma 3.10,
the precompl function can apply the completion rules such that only consistent ABoxes
are obtained. Hence, by Lemma 3.6, the precompl function generates a consistent pre-
completion A, of A. Consistency of A, clearly implies that the reduction concepts
constructed from A, are satisfiable. Since, by Proposition 3.8, the sat function ter-
minates, the precompletion algorithm also terminates and returns consistent. [|

It remains to analyze the time and space requirements of our algorithm.

PSpPACE Reasoning with the Description Logic ACCF(D) 563

ProproSITION 4.4
1. If D-satisfiability is in PSPACE, then the precompletion algorithm can be executed
in polynomial space.
2. If D-satisfiability is in NEXPTIME, then the precompletion algorithm can be exe-
cuted in nondeterministic exponential time.
3. If D-satisfiability is in EXPSPACE, then the precompletion algorithm can be exe-
cuted in exponential space.

PrROOF. Let A be the input ABox to the precompletion algorithm. By Lemma 3.6, the
precompl function terminates after at most |A|* steps generating an ABox A’ of size
at most |A[5. Since all complexity classes mentioned in the proposition are oblivious
for polynomial blowups of the input, the concrete domain satisfiability check does not
spoil the upper bound on the time/space requirements. Concerning the calls to the
sat function, it suffices to refer to Proposition 3.14. [|

As in the previous section, we use the PSPACE lower bound of ALC-concept satisfia-
bility and the fact that PSPACE =NPSPACE and EXPSPACE =NEXPSPACE to obtain
the following theorem.

THEOREM 4.5
Let D be an admissible concrete domain.

1. If D-satisfiability is in PSPACE, then ALC(D)-ABox consistency and ALCF(D)-
ABox consistency are PSPACE-complete.

2. If D-satisfiability is in C € {NEXPTIME, EXPSPACE}, then ALC(D)-ABox con-
sistency and ALCF(D)-ABox consistency are also in C.

5 Applying the Results

We give some example applications of the results just obtained by reconsidering the
concrete domains A and S introduced in Section 2. In order to apply Theorems 3.15
and 4.5, we need to determine the complexity of A-satisfiability and S-satisfiability.
More precisely, we show that both problems are in NP.

Let us start with the concrete domain A. The proof is by a reduction to mixed
integer programming (MIP), i.e., to linear programming where some of the variables
must take integer values. More precisely, a mized integer programming problem has
the form Az = b, where A is an m X n-matrix of rational numbers, is an n-vector of
variables, each of them being either an integer variable or a rational variable, and b
is an m-vector of rational numbers (see, e.g. [40]). A solution of Az = b is a mapping
4 that assigns an integer to each integer variable in z and a rational number to each
rational variable in z such that the equality Az = b holds. Deciding the satisfiability
of a MIP problem means to decide whether such a problem has a solution.

ProproSITION 5.1
A-satisfiability is in NP.

PRrROOF. We sketch a non-deterministic polynomial time algorithm for A-satisfiability.
The algorithm is based on several normalization steps, simple inconsistency checks,
and a final call to an algorithm which is capable of deciding the satisfiability of MIP
problems.

564 PSPACE Reasoning with the Description Logic ALCF (D)

Let ¢ be a finite conjunction of A predicates. The following steps are executed
sequentially to decide the satisfiability of c:

1. Return unsatisfiable if ¢ contains the 1A predicate.
2. Eliminate all occurrences of the T predicate from ¢ and call the result ¢;.

3. Eliminate each occurrence of predicates int, P,, and +:
e replace each conjunct int(z) with the conjuncts

>(x, f), int(f), =1(0), +(f,0,f), <(x, f),

where f, f', 0 are fresh (i.e. previously unused) variables.

e replace each conjunct P,(z) (where P € {<,<,#,>,>} and ¢ € Q) with the
two conjuncts =,(f) and P(z, f), where f is a fresh variable.

e replace each conjunct +(z,y,2) with +(z,y, f) and #(f,2), where f is a fresh
variable.

Call the result cs

4. Eliminate each occurrence of the predicates <, #, >, and > in c¢p: conjuncts
<(z,y) are non deterministically replaced with either <(z,y) or =(z,y). The
other predicates can be treated similarly. Call the result ¢3. Note that c3 does
only contain the predicates int, =;, <, =, and +.

5. Transform ¢3 into a MIP problem in the obvious way:

e every variable x used in c¢3 such that int(z) is a conjunct of ¢3 becomes an
integer variable in the MIP problem. All other variables appearing in ¢3 become
rational variables;

e every conjunct =,(z) is translated into an equation = = ¢;

e every conjunct =(z,y) is translated into an equation z — y = 0;

e every conjunct <(z,y) is translated into an equation z + s —y = 0, where s is
a fresh rational variable (also known as slack variable);

e every conjunct +(z,y, z) is translated into an equation z +y — z = 0.

Use a standard NP algorithm to decide the satisfiability of this problem and return

the result.

It is straightforward to prove the correctness of the sketched algorithm by showing that
(i) each of the normalization steps preserves (un)satisfiability, and (ii) the reduction
to MIP is correct. Moreover, it is not hard to see that the algorithm can be executed
in nondeterministic polynomial time: each of the normalization steps leads to at most
a polynomial blowup of the size of the predicate conjunction. Finally, deciding the
satisfiability of MIP problems can be done in NP [14]. ||

An application of Theorems 3.15 and 4.5 immediately yields the complexity of rea-
soning with the Description Logic ALCF(A).

COROLLARY 5.2
ALCF(A)-concept satisfiability and ALCF(A)-ABox consistency are PSPACE-complete.

Now for the concrete domain S. It is straightforward to reduce S-satisfiability to the
satisfiability problem of so-called RCC8 networks [10, 36]. Such a network is simply
a finite set of assertions rd(X,Y"), where rd is a disjunction rely V -+ - V rel;, of RCC8
relations and X and Y are region variables from some fixed set of variables V. A triple

PSpPACE Reasoning with the Description Logic ACCF(D) 565

(U, T,0), where (U,T) is a topology and § maps each region variable from V to an
element of T', is a model of an RCC8 network N iff, for each relg V- --Vrelx(X,Y) € N,
there exists an 7 < k such that §(X) rel; 6(Y). N is satisfiable iff it has a model.

PROPOSITION 5.3
S-satisfiability is in NP.

PROOF. It is easy to reduce S-satisfiability to the satisfiability of RCC8 networks:
given a finite conjunction ¢ of predicates from ®g, first eliminate any occurrences of
the T predicate and return unsatisfiable if ¢ contains the L predicate; then replace
all predicates rel by the disjunction of all elements of RCC8 \ {rel}, where RCC8 de-
notes the set of all eight RCCS8 relations; finally, translate each conjunct in ¢ into an
RCCS8 assertion rd(X,Y) in the obvious way. As shown by Renz and Nebel in [36],
the satisfiability of the resulting RCC8 network can be decided in nondeterministic
polynomial time. Moreover, every satisfiable RCC8 network has a model in the topo-
logical space RCg2 [35]. | |

Again, we obtain the desired corollary by applying Theorems 3.15 and 4.5.

COROLLARY 5.4
ALCF(S)-concept satisfiability and ALCF(S)-ABox consistency are PSPACE-complete.

6 Discussion and Related Work

In this paper, we have established tight complexity bounds for concept- and ABox-
reasoning with the basic Description Logic with concrete domains ALC(D) and its
extensions with feature (dis)agreements ALCF (D). The upper bound for concept sat-
isfiability has been obtained by a completion algorithm that uses the tracing technique
while the upper bound for ABox consistency has been established by a precompletion-
style reduction to concept satisfiability. We have strictly separated the algorithms for
these two reasoning problems since this makes more explicit the additional means
necessary for dealing with ABoxes instead of with concepts. However, for the im-
plementation of DL reasoners that can decide ABox consistency, it may be more
appropriate to use a “direct” ABox consistency algorithm instead of reducing this
reasoning task to concept satisfiability. Considering the two algorithms developed in
this paper, it should be straightforward to devise such a direct algorithm.

Using an arithmetic concrete domain A and a spatial concrete domain S, we have
demonstrated the relevance of the obtained complexity results: since A-satisfiability
and S-satisfiability are in NP, it follows from the established complexity bounds
that concept- and ABox-reasoning with both ALCF(A) and ALCF(S) is PSPACE-
complete. We have also established upper bounds for the case that D-satisfiability
is in NEXPTIME or EXPSPACE. A rather expressive concrete domain R based on
Tarski algebra (also known as real closed fields), for which R-satisfiability is EX-
PSPACE-complete, can be found in [30, 5]. Using the results from this paper and the
obvious fact that D-satisfiability can be polynomially reduced to ALC(D)-concept
satisfiability, we immediately obtain EXPSPACE-completeness of concept- and ABox-
reasoning with the Description Logic ALC(R). Other important concrete domains
that are captured by the presented results are the temporal ones that can be found
in [33, 30, 27].

566 PSPACE Reasoning with the Description Logic ALCF (D)

The results presented in this paper have stimulated interesting further research.
For example, in [3] the PSPACE upper bound for ALCF(D)-concept satisfiability
has been used to obtain a PSPACE upper bound for reasoning with the interval-based
temporal Description Logic T £-ALCF, which was first described in [2]. Perhaps most
interesting, it has been found that the PSPACE upper bounds established in this paper
are fragile in the following sense: there exist several standard means of expressivity
whose addition to ALC (D) leads to the complexity of reasoning leaping from PSPACE-
completeness to NExpPTIME-completeness—at least for so-called arithmetic concrete
domains [28, 30, 1]. Examples for such means of expressivity include acyclic TBoxes,
inverse roles, nominals, and role conjunction. This is particularly surprising since
(i) the mentioned means of expressivity are usually considered “harmless” w.r.t. the
complexity of reasoning, i.e., for most standard DLs, their addition does not change
the complexity of reasoning; (ii) many concrete domains suggested in the literature
are arithmetic; and (iii) there exist rather simple arithmetic concrete domains D—in
particular some for which D-satisfiability is in PTIME.

References

[1] Carlos Areces and Carsten Lutz. Concrete domains and nominals united. In Carlos Areces,
Patrick Blackburn, Maarten Marx, and Ulrike Sattler, editors, Proceedings of the fourth Work-
shop on Hybrid Logics (HyLo’02), 2002.

[2] Alessandro Artale and Enrico Franconi. A temporal description logic for reasoning about actions
and plans. Journal of Artificial Intelligence Research (JAIR), 9:463-506, 1998.

[3] Alessandro Artale and Carsten Lutz. A correspondence between temporal description logics.
In Patrick Lambrix, Alex Borgida, Maurizio Lenzerini, Ralf Mdller, and Peter Patel-Schneider,
editors, Proceedings of the International Workshop on Description Logics (DL’99), number 22
in CEUR-WS (http://ceur-ws.org/), pages 145-149, 1999.

[4] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept
languages. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI-91), pages 452—457, Sydney, Australia, 1991.

[5] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains into concept
languages. DFKI Research Report RR-91-10, German Research Center for Artificial Intelligence
(DFKT), 1991.

(6] Franz Baader and Philipp Hanschke. Extensions of concept languages for a mechanical engi-
neering application. In Proceedings of the 16th German AI-Conference (GWAI-92), volume 671
of Lecture Notes in Computer Science, pages 132-143. Springer-Verlag, 1992.

[7] Franz Baader and Bernhard Hollunder. A terminological knowledge representation system with
complete inference algorithm. In Proceedings of the Workshop on Processing Declarative Knowl-
edge (PDK-91), volume 567 of Lecture Notes in Artificial Intelligence, pages 67-86. Springer-
Verlag, 1991.

(8] Franz Baader, Deborah L. McGuiness, Daniele Nardi, and Peter Patel-Schneider. The Descrip-
tion Logic Handbook: Theory, implementation and applications. Cambridge University Press,
2002. To appear.

[9] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In R. Dyckhoff,
editor, Proceedings of the International Conference on Automated Reasoning with Tableauzr and
Related Methods (Tableauz 2000), volume 1847 of Lecture Notes in Artificial Intelligence, pages
1-18. Springer-Verlag, 2000.

[10] Brandon Bennett. Modal logics for qualitative spatial reasoning. Journal of the Interest Group
in Pure and Applied Logic, 4(1), 1997.

[11] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, Lori Alperin Resnick,
and Alexander Borgida. Living with classic: When and how to use a KL-ONE-like language. In
John F. Sowa, editor, Principles of Semantic Networks — Ezrplorations in the Representation of
Knowledge, chapter 14, pages 401-456. Morgan Kaufmann, 1991.

PSpACE Reasoning with the Description Logic ACCF(D) 567

[12] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in expressive descrip-
tion logics. In Proceedings of the Fifth International Conference on the Principles of Knowledge
Representation and Reasoning (KR’96), pages 316-327. Morgan Kaufmann Publishers, 1996.

[13] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Deduction in
concept languages: from subsumption to instance checking. Journal of Logic and Computation,
4(4):423-452, 1994.

[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA, USA, 1979.

[15] Erich Grddel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719-1742,
1999.

[16] Volker Haarslev, Carsten Lutz, and Ralf Moller. A description logic with concrete domains and
role-forming predicates. Journal of Logic and Computation, 9(3):351-384, 1999.

[17] Volker Haarslev and Ralf Moller. RACER system description. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Proceedings of the First International Joint Conference
on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical Intelligence,
pages 701-705. Springer-Verlag, 2001.

[18] Volker Haarslev, Ralf Mdller, and Michael Wessel. The description logic ACCNH z4+ extended
with concrete domains: A practically motivated approach. In Rajeev Goré, Alexander Leitsch,
and Tobias Nipkow, editors, Proceedings of the First International Joint Conference on Au-
tomated Reasoning IJCAR’01, number 2083 in Lecture Notes in Artifical Intelligence, pages
29-44. Springer-Verlag, 2001.

[19] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence, 54(3):319-380, 1992.

[20] Philipp Hanschke. Specifying role interaction in concept languages. In William Nebel, Bernhard;
Rich, Charles; Swartout, editor, Proceedings of the Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92), pages 318-329. Morgan Kaufmann, 1992.

[21] Bernhard Hollunder. Consistency checking reduced to satisfiability of concepts in terminological
systems. Annals of Mathematics and Artificial Intelligence, 18:133-157, 1996.

[22] Bernhard Hollunder and Werner Nutt. Subsumption algorithms for concept languages. DFKI
Research Report RR-90-04, German Research Center for Artificial Intelligence (DFKT), Kaiser-
slautern, Germany, 1990.

[23] Tan Horrocks and Peter Patel-Schneider. The generation of DAML4OIL. In Carole Goble,
Deborah L. McGuinness, Ralf Moéller, and Peter F. Patel-Schneider, editors, Proceedings of
the International Workshop in Description Logics 2001 (DL2001), number 49 in CEUR-WS
(http://ceur-ws.org/), pages 30-35, 2001.

[24] Tan Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description logic. In Bern-
hard Nebel, editor, Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI'01), pages 199-204. Morgan-Kaufmann, 2001.

[25] Martina Kullmann, Frangois de Bertrand de Beuvron, and Frangois Rousselot. A description
logic model for reacting in a dynamic environment. In F. Baader and U. Sattler, editors, Pro-
ceedings of the 2000 International Workshop in Description Logics (DL2000), number 33 in
CEUR-WS (http://ceur-ws.org/), pages 203-212, 2000.

[26] Richard E. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM Journal on Computing, 6(3):467—-480, 1977.

[27] Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Bernhard Nebel,
editor, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCATI’01), pages 89-94. Morgan-Kaufmann, 2001.

[28] Carsten Lutz. NExpTime-complete description logics with concrete domains. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the First International Joint
Conference on Automated Reasoning (IJCAR’01), number 2083 in Lecture Notes in Artifical
Intelligence, pages 45-60. Springer-Verlag, 2001.

[29] Carsten Lutz. Adding numbers to the SHIQ description logic—First results. In Proceedings of
the Eighth International Conference on Principles of Knowledge Representation and Reasoning
(KR2002). Morgan Kaufman, 2002.

[30] Carsten Lutz. The Complezity of Reasoning with Concrete Domains. PhD thesis, LuFG Theo-
retical Computer Science, RWTH Aachen, Germany, 2002.

568 PSPACE Reasoning with the Description Logic ALCF (D)

[31] Carsten Lutz. Reasoning about entity relationship diagrams with complex attribute dependen-
cies. In Ian Horrocks and Sergio Tessaris, editors, Proceedings of the International Workshop
in Description Logics 2002 (DL2002), number 53 in CEUR-WS (http://ceur-ws.org/), pages
185-194, 2002.

[32] Carsten Lutz. Description logics with concrete domains—a survey. In Advances in Modal Logics
(AiML) 2002, To appear.

[33] Carsten Lutz, Volker Haarslev, and Ralf Moller. A concept language with role-forming predicate
restrictions. Technical Report FBI-HH-M-276/97, University of Hamburg, Computer Science
Department, Hamburg, 1997.

[34] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and
connection. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Proceedings of
the Third International Conference on Principles of Knowledge Representation and Reasoning
(KR’92), pages 165-176. Morgan Kaufman, 1992.

[35] Jochen Renz. A canonical model of the region connection calculus. In Anthony G. Cohn, Lenhart
Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Representation and
Reasoning, pages 330-341. Morgan Kaufmann, San Francisco, California, 1998.

[36] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artificial Intelligence, 108(1-2):69-123,
1999.

[37] Walter J. Savitch. Relationsship between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177-192, 1970.

[38] Andrea Schaerf. On the complexity of the instance checking problem in concept languages with
existential quantification. Journal of Intelligent Information Systems, 2:265-278, 1993.

[39] Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1-26, 1991.

[40] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, UK, 1986.

[41] Sergio Tessaris, Ian Horrocks, and Graham Gough. Evaluating a modular abox algorithm. In
Proceedings of the Eighth International Conference on Principles of Knowledge Representation
and Reasoning (KR2002), pages 227-239. Morgan Kaufman, 2002.

[42] Moshe Y. Vardi. Why is modal logic so robustly decidable? In Neil Immerman and Phokion G.
Kolaitis, editors, Descriptive Complezity and Finite Models, volume 31 of DIMACS: Series
in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society,
1997.

Received 27 September 2002

