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Abstra
t

Des
ription Logi
s (DLs), a family of formalisms for reasoning about 
on
eptual knowledge, 
an

be extended with 
on
rete domains to allow an adequate representation of \
on
rete qualities" of

real-worlds entities su
h as their height, temperature, duration, and size. In this paper, we study

the 
omplexity of reasoning with the basi
 DL with 
on
rete domains ALC(D) and its extension

with so-
alled feature agreements and disagreements ALCF(D). We show that, for both logi
s,

the standard reasoning tasks 
on
ept satis�ability, 
on
ept subsumption, and ABox 
onsisten
y are

PSpa
e-
omplete if the 
on
rete domain D satis�es some natural 
onditions.
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1 Motivation

Des
ription Logi
s (DLs) are a popular family of logi
al formalisms for the representa-

tion of and reasoning about 
on
eptual knowledge [8℄. The basi
 entity for knowledge

representation with DLs are so-
alled 
on
epts whi
h 
an be understood as logi
al

formulas and are 
onstru
ted from 
on
ept names (unary predi
ates), role names

(binary relations), and 
on
ept 
onstru
tors. For example, the following 
on
ept is

formulated in the basi
 propositionally 
losed DL ALC [39℄ and des
ribes pro
esses

that are supervised by a human operator and involve only workpie
es that are not

radioa
tive:

Pro
ess u 9operator:Human u 8workpie
e::Radioa
tive:

In this 
on
ept, Pro
ess, Human, and Radioa
tive are 
on
ept names while operator

and workpie
e are role names.

A major limitation of knowledge representation with Des
ription Logi
s su
h as

ALC is that \
on
rete qualities" of real world entities, su
h as their weight, temper-

ature, and spatial extension, 
annot be adequately represented. For example, ALC

does not o�er suitable means of expressivity for extending the above des
ription of

a pro
ess with information about its 
ost and duration, or about the relationship

between the pro
ess' 
ost and the hourly wage of its operator. To allow an adequate

representation of 
on
rete qualities of real-world entities, Des
ription Logi
s are fre-

quently extended by so-
alled 
on
rete domains, whi
h have �rst been proposed by

Baader and Hans
hke in [4℄ and then further developed in several dire
tions, 
.f. the

survey arti
le [32℄. A 
on
rete domain 
onsists of a set su
h as the natural numbers

and a set of predi
ates su
h as the unary \=

60

" and the binary \>" with the obvious,
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�xed extension. The integration of 
on
rete domains into the Des
ription Logi
 ALC

is a
hieved by adding

1. so-
alled abstra
t features, whi
h are fun
tional relations;

2. so-
alled 
on
rete features, whi
h are (partial) fun
tions asso
iating values from

the 
on
rete domain (e.g., natural numbers) to logi
al obje
ts;

3. a 
on
rete domain-based 
on
ept 
onstru
tor.

The DL that is obtained by extending ALC in this way is 
alled ALC(D), where

D denotes a 
on
rete domain that 
an be viewed as a parameter to the logi
. For

example, when using a suitable 
on
rete domain D, we 
an extend the above pro
ess

des
ription as desired: the ALC(D)-
on
ept

Pro
ess u 9duration:=

60

u 9
ost; operator wage:>

des
ribes a pro
ess whose duration is 60 minutes and whi
h 
osts more than the

(hourly) wage of its operator. Here, the se
ond and third 
onjun
t are instan
es of

the 
on
rete domain 
on
ept 
onstru
tor, operator is an abstra
t feature, and duration,


ost, and wage are 
on
rete features.

The representation of 
on
rete qualities has been identi�ed as a 
ru
ial task for a

vast number of appli
ations su
h as me
hani
al engineering [6℄, temporal and spatial

reasoning [16, 27℄, the semanti
 web [23, 24℄, and reasoning about entity relationship

(ER) diagrams [31℄. Consequently, apart fromALC(D) many other Des
ription Logi
s

with 
on
rete domains have been proposed [16, 18, 20, 24, 27, 30, 29℄ and several

implemented Des
ription Logi
 reasoners su
h as 
lassi
 [11℄ and RACER [17℄ provide

for some kind of 
on
rete domain. However, despite the 
onsiderable interest in DLs

with 
on
rete domains and the fa
t that 
omplexity analysis plays an important role in

the area of Des
ription Logi
s, only very re
ently resear
hers have begun to investigate

the 
omputational 
omplexity of reasoning with su
h logi
s [30℄. The 
urrent paper

is devoted to establishing tight 
omplexity bounds for reasoning with the fundamental

Des
ription Logi
 with 
on
rete domains ALC(D). More pre
isely, we do not only


onsider the DL ALC(D), but also its extension with so-
alled feature agreements

and feature disagreements, two 
on
ept 
onstru
tors that are quite 
losely related

to 
on
rete domains. Using feature (dis)agreements, one 
an for example des
ribe

pro
esses that have two subpro
esses, one of whi
h works on the same workpie
e as

the mother pro
ess, and the other on a di�erent one:

Pro
ess u (workpie
e # subpro
ess1 workpie
e) u (workpie
e " subpro
ess2 workpie
e):

In this 
on
ept, the se
ond 
onjun
t uses the feature agreement 
onstru
tor, the third


onjun
t uses the feature disagreement 
onstru
tor, and all lower
ase names denote

abstra
t features.

There are several motivations for 
ombining 
on
rete domains and feature (dis)agree-

ments in a single DL. First, there exists an obvious synta
ti
 similarity between feature

(dis)agreements and the 
on
rete domain 
on
ept 
onstru
tor: both take sequen
es of

features as arguments. As we shall see in this paper, the similarity between 
on
rete

domains and feature (dis)agreements is not only synta
ti
al: they are also amenable

to similar algorithmi
 te
hniques. Se
ond, the Des
ription Logi
 ALCF(D) resulting
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from the extension of ALC(D) with feature (dis)agreements has already found appli-


ations in knowledge representation [25℄. And third, the PSpa
e-
ompleteness result

for reasoning withALCF(D) proved in Se
tion 3 allows to show PSpa
e-
ompleteness

of a well-known temporal Des
ription Logi
 [3℄.

Let us now outline the organization of this paper and des
ribe the obtained results in

more detail.

In Se
tion 2, we formally introdu
e 
on
rete domains and the Des
ription Logi
s

ALC(D) and ALCF(D). Some example 
on
rete domains are de�ned.

In Se
tion 3, tight PSpa
e 
omplexity bounds for the satis�ability of ALC(D)-


on
epts and ALCF(D)-
on
epts are established. More pre
isely, we devise a tableau

algorithm for de
iding satis�ability of ALCF(D)-
on
epts whi
h uses the so-
alled

tra
ing te
hnique. This algorithm yields a PSpa
e upper bound for ALCF(D)-


on
ept satis�ability if the following 
onditions are satis�ed:

� de
iding the satis�ability of �nite 
onjun
tions of predi
ates from the 
on
rete

domain D (this task is 
alled \D-satis�ability" in what follows) is in PSpa
e;

� the 
on
rete domain is \admissible", i.e., it satis�es some weak 
losure 
onditions

whi
h, in this paper, we will generally assume to hold.

The 
orresponding PSpa
e lower bound is easily obtained sin
e ALC-
on
ept satis-

�ability is already PSpa
e-hard [39℄. Hen
e, both ALC(D)-
on
ept satis�ability and

ALCF(D)-
on
ept satis�ability are PSpa
e-
omplete if D-satis�ability is in PSpa
e.

Sin
e 
on
ept subsumption, another important reasoning task for Des
ription Log-

i
s, 
an easily be redu
ed to 
on
ept (un)satis�ability and vi
e versa, we also obtain

that ALC(D)-
on
ept subsumption and ALCF(D)-
on
ept subsumption are PSpa
e-


omplete if D-satis�ability is in PSpa
e. Note that adding 
on
rete domains and

feature (dis)agreements to ALC does thus not in
rease the 
omplexity of reasoning.

This is parti
ularly interesting sin
e there exist several seemingly \harmless" means

of expressivity like a
y
li
 TBoxes and inverse roles, whose addition to ALC(D) makes

reasoning signi�
antly more diÆ
ult|namely NExpTime-
omplete [28, 30, 1℄. Thus,

the logi
 ALCF(D) is situated on the boundary of polynomial spa
e 
omplexity.

Se
tion 4 is devoted to extending the results from Se
tion 3 to another standard rea-

soning task 
alled ABox 
onsisten
y. ABoxes are 
ommonly used to des
ribe snap-

shots of the real world [7, 12, 17, 38, 41℄. For example, the following ALC(D)-ABox

des
ribes a pro
ess a and its subpro
ess b:

a : Pro
ess b : Pro
ess (a; b) : subpro
ess (a; x) : duration x : =

60

We use the pre
ompletion te
hnique from [13, 21℄ to show that ALCF(D)-ABox 
on-

sisten
y is PSpa
e-
omplete if D-satis�ability is in PSpa
e. As in the 
ase of 
on
ept

satis�ability, this implies that the same holds for ALC(D)-ABox 
onsisten
y.

In Se
tion 5, we demonstrate the relevan
e of the results obtained in Se
tions 3 and 4

by 
onsidering two example 
on
rete domains: the 
on
rete domain A based on the

rational numbers with predi
ates su
h as <

27

, �, and +; and the 
on
rete domain S

based on the set of regions in two-dimensional spa
e with a binary predi
ate for ea
h

of the well-known RCC8 topologi
al relations [10℄. We show that both A-satis�ability

and S-satis�ability is in NP and thus obtain that, for D 2 fA; Sg, ALCF(D)-
on
ept
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satis�ability, ALCF(D)-
on
ept subsumption, and ALCF(D)-ABox 
onsisten
y are

PSpa
e-
omplete.

The paper ends with a 
on
lusion in Se
tion 6.

2 Preliminaries

We start this se
tion with introdu
ing 
on
rete domains formally, then de�ne some

example 
on
rete domains, and �nally des
ribe the Des
ription Logi
 ALCF(D) in

detail.

Definition 2.1 (Con
rete Domain)

A 
on
rete domain D is a pair (�

D

;�

D

), where �

D

is a set and �

D

a set of predi
ate

names. Ea
h predi
ate name P 2 �

D

is asso
iated with an arity n and an n-ary

predi
ate P

D

� �

n

D

. Let V be a set of variables. A predi
ate 
onjun
tion of the form


 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary predi
ate for i < k and the x

(i)

j

are variables from V, is 
alled

satis�able i� there exists a fun
tion Æ mapping the variables in 
 to elements of �

D

su
h that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for ea
h i < k. Su
h a fun
tion is 
alled a

solution for 
. A 
on
rete domain D is 
alled admissible if the following 
onditions

are satis�ed:

1. �

D


ontains a name >

D

for �

D

;

2. �

D

is 
losed under negation, i.e., for ea
h n-ary predi
ate P 2 �

D

, we �nd another

predi
ate P 2 �

D

of arity n su
h that P

D

= �

n

D

n P

D

;

3. the satis�ability problem for �nite 
onjun
tions of predi
ates is de
idable.

When devising algorithms for reasoning with Des
ription Logi
s that are equipped

with a 
on
rete domain D, one important subtask usually is to de
ide the satis�abil-

ity of �nite 
onjun
tions of predi
ates from �

D

as des
ribed in De�nition 2.1 [4, 30℄.

For brevity, we refer to this task as D-satis�ability. It is obvious that D-satis�ability

should be de
idable if the 
on
rete domain D is to be used in a DL reasoning algo-

rithm. However, usually the slightly stronger requirement that D should be admissible

is adopted. In this arti
le, we follow this tradition and generally assume 
on
rete do-

mains to be admissible.

Before we pro
eed to de�ning the Des
ription Logi
 ALCF(D) itself, let us in-

trodu
e two example 
on
rete domains, an arithmeti
 one and a spatial one. The

arithmeti
 
on
rete domain A is de�ned by setting �

A

:= Q (i.e., the set of rational

numbers), and de�ning �

A

as the (smallest) set 
ontaining the following predi
ates:

� a unary predi
ate >

A

with (>

A

)

A

= Q and a unary predi
ate ?

A

with (?

A

)

A

= ;;

� unary predi
ates int and int with (int)

A

= Z (where Z denotes the integers) and

(int)

A

= Q n Z;

� unary predi
ates P

q

for ea
h P 2 f<;�;=; 6=;�; >g and ea
h q 2 Q with (P

q

)

A

=

fq

0

2 Q j q

0

P qg;

� binary predi
ates <;�;=; 6=;�; > with the obvious extension;
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a DC b a EC b a PO b a TPP b a NTPP b

ba
a

b

a

b
a b a b

Fig. 1. The RCC8 relations in two-dimensional spa
e.

� ternary predi
ates + and + with (+)

A

= f(q; q

0

; q

00

) 2 Q

3

j q + q

0

= q

00

g and

(+)

A

= Q

3

n (+)

A

.

As an example for an (unsatis�able) 
onjun
tion of A-predi
ates, 
onsider the follow-

ing one:

=

3

(x) ^>

1

(y) ^ int(y) ^+(x; y; z) ^ �(x; y; z

0

) ^ �(z; z

0

):

It is easily 
he
ked that the 
on
rete domain A satis�es Conditions 1 and 2 of ad-

missibility (Condition 3 will be treated in Se
tion 5). The other 
on
rete domain


onsidered in this paper is related to the RCC-8 
al
ulus and is 
alled S. RCC-8

provides a set of eight jointly exhaustive and pairwise disjoint relations that des
ribe

the possible relationships between any two regular 
losed regions

1

in a topologi
al

spa
e [34, 10, 36℄. For 2D spa
e, these relations are illustrated in Figure 1, where

the equality relation EQ, the inverse TPPI of TPP, and the inverse NTPPI of NTPP

have been omitted. The 
on
rete domain S is de�ned by setting �

S

to the set RC

R

2

of all regular 
losed subsets of R

2

and de�ning �

S

as the (smallest) set 
ontaining the

following predi
ates:

� a unary predi
ate>

S

with (>

S

)

S

= RC

R

2

and a unary predi
ate?

S

with (?

S

)

S

= ;;

� binary predi
ates rel and rel for ea
h of the topologi
al relations rel su
h that

(rel)

S

= f(r

1

; r

2

) 2 RC

R

2

�RC

R

2

j r

1

rel r

2

g.

An example (unsatis�able) S-
onjun
tion is

>

S

(x) ^DC(x; y) ^ EC(y; z) ^NTPP (z; x) ^ PO(y; y):

It is easily 
he
ked that S satis�es Conditions 1 and 2 of admissibility. For Property 3,

we again refer to Se
tion 5.

Based on 
on
rete domains, we 
an now de�ne ALCF(D)-
on
epts.

Definition 2.2 (ALCF(D) syntax)

Let N

C

, N

R

, and N


F

be pairwise disjoint and 
ountably in�nite sets of 
on
ept names,

role names, and 
on
rete features. Furthermore, let N

aF

be a 
ountably in�nite subset

of N

R

. The elements of N

aF

are 
alled abstra
t features. An abstra
t path p is a


omposition f

1

� � � f

n

of n abstra
t features (n � 1). A 
on
rete path u is a 
omposition

f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

(n � 0) and a 
on
rete feature g. Let D be

a 
on
rete domain. The set of ALCF(D)-
on
epts is the smallest set su
h that

1. every 
on
ept name is a 
on
ept

1

A region r is regular 
losed if it satis�es ICr = r, where C is the topologi
al 
losure operator and I is the

topologi
al interior operator.
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2. if C and D are 
on
epts, R is a role name, g is a 
on
rete feature, p

1

and p

2

are

abstra
t paths, u

1

; : : : ; u

n

are 
on
rete paths, and P 2 �

D

is a predi
ate of arity

n, then the following expressions are also 
on
epts:

:C; C uD; C tD; 9R:C; 8R:C; p

1

"p

2

; p

1

#p

2

; 9u

1

; : : : ; u

n

:P; and g":

We use > to abbreviate A t :A, where A is an arbitrary 
on
ept name, and ? to

abbreviate :>. Moreover, we write 8p:C for 8f

1

: � � � 8f

k

:C if p = f

1

� � � f

k

and u"

for 8f

1

: � � � 8f

k

:g" if u = f

1

� � � f

k

g. An ALCF(D)-
on
ept that does not 
ontain

sub
on
epts p

1

"p

2

and p

1

#p

2

is 
alled ALC(D)-
on
ept. An ALC(D)-
on
ept that

does not use any abstra
t or 
on
rete features is 
alled ALC-
on
ept.

Throughout this paper, we use the letter A to denote 
on
ept names, C, D, and E

to denote (possibly 
omplex) 
on
epts, R to denote role names, f to denote abstra
t

features, g to denote 
on
rete features, p to denote abstra
t paths, u to denote 
on
rete

paths, and P to denote predi
ate names from the 
on
rete domain.

The Des
ription Logi
 ALCF(D) is equipped with a Tarski-style set-theoreti
 se-

manti
s that in
orporates the 
on
rete domain D.

Definition 2.3 (ALCF(D) semanti
s)

An interpretation I is a pair (�

I

; �

I

), where �

I

is a set 
alled the domain and �

I

the

interpretation fun
tion. The interpretation fun
tion maps

� ea
h 
on
ept name C to a subset C

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

� ea
h 
on
rete feature g to a partial fun
tion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a 
on
rete path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � � ),

and similarly for abstra
t paths. The interpretation fun
tion is extended to arbitrary


on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(p

1

"p

2

)

I

:= fd 2 �

I

j 9e

1

; e

2

2 �

I

: p

I

1

(d) = e

1

; p

I

2

(d) = e

2

; and e

1

6= e

2

g

(p

1

#p

2

)

I

:= fd 2 �

I

j 9e 2 �

I

: p

I

1

(d) = p

I

2

(d) = eg

(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

for 1 � i � n

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

An interpretation I is a model of a 
on
ept C i� C

I

6= ;. A 
on
ept C is satis�able

i� it has a model. C is subsumed by a 
on
ept D (written C v D) i� C

I

� D

I

for

all interpretations I.
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It is well-known that, in Des
ription Logi
s providing for full negation su
h asALCF(D),

subsumption 
an be redu
ed to (un)satis�ability and vi
e versa: C v D i� C u:D is

unsatis�able and C is satis�able i� C 6v ?. This allows us to 
on
entrate on 
on
ept

satis�ability in the remainder of this paper.

Note that feature (dis)agreements p

1

"p

2

and p

1

#p

2

take abstra
t paths as arguments

and are thus not 
on
erned with elements from the 
on
rete domain. However, if the


on
rete domain provides for equality and inequality predi
ates (as both A and S do),

it is obvious that we 
an express (dis)agreement of 
on
rete paths using the 
on
rete

domain 
onstru
tor. Also note that a 2 (p

1

"p

2

)

I

implies that p

I

1

(a) and p

I

1

(a) are

de�ned. Thus, p

1

"p

2

is not the negation of p

1

#p

2

(also see Se
tion 3.2 and Figure 3).

We should like to 
omment on a minor di�eren
e between our variant of ALCF(D)

and the original version of ALC(D) as de�ned by Baader and Hans
hke [4℄: instead of

separating 
on
rete and abstra
t features, Baader and Hans
hke de�ne only one type

of feature whi
h is interpreted as a partial fun
tion from �

I

to �

I

[�

D

. We prefer

the \typed" approa
h sin
e, in our opinion, it improves the readability of 
on
epts.

Moreover, it is not hard to see that the 
ombined features 
an be \simulated" using

pairs of 
on
rete and abstra
t features.

3 Con
ept Satis�ability

In the following, we devise a tableau algorithm for de
iding satis�ability of ALCF(D)-


on
epts that needs at most polynomial spa
e if D is admissible and D-satis�ability

is in PSpa
e. The algorithm also yields tight 
omplexity bounds if D-satis�ability is

NExpTime-
omplete or ExpSpa
e-
omplete.

3.1 Overview

Sin
e there exist rather di�erent variants of tableau algorithms in Modal Logi
 and

First Order Logi
, we 
all the family of tableau algorithms 
ommonly used for De-

s
ription Logi
s 
ompletion algorithms . The reader is referred to [9℄ for an overview

over su
h algorithms. Completion algorithms are 
hara
terized by an underlying data

stru
ture, a set of 
ompletion rules operating on this data stru
ture, and a (possibly

trivial) strategy for applying the rules. In prin
iple, a 
ompletion algorithm starts

with an initial data stru
ture indu
ed by the 
on
ept D whose satis�ability is to

be de
ided and repeatedly applies 
ompletion rules a

ording to the strategy. Re-

peated rule appli
ation 
an be thought of as making impli
it knowledge expli
it or

as 
onstru
ting a 
anoni
al model for the input 
on
ept (represented in terms of the

underlying data stru
ture). The algorithm stops if it en
ounters a 
ontradi
tion or if

no more 
ompletion rules are appli
able. It returns satis�able i� the latter is the 
ase

and no obvious 
ontradi
tion was found, i.e., if the algorithm su

eeds in 
onstru
ting

a (witness for a) model of the input 
on
ept. Otherwise, it returns unsatis�able.

If a PSpa
e upper bound is to be proved using a 
ompletion algorithm, some

additional e�orts have to be made. To simplify dis
ussion, let us 
onsider the logi


ALC for the moment [39℄. A naive 
ompletion algorithm for ALC does not yield a

PSpa
e upper bound sin
e there exist satis�able ALC-
on
epts all of whose models

are of size exponential in the 
on
ept length [19, 39℄. Thus, an algorithm keeping
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f

f#ff

f

Fig. 2. A model of the ALCF(D)-
on
ept f#ff .

the entire (representation of a) model in memory needs exponential spa
e in the

worst 
ase. However, there exists a well-known way to over
ome this problem: the

key observation is that 
anoni
al models I 
onstru
ted by 
ompletion algorithms

are tree models, i.e., they have the form of a tree if viewed as a graph with �

I

the set of vertexes and

S

R2N

R

R

I

the set of edges. It is suÆ
ient to 
onsider only

su
h tree models sin
e ALC has the tree model property, whi
h means that ea
h

satis�able 
on
ept has a tree model [19℄. To 
he
k for the existen
e of tree models for

a given 
on
ept, we may try to 
onstru
t one by performing depth-�rst sear
h over

role su

essors keeping only paths of the tree model in memory. Sin
e, in the 
ase of

ALC, the length of paths is at most polynomial in the length of the input 
on
ept

[19℄, this te
hnique|whi
h is known as tra
ing [39℄|yields an algorithm that needs

at most polynomial spa
e in the worst 
ase. Completion algorithms for ALC-
on
ept

satis�ability that use tra
ing are very similar to the well-known K-world algorithm

from Modal Logi
 [26℄.

The tra
ing te
hnique has to be modi�ed to deal with ALCF(D)-
on
epts for two

reasons:

(1) Due to the presen
e of feature (dis)agreements, ALCF(D) does not enjoy the

tree model property. For example, the 
on
ept f#ff is satis�able but, due to the

fun
tionality of the abstra
t feature f , has only non-tree models su
h as the one

depi
ted in Figure 2.

(2) Due to the presen
e of the 
on
rete domain 
onstru
tor, even in tree models the

paths of the tree 
annot be 
onsidered in isolation. For example, the 
anoni
al tree

model for the 
on
ept 9(f

1

f

2

g); (f

0

1

f

0

2

g

0

):P is 
omprised of two paths with edge labels

f

1

; f

2

; g and f

0

1

; f

0

2

; g

0

, respe
tively. However, sin
e the �nal node of the �rst path and

the �nal node of the se
ond path are elements of the 
on
rete domain that must be

related via the predi
ate P , we have to 
onsider both paths together.

Sin
e only abstra
t features (but no role names from N

R

n N

aF

) are admitted in fea-

ture (dis)agreements and the 
on
rete domain 
onstru
tor, it is not hard to see that

the des
ribed problems are due to substru
tures of models whose elements are 
on-

ne
ted by abstra
t features, only. Based on this observation, we de�ne generalized

tree models.
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Definition 3.1 (Generalized Tree Model)

Let I be a model of an ALCF(D)-
on
ept C and de�ne a relation � on �

I

as follows:

d � e i� d = e or there exists an abstra
t path f

1

� � � f

k

and domain elements

d

0

; : : : ; d

k

2 �

I

su
h that d

0

= d; d

k

= e; and d

i+1

= f

I

i+1

(d

i

) or

d

i

= f

I

i+1

(d

i+1

) for i < k:

It is easy to see that � is an equivalen
e relation. By [d℄

�

, we denote the equivalen
e


lass of d 2 �

I

w.r.t. �. The model I is a generalized tree model of C i� I is a model

of C and the graph (V

I

; E

I

) de�ned as

V

I

:= f[d℄

�

j d 2 �

I

g

E

I

:= f([d℄

�

; [e℄

�

) j 9d

0

2 [d℄

�

; e

0

2 [e℄

�

su
h that

(d

0

; e

0

) 2 R

I

for some R 2 N

R

n N

aF

g

is a tree.

It will be a byprodu
t of the results obtained in this se
tion that ALCF(D) has the

generalized tree model property, i.e., that every satis�able ALCF(D)-
on
ept C has

a generalized tree model. Note that the identi�
ation of some kind of tree model

property is usually very helpful for devising de
ision pro
edures [42, 15℄. Our 
om-

pletion algorithm for ALCF(D) uses tra
ing on generalized tree models: it keeps

only fragments of models I in memory that indu
e paths in the abstra
tion (V

I

; E

I

).

Intuitively, su
h a fragment 
onsists of a sequen
e of \
lusters" of domain elements,

where ea
h 
luster is an equivalen
e 
lass w.r.t. the relation �, i.e., a set of elements


onne
ted by abstra
t features. Su

eeding 
lusters in the sequen
e are 
onne
ted

by roles from N

R

n N

aF

. Fortunately, as we shall see later, there always exists a gen-

eralized tree model I in whi
h the 
ardinality of 
lusters and the depth of the tree

(V

I

; E

I

) is at most polynomial in the length of the input 
on
ept. We use these

fa
ts to devise a 
ompletion algorithm for ALCF(D)-
on
ept satis�ability running in

polynomial spa
e.

The polynomial size of obje
t 
lusters is also exploited for dealing with the 
on-


rete domain. Along with 
onstru
ting the \logi
al part" of the model for the input


on
ept, our 
ompletion algorithm will build up a predi
ate 
onjun
tion des
ribing

its \
on
rete part". This predi
ate 
onjun
tion is required to be satis�able in order

for the 
onstru
ted data stru
ture to represent a model (see the general des
ription

of 
ompletion algorithms above). However, if this is done in a straightforward way,

the number of 
onjun
ts in the predi
ate 
onjun
tion may be
ome exponential in the

length of the input 
on
ept|see e.g. the algorithm for ALC(D) 
on
ept satis�ability

presented in [4℄. In our algorithm, we address this problem as follows: domain ele-

ments that are in di�erent 
lusters of the generalized tree model are not 
onne
ted

through abstra
t paths. Therefore, it 
annot be enfor
ed that 
on
rete su

essors of

domain elements from di�erent 
lusters are related by a 
on
rete predi
ate. This, in

turn, means that it is suÆ
ient to separately 
he
k the satis�ability of predi
ate 
on-

jun
tions asso
iated with 
lusters. Sin
e the size of predi
ate 
onjun
tions asso
iated

with a 
luster is at most polynomial in the length of the input 
on
ept, this separate


he
king allows to devise a PSpa
e algorithm (if D-satis�ability is in PSpa
e).
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:(C uD)  :C t :D :(C tD)  :C u :D

:(9R:C)  8R::C :(8R:C)  9R::C

:(p

1

"p

2

)  p

1

#p

2

t 8p

1

:? t 8p

2

:? :(p

1

#p

2

)  p

1

"p

2

t 8p

1

:? t 8p

2

:?

::C  C

:(9u

1

; : : : ; u

n

:P )  9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g")  9g:>

D

Fig. 3. The NNF rewrite rules.

3.2 The Completion Algorithm

In the following, we assume that 
on
epts are in negation normal form (NNF), i.e.,

that negation o

urs only in front of 
on
ept names. Every ALCF(D)-
on
ept C 
an

be transformed into an equivalent one in NNF by exhaustively applying the rewrite

rules displayed in Figure 3 (re
all that P denotes the negation of the predi
ate P ).

Let us start the presentation of the 
ompletion algorithm by introdu
ing ABoxes as

the underlying data stru
ture.

Definition 3.2 (ABox Syntax)

Let O

a

and O




be 
ountably in�nite and mutually disjoint sets of abstra
t obje
ts and


on
rete obje
ts. If C is an ALCF(D)-
on
ept, R 2 N

R

a role name, g a 
on
rete

feature, a; b 2 O

a

, x; x

1

; : : : ; x

n

2 O




, and P 2 �

D

with arity n, then

a : C; (a; b) : R; (a; x) : g; (x

1

; : : : ; x

n

) : P; and a 6� b

are ABox assertions. An ABox is a �nite set of su
h assertions.

Let A be an ABox, a; b 2 O

a

and x 2 O




. We write A(a) to denote the set of 
on
epts

fC j a : C 2 Ag. The abstra
t obje
t b is 
alled R-su

essor of a in A i� (a; b) : R

is in A. The notions g-su

essor (for 
on
rete features g), p-su

essor (for abstra
t

paths p), and u-su

essor (for 
on
rete paths u) are de�ned analogously. In what

follows, we used a and b to denote abstra
t obje
ts and x to denote 
on
rete obje
ts.

For proving the soundness and 
ompleteness of the 
ompletion algorithm to be

devised, it is 
onvenient to equip ABoxes with a semanti
s:

Definition 3.3 (ABox Semanti
s)

In interpretations I, the interpretation fun
tion �

I

maps, additionally, abstra
t ob-

je
ts a to elements a

I

2 �

I

and 
on
rete obje
ts x to elements x

I

2 �

D

. An

interpretation I satis�es an assertion

a : C i� a

I

2 C

I

;

(a; b) : R i� (a

I

; b

I

) 2 R

I

;

(a; x) : g i� g

I

(a

I

) = x

I

;

(x

1

; : : : ; x

n

) : P i� (x

I

1

; : : : ; x

I

n

) 2 P

D

;

a 6� b i� a

I

6= b

I

:

An interpretation I is 
alled a model of an ABox A i� it satis�es every assertion in A.

An ABox is 
alled 
onsistent i� it has a model.
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It should be obvious how ABoxes 
an be used to represent models. If the satis-

�ability of a 
on
ept D is to be de
ided, the 
ompletion algorithm is started with

the initial ABox for D de�ned as A

D

= fa : Dg. To keep the presentation of the


ompletion rules su

in
t, we introdu
e an operation that allows to introdu
e new

obje
ts on paths and 
on
rete paths.

Definition 3.4 (\+" operation)

An abstra
t or 
on
rete obje
t is 
alled fresh w.r.t. an ABox A if it does not appear

in A. Let p = f

1

� � � f

n

be an abstra
t path (resp. u = f

1

� � � f

n

g be a 
on
rete path).

By A + apb (resp. A + aux), where a 2 O

a

is used in A and b 2 O

a

(resp. x 2 O




),

we denote the ABox A

0

whi
h 
an be obtained from A by 
hoosing distin
t obje
ts

b

1

; : : : ; b

n

2 O

a

whi
h are fresh in A and setting

A

0

:= A[ f(a; b

1

) : f

1

; : : : ; (b

n�1

; b) : f

n

g

(resp. A

0

:= A[ f(a; b

1

) : f

1

; : : : ; (b

n�1

; b

n

) : f

n

; (b

n

; x) : gg:

When nesting the + operation, we omit bra
kets writing, e.g., A + ap

1

b + bp

2


 for

(A+ ap

1

b) + bp

2


.

The 
ompletion rules 
an be found in Figure 4. Note that the Rt rule is nondeter-

ministi
, i.e., it has more than one possible out
ome. Thus, the des
ribed 
ompletion

algorithm is a nondeterministi
 de
ision pro
edure. Su
h an algorithm a

epts its

input (i.e. returns satis�able) i� there is some way to make the nondeterministi


de
isions su
h that a positive result is obtained. A 
onvenient way to think of nonde-

terministi
 rules is that they \guess" the 
orre
t out
ome, i.e., if there is an out
ome

whi
h, if 
hosen, leads to a positive result, then this out
ome is in fa
t 
onsidered.

Most 
ompletion rules are standard and known from, e.g., [5℄ and [22℄. The R9f and

R8f rules are spe
ial in that they only deal with 
on
epts 9f:C and 8f:C where f is

an abstra
t feature. As we will see later, 
on
epts 9R:C and 8R:C with R 2 N

R

nN

aF

are not treated by 
ompletion rules but through re
ursion 
alls of the algorithm. The

Rfe rule also deserves some attention: it ensures that, for any obje
t a 2 O

a

, there

exists at most a single f -su

essor for ea
h f 2 N

aF

and at most a single g-su

essor

for ea
h g 2 N


F

. Redundant su

essors are eliminated by identi�
ation. This pro
ess

is often referred to as fork elimination (hen
e the name of the rule). In many 
ases,

fork elimination is not expli
itly formulated as a 
ompletion rule but viewed as an

integral part of the other 
ompletion rules. In the presen
e of feature (dis)agreements,

this latter approa
h seems to be less transparent. Consider for example the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

g:

Assume the R9f rule is applied twi
e adding the assertions (a; b) : f

1

and (a; 
) : f

2

.

Now, the R# rule is applied adding (a; b

0

) : f

1

and (a; b

0

) : f

2

. Clearly, we may now

apply the Rfe rule to the assertions (a; b) : f

1

and (a; b

0

) : f

1

. Say the rule appli
ation

repla
es b

0

by b, and we obtain the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

; (a; b) : f

1

; (a; 
) : f

2

; (a; b) : f

2

g:

Obviously, we may now apply Rfe to (a; 
) : f

2

and (a; b) : f

2

repla
ing b by 
.

Observe that this latter fork elimination does not involve any obje
ts generated by
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Ru if C

1

u C

2

2 A(a) and fC

1

; C

2

g 6� A(a)

then A := A [ fa : C

1

; a : C

2

g

Rt if C

1

t C

2

2 A(a) and fC

1

; C

2

g \ A(a) = ;

then A := A [ fa : Cg for some C 2 fC

1

; C

2

g

R9f if 9f:C 2 A(a) and there is no f -su

essor b of a with C 2 A(b)

then set A := A[ f(a; b) : f; b : Cg for a b 2 O

a

fresh in A

R8f if 8f:C 2 A(a), b is an f -su

essor of a, and C =2 A(b)

then set A := A[ fb : Cg

R
 if 9u

1

; : : : ; u

n

:P 2 A(a) and there exist no x

1

; : : : ; x

n

2 O




su
h that

x

i

is u

i

-su

essor of a for 1 � i � n and (x

1

; : : : ; x

n

) : P 2 A

then set A := (A+ au

1

x

1

+ � � �+ au

n

x

n

) [ f(x

1

; : : : ; x

n

) : Pg

with x

1

; : : : ; x

n

2 O




fresh in A

R# if p

1

#p

2

2 A(a) and there is no b that is both

a p

1

-su

essor of a and a p

2

-su

essor of a

then set A := A+ ap

1

b+ ap

2

b for a b 2 O

a

fresh in A

R" if p

1

"p

2

2 A(a) and there are no b

1

; b

2

with

b

1

p

1

-su

essor of a, b

2

p

2

-su

essor of a, and (b

1

6� b

2

) 2 A

then set A := (A+ ap

1

b

1

+ ap

2

b

2

) [ f(b

1

6� b

2

)g

for b

1

; b

2

2 O

a

fresh in A

Rfe if f(a; b) : f; (a; 
) : fg � A and b 6= 


(resp. f(a; x) : g; (a; y) : gg � A and x 6= y)

then repla
e b by 
 in A (resp. x by y)

Fig. 4. Completion rules for ALCF(D).

the last \non-Rfe" rule appli
ation. To make su
h e�e
ts more transparent, we 
hose

to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be 
ontradi
tory.

Definition 3.5 (Clash)

With ea
h ABox A, we asso
iate a predi
ate 
onjun
tion

�

A

=

^

(x

1

;:::;x

n

):P2A

P (x

1

; : : : ; x

n

):

The ABox A is 
alled 
on
rete domain satis�able i� �

A

is satis�able. It is said to


ontain a 
lash i� one of the following 
onditions applies:

1. fA;:Ag � A(a) for a 
on
ept name A and obje
t a 2 O

a

,

2. (a 6� a) 2 A for some obje
t a 2 O

a

,

3. g" 2 A(a) for some a 2 O

a

su
h that there exists a g-su

essor of a, or

4. A is not 
on
rete domain satis�able.

If A does not 
ontain a 
lash, then A is 
alled 
lash-free.
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de�ne pro
edure sat(A)

A := f
ompl(A)

if A 
ontains a 
lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : Cg [ fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne pro
edure f
ompl(A)

while a rule from Figure 4 is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

return A

Fig. 5. The ALCF(D)-
on
ept satis�ability algorithm.

f

f

f

b

a

8f:9f:>




Fig. 6. The \yo-yo" e�e
t.

The 
ompletion algorithm itself 
an be found in Figure 5. We brie
y summarize

the strategy followed by the algorithm. The argument to sat is an ABox 
ontaining

exa
tly one obje
t a 2 O

a

and only assertions of the form a : C. The algorithm uses

the f
ompl fun
tion to 
reate all feature su

essors of a, all feature su

essors of these

feature su

essors and so on. However, f
ompl does not generate any R-su

essors

for role names R 2 N

R

n N

aF

. In other words, f
ompl generates a 
luster of obje
ts

as des
ribed in Se
tion 3.1. After the 
all to the f
ompl fun
tion, the algorithm

makes a re
ursion 
all for ea
h role su

essor enfor
ed via an 9R:C assertion (with

R 2 N

R

n N

aF

). A single su
h re
ursion 
all 
orresponds to moving along a path in

a generalized tree model, i.e, to moving to a su

essor 
luster of the 
luster under


onsideration. Ea
h 
luster of obje
ts is 
he
ked separately for 
ontradi
tions. Note

that, due to De�nition 3.5, 
he
king for a 
lash involves 
he
king whether the predi
ate


onjun
tion �

A

is satis�able. This, in turn, is a de
idable problem sin
e we assume

D to be admissible.
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R9r if 9R:C 2 A(a) with R 2 N

R

n N

aF

and

there is no R-su

essor b of a with C 2 A(b)

then set A := A [ f(a; b) : R b : Cg for a b 2 O

a

fresh in A

R8r if 8R:C 2 A(a) with R 2 N

R

n N

aF

, b is a R-su

essor of a, and C =2 A(b)

then set A := A [ fb : Cg

Fig. 7. Virtual 
ompletion rules for ALCF(D).

Observe that f
ompl applies the Rfe rule with highest priority. Without this strat-

egy, the algorithm would not terminate: 
onsider the ABox

A = fa : 8f:9f:>; (a; a) : f; (a; b) : fg:

This ABox, whi
h is depi
ted in the upper part of Figure 6, is en
ountered if, for

example, the algorithm is started on the input 
on
ept f

0

#f

0

f u9f

0

:(8f:9f:>u9f:>).

Now assume that the 
ompletion rules are applied to A without giving Rfe the highest

priority. This means that we 
an apply the R8f rule and obtain b : 9f:>. We 
an

then apply R9f generating (b; 
) : f; 
 : >. Fork elimination may now identify a and b

and thus we are ba
k at the initial situation (up to renaming). Clearly, this sequen
e

of rule appli
ations may be repeated inde�nitely|the algorithm does not terminate.

This \yo-yo" e�e
t was also des
ribed, e.g., in [9℄.

3.3 Corre
tness and Complexity

In this se
tion, we prove that the 
ompletion algorithm is sound, 
omplete, and termi-

nating and 
an be exe
uted using only polynomial spa
e provided that D-satis�ability

is in PSpa
e. With D, we denote the input 
on
ept to the 
ompletion algorithm

whose satis�ability is to be de
ided.

We �rst prove termination of the algorithm. It is 
onvenient to start with estab-

lishing an upper bound for the number of rule appli
ations performed by the f
ompl

fun
tion and, 
losely related, an upper bound for the size of ABoxes generated by the

f
ompl fun
tion. Before we do this, let us introdu
e the two additional 
ompletion

rules displayed in Figure 7, whi
h will play an important role in the termination and


orre
tness proofs. These rules are not applied expli
itly by the algorithm, but rather


an the re
ursion 
alls of the sat fun
tion be viewed as a single appli
ation of the

R9r rule together with multiple appli
ations of the R8r rule. Let us now return to

the upper bounds for the f
ompl fun
tion. With foresight to the ABox 
onsisten
y

algorithm to be devised in the next se
tion, we 
onsider the pre
ompl fun
tion instead

of the f
ompl fun
tion, where pre
ompl is de�ned exa
tly as f
ompl ex
ept that it also

applies the R8r rule. A formal de�nition of the pre
ompl fun
tion 
an be found in

Figure 9. It is not hard to see that upper bounds for the number of rule appli
ations

performed by pre
ompl or the size of ABoxes generated by pre
ompl also apply to the

f
ompl fun
tion: if the f
ompl fun
tions perform a 
omputation on an input ABox

A, then pre
ompl 
an perform pre
isely the same 
omputation on the input ABox

A

0

obtained from A by repla
ing all sub
on
ept 8R:C appearing in A with 
on
ept

names.
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In what follows, we use sub(C) to denote the set of sub
on
epts of the 
on
ept C

and sub(A) to denote the union of the sets of sub
on
epts of all those 
on
epts C that

appear in assertions a : C in the ABox A. Moreover, we use jCj to denote the length

of a 
on
ept C, i.e., the number of symbols used to write it down. The size j�j of an

ABox assertion � is de�ned as jCj if � = a : C and 1 otherwise. The size jAj of an

ABox A is de�ned as the sum of the sizes of its assertions.

Lemma 3.6

For any input A, the fun
tion pre
ompl terminates after at most jAj

4

rule appli
ations

and 
onstru
ts an ABox A

0

with jA

0

j � jAj

6

.

Proof. In the following, we 
all assertions of the form a : C 
on
ept assertions,

assertions of the form (a; b) : f or (a; x) : g feature assertions, and assertions of the

form (a; b) : R with R 2 N

R

n N

aF

role assertions.

The main task is to show that

pre
ompl terminates after at most jAj

4

rule appli
ations. (�)

For suppose that (�) has been shown. We 
an then prove the lemma by making the

following two observations, whi
h 
learly imply that the size of the ABox A

0

generated

by pre
ompl is bounded by jAj

6

.

(i) We have j�j < jAj for ea
h new assertion � added by rule appli
ation: 
on
ept

assertions are the only kind of assertions that may have a size greater than one

and, if a 
on
ept assertion a : C is added by rule appli
ation, then C 2 sub(A);

(ii) Ea
h rule appli
ation adds at most jAj new assertions: ea
h appli
ation adds

either no new assertions (the Rfe rule) or at most jCj new assertions, where a : C

is the 
on
ept assertion appearing in the (instantiated) rule premise. In the latter


ase, we have jCj � jAj sin
e C is in sub(A).

Hen
e, let us prove (�). Let A

0

;A

1

; : : : be the sequen
e of ABoxes 
omputed by

pre
ompl. More pre
isely, A

0

= A and A

i+1

is obtained from A

i

by the i-th rule

appli
ation performed by pre
ompl.

We �rst introdu
e some notions. For i � 0 and a 2 O

a

[ O




, we use nm

i

(a) to

denote the set of names that a had \until A

i

". More pre
isely, nm

0

(a) = fag for all

a 2 O

a

[O




. If the Rfe rule is applied to an ABox A

i

renaming an obje
t a to b, then

nm

i+1

(b) = nm

i

(a) [ nm

i

(b) and nm

i+1

(
) = nm

i

(
) for all 
 6= b. For all other rule

appli
ations, we simply have nm

i+1

(a) = nm

i

(a) for all a 2 O

a

[ O




. The following

properties, whi
h we summarize under the notion persisten
e, are easily proved using

the fa
t that assertions are never deleted:

� If a : C 2 A

i

and a 2 nm

j

(a

0

) for some j > i and a

0

2 O

a

, then a

0

: C 2 A

j

.

� if (a; b) : R 2 A

i

, a 2 nm

j

(a

0

), and b 2 nm

j

(b

0

) for some j > i and a

0

; b

0

2 O

a

, then

(a

0

; b

0

) : R 2 A

j

.

� If (a; x) : g 2 A

i

, a 2 nm

j

(a

0

), and x

0

2 nm

j

(x) for some j > i, a

0

2 O

a

, and

x

0

2 O




, then (a

0

; x

0

) : g 2 A

j

.

� If (x

1

; : : : ; x

n

) : P 2 A

i

and x

0

i

2 nm

j

(x

i

) for 1 � i � n, then (x

0

1

; : : : ; x

0

n

) : P 2 A

j

.

A 
on
ept assertion a : C is 
alled tou
hed in A

i

if there exists an a

0

2 nm

i

(a)

su
h that one of the �rst i rule appli
ations involved a

0

: C in the (instantiated)
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rule premise and untou
hed otherwise. By ℄

feat

(A), we denote the number of feature

assertions in A. For role assertions (a; b) : R with R 2 N

R

n N

aF

, we use �

A

i

(a; b : R)

to denote the number of 
on
epts 8R:C in sub(A) for whi
h there exist no a

0

2 nm

i

(a)

and b

0

2 nm

i

(b) su
h that one of the �rst i rule appli
ations involved both a

0

: 8R:C

and (a

0

; b

0

) : R in the (instantiated) rule premise.

For i � 0, de�ne

w(A

i

) :=

X

a:C is untou
hed in A

i

ja : Cj + ℄

feat

(A

i

) + jAj �

X

(a;b):R2A

i

�

A

i

(a; b : R):

We show that w(A

i+1

) < w(A

i

) for i � 0, whi
h implies that the length of the

sequen
e A

0

;A

1

; : : : is bounded by jAj

4

sin
e it is readily 
he
ked that w(A

0

) � jAj

4

.

A 
ase distin
tion is made a

ording to the 
ompletion rule applied.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the Ru rule. By

de�nition of this rule and due to persisten
e, it is applied to an untou
hed assertion

a : C

1

u C

2

in A

i

: for suppose that a : C

1

u C

2

is tou
hed in A

i

. By de�nition

of \tou
hed", this implies that there exists an a

0

2 nm

i

(a) su
h that Ru has been

applied to a

0

: C

1

u C

2

in the j-th rule appli
ation for some j < i. By de�nition

of Ru, this implies fa

0

: C

1

; a

0

: C

2

g � A

j

. By persisten
e, we have fa : C

1

; a :

C

2

g � A

i

and, thus, the Ru rule is not appli
able to a : C

1

u C

2

in A

i

whi
h

is a 
ontradi
tion. Hen
e, we have shown that a : C

1

u C

2

is untou
hed in A

i

.

Moreover, this assertion is 
learly tou
hed in A

i+1

. The rule appli
ation generates

new 
on
ept assertions a : C

1

and a : C

2

whi
h may both be untou
hed in A

i+1

.

Moreover, it generates no new feature and role assertions. By de�nition of the size

of assertions and the length of 
on
epts, we have ja : C

1

u C

2

j > ja : C

1

j+ ja : C

2

j.

Thus w(A

i+1

) < w(A

i

).

� The Rt 
ase is analogous to the previous 
ase.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R8f rule. The rule

is applied to assertions a : 8f:C and (a; b) : f . Suppose that a : 8f:C is tou
hed

in A

i

, i.e., that the R8f rule has been applied in a previous step to an assertion

a

0

: 8f:C with a

0

2 nm

i

(a). It then added 
 : C for an f -su

essor 
 of a

0

. The

fa
ts that (i) Rfe is applied with highest priority, (ii) b is an f -su

essor of a in

A

i+1

, and (iii) the R8f rule is appli
able imply that we have 
 2 nm

i

(b). This,

in turn, implies b : C 2 A

i

by persisten
e and we have obtained a 
ontradi
tion

to the assumption that R8f is appli
able. Hen
e, we have shown that a : 8f:C is

untou
hed in A

i

. The assertion is tou
hed in A

i+1

. Rule appli
ation generates a

new assertion b : C that is untou
hed in A

i+1

. However, ja : 8f:Cj > jb : Cj. No

new feature or role assertions are generated.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R8r rule. The rule

is applied to assertions a : 8R:C and (a; b) : R in A

i

. Due to persisten
e, there do

not exist a

0

2 nm

i

(a) and b

0

2 nm

i

(b) su
h that the R8r rule has previously been

applied to a

0

: 8R:C and (a

0

; b

0

) : R. Hen
e, �

A

i+1

(a; b : R) = �

A

i

(a; b : R)�1 and

the third summand of w(A

i

) ex
eeds the third summand of w(A

i+1

) by jAj. The

rule appli
ation adds no feature or role assertions and a single 
on
ept assertion

b : C. Sin
e 8R:C 2 sub(A), we have jb : Cj < jAj and hen
e w(A

i+1

) < w(A

i

).

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R9f rule. As in

the Ru 
ase, it is easy to show that the rule is applied to an untou
hed assertion
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a : 9f:C. It generates new assertions (a; b) : f and b : C (and no new role

assertions). The assertion b : C is untou
hed in A

i+1

and a : 9f:C is tou
hed in

A

i+1

. The new feature assertion (a; b) : f yields ℄

feat

(A

i+1

) = ℄

feat

(A

i

)+1. On the

other hand, no role assertion is added and we 
learly have ja : 9f:Cj > jb : Cj+ 1.

� The R
, R#, and R" rules tou
h a (due to persisten
e) previously untou
hed 
on
ept

assertion a : C appearing in the instantiated premise and do not add new 
on
ept

or role assertions. It is readily 
he
ked that the number of feature assertions added

by rule appli
ation is smaller than ja : Cj.

� Assume that the Rfe rule is applied to an ABox A

i

. This obviously implies

℄

feat

(A

i+1

) < ℄

feat

(A

i

), i.e., the se
ond summand of w(A

i+1

) is stri
tly smaller

than the se
ond summand of w(A

i

). If the rule appli
ation renames a 
on
rete

obje
t, these are the only 
hanges and we are done. If an abstra
t obje
t is

renamed, some work is ne
essary to show that the �rst and third summand of

w(A

i+1

) are not greater than the 
orresponding summands of w(A

i

). Assume

that a 2 O

a

is renamed to b. We then have nm

i+1

(b) = nm

i

(a) [ nm

i

(b).

{ First summand. Let us �rst 
onsider 
on
ept assertions 
 : C 2 A

i+1

\ A

i

.

Su
h an assertion is untou
hed in A

i+1

only if it is untou
hed in A

i

sin
e

(i) nm

i+1

(
) = nm

i

(
) if 
 6= b and (ii) nm

i

(b) � nm

i+1

(b) if 
 = b. More-

over, if there exists an assertion b : C 2 A

i+1

n A

i

due to variable renaming,

then a : C 2 A

i

n A

i+1

, and b : C being untou
hed in A

i+1

implies a : C being

untou
hed in A

i

sin
e nm

i

(a) � nm

i+1

(b). Hen
e, the �rst summand does not

in
rease.

{ Third summand. Let (
; d) : R 2 A

i+1

\ A

i

(implying 
 6= a and d 6= a). We

distinguish several sub
ases:

1. 
 6= b and d 6= b. Then, 
learly, �

i

(
; d : R) = �

i+1

(
; d : R).

2. 
 = b and d 6= b. By de�nition of �

i

, nm

i

(b) � nm

i+1

(b) implies

�

i

(b; d : R) � �

i+1

(b; d : R).

3. 
 6= b and d = b. As previous 
ase.

4. 
 = d = b. As previous 
ase.

Now let (
; d) : R 2 A

i+1

nA

i

(implying 
 = b or d = b). We 
an distinguish the


ases (i) 
 = b, d 6= b, (ii) d = b, 
 6= b, and (iii) 
 = d = b. Sin
e all 
ases are

similar, we 
on
entrate on (i). In this 
ase, (a; d) : R 2 A

i

n A

i+1

. Moreover,

nm

i

(a) � nm

i+1

(b) implies �

A

i+1

(b; d : R) � �

A

i

(a; d : R).

Summing up, the third summand may only de
rease but not in
rease.

The role depth of 
on
epts is de�ned indu
tively as follows, where jpj denotes the

length of the abstra
t path p and juj denotes the length of the 
on
rete path u

(in
luding the trailing 
on
rete feature):

� rd(A) = rd(g") = 0;

� rd(9u

1

; : : : ; u

n

:P ) = max(ju

1

j; : : : ; ju

n

j);

� rd(p

1

#p

2

) = rd(p

1

"p

2

) = max(jp

1

j; jp

2

j);

� rd(:C) = rd(C);

� rd(C uD) = rd(C tD) = max(rd(C); rd(D));

� rd(9R:C) = rd(8R:C) = rd(C) + 1;
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We now prove a te
hni
al lemma that, together with Lemma 3.6, immediately yields

termination.

Lemma 3.7

Assume that the 
ompletion algorithm was started with input D. Then

1. in ea
h re
ursion 
all, the size jAj of the argument A passed to sat is bounded

by jDj

2

;

2. in ea
h re
ursion step of sat, at most p(jDj) re
ursion 
alls are made, where p is a

polynomial; and

3. the re
ursion depth of sat is bounded by jDj.

Proof. Let us �rst prove Point 1. ABoxes passed to sat 
ontain assertions of the

form a : C for a single obje
t a. Sin
e only 
on
epts from sub(D) are generated

during rule appli
ation, the number of distin
t assertions of this form is bounded by

jsub(D)j � jDj. Obviously, the size of ea
h su
h assertion is also bounded by jDj

whi
h yields an upper bound of jDj

2

for the size of arguments to sat.

For Point 2, note that in ea
h re
ursion step, the number of re
ursion 
alls made is

bounded by the number of assertions a : 9R:C in the ABox A obtained by appli
ation

of f
ompl. By Point 1, the size of argument ABoxes to sat is bounded by jDj

2

. Hen
e,

by Lemma 3.6, the size of A is bounded by p(jDj) where p is a polynomial and the

same bound applies to the number of re
ursion 
alls made in ea
h re
ursion step.

We now turn to Point 3. As a 
onsequen
e of (i) the fa
t that rule appli
ation

performed by f
ompl may not introdu
e 
on
epts with a role depth greater than the

role depth of 
on
epts that have already been in the ABox and (ii) the way in whi
h

the argument ABoxes for re
ursion 
alls to sat are 
onstru
ted, we have that the

role depth of 
on
epts in the argument ABoxes passed to sat stri
tly de
reases with

re
ursion depth. It follows that the role depth ofD is an upper bound for the re
ursion

depth, i.e., the re
ursion depth is bounded by jDj.

Proposition 3.8

The 
ompletion algorithm terminates on any input A

D

.

Proof. Immediate 
onsequen
e of Lemma 3.6 and Points 2 and 3 from Lemma 3.7.

We now 
ome to proving soundness and 
ompleteness of the 
ompletion algorithm.

Re
all that, intuitively, the 
ompletion algorithm traverses a generalized tree model

in a depth-�rst manner without keeping the entire model in memory. For the proofs,

it is 
onvenient to make the model traversed by the algorithm expli
it|or more

pre
isely the ABox representing it. To do this, we de�ne an extended version of

the 
ompletion algorithm. This extended algorithm is identi
al to the original one

but additionally 
onstru
ts a sequen
e of ABoxes A

0

[

;A

1

[

; : : : 
olle
ting all assertions

that the algorithm generates. Hen
e, it returns satis�able if and only if the original

algorithm does. We will show that, if the extended algorithm is started on an initial

ABox A

D

and terminates after n steps returning satis�able, then the ABox A

n

[

de�nes

a 
anoni
al model for A

D

. Sin
e the extended algorithm returns satis�able if the

original one does, this yields soundness. Completeness 
an also be shown using the


orresponden
e between the two algorithms. Note that the extended version of the

algorithm is de�ned just to prove soundness and 
ompleteness of the original version
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* Initialization:

* r
 := s
 := 0

* A

0

[

:= fa

0

: Dg if A

D

= fa : Dg

de�ne pro
edure sat(A)

A := f
ompl(A)

if A 
ontains a 
lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

* s
 := s
+ 1

* r
 := r
+ 1

Fix b 2 O

a

* A

r


[

:= A

r
�1

[

[ f(a

s
�1

; b

s


) : Rg [ fb

s


: Cg [

* fb

s


: E j a : 8R:E 2 A(a)g

if sat(fb : Cg [ fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne pro
edure f
ompl(A)

* A

0

:= A

while a rule R from Figure 4 is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

* r
 := r
+ 1

* N := A nA

0

* Repla
e ea
h a 2 O

a

(resp. x 2 O




) in N with a

s


(resp. x

s


)

* A

r


[

:= A

r
�1

[

[ N

return A

Fig. 8. The extended satis�ability algorithm.

and we do not 
laim that the extended version itself 
an be exe
uted in polynomial

spa
e.

The extended algorithm 
an be found in Figure 8. The extensions are marked

with asterisks. If the algorithm is started on the initial ABox A

D

= fa : Dg, we set

A

0

[

:= fa

0

: Dg. The algorithm uses two global variables s
 and r
, whi
h are both

initialized with the value 0. The �rst one is a 
ounter for the number of 
alls to the sat

fun
tion. The se
ond one 
ounts the number of ABoxes A

i

[

that have already been

generated. The introdu
tion of the global variable s
 is ne
essary due to the following

te
hni
al problem: the obje
t names 
reated by the algorithm are unique only within

the ABox 
onsidered in a single re
ursion step. For the a

umulating ABoxes A

i

[

that 
olle
t assertions from many re
ursion steps, we have to ensure that an obje
t a

from one re
ursion step 
an be distinguished from a in a di�erent step sin
e these two

obje
ts do 
learly not represent the same domain element in the 
onstru
ted model.

To a
hieve this, obje
ts are renamed before new assertions are added to an ABox A

i

[

by indexing with the value of the 
ounter s
.
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Observe that, for i > 0, the ABox A

i

[

is obtained either

1. by multiple appli
ations of 
ompletion rules from Figure 4 to the ABox A

i�1

[

or

2. by a re
ursion 
all made while the 
ounter r
 has value i� 1.

Let us be a little bit more pre
ise about the se
ond point. W.r.t. the sequen
e of

ABoxes A

0

[

;A

1

[

; : : : , re
ursion 
alls 
an be viewed as appli
ations of the 
ompletion

rules displayed in Figure 7: if A

i

[

is obtained from A

i�1

[

by a re
ursion 
all, then this is

equivalent to a single appli
ation of the R9r rule together with exhaustive appli
ation

of the R8r rule.

Non-appli
ability of all 
ompletion rules to an ABox will be an important property

in what follows.

Definition 3.9 (Complete ABox)

An ABox A is 
omplete i� no 
ompletion rule from Figures 4 and 7 is appli
able to A.

The following two lemmas are 
entral for proving soundness and 
ompleteness.

Lemma 3.10

Let A be an ABox and R a 
ompletion rule from Figure 4 or Figure 7 su
h that R

is appli
able to A. Then A is 
onsistent i� R 
an be applied su
h that the resulting

ABox A

0

is 
onsistent.

Proof. Let us �rst deal with the \if" dire
tion. This is trivial if R 6= Rfe sin
e this

implies A � A

0

and, hen
e, every model of A

0

is also a model of A. Assume that the

Rfe rule is applied to assertions f(a; b) : f; (a; 
) : fg 2 A and repla
es 
 with b. Let

I be a model of A

0

. Constru
t an interpretation I

0

from I by setting 


I

0

:= b

I

. It

is straightforward to 
he
k that I

0

is a model of A. The 
ase that Rfe is applied to

assertions f(a; x) : g; (a; y) : gg 2 A is analogous.

Now for the \only if" dire
tion. We make a 
ase distin
tion a

ording to the


ompletion rule R.

� The Ru rule is applied to an assertion a : C

1

u C

2

and A

0

= A [ fa : C

1

; a : C

2

g.

Let I be a model of A. Sin
e a

I

2 (C

1

u C

2

)

I

, we have a

I

2 C

I

1

and a

I

2 C

I

2

by

the semanti
s of ALCF(D), whi
h implies that I is also a model of A

0

.

� The Rt rule is applied to an assertion a : C

1

t C

2

. The rule 
an be applied su
h

that either A

0

= A [ fa : C

1

g or A

0

= A [ fa : C

2

g. Let I be a model of A.

Sin
e a

I

2 (C

1

t C

2

)

I

, we have either a

I

2 C

I

1

or a

I

2 C

I

2

by the semanti
s of

ALCF(D). Hen
e, we 
an apply the rule su
h that I is a model of A

0

.

� The R9f rule is applied to an assertion a : 9f:C yielding the ABox A

0

. Then

A

0

= A [ f(a; b) : f; b : Cg where b is fresh in A. Let I be a model of A. Sin
e

a

I

2 (9f:C)

I

, there exists a d 2 �

I

su
h that f

I

(a

I

) = d and d 2 C

I

. Let I

0

be

the interpretation obtained from I by setting a

I

0

:= d. It is easily 
he
ked that

I

0

is a model of A

0

.

� The R9r rule is treated analogously to the previous 
ase.

� The R8f rule is applied to an assertion a : 8f:C and A

0

= A [ fb : Cg where b is

an f -su

essor of a in A and A

0

. Let I be a model of A. Sin
e a

I

2 (8f:C)

I

and

f

I

(a

I

) = b

I

, we have b 2 C

I

. Hen
e, I is also a model of A

0

.

� The R8r rule is treated analogously to the previous 
ase.
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� The R
 rule is applied to an assertion a : 9u

1

; : : : ; u

n

:P with u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

yielding the ABox A

0

. Then there exist abstra
t obje
ts a

(i)

j

with 1 � i � n and

1 � j � k

i

whi
h are fresh in A and 
on
rete obje
ts x

1

; : : : ; x

n

whi
h are fresh in

A su
h that, for 1 � i � n,

{ a

(i)

1

is f

(i)

1

-su

essor of a,

{ a

(i)

j

is f

(i)

j

-su

essor of a

(i)

j�1

for 1 < j � k

i

,

{ x

i

is g

i

-su

essor of a

(i)

k

i

, and

{ (x

1

; : : : ; x

n

) : P 2 A

0

.

Let I be a model of A. Sin
e a

I

2 (9u

1

; : : : ; u

n

:P )

I

, there exist domain elements

d

(i)

j

2 �

I

with 1 � i � n and 1 � j � k

i

and z

1

; : : : ; z

n

2 �

D

su
h that, for

1 � i � n, we have

{ (a

I

; d

(i)

1

) 2 (f

(i)

1

)

I

,

{ (d

(i)

j�1

; d

(i)

j

) 2 (f

(i)

j

)

I

for 1 < j � k

i

,

{ g

I

i

(d

(i)

k

i

) = z

i

, and

{ (z

1

; : : : ; z

n

) 2 P

D

.

De�ne I

0

as the interpretation obtained from I by setting

(a

(i)

j

)

I

0

:= d

(i)

j

for 1 � i � n and 1 < j � k

i

and

x

I

0

i

:= z

i

for all i with 1 � i � n:

It is straightforward to 
he
k that I

0

is a model of A

0

.

� Appli
ations of the R# rule are treated similar to the previous 
ase.

� Appli
ations of the R" rule are also treated similar to the R
 
ase.

� The Rfe rule is applied to assertions f(a; b) : f; (a; 
) : fg 2 A and repla
es 
 with b.

Let I be a model of A. Due to the presen
e of the above two assertions and sin
e

features are interpreted as partial fun
tions, we have b

I

= 


I

. It is readily 
he
ked

that this implies that I is a model of A

0

. The 
ase that two 
on
rete obje
ts are

identi�ed 
an be treated in the same way.

Lemma 3.11

Let A be an ABox. If A is 
omplete and 
lash-free, then it is 
onsistent.

Proof. Based on A, a 
anoni
al interpretation I 
an be de�ned as follows. Fix a

solution Æ for �

A

whi
h exists sin
e A is 
lash-free.

1. �

I


onsists of all abstra
t obje
ts used in A,

2. A

I

:= fa 2 O

a

j a : A 2 Ag for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag for all g 2 N


F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O




.
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Note that I is well-de�ned: Sin
e the Rfe rule is not appli
able, f

I

and g

I

are

fun
tional for all f 2 N

aF

and g 2 N


F

. We prove that I is a model of A, i.e.,

that all assertions in A are satis�ed by I. It is an immediate 
onsequen
e of the

de�nition of I that (a; b) : R 2 A implies (a

I

; b

I

) 2 R

I

and (a; x) : g 2 A implies

g

I

(a

I

) = x

I

. Moreover, if (a: � b) 2 A, then a 6= b sin
e A is 
lash-free. Hen
e,

(a: � b) 2 A implies a

I

6= b

I

. Sin
e Æ is a solution for �

A

, (x

1

; : : : ; x

n

) : P 2 A

implies (x

I

1

; : : : ; x

I

n

) 2 P

D

. It thus remains to show that a : C 2 A implies a 2 C

I

.

This is done by indu
tion on the stru
ture of C. For the indu
tion start, we make a


ase distin
tion a

ording to the form of C:

� If C 2 N

C

, then the above 
laim is an immediate 
onsequen
e of the de�nition

of C.

� C = :E. Sin
e we assume all 
on
epts to be in negation normal form, E is a


on
ept name. Sin
e A is 
lash-free, a : E =2 A and, by de�nition of I, a =2 E

I

.

Hen
e, a 2 (:E)

I

.

� C = 9u

1

; : : : ; u

n

:P . Sin
e the R
 rule is not appli
able toA, there exist x

1

; : : : ; x

n

2

O




su
h that x

i

is u

i

-su

essor of a in A for 1 < i � n. By de�nition of I, we have

u

I

i

(a) = Æ(x

i

) for 1 < i � n. Furthermore, we have (x

1

; : : : ; x

n

) : P 2 A and, sin
e

Æ is a solution for �

P

, (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

. Summing up, a 2 (9u

1

; : : : ; u

n

:P )

I

.

� C = p

1

#p

2

. Sin
e the R# rule is not appli
able to A, there exists an obje
t b 2 O

a

whi
h is both a p

1

-su

essor and a p

2

-su

essor of a in A. By de�nition of I, we

have p

I

1

(a) = p

I

2

(a) = b and, hen
e, a 2 (p

1

#p

2

)

I

.

� C = p

1

"p

2

. Sin
e the R" rule is not appli
able to A, there exist b

1

; b

2

2 O

a

su
h

that b

1

is a p

1

-su

essor of a in A, b

2

is a p

2

-su

essor of a in A, and b

1

: � b

2

2 A.

Sin
e A is 
lash-free, we have b

1

6= b

2

. By de�nition of I, we have p

I

1

(a) = b

1

and

p

I

2

(a) = b

2

and, hen
e, a 2 (p

1

"p

2

)

I

.

� C = g". Sin
e A is 
lash-free, a has no g-su

essor x in A. By de�nition of I,

g

I

(a) is unde�ned and hen
e a 2 (g")

I

.

For the indu
tion step, we make a 
ase analysis a

ording to the topmost 
onstru
tor

in C.

� C = C

1

uC

2

. Sin
e the Ru rule is not appli
able to A, we have fC

1

; C

2

g � A(a).

By indu
tion, a 2 C

I

1

and a 2 C

I

2

, whi
h implies a 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous 
ase.

� C = 9R:E. Sin
e neither the R9f nor the R9r rule is appli
able to A, there exists

an obje
t b 2 O

a

su
h that b is an R-su

essor of a in A and E 2 A(b). By

de�nition of I, b being an R-su

essor of a implies (a; b) 2 R

I

. By indu
tion, we

have b 2 E

I

and may hen
e 
on
lude a 2 (9R:E)

I

.

� C = 8R:E. Let b 2 �

I

su
h that (a; b) 2 R

I

. By de�nition of I, b is an R-

su

essor of a in A. Sin
e neither the R8f not the R8r rule is appli
able to A, we

have E 2 A(b). By indu
tion, it follows that b 2 E

I

. Sin
e this holds for all b, we


an 
on
lude a 2 (8R:E)

I

.

In the following, the i-th re
ursion step denotes the re
ursion step of the extended


ompletion algorithm in whi
h the 
ounter s
 has value i.
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Proposition 3.12 (Soundness)

If the 
ompletion algorithm returns satis�able, then the input 
on
ept is satis�able.

Proof. Assume that the 
ompletion algorithm is started on an input 
on
ept D and

there exists a way to make the non-deterministi
 de
isions su
h that the algorithm

returns satis�able. Moreover assume that the extended algorithm 
onstru
ts the ABox

A

n

[

if the non-deterministi
 de
isions are made in pre
isely the same way, i.e., the


ounter r
 has value n upon termination. We �rst establish the following 
laim:

Claim: A

n

[

is 
omplete and 
lash-free.

First for 
ompleteness. We distinguish several 
ases. First assume that a rule

R 2 fRu;Rt;R9f;R
;R#;R";R9rg

is appli
able to A

n

[

. This is due to the presen
e of an assertion a

i

: C in A

n

[

. If, e.g.,

R = Ru, then C has the form C

1

uC

2

. By 
onstru
tion of A

n

[

, this implies that a : C

is either part of the argument A to sat in the i-th re
ursion 
all or has been added to

A by the f
ompl fun
tion during the i-th re
ursion step. In either 
ase, if R 6= R9r,

the rule R has been applied to a : C by the f
ompl fun
tion during the i-th re
ursion

step, whi
h, again by 
onstru
tion of A

n

[

, implies that R is not appli
able to a

i

: C

in A

n

[

: 
ontradi
tion. If R = R9r, then C = 9R:E. Clearly, (a

i

; b

j

) : R and b

j

: C

(for some j > i) is added to A

n

[

due to a subsequent re
ursion 
all and we obtain a


ontradi
tion to the appli
ability of R9r to a

i

: C in A

n

[

.

Now assume that the R8f rule is appli
able to A

n

[

. This is due to the presen
e

of assertions a

i

: 8f:C and (a

i

; b

j

) : f in A

n

[

. Sin
e assertions (a

i

; b

j

) : f are only

added to A

n

[

be
ause of appli
ations of the rules R9f, R
, R#, and R" performed by

the f
ompl fun
tion, we have i = j. It follows that a : 8f:C and (a; b) : f are in A in

the i-th re
ursion step. Hen
e, the R8f rule is applied by f
ompl to these assertions.

This implies that b : C is in A in the i-th re
ursion step whi
h allows us to 
on
lude

b

i

: C 2 A

n

[

, a 
ontradi
tion.

Assume that R8r is appli
able to A

n

[

due to the presen
e of assertions a

i

: 8R:C

and (a

i

; b

j

) : R. By 
onstru
tion of A

n

[

, a

i

: 8R:C is in A in the i-th re
ursion step

and (a

i

; b

j

) : R has been added to A

n

[

due to a re
ursion 
all made during the i-th

re
ursion step. By de�nition of the annotated algorithm, these two fa
ts imply that

b

j

: C has also been added to A

n

[

in the i-th re
ursion step. Again a 
ontradi
tion.

To �nish the proof that A

n

[

is 
omplete, assume that Rfe is appli
able to A

n

[

due to

the presen
e of assertions (a

i

; b

j

) : f and (a

i

; 


`

) : f . Sin
e assertions (a

i

; b

j

) : f are

only added to A

n

[

be
ause of appli
ations of the rules R9f, R
, R#, and R" performed

by the f
ompl fun
tion, we have i = j = `. It follows that (a; b) : f and (a; 
) : f

are in A in the i-th re
ursion step. Hen
e, the Rfe rule is applied by f
ompl. This,

however, implies that either (a

i

; b

j

) : f or (a

i

; 


`

) : f is not in A

n

[

.

We now prove thatA

n

[

(a

i

) is 
lash-free. Assume fA;:Ag � A

n

[

(a

i

). Then fA;:Ag �

A(a) in the i-th re
ursion step. Sin
e A is 
lash-free in every re
ursion step (the algo-

rithm returned satis�able), we obtain a 
ontradi
tion. Clashes of the form a

i

: � a

i

2 A

n

[

are treated analogously. Now assume a

i

: g" and (a

i

; x

j

) : g are in A

n

[

. Sin
e asser-

tions (a

i

; x

j

) : g are only added due to appli
ations of the R
 rule by f
ompl, we have

i = j. It is again straightforward to derive a 
ontradi
tion.

It remains to show that A

n

[

is 
on
rete domain satis�able. For every i � n, let

A

i

be the ABox A in the i-th re
ursion step after the appli
ation of f
ompl and let
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Æ

i

be a solution for �

A

i

, whi
h exists sin
e A

i

is 
lash-free. De�ne Æ(x

i

) := Æ

i

(x

i

)

for all x

i

o

urring in A

n

[

. It is readily 
he
ked that Æ is a solution for �

A

n

[

: �x an

assertion ((x

1

)

h

1

; : : : ; (x

k

)

h

k

) : P 2 A

n

[

. Sin
e su
h assertions are only added due to

appli
ations of the R
 rule by f
ompl, there exists an i � n su
h that h

j

= i for all

j with 1 � j � k. Hen
e, (x

1

; : : : ; x

k

) : P 2 A

i

and (Æ

i

(x

1

); : : : ; Æ

i

(x

k

)) 2 P

D

. By

de�nition of Æ, it follows that (Æ((x

1

)

i

1

); : : : ; Æ((x

k

)

i

k

)) 2 P

D

, as was to be shown.

The proof of the 
laim is now �nished and we return to the proof of soundness.

By Lemma 3.11, the 
laim implies that A

n

[

is 
onsistent. By 
onstru
tion, we have

a

0

: D 2 A

n

[

. It immediately follows that D is satis�able.

Proposition 3.13 (Completeness)

If the 
ompletion algorithm is started on a satis�able input 
on
ept, then it returns

satis�able.

Proof. Sin
e the 
ompletion algorithm returns satis�able i� the extended algorithm

does, it suÆ
es to 
on
entrate on the extended algorithm. Let the extended 
omple-

tion algorithm be started on an input 
on
ept D that is satis�able. Then, the initial

ABox A

D

= fa : Dg is obviously 
onsistent. By Lemma 3.10 and due to the fa
t that

performing a re
ursion step 
orresponds to the appli
ation of rules from Figure 7, we


an make the non-deterministi
 de
isions of the extended algorithm su
h that every

ABox in the sequen
e A

0

[

;A

1

[

; : : : is 
onsistent. By Proposition 3.8 and sin
e the

extended algorithm terminates i� the original one does, this sequen
e is 
omprised

of a �nite number n of ABoxes. Moreover, the extended algorithm does not dete
t

a 
lash: if a 
lash is dete
ted in an ABox A, then we have A � A

n

[

up to variable

renaming whi
h 
learly 
ontradi
ts the 
onsisten
y of A

n

[

. Be
ause of this and again

due to Proposition 3.8, the algorithm terminates returning satis�able.

It may be viewed as a byprodu
t of the soundness and 
ompleteness proof that

ALCF(D) has the generalized tree model property de�ned in Se
tion 3.1: assume

that the extended algorithm is started with initial ABox A

D

= fa : Dg and that

D is satis�able. By Proposition 3.13 and the 
orresponden
e of the original and the

extended algorithm, the extended algorithm returns satis�able. From the proof of

Proposition 3.12, we learn that in this 
ase the ABox A

n

[

(where n is the value of the


ounter s
 upon termination) is 
omplete and 
lash-free. In the proof of Lemma 3.11,

a 
anoni
al model I of A

n

[

is 
onstru
ted where �

I

is the set of abstra
t obje
ts used

in A

n

[

. It is straightforward to 
he
k that this model is a generalized tree model for

D sin
e

1. a

0

: D is in A

n

[

,

2. the sets X

i

:= fa

i

j a

i

2 �

I

g for 0 � i � n are equivalen
e 
lasses w.r.t. I and �

as in De�nition 3.1, and

3. due to the re
ursive nature of the 
ompletion algorithm, the graph (V

I

; E

I

) (see

De�nition 3.1) is a tree.



PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 559

We now analyze the time and spa
e requirements of our algorithm.

Proposition 3.14

1. If D-satis�ability is in PSpa
e, then the 
ompletion algorithm 
an be exe
uted in

polynomial spa
e.

2. If D-satis�ability is in NExpTime, then the 
ompletion algorithm 
an be exe
uted

in nondeterministi
 exponential time.

3. If D-satis�ability is in ExpSpa
e, then the 
ompletion algorithm 
an be exe
uted

in exponential spa
e.

Proof. By Point 1 of Lemma 3.7 and Lemma 3.6, the maximum size of ABoxes A

en
ountered in re
ursion steps is bounded by p(jDj), where p is a polynomial. Sin
e,

by Point 3 of Lemma 3.7, the re
ursion depth is bounded by jDj, sat 
an be exe
uted

in polynomial spa
e if the 
he
k for 
on
rete domain satis�ability is not taken into

a

ount.

Assume that D-satis�ability is in PSpa
e. Sin
e the maximum size of ABoxes A

en
ountered in re
ursion steps is bounded by p(jDj), the maximum number of 
on-

jun
ts in predi
ate 
onjun
tions �

A


he
ked for 
on
rete domain satis�ability is also

bounded by p(jDj). Together with the fa
t that the 
omplexity 
lass PSpa
e is oblivi-

ous for polynomial blowups of the input, it follows that the 
ompletion algorithm 
an

be exe
uted in polynomial spa
e. Along the same lines, it 
an be shown that the

algorithm 
an be exe
uted in exponential spa
e if D-satis�ability is in ExpSpa
e.

Now assume that D-satis�ability is in NExpTime. From Lemma 3.6, we know that

f
ompl terminates after at most jAj

4

rule appli
ations if started on input A. Sin
e,

by Point 1 of Lemma 3.7, the size of its input is bounded by jDj

2

, it terminates after

at most jDj

8

rule appli
ations. Sin
e the re
ursion depth is bounded by jDj, and, by

Point 2 of Lemma 3.7, at most q(jDj) re
ursion 
alls are made per re
ursion step for

some polynomial q, sat 
an be exe
uted in nondeterministi
 exponential time if the


he
k for 
on
rete domain satis�ability is not taken into a

ount. By the bounds on

the re
ursion depth and the number of re
ursion 
alls per re
ursion steps, the number

of 
on
rete domain satis�ability 
he
ks performed is at most exponential in jDj. Sin
e

the size of predi
ate 
onjun
tions passed in ea
h step is bounded by p(D) and D-

satis�ability is in NExpTime, we 
an perform ea
h 
he
k in (non-deterministi
) time

exponential in jDj. Summing up, the sat algorithm an be exe
uted in nondeterministi


exponential time.

Combining this result with the PSpa
e lower bound of ALC-
on
ept satis�ability

[39℄ and using Savit
h's Theorem whi
h implies that PSpa
e = NPSpa
e and

ExpSpa
e = NExpSpa
e [37℄, we obtain the following theorem.

Theorem 3.15

Let D be an admissible 
on
rete domain.

1. IfD-satis�ability is in PSpa
e, then ALC(D)-
on
ept satis�ability andALCF(D)-


on
ept satis�ability are PSpa
e-
omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpa
eg, then ALC(D)-
on
ept sat-

is�ability and ALCF(D)-
on
ept satis�ability are also in C.

Sin
e lower 
omplexity bounds obviously transfer from D-satis�ability to ALCF(D)-


on
ept satis�ability, Point 2 of this theorem yields tight 
omplexity bounds if D-

satis�ability is NExpTime-
omplete or ExpSpa
e-
omplete (instead of just in the
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respe
tive 
lass). Moreover, sin
e subsumption 
an be redu
ed to (un)satis�ability

and vi
e versa, we obtain 
orresponding 
omplexity bounds for subsumption:

Corollary 3.16

Let D be an admissible 
on
rete domain.

1. If D-satis�ability is in PSpa
e, then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are PSpa
e-
omplete.

2. If D-satis�ability is in NExpTime, then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are in 
o-NExpTime.

3. If D-satis�ability is in ExpSpa
e then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are in ExpSpa
e.

4 ABox Consisten
y

In the pre
eding se
tion, we used ABoxes merely as a data stru
ture. However,

ABoxes are interesting in their own right sin
e they are frequently used to represent

assertional knowledge about the state of a�airs in a parti
ular \world". In this se
-

tion, we extend the 
omplexity results obtained in the previous se
tion from 
on
ept

satis�ability to ABox 
onsisten
y by devising a pre
ompletion algorithm in the style of

[13, 21℄. Most importantly, the extended algorithm yields a tight PSpa
e 
omplexity

bound for ALCF(D)-ABox 
onsisten
y if D-satis�ability is in PSpa
e.

4.1 The Algorithm

The algorithm works by redu
ing ABox 
onsisten
y to 
on
ept satis�ability. First,

a set of pre
ompletion rules is exhaustively applied to the input ABox A yielding a

pre
ompletion of A. Intuitively, rule appli
ation makes all impli
it knowledge in the

ABox expli
it ex
ept that it does not generate new R-su

essors for roles R 2 N

R

nN

aF

.

Then, several redu
tion 
on
epts are generated from the pre
ompletion and passed to

the 
on
ept satis�ability algorithm devised in the previous se
tion. The input ABox

is satis�able i� the pre
ompletion 
ontains no obvious 
ontradi
tion and all redu
tion


on
epts are satis�able.

The pre
ise formulation of the algorithm 
an be found in Figure 9. We assume

all 
on
epts in the input ABox to be in NNF. As already mentioned in Se
tion 3.3,

the pre
ompl fun
tion is identi
al to the f
ompl fun
tion in Figure 5 ex
ept that it

additionally applies the R8r rule. This is ne
essary sin
e, in 
ontrast to ABoxes

pro
essed by the sat algorithm, the input ABox to 
ons may 
ontain assertions of the

form (a; b) : R with R 2 N

R

nN

aF

. Although not generating new R-su

essors for roles

R 2 N

R

n N

aF

, the pre
ompletion algorithm does generate new f -su

essors and new

g-su

essors for features f 2 N

aF

and g 2 N


F

. Intuitively, the input ABox indu
es a

set of 
lusters of obje
ts as dis
ussed in Se
tion 3.1 and these 
lusters are 
onstru
ted

by the pre
ompl fun
tion.

Note that the 
onstru
tion of a redu
tion 
on
ept 
orresponds to a single appli
ation

of the R9r rule together with exhaustive appli
ation of the R8r rule very similar to

re
ursion 
alls of the sat fun
tions in Figure 5.
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de�ne pro
edure 
ons(A)

A := pre
ompl(A)

if A 
ontains a 
lash then

return in
onsistent

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : C u u

8R:E2A(a)

b : E) = unsatis�able then

return in
onsistent

return 
onsistent

de�ne pro
edure pre
ompl(A)

while a rule from fRu;Rt;R8r;R8f;R9f;R
;R#;R";Rfeg

is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

return A

Fig. 9. The ALCF(D)-ABox 
onsisten
y algorithm.

4.2 Corre
tness and Complexity

Termination of the pre
ompletion algorithm is easily obtained.

Proposition 4.1

The pre
ompletion algorithm terminates on any input.

Proof. By Lemma 3.6, the pre
ompl fun
tion terminates, and, by Proposition 3.8,

the sat fun
tion also terminates.

We now prove soundness and 
ompleteness. In the following, an ABox A

0

is 
alled a

pre
ompletion of an ABox A i� A

0


an be obtained by applying the pre
ompl fun
tion

to A. Note that pre
ompl is non-deterministi
 (due to the use of the Rt rule) and

hen
e there may exist more than a single pre
ompletion for a given ABox A.

Proposition 4.2 (Soundness)

If the pre
ompletion algorithm returns 
onsistent, then the input ABox is 
onsistent.

Proof. If the algorithm is started on input ABox A returning 
onsistent, then there

exists a pre
ompletion A

p

for A that does not 
ontain a 
lash and all redu
tion


on
epts C

1

; : : : ; C

n

of A

p

that are passed as arguments to the sat algorithm are

satis�able. We show that this implies that A

p

has a model, whi
h, by Lemma 3.10

and the de�nition of pre
ompletion, proves the proposition.

Let I

1

; : : : ; I

n

be the models of the redu
tion 
on
epts C

1

; : : : ; C

n

and a

i

: 9R

i

:E

i

be the assertion in A

p

that triggered the 
onstru
tion of the redu
tion 
on
ept C

i

.

W.l.o.g., we assume that

� �

I

i

\�

I

j

= ; for 1 � i < j � n and

� �

I

i

\ O

a

= ; for 1 � i � n.
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For ea
h i with 1 � i � n, we �x an element d

i

2 �

I

i

with d

i

2 C

I

i

i

. Moreover, we

�x a solution Æ for �

A

p

, whi
h exists sin
e A

p

is 
lash-free. De�ne an interpretation

I as follows:

1. �

I

:= O

a

℄�

I

1

℄ � � � ℄�

I

n

,

2. A

I

:= fa 2 O

a

j a : A 2 A

p

g [

S

1�i�n

A

I

i

for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag [ f(a

i

; d

i

) j 1 � i � n and R = R

i

g

[

S

1�i�n

R

I

i

for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag [

S

1�i�n

g

I

i

for all g 2 N


F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O




.

I is well-de�ned: due to the non-appli
ability of the Rfe rule to A

p

, f

I

and g

I

are

fun
tional for all f 2 N

aF

and g 2 N


F

. The following 
laim is an easy 
onsequen
e of

the 
onstru
tion of I:

Claim: Let 1 � i � n. For all d 2 �

I

i

and C 2 sub(A

p

), d 2 C

I

i

implies d 2 C

I

.

It remains to show that I is a model of A

p

, i.e., that all assertions in A

p

are satis�ed

by I. For assertions of the form (a; b) : R and (a; x) : g, this is an immediate


onsequen
e of the de�nition of I. Assertions a: � b are satis�ed sin
e A

p

is 
lash-

free and assertions (x

1

; : : : ; x

n

) : P are satis�ed sin
e Æ is a solution for �

A

p

. It thus

remains to show that a : C 2 A

p

implies a 2 C

I

. This is done by indu
tion over

the stru
ture of C as in the proof of Lemma 3.11. The only di�eren
es are in the

following 
ases of the indu
tion step:

� a : 9R:E 2 A

p

. Then there is an i with 1 � i � n su
h that a = a

i

, R = R

i

, and

E = E

i

appears as a 
onjun
t in the redu
tion 
on
ept C

i

. By de�nition of I, we

have (a; d

i

) 2 R

I

. By the above 
laim together with d

i

2 C

I

i

i

, we have d

i

2 C

I

i

.

Sin
e E is a 
onjun
t in C

i

, this 
learly implies d

i

2 E

I

and thus a 2 (9R:E)

I

.

� a : 8R:E 2 A

p

. Fix a b 2 �

I

su
h that (a; b) 2 R

I

. Then either b is an R-

su

essor of a in A

p

or a = a

i

, R = R

i

, and b = d

i

for some 1 � i � n. The �rst


ase was already treated in the proof of Lemma 3.11. Hen
e, let us sti
k to the

se
ond 
ase. By 
onstru
tion of C

i

, E appears as a 
onjun
t in C

i

. By the 
laim,

we have d

i

2 C

I

i

and hen
e d

i

2 E

I

.

Proposition 4.3 (Completeness)

If the pre
ompletion algorithm is started on a 
onsistent input ABox, then it returns


onsistent.

Proof. Suppose that the algorithm is started on a 
onsistent ABoxA. By Lemma 3.10,

the pre
ompl fun
tion 
an apply the 
ompletion rules su
h that only 
onsistent ABoxes

are obtained. Hen
e, by Lemma 3.6, the pre
ompl fun
tion generates a 
onsistent pre-


ompletion A

p

of A. Consisten
y of A

p


learly implies that the redu
tion 
on
epts


onstru
ted from A

p

are satis�able. Sin
e, by Proposition 3.8, the sat fun
tion ter-

minates, the pre
ompletion algorithm also terminates and returns 
onsistent.

It remains to analyze the time and spa
e requirements of our algorithm.
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Proposition 4.4

1. If D-satis�ability is in PSpa
e, then the pre
ompletion algorithm 
an be exe
uted

in polynomial spa
e.

2. If D-satis�ability is in NExpTime, then the pre
ompletion algorithm 
an be exe-


uted in nondeterministi
 exponential time.

3. If D-satis�ability is in ExpSpa
e, then the pre
ompletion algorithm 
an be exe-


uted in exponential spa
e.

Proof. Let A be the input ABox to the pre
ompletion algorithm. By Lemma 3.6, the

pre
ompl fun
tion terminates after at most jAj

4

steps generating an ABox A

0

of size

at most jAj

6

. Sin
e all 
omplexity 
lasses mentioned in the proposition are oblivious

for polynomial blowups of the input, the 
on
rete domain satis�ability 
he
k does not

spoil the upper bound on the time/spa
e requirements. Con
erning the 
alls to the

sat fun
tion, it suÆ
es to refer to Proposition 3.14.

As in the previous se
tion, we use the PSpa
e lower bound of ALC-
on
ept satis�a-

bility and the fa
t that PSpa
e =NPSpa
e and ExpSpa
e =NExpSpa
e to obtain

the following theorem.

Theorem 4.5

Let D be an admissible 
on
rete domain.

1. If D-satis�ability is in PSpa
e, then ALC(D)-ABox 
onsisten
y and ALCF(D)-

ABox 
onsisten
y are PSpa
e-
omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpa
eg, then ALC(D)-ABox 
on-

sisten
y and ALCF(D)-ABox 
onsisten
y are also in C.

5 Applying the Results

We give some example appli
ations of the results just obtained by re
onsidering the


on
rete domains A and S introdu
ed in Se
tion 2. In order to apply Theorems 3.15

and 4.5, we need to determine the 
omplexity of A-satis�ability and S-satis�ability.

More pre
isely, we show that both problems are in NP.

Let us start with the 
on
rete domain A. The proof is by a redu
tion to mixed

integer programming (MIP), i.e., to linear programming where some of the variables

must take integer values. More pre
isely, a mixed integer programming problem has

the form Ax = b, where A is an m�n-matrix of rational numbers, x is an n-ve
tor of

variables, ea
h of them being either an integer variable or a rational variable, and b

is an m-ve
tor of rational numbers (see, e.g. [40℄). A solution of Ax = b is a mapping

Æ that assigns an integer to ea
h integer variable in x and a rational number to ea
h

rational variable in x su
h that the equality Ax = b holds. De
iding the satis�ability

of a MIP problem means to de
ide whether su
h a problem has a solution.

Proposition 5.1

A-satis�ability is in NP.

Proof.We sket
h a non-deterministi
 polynomial time algorithm for A-satis�ability.

The algorithm is based on several normalization steps, simple in
onsisten
y 
he
ks,

and a �nal 
all to an algorithm whi
h is 
apable of de
iding the satis�ability of MIP

problems.
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Let 
 be a �nite 
onjun
tion of A predi
ates. The following steps are exe
uted

sequentially to de
ide the satis�ability of 
:

1. Return unsatis�able if 
 
ontains the ?

A

predi
ate.

2. Eliminate all o

urren
es of the >

A

predi
ate from 
 and 
all the result 


1

.

3. Eliminate ea
h o

urren
e of predi
ates int, P

q

, and +:

� repla
e ea
h 
onjun
t int(x) with the 
onjun
ts

>(x; f); int(f); =

1

(o); +(f; o; f

0

); <(x; f

0

);

where f; f

0

; o are fresh (i.e. previously unused) variables.

� repla
e ea
h 
onjun
t P

q

(x) (where P 2 f<;�; 6=;�; >g and q 2 Q) with the

two 
onjun
ts =

q

(f) and P (x; f), where f is a fresh variable.

� repla
e ea
h 
onjun
t +(x; y; z) with +(x; y; f) and 6=(f; z), where f is a fresh

variable.

Call the result 


2

4. Eliminate ea
h o

urren
e of the predi
ates �, 6=, �, and > in 


2

: 
onjun
ts

�(x; y) are non deterministi
ally repla
ed with either <(x; y) or =(x; y). The

other predi
ates 
an be treated similarly. Call the result 


3

. Note that 


3

does

only 
ontain the predi
ates int, =

q

, <, =, and +.

5. Transform 


3

into a MIP problem in the obvious way:

� every variable x used in 


3

su
h that int(x) is a 
onjun
t of 


3

be
omes an

integer variable in the MIP problem. All other variables appearing in 


3

be
ome

rational variables;

� every 
onjun
t =

q

(x) is translated into an equation x = q;

� every 
onjun
t =(x; y) is translated into an equation x� y = 0;

� every 
onjun
t <(x; y) is translated into an equation x + s� y = 0, where s is

a fresh rational variable (also known as sla
k variable);

� every 
onjun
t +(x; y; z) is translated into an equation x+ y � z = 0.

Use a standard NP algorithm to de
ide the satis�ability of this problem and return

the result.

It is straightforward to prove the 
orre
tness of the sket
hed algorithm by showing that

(i) ea
h of the normalization steps preserves (un)satis�ability, and (ii) the redu
tion

to MIP is 
orre
t. Moreover, it is not hard to see that the algorithm 
an be exe
uted

in nondeterministi
 polynomial time: ea
h of the normalization steps leads to at most

a polynomial blowup of the size of the predi
ate 
onjun
tion. Finally, de
iding the

satis�ability of MIP problems 
an be done in NP [14℄.

An appli
ation of Theorems 3.15 and 4.5 immediately yields the 
omplexity of rea-

soning with the Des
ription Logi
 ALCF(A).

Corollary 5.2

ALCF(A)-
on
ept satis�ability andALCF(A)-ABox 
onsisten
y arePSpa
e-
omplete.

Now for the 
on
rete domain S. It is straightforward to redu
e S-satis�ability to the

satis�ability problem of so-
alled RCC8 networks [10, 36℄. Su
h a network is simply

a �nite set of assertions rd(X;Y ), where rd is a disjun
tion rel

0

_ � � � _ rel

k

of RCC8

relations and X and Y are region variables from some �xed set of variables V . A triple
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hU; T; Æi, where (U; T ) is a topology and Æ maps ea
h region variable from V to an

element of T , is a model of an RCC8 network N i�, for ea
h rel

0

_� � �_rel

k

(X;Y ) 2 N ,

there exists an i � k su
h that Æ(X) rel

i

Æ(Y ). N is satis�able i� it has a model.

Proposition 5.3

S-satis�ability is in NP.

Proof. It is easy to redu
e S-satis�ability to the satis�ability of RCC8 networks:

given a �nite 
onjun
tion 
 of predi
ates from �

S

, �rst eliminate any o

urren
es of

the >

s

predi
ate and return unsatis�able if 
 
ontains the ?

s

predi
ate; then repla
e

all predi
ates rel by the disjun
tion of all elements of RCC8 n frelg, where RCC8 de-

notes the set of all eight RCC8 relations; �nally, translate ea
h 
onjun
t in 
 into an

RCC8 assertion rd(X;Y ) in the obvious way. As shown by Renz and Nebel in [36℄,

the satis�ability of the resulting RCC8 network 
an be de
ided in nondeterministi


polynomial time. Moreover, every satis�able RCC8 network has a model in the topo-

logi
al spa
e RC

R

2

[35℄.

Again, we obtain the desired 
orollary by applying Theorems 3.15 and 4.5.

Corollary 5.4

ALCF(S)-
on
ept satis�ability andALCF(S)-ABox 
onsisten
y arePSpa
e-
omplete.

6 Dis
ussion and Related Work

In this paper, we have established tight 
omplexity bounds for 
on
ept- and ABox-

reasoning with the basi
 Des
ription Logi
 with 
on
rete domains ALC(D) and its

extensions with feature (dis)agreements ALCF(D). The upper bound for 
on
ept sat-

is�ability has been obtained by a 
ompletion algorithm that uses the tra
ing te
hnique

while the upper bound for ABox 
onsisten
y has been established by a pre
ompletion-

style redu
tion to 
on
ept satis�ability. We have stri
tly separated the algorithms for

these two reasoning problems sin
e this makes more expli
it the additional means

ne
essary for dealing with ABoxes instead of with 
on
epts. However, for the im-

plementation of DL reasoners that 
an de
ide ABox 
onsisten
y, it may be more

appropriate to use a \dire
t" ABox 
onsisten
y algorithm instead of redu
ing this

reasoning task to 
on
ept satis�ability. Considering the two algorithms developed in

this paper, it should be straightforward to devise su
h a dire
t algorithm.

Using an arithmeti
 
on
rete domain A and a spatial 
on
rete domain S, we have

demonstrated the relevan
e of the obtained 
omplexity results: sin
e A-satis�ability

and S-satis�ability are in NP, it follows from the established 
omplexity bounds

that 
on
ept- and ABox-reasoning with both ALCF(A) and ALCF(S) is PSpa
e-


omplete. We have also established upper bounds for the 
ase that D-satis�ability

is in NExpTime or ExpSpa
e. A rather expressive 
on
rete domain R based on

Tarski algebra (also known as real 
losed �elds), for whi
h R-satis�ability is Ex-

pSpa
e-
omplete, 
an be found in [30, 5℄. Using the results from this paper and the

obvious fa
t that D-satis�ability 
an be polynomially redu
ed to ALC(D)-
on
ept

satis�ability, we immediately obtain ExpSpa
e-
ompleteness of 
on
ept- and ABox-

reasoning with the Des
ription Logi
 ALC(R). Other important 
on
rete domains

that are 
aptured by the presented results are the temporal ones that 
an be found

in [33, 30, 27℄.
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The results presented in this paper have stimulated interesting further resear
h.

For example, in [3℄ the PSpa
e upper bound for ALCF(D)-
on
ept satis�ability

has been used to obtain a PSpa
e upper bound for reasoning with the interval-based

temporal Des
ription Logi
 T L-ALCF , whi
h was �rst des
ribed in [2℄. Perhaps most

interesting, it has been found that the PSpa
e upper bounds established in this paper

are fragile in the following sense: there exist several standard means of expressivity

whose addition to ALC(D) leads to the 
omplexity of reasoning leaping from PSpa
e-


ompleteness to NExpTime-
ompleteness|at least for so-
alled arithmeti
 
on
rete

domains [28, 30, 1℄. Examples for su
h means of expressivity in
lude a
y
li
 TBoxes,

inverse roles, nominals, and role 
onjun
tion. This is parti
ularly surprising sin
e

(i) the mentioned means of expressivity are usually 
onsidered \harmless" w.r.t. the


omplexity of reasoning, i.e., for most standard DLs, their addition does not 
hange

the 
omplexity of reasoning; (ii) many 
on
rete domains suggested in the literature

are arithmeti
; and (iii) there exist rather simple arithmeti
 
on
rete domains D|in

parti
ular some for whi
h D-satis�ability is in PTime.
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