
PSpa
e Reasoning with the

Des
ription Logi
 ALCF(D)

CARSTEN LUTZ, Institute for Theoreti
al Computer S
ien
e,

Te
hni
al University Dresden, 01062 Dresden, Germany.

E-mail: lutz�t
s.inf.tu-dresden.de

Abstra
t

Des
ription Logi
s (DLs), a family of formalisms for reasoning about
on
eptual knowledge,
an

be extended with
on
rete domains to allow an adequate representation of \
on
rete qualities" of

real-worlds entities su
h as their height, temperature, duration, and size. In this paper, we study

the
omplexity of reasoning with the basi
 DL with
on
rete domains ALC(D) and its extension

with so-
alled feature agreements and disagreements ALCF(D). We show that, for both logi
s,

the standard reasoning tasks
on
ept satis�ability,
on
ept subsumption, and ABox
onsisten
y are

PSpa
e-
omplete if the
on
rete domain D satis�es some natural
onditions.

Keywords: Des
ription Logi
s, Con
rete Domains, Feature (Dis)Agreements, Computational Com-

plexity

1 Motivation

Des
ription Logi
s (DLs) are a popular family of logi
al formalisms for the representa-

tion of and reasoning about
on
eptual knowledge [8℄. The basi
 entity for knowledge

representation with DLs are so-
alled
on
epts whi
h
an be understood as logi
al

formulas and are
onstru
ted from
on
ept names (unary predi
ates), role names

(binary relations), and
on
ept
onstru
tors. For example, the following
on
ept is

formulated in the basi
 propositionally
losed DL ALC [39℄ and des
ribes pro
esses

that are supervised by a human operator and involve only workpie
es that are not

radioa
tive:

Pro
ess u 9operator:Human u 8workpie
e::Radioa
tive:

In this
on
ept, Pro
ess, Human, and Radioa
tive are
on
ept names while operator

and workpie
e are role names.

A major limitation of knowledge representation with Des
ription Logi
s su
h as

ALC is that \
on
rete qualities" of real world entities, su
h as their weight, temper-

ature, and spatial extension,
annot be adequately represented. For example, ALC

does not o�er suitable means of expressivity for extending the above des
ription of

a pro
ess with information about its
ost and duration, or about the relationship

between the pro
ess'
ost and the hourly wage of its operator. To allow an adequate

representation of
on
rete qualities of real-world entities, Des
ription Logi
s are fre-

quently extended by so-
alled
on
rete domains, whi
h have �rst been proposed by

Baader and Hans
hke in [4℄ and then further developed in several dire
tions,
.f. the

survey arti
le [32℄. A
on
rete domain
onsists of a set su
h as the natural numbers

and a set of predi
ates su
h as the unary \=

60

" and the binary \>" with the obvious,

535

L. J. of the IGPL, Vol. 10 No. 5, pp. 535{568 2002

 Oxford University Press

536 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

�xed extension. The integration of
on
rete domains into the Des
ription Logi
 ALC

is a
hieved by adding

1. so-
alled abstra
t features, whi
h are fun
tional relations;

2. so-
alled
on
rete features, whi
h are (partial) fun
tions asso
iating values from

the
on
rete domain (e.g., natural numbers) to logi
al obje
ts;

3. a
on
rete domain-based
on
ept
onstru
tor.

The DL that is obtained by extending ALC in this way is
alled ALC(D), where

D denotes a
on
rete domain that
an be viewed as a parameter to the logi
. For

example, when using a suitable
on
rete domain D, we
an extend the above pro
ess

des
ription as desired: the ALC(D)-
on
ept

Pro
ess u 9duration:=

60

u 9
ost; operator wage:>

des
ribes a pro
ess whose duration is 60 minutes and whi
h
osts more than the

(hourly) wage of its operator. Here, the se
ond and third
onjun
t are instan
es of

the
on
rete domain
on
ept
onstru
tor, operator is an abstra
t feature, and duration,

ost, and wage are
on
rete features.

The representation of
on
rete qualities has been identi�ed as a
ru
ial task for a

vast number of appli
ations su
h as me
hani
al engineering [6℄, temporal and spatial

reasoning [16, 27℄, the semanti
 web [23, 24℄, and reasoning about entity relationship

(ER) diagrams [31℄. Consequently, apart fromALC(D) many other Des
ription Logi
s

with
on
rete domains have been proposed [16, 18, 20, 24, 27, 30, 29℄ and several

implemented Des
ription Logi
 reasoners su
h as
lassi
 [11℄ and RACER [17℄ provide

for some kind of
on
rete domain. However, despite the
onsiderable interest in DLs

with
on
rete domains and the fa
t that
omplexity analysis plays an important role in

the area of Des
ription Logi
s, only very re
ently resear
hers have begun to investigate

the
omputational
omplexity of reasoning with su
h logi
s [30℄. The
urrent paper

is devoted to establishing tight
omplexity bounds for reasoning with the fundamental

Des
ription Logi
 with
on
rete domains ALC(D). More pre
isely, we do not only

onsider the DL ALC(D), but also its extension with so-
alled feature agreements

and feature disagreements, two
on
ept
onstru
tors that are quite
losely related

to
on
rete domains. Using feature (dis)agreements, one
an for example des
ribe

pro
esses that have two subpro
esses, one of whi
h works on the same workpie
e as

the mother pro
ess, and the other on a di�erent one:

Pro
ess u (workpie
e # subpro
ess1 workpie
e) u (workpie
e " subpro
ess2 workpie
e):

In this
on
ept, the se
ond
onjun
t uses the feature agreement
onstru
tor, the third

onjun
t uses the feature disagreement
onstru
tor, and all lower
ase names denote

abstra
t features.

There are several motivations for
ombining
on
rete domains and feature (dis)agree-

ments in a single DL. First, there exists an obvious synta
ti
 similarity between feature

(dis)agreements and the
on
rete domain
on
ept
onstru
tor: both take sequen
es of

features as arguments. As we shall see in this paper, the similarity between
on
rete

domains and feature (dis)agreements is not only synta
ti
al: they are also amenable

to similar algorithmi
 te
hniques. Se
ond, the Des
ription Logi
 ALCF(D) resulting

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 537

from the extension of ALC(D) with feature (dis)agreements has already found appli-

ations in knowledge representation [25℄. And third, the PSpa
e-
ompleteness result

for reasoning withALCF(D) proved in Se
tion 3 allows to show PSpa
e-
ompleteness

of a well-known temporal Des
ription Logi
 [3℄.

Let us now outline the organization of this paper and des
ribe the obtained results in

more detail.

In Se
tion 2, we formally introdu
e
on
rete domains and the Des
ription Logi
s

ALC(D) and ALCF(D). Some example
on
rete domains are de�ned.

In Se
tion 3, tight PSpa
e
omplexity bounds for the satis�ability of ALC(D)-

on
epts and ALCF(D)-
on
epts are established. More pre
isely, we devise a tableau

algorithm for de
iding satis�ability of ALCF(D)-
on
epts whi
h uses the so-
alled

tra
ing te
hnique. This algorithm yields a PSpa
e upper bound for ALCF(D)-

on
ept satis�ability if the following
onditions are satis�ed:

� de
iding the satis�ability of �nite
onjun
tions of predi
ates from the
on
rete

domain D (this task is
alled \D-satis�ability" in what follows) is in PSpa
e;

� the
on
rete domain is \admissible", i.e., it satis�es some weak
losure
onditions

whi
h, in this paper, we will generally assume to hold.

The
orresponding PSpa
e lower bound is easily obtained sin
e ALC-
on
ept satis-

�ability is already PSpa
e-hard [39℄. Hen
e, both ALC(D)-
on
ept satis�ability and

ALCF(D)-
on
ept satis�ability are PSpa
e-
omplete if D-satis�ability is in PSpa
e.

Sin
e
on
ept subsumption, another important reasoning task for Des
ription Log-

i
s,
an easily be redu
ed to
on
ept (un)satis�ability and vi
e versa, we also obtain

that ALC(D)-
on
ept subsumption and ALCF(D)-
on
ept subsumption are PSpa
e-

omplete if D-satis�ability is in PSpa
e. Note that adding
on
rete domains and

feature (dis)agreements to ALC does thus not in
rease the
omplexity of reasoning.

This is parti
ularly interesting sin
e there exist several seemingly \harmless" means

of expressivity like a
y
li
 TBoxes and inverse roles, whose addition to ALC(D) makes

reasoning signi�
antly more diÆ
ult|namely NExpTime-
omplete [28, 30, 1℄. Thus,

the logi
 ALCF(D) is situated on the boundary of polynomial spa
e
omplexity.

Se
tion 4 is devoted to extending the results from Se
tion 3 to another standard rea-

soning task
alled ABox
onsisten
y. ABoxes are
ommonly used to des
ribe snap-

shots of the real world [7, 12, 17, 38, 41℄. For example, the following ALC(D)-ABox

des
ribes a pro
ess a and its subpro
ess b:

a : Pro
ess b : Pro
ess (a; b) : subpro
ess (a; x) : duration x : =

60

We use the pre
ompletion te
hnique from [13, 21℄ to show that ALCF(D)-ABox
on-

sisten
y is PSpa
e-
omplete if D-satis�ability is in PSpa
e. As in the
ase of
on
ept

satis�ability, this implies that the same holds for ALC(D)-ABox
onsisten
y.

In Se
tion 5, we demonstrate the relevan
e of the results obtained in Se
tions 3 and 4

by
onsidering two example
on
rete domains: the
on
rete domain A based on the

rational numbers with predi
ates su
h as <

27

, �, and +; and the
on
rete domain S

based on the set of regions in two-dimensional spa
e with a binary predi
ate for ea
h

of the well-known RCC8 topologi
al relations [10℄. We show that both A-satis�ability

and S-satis�ability is in NP and thus obtain that, for D 2 fA; Sg, ALCF(D)-
on
ept

538 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

satis�ability, ALCF(D)-
on
ept subsumption, and ALCF(D)-ABox
onsisten
y are

PSpa
e-
omplete.

The paper ends with a
on
lusion in Se
tion 6.

2 Preliminaries

We start this se
tion with introdu
ing
on
rete domains formally, then de�ne some

example
on
rete domains, and �nally des
ribe the Des
ription Logi
 ALCF(D) in

detail.

Definition 2.1 (Con
rete Domain)

A
on
rete domain D is a pair (�

D

;�

D

), where �

D

is a set and �

D

a set of predi
ate

names. Ea
h predi
ate name P 2 �

D

is asso
iated with an arity n and an n-ary

predi
ate P

D

� �

n

D

. Let V be a set of variables. A predi
ate
onjun
tion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary predi
ate for i < k and the x

(i)

j

are variables from V, is
alled

satis�able i� there exists a fun
tion Æ mapping the variables in
 to elements of �

D

su
h that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for ea
h i < k. Su
h a fun
tion is
alled a

solution for
. A
on
rete domain D is
alled admissible if the following
onditions

are satis�ed:

1. �

D

ontains a name >

D

for �

D

;

2. �

D

is
losed under negation, i.e., for ea
h n-ary predi
ate P 2 �

D

, we �nd another

predi
ate P 2 �

D

of arity n su
h that P

D

= �

n

D

n P

D

;

3. the satis�ability problem for �nite
onjun
tions of predi
ates is de
idable.

When devising algorithms for reasoning with Des
ription Logi
s that are equipped

with a
on
rete domain D, one important subtask usually is to de
ide the satis�abil-

ity of �nite
onjun
tions of predi
ates from �

D

as des
ribed in De�nition 2.1 [4, 30℄.

For brevity, we refer to this task as D-satis�ability. It is obvious that D-satis�ability

should be de
idable if the
on
rete domain D is to be used in a DL reasoning algo-

rithm. However, usually the slightly stronger requirement that D should be admissible

is adopted. In this arti
le, we follow this tradition and generally assume
on
rete do-

mains to be admissible.

Before we pro
eed to de�ning the Des
ription Logi
 ALCF(D) itself, let us in-

trodu
e two example
on
rete domains, an arithmeti
 one and a spatial one. The

arithmeti

on
rete domain A is de�ned by setting �

A

:= Q (i.e., the set of rational

numbers), and de�ning �

A

as the (smallest) set
ontaining the following predi
ates:

� a unary predi
ate >

A

with (>

A

)

A

= Q and a unary predi
ate ?

A

with (?

A

)

A

= ;;

� unary predi
ates int and int with (int)

A

= Z (where Z denotes the integers) and

(int)

A

= Q n Z;

� unary predi
ates P

q

for ea
h P 2 f<;�;=; 6=;�; >g and ea
h q 2 Q with (P

q

)

A

=

fq

0

2 Q j q

0

P qg;

� binary predi
ates <;�;=; 6=;�; > with the obvious extension;

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 539

a DC b a EC b a PO b a TPP b a NTPP b

ba
a

b

a

b
a b a b

Fig. 1. The RCC8 relations in two-dimensional spa
e.

� ternary predi
ates + and + with (+)

A

= f(q; q

0

; q

00

) 2 Q

3

j q + q

0

= q

00

g and

(+)

A

= Q

3

n (+)

A

.

As an example for an (unsatis�able)
onjun
tion of A-predi
ates,
onsider the follow-

ing one:

=

3

(x) ^>

1

(y) ^ int(y) ^+(x; y; z) ^ �(x; y; z

0

) ^ �(z; z

0

):

It is easily
he
ked that the
on
rete domain A satis�es Conditions 1 and 2 of ad-

missibility (Condition 3 will be treated in Se
tion 5). The other
on
rete domain

onsidered in this paper is related to the RCC-8
al
ulus and is
alled S. RCC-8

provides a set of eight jointly exhaustive and pairwise disjoint relations that des
ribe

the possible relationships between any two regular
losed regions

1

in a topologi
al

spa
e [34, 10, 36℄. For 2D spa
e, these relations are illustrated in Figure 1, where

the equality relation EQ, the inverse TPPI of TPP, and the inverse NTPPI of NTPP

have been omitted. The
on
rete domain S is de�ned by setting �

S

to the set RC

R

2

of all regular
losed subsets of R

2

and de�ning �

S

as the (smallest) set
ontaining the

following predi
ates:

� a unary predi
ate>

S

with (>

S

)

S

= RC

R

2

and a unary predi
ate?

S

with (?

S

)

S

= ;;

� binary predi
ates rel and rel for ea
h of the topologi
al relations rel su
h that

(rel)

S

= f(r

1

; r

2

) 2 RC

R

2

�RC

R

2

j r

1

rel r

2

g.

An example (unsatis�able) S-
onjun
tion is

>

S

(x) ^DC(x; y) ^ EC(y; z) ^NTPP (z; x) ^ PO(y; y):

It is easily
he
ked that S satis�es Conditions 1 and 2 of admissibility. For Property 3,

we again refer to Se
tion 5.

Based on
on
rete domains, we
an now de�ne ALCF(D)-
on
epts.

Definition 2.2 (ALCF(D) syntax)

Let N

C

, N

R

, and N

F

be pairwise disjoint and
ountably in�nite sets of
on
ept names,

role names, and
on
rete features. Furthermore, let N

aF

be a
ountably in�nite subset

of N

R

. The elements of N

aF

are
alled abstra
t features. An abstra
t path p is a

omposition f

1

� � � f

n

of n abstra
t features (n � 1). A
on
rete path u is a
omposition

f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

(n � 0) and a
on
rete feature g. Let D be

a
on
rete domain. The set of ALCF(D)-
on
epts is the smallest set su
h that

1. every
on
ept name is a
on
ept

1

A region r is regular
losed if it satis�es ICr = r, where C is the topologi
al
losure operator and I is the

topologi
al interior operator.

540 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

2. if C and D are
on
epts, R is a role name, g is a
on
rete feature, p

1

and p

2

are

abstra
t paths, u

1

; : : : ; u

n

are
on
rete paths, and P 2 �

D

is a predi
ate of arity

n, then the following expressions are also
on
epts:

:C; C uD; C tD; 9R:C; 8R:C; p

1

"p

2

; p

1

#p

2

; 9u

1

; : : : ; u

n

:P; and g":

We use > to abbreviate A t :A, where A is an arbitrary
on
ept name, and ? to

abbreviate :>. Moreover, we write 8p:C for 8f

1

: � � � 8f

k

:C if p = f

1

� � � f

k

and u"

for 8f

1

: � � � 8f

k

:g" if u = f

1

� � � f

k

g. An ALCF(D)-
on
ept that does not
ontain

sub
on
epts p

1

"p

2

and p

1

#p

2

is
alled ALC(D)-
on
ept. An ALC(D)-
on
ept that

does not use any abstra
t or
on
rete features is
alled ALC-
on
ept.

Throughout this paper, we use the letter A to denote
on
ept names, C, D, and E

to denote (possibly
omplex)
on
epts, R to denote role names, f to denote abstra
t

features, g to denote
on
rete features, p to denote abstra
t paths, u to denote
on
rete

paths, and P to denote predi
ate names from the
on
rete domain.

The Des
ription Logi
 ALCF(D) is equipped with a Tarski-style set-theoreti
 se-

manti
s that in
orporates the
on
rete domain D.

Definition 2.3 (ALCF(D) semanti
s)

An interpretation I is a pair (�

I

; �

I

), where �

I

is a set
alled the domain and �

I

the

interpretation fun
tion. The interpretation fun
tion maps

� ea
h
on
ept name C to a subset C

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

� ea
h
on
rete feature g to a partial fun
tion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a
on
rete path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � �),

and similarly for abstra
t paths. The interpretation fun
tion is extended to arbitrary

on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(p

1

"p

2

)

I

:= fd 2 �

I

j 9e

1

; e

2

2 �

I

: p

I

1

(d) = e

1

; p

I

2

(d) = e

2

; and e

1

6= e

2

g

(p

1

#p

2

)

I

:= fd 2 �

I

j 9e 2 �

I

: p

I

1

(d) = p

I

2

(d) = eg

(9u

1

; : : : ; u

n

:P)

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

for 1 � i � n

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg

An interpretation I is a model of a
on
ept C i� C

I

6= ;. A
on
ept C is satis�able

i� it has a model. C is subsumed by a
on
ept D (written C v D) i� C

I

� D

I

for

all interpretations I.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 541

It is well-known that, in Des
ription Logi
s providing for full negation su
h asALCF(D),

subsumption
an be redu
ed to (un)satis�ability and vi
e versa: C v D i� C u:D is

unsatis�able and C is satis�able i� C 6v ?. This allows us to
on
entrate on
on
ept

satis�ability in the remainder of this paper.

Note that feature (dis)agreements p

1

"p

2

and p

1

#p

2

take abstra
t paths as arguments

and are thus not
on
erned with elements from the
on
rete domain. However, if the

on
rete domain provides for equality and inequality predi
ates (as both A and S do),

it is obvious that we
an express (dis)agreement of
on
rete paths using the
on
rete

domain
onstru
tor. Also note that a 2 (p

1

"p

2

)

I

implies that p

I

1

(a) and p

I

1

(a) are

de�ned. Thus, p

1

"p

2

is not the negation of p

1

#p

2

(also see Se
tion 3.2 and Figure 3).

We should like to
omment on a minor di�eren
e between our variant of ALCF(D)

and the original version of ALC(D) as de�ned by Baader and Hans
hke [4℄: instead of

separating
on
rete and abstra
t features, Baader and Hans
hke de�ne only one type

of feature whi
h is interpreted as a partial fun
tion from �

I

to �

I

[�

D

. We prefer

the \typed" approa
h sin
e, in our opinion, it improves the readability of
on
epts.

Moreover, it is not hard to see that the
ombined features
an be \simulated" using

pairs of
on
rete and abstra
t features.

3 Con
ept Satis�ability

In the following, we devise a tableau algorithm for de
iding satis�ability of ALCF(D)-

on
epts that needs at most polynomial spa
e if D is admissible and D-satis�ability

is in PSpa
e. The algorithm also yields tight
omplexity bounds if D-satis�ability is

NExpTime-
omplete or ExpSpa
e-
omplete.

3.1 Overview

Sin
e there exist rather di�erent variants of tableau algorithms in Modal Logi
 and

First Order Logi
, we
all the family of tableau algorithms
ommonly used for De-

s
ription Logi
s
ompletion algorithms . The reader is referred to [9℄ for an overview

over su
h algorithms. Completion algorithms are
hara
terized by an underlying data

stru
ture, a set of
ompletion rules operating on this data stru
ture, and a (possibly

trivial) strategy for applying the rules. In prin
iple, a
ompletion algorithm starts

with an initial data stru
ture indu
ed by the
on
ept D whose satis�ability is to

be de
ided and repeatedly applies
ompletion rules a

ording to the strategy. Re-

peated rule appli
ation
an be thought of as making impli
it knowledge expli
it or

as
onstru
ting a
anoni
al model for the input
on
ept (represented in terms of the

underlying data stru
ture). The algorithm stops if it en
ounters a
ontradi
tion or if

no more
ompletion rules are appli
able. It returns satis�able i� the latter is the
ase

and no obvious
ontradi
tion was found, i.e., if the algorithm su

eeds in
onstru
ting

a (witness for a) model of the input
on
ept. Otherwise, it returns unsatis�able.

If a PSpa
e upper bound is to be proved using a
ompletion algorithm, some

additional e�orts have to be made. To simplify dis
ussion, let us
onsider the logi

ALC for the moment [39℄. A naive
ompletion algorithm for ALC does not yield a

PSpa
e upper bound sin
e there exist satis�able ALC-
on
epts all of whose models

are of size exponential in the
on
ept length [19, 39℄. Thus, an algorithm keeping

542 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

f

f#ff

f

Fig. 2. A model of the ALCF(D)-
on
ept f#ff .

the entire (representation of a) model in memory needs exponential spa
e in the

worst
ase. However, there exists a well-known way to over
ome this problem: the

key observation is that
anoni
al models I
onstru
ted by
ompletion algorithms

are tree models, i.e., they have the form of a tree if viewed as a graph with �

I

the set of vertexes and

S

R2N

R

R

I

the set of edges. It is suÆ
ient to
onsider only

su
h tree models sin
e ALC has the tree model property, whi
h means that ea
h

satis�able
on
ept has a tree model [19℄. To
he
k for the existen
e of tree models for

a given
on
ept, we may try to
onstru
t one by performing depth-�rst sear
h over

role su

essors keeping only paths of the tree model in memory. Sin
e, in the
ase of

ALC, the length of paths is at most polynomial in the length of the input
on
ept

[19℄, this te
hnique|whi
h is known as tra
ing [39℄|yields an algorithm that needs

at most polynomial spa
e in the worst
ase. Completion algorithms for ALC-
on
ept

satis�ability that use tra
ing are very similar to the well-known K-world algorithm

from Modal Logi
 [26℄.

The tra
ing te
hnique has to be modi�ed to deal with ALCF(D)-
on
epts for two

reasons:

(1) Due to the presen
e of feature (dis)agreements, ALCF(D) does not enjoy the

tree model property. For example, the
on
ept f#ff is satis�able but, due to the

fun
tionality of the abstra
t feature f , has only non-tree models su
h as the one

depi
ted in Figure 2.

(2) Due to the presen
e of the
on
rete domain
onstru
tor, even in tree models the

paths of the tree
annot be
onsidered in isolation. For example, the
anoni
al tree

model for the
on
ept 9(f

1

f

2

g); (f

0

1

f

0

2

g

0

):P is
omprised of two paths with edge labels

f

1

; f

2

; g and f

0

1

; f

0

2

; g

0

, respe
tively. However, sin
e the �nal node of the �rst path and

the �nal node of the se
ond path are elements of the
on
rete domain that must be

related via the predi
ate P , we have to
onsider both paths together.

Sin
e only abstra
t features (but no role names from N

R

n N

aF

) are admitted in fea-

ture (dis)agreements and the
on
rete domain
onstru
tor, it is not hard to see that

the des
ribed problems are due to substru
tures of models whose elements are
on-

ne
ted by abstra
t features, only. Based on this observation, we de�ne generalized

tree models.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 543

Definition 3.1 (Generalized Tree Model)

Let I be a model of an ALCF(D)-
on
ept C and de�ne a relation � on �

I

as follows:

d � e i� d = e or there exists an abstra
t path f

1

� � � f

k

and domain elements

d

0

; : : : ; d

k

2 �

I

su
h that d

0

= d; d

k

= e; and d

i+1

= f

I

i+1

(d

i

) or

d

i

= f

I

i+1

(d

i+1

) for i < k:

It is easy to see that � is an equivalen
e relation. By [d℄

�

, we denote the equivalen
e

lass of d 2 �

I

w.r.t. �. The model I is a generalized tree model of C i� I is a model

of C and the graph (V

I

; E

I

) de�ned as

V

I

:= f[d℄

�

j d 2 �

I

g

E

I

:= f([d℄

�

; [e℄

�

) j 9d

0

2 [d℄

�

; e

0

2 [e℄

�

su
h that

(d

0

; e

0

) 2 R

I

for some R 2 N

R

n N

aF

g

is a tree.

It will be a byprodu
t of the results obtained in this se
tion that ALCF(D) has the

generalized tree model property, i.e., that every satis�able ALCF(D)-
on
ept C has

a generalized tree model. Note that the identi�
ation of some kind of tree model

property is usually very helpful for devising de
ision pro
edures [42, 15℄. Our
om-

pletion algorithm for ALCF(D) uses tra
ing on generalized tree models: it keeps

only fragments of models I in memory that indu
e paths in the abstra
tion (V

I

; E

I

).

Intuitively, su
h a fragment
onsists of a sequen
e of \
lusters" of domain elements,

where ea
h
luster is an equivalen
e
lass w.r.t. the relation �, i.e., a set of elements

onne
ted by abstra
t features. Su

eeding
lusters in the sequen
e are
onne
ted

by roles from N

R

n N

aF

. Fortunately, as we shall see later, there always exists a gen-

eralized tree model I in whi
h the
ardinality of
lusters and the depth of the tree

(V

I

; E

I

) is at most polynomial in the length of the input
on
ept. We use these

fa
ts to devise a
ompletion algorithm for ALCF(D)-
on
ept satis�ability running in

polynomial spa
e.

The polynomial size of obje
t
lusters is also exploited for dealing with the
on-

rete domain. Along with
onstru
ting the \logi
al part" of the model for the input

on
ept, our
ompletion algorithm will build up a predi
ate
onjun
tion des
ribing

its \
on
rete part". This predi
ate
onjun
tion is required to be satis�able in order

for the
onstru
ted data stru
ture to represent a model (see the general des
ription

of
ompletion algorithms above). However, if this is done in a straightforward way,

the number of
onjun
ts in the predi
ate
onjun
tion may be
ome exponential in the

length of the input
on
ept|see e.g. the algorithm for ALC(D)
on
ept satis�ability

presented in [4℄. In our algorithm, we address this problem as follows: domain ele-

ments that are in di�erent
lusters of the generalized tree model are not
onne
ted

through abstra
t paths. Therefore, it
annot be enfor
ed that
on
rete su

essors of

domain elements from di�erent
lusters are related by a
on
rete predi
ate. This, in

turn, means that it is suÆ
ient to separately
he
k the satis�ability of predi
ate
on-

jun
tions asso
iated with
lusters. Sin
e the size of predi
ate
onjun
tions asso
iated

with a
luster is at most polynomial in the length of the input
on
ept, this separate

he
king allows to devise a PSpa
e algorithm (if D-satis�ability is in PSpa
e).

544 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

:(C uD) :C t :D :(C tD) :C u :D

:(9R:C) 8R::C :(8R:C) 9R::C

:(p

1

"p

2

) p

1

#p

2

t 8p

1

:? t 8p

2

:? :(p

1

#p

2

) p

1

"p

2

t 8p

1

:? t 8p

2

:?

::C C

:(9u

1

; : : : ; u

n

:P) 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") 9g:>

D

Fig. 3. The NNF rewrite rules.

3.2 The Completion Algorithm

In the following, we assume that
on
epts are in negation normal form (NNF), i.e.,

that negation o

urs only in front of
on
ept names. Every ALCF(D)-
on
ept C
an

be transformed into an equivalent one in NNF by exhaustively applying the rewrite

rules displayed in Figure 3 (re
all that P denotes the negation of the predi
ate P).

Let us start the presentation of the
ompletion algorithm by introdu
ing ABoxes as

the underlying data stru
ture.

Definition 3.2 (ABox Syntax)

Let O

a

and O

be
ountably in�nite and mutually disjoint sets of abstra
t obje
ts and

on
rete obje
ts. If C is an ALCF(D)-
on
ept, R 2 N

R

a role name, g a
on
rete

feature, a; b 2 O

a

, x; x

1

; : : : ; x

n

2 O

, and P 2 �

D

with arity n, then

a : C; (a; b) : R; (a; x) : g; (x

1

; : : : ; x

n

) : P; and a 6� b

are ABox assertions. An ABox is a �nite set of su
h assertions.

Let A be an ABox, a; b 2 O

a

and x 2 O

. We write A(a) to denote the set of
on
epts

fC j a : C 2 Ag. The abstra
t obje
t b is
alled R-su

essor of a in A i� (a; b) : R

is in A. The notions g-su

essor (for
on
rete features g), p-su

essor (for abstra
t

paths p), and u-su

essor (for
on
rete paths u) are de�ned analogously. In what

follows, we used a and b to denote abstra
t obje
ts and x to denote
on
rete obje
ts.

For proving the soundness and
ompleteness of the
ompletion algorithm to be

devised, it is
onvenient to equip ABoxes with a semanti
s:

Definition 3.3 (ABox Semanti
s)

In interpretations I, the interpretation fun
tion �

I

maps, additionally, abstra
t ob-

je
ts a to elements a

I

2 �

I

and
on
rete obje
ts x to elements x

I

2 �

D

. An

interpretation I satis�es an assertion

a : C i� a

I

2 C

I

;

(a; b) : R i� (a

I

; b

I

) 2 R

I

;

(a; x) : g i� g

I

(a

I

) = x

I

;

(x

1

; : : : ; x

n

) : P i� (x

I

1

; : : : ; x

I

n

) 2 P

D

;

a 6� b i� a

I

6= b

I

:

An interpretation I is
alled a model of an ABox A i� it satis�es every assertion in A.

An ABox is
alled
onsistent i� it has a model.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 545

It should be obvious how ABoxes
an be used to represent models. If the satis-

�ability of a
on
ept D is to be de
ided, the
ompletion algorithm is started with

the initial ABox for D de�ned as A

D

= fa : Dg. To keep the presentation of the

ompletion rules su

in
t, we introdu
e an operation that allows to introdu
e new

obje
ts on paths and
on
rete paths.

Definition 3.4 (\+" operation)

An abstra
t or
on
rete obje
t is
alled fresh w.r.t. an ABox A if it does not appear

in A. Let p = f

1

� � � f

n

be an abstra
t path (resp. u = f

1

� � � f

n

g be a
on
rete path).

By A + apb (resp. A + aux), where a 2 O

a

is used in A and b 2 O

a

(resp. x 2 O

),

we denote the ABox A

0

whi
h
an be obtained from A by
hoosing distin
t obje
ts

b

1

; : : : ; b

n

2 O

a

whi
h are fresh in A and setting

A

0

:= A[f(a; b

1

) : f

1

; : : : ; (b

n�1

; b) : f

n

g

(resp. A

0

:= A[f(a; b

1

) : f

1

; : : : ; (b

n�1

; b

n

) : f

n

; (b

n

; x) : gg:

When nesting the + operation, we omit bra
kets writing, e.g., A + ap

1

b + bp

2

 for

(A+ ap

1

b) + bp

2

.

The
ompletion rules
an be found in Figure 4. Note that the Rt rule is nondeter-

ministi
, i.e., it has more than one possible out
ome. Thus, the des
ribed
ompletion

algorithm is a nondeterministi
 de
ision pro
edure. Su
h an algorithm a

epts its

input (i.e. returns satis�able) i� there is some way to make the nondeterministi

de
isions su
h that a positive result is obtained. A
onvenient way to think of nonde-

terministi
 rules is that they \guess" the
orre
t out
ome, i.e., if there is an out
ome

whi
h, if
hosen, leads to a positive result, then this out
ome is in fa
t
onsidered.

Most
ompletion rules are standard and known from, e.g., [5℄ and [22℄. The R9f and

R8f rules are spe
ial in that they only deal with
on
epts 9f:C and 8f:C where f is

an abstra
t feature. As we will see later,
on
epts 9R:C and 8R:C with R 2 N

R

nN

aF

are not treated by
ompletion rules but through re
ursion
alls of the algorithm. The

Rfe rule also deserves some attention: it ensures that, for any obje
t a 2 O

a

, there

exists at most a single f -su

essor for ea
h f 2 N

aF

and at most a single g-su

essor

for ea
h g 2 N

F

. Redundant su

essors are eliminated by identi�
ation. This pro
ess

is often referred to as fork elimination (hen
e the name of the rule). In many
ases,

fork elimination is not expli
itly formulated as a
ompletion rule but viewed as an

integral part of the other
ompletion rules. In the presen
e of feature (dis)agreements,

this latter approa
h seems to be less transparent. Consider for example the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

g:

Assume the R9f rule is applied twi
e adding the assertions (a; b) : f

1

and (a;
) : f

2

.

Now, the R# rule is applied adding (a; b

0

) : f

1

and (a; b

0

) : f

2

. Clearly, we may now

apply the Rfe rule to the assertions (a; b) : f

1

and (a; b

0

) : f

1

. Say the rule appli
ation

repla
es b

0

by b, and we obtain the ABox

fa : 9f

1

:>; a : 9f

2

:>; a : f

1

#f

2

; (a; b) : f

1

; (a;
) : f

2

; (a; b) : f

2

g:

Obviously, we may now apply Rfe to (a;
) : f

2

and (a; b) : f

2

repla
ing b by
.

Observe that this latter fork elimination does not involve any obje
ts generated by

546 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

Ru if C

1

u C

2

2 A(a) and fC

1

; C

2

g 6� A(a)

then A := A [fa : C

1

; a : C

2

g

Rt if C

1

t C

2

2 A(a) and fC

1

; C

2

g \ A(a) = ;

then A := A [fa : Cg for some C 2 fC

1

; C

2

g

R9f if 9f:C 2 A(a) and there is no f -su

essor b of a with C 2 A(b)

then set A := A[f(a; b) : f; b : Cg for a b 2 O

a

fresh in A

R8f if 8f:C 2 A(a), b is an f -su

essor of a, and C =2 A(b)

then set A := A[fb : Cg

R
 if 9u

1

; : : : ; u

n

:P 2 A(a) and there exist no x

1

; : : : ; x

n

2 O

su
h that

x

i

is u

i

-su

essor of a for 1 � i � n and (x

1

; : : : ; x

n

) : P 2 A

then set A := (A+ au

1

x

1

+ � � �+ au

n

x

n

) [f(x

1

; : : : ; x

n

) : Pg

with x

1

; : : : ; x

n

2 O

fresh in A

R# if p

1

#p

2

2 A(a) and there is no b that is both

a p

1

-su

essor of a and a p

2

-su

essor of a

then set A := A+ ap

1

b+ ap

2

b for a b 2 O

a

fresh in A

R" if p

1

"p

2

2 A(a) and there are no b

1

; b

2

with

b

1

p

1

-su

essor of a, b

2

p

2

-su

essor of a, and (b

1

6� b

2

) 2 A

then set A := (A+ ap

1

b

1

+ ap

2

b

2

) [f(b

1

6� b

2

)g

for b

1

; b

2

2 O

a

fresh in A

Rfe if f(a; b) : f; (a;
) : fg � A and b 6=

(resp. f(a; x) : g; (a; y) : gg � A and x 6= y)

then repla
e b by
 in A (resp. x by y)

Fig. 4. Completion rules for ALCF(D).

the last \non-Rfe" rule appli
ation. To make su
h e�e
ts more transparent, we
hose

to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be
ontradi
tory.

Definition 3.5 (Clash)

With ea
h ABox A, we asso
iate a predi
ate
onjun
tion

�

A

=

^

(x

1

;:::;x

n

):P2A

P (x

1

; : : : ; x

n

):

The ABox A is
alled
on
rete domain satis�able i� �

A

is satis�able. It is said to

ontain a
lash i� one of the following
onditions applies:

1. fA;:Ag � A(a) for a
on
ept name A and obje
t a 2 O

a

,

2. (a 6� a) 2 A for some obje
t a 2 O

a

,

3. g" 2 A(a) for some a 2 O

a

su
h that there exists a g-su

essor of a, or

4. A is not
on
rete domain satis�able.

If A does not
ontain a
lash, then A is
alled
lash-free.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 547

de�ne pro
edure sat(A)

A := f
ompl(A)

if A
ontains a
lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : Cg [fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne pro
edure f
ompl(A)

while a rule from Figure 4 is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

return A

Fig. 5. The ALCF(D)-
on
ept satis�ability algorithm.

f

f

f

b

a

8f:9f:>

Fig. 6. The \yo-yo" e�e
t.

The
ompletion algorithm itself
an be found in Figure 5. We brie
y summarize

the strategy followed by the algorithm. The argument to sat is an ABox
ontaining

exa
tly one obje
t a 2 O

a

and only assertions of the form a : C. The algorithm uses

the f
ompl fun
tion to
reate all feature su

essors of a, all feature su

essors of these

feature su

essors and so on. However, f
ompl does not generate any R-su

essors

for role names R 2 N

R

n N

aF

. In other words, f
ompl generates a
luster of obje
ts

as des
ribed in Se
tion 3.1. After the
all to the f
ompl fun
tion, the algorithm

makes a re
ursion
all for ea
h role su

essor enfor
ed via an 9R:C assertion (with

R 2 N

R

n N

aF

). A single su
h re
ursion
all
orresponds to moving along a path in

a generalized tree model, i.e, to moving to a su

essor
luster of the
luster under

onsideration. Ea
h
luster of obje
ts is
he
ked separately for
ontradi
tions. Note

that, due to De�nition 3.5,
he
king for a
lash involves
he
king whether the predi
ate

onjun
tion �

A

is satis�able. This, in turn, is a de
idable problem sin
e we assume

D to be admissible.

548 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

R9r if 9R:C 2 A(a) with R 2 N

R

n N

aF

and

there is no R-su

essor b of a with C 2 A(b)

then set A := A [f(a; b) : R b : Cg for a b 2 O

a

fresh in A

R8r if 8R:C 2 A(a) with R 2 N

R

n N

aF

, b is a R-su

essor of a, and C =2 A(b)

then set A := A [fb : Cg

Fig. 7. Virtual
ompletion rules for ALCF(D).

Observe that f
ompl applies the Rfe rule with highest priority. Without this strat-

egy, the algorithm would not terminate:
onsider the ABox

A = fa : 8f:9f:>; (a; a) : f; (a; b) : fg:

This ABox, whi
h is depi
ted in the upper part of Figure 6, is en
ountered if, for

example, the algorithm is started on the input
on
ept f

0

#f

0

f u9f

0

:(8f:9f:>u9f:>).

Now assume that the
ompletion rules are applied to A without giving Rfe the highest

priority. This means that we
an apply the R8f rule and obtain b : 9f:>. We
an

then apply R9f generating (b;
) : f;
 : >. Fork elimination may now identify a and b

and thus we are ba
k at the initial situation (up to renaming). Clearly, this sequen
e

of rule appli
ations may be repeated inde�nitely|the algorithm does not terminate.

This \yo-yo" e�e
t was also des
ribed, e.g., in [9℄.

3.3 Corre
tness and Complexity

In this se
tion, we prove that the
ompletion algorithm is sound,
omplete, and termi-

nating and
an be exe
uted using only polynomial spa
e provided that D-satis�ability

is in PSpa
e. With D, we denote the input
on
ept to the
ompletion algorithm

whose satis�ability is to be de
ided.

We �rst prove termination of the algorithm. It is
onvenient to start with estab-

lishing an upper bound for the number of rule appli
ations performed by the f
ompl

fun
tion and,
losely related, an upper bound for the size of ABoxes generated by the

f
ompl fun
tion. Before we do this, let us introdu
e the two additional
ompletion

rules displayed in Figure 7, whi
h will play an important role in the termination and

orre
tness proofs. These rules are not applied expli
itly by the algorithm, but rather

an the re
ursion
alls of the sat fun
tion be viewed as a single appli
ation of the

R9r rule together with multiple appli
ations of the R8r rule. Let us now return to

the upper bounds for the f
ompl fun
tion. With foresight to the ABox
onsisten
y

algorithm to be devised in the next se
tion, we
onsider the pre
ompl fun
tion instead

of the f
ompl fun
tion, where pre
ompl is de�ned exa
tly as f
ompl ex
ept that it also

applies the R8r rule. A formal de�nition of the pre
ompl fun
tion
an be found in

Figure 9. It is not hard to see that upper bounds for the number of rule appli
ations

performed by pre
ompl or the size of ABoxes generated by pre
ompl also apply to the

f
ompl fun
tion: if the f
ompl fun
tions perform a
omputation on an input ABox

A, then pre
ompl
an perform pre
isely the same
omputation on the input ABox

A

0

obtained from A by repla
ing all sub
on
ept 8R:C appearing in A with
on
ept

names.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 549

In what follows, we use sub(C) to denote the set of sub
on
epts of the
on
ept C

and sub(A) to denote the union of the sets of sub
on
epts of all those
on
epts C that

appear in assertions a : C in the ABox A. Moreover, we use jCj to denote the length

of a
on
ept C, i.e., the number of symbols used to write it down. The size j�j of an

ABox assertion � is de�ned as jCj if � = a : C and 1 otherwise. The size jAj of an

ABox A is de�ned as the sum of the sizes of its assertions.

Lemma 3.6

For any input A, the fun
tion pre
ompl terminates after at most jAj

4

rule appli
ations

and
onstru
ts an ABox A

0

with jA

0

j � jAj

6

.

Proof. In the following, we
all assertions of the form a : C
on
ept assertions,

assertions of the form (a; b) : f or (a; x) : g feature assertions, and assertions of the

form (a; b) : R with R 2 N

R

n N

aF

role assertions.

The main task is to show that

pre
ompl terminates after at most jAj

4

rule appli
ations. (�)

For suppose that (�) has been shown. We
an then prove the lemma by making the

following two observations, whi
h
learly imply that the size of the ABox A

0

generated

by pre
ompl is bounded by jAj

6

.

(i) We have j�j < jAj for ea
h new assertion � added by rule appli
ation:
on
ept

assertions are the only kind of assertions that may have a size greater than one

and, if a
on
ept assertion a : C is added by rule appli
ation, then C 2 sub(A);

(ii) Ea
h rule appli
ation adds at most jAj new assertions: ea
h appli
ation adds

either no new assertions (the Rfe rule) or at most jCj new assertions, where a : C

is the
on
ept assertion appearing in the (instantiated) rule premise. In the latter

ase, we have jCj � jAj sin
e C is in sub(A).

Hen
e, let us prove (�). Let A

0

;A

1

; : : : be the sequen
e of ABoxes
omputed by

pre
ompl. More pre
isely, A

0

= A and A

i+1

is obtained from A

i

by the i-th rule

appli
ation performed by pre
ompl.

We �rst introdu
e some notions. For i � 0 and a 2 O

a

[O

, we use nm

i

(a) to

denote the set of names that a had \until A

i

". More pre
isely, nm

0

(a) = fag for all

a 2 O

a

[O

. If the Rfe rule is applied to an ABox A

i

renaming an obje
t a to b, then

nm

i+1

(b) = nm

i

(a) [nm

i

(b) and nm

i+1

(
) = nm

i

(
) for all
 6= b. For all other rule

appli
ations, we simply have nm

i+1

(a) = nm

i

(a) for all a 2 O

a

[O

. The following

properties, whi
h we summarize under the notion persisten
e, are easily proved using

the fa
t that assertions are never deleted:

� If a : C 2 A

i

and a 2 nm

j

(a

0

) for some j > i and a

0

2 O

a

, then a

0

: C 2 A

j

.

� if (a; b) : R 2 A

i

, a 2 nm

j

(a

0

), and b 2 nm

j

(b

0

) for some j > i and a

0

; b

0

2 O

a

, then

(a

0

; b

0

) : R 2 A

j

.

� If (a; x) : g 2 A

i

, a 2 nm

j

(a

0

), and x

0

2 nm

j

(x) for some j > i, a

0

2 O

a

, and

x

0

2 O

, then (a

0

; x

0

) : g 2 A

j

.

� If (x

1

; : : : ; x

n

) : P 2 A

i

and x

0

i

2 nm

j

(x

i

) for 1 � i � n, then (x

0

1

; : : : ; x

0

n

) : P 2 A

j

.

A
on
ept assertion a : C is
alled tou
hed in A

i

if there exists an a

0

2 nm

i

(a)

su
h that one of the �rst i rule appli
ations involved a

0

: C in the (instantiated)

550 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

rule premise and untou
hed otherwise. By ℄

feat

(A), we denote the number of feature

assertions in A. For role assertions (a; b) : R with R 2 N

R

n N

aF

, we use �

A

i

(a; b : R)

to denote the number of
on
epts 8R:C in sub(A) for whi
h there exist no a

0

2 nm

i

(a)

and b

0

2 nm

i

(b) su
h that one of the �rst i rule appli
ations involved both a

0

: 8R:C

and (a

0

; b

0

) : R in the (instantiated) rule premise.

For i � 0, de�ne

w(A

i

) :=

X

a:C is untou
hed in A

i

ja : Cj + ℄

feat

(A

i

) + jAj �

X

(a;b):R2A

i

�

A

i

(a; b : R):

We show that w(A

i+1

) < w(A

i

) for i � 0, whi
h implies that the length of the

sequen
e A

0

;A

1

; : : : is bounded by jAj

4

sin
e it is readily
he
ked that w(A

0

) � jAj

4

.

A
ase distin
tion is made a

ording to the
ompletion rule applied.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the Ru rule. By

de�nition of this rule and due to persisten
e, it is applied to an untou
hed assertion

a : C

1

u C

2

in A

i

: for suppose that a : C

1

u C

2

is tou
hed in A

i

. By de�nition

of \tou
hed", this implies that there exists an a

0

2 nm

i

(a) su
h that Ru has been

applied to a

0

: C

1

u C

2

in the j-th rule appli
ation for some j < i. By de�nition

of Ru, this implies fa

0

: C

1

; a

0

: C

2

g � A

j

. By persisten
e, we have fa : C

1

; a :

C

2

g � A

i

and, thus, the Ru rule is not appli
able to a : C

1

u C

2

in A

i

whi
h

is a
ontradi
tion. Hen
e, we have shown that a : C

1

u C

2

is untou
hed in A

i

.

Moreover, this assertion is
learly tou
hed in A

i+1

. The rule appli
ation generates

new
on
ept assertions a : C

1

and a : C

2

whi
h may both be untou
hed in A

i+1

.

Moreover, it generates no new feature and role assertions. By de�nition of the size

of assertions and the length of
on
epts, we have ja : C

1

u C

2

j > ja : C

1

j+ ja : C

2

j.

Thus w(A

i+1

) < w(A

i

).

� The Rt
ase is analogous to the previous
ase.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R8f rule. The rule

is applied to assertions a : 8f:C and (a; b) : f . Suppose that a : 8f:C is tou
hed

in A

i

, i.e., that the R8f rule has been applied in a previous step to an assertion

a

0

: 8f:C with a

0

2 nm

i

(a). It then added
 : C for an f -su

essor
 of a

0

. The

fa
ts that (i) Rfe is applied with highest priority, (ii) b is an f -su

essor of a in

A

i+1

, and (iii) the R8f rule is appli
able imply that we have
 2 nm

i

(b). This,

in turn, implies b : C 2 A

i

by persisten
e and we have obtained a
ontradi
tion

to the assumption that R8f is appli
able. Hen
e, we have shown that a : 8f:C is

untou
hed in A

i

. The assertion is tou
hed in A

i+1

. Rule appli
ation generates a

new assertion b : C that is untou
hed in A

i+1

. However, ja : 8f:Cj > jb : Cj. No

new feature or role assertions are generated.

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R8r rule. The rule

is applied to assertions a : 8R:C and (a; b) : R in A

i

. Due to persisten
e, there do

not exist a

0

2 nm

i

(a) and b

0

2 nm

i

(b) su
h that the R8r rule has previously been

applied to a

0

: 8R:C and (a

0

; b

0

) : R. Hen
e, �

A

i+1

(a; b : R) = �

A

i

(a; b : R)�1 and

the third summand of w(A

i

) ex
eeds the third summand of w(A

i+1

) by jAj. The

rule appli
ation adds no feature or role assertions and a single
on
ept assertion

b : C. Sin
e 8R:C 2 sub(A), we have jb : Cj < jAj and hen
e w(A

i+1

) < w(A

i

).

� Assume that A

i+1

is obtained from A

i

by an appli
ation of the R9f rule. As in

the Ru
ase, it is easy to show that the rule is applied to an untou
hed assertion

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 551

a : 9f:C. It generates new assertions (a; b) : f and b : C (and no new role

assertions). The assertion b : C is untou
hed in A

i+1

and a : 9f:C is tou
hed in

A

i+1

. The new feature assertion (a; b) : f yields ℄

feat

(A

i+1

) = ℄

feat

(A

i

)+1. On the

other hand, no role assertion is added and we
learly have ja : 9f:Cj > jb : Cj+ 1.

� The R
, R#, and R" rules tou
h a (due to persisten
e) previously untou
hed
on
ept

assertion a : C appearing in the instantiated premise and do not add new
on
ept

or role assertions. It is readily
he
ked that the number of feature assertions added

by rule appli
ation is smaller than ja : Cj.

� Assume that the Rfe rule is applied to an ABox A

i

. This obviously implies

℄

feat

(A

i+1

) < ℄

feat

(A

i

), i.e., the se
ond summand of w(A

i+1

) is stri
tly smaller

than the se
ond summand of w(A

i

). If the rule appli
ation renames a
on
rete

obje
t, these are the only
hanges and we are done. If an abstra
t obje
t is

renamed, some work is ne
essary to show that the �rst and third summand of

w(A

i+1

) are not greater than the
orresponding summands of w(A

i

). Assume

that a 2 O

a

is renamed to b. We then have nm

i+1

(b) = nm

i

(a) [nm

i

(b).

{ First summand. Let us �rst
onsider
on
ept assertions
 : C 2 A

i+1

\ A

i

.

Su
h an assertion is untou
hed in A

i+1

only if it is untou
hed in A

i

sin
e

(i) nm

i+1

(
) = nm

i

(
) if
 6= b and (ii) nm

i

(b) � nm

i+1

(b) if
 = b. More-

over, if there exists an assertion b : C 2 A

i+1

n A

i

due to variable renaming,

then a : C 2 A

i

n A

i+1

, and b : C being untou
hed in A

i+1

implies a : C being

untou
hed in A

i

sin
e nm

i

(a) � nm

i+1

(b). Hen
e, the �rst summand does not

in
rease.

{ Third summand. Let (
; d) : R 2 A

i+1

\ A

i

(implying
 6= a and d 6= a). We

distinguish several sub
ases:

1.
 6= b and d 6= b. Then,
learly, �

i

(
; d : R) = �

i+1

(
; d : R).

2.
 = b and d 6= b. By de�nition of �

i

, nm

i

(b) � nm

i+1

(b) implies

�

i

(b; d : R) � �

i+1

(b; d : R).

3.
 6= b and d = b. As previous
ase.

4.
 = d = b. As previous
ase.

Now let (
; d) : R 2 A

i+1

nA

i

(implying
 = b or d = b). We
an distinguish the

ases (i)
 = b, d 6= b, (ii) d = b,
 6= b, and (iii)
 = d = b. Sin
e all
ases are

similar, we
on
entrate on (i). In this
ase, (a; d) : R 2 A

i

n A

i+1

. Moreover,

nm

i

(a) � nm

i+1

(b) implies �

A

i+1

(b; d : R) � �

A

i

(a; d : R).

Summing up, the third summand may only de
rease but not in
rease.

The role depth of
on
epts is de�ned indu
tively as follows, where jpj denotes the

length of the abstra
t path p and juj denotes the length of the
on
rete path u

(in
luding the trailing
on
rete feature):

� rd(A) = rd(g") = 0;

� rd(9u

1

; : : : ; u

n

:P) = max(ju

1

j; : : : ; ju

n

j);

� rd(p

1

#p

2

) = rd(p

1

"p

2

) = max(jp

1

j; jp

2

j);

� rd(:C) = rd(C);

� rd(C uD) = rd(C tD) = max(rd(C); rd(D));

� rd(9R:C) = rd(8R:C) = rd(C) + 1;

552 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

We now prove a te
hni
al lemma that, together with Lemma 3.6, immediately yields

termination.

Lemma 3.7

Assume that the
ompletion algorithm was started with input D. Then

1. in ea
h re
ursion
all, the size jAj of the argument A passed to sat is bounded

by jDj

2

;

2. in ea
h re
ursion step of sat, at most p(jDj) re
ursion
alls are made, where p is a

polynomial; and

3. the re
ursion depth of sat is bounded by jDj.

Proof. Let us �rst prove Point 1. ABoxes passed to sat
ontain assertions of the

form a : C for a single obje
t a. Sin
e only
on
epts from sub(D) are generated

during rule appli
ation, the number of distin
t assertions of this form is bounded by

jsub(D)j � jDj. Obviously, the size of ea
h su
h assertion is also bounded by jDj

whi
h yields an upper bound of jDj

2

for the size of arguments to sat.

For Point 2, note that in ea
h re
ursion step, the number of re
ursion
alls made is

bounded by the number of assertions a : 9R:C in the ABox A obtained by appli
ation

of f
ompl. By Point 1, the size of argument ABoxes to sat is bounded by jDj

2

. Hen
e,

by Lemma 3.6, the size of A is bounded by p(jDj) where p is a polynomial and the

same bound applies to the number of re
ursion
alls made in ea
h re
ursion step.

We now turn to Point 3. As a
onsequen
e of (i) the fa
t that rule appli
ation

performed by f
ompl may not introdu
e
on
epts with a role depth greater than the

role depth of
on
epts that have already been in the ABox and (ii) the way in whi
h

the argument ABoxes for re
ursion
alls to sat are
onstru
ted, we have that the

role depth of
on
epts in the argument ABoxes passed to sat stri
tly de
reases with

re
ursion depth. It follows that the role depth ofD is an upper bound for the re
ursion

depth, i.e., the re
ursion depth is bounded by jDj.

Proposition 3.8

The
ompletion algorithm terminates on any input A

D

.

Proof. Immediate
onsequen
e of Lemma 3.6 and Points 2 and 3 from Lemma 3.7.

We now
ome to proving soundness and
ompleteness of the
ompletion algorithm.

Re
all that, intuitively, the
ompletion algorithm traverses a generalized tree model

in a depth-�rst manner without keeping the entire model in memory. For the proofs,

it is
onvenient to make the model traversed by the algorithm expli
it|or more

pre
isely the ABox representing it. To do this, we de�ne an extended version of

the
ompletion algorithm. This extended algorithm is identi
al to the original one

but additionally
onstru
ts a sequen
e of ABoxes A

0

[

;A

1

[

; : : :
olle
ting all assertions

that the algorithm generates. Hen
e, it returns satis�able if and only if the original

algorithm does. We will show that, if the extended algorithm is started on an initial

ABox A

D

and terminates after n steps returning satis�able, then the ABox A

n

[

de�nes

a
anoni
al model for A

D

. Sin
e the extended algorithm returns satis�able if the

original one does, this yields soundness. Completeness
an also be shown using the

orresponden
e between the two algorithms. Note that the extended version of the

algorithm is de�ned just to prove soundness and
ompleteness of the original version

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 553

* Initialization:

* r
 := s
 := 0

* A

0

[

:= fa

0

: Dg if A

D

= fa : Dg

de�ne pro
edure sat(A)

A := f
ompl(A)

if A
ontains a
lash then

return unsatis�able

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

* s
 := s
+ 1

* r
 := r
+ 1

Fix b 2 O

a

* A

r

[

:= A

r
�1

[

[f(a

s
�1

; b

s

) : Rg [fb

s

: Cg [

* fb

s

: E j a : 8R:E 2 A(a)g

if sat(fb : Cg [fb : E j 8R:E 2 A(a)g) = unsatis�able then

return unsatis�able

return satis�able

de�ne pro
edure f
ompl(A)

* A

0

:= A

while a rule R from Figure 4 is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

* r
 := r
+ 1

* N := A nA

0

* Repla
e ea
h a 2 O

a

(resp. x 2 O

) in N with a

s

(resp. x

s

)

* A

r

[

:= A

r
�1

[

[N

return A

Fig. 8. The extended satis�ability algorithm.

and we do not
laim that the extended version itself
an be exe
uted in polynomial

spa
e.

The extended algorithm
an be found in Figure 8. The extensions are marked

with asterisks. If the algorithm is started on the initial ABox A

D

= fa : Dg, we set

A

0

[

:= fa

0

: Dg. The algorithm uses two global variables s
 and r
, whi
h are both

initialized with the value 0. The �rst one is a
ounter for the number of
alls to the sat

fun
tion. The se
ond one
ounts the number of ABoxes A

i

[

that have already been

generated. The introdu
tion of the global variable s
 is ne
essary due to the following

te
hni
al problem: the obje
t names
reated by the algorithm are unique only within

the ABox
onsidered in a single re
ursion step. For the a

umulating ABoxes A

i

[

that
olle
t assertions from many re
ursion steps, we have to ensure that an obje
t a

from one re
ursion step
an be distinguished from a in a di�erent step sin
e these two

obje
ts do
learly not represent the same domain element in the
onstru
ted model.

To a
hieve this, obje
ts are renamed before new assertions are added to an ABox A

i

[

by indexing with the value of the
ounter s
.

554 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

Observe that, for i > 0, the ABox A

i

[

is obtained either

1. by multiple appli
ations of
ompletion rules from Figure 4 to the ABox A

i�1

[

or

2. by a re
ursion
all made while the
ounter r
 has value i� 1.

Let us be a little bit more pre
ise about the se
ond point. W.r.t. the sequen
e of

ABoxes A

0

[

;A

1

[

; : : : , re
ursion
alls
an be viewed as appli
ations of the
ompletion

rules displayed in Figure 7: if A

i

[

is obtained from A

i�1

[

by a re
ursion
all, then this is

equivalent to a single appli
ation of the R9r rule together with exhaustive appli
ation

of the R8r rule.

Non-appli
ability of all
ompletion rules to an ABox will be an important property

in what follows.

Definition 3.9 (Complete ABox)

An ABox A is
omplete i� no
ompletion rule from Figures 4 and 7 is appli
able to A.

The following two lemmas are
entral for proving soundness and
ompleteness.

Lemma 3.10

Let A be an ABox and R a
ompletion rule from Figure 4 or Figure 7 su
h that R

is appli
able to A. Then A is
onsistent i� R
an be applied su
h that the resulting

ABox A

0

is
onsistent.

Proof. Let us �rst deal with the \if" dire
tion. This is trivial if R 6= Rfe sin
e this

implies A � A

0

and, hen
e, every model of A

0

is also a model of A. Assume that the

Rfe rule is applied to assertions f(a; b) : f; (a;
) : fg 2 A and repla
es
 with b. Let

I be a model of A

0

. Constru
t an interpretation I

0

from I by setting

I

0

:= b

I

. It

is straightforward to
he
k that I

0

is a model of A. The
ase that Rfe is applied to

assertions f(a; x) : g; (a; y) : gg 2 A is analogous.

Now for the \only if" dire
tion. We make a
ase distin
tion a

ording to the

ompletion rule R.

� The Ru rule is applied to an assertion a : C

1

u C

2

and A

0

= A [fa : C

1

; a : C

2

g.

Let I be a model of A. Sin
e a

I

2 (C

1

u C

2

)

I

, we have a

I

2 C

I

1

and a

I

2 C

I

2

by

the semanti
s of ALCF(D), whi
h implies that I is also a model of A

0

.

� The Rt rule is applied to an assertion a : C

1

t C

2

. The rule
an be applied su
h

that either A

0

= A [fa : C

1

g or A

0

= A [fa : C

2

g. Let I be a model of A.

Sin
e a

I

2 (C

1

t C

2

)

I

, we have either a

I

2 C

I

1

or a

I

2 C

I

2

by the semanti
s of

ALCF(D). Hen
e, we
an apply the rule su
h that I is a model of A

0

.

� The R9f rule is applied to an assertion a : 9f:C yielding the ABox A

0

. Then

A

0

= A [f(a; b) : f; b : Cg where b is fresh in A. Let I be a model of A. Sin
e

a

I

2 (9f:C)

I

, there exists a d 2 �

I

su
h that f

I

(a

I

) = d and d 2 C

I

. Let I

0

be

the interpretation obtained from I by setting a

I

0

:= d. It is easily
he
ked that

I

0

is a model of A

0

.

� The R9r rule is treated analogously to the previous
ase.

� The R8f rule is applied to an assertion a : 8f:C and A

0

= A [fb : Cg where b is

an f -su

essor of a in A and A

0

. Let I be a model of A. Sin
e a

I

2 (8f:C)

I

and

f

I

(a

I

) = b

I

, we have b 2 C

I

. Hen
e, I is also a model of A

0

.

� The R8r rule is treated analogously to the previous
ase.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 555

� The R
 rule is applied to an assertion a : 9u

1

; : : : ; u

n

:P with u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

yielding the ABox A

0

. Then there exist abstra
t obje
ts a

(i)

j

with 1 � i � n and

1 � j � k

i

whi
h are fresh in A and
on
rete obje
ts x

1

; : : : ; x

n

whi
h are fresh in

A su
h that, for 1 � i � n,

{ a

(i)

1

is f

(i)

1

-su

essor of a,

{ a

(i)

j

is f

(i)

j

-su

essor of a

(i)

j�1

for 1 < j � k

i

,

{ x

i

is g

i

-su

essor of a

(i)

k

i

, and

{ (x

1

; : : : ; x

n

) : P 2 A

0

.

Let I be a model of A. Sin
e a

I

2 (9u

1

; : : : ; u

n

:P)

I

, there exist domain elements

d

(i)

j

2 �

I

with 1 � i � n and 1 � j � k

i

and z

1

; : : : ; z

n

2 �

D

su
h that, for

1 � i � n, we have

{ (a

I

; d

(i)

1

) 2 (f

(i)

1

)

I

,

{ (d

(i)

j�1

; d

(i)

j

) 2 (f

(i)

j

)

I

for 1 < j � k

i

,

{ g

I

i

(d

(i)

k

i

) = z

i

, and

{ (z

1

; : : : ; z

n

) 2 P

D

.

De�ne I

0

as the interpretation obtained from I by setting

(a

(i)

j

)

I

0

:= d

(i)

j

for 1 � i � n and 1 < j � k

i

and

x

I

0

i

:= z

i

for all i with 1 � i � n:

It is straightforward to
he
k that I

0

is a model of A

0

.

� Appli
ations of the R# rule are treated similar to the previous
ase.

� Appli
ations of the R" rule are also treated similar to the R

ase.

� The Rfe rule is applied to assertions f(a; b) : f; (a;
) : fg 2 A and repla
es
 with b.

Let I be a model of A. Due to the presen
e of the above two assertions and sin
e

features are interpreted as partial fun
tions, we have b

I

=

I

. It is readily
he
ked

that this implies that I is a model of A

0

. The
ase that two
on
rete obje
ts are

identi�ed
an be treated in the same way.

Lemma 3.11

Let A be an ABox. If A is
omplete and
lash-free, then it is
onsistent.

Proof. Based on A, a
anoni
al interpretation I
an be de�ned as follows. Fix a

solution Æ for �

A

whi
h exists sin
e A is
lash-free.

1. �

I

onsists of all abstra
t obje
ts used in A,

2. A

I

:= fa 2 O

a

j a : A 2 Ag for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag for all g 2 N

F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O

.

556 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

Note that I is well-de�ned: Sin
e the Rfe rule is not appli
able, f

I

and g

I

are

fun
tional for all f 2 N

aF

and g 2 N

F

. We prove that I is a model of A, i.e.,

that all assertions in A are satis�ed by I. It is an immediate
onsequen
e of the

de�nition of I that (a; b) : R 2 A implies (a

I

; b

I

) 2 R

I

and (a; x) : g 2 A implies

g

I

(a

I

) = x

I

. Moreover, if (a: � b) 2 A, then a 6= b sin
e A is
lash-free. Hen
e,

(a: � b) 2 A implies a

I

6= b

I

. Sin
e Æ is a solution for �

A

, (x

1

; : : : ; x

n

) : P 2 A

implies (x

I

1

; : : : ; x

I

n

) 2 P

D

. It thus remains to show that a : C 2 A implies a 2 C

I

.

This is done by indu
tion on the stru
ture of C. For the indu
tion start, we make a

ase distin
tion a

ording to the form of C:

� If C 2 N

C

, then the above
laim is an immediate
onsequen
e of the de�nition

of C.

� C = :E. Sin
e we assume all
on
epts to be in negation normal form, E is a

on
ept name. Sin
e A is
lash-free, a : E =2 A and, by de�nition of I, a =2 E

I

.

Hen
e, a 2 (:E)

I

.

� C = 9u

1

; : : : ; u

n

:P . Sin
e the R
 rule is not appli
able toA, there exist x

1

; : : : ; x

n

2

O

su
h that x

i

is u

i

-su

essor of a in A for 1 < i � n. By de�nition of I, we have

u

I

i

(a) = Æ(x

i

) for 1 < i � n. Furthermore, we have (x

1

; : : : ; x

n

) : P 2 A and, sin
e

Æ is a solution for �

P

, (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

. Summing up, a 2 (9u

1

; : : : ; u

n

:P)

I

.

� C = p

1

#p

2

. Sin
e the R# rule is not appli
able to A, there exists an obje
t b 2 O

a

whi
h is both a p

1

-su

essor and a p

2

-su

essor of a in A. By de�nition of I, we

have p

I

1

(a) = p

I

2

(a) = b and, hen
e, a 2 (p

1

#p

2

)

I

.

� C = p

1

"p

2

. Sin
e the R" rule is not appli
able to A, there exist b

1

; b

2

2 O

a

su
h

that b

1

is a p

1

-su

essor of a in A, b

2

is a p

2

-su

essor of a in A, and b

1

: � b

2

2 A.

Sin
e A is
lash-free, we have b

1

6= b

2

. By de�nition of I, we have p

I

1

(a) = b

1

and

p

I

2

(a) = b

2

and, hen
e, a 2 (p

1

"p

2

)

I

.

� C = g". Sin
e A is
lash-free, a has no g-su

essor x in A. By de�nition of I,

g

I

(a) is unde�ned and hen
e a 2 (g")

I

.

For the indu
tion step, we make a
ase analysis a

ording to the topmost
onstru
tor

in C.

� C = C

1

uC

2

. Sin
e the Ru rule is not appli
able to A, we have fC

1

; C

2

g � A(a).

By indu
tion, a 2 C

I

1

and a 2 C

I

2

, whi
h implies a 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous
ase.

� C = 9R:E. Sin
e neither the R9f nor the R9r rule is appli
able to A, there exists

an obje
t b 2 O

a

su
h that b is an R-su

essor of a in A and E 2 A(b). By

de�nition of I, b being an R-su

essor of a implies (a; b) 2 R

I

. By indu
tion, we

have b 2 E

I

and may hen
e
on
lude a 2 (9R:E)

I

.

� C = 8R:E. Let b 2 �

I

su
h that (a; b) 2 R

I

. By de�nition of I, b is an R-

su

essor of a in A. Sin
e neither the R8f not the R8r rule is appli
able to A, we

have E 2 A(b). By indu
tion, it follows that b 2 E

I

. Sin
e this holds for all b, we

an
on
lude a 2 (8R:E)

I

.

In the following, the i-th re
ursion step denotes the re
ursion step of the extended

ompletion algorithm in whi
h the
ounter s
 has value i.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 557

Proposition 3.12 (Soundness)

If the
ompletion algorithm returns satis�able, then the input
on
ept is satis�able.

Proof. Assume that the
ompletion algorithm is started on an input
on
ept D and

there exists a way to make the non-deterministi
 de
isions su
h that the algorithm

returns satis�able. Moreover assume that the extended algorithm
onstru
ts the ABox

A

n

[

if the non-deterministi
 de
isions are made in pre
isely the same way, i.e., the

ounter r
 has value n upon termination. We �rst establish the following
laim:

Claim: A

n

[

is
omplete and
lash-free.

First for
ompleteness. We distinguish several
ases. First assume that a rule

R 2 fRu;Rt;R9f;R
;R#;R";R9rg

is appli
able to A

n

[

. This is due to the presen
e of an assertion a

i

: C in A

n

[

. If, e.g.,

R = Ru, then C has the form C

1

uC

2

. By
onstru
tion of A

n

[

, this implies that a : C

is either part of the argument A to sat in the i-th re
ursion
all or has been added to

A by the f
ompl fun
tion during the i-th re
ursion step. In either
ase, if R 6= R9r,

the rule R has been applied to a : C by the f
ompl fun
tion during the i-th re
ursion

step, whi
h, again by
onstru
tion of A

n

[

, implies that R is not appli
able to a

i

: C

in A

n

[

:
ontradi
tion. If R = R9r, then C = 9R:E. Clearly, (a

i

; b

j

) : R and b

j

: C

(for some j > i) is added to A

n

[

due to a subsequent re
ursion
all and we obtain a

ontradi
tion to the appli
ability of R9r to a

i

: C in A

n

[

.

Now assume that the R8f rule is appli
able to A

n

[

. This is due to the presen
e

of assertions a

i

: 8f:C and (a

i

; b

j

) : f in A

n

[

. Sin
e assertions (a

i

; b

j

) : f are only

added to A

n

[

be
ause of appli
ations of the rules R9f, R
, R#, and R" performed by

the f
ompl fun
tion, we have i = j. It follows that a : 8f:C and (a; b) : f are in A in

the i-th re
ursion step. Hen
e, the R8f rule is applied by f
ompl to these assertions.

This implies that b : C is in A in the i-th re
ursion step whi
h allows us to
on
lude

b

i

: C 2 A

n

[

, a
ontradi
tion.

Assume that R8r is appli
able to A

n

[

due to the presen
e of assertions a

i

: 8R:C

and (a

i

; b

j

) : R. By
onstru
tion of A

n

[

, a

i

: 8R:C is in A in the i-th re
ursion step

and (a

i

; b

j

) : R has been added to A

n

[

due to a re
ursion
all made during the i-th

re
ursion step. By de�nition of the annotated algorithm, these two fa
ts imply that

b

j

: C has also been added to A

n

[

in the i-th re
ursion step. Again a
ontradi
tion.

To �nish the proof that A

n

[

is
omplete, assume that Rfe is appli
able to A

n

[

due to

the presen
e of assertions (a

i

; b

j

) : f and (a

i

;

`

) : f . Sin
e assertions (a

i

; b

j

) : f are

only added to A

n

[

be
ause of appli
ations of the rules R9f, R
, R#, and R" performed

by the f
ompl fun
tion, we have i = j = `. It follows that (a; b) : f and (a;
) : f

are in A in the i-th re
ursion step. Hen
e, the Rfe rule is applied by f
ompl. This,

however, implies that either (a

i

; b

j

) : f or (a

i

;

`

) : f is not in A

n

[

.

We now prove thatA

n

[

(a

i

) is
lash-free. Assume fA;:Ag � A

n

[

(a

i

). Then fA;:Ag �

A(a) in the i-th re
ursion step. Sin
e A is
lash-free in every re
ursion step (the algo-

rithm returned satis�able), we obtain a
ontradi
tion. Clashes of the form a

i

: � a

i

2 A

n

[

are treated analogously. Now assume a

i

: g" and (a

i

; x

j

) : g are in A

n

[

. Sin
e asser-

tions (a

i

; x

j

) : g are only added due to appli
ations of the R
 rule by f
ompl, we have

i = j. It is again straightforward to derive a
ontradi
tion.

It remains to show that A

n

[

is
on
rete domain satis�able. For every i � n, let

A

i

be the ABox A in the i-th re
ursion step after the appli
ation of f
ompl and let

558 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

Æ

i

be a solution for �

A

i

, whi
h exists sin
e A

i

is
lash-free. De�ne Æ(x

i

) := Æ

i

(x

i

)

for all x

i

o

urring in A

n

[

. It is readily
he
ked that Æ is a solution for �

A

n

[

: �x an

assertion ((x

1

)

h

1

; : : : ; (x

k

)

h

k

) : P 2 A

n

[

. Sin
e su
h assertions are only added due to

appli
ations of the R
 rule by f
ompl, there exists an i � n su
h that h

j

= i for all

j with 1 � j � k. Hen
e, (x

1

; : : : ; x

k

) : P 2 A

i

and (Æ

i

(x

1

); : : : ; Æ

i

(x

k

)) 2 P

D

. By

de�nition of Æ, it follows that (Æ((x

1

)

i

1

); : : : ; Æ((x

k

)

i

k

)) 2 P

D

, as was to be shown.

The proof of the
laim is now �nished and we return to the proof of soundness.

By Lemma 3.11, the
laim implies that A

n

[

is
onsistent. By
onstru
tion, we have

a

0

: D 2 A

n

[

. It immediately follows that D is satis�able.

Proposition 3.13 (Completeness)

If the
ompletion algorithm is started on a satis�able input
on
ept, then it returns

satis�able.

Proof. Sin
e the
ompletion algorithm returns satis�able i� the extended algorithm

does, it suÆ
es to
on
entrate on the extended algorithm. Let the extended
omple-

tion algorithm be started on an input
on
ept D that is satis�able. Then, the initial

ABox A

D

= fa : Dg is obviously
onsistent. By Lemma 3.10 and due to the fa
t that

performing a re
ursion step
orresponds to the appli
ation of rules from Figure 7, we

an make the non-deterministi
 de
isions of the extended algorithm su
h that every

ABox in the sequen
e A

0

[

;A

1

[

; : : : is
onsistent. By Proposition 3.8 and sin
e the

extended algorithm terminates i� the original one does, this sequen
e is
omprised

of a �nite number n of ABoxes. Moreover, the extended algorithm does not dete
t

a
lash: if a
lash is dete
ted in an ABox A, then we have A � A

n

[

up to variable

renaming whi
h
learly
ontradi
ts the
onsisten
y of A

n

[

. Be
ause of this and again

due to Proposition 3.8, the algorithm terminates returning satis�able.

It may be viewed as a byprodu
t of the soundness and
ompleteness proof that

ALCF(D) has the generalized tree model property de�ned in Se
tion 3.1: assume

that the extended algorithm is started with initial ABox A

D

= fa : Dg and that

D is satis�able. By Proposition 3.13 and the
orresponden
e of the original and the

extended algorithm, the extended algorithm returns satis�able. From the proof of

Proposition 3.12, we learn that in this
ase the ABox A

n

[

(where n is the value of the

ounter s
 upon termination) is
omplete and
lash-free. In the proof of Lemma 3.11,

a
anoni
al model I of A

n

[

is
onstru
ted where �

I

is the set of abstra
t obje
ts used

in A

n

[

. It is straightforward to
he
k that this model is a generalized tree model for

D sin
e

1. a

0

: D is in A

n

[

,

2. the sets X

i

:= fa

i

j a

i

2 �

I

g for 0 � i � n are equivalen
e
lasses w.r.t. I and �

as in De�nition 3.1, and

3. due to the re
ursive nature of the
ompletion algorithm, the graph (V

I

; E

I

) (see

De�nition 3.1) is a tree.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 559

We now analyze the time and spa
e requirements of our algorithm.

Proposition 3.14

1. If D-satis�ability is in PSpa
e, then the
ompletion algorithm
an be exe
uted in

polynomial spa
e.

2. If D-satis�ability is in NExpTime, then the
ompletion algorithm
an be exe
uted

in nondeterministi
 exponential time.

3. If D-satis�ability is in ExpSpa
e, then the
ompletion algorithm
an be exe
uted

in exponential spa
e.

Proof. By Point 1 of Lemma 3.7 and Lemma 3.6, the maximum size of ABoxes A

en
ountered in re
ursion steps is bounded by p(jDj), where p is a polynomial. Sin
e,

by Point 3 of Lemma 3.7, the re
ursion depth is bounded by jDj, sat
an be exe
uted

in polynomial spa
e if the
he
k for
on
rete domain satis�ability is not taken into

a

ount.

Assume that D-satis�ability is in PSpa
e. Sin
e the maximum size of ABoxes A

en
ountered in re
ursion steps is bounded by p(jDj), the maximum number of
on-

jun
ts in predi
ate
onjun
tions �

A

he
ked for
on
rete domain satis�ability is also

bounded by p(jDj). Together with the fa
t that the
omplexity
lass PSpa
e is oblivi-

ous for polynomial blowups of the input, it follows that the
ompletion algorithm
an

be exe
uted in polynomial spa
e. Along the same lines, it
an be shown that the

algorithm
an be exe
uted in exponential spa
e if D-satis�ability is in ExpSpa
e.

Now assume that D-satis�ability is in NExpTime. From Lemma 3.6, we know that

f
ompl terminates after at most jAj

4

rule appli
ations if started on input A. Sin
e,

by Point 1 of Lemma 3.7, the size of its input is bounded by jDj

2

, it terminates after

at most jDj

8

rule appli
ations. Sin
e the re
ursion depth is bounded by jDj, and, by

Point 2 of Lemma 3.7, at most q(jDj) re
ursion
alls are made per re
ursion step for

some polynomial q, sat
an be exe
uted in nondeterministi
 exponential time if the

he
k for
on
rete domain satis�ability is not taken into a

ount. By the bounds on

the re
ursion depth and the number of re
ursion
alls per re
ursion steps, the number

of
on
rete domain satis�ability
he
ks performed is at most exponential in jDj. Sin
e

the size of predi
ate
onjun
tions passed in ea
h step is bounded by p(D) and D-

satis�ability is in NExpTime, we
an perform ea
h
he
k in (non-deterministi
) time

exponential in jDj. Summing up, the sat algorithm an be exe
uted in nondeterministi

exponential time.

Combining this result with the PSpa
e lower bound of ALC-
on
ept satis�ability

[39℄ and using Savit
h's Theorem whi
h implies that PSpa
e = NPSpa
e and

ExpSpa
e = NExpSpa
e [37℄, we obtain the following theorem.

Theorem 3.15

Let D be an admissible
on
rete domain.

1. IfD-satis�ability is in PSpa
e, then ALC(D)-
on
ept satis�ability andALCF(D)-

on
ept satis�ability are PSpa
e-
omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpa
eg, then ALC(D)-
on
ept sat-

is�ability and ALCF(D)-
on
ept satis�ability are also in C.

Sin
e lower
omplexity bounds obviously transfer from D-satis�ability to ALCF(D)-

on
ept satis�ability, Point 2 of this theorem yields tight
omplexity bounds if D-

satis�ability is NExpTime-
omplete or ExpSpa
e-
omplete (instead of just in the

560 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

respe
tive
lass). Moreover, sin
e subsumption
an be redu
ed to (un)satis�ability

and vi
e versa, we obtain
orresponding
omplexity bounds for subsumption:

Corollary 3.16

Let D be an admissible
on
rete domain.

1. If D-satis�ability is in PSpa
e, then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are PSpa
e-
omplete.

2. If D-satis�ability is in NExpTime, then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are in
o-NExpTime.

3. If D-satis�ability is in ExpSpa
e then ALC(D)-
on
ept subsumption and

ALCF(D)-
on
ept subsumption are in ExpSpa
e.

4 ABox Consisten
y

In the pre
eding se
tion, we used ABoxes merely as a data stru
ture. However,

ABoxes are interesting in their own right sin
e they are frequently used to represent

assertional knowledge about the state of a�airs in a parti
ular \world". In this se
-

tion, we extend the
omplexity results obtained in the previous se
tion from
on
ept

satis�ability to ABox
onsisten
y by devising a pre
ompletion algorithm in the style of

[13, 21℄. Most importantly, the extended algorithm yields a tight PSpa
e
omplexity

bound for ALCF(D)-ABox
onsisten
y if D-satis�ability is in PSpa
e.

4.1 The Algorithm

The algorithm works by redu
ing ABox
onsisten
y to
on
ept satis�ability. First,

a set of pre
ompletion rules is exhaustively applied to the input ABox A yielding a

pre
ompletion of A. Intuitively, rule appli
ation makes all impli
it knowledge in the

ABox expli
it ex
ept that it does not generate new R-su

essors for roles R 2 N

R

nN

aF

.

Then, several redu
tion
on
epts are generated from the pre
ompletion and passed to

the
on
ept satis�ability algorithm devised in the previous se
tion. The input ABox

is satis�able i� the pre
ompletion
ontains no obvious
ontradi
tion and all redu
tion

on
epts are satis�able.

The pre
ise formulation of the algorithm
an be found in Figure 9. We assume

all
on
epts in the input ABox to be in NNF. As already mentioned in Se
tion 3.3,

the pre
ompl fun
tion is identi
al to the f
ompl fun
tion in Figure 5 ex
ept that it

additionally applies the R8r rule. This is ne
essary sin
e, in
ontrast to ABoxes

pro
essed by the sat algorithm, the input ABox to
ons may
ontain assertions of the

form (a; b) : R with R 2 N

R

nN

aF

. Although not generating new R-su

essors for roles

R 2 N

R

n N

aF

, the pre
ompletion algorithm does generate new f -su

essors and new

g-su

essors for features f 2 N

aF

and g 2 N

F

. Intuitively, the input ABox indu
es a

set of
lusters of obje
ts as dis
ussed in Se
tion 3.1 and these
lusters are
onstru
ted

by the pre
ompl fun
tion.

Note that the
onstru
tion of a redu
tion
on
ept
orresponds to a single appli
ation

of the R9r rule together with exhaustive appli
ation of the R8r rule very similar to

re
ursion
alls of the sat fun
tions in Figure 5.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 561

de�ne pro
edure
ons(A)

A := pre
ompl(A)

if A
ontains a
lash then

return in
onsistent

forall assertions 9R:C 2 A(a) with R 2 N

R

n N

aF

do

Fix b 2 O

a

if sat(fb : C u u

8R:E2A(a)

b : E) = unsatis�able then

return in
onsistent

return
onsistent

de�ne pro
edure pre
ompl(A)

while a rule from fRu;Rt;R8r;R8f;R9f;R
;R#;R";Rfeg

is appli
able to A do

Choose an appli
able rule R s.t. R = Rfe if Rfe is appli
able

Apply R to A

return A

Fig. 9. The ALCF(D)-ABox
onsisten
y algorithm.

4.2 Corre
tness and Complexity

Termination of the pre
ompletion algorithm is easily obtained.

Proposition 4.1

The pre
ompletion algorithm terminates on any input.

Proof. By Lemma 3.6, the pre
ompl fun
tion terminates, and, by Proposition 3.8,

the sat fun
tion also terminates.

We now prove soundness and
ompleteness. In the following, an ABox A

0

is
alled a

pre
ompletion of an ABox A i� A

0

an be obtained by applying the pre
ompl fun
tion

to A. Note that pre
ompl is non-deterministi
 (due to the use of the Rt rule) and

hen
e there may exist more than a single pre
ompletion for a given ABox A.

Proposition 4.2 (Soundness)

If the pre
ompletion algorithm returns
onsistent, then the input ABox is
onsistent.

Proof. If the algorithm is started on input ABox A returning
onsistent, then there

exists a pre
ompletion A

p

for A that does not
ontain a
lash and all redu
tion

on
epts C

1

; : : : ; C

n

of A

p

that are passed as arguments to the sat algorithm are

satis�able. We show that this implies that A

p

has a model, whi
h, by Lemma 3.10

and the de�nition of pre
ompletion, proves the proposition.

Let I

1

; : : : ; I

n

be the models of the redu
tion
on
epts C

1

; : : : ; C

n

and a

i

: 9R

i

:E

i

be the assertion in A

p

that triggered the
onstru
tion of the redu
tion
on
ept C

i

.

W.l.o.g., we assume that

� �

I

i

\�

I

j

= ; for 1 � i < j � n and

� �

I

i

\ O

a

= ; for 1 � i � n.

562 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

For ea
h i with 1 � i � n, we �x an element d

i

2 �

I

i

with d

i

2 C

I

i

i

. Moreover, we

�x a solution Æ for �

A

p

, whi
h exists sin
e A

p

is
lash-free. De�ne an interpretation

I as follows:

1. �

I

:= O

a

℄�

I

1

℄ � � � ℄�

I

n

,

2. A

I

:= fa 2 O

a

j a : A 2 A

p

g [

S

1�i�n

A

I

i

for all A 2 N

C

,

3. R

I

:= f(a; b) 2 O

a

�O

a

j (a; b) : R 2 Ag [f(a

i

; d

i

) j 1 � i � n and R = R

i

g

[

S

1�i�n

R

I

i

for all R 2 N

R

,

4. g

I

:= f(a; Æ(x)) 2 O

a

��

D

j (a; x) : g 2 Ag [

S

1�i�n

g

I

i

for all g 2 N

F

,

5. a

I

:= a for all a 2 O

a

, and

6. x

I

:= Æ(x) for all x 2 O

.

I is well-de�ned: due to the non-appli
ability of the Rfe rule to A

p

, f

I

and g

I

are

fun
tional for all f 2 N

aF

and g 2 N

F

. The following
laim is an easy
onsequen
e of

the
onstru
tion of I:

Claim: Let 1 � i � n. For all d 2 �

I

i

and C 2 sub(A

p

), d 2 C

I

i

implies d 2 C

I

.

It remains to show that I is a model of A

p

, i.e., that all assertions in A

p

are satis�ed

by I. For assertions of the form (a; b) : R and (a; x) : g, this is an immediate

onsequen
e of the de�nition of I. Assertions a: � b are satis�ed sin
e A

p

is
lash-

free and assertions (x

1

; : : : ; x

n

) : P are satis�ed sin
e Æ is a solution for �

A

p

. It thus

remains to show that a : C 2 A

p

implies a 2 C

I

. This is done by indu
tion over

the stru
ture of C as in the proof of Lemma 3.11. The only di�eren
es are in the

following
ases of the indu
tion step:

� a : 9R:E 2 A

p

. Then there is an i with 1 � i � n su
h that a = a

i

, R = R

i

, and

E = E

i

appears as a
onjun
t in the redu
tion
on
ept C

i

. By de�nition of I, we

have (a; d

i

) 2 R

I

. By the above
laim together with d

i

2 C

I

i

i

, we have d

i

2 C

I

i

.

Sin
e E is a
onjun
t in C

i

, this
learly implies d

i

2 E

I

and thus a 2 (9R:E)

I

.

� a : 8R:E 2 A

p

. Fix a b 2 �

I

su
h that (a; b) 2 R

I

. Then either b is an R-

su

essor of a in A

p

or a = a

i

, R = R

i

, and b = d

i

for some 1 � i � n. The �rst

ase was already treated in the proof of Lemma 3.11. Hen
e, let us sti
k to the

se
ond
ase. By
onstru
tion of C

i

, E appears as a
onjun
t in C

i

. By the
laim,

we have d

i

2 C

I

i

and hen
e d

i

2 E

I

.

Proposition 4.3 (Completeness)

If the pre
ompletion algorithm is started on a
onsistent input ABox, then it returns

onsistent.

Proof. Suppose that the algorithm is started on a
onsistent ABoxA. By Lemma 3.10,

the pre
ompl fun
tion
an apply the
ompletion rules su
h that only
onsistent ABoxes

are obtained. Hen
e, by Lemma 3.6, the pre
ompl fun
tion generates a
onsistent pre-

ompletion A

p

of A. Consisten
y of A

p

learly implies that the redu
tion
on
epts

onstru
ted from A

p

are satis�able. Sin
e, by Proposition 3.8, the sat fun
tion ter-

minates, the pre
ompletion algorithm also terminates and returns
onsistent.

It remains to analyze the time and spa
e requirements of our algorithm.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 563

Proposition 4.4

1. If D-satis�ability is in PSpa
e, then the pre
ompletion algorithm
an be exe
uted

in polynomial spa
e.

2. If D-satis�ability is in NExpTime, then the pre
ompletion algorithm
an be exe-

uted in nondeterministi
 exponential time.

3. If D-satis�ability is in ExpSpa
e, then the pre
ompletion algorithm
an be exe-

uted in exponential spa
e.

Proof. Let A be the input ABox to the pre
ompletion algorithm. By Lemma 3.6, the

pre
ompl fun
tion terminates after at most jAj

4

steps generating an ABox A

0

of size

at most jAj

6

. Sin
e all
omplexity
lasses mentioned in the proposition are oblivious

for polynomial blowups of the input, the
on
rete domain satis�ability
he
k does not

spoil the upper bound on the time/spa
e requirements. Con
erning the
alls to the

sat fun
tion, it suÆ
es to refer to Proposition 3.14.

As in the previous se
tion, we use the PSpa
e lower bound of ALC-
on
ept satis�a-

bility and the fa
t that PSpa
e =NPSpa
e and ExpSpa
e =NExpSpa
e to obtain

the following theorem.

Theorem 4.5

Let D be an admissible
on
rete domain.

1. If D-satis�ability is in PSpa
e, then ALC(D)-ABox
onsisten
y and ALCF(D)-

ABox
onsisten
y are PSpa
e-
omplete.

2. If D-satis�ability is in C 2 fNExpTime;ExpSpa
eg, then ALC(D)-ABox
on-

sisten
y and ALCF(D)-ABox
onsisten
y are also in C.

5 Applying the Results

We give some example appli
ations of the results just obtained by re
onsidering the

on
rete domains A and S introdu
ed in Se
tion 2. In order to apply Theorems 3.15

and 4.5, we need to determine the
omplexity of A-satis�ability and S-satis�ability.

More pre
isely, we show that both problems are in NP.

Let us start with the
on
rete domain A. The proof is by a redu
tion to mixed

integer programming (MIP), i.e., to linear programming where some of the variables

must take integer values. More pre
isely, a mixed integer programming problem has

the form Ax = b, where A is an m�n-matrix of rational numbers, x is an n-ve
tor of

variables, ea
h of them being either an integer variable or a rational variable, and b

is an m-ve
tor of rational numbers (see, e.g. [40℄). A solution of Ax = b is a mapping

Æ that assigns an integer to ea
h integer variable in x and a rational number to ea
h

rational variable in x su
h that the equality Ax = b holds. De
iding the satis�ability

of a MIP problem means to de
ide whether su
h a problem has a solution.

Proposition 5.1

A-satis�ability is in NP.

Proof.We sket
h a non-deterministi
 polynomial time algorithm for A-satis�ability.

The algorithm is based on several normalization steps, simple in
onsisten
y
he
ks,

and a �nal
all to an algorithm whi
h is
apable of de
iding the satis�ability of MIP

problems.

564 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

Let
 be a �nite
onjun
tion of A predi
ates. The following steps are exe
uted

sequentially to de
ide the satis�ability of
:

1. Return unsatis�able if

ontains the ?

A

predi
ate.

2. Eliminate all o

urren
es of the >

A

predi
ate from
 and
all the result

1

.

3. Eliminate ea
h o

urren
e of predi
ates int, P

q

, and +:

� repla
e ea
h
onjun
t int(x) with the
onjun
ts

>(x; f); int(f); =

1

(o); +(f; o; f

0

); <(x; f

0

);

where f; f

0

; o are fresh (i.e. previously unused) variables.

� repla
e ea
h
onjun
t P

q

(x) (where P 2 f<;�; 6=;�; >g and q 2 Q) with the

two
onjun
ts =

q

(f) and P (x; f), where f is a fresh variable.

� repla
e ea
h
onjun
t +(x; y; z) with +(x; y; f) and 6=(f; z), where f is a fresh

variable.

Call the result

2

4. Eliminate ea
h o

urren
e of the predi
ates �, 6=, �, and > in

2

:
onjun
ts

�(x; y) are non deterministi
ally repla
ed with either <(x; y) or =(x; y). The

other predi
ates
an be treated similarly. Call the result

3

. Note that

3

does

only
ontain the predi
ates int, =

q

, <, =, and +.

5. Transform

3

into a MIP problem in the obvious way:

� every variable x used in

3

su
h that int(x) is a
onjun
t of

3

be
omes an

integer variable in the MIP problem. All other variables appearing in

3

be
ome

rational variables;

� every
onjun
t =

q

(x) is translated into an equation x = q;

� every
onjun
t =(x; y) is translated into an equation x� y = 0;

� every
onjun
t <(x; y) is translated into an equation x + s� y = 0, where s is

a fresh rational variable (also known as sla
k variable);

� every
onjun
t +(x; y; z) is translated into an equation x+ y � z = 0.

Use a standard NP algorithm to de
ide the satis�ability of this problem and return

the result.

It is straightforward to prove the
orre
tness of the sket
hed algorithm by showing that

(i) ea
h of the normalization steps preserves (un)satis�ability, and (ii) the redu
tion

to MIP is
orre
t. Moreover, it is not hard to see that the algorithm
an be exe
uted

in nondeterministi
 polynomial time: ea
h of the normalization steps leads to at most

a polynomial blowup of the size of the predi
ate
onjun
tion. Finally, de
iding the

satis�ability of MIP problems
an be done in NP [14℄.

An appli
ation of Theorems 3.15 and 4.5 immediately yields the
omplexity of rea-

soning with the Des
ription Logi
 ALCF(A).

Corollary 5.2

ALCF(A)-
on
ept satis�ability andALCF(A)-ABox
onsisten
y arePSpa
e-
omplete.

Now for the
on
rete domain S. It is straightforward to redu
e S-satis�ability to the

satis�ability problem of so-
alled RCC8 networks [10, 36℄. Su
h a network is simply

a �nite set of assertions rd(X;Y), where rd is a disjun
tion rel

0

_ � � � _ rel

k

of RCC8

relations and X and Y are region variables from some �xed set of variables V . A triple

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 565

hU; T; Æi, where (U; T) is a topology and Æ maps ea
h region variable from V to an

element of T , is a model of an RCC8 network N i�, for ea
h rel

0

_� � �_rel

k

(X;Y) 2 N ,

there exists an i � k su
h that Æ(X) rel

i

Æ(Y). N is satis�able i� it has a model.

Proposition 5.3

S-satis�ability is in NP.

Proof. It is easy to redu
e S-satis�ability to the satis�ability of RCC8 networks:

given a �nite
onjun
tion
 of predi
ates from �

S

, �rst eliminate any o

urren
es of

the >

s

predi
ate and return unsatis�able if

ontains the ?

s

predi
ate; then repla
e

all predi
ates rel by the disjun
tion of all elements of RCC8 n frelg, where RCC8 de-

notes the set of all eight RCC8 relations; �nally, translate ea
h
onjun
t in
 into an

RCC8 assertion rd(X;Y) in the obvious way. As shown by Renz and Nebel in [36℄,

the satis�ability of the resulting RCC8 network
an be de
ided in nondeterministi

polynomial time. Moreover, every satis�able RCC8 network has a model in the topo-

logi
al spa
e RC

R

2

[35℄.

Again, we obtain the desired
orollary by applying Theorems 3.15 and 4.5.

Corollary 5.4

ALCF(S)-
on
ept satis�ability andALCF(S)-ABox
onsisten
y arePSpa
e-
omplete.

6 Dis
ussion and Related Work

In this paper, we have established tight
omplexity bounds for
on
ept- and ABox-

reasoning with the basi
 Des
ription Logi
 with
on
rete domains ALC(D) and its

extensions with feature (dis)agreements ALCF(D). The upper bound for
on
ept sat-

is�ability has been obtained by a
ompletion algorithm that uses the tra
ing te
hnique

while the upper bound for ABox
onsisten
y has been established by a pre
ompletion-

style redu
tion to
on
ept satis�ability. We have stri
tly separated the algorithms for

these two reasoning problems sin
e this makes more expli
it the additional means

ne
essary for dealing with ABoxes instead of with
on
epts. However, for the im-

plementation of DL reasoners that
an de
ide ABox
onsisten
y, it may be more

appropriate to use a \dire
t" ABox
onsisten
y algorithm instead of redu
ing this

reasoning task to
on
ept satis�ability. Considering the two algorithms developed in

this paper, it should be straightforward to devise su
h a dire
t algorithm.

Using an arithmeti

on
rete domain A and a spatial
on
rete domain S, we have

demonstrated the relevan
e of the obtained
omplexity results: sin
e A-satis�ability

and S-satis�ability are in NP, it follows from the established
omplexity bounds

that
on
ept- and ABox-reasoning with both ALCF(A) and ALCF(S) is PSpa
e-

omplete. We have also established upper bounds for the
ase that D-satis�ability

is in NExpTime or ExpSpa
e. A rather expressive
on
rete domain R based on

Tarski algebra (also known as real
losed �elds), for whi
h R-satis�ability is Ex-

pSpa
e-
omplete,
an be found in [30, 5℄. Using the results from this paper and the

obvious fa
t that D-satis�ability
an be polynomially redu
ed to ALC(D)-
on
ept

satis�ability, we immediately obtain ExpSpa
e-
ompleteness of
on
ept- and ABox-

reasoning with the Des
ription Logi
 ALC(R). Other important
on
rete domains

that are
aptured by the presented results are the temporal ones that
an be found

in [33, 30, 27℄.

566 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

The results presented in this paper have stimulated interesting further resear
h.

For example, in [3℄ the PSpa
e upper bound for ALCF(D)-
on
ept satis�ability

has been used to obtain a PSpa
e upper bound for reasoning with the interval-based

temporal Des
ription Logi
 T L-ALCF , whi
h was �rst des
ribed in [2℄. Perhaps most

interesting, it has been found that the PSpa
e upper bounds established in this paper

are fragile in the following sense: there exist several standard means of expressivity

whose addition to ALC(D) leads to the
omplexity of reasoning leaping from PSpa
e-

ompleteness to NExpTime-
ompleteness|at least for so-
alled arithmeti

on
rete

domains [28, 30, 1℄. Examples for su
h means of expressivity in
lude a
y
li
 TBoxes,

inverse roles, nominals, and role
onjun
tion. This is parti
ularly surprising sin
e

(i) the mentioned means of expressivity are usually
onsidered \harmless" w.r.t. the

omplexity of reasoning, i.e., for most standard DLs, their addition does not
hange

the
omplexity of reasoning; (ii) many
on
rete domains suggested in the literature

are arithmeti
; and (iii) there exist rather simple arithmeti

on
rete domains D|in

parti
ular some for whi
h D-satis�ability is in PTime.

Referen
es

[1℄ Carlos Are
es and Carsten Lutz. Con
rete domains and nominals united. In Carlos Are
es,

Patri
k Bla
kburn, Maarten Marx, and Ulrike Sattler, editors, Pro
eedings of the fourth Work-

shop on Hybrid Logi
s (HyLo'02), 2002.

[2℄ Alessandro Artale and Enri
o Fran
oni. A temporal des
ription logi
 for reasoning about a
tions

and plans. Journal of Arti�
ial Intelligen
e Resear
h (JAIR), 9:463{506, 1998.

[3℄ Alessandro Artale and Carsten Lutz. A
orresponden
e between temporal des
ription logi
s.

In Patri
k Lambrix, Alex Borgida, Maurizio Lenzerini, Ralf M�oller, and Peter Patel-S
hneider,

editors, Pro
eedings of the International Workshop on Des
ription Logi
s (DL'99), number 22

in CEUR-WS (http://
eur-ws.org/), pages 145{149, 1999.

[4℄ Franz Baader and Philipp Hans
hke. A s
heme for integrating
on
rete domains into
on
ept

languages. In Pro
eedings of the Twelfth International Joint Conferen
e on Arti�
ial Intelligen
e

(IJCAI-91), pages 452{457, Sydney, Australia, 1991.

[5℄ Franz Baader and Philipp Hans
hke. A s
heme for integrating
on
rete domains into
on
ept

languages. DFKI Resear
h Report RR-91-10, German Resear
h Center for Arti�
ial Intelligen
e

(DFKI), 1991.

[6℄ Franz Baader and Philipp Hans
hke. Extensions of
on
ept languages for a me
hani
al engi-

neering appli
ation. In Pro
eedings of the 16th German AI-Conferen
e (GWAI-92), volume 671

of Le
ture Notes in Computer S
ien
e, pages 132{143. Springer-Verlag, 1992.

[7℄ Franz Baader and Bernhard Hollunder. A terminologi
al knowledge representation system with

omplete inferen
e algorithm. In Pro
eedings of the Workshop on Pro
essing De
larative Knowl-

edge (PDK-91), volume 567 of Le
ture Notes in Arti�
ial Intelligen
e, pages 67{86. Springer-

Verlag, 1991.

[8℄ Franz Baader, Deborah L. M
Guiness, Daniele Nardi, and Peter Patel-S
hneider. The Des
rip-

tion Logi
 Handbook: Theory, implementation and appli
ations. Cambridge University Press,

2002. To appear.

[9℄ Franz Baader and Ulrike Sattler. Tableau algorithms for des
ription logi
s. In R. Dy
kho�,

editor, Pro
eedings of the International Conferen
e on Automated Reasoning with Tableaux and

Related Methods (Tableaux 2000), volume 1847 of Le
ture Notes in Arti�
ial Intelligen
e, pages

1{18. Springer-Verlag, 2000.

[10℄ Brandon Bennett. Modal logi
s for qualitative spatial reasoning. Journal of the Interest Group

in Pure and Applied Logi
, 4(1), 1997.

[11℄ Ronald J. Bra
hman, Deborah L. M
Guinness, Peter F. Patel-S
hneider, Lori Alperin Resni
k,

and Alexander Borgida. Living with
lassi
: When and how to use a KL-ONE-like language. In

John F. Sowa, editor, Prin
iples of Semanti
 Networks { Explorations in the Representation of

Knowledge,
hapter 14, pages 401{456. Morgan Kaufmann, 1991.

PSpa
e Reasoning with the Des
ription Logi
 ALCF(D) 567

[12℄ Giuseppe De Gia
omo and Maurizio Lenzerini. TBox and ABox reasoning in expressive des
rip-

tion logi
s. In Pro
eedings of the Fifth International Conferen
e on the Prin
iples of Knowledge

Representation and Reasoning (KR'96), pages 316{327. Morgan Kaufmann Publishers, 1996.

[13℄ Fran
es
o M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea S
haerf. Dedu
tion in

on
ept languages: from subsumption to instan
e
he
king. Journal of Logi
 and Computation,

4(4):423{452, 1994.

[14℄ Mi
hael R. Garey and David S. Johnson. Computers and Intra
tability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Fran
is
o, CA, USA, 1979.

[15℄ Eri
h Gr�adel. On the restraining power of guards. Journal of Symboli
 Logi
, 64:1719{1742,

1999.

[16℄ Volker Haarslev, Carsten Lutz, and Ralf M�oller. A des
ription logi
 with
on
rete domains and

role-forming predi
ates. Journal of Logi
 and Computation, 9(3):351{384, 1999.

[17℄ Volker Haarslev and Ralf M�oller. RACER system des
ription. In Rajeev Gor�e, Alexander

Leits
h, and Tobias Nipkow, editors, Pro
eedings of the First International Joint Conferen
e

on Automated Reasoning (IJCAR'01), number 2083 in Le
ture Notes in Arti�
al Intelligen
e,

pages 701{705. Springer-Verlag, 2001.

[18℄ Volker Haarslev, Ralf M�oller, and Mi
hael Wessel. The des
ription logi
 ALCNH

R

+

extended

with
on
rete domains: A pra
ti
ally motivated approa
h. In Rajeev Gor�e, Alexander Leits
h,

and Tobias Nipkow, editors, Pro
eedings of the First International Joint Conferen
e on Au-

tomated Reasoning IJCAR'01, number 2083 in Le
ture Notes in Arti�
al Intelligen
e, pages

29{44. Springer-Verlag, 2001.

[19℄ Joseph Y. Halpern and Yoram Moses. A guide to
ompleteness and
omplexity for modal logi
s

of knowledge and belief. Arti�
ial Intelligen
e, 54(3):319{380, 1992.

[20℄ Philipp Hans
hke. Spe
ifying role intera
tion in
on
ept languages. In William Nebel, Bernhard;

Ri
h, Charles; Swartout, editor, Pro
eedings of the Third International Conferen
e on Prin
iples

of Knowledge Representation and Reasoning (KR'92), pages 318{329. Morgan Kaufmann, 1992.

[21℄ Bernhard Hollunder. Consisten
y
he
king redu
ed to satis�ability of
on
epts in terminologi
al

systems. Annals of Mathemati
s and Arti�
ial Intelligen
e, 18:133{157, 1996.

[22℄ Bernhard Hollunder and Werner Nutt. Subsumption algorithms for
on
ept languages. DFKI

Resear
h Report RR-90-04, German Resear
h Center for Arti�
ial Intelligen
e (DFKI), Kaiser-

slautern, Germany, 1990.

[23℄ Ian Horro
ks and Peter Patel-S
hneider. The generation of DAML+OIL. In Carole Goble,

Deborah L. M
Guinness, Ralf M�oller, and Peter F. Patel-S
hneider, editors, Pro
eedings of

the International Workshop in Des
ription Logi
s 2001 (DL2001), number 49 in CEUR-WS

(http://
eur-ws.org/), pages 30{35, 2001.

[24℄ Ian Horro
ks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) des
ription logi
. In Bern-

hard Nebel, editor, Pro
eedings of the Seventeenth International Joint Conferen
e on Arti�
ial

Intelligen
e (IJCAI'01), pages 199{204. Morgan-Kaufmann, 2001.

[25℄ Martina Kullmann, Fran�
ois de Bertrand de Beuvron, and Fran�
ois Rousselot. A des
ription

logi
 model for rea
ting in a dynami
 environment. In F. Baader and U. Sattler, editors, Pro-

eedings of the 2000 International Workshop in Des
ription Logi
s (DL2000), number 33 in

CEUR-WS (http://
eur-ws.org/), pages 203{212, 2000.

[26℄ Ri
hard E. Ladner. The
omputational
omplexity of provability in systems of modal proposi-

tional logi
. SIAM Journal on Computing, 6(3):467{480, 1977.

[27℄ Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Bernhard Nebel,

editor, Pro
eedings of the Seventeenth International Joint Conferen
e on Arti�
ial Intelligen
e

(IJCAI'01), pages 89{94. Morgan-Kaufmann, 2001.

[28℄ Carsten Lutz. NExpTime-
omplete des
ription logi
s with
on
rete domains. In Rajeev Gor�e,

Alexander Leits
h, and Tobias Nipkow, editors, Pro
eedings of the First International Joint

Conferen
e on Automated Reasoning (IJCAR'01), number 2083 in Le
ture Notes in Arti�
al

Intelligen
e, pages 45{60. Springer-Verlag, 2001.

[29℄ Carsten Lutz. Adding numbers to the SHIQ des
ription logi
|First results. In Pro
eedings of

the Eighth International Conferen
e on Prin
iples of Knowledge Representation and Reasoning

(KR2002). Morgan Kaufman, 2002.

[30℄ Carsten Lutz. The Complexity of Reasoning with Con
rete Domains. PhD thesis, LuFG Theo-

reti
al Computer S
ien
e, RWTH Aa
hen, Germany, 2002.

568 PSpa
e Reasoning with the Des
ription Logi
 ALCF(D)

[31℄ Carsten Lutz. Reasoning about entity relationship diagrams with
omplex attribute dependen-

ies. In Ian Horro
ks and Sergio Tessaris, editors, Pro
eedings of the International Workshop

in Des
ription Logi
s 2002 (DL2002), number 53 in CEUR-WS (http://
eur-ws.org/), pages

185{194, 2002.

[32℄ Carsten Lutz. Des
ription logi
s with
on
rete domains|a survey. In Advan
es in Modal Logi
s

(AiML) 2002, To appear.

[33℄ Carsten Lutz, Volker Haarslev, and Ralf M�oller. A
on
ept language with role-forming predi
ate

restri
tions. Te
hni
al Report FBI-HH-M-276/97, University of Hamburg, Computer S
ien
e

Department, Hamburg, 1997.

[34℄ David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logi
 based on regions and

onne
tion. In Bernhard Nebel, Charles Ri
h, and William Swartout, editors, Pro
eedings of

the Third International Conferen
e on Prin
iples of Knowledge Representation and Reasoning

(KR'92), pages 165{176. Morgan Kaufman, 1992.

[35℄ Jo
hen Renz. A
anoni
al model of the region
onne
tion
al
ulus. In Anthony G. Cohn, Lenhart

S
hubert, and Stuart C. Shapiro, editors, KR'98: Prin
iples of Knowledge Representation and

Reasoning, pages 330{341. Morgan Kaufmann, San Fran
is
o, California, 1998.

[36℄ Jo
hen Renz and Bernhard Nebel. On the
omplexity of qualitative spatial reasoning: A maximal

tra
table fragment of the region
onne
tion
al
ulus. Arti�
ial Intelligen
e, 108(1{2):69{123,

1999.

[37℄ Walter J. Savit
h. Relationsship between nondeterministi
 and deterministi
 tape
omplexities.

Journal of Computer and System S
ien
es, 4:177{192, 1970.

[38℄ Andrea S
haerf. On the
omplexity of the instan
e
he
king problem in
on
ept languages with

existential quanti�
ation. Journal of Intelligent Information Systems, 2:265{278, 1993.

[39℄ Manfred S
hmidt-S
hau� and Gert Smolka. Attributive
on
ept des
riptions with
omplements.

Arti�
ial Intelligen
e, 48(1):1{26, 1991.

[40℄ Alexander S
hrijver. Theory of Linear and Integer Programming. Wiley, Chi
hester, UK, 1986.

[41℄ Sergio Tessaris, Ian Horro
ks, and Graham Gough. Evaluating a modular abox algorithm. In

Pro
eedings of the Eighth International Conferen
e on Prin
iples of Knowledge Representation

and Reasoning (KR2002), pages 227{239. Morgan Kaufman, 2002.

[42℄ Moshe Y. Vardi. Why is modal logi
 so robustly de
idable? In Neil Immerman and Phokion G.

Kolaitis, editors, Des
riptive Complexity and Finite Models, volume 31 of DIMACS: Series

in Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e. Ameri
an Mathemati
al So
iety,

1997.

Re
eived 27 September 2002

