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Abstra
t

Re
ently, the Des
ription Logi
 (DL) SHIQ

has found a large number of appli
ations.

This su

ess is due to the fa
t that SHIQ


ombines a ri
h expressivity with eÆ
ient

reasoning. One weakness of SHIQ, how-

ever, limits its usability in several appli
ation

areas: numeri
al knowledge su
h as knowl-

edge about the age, weight, or temperature of

real-world entities 
annot be adequately rep-

resented. In this paper, we presentQ-SHIQ,

an extension of SHIQ that aims at 
losing

this gap, and show that reasoning with the

extended DL is ExpTime-
omplete.

1 Motivation

Des
ription Logi
s (DLs) are a family of knowledge

representation formalisms, whi
h are|apart from

their 
lassi
al appli
ation in KR|nowadays used in

various appli
ation areas su
h as reasoning about en-

tity relationship (ER) diagrams and providing a for-

mal basis for the so-
alled semanti
 web

[

4; 6

℄

. One

of the most in
uential DLs proposed during the last

years is the SHIQ Des
ription Logi
, whose su

ess is

based mainly on the following two fa
ts: �rst, SHIQ

is a very expressive DL providing for, e.g., transitive

roles, inverse roles, and number restri
tions, but its

reasoning problems are nevertheless de
idable in Ex-

pTime

[

13; 22

℄

. Se
ond, SHIQ has been implemented

in eÆ
ient DL systems su
h as FaCT and RACER,

whi
h 
an, despite the high worst-
ase 
omplexity of

reasoning with SHIQ, deal surprisingly well even with

huge knowledge bases

[

10; 7

℄

.

Although, as we just argued, SHIQ's expressive power

is one of the main reasons for its su

ess, there is

still room for improvement. In parti
ular, SHIQ 
an-

not adequately represent numeri
al knowledge su
h as

knowledge about the age, weight, or temperature of

real-world entities, whi
h, as we will later dis
uss in

more detail, is 
ru
ial for many important appli
a-

tions

[

2; 12; 6; 17

℄

. In this paper, we extend SHIQ

with a set of 
on
ept 
onstru
tors that belong to the

so-
alled 
on
rete domain family of 
onstru
tors and

allow a straightforward representation of numeri
al

knowledge. Let us view a 
on
rete example of knowl-

edge representation with the resulting DL, whi
h is


alled Q-SHIQ: the 
on
ept

Grandfather u 9age:=

91

u (> 20 relatives Human)

u 8relatives age; age:<

des
ribes Grandfathers who are 91 years old, have at

least 20 relatives (su
h 
onstraints are 
alled \qual-

i�ed number restri
tions"), and are older than all of

these relatives. Note that we 
an refer to rational num-

bers su
h as \91" and also 
ompare numbers using

predi
ates su
h as \<". We argue that the additional

expressivity provided by Q-SHIQ is rather useful in

many appli
ation areas. Let us brie
y review three

examples:

(1) As des
ribed in

[

5; 4

℄

, reasoning about ER dia-

grams is an important appli
ation area of Des
ription

Logi
s. One short
oming of the standard way to en-


ode ER diagrams, whi
h is to use a fragment of the

SHIQ Des
ription Logi
, 
an be des
ribed as follows:

ER diagrams make use of so-
alled attributes to repre-

sent non-relational data su
h as numbers and strings

to be stored in the database. If SHIQ is used for

representing ER diagrams, 
onstraints 
on
erning the

values of attributes 
annot be expressed. To give a

simple example, if there exists an entity Employee hav-

ing two attributes Birthday and Employment-date, then

it 
annot be expressed that employees should be born

before they are hired. If Q-SHIQ is used for repre-

senting ER diagrams, su
h numeri
al data 
onstraints

on attributes 
an easily be handled. This topi
 is dis-


ussed in more detail in

[

19

℄

.



(2) In

[

17; 16

℄

, the Des
ription Logi
 T DL is moti-

vated as a valuable tool for the representation of tem-

poral 
on
eptual knowledge. T DL 
an be obtained

from the well-known DL ALC

[

20

℄

by adding general

TBoxes and 
on
rete domain style 
on
ept 
onstru
-

tors that allow to represent relations between rational

numbers su
h as \=" and \<". Indeed, it is not hard

to see that T DL is a proper fragment of Q-SHIQ.

Thus, Q-SHIQ is also well-suited for reasoning about

temporal 
on
eptual knowledge as des
ribed in

[

17;

16

℄

. Moreover, Q-SHIQ signi�
antly extends the ex-

pressive power provided by T DL, even in the tempo-

ral/numeri
al 
omponent of the logi
. For example, if

Q-SHIQ is used for temporal reasoning, then one 
an

refer to 
on
rete time points and time intervals su
h

as 4 or [1; 12℄. This is not possible in T DL.

(3) A rapidly developing appli
ation area of DLs is

their use as an ontology language for the semanti


web

[

6

℄

. As noted in

[

6; 9

℄

, the representation of

\
on
rete datatypes" su
h as numbers is an impor-

tant task in this 
ontext. However, in DLs su
h as

OIL and DAML+OIL, whi
h have been proposed in

this appli
ation area, appropriate expressivity is ei-

ther not provided or not taken into a

ount for rea-

soning, whi
h is done by a translation into SHIQ or

related DLs. In

[

12

℄

, Horro
ks and Sattler propose

to extend SHOQ, a 
lose relative of SHIQ, with so-


alled unary 
on
rete domains in order to integrate


on
rete datatypes. However, this solution is not re-

ally satisfying sin
e, as is explained in more detail in

[

16

℄

, unary 
on
rete domains are of very limited ex-

pressivity. If Q-SHIQ is used as the target logi
 in

translations of OIL and DAML+OIL, a rather power-

ful means for des
ribing numeri
al 
on
rete datatypes

be
omes available.

As the main result of this paper, we prove reasoning

with Q-SHIQ to be de
idable in ExpTime by de-

vising an automata-based de
ision pro
edure. Thus,

Q-SHIQ sensibly enhan
es the expressive power of

SHIQ without in
reasing the worst-
ase 
omplexity

of reasoning. This paper is a

ompanied by a te
hni
al

report that 
ontains more details and full proofs

[

14

℄

.

2 Syntax and Semanti
s

In this se
tion, we introdu
e the Des
ription Logi


Q-SHIQ in detail. We �rst give the syntax and se-

manti
s of Q-SHIQ-roles, then introdu
e some useful

abbreviations, and �nally de�ne syntax and semanti
s

of Q-SHIQ-
on
epts.

De�nition 1. Let N

rR

, N

tR

, and N

aF

be 
ountably in-

�nite and mutually disjoint sets of regular role names,

transitive role names, and abstra
t features, respe
-

tively. Moreover, let N

R

= N

rR

℄ N

tR

℄ N

aF

. The set

of Q-SHIQ-roles ROL is N

R

[ fR

�

j R 2 N

R

g. A role

in
lusion is of the form R v S, for R;S 2 ROL. A role

hierar
hy is a set of role in
lusions.

An interpretation I = (�

I

; �

I

) 
onsists of a set �

I

,


alled the domain of I, and a fun
tion �

I

whi
h maps

every role R 2 ROL to a subset R

I

of �

I

��

I

su
h

that, for R 2 N

R

, S 2 N

tR

, and f 2 N

aF

, we have

� (x; y) 2 R

I

i� (y; x) 2 R

�

I

,

� if (x; y) 2 S

I

and (y; z) 2 S

I

, then (x; z) 2 S

I

,

� f

I

is fun
tional.

An interpretation I is a model of a role hierar
hy R

i� R

I

� S

I

for ea
h R v S 2 R.

We introdu
e some notation to make the following 
on-

siderations easier:

(1) The fun
tion Inv yields the inverse of a role. More

pre
isely, for R 2 ROL, we set

Inv(R) :=

�

R

�

if R is a role name,

S if R = S

�

for a role name S.

(2) Sin
e set in
lusion is transitive and R

I

� S

I

im-

plies Inv(R)

I

� Inv(S)

I

, for a role hierar
hy R, we

introdu
e v*

R

as the re
exive-transitive 
losure of

R [ fInv(R) v Inv(S) j R v S 2 Rg:

(3) We 
all a role R 2 ROL transitive with respe
t to

a role hierar
hy R i� R is interpreted in a transitive

relation in every model of R. It is not hard to see that

this is the 
ase i� the following predi
ate evaluates to

true:

Trans

R

(R) :=

8

>

>

<

>

>

:

true if there exists a role S 2 N

tR

s.t. S

0

v*

R

R and R v*

R

S

00

for some S

0

; S

00

2 fS; Inv(S)g

false otherwise.

(4) A role R 2 ROL is 
alled simple with respe
t to a

role hierar
hy R i� Trans

R

(S) does not hold for any

S 2 ROL with S v* R.

For both \ v*

R

" and Trans

R

, we omit the index if 
lear

from the 
ontext. Note that no transitive role is simple

sin
e v* is de�ned as the re
exive-transitive 
losure.

For the same reason, we have Trans(R) for all R 2 N

tR

.

However, roles must obviously not be in N

tR

in order to

be transitive. For example, if R 2 N

tR

, then R

�

is also

transitive. Similarly, if S 2 N

tR

, R =2 N

tR

, S

�

v R,

R v S

�

, then R is transitive.



(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; :C

I

= �

I

n C

I

;

(9R:C)

I

= fx 2 �

I

j There is some y 2 �

I

with (x; y) 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if (x; y) 2 R

I

, then y 2 C

I

g;

(6 n R C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 R

I

and y 2 C

I

g 6 ng;

(> n R C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 R

I

and y 2 C

I

g > ng;

(9U

1

; U

2

:P )

I

= fx 2 �

I

j There are q

1

2 U

I

1

and q

2

2 U

I

2

with q

1

P q

2

g

(8U

1

; U

2

:P )

I

= fx 2 �

I

j For all q

1

2 U

I

1

and q

2

2 U

I

2

, we have q

1

P q

2

g

(9g:P

q

)

I

= fx 2 �

I

j g

I

(x) is de�ned and g

I

(x) P qg

Figure 1: Q-SHIQ 
on
ept semanti
s.

We are now ready to de�ne Q-SHIQ-
on
epts and

their semanti
s.

De�nition 2. Let N

C

and N


F

be 
ountably in�nite

sets of 
on
ept names and 
on
rete features, respe
-

tively, su
h that N

C

, N

R

, and N


F

are mutually dis-

joint. A path is a sequen
e R

1

� � �R

k

g 
onsisting of

rolesR

1

; : : : ; R

k

2 ROL and a 
on
rete feature g 2 N


F

.

A path R

1

� � �R

k

g in whi
h R

1

; : : : ; R

k

are abstra
t

features (i.e., from N

aF

) is 
alled feature path. The set

of Q-SHIQ-
on
epts is the smallest set su
h that

1. every 
on
ept name C 2 N

C

is a 
on
ept,

2. if C andD are 
on
epts and R 2 ROL, then CuD,

C tD, :C, 8R:C, and 9R:C are 
on
epts,

3. if C is a 
on
ept, R 2 ROL is simple, and n 2 N,

then (6 n R C) and (> n R C) are 
on
epts,

4. if u

1

and u

2

are feature paths and P is a predi
ate

from the set f<;�;=; 6=;�; >g, then 9u

1

; u

2

:P

and 8u

1

; u

2

:P are 
on
epts,

5. if R 2 ROL is simple, g

1

and g

2

are 
on-


rete features, and P 2 f<;�; =; 6=;�; >g, then

9Rg

1

; g

2

:P and 8Rg

1

; g

2

:P are 
on
epts, and

6. if g is a 
on
rete feature, P 2 f<;�;=; 6=;�; >g,

and q 2 Q, then 9g:P

q

is a 
on
ept.

We use > as an abbreviation for At:A (for some �xed

A 2 N

C

). The interpretation fun
tion �

I

of interpre-

tations I = (�

I

; �

I

) maps, additionally, every 
on
ept

C to a subset C

I

of �

I

, and every 
on
rete feature

g to a partial fun
tion g

I

from �

I

to the set of ra-

tional numbers Q su
h that the equations in Figure 1

are satis�ed, where U

1

and U

2

denote paths, ℄S de-

notes the 
ardinality of the set S, and, for every path

U = R

1

� � �R

k

g, U

I

is de�ned as

f(x;q) � �

I

�Q j 9y

1

; : : : ; y

k+1

: x = y

1

;

(y

i

; y

i+1

) 2 R

I

i

for 1 � i � k; and g

I

(y

k+1

) = qg:

An interpretation I is a model of a 
on
ept C i�

C

I

6= ;. C is 
alled satis�able with respe
t to a role

hierar
hy R i� there exists a model of C and R. A


on
ept D subsumes a 
on
ept C with respe
t to R

(written C v

R

D) i� C

I

� D

I

holds for ea
h model

I of R.

Throughout this paper, we denote 
on
ept names by

A and B, 
on
epts by C, D, and E, roles by P , R,

and S, abstra
t features by f , 
on
rete features by g,

paths by U , feature paths by u, and predi
ates by P .

In the following se
tions, we show that Q-SHIQ-


on
ept satis�ability is de
idable in deterministi
 ex-

ponential time. This also yields de
idability and an

ExpTime upper 
omplexity bound for 
on
ept sub-

sumption: we have C v

R

D i� C u:D is unsatis�able

w.r.t. R.

Most modern Des
ription Logi
s do not only 
onsist of

a 
on
ept language but also provide for a TBox 
om-

ponent. Formally, a TBox is a �nite set of 
on
ept

equations C

:

= D, where C and D are 
on
epts, and

an interpretation I is a model of a TBox T i� it sat-

is�es C

I

= D

I

for all (C

:

= D) 2 T . In the presen
e

of TBoxes, one is usually interested in the satis�abil-

ity of 
on
epts w.r.t. TBoxes and role hierar
hies, i.e.,

in whether there exists a model I of C, T , and R.

However, as shown in

[

11

℄

, in the presen
e of role hi-

erar
hies and transitive roles, it is possible to polyno-

mially redu
e 
on
ept satis�ability w.r.t. TBoxes and

role hierar
hies to 
on
ept satis�ability w.r.t. role hi-

erar
hies, only. Hen
e, we do not expli
itly 
onsider

TBoxes in what follows.

Let us dis
uss the Q-SHIQ-
on
ept language in some

more detail. Sin
e exhaustive information on SHIQ


an be found in, e.g.,

[

13

℄

, we 
on
entrate on the addi-

tional 
on
ept 
onstru
tors 9U

1

; U

2

:P , 8U

1

; U

2

:P , and

9g:P

q

, whi
h, as has already been noted, are often


alled \
on
rete domain 
onstru
tors". Con
rete do-

mains have been introdu
ed by Baader and Hans
hke

as a means for representing \
on
rete knowledge" su
h

as knowledge about numbers, strings, and spatial ex-

tensions

[

1

℄

. More pre
isely, Baader and Hans
hke ex-

tend the basi
 propositionally 
losed DL ALC with




on
rete domains, where a 
on
rete domain D is 
om-

prised of a set 
alled the domain and a set of predi
ates

with a �xed extension on this domain. It is impor-

tant to note that Baader and Hans
hke do not 
om-

mit themselves to a parti
ular 
on
rete domain, but

rather view the 
on
rete domain D as a parameter to

their logi
, whi
h they 
all ALC(D). From the 
on-


rete domain perspe
tive, Q-SHIQ 
an be viewed as

being equipped with one parti
ular 
on
rete domain,

whose domain are the rationals and whi
h is equipped

with binary predi
ates <;�;=; 6=;�; > and with (in-

�nitely many) unary predi
ates P

q

, where q 2 Q and

P 2 f<;�;=; 6=;�; >g.

The paths U

1

and U

2

that may appear inside

Q-SHIQ's binary 
on
rete domain 
onstru
tors

9U

1

; U

2

:P and 8U

1

; U

2

:P are of a rather spe
ial form:

either (i) U

1

and U

2

are feature paths or (ii) U

1

has

the form Rg

1

and U

2

has the form g

2

. Let us illustrate

the expressive power of these two variants of the same


onstru
tors: using Variant (i), we 
an, e.g., des
ribe

people whose mother's spouse earns more than their

father (we use parentheses for better readability):

9(mother spouse wage); (father wage):>

The example illustrates the main advantage of Vari-

ant (i): we 
an talk about sequen
es of features. This

variant of Q-SHIQ's binary 
on
rete domain 
on-

stru
tors are pre
isely the 
on
rete domain 
onstru
-

tors o�ered by ALC(D) and the temporal DL T DL

mentioned in the introdu
tion. The main disadvan-

tage of Variant (i) is that, inside paths, we may only

use abstra
t features but no roles from N

rR

. For ex-

ample, if we want to des
ribe people having an older

neighbor by the 
on
ept

9(neighbor; age); (age):>;

then \neighbor" should 
learly be from N

rR

rather than

from N

aF

, sin
e otherwise we would enfor
e that the de-

s
ribed persons have at most a single neighbor. There-

fore, we need Variant (ii) of the binary 
on
rete do-

main 
onstru
tors to de�ne this 
on
ept. Note that

Variant (ii) is neither provided by ALC(D) nor by

T DL, but rather is a restri
ted version of the 
on
rete

domain 
onstru
tors de�ned in

[

8

℄

.

It is not hard to see that we 
ould also have admit-

ted variants 9g

1

; Rg

2

:P and 8g

1

; Rg

2

:P of the binary


on
rete 
onstru
tors sin
e this variant is just synta
-

ti
 sugar: 9g

1

; Rg

2

:P is equivalent to 9Rg

2

; g

1

:

e

P and

8g

1

; Rg

2

:P is equivalent to 8Rg

2

; g

1

:

e

P , where

e

P de-

notes the inverse of the predi
ate P|for example, \

e

<"

is \>" and \e=" is \=". Obviously, the most general

approa
h would be to allow arbitrary paths inside the

binary 
on
rete domain 
onstru
tors.

1

The resulting

logi
, however, 
annot easily be handled by the Exp-

Time de
ision pro
edure for 
on
ept satis�ability pre-

sented in the remainder of this paper.

Only simple roles are allowed in Variant (ii) of the

binary 
on
rete domain 
onstru
tors. Similarly, roles

used inside number restri
tions are also required to

be simple. As proved in

[

13

℄

, the latter restri
tion

is 
ru
ial sin
e admitting non-simple roles inside num-

ber restri
tions yields unde
idable reasoning problems.

Non-simple roles inside the binary 
on
rete domain


onstru
tors 
annot be handled by the ExpTime de-


ision pro
edure presented in this paper. However, it

is as of now unknown whether admitting them yields

unde
idability of reasoning.

As a last 
omment 
on
erning the binary 
on
rete do-

main 
onstru
tors, note that there exist existential and

universal versions of the binary 
on
rete domain 
on-

stru
tors but only an existential version of the unary


on
rete domain 
onstru
tor. It is not hard to see that

we 
ould also have admitted a universal version sin
e

8g:P

q

(with the obvious semanti
s) is 
learly equiva-

lent to 8g; g: 6=t9g:P

q

, where 8g; g: 6= simply expresses

that there exists no su

essor for the 
on
rete fea-

ture g. Similarly, the universal version of Variant (i)

of the binary 
on
rete domain 
onstru
tors 
an be ex-

pressed in terms of the existential version of Variant (i)

of this 
onstru
tor. This does, however, not hold for

Variant (ii) of the binary 
on
rete domain 
onstru
tors

sin
e it a

epts non-fun
tional roles as arguments. For

this reason, we have 
hosen to in
lude universal ver-

sions of both Variant (i) and (ii) for uniformity.

It may look strange at �rst sight that Q-SHIQ pro-

vides for both abstra
t features and number restri
-

tions sin
e, as is well-known, number restri
tions, tran-

sitive roles, and role hierar
hies 
an be used to enfor
e

that a role R

f

from N

rR

is interpreted fun
tionally:

just use the 
on
ept 8R:(6 1 R

f

>), where R 2 N

tR

,

and employ the role hierar
hy to ensure that S v* R for

every \relevant" role S (i.e. for the roles o

urring in

the 
on
ept and role hierar
hy whose satis�ability is

to be de
ided). The reason for this redundan
y is that

number restri
tions are, in prin
iple, a stri
tly more

general means of expressivity than abstra
t features,

but having abstra
t features expli
itly available allows

for a straightforward de�nition of Variant (i) of the


on
rete domain 
onstru
tors.

1

Admitting arbitrary paths inside the unary 
on
rete

domain 
onstru
tor is not an issue sin
e the 
on
ept

9R

1

� � �R

k

g:P

q

(with the obvious semanti
s) 
an be written

as 9R

1

: � � � :9R

k

:9g:P

q

.



3 Preliminaries

De
idability and the ExpTime upper 
omplexity

bound for Q-SHIQ-
on
ept satis�ability is estab-

lished by devising an automata-based de
ision pro
e-

dure. The general idea behind this pro
edure is to

de�ne, for a given 
on
ept C and role hierar
hy R, a

looping tree-automaton A

C;R

that a

epts exa
tly the

so-
alled Hintikka-trees for C and R. These Hintikka-

trees are abstra
tions of models of C andR, i.e., C and

R have a model if and only if C andR have a Hintikka-

tree. The obvious advantage of Hintikka-trees over

models is that they are trees and thus amenable to

tree automata te
hniques. On
e the automaton A

C;R

is de�ned, it remains to apply the standard emptiness

test for tree automata: 
learly, the language a

epted

by the 
onstru
ted automaton is empty i� C is satis-

�able w.r.t. R.

In this se
tion, we introdu
e the basi
 notions under-

lying the de
ision pro
edure sket
hed above. We start

with developing a useful normal form (
alled path nor-

mal form) for Q-SHIQ-
on
epts, and then introdu
e

looping tree-automata. Finally, we de�ne 
onstraint

graphs, whi
h will play an important role in represent-

ing the \numeri
al part" of Q-SHIQ-interpretations

in Hintikka-trees.

3.1 Normal Forms

We start with formulating a property of role hierar-


hies that we will generally assume to be satis�ed in

what follows:

A role hierar
hy R is 
alled admissible i� all

f 2 N

aF

are simple w.r.t. R.

Demanding admissibility of role hierar
hies is 
losely

related to requiring roles R that appear inside number

restri
tions (6 n R C) and (> n R C) to be simple:

sin
e abstra
t features are interpreted in fun
tional re-

lations, they are \inherently number restri
ted", i.e.,

for ea
h f 2 N

aF

, (6 1 f >) is satis�ed by every

domain element in every interpretation. However, it

seems that, in 
ontrast to admitting arbitrary roles

inside number restri
tions, dropping admissibility of

role hierar
hies does not seem to lead to unde
idabil-

ity of reasoning. Indeed, we 
laim that the de
ision

pro
edure presented in this paper 
an, in prin
iple, be

extended to also deal with non-admissible role hierar-


hies. We nevertheless restri
t ourselves to admissible

role hierar
hies sin
e (i) this eliminates several 
ase

distin
tions in the proofs, and (ii) we agree with Hor-

ro
ks and Sattler

[

11

℄

who argue that non-simple fea-

tures are rather unnatural: if f 2 N

aF

is non-simple,

then there exists a role R 2 N

R

su
h that Trans(R)

and R v* f . Hen
e, R is both fun
tional and transitive

whi
h produ
es strange e�e
ts: for any interpretation

I, R

I

may not 
ontain any a
y
li
 paths of length

greater 1. Hen
e, the 
on
ept 9R:9R:> is satis�able

only in models that 
ontain either (i) a domain element

a whi
h is its own R-su

essor or (ii) two domain el-

ements a and b, where b is R-su

essor of a and of

itself (the same holds for the 
on
ept 9R:9R:9R:>).

To avoid su
h e�e
ts, whi
h do not seem to promote

writing understandable knowledge bases, we generally

require role hierar
hies to be admissible.

Let us now turn our attention towards the path normal

form for Q-SHIQ-
on
epts, whi
h was �rst des
ribed

in

[
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in the 
ontext of the Des
ription Logi
 T DL.

De�nition 3. A Q-SHIQ-
on
ept C is in negation

normal form (NNF) if negation o

urs only in front

of 
on
ept names. Moreover, C is in path normal

form (PNF) i� it is in NNF and, for all sub
on
epts

9U

1

; U

2

:P and 8U

1

; U

2

:P of C, we have either

1. U

1

= g

1

and U

2

= g

2

for some g

1

; g

2

2 N


F

or

2. U

1

= Rg

1

and U

2

= g

2

for some R 2 N

aF

[ N

rR

and g

1

; g

2

2 N


F

.

It is not hard to see (
.f.

[

14

℄

) that every Q-SHIQ-


on
ept 
an be 
onverted into an equivalent one in

NNF. In what follows, we use �C to denote the result

of 
onverting :C to NNF. The following lemma shows

that we 
an even assume Q-SHIQ-
on
epts to be in

PNF.

Lemma 4. Satis�ability of Q-SHIQ-
on
epts 
an

be polynomially redu
ed to satis�ability of Q-SHIQ-


on
epts in PNF.

Proof We �rst de�ne an auxiliary mapping and then

use this mapping to translate Q-SHIQ-
on
epts into

equivalent ones in PNF. Let C be aQ-SHIQ-
on
ept.

For every feature path u = f

1

� � � f

n

g used in C, we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are 
on
rete fea-

tures not used in C. We indu
tively de�ne a mapping

� from 
on
rete paths u in C to 
on
epts as follows:

�(g) = >

�(fu) = (9[fu℄; f [u℄: =) u 9f:�(u)

For every Q-SHIQ-
on
ept C, a 
orresponding 
on-


ept �(C) is obtained by

� �rst repla
ing all sub
on
epts 8u

1

; u

2

:P where

u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

for i 2 f1; 2g with

8f

(1)

1

: � � � 8f

(1)

k

1

:8g

1

; g

1

: 6=

t 8f

(2)

1

: � � � 8f

(2)

k

2

:8g

2

; g

2

: 6= t 9u

1

; u

2

:P



� and then repla
ing all sub
on
epts 9u

1

; u

2

:P with

9[u

1

℄; [u

2

℄:P u �(u

1

) u �(u

2

).

Now let C be aQ-SHIQ-
on
ept. Using the rewriting

rules from

[
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, we 
an 
onvert C into an equivalent


on
ept C

0

in NNF. It is then easy to 
he
k that C

0

is satis�able i� �(C

0

) is satis�able. Moreover, �(C

0

)

is 
learly in PNF and the translation 
an be done in

polynomial time. ❏

Intuitively, Lemma 4 states that Variant (i) of the

binary 
on
rete domain 
onstru
tors dis
ussed in

the previous se
tion 
an be redu
ed to the forms

9fg

1

; g

2

:P and 9g

1

; g

2

:P . Variant (ii) of the binary


on
rete domain 
onstru
tors does not need to be ma-

nipulated in order to �t into the PNF s
heme. Let us

remark that our algorithm's need for PNF is the rea-

son why we 
annot handle arbitrary paths inside the

binary 
on
rete domain 
onstru
tors: it is an interest-

ing exer
ise to 
he
k that the 
onstru
tor 8U

1

; U

2

:P

with U

1

= R

1

� � �R

n

g and U

2

= S

1

� � �S

m

g

0

:P 
an

be redu
ed to the forms 9Rg

1

; g

2

:P and 9g

1

; g

2

:P if

P 2 f<;�;=;�; >g but not if P is \6=".

3.2 Automata and Constraint Graphs

At the 
ore of the de
ision pro
edure to be devel-

oped are so-
alled looping tree-automata, i.e., �nite

automata on in�nite trees for whi
h every run is a
-


epting

[

23; 21

℄

.

De�nition 5. Let M be a set and k � 1. A k-ary M-

tree is a mapping T : f1; : : : ; kg

�

!M that labels ea
h

node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the

node �i is the i-th 
hild of �. We use � to denote the

empty word (
orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -

trees is de�ned by a �nite set Q of states, a �nite al-

phabet M , a subset I � Q of initial states, and a

transition relation � � Q�M �Q

k

.

A run of A on an M -tree T is a mapping

r : f1; : : : ; kg

�

! Q with r(�) 2 I and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

: The language L(A) of M -

trees a

epted by A is

L(A) := fT j there is a run of A on Tg:

Vardi and Wolper

[
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show that the emptiness prob-

lem for looping automata, i.e., the problem to de
ide

whether L(A) = ; for a given looping automaton A,

is de
idable in polynomial time.

We now introdu
e 
onstraint graphs. As already

noted, su
h graphs will be used to represent the \nu-

meri
al part" of Q-SHIQ-interpretations in Hintikka-

trees.

De�nition 6. A 
onstraint graph is a dire
ted graph

G = (V;E; �), where V is a 
ountable set of nodes,

E � V � V � f<;�;=; 6=;�; >g

is a set of labeled edges, and

� � V � fP

q

j P 2 f<;�;=; 6=;�; >g and q 2 Qg

is a node labeling relation. In what follows, we some-

times write �(v) for fP

q

j (v; P

q

) 2 �g.

A 
onstraint graph G = (V;E; �) is 
alled satis�able

over S|where S is a set equipped with a total order-

ing <|i� there exists a total mapping Æ from V to S

su
h that

1. Æ(v)P q for all P

q

2 �(v) and

2. Æ(v

1

)P Æ(v

2

) for all (v

1

; v

2

; P ) 2 E.

Su
h a mapping Æ is 
alled a solution for G.

We will see later that every Hintikka-tree T indu
es

a 
onstraint graph whi
h represents the \numeri
al

part" of the 
anoni
al interpretation des
ribed by T .

As should be intuitively 
lear, these indu
ed 
onstraint

graphs have to be satis�able in order for Hintikka-

trees to be proper abstra
tions of interpretations.

Sin
e, later on, we must de�ne looping automata

whi
h a

ept exa
tly the Hintikka-trees for a 
on
ept

C and role hierar
hy R, su
h automata should be

able to verify the satis�ability of (indu
ed) 
onstraint

graphs. This 
he
k is the main problem to be solved

when developing an automata-based de
ision pro
e-

dure for Q-SHIQ-
on
ept satis�ability: the indu
ed


onstraint graph and its satis�ability are \global" no-

tions while automata work \lo
ally". This problem


an be over
ome as follows: �rst, we de�ne Hintikka

trees su
h that their indu
ed 
onstraint graphs have

a 
ertain form (we will 
all su
h 
onstraint graphs

normal); se
ond, we formulate an adequate 
riterion

for the satis�ability of normal 
onstraint graphs; and

third, we show how this 
riterion 
an be veri�ed by

\lo
al tests" that 
an be performed by automata. Let

us start with introdu
ing normal 
onstraint graphs and

the 
riterion for their satis�ability, whi
h is 
alled 
on-

sisten
y.

De�nition 7. Let G = (V;E; �) be a 
onstraint

graph. G is 
alled normal if it satis�es the following


onditions:

1. (v

1

; v

2

; P ) 2 E implies P 2 f<;=g,



2. (v; P

q

) 2 � implies P 2 f<;=; >g,

3. for ea
h rational number q appearing in � and

ea
h node v 2 V , we have (v; P

q

) 2 � for some

P 2 f<;=; >g.

Let �

n

denote addition modulo n. A <-
y
le O in

a normal 
onstraint graph G is a a �nite non-empty

sequen
e of nodes v

0

; : : : ; v

k�1

2 V su
h that (i) for all

i < k, there exists a P su
h that (v

i

; v

i�

k

1

; P ) 2 E and

(ii) there exists an i < k su
h that (v

i

; v

i�

k

1

; <) 2 E.

A normal 
onstraint graphG is 
onsistent i� it satis�es

the following 
onditions:

1. G 
ontains no <-
y
le,

2. for all v 2 V , there exists a q 2 Q su
h that qPq

0

for all P

q

0

2 �(v),

3. for all (v

1

; v

2

; P ) 2 V , there exist q

1

; q

2

2 Q su
h

that

� q

1

P q

2

,

� q

1

P

0

q for all P

0

q

2 �(v

1

), and

� q

2

P

0

q for all P

0

q

2 �(v

2

).

It may appear that Property 3 of 
onsisten
y is

too weak sin
e it only demands the existen
e of

rationals q

1

; q

2

for ea
h edge between v

1

and v

2

separately instead of for all su
h edges simultane-

ously: a normal 
onstraint graph with set of edges

f(v

1

; v

2

; <); (v

1

; v

2

;=)g is 
learly unsatis�able, but

does not violate Property 3. This, however, is 
ompen-

sated by Property 1 whi
h is violated in this example.

One 
an show that 
onsisten
y is indeed an adequate


riterion for the satis�ability of normal 
onstraint

graphs.

Theorem 8. A normal 
onstraint graph G is satis�-

able over Q i� G is 
onsistent.

It is interesting to note that Theorem 8 also holds if

satis�ability overR is 
onsidered instead of satis�abil-

ity over Q (the same proof works). However, as noted

in

[

17

℄

, Theorem 8 does not hold if satis�ability over

non-dense stru
tures su
h as N is 
onsidered.

Intuitively, every 
onstraint graph G = (V;E; �) 
an

be 
onverted into a normal one (
alled a normalization

of G) by �rst spe
ializing the relations in E and � su
h

that Conditions 1 and 2 of normality are satis�ed and

then augmenting � su
h that Condition 3 holds.

De�nition 9 (Normalization). A 
onstraint graph

G = (V;E; �) is a normalization of the 
onstraint

graph G

0

= (V;E

0

; �

0

) i� it is normal and the following


onditions are satis�ed:

1. (v

1

; v

2

; P ) 2 E

0

with P 2 f<;=g implies

(v

1

; v

2

; P ) 2 E,

2. (v

1

; v

2

; >) 2 E

0

implies (v

2

; v

1

; <) 2 E,

3. (v

1

; v

2

;�) 2 E

0

implies f(v

1

; v

2

; <); (v

1

; v

2

;=)g \

E 6= ;,

4. (v

1

; v

2

;�) 2 E

0

implies f(v

2

; v

1

; <); (v

1

; v

2

;=)g \

E 6= ;,

5. (v

1

; v

2

; 6=) 2 E

0

implies f(v

1

; v

2

; <); (v

2

; v

1

; <)g \

E 6= ;,

6. if (v; P

q

) 2 � , then there exists a v

0

2 V and a P

0

su
h that (v

0

; P

0

q

) 2 �

0

,

7. (v; P

q

) 2 �

0

with P 2 f<;=; >g implies

(v; P

q

) 2 � ,

8. (v;�

q

) 2 �

0

implies f(v;<

q

); (v;=

q

)g \ � 6= ;,

9. (v;�

q

) 2 �

0

implies f(v;>

q

); (v;=

q

)g\� 6= ;, and

10. (v; 6=

q

) 2 �

0

implies f(v;<

q

); (v;>

q

)g \ � 6= ;.

Due to Theorem 8 and the obvious fa
t that a 
on-

straint graph is satis�able i� one of its normalizations

is satis�able, a 
onstraint graph G is satis�able i� it

has a 
onsistent normalization. This property will play

an important role for establishing the 
orresponden
e

between Hintikka-trees and 
anoni
al interpretations.

4 De�ning Hintikka-trees

In this se
tion, we de�ne Hintikka-trees, whi
h are,

as has already been noted, abstra
tions of 
anoni
al

(tree-shaped) interpretations. Let us start with de�n-

ing, for ea
h 
on
ept C (in PNF) and role hierar
hyR,

the set of 
on
epts 
l(C;R) that are \relevant" for de-


iding whether a given interpretation is a model of C

and R: for a given 
on
ept C and role hierar
hy R,

we use 
l(C;R) to denote the smallest set su
h that

1. C 2 
l(C;R),

2. > 2 
l(C;R),

3. if 8R:D 2 
l(C;R), Trans(S), and S v* R, then

8S:D 2 
l(C;R), and

4. 
l(C;R) is 
losed under subformulas and � (
.f.

the remark below De�nition 3).

Note that ℄
l(C;R) is linear in the length of C and the

number of role in
lusions in R.

Hintikka-trees are de�ned in several steps. We start

with introdu
ing Hintikka-sets, whi
h form the basis

for the de�nition of so-
alled Hintikka-labels. As the

name indi
ates, Hintikka-labels are used as node la-

bels in Hintikka-trees. We then de�ne Hintikka-tuples,



whi
h are tuples of Hintikka-labels that des
ribe a

valid label 
on�guration for a node and its dire
t su
-


essors in a Hintikka-tree (Hintikka-tuples will also be

rather 
onvenient for de�ning looping automata that

a

ept Hintikka-trees). Eventually, we use Hintikka-

labels and Hintikka-tuples to de�ne Hintikka-trees.

Intuitively, ea
h node � of a Hintikka-tree T des
ribes

a domain element x of the 
orresponding 
anoni
al

model I. The node label of � 
onsists of several parts,

one of them a Hintikka-set. This Hintikka-set 
ontains

all 
on
epts D from 
l(C;R) su
h that x 2 D

I

.

De�nition 10 (Hintikka-set). Let C be a 
on
ept

in PNF and R a role hierar
hy. A set 	 � 
l(C;R) is

a Hintikka-set for C and R i� it satis�es the following


onditions:

(S1) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(S2) if C

1

t C

2

2 	, then fC

1

; C

2

g \	 6= ;,

(S3) fA;:Ag 6� 	 for all 
on
ept names A,

(S4) if f 2 N

aF

is used in C orR, then (6 1 f >) 2 	,

(S5) if (6 n R D) 2 
l(C;R), then fD;�Dg\	 6= ;,

(S6) > 2 	

Con
epts of the form 9R:D, (> n R D), (6 n R D),

and 9Rg

1

; g

2

:P may appear either marked or un-

marked in 	.

The marking of 
on
epts is a te
hni
al tri
k that allows

us to deal with the inverse role 
onstru
tor. Intuitively,

edges of a Hintikka-tree T des
ribe role su

essor re-

lationships of the 
orresponding 
anoni
al model I.

If 9R:D o

urs in the Hintikka-set of a node �, then

there has to exist a \witness" for this 
on
ept: either

(i) there exists a su

essor 
 of � su
h that the edge

from � to 
 represents an R role relationship and D

is in the Hintikka-set of 
, or (ii) � has a prede
es-

sor �, the edge from � to � represents an Inv(R) role

relationship, and D o

urs in the Hintikka-set of �.

The marking of 
on
epts is used for bookkeeping of

these two possibilities: if 9R:D o

urs marked in the

Hintikka-set of �, then its prede
essor is a \witness"

for 9R:D and we do not need to enfor
e the existen
e

of a witness among �'s su

essors. The marking of

(> n R D), (6 n R D), and 9Rg

1

; g

2

:P 
on
epts 
an

be explained similarly. Hintikka-sets are one of the


omponents of Hintikka-labels:

De�nition 11 (Hintikka-label). Let C be a 
on-


ept in PNF and R a role hierar
hy. A Hintikka-label

(	; !; V; E; �) for C and R 
onsists of

1. a Hintikka-set 	 for C and R,

2. a set ! � ROL of roles o

urring in C or R, and

3. a 
onstraint graph (V;E; �) where V � N


F

, every

g 2 V o

urs in C, and every q appearing in �

o

urs in C.

su
h that

(N1) if 9g

1

; g

2

:P 2 	, then g

1

; g

2

2 V and

(g

1

; g

2

; P ) 2 E,

(N2) if 8g

1

; g

2

:P 2 	 and g

1

; g

2

2 V , then

(g

1

; g

2

; P ) 2 E,

(N3) if 9g:P

q

2 	, then g 2 V and (g; P

q

) 2 � ,

(N4) R 2 ! and R v* S implies S 2 !,

(N5) if g

1

; g

2

2 V , then

f(g

1

; g

2

; <); (g

1

; g

2

;=); (g

2

; g

1

; <)g \ E 6= ;;

(N6) if q appears in C, then, for ea
h g

0

2 V , there

exists a P

0

2 f<;=; >g su
h that (g

0

; P

0

q

) 2 � .

The set of all Hintikka-labels for C and R is denoted

by �

C;R

.

Let us explain the intuition behind Hintikka-labels.

If � is a node in a Hintikka-tree T , I the 
anoni-


al model 
orresponding to T , and x 2 �

I

the do-

main element asso
iated with �, then the Hintikka-

label L = (	; !; V; E; �) of � is a des
ription of x in I.

More pre
isely, (i) the Hintikka-set 	 is the set of 
on-


epts D 2 
l(C;R) su
h that x 2 D

I

(ii) ! is the set

of roles R 2 ROL su
h that (y; x) 2 R

I

, where y is the

domain element 
orresponding to the pre
essor � of �

in T ; and (iii) the 
onstraint graph (V;E; �) des
ribes

the numeri
al su

essors of x and their relationships:

if, for some g 2 N


F

, we have g 2 V , then g

I

(x) is

de�ned. By (N5) and (N6), (V;E; �) �xes the rela-

tionship between any two numeri
al su

essors of x as

well as the relationship between any numeri
al su

es-

sor of x and any rational number q appearing in the

input 
on
ept. By (N1), (N2), and (N3), the rela-

tionships stated by E and � are \
onsistent" with the

Hintikka-set 	.

It is rather important that the 
onstraint graph

(V;E; �) �xes the relationship between any two nodes

of V : as already noted in Se
tion 3, every Hintikka-

tree T indu
es a (normal) 
onstraint graph G(T ) that

des
ribes the \numeri
al part" of the 
anoni
al inter-

pretation 
orresponding to T , and should thus be sat-

is�able. Sin
e G(T ) is normal, by Theorem 8 it suf-

�
es to demand that G(T ) should be 
onsistent. The


omplete determination of the relationships between

nodes of the 
onstraint graphs (V;E; �) in Hintikka-

labels will allow us to ensure the 
onsisten
y of G(T )



using a lo
al 
ondition whi
h 
an be veri�ed by loop-

ing automata. This 
ondition is part of the de�nition

of Hintikka-tuples, whi
h are introdu
ed next.

De�nition 12 (Tuple-graph, Hintikka-tuple).

Let C be a 
on
ept in PNF and R a role hierar
hy.

With b

C;R

, we denote

℄fD 2 
l(C;R) jD = 9R:E or D = 9Rg

1

; g

2

:Pg

+

X

(>n R C)2
l(C;R)

n:

Let � = (L

0

; : : : ; L

b

C;R

) be an b

C;R

+ 1-tuple

of Hintikka-labels with L

i

= (	

i

; !

i

; V

i

; E

i

; �

i

) for

i � b

C;R

. A 
onstraint graph G = (V;E; �) is a tuple-

graph for � if

V = V

0

[ fig j 1 � i � b

C;R

and g 2 V

i

g

E � E

0

[ f(ig

1

; ig

2

; P ) j 1 � i � b

C;R

and (g

1

; g

2

; P ) 2 E

i

g

� = �

0

[ f(ig; P

q

) j 1 � i � b

C;R

and (g; P

q

) 2 �

i

g

su
h that

(G1) if 9Rg; g

0

:P is unmarked in 	

0

, then there exists

an i with 1 � i � b

C;R

su
h that ig; g

0

2 V ,

R 2 !

i

, and (ig; g

0

; P ) 2 E,

(G2) if 9Rg; g

0

:P is marked in 	

i

with 1 � i � b

C;R

,

then g; ig

0

2 V , Inv(R) 2 !

i

, and (g; ig

0

; P ) 2 E,

(G3) if 8Rg; g

0

:P 2 	

0

, R 2 !

i

, g 2 V

i

, and g

0

2 V

0

for some i with 1 � i � b

C;R

, then (ig; g

0

; P ) 2 E,

(G4) if 8Rg; g

0

:P 2 	

i

, Inv(R) 2 !

i

, g 2 V

0

, and

g

0

2 V

i

for some i with 1 � i � b

C;R

, then

(g; ig

0

; P ) 2 E.

The tuple � is a Hintikka-tuple i� the following 
ondi-

tions are satis�ed:

(M1) if 9R:D is unmarked in 	

0

, then there exists an

i with 1 � i � b

C;R

su
h that R 2 !

i

and D 2 	

i

,

(M2) if (> n R D) 2 	

0

, then either

� (> n R D) is unmarked in 	

0

and there ex-

ists a set I � f1; : : : ; b

C;R

g of 
ardinality n

su
h that, for ea
h i 2 I , we have R 2 !

i

and

D 2 	

i

or

� (> n R D) is marked in 	

0

and there exists

a set I � f1; : : : ; b

C;R

g of 
ardinality n � 1

su
h that, for ea
h i 2 I , we have R 2 !

i

and

D 2 	

i

,

(M3) if 9R:D or (> n R D) is marked in 	

i

with

1 � i � b

C;R

, then Inv(R) 2 !

i

and D 2 	

0

,

(M4) if 8R:D 2 	

0

and R 2 !

i

with 1 � i � b

C;R

,

then D 2 	

i

,

(M5) if 8R:D 2 	

i

and Inv(R) 2 !

i

with 1 � i �

b

C;R

, then D 2 	

0

,

(M6) if 8R:D 2 	

0

, S 2 !

i

with 1 � i � b

C;R

,

Trans(S), and S v* R, then 8S:D 2 	

i

,

(M7) if 8R:D 2 	

i

and Inv(S) 2 !

i

with 1 � i �

b

C;R

, Trans(S), and S v* R, then 8S:D 2 	

0

,

(M8) if (6 n R D) 2 	

0

, then either

� (6 n R D) is unmarked in 	

0

and the 
ar-

dinality of the set fi j 1 � i � b

C;R

; R 2

!

i

and D 2 	

i

g is at most n or

� (6 n R D) is marked in 	

0

and the 
ar-

dinality of the set fi j 1 � i � b

C;R

; R 2

!

i

and D 2 	

i

g is at most n� 1,

(M9) if D 2 	

0

, Inv(R) 2 !

i

, and (6 n R D) 2 	

i

for 1 � i � b

C;R

, then (6 n R D) is marked in 	

i

,

(M10) there exists a tuple-graph for � that has a 
on-

sistent normalization.

Ex
ept for (M10), whi
h refers to tuple-graphs and

is the aforementioned lo
al 
ondition enfor
ing 
onsis-

ten
y of indu
ed 
onstraint graphs, the properties of

Hintikka-tuples should be quite easy to understand.

Before we dis
uss tuple graphs and (M10) in more

detail, let us introdu
e Hintikka-trees.

De�nition 13 (Hintikka-tree). An b

C;R

-ary �

C;R

-

tree T with T (�) = (	

�

; !

�

; V

�

; E

�

; �

�

) is a Hintikka-tree

for C and R i� it satis�es the following 
onditions:

(T1) C 2 	

�

,

(T2) all 
on
epts in 	

�

are unmarked, and

(T3) for all � 2 f1; : : : ; b

C;R

g

�

, the tuple

(T (�); T (�1); : : : ; T (�b

C;R

)) is a Hintikka-tuple.

Let T be a Hintikka-tree, � 2 f1; : : : ; b

C;R

g

�

a node

in T , and T (�) = (	; !; V; E; �). We use 	

T

(�) to

denote 	 and !

T

to denote !.

We 
an now return to the dis
ussion of Prop-

erty (M10). As is apparent from their de�nition,

tuple-graphs are built by taking the union of all

the 
onstraint graphs that appear as a part of the

Hintikka-labels in a Hintikka-tuple. The 
onstraint

graph G(T ) indu
ed by a Hintikka-tree T , in turn,

is 
onstru
ted from tuple-graphs: by (T3), for ea
h

node � of T , the tuple

�

T

(�) := (T (�); T (�1); : : : ; T (�b

C;R

))



indu
ed 
onstraint graph G(T )

tuple-graphs G

T

(�) / G

n

T

(�)


onstraint graphs from Hintikka-labels

Figure 2: Hintikka-trees and 
onstraint graphs.

is a Hintikka-tuple. By (M10), there exists a tuple-

graph G

T

(�) for �

T

(�) whi
h has a 
onsistent nor-

malization G

n

T

(�). Modulo some te
hni
al details, the


onstraint graph G(T ) indu
ed by T 
an be viewed

as the union of the 
onstraint graphs G

n

T

(�) for all

nodes � of T . Figure 2 illustrates the relationship be-

tween the various 
onstraint graphs involved. In

[

14

℄

,

we prove that the 
onsisten
y of the normalizations

G

n

T

(�) enfor
ed by (M10) implies 
onsisten
y of the


onstraint graphG(T ) (whi
h is ne
essary for T to be a

proper abstra
tion of a Q-SHIQ-interpretation). The

hardest part of this proof is to show that G(T ) satis-

�es Property 1 of 
onsisten
y, i.e., that it 
ontains no

<-
y
le: for this proof, it is 
ru
ial that

1. the tuple-graph G

T

(�) overlaps with the tuple-

graph G

T

(�) if � is a su

essor of � in T , and

2. the 
onstraint graphs (V;E; �), whi
h are part of

Hintikka-tuples and thus used to build of tuple-

graphs, �x the relationship between any two ele-

ments of V as dis
ussed above.

Using the fa
t that the 
onstraint graph indu
ed

by Hintikka-trees is 
onsistent, the following, 
entral

lemma 
an be established:

Lemma 14. A 
on
ept C in PNF and a role hierar
hy

R have a model i� they have a Hintikka-tree.

5 De�ning Looping Automata

To prove de
idability of Q-SHIQ-
on
ept satis�abil-

ity, it remains to de�ne a looping automaton A

C;R

for

ea
h 
on
ept C and role hierar
hy R su
h that A

C;R

a

epts exa
tly the Hintikka-trees for C and R. Using

the notion of Hintikka-tuples from De�nition 12, this

is rather straightforward.

De�nition 15. Let C be a 
on
ept in PNF, R a role

hierar
hy, and b

C;R

as in De�nition 12. The looping

automaton A

C;R

= (Q;M;�; I) is de�ned as follows:

� Q :=M := �

C;R

� I := f(	; !; V; E; �) 2 Q j C 2 	 and all 
on
epts

in 	 are unmarked g.

� � � Q

b

C;R

+2

su
h that (L;L

0

; L

1

; : : : ; L

b

C;R

) 2 �

i�

{ L = L

0

and

{ (L;L

1

; : : : ; L

b

C;R

) is a Hintikka-tuple.

As a 
onsequen
e of the following lemma and

Lemma 14, we 
an redu
e satis�ability of 
on
epts (in

PNF) w.r.t. role hierar
hies to the emptiness of the

language a

epted by looping automata.

Lemma 16. T is a Hintikka-tree for C and R i�

T 2 L(A

C;R

).

It is an immediate 
onsequen
e of Lemmas 4, 14,

and 16 and the de
idability of the emptiness prob-

lem of looping automata

[

23

℄

that satis�ability of

Q-SHIQ-
on
epts w.r.t. role hierar
hies is de
idable.

However, the presented automata-based algorithm ad-

ditionally provides us with a tight 
omplexity bound

if the numbers inside number restri
tions are assumed

to be en
oded unarily: an ExpTime upper bound is

obtained by showing that the size of A

C;R

is at most

exponential in the size of C and R and noting that the

emptiness problem for looping automata is in PTime

[

23

℄

. The ExpTime lower bound is an immediate 
on-

sequen
e of the fa
t that SHIQ-
on
ept satis�ability

is already ExpTime-hard

[

22

℄

.



Theorem 17. If numbers inside number restri
tions

are en
oded unarily, then satis�ability of Q-SHIQ-


on
epts w.r.t. role hierar
hies is ExpTime-
omplete.

Sin
e subsumption 
an be redu
ed to (un)satis�ability,

Q-SHIQ-
on
ept subsumption w.r.t. role hierar
hies

is also ExpTime-
omplete.

6 Future Work

In this paper, we have presented the Des
ription Logi


Q-SHIQ, whi
h extends the well-known DL SHIQ

with several 
on
rete domain 
on
ept 
onstru
tors

that allow the adequate representation of numeri
al

knowledge. As argued in the introdu
tion,Q-SHIQ is

a 
ontribution to several interesting appli
ation areas.

However, we regard the work presented in this paper

only as a �rst step. As dis
ussed in

[

14

℄

, there ex-

ist many possible future resear
h problems 
onne
ted

with the Q-SHIQ Des
ription Logi
. Let us highlight

three of them:

(1) To makeQ-SHIQ available for use in appli
ations,

modern DL systems like FaCT and RACER, whi
h are

implementations of the SHIQ Des
ription Logi
, need

to be extended to Q-SHIQ. Unfortunately, the re-

sults presented in this paper 
annot immediately be

used for this task: the aforementioned DL systems

are based on tableau-style algorithms while the de
i-

sion pro
edure des
ribed in this paper is automata-

based. Hen
e, it would be interesting to devise a

tableau-based algorithm for Q-SHIQ-
on
ept satis�-

ability. As dis
ussed in

[

15

℄

in the 
ontext of T DL, the

automata-based algorithm presented in this paper 
an

provide important information (i.e., a \regular model

property") for this task.

(2) If Q-SHIQ is to be used for reasoning about ER

diagrams as sket
hed in the introdu
tion, one is usu-

ally not interested in the satis�ability of 
on
epts in

arbitrary models, but rather in the satis�ability in �-

nite models

[

3

℄

. These two problems do not 
oin
ide

sin
e SHIQ, and hen
e alsoQ-SHIQ, la
ks the �nite

model property

[

11

℄

. Thus, it is worthwhile to inves-

tigate the de
idability and 
omplexity of �nite model

reasoning with Q-SHIQ.

(3) For some appli
ations, it is desirable to refer to

natural numbers instead of rational numbers. As a

simple example, 
onsider the 
on
ept

9(left-neighbor num
hild):=

2

u 9(left-neighbor num
hild); (num
hild):<

u 9(right-neighbor num
hild):=

3

u 9(num
hild); (right-neighbor num
hild):<;

where num
hild is a 
on
rete feature representing the

number of 
hildren. Clearly, the above 
on
ept should

be unsatis�able. In Q-SHIQ, however, this 
on
ept

is satis�able sin
e, in a model, the number of 
hildren

of the des
ribed person may e.g. be 2:5. It would thus

be interesting to add a 
on
ept 
onstru
tor 9g:nat to

Q-SHIQ expressing that the �ller of the 
on
rete fea-

ture g is a natural number. If the extended logi
 should

be de
idable at all, then at least it seems to require

some serious modi�
ations of the presented de
ision

pro
edure: as noted in

[

17

℄

in the 
ontext of T DL,

Theorem 8 does not hold if the satis�ability of 
on-

straint graphs over non-dense stru
tures su
h as N is


onsidered. However, if Q-SHIQ is extended with an

9g:nat 
onstru
tor, then 
on
epts of the resulting logi



an 
learly be used to des
ribe 
onstraint graphs all of

whose nodes are labeled with the nat predi
ates. This

means that, e�e
tively, we have to de
ide satis�ability

of these 
onstraint graphs over N.

We should like to note that, in many aspe
ts,

Q-SHIQ is already on the border to unde
idability:

for example, it seems rather unlikely that any kind of

arithmeti
s 
an be added to Q-SHIQ without losing

de
idability. More pre
isely, it follows from results in

[

18; 16

℄

that the addition of a 
on
ept 
onstru
tor ex-

pressing the addition of two numbers already yields

unde
idability of reasoning.
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