
Adding Numbers to the SHIQ Desription Logi|First Results

Carsten Lutz

LuFG Theoretial Computer Siene, RWTH Aahen

Ahornstr. 55, 52074 Aahen, Germany

Abstrat

Reently, the Desription Logi (DL) SHIQ

has found a large number of appliations.

This suess is due to the fat that SHIQ

ombines a rih expressivity with eÆient

reasoning. One weakness of SHIQ, how-

ever, limits its usability in several appliation

areas: numerial knowledge suh as knowl-

edge about the age, weight, or temperature of

real-world entities annot be adequately rep-

resented. In this paper, we presentQ-SHIQ,

an extension of SHIQ that aims at losing

this gap, and show that reasoning with the

extended DL is ExpTime-omplete.

1 Motivation

Desription Logis (DLs) are a family of knowledge

representation formalisms, whih are|apart from

their lassial appliation in KR|nowadays used in

various appliation areas suh as reasoning about en-

tity relationship (ER) diagrams and providing a for-

mal basis for the so-alled semanti web

[

4; 6

℄

. One

of the most inuential DLs proposed during the last

years is the SHIQ Desription Logi, whose suess is

based mainly on the following two fats: �rst, SHIQ

is a very expressive DL providing for, e.g., transitive

roles, inverse roles, and number restritions, but its

reasoning problems are nevertheless deidable in Ex-

pTime

[

13; 22

℄

. Seond, SHIQ has been implemented

in eÆient DL systems suh as FaCT and RACER,

whih an, despite the high worst-ase omplexity of

reasoning with SHIQ, deal surprisingly well even with

huge knowledge bases

[

10; 7

℄

.

Although, as we just argued, SHIQ's expressive power

is one of the main reasons for its suess, there is

still room for improvement. In partiular, SHIQ an-

not adequately represent numerial knowledge suh as

knowledge about the age, weight, or temperature of

real-world entities, whih, as we will later disuss in

more detail, is ruial for many important applia-

tions

[

2; 12; 6; 17

℄

. In this paper, we extend SHIQ

with a set of onept onstrutors that belong to the

so-alled onrete domain family of onstrutors and

allow a straightforward representation of numerial

knowledge. Let us view a onrete example of knowl-

edge representation with the resulting DL, whih is

alled Q-SHIQ: the onept

Grandfather u 9age:=

91

u (> 20 relatives Human)

u 8relatives age; age:<

desribes Grandfathers who are 91 years old, have at

least 20 relatives (suh onstraints are alled \qual-

i�ed number restritions"), and are older than all of

these relatives. Note that we an refer to rational num-

bers suh as \91" and also ompare numbers using

prediates suh as \<". We argue that the additional

expressivity provided by Q-SHIQ is rather useful in

many appliation areas. Let us briey review three

examples:

(1) As desribed in

[

5; 4

℄

, reasoning about ER dia-

grams is an important appliation area of Desription

Logis. One shortoming of the standard way to en-

ode ER diagrams, whih is to use a fragment of the

SHIQ Desription Logi, an be desribed as follows:

ER diagrams make use of so-alled attributes to repre-

sent non-relational data suh as numbers and strings

to be stored in the database. If SHIQ is used for

representing ER diagrams, onstraints onerning the

values of attributes annot be expressed. To give a

simple example, if there exists an entity Employee hav-

ing two attributes Birthday and Employment-date, then

it annot be expressed that employees should be born

before they are hired. If Q-SHIQ is used for repre-

senting ER diagrams, suh numerial data onstraints

on attributes an easily be handled. This topi is dis-

ussed in more detail in

[

19

℄

.



(2) In

[

17; 16

℄

, the Desription Logi T DL is moti-

vated as a valuable tool for the representation of tem-

poral oneptual knowledge. T DL an be obtained

from the well-known DL ALC

[

20

℄

by adding general

TBoxes and onrete domain style onept onstru-

tors that allow to represent relations between rational

numbers suh as \=" and \<". Indeed, it is not hard

to see that T DL is a proper fragment of Q-SHIQ.

Thus, Q-SHIQ is also well-suited for reasoning about

temporal oneptual knowledge as desribed in

[

17;

16

℄

. Moreover, Q-SHIQ signi�antly extends the ex-

pressive power provided by T DL, even in the tempo-

ral/numerial omponent of the logi. For example, if

Q-SHIQ is used for temporal reasoning, then one an

refer to onrete time points and time intervals suh

as 4 or [1; 12℄. This is not possible in T DL.

(3) A rapidly developing appliation area of DLs is

their use as an ontology language for the semanti

web

[

6

℄

. As noted in

[

6; 9

℄

, the representation of

\onrete datatypes" suh as numbers is an impor-

tant task in this ontext. However, in DLs suh as

OIL and DAML+OIL, whih have been proposed in

this appliation area, appropriate expressivity is ei-

ther not provided or not taken into aount for rea-

soning, whih is done by a translation into SHIQ or

related DLs. In

[

12

℄

, Horroks and Sattler propose

to extend SHOQ, a lose relative of SHIQ, with so-

alled unary onrete domains in order to integrate

onrete datatypes. However, this solution is not re-

ally satisfying sine, as is explained in more detail in

[

16

℄

, unary onrete domains are of very limited ex-

pressivity. If Q-SHIQ is used as the target logi in

translations of OIL and DAML+OIL, a rather power-

ful means for desribing numerial onrete datatypes

beomes available.

As the main result of this paper, we prove reasoning

with Q-SHIQ to be deidable in ExpTime by de-

vising an automata-based deision proedure. Thus,

Q-SHIQ sensibly enhanes the expressive power of

SHIQ without inreasing the worst-ase omplexity

of reasoning. This paper is aompanied by a tehnial

report that ontains more details and full proofs

[

14

℄

.

2 Syntax and Semantis

In this setion, we introdue the Desription Logi

Q-SHIQ in detail. We �rst give the syntax and se-

mantis of Q-SHIQ-roles, then introdue some useful

abbreviations, and �nally de�ne syntax and semantis

of Q-SHIQ-onepts.

De�nition 1. Let N

rR

, N

tR

, and N

aF

be ountably in-

�nite and mutually disjoint sets of regular role names,

transitive role names, and abstrat features, respe-

tively. Moreover, let N

R

= N

rR

℄ N

tR

℄ N

aF

. The set

of Q-SHIQ-roles ROL is N

R

[ fR

�

j R 2 N

R

g. A role

inlusion is of the form R v S, for R;S 2 ROL. A role

hierarhy is a set of role inlusions.

An interpretation I = (�

I

; �

I

) onsists of a set �

I

,

alled the domain of I, and a funtion �

I

whih maps

every role R 2 ROL to a subset R

I

of �

I

��

I

suh

that, for R 2 N

R

, S 2 N

tR

, and f 2 N

aF

, we have

� (x; y) 2 R

I

i� (y; x) 2 R

�

I

,

� if (x; y) 2 S

I

and (y; z) 2 S

I

, then (x; z) 2 S

I

,

� f

I

is funtional.

An interpretation I is a model of a role hierarhy R

i� R

I

� S

I

for eah R v S 2 R.

We introdue some notation to make the following on-

siderations easier:

(1) The funtion Inv yields the inverse of a role. More

preisely, for R 2 ROL, we set

Inv(R) :=

�

R

�

if R is a role name,

S if R = S

�

for a role name S.

(2) Sine set inlusion is transitive and R

I

� S

I

im-

plies Inv(R)

I

� Inv(S)

I

, for a role hierarhy R, we

introdue v*

R

as the reexive-transitive losure of

R [ fInv(R) v Inv(S) j R v S 2 Rg:

(3) We all a role R 2 ROL transitive with respet to

a role hierarhy R i� R is interpreted in a transitive

relation in every model of R. It is not hard to see that

this is the ase i� the following prediate evaluates to

true:

Trans

R

(R) :=

8

>

>

<

>

>

:

true if there exists a role S 2 N

tR

s.t. S

0

v*

R

R and R v*

R

S

00

for some S

0

; S

00

2 fS; Inv(S)g

false otherwise.

(4) A role R 2 ROL is alled simple with respet to a

role hierarhy R i� Trans

R

(S) does not hold for any

S 2 ROL with S v* R.

For both \ v*

R

" and Trans

R

, we omit the index if lear

from the ontext. Note that no transitive role is simple

sine v* is de�ned as the reexive-transitive losure.

For the same reason, we have Trans(R) for all R 2 N

tR

.

However, roles must obviously not be in N

tR

in order to

be transitive. For example, if R 2 N

tR

, then R

�

is also

transitive. Similarly, if S 2 N

tR

, R =2 N

tR

, S

�

v R,

R v S

�

, then R is transitive.



(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; :C

I

= �

I

n C

I

;

(9R:C)

I

= fx 2 �

I

j There is some y 2 �

I

with (x; y) 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if (x; y) 2 R

I

, then y 2 C

I

g;

(6 n R C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 R

I

and y 2 C

I

g 6 ng;

(> n R C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 R

I

and y 2 C

I

g > ng;

(9U

1

; U

2

:P )

I

= fx 2 �

I

j There are q

1

2 U

I

1

and q

2

2 U

I

2

with q

1

P q

2

g

(8U

1

; U

2

:P )

I

= fx 2 �

I

j For all q

1

2 U

I

1

and q

2

2 U

I

2

, we have q

1

P q

2

g

(9g:P

q

)

I

= fx 2 �

I

j g

I

(x) is de�ned and g

I

(x) P qg

Figure 1: Q-SHIQ onept semantis.

We are now ready to de�ne Q-SHIQ-onepts and

their semantis.

De�nition 2. Let N

C

and N

F

be ountably in�nite

sets of onept names and onrete features, respe-

tively, suh that N

C

, N

R

, and N

F

are mutually dis-

joint. A path is a sequene R

1

� � �R

k

g onsisting of

rolesR

1

; : : : ; R

k

2 ROL and a onrete feature g 2 N

F

.

A path R

1

� � �R

k

g in whih R

1

; : : : ; R

k

are abstrat

features (i.e., from N

aF

) is alled feature path. The set

of Q-SHIQ-onepts is the smallest set suh that

1. every onept name C 2 N

C

is a onept,

2. if C andD are onepts and R 2 ROL, then CuD,

C tD, :C, 8R:C, and 9R:C are onepts,

3. if C is a onept, R 2 ROL is simple, and n 2 N,

then (6 n R C) and (> n R C) are onepts,

4. if u

1

and u

2

are feature paths and P is a prediate

from the set f<;�;=; 6=;�; >g, then 9u

1

; u

2

:P

and 8u

1

; u

2

:P are onepts,

5. if R 2 ROL is simple, g

1

and g

2

are on-

rete features, and P 2 f<;�; =; 6=;�; >g, then

9Rg

1

; g

2

:P and 8Rg

1

; g

2

:P are onepts, and

6. if g is a onrete feature, P 2 f<;�;=; 6=;�; >g,

and q 2 Q, then 9g:P

q

is a onept.

We use > as an abbreviation for At:A (for some �xed

A 2 N

C

). The interpretation funtion �

I

of interpre-

tations I = (�

I

; �

I

) maps, additionally, every onept

C to a subset C

I

of �

I

, and every onrete feature

g to a partial funtion g

I

from �

I

to the set of ra-

tional numbers Q suh that the equations in Figure 1

are satis�ed, where U

1

and U

2

denote paths, ℄S de-

notes the ardinality of the set S, and, for every path

U = R

1

� � �R

k

g, U

I

is de�ned as

f(x;q) � �

I

�Q j 9y

1

; : : : ; y

k+1

: x = y

1

;

(y

i

; y

i+1

) 2 R

I

i

for 1 � i � k; and g

I

(y

k+1

) = qg:

An interpretation I is a model of a onept C i�

C

I

6= ;. C is alled satis�able with respet to a role

hierarhy R i� there exists a model of C and R. A

onept D subsumes a onept C with respet to R

(written C v

R

D) i� C

I

� D

I

holds for eah model

I of R.

Throughout this paper, we denote onept names by

A and B, onepts by C, D, and E, roles by P , R,

and S, abstrat features by f , onrete features by g,

paths by U , feature paths by u, and prediates by P .

In the following setions, we show that Q-SHIQ-

onept satis�ability is deidable in deterministi ex-

ponential time. This also yields deidability and an

ExpTime upper omplexity bound for onept sub-

sumption: we have C v

R

D i� C u:D is unsatis�able

w.r.t. R.

Most modern Desription Logis do not only onsist of

a onept language but also provide for a TBox om-

ponent. Formally, a TBox is a �nite set of onept

equations C

:

= D, where C and D are onepts, and

an interpretation I is a model of a TBox T i� it sat-

is�es C

I

= D

I

for all (C

:

= D) 2 T . In the presene

of TBoxes, one is usually interested in the satis�abil-

ity of onepts w.r.t. TBoxes and role hierarhies, i.e.,

in whether there exists a model I of C, T , and R.

However, as shown in

[

11

℄

, in the presene of role hi-

erarhies and transitive roles, it is possible to polyno-

mially redue onept satis�ability w.r.t. TBoxes and

role hierarhies to onept satis�ability w.r.t. role hi-

erarhies, only. Hene, we do not expliitly onsider

TBoxes in what follows.

Let us disuss the Q-SHIQ-onept language in some

more detail. Sine exhaustive information on SHIQ

an be found in, e.g.,

[

13

℄

, we onentrate on the addi-

tional onept onstrutors 9U

1

; U

2

:P , 8U

1

; U

2

:P , and

9g:P

q

, whih, as has already been noted, are often

alled \onrete domain onstrutors". Conrete do-

mains have been introdued by Baader and Hanshke

as a means for representing \onrete knowledge" suh

as knowledge about numbers, strings, and spatial ex-

tensions

[

1

℄

. More preisely, Baader and Hanshke ex-

tend the basi propositionally losed DL ALC with



onrete domains, where a onrete domain D is om-

prised of a set alled the domain and a set of prediates

with a �xed extension on this domain. It is impor-

tant to note that Baader and Hanshke do not om-

mit themselves to a partiular onrete domain, but

rather view the onrete domain D as a parameter to

their logi, whih they all ALC(D). From the on-

rete domain perspetive, Q-SHIQ an be viewed as

being equipped with one partiular onrete domain,

whose domain are the rationals and whih is equipped

with binary prediates <;�;=; 6=;�; > and with (in-

�nitely many) unary prediates P

q

, where q 2 Q and

P 2 f<;�;=; 6=;�; >g.

The paths U

1

and U

2

that may appear inside

Q-SHIQ's binary onrete domain onstrutors

9U

1

; U

2

:P and 8U

1

; U

2

:P are of a rather speial form:

either (i) U

1

and U

2

are feature paths or (ii) U

1

has

the form Rg

1

and U

2

has the form g

2

. Let us illustrate

the expressive power of these two variants of the same

onstrutors: using Variant (i), we an, e.g., desribe

people whose mother's spouse earns more than their

father (we use parentheses for better readability):

9(mother spouse wage); (father wage):>

The example illustrates the main advantage of Vari-

ant (i): we an talk about sequenes of features. This

variant of Q-SHIQ's binary onrete domain on-

strutors are preisely the onrete domain onstru-

tors o�ered by ALC(D) and the temporal DL T DL

mentioned in the introdution. The main disadvan-

tage of Variant (i) is that, inside paths, we may only

use abstrat features but no roles from N

rR

. For ex-

ample, if we want to desribe people having an older

neighbor by the onept

9(neighbor; age); (age):>;

then \neighbor" should learly be from N

rR

rather than

from N

aF

, sine otherwise we would enfore that the de-

sribed persons have at most a single neighbor. There-

fore, we need Variant (ii) of the binary onrete do-

main onstrutors to de�ne this onept. Note that

Variant (ii) is neither provided by ALC(D) nor by

T DL, but rather is a restrited version of the onrete

domain onstrutors de�ned in

[

8

℄

.

It is not hard to see that we ould also have admit-

ted variants 9g

1

; Rg

2

:P and 8g

1

; Rg

2

:P of the binary

onrete onstrutors sine this variant is just synta-

ti sugar: 9g

1

; Rg

2

:P is equivalent to 9Rg

2

; g

1

:

e

P and

8g

1

; Rg

2

:P is equivalent to 8Rg

2

; g

1

:

e

P , where

e

P de-

notes the inverse of the prediate P|for example, \

e

<"

is \>" and \e=" is \=". Obviously, the most general

approah would be to allow arbitrary paths inside the

binary onrete domain onstrutors.

1

The resulting

logi, however, annot easily be handled by the Exp-

Time deision proedure for onept satis�ability pre-

sented in the remainder of this paper.

Only simple roles are allowed in Variant (ii) of the

binary onrete domain onstrutors. Similarly, roles

used inside number restritions are also required to

be simple. As proved in

[

13

℄

, the latter restrition

is ruial sine admitting non-simple roles inside num-

ber restritions yields undeidable reasoning problems.

Non-simple roles inside the binary onrete domain

onstrutors annot be handled by the ExpTime de-

ision proedure presented in this paper. However, it

is as of now unknown whether admitting them yields

undeidability of reasoning.

As a last omment onerning the binary onrete do-

main onstrutors, note that there exist existential and

universal versions of the binary onrete domain on-

strutors but only an existential version of the unary

onrete domain onstrutor. It is not hard to see that

we ould also have admitted a universal version sine

8g:P

q

(with the obvious semantis) is learly equiva-

lent to 8g; g: 6=t9g:P

q

, where 8g; g: 6= simply expresses

that there exists no suessor for the onrete fea-

ture g. Similarly, the universal version of Variant (i)

of the binary onrete domain onstrutors an be ex-

pressed in terms of the existential version of Variant (i)

of this onstrutor. This does, however, not hold for

Variant (ii) of the binary onrete domain onstrutors

sine it aepts non-funtional roles as arguments. For

this reason, we have hosen to inlude universal ver-

sions of both Variant (i) and (ii) for uniformity.

It may look strange at �rst sight that Q-SHIQ pro-

vides for both abstrat features and number restri-

tions sine, as is well-known, number restritions, tran-

sitive roles, and role hierarhies an be used to enfore

that a role R

f

from N

rR

is interpreted funtionally:

just use the onept 8R:(6 1 R

f

>), where R 2 N

tR

,

and employ the role hierarhy to ensure that S v* R for

every \relevant" role S (i.e. for the roles ourring in

the onept and role hierarhy whose satis�ability is

to be deided). The reason for this redundany is that

number restritions are, in priniple, a stritly more

general means of expressivity than abstrat features,

but having abstrat features expliitly available allows

for a straightforward de�nition of Variant (i) of the

onrete domain onstrutors.

1

Admitting arbitrary paths inside the unary onrete

domain onstrutor is not an issue sine the onept

9R

1

� � �R

k

g:P

q

(with the obvious semantis) an be written

as 9R

1

: � � � :9R

k

:9g:P

q

.



3 Preliminaries

Deidability and the ExpTime upper omplexity

bound for Q-SHIQ-onept satis�ability is estab-

lished by devising an automata-based deision proe-

dure. The general idea behind this proedure is to

de�ne, for a given onept C and role hierarhy R, a

looping tree-automaton A

C;R

that aepts exatly the

so-alled Hintikka-trees for C and R. These Hintikka-

trees are abstrations of models of C andR, i.e., C and

R have a model if and only if C andR have a Hintikka-

tree. The obvious advantage of Hintikka-trees over

models is that they are trees and thus amenable to

tree automata tehniques. One the automaton A

C;R

is de�ned, it remains to apply the standard emptiness

test for tree automata: learly, the language aepted

by the onstruted automaton is empty i� C is satis-

�able w.r.t. R.

In this setion, we introdue the basi notions under-

lying the deision proedure skethed above. We start

with developing a useful normal form (alled path nor-

mal form) for Q-SHIQ-onepts, and then introdue

looping tree-automata. Finally, we de�ne onstraint

graphs, whih will play an important role in represent-

ing the \numerial part" of Q-SHIQ-interpretations

in Hintikka-trees.

3.1 Normal Forms

We start with formulating a property of role hierar-

hies that we will generally assume to be satis�ed in

what follows:

A role hierarhy R is alled admissible i� all

f 2 N

aF

are simple w.r.t. R.

Demanding admissibility of role hierarhies is losely

related to requiring roles R that appear inside number

restritions (6 n R C) and (> n R C) to be simple:

sine abstrat features are interpreted in funtional re-

lations, they are \inherently number restrited", i.e.,

for eah f 2 N

aF

, (6 1 f >) is satis�ed by every

domain element in every interpretation. However, it

seems that, in ontrast to admitting arbitrary roles

inside number restritions, dropping admissibility of

role hierarhies does not seem to lead to undeidabil-

ity of reasoning. Indeed, we laim that the deision

proedure presented in this paper an, in priniple, be

extended to also deal with non-admissible role hierar-

hies. We nevertheless restrit ourselves to admissible

role hierarhies sine (i) this eliminates several ase

distintions in the proofs, and (ii) we agree with Hor-

roks and Sattler

[

11

℄

who argue that non-simple fea-

tures are rather unnatural: if f 2 N

aF

is non-simple,

then there exists a role R 2 N

R

suh that Trans(R)

and R v* f . Hene, R is both funtional and transitive

whih produes strange e�ets: for any interpretation

I, R

I

may not ontain any ayli paths of length

greater 1. Hene, the onept 9R:9R:> is satis�able

only in models that ontain either (i) a domain element

a whih is its own R-suessor or (ii) two domain el-

ements a and b, where b is R-suessor of a and of

itself (the same holds for the onept 9R:9R:9R:>).

To avoid suh e�ets, whih do not seem to promote

writing understandable knowledge bases, we generally

require role hierarhies to be admissible.

Let us now turn our attention towards the path normal

form for Q-SHIQ-onepts, whih was �rst desribed

in

[
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in the ontext of the Desription Logi T DL.

De�nition 3. A Q-SHIQ-onept C is in negation

normal form (NNF) if negation ours only in front

of onept names. Moreover, C is in path normal

form (PNF) i� it is in NNF and, for all subonepts

9U

1

; U

2

:P and 8U

1

; U

2

:P of C, we have either

1. U

1

= g

1

and U

2

= g

2

for some g

1

; g

2

2 N

F

or

2. U

1

= Rg

1

and U

2

= g

2

for some R 2 N

aF

[ N

rR

and g

1

; g

2

2 N

F

.

It is not hard to see (.f.

[
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) that every Q-SHIQ-

onept an be onverted into an equivalent one in

NNF. In what follows, we use �C to denote the result

of onverting :C to NNF. The following lemma shows

that we an even assume Q-SHIQ-onepts to be in

PNF.

Lemma 4. Satis�ability of Q-SHIQ-onepts an

be polynomially redued to satis�ability of Q-SHIQ-

onepts in PNF.

Proof We �rst de�ne an auxiliary mapping and then

use this mapping to translate Q-SHIQ-onepts into

equivalent ones in PNF. Let C be aQ-SHIQ-onept.

For every feature path u = f

1

� � � f

n

g used in C, we

assume that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are onrete fea-

tures not used in C. We indutively de�ne a mapping

� from onrete paths u in C to onepts as follows:

�(g) = >

�(fu) = (9[fu℄; f [u℄: =) u 9f:�(u)

For every Q-SHIQ-onept C, a orresponding on-

ept �(C) is obtained by

� �rst replaing all subonepts 8u

1

; u

2

:P where

u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

for i 2 f1; 2g with

8f

(1)

1

: � � � 8f

(1)

k

1

:8g

1

; g

1

: 6=

t 8f

(2)

1

: � � � 8f

(2)

k

2

:8g

2

; g

2

: 6= t 9u

1

; u

2

:P



� and then replaing all subonepts 9u

1

; u

2

:P with

9[u

1

℄; [u

2

℄:P u �(u

1

) u �(u

2

).

Now let C be aQ-SHIQ-onept. Using the rewriting

rules from

[
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, we an onvert C into an equivalent

onept C

0

in NNF. It is then easy to hek that C

0

is satis�able i� �(C

0

) is satis�able. Moreover, �(C

0

)

is learly in PNF and the translation an be done in

polynomial time. ❏

Intuitively, Lemma 4 states that Variant (i) of the

binary onrete domain onstrutors disussed in

the previous setion an be redued to the forms

9fg

1

; g

2

:P and 9g

1

; g

2

:P . Variant (ii) of the binary

onrete domain onstrutors does not need to be ma-

nipulated in order to �t into the PNF sheme. Let us

remark that our algorithm's need for PNF is the rea-

son why we annot handle arbitrary paths inside the

binary onrete domain onstrutors: it is an interest-

ing exerise to hek that the onstrutor 8U

1

; U

2

:P

with U

1

= R

1

� � �R

n

g and U

2

= S

1

� � �S

m

g

0

:P an

be redued to the forms 9Rg

1

; g

2

:P and 9g

1

; g

2

:P if

P 2 f<;�;=;�; >g but not if P is \6=".

3.2 Automata and Constraint Graphs

At the ore of the deision proedure to be devel-

oped are so-alled looping tree-automata, i.e., �nite

automata on in�nite trees for whih every run is a-

epting

[

23; 21

℄

.

De�nition 5. Let M be a set and k � 1. A k-ary M-

tree is a mapping T : f1; : : : ; kg

�

!M that labels eah

node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the

node �i is the i-th hild of �. We use � to denote the

empty word (orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -

trees is de�ned by a �nite set Q of states, a �nite al-

phabet M , a subset I � Q of initial states, and a

transition relation � � Q�M �Q

k

.

A run of A on an M -tree T is a mapping

r : f1; : : : ; kg

�

! Q with r(�) 2 I and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

: The language L(A) of M -

trees aepted by A is

L(A) := fT j there is a run of A on Tg:

Vardi and Wolper

[
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show that the emptiness prob-

lem for looping automata, i.e., the problem to deide

whether L(A) = ; for a given looping automaton A,

is deidable in polynomial time.

We now introdue onstraint graphs. As already

noted, suh graphs will be used to represent the \nu-

merial part" of Q-SHIQ-interpretations in Hintikka-

trees.

De�nition 6. A onstraint graph is a direted graph

G = (V;E; �), where V is a ountable set of nodes,

E � V � V � f<;�;=; 6=;�; >g

is a set of labeled edges, and

� � V � fP

q

j P 2 f<;�;=; 6=;�; >g and q 2 Qg

is a node labeling relation. In what follows, we some-

times write �(v) for fP

q

j (v; P

q

) 2 �g.

A onstraint graph G = (V;E; �) is alled satis�able

over S|where S is a set equipped with a total order-

ing <|i� there exists a total mapping Æ from V to S

suh that

1. Æ(v)P q for all P

q

2 �(v) and

2. Æ(v

1

)P Æ(v

2

) for all (v

1

; v

2

; P ) 2 E.

Suh a mapping Æ is alled a solution for G.

We will see later that every Hintikka-tree T indues

a onstraint graph whih represents the \numerial

part" of the anonial interpretation desribed by T .

As should be intuitively lear, these indued onstraint

graphs have to be satis�able in order for Hintikka-

trees to be proper abstrations of interpretations.

Sine, later on, we must de�ne looping automata

whih aept exatly the Hintikka-trees for a onept

C and role hierarhy R, suh automata should be

able to verify the satis�ability of (indued) onstraint

graphs. This hek is the main problem to be solved

when developing an automata-based deision proe-

dure for Q-SHIQ-onept satis�ability: the indued

onstraint graph and its satis�ability are \global" no-

tions while automata work \loally". This problem

an be overome as follows: �rst, we de�ne Hintikka

trees suh that their indued onstraint graphs have

a ertain form (we will all suh onstraint graphs

normal); seond, we formulate an adequate riterion

for the satis�ability of normal onstraint graphs; and

third, we show how this riterion an be veri�ed by

\loal tests" that an be performed by automata. Let

us start with introduing normal onstraint graphs and

the riterion for their satis�ability, whih is alled on-

sisteny.

De�nition 7. Let G = (V;E; �) be a onstraint

graph. G is alled normal if it satis�es the following

onditions:

1. (v

1

; v

2

; P ) 2 E implies P 2 f<;=g,



2. (v; P

q

) 2 � implies P 2 f<;=; >g,

3. for eah rational number q appearing in � and

eah node v 2 V , we have (v; P

q

) 2 � for some

P 2 f<;=; >g.

Let �

n

denote addition modulo n. A <-yle O in

a normal onstraint graph G is a a �nite non-empty

sequene of nodes v

0

; : : : ; v

k�1

2 V suh that (i) for all

i < k, there exists a P suh that (v

i

; v

i�

k

1

; P ) 2 E and

(ii) there exists an i < k suh that (v

i

; v

i�

k

1

; <) 2 E.

A normal onstraint graphG is onsistent i� it satis�es

the following onditions:

1. G ontains no <-yle,

2. for all v 2 V , there exists a q 2 Q suh that qPq

0

for all P

q

0

2 �(v),

3. for all (v

1

; v

2

; P ) 2 V , there exist q

1

; q

2

2 Q suh

that

� q

1

P q

2

,

� q

1

P

0

q for all P

0

q

2 �(v

1

), and

� q

2

P

0

q for all P

0

q

2 �(v

2

).

It may appear that Property 3 of onsisteny is

too weak sine it only demands the existene of

rationals q

1

; q

2

for eah edge between v

1

and v

2

separately instead of for all suh edges simultane-

ously: a normal onstraint graph with set of edges

f(v

1

; v

2

; <); (v

1

; v

2

;=)g is learly unsatis�able, but

does not violate Property 3. This, however, is ompen-

sated by Property 1 whih is violated in this example.

One an show that onsisteny is indeed an adequate

riterion for the satis�ability of normal onstraint

graphs.

Theorem 8. A normal onstraint graph G is satis�-

able over Q i� G is onsistent.

It is interesting to note that Theorem 8 also holds if

satis�ability overR is onsidered instead of satis�abil-

ity over Q (the same proof works). However, as noted

in

[
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, Theorem 8 does not hold if satis�ability over

non-dense strutures suh as N is onsidered.

Intuitively, every onstraint graph G = (V;E; �) an

be onverted into a normal one (alled a normalization

of G) by �rst speializing the relations in E and � suh

that Conditions 1 and 2 of normality are satis�ed and

then augmenting � suh that Condition 3 holds.

De�nition 9 (Normalization). A onstraint graph

G = (V;E; �) is a normalization of the onstraint

graph G

0

= (V;E

0

; �

0

) i� it is normal and the following

onditions are satis�ed:

1. (v

1

; v

2

; P ) 2 E

0

with P 2 f<;=g implies

(v

1

; v

2

; P ) 2 E,

2. (v

1

; v

2

; >) 2 E

0

implies (v

2

; v

1

; <) 2 E,

3. (v

1

; v

2

;�) 2 E

0

implies f(v

1

; v

2

; <); (v

1

; v

2

;=)g \

E 6= ;,

4. (v

1

; v

2

;�) 2 E

0

implies f(v

2

; v

1

; <); (v

1

; v

2

;=)g \

E 6= ;,

5. (v

1

; v

2

; 6=) 2 E

0

implies f(v

1

; v

2

; <); (v

2

; v

1

; <)g \

E 6= ;,

6. if (v; P

q

) 2 � , then there exists a v

0

2 V and a P

0

suh that (v

0

; P

0

q

) 2 �

0

,

7. (v; P

q

) 2 �

0

with P 2 f<;=; >g implies

(v; P

q

) 2 � ,

8. (v;�

q

) 2 �

0

implies f(v;<

q

); (v;=

q

)g \ � 6= ;,

9. (v;�

q

) 2 �

0

implies f(v;>

q

); (v;=

q

)g\� 6= ;, and

10. (v; 6=

q

) 2 �

0

implies f(v;<

q

); (v;>

q

)g \ � 6= ;.

Due to Theorem 8 and the obvious fat that a on-

straint graph is satis�able i� one of its normalizations

is satis�able, a onstraint graph G is satis�able i� it

has a onsistent normalization. This property will play

an important role for establishing the orrespondene

between Hintikka-trees and anonial interpretations.

4 De�ning Hintikka-trees

In this setion, we de�ne Hintikka-trees, whih are,

as has already been noted, abstrations of anonial

(tree-shaped) interpretations. Let us start with de�n-

ing, for eah onept C (in PNF) and role hierarhyR,

the set of onepts l(C;R) that are \relevant" for de-

iding whether a given interpretation is a model of C

and R: for a given onept C and role hierarhy R,

we use l(C;R) to denote the smallest set suh that

1. C 2 l(C;R),

2. > 2 l(C;R),

3. if 8R:D 2 l(C;R), Trans(S), and S v* R, then

8S:D 2 l(C;R), and

4. l(C;R) is losed under subformulas and � (.f.

the remark below De�nition 3).

Note that ℄l(C;R) is linear in the length of C and the

number of role inlusions in R.

Hintikka-trees are de�ned in several steps. We start

with introduing Hintikka-sets, whih form the basis

for the de�nition of so-alled Hintikka-labels. As the

name indiates, Hintikka-labels are used as node la-

bels in Hintikka-trees. We then de�ne Hintikka-tuples,



whih are tuples of Hintikka-labels that desribe a

valid label on�guration for a node and its diret su-

essors in a Hintikka-tree (Hintikka-tuples will also be

rather onvenient for de�ning looping automata that

aept Hintikka-trees). Eventually, we use Hintikka-

labels and Hintikka-tuples to de�ne Hintikka-trees.

Intuitively, eah node � of a Hintikka-tree T desribes

a domain element x of the orresponding anonial

model I. The node label of � onsists of several parts,

one of them a Hintikka-set. This Hintikka-set ontains

all onepts D from l(C;R) suh that x 2 D

I

.

De�nition 10 (Hintikka-set). Let C be a onept

in PNF and R a role hierarhy. A set 	 � l(C;R) is

a Hintikka-set for C and R i� it satis�es the following

onditions:

(S1) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(S2) if C

1

t C

2

2 	, then fC

1

; C

2

g \	 6= ;,

(S3) fA;:Ag 6� 	 for all onept names A,

(S4) if f 2 N

aF

is used in C orR, then (6 1 f >) 2 	,

(S5) if (6 n R D) 2 l(C;R), then fD;�Dg\	 6= ;,

(S6) > 2 	

Conepts of the form 9R:D, (> n R D), (6 n R D),

and 9Rg

1

; g

2

:P may appear either marked or un-

marked in 	.

The marking of onepts is a tehnial trik that allows

us to deal with the inverse role onstrutor. Intuitively,

edges of a Hintikka-tree T desribe role suessor re-

lationships of the orresponding anonial model I.

If 9R:D ours in the Hintikka-set of a node �, then

there has to exist a \witness" for this onept: either

(i) there exists a suessor  of � suh that the edge

from � to  represents an R role relationship and D

is in the Hintikka-set of , or (ii) � has a predees-

sor �, the edge from � to � represents an Inv(R) role

relationship, and D ours in the Hintikka-set of �.

The marking of onepts is used for bookkeeping of

these two possibilities: if 9R:D ours marked in the

Hintikka-set of �, then its predeessor is a \witness"

for 9R:D and we do not need to enfore the existene

of a witness among �'s suessors. The marking of

(> n R D), (6 n R D), and 9Rg

1

; g

2

:P onepts an

be explained similarly. Hintikka-sets are one of the

omponents of Hintikka-labels:

De�nition 11 (Hintikka-label). Let C be a on-

ept in PNF and R a role hierarhy. A Hintikka-label

(	; !; V; E; �) for C and R onsists of

1. a Hintikka-set 	 for C and R,

2. a set ! � ROL of roles ourring in C or R, and

3. a onstraint graph (V;E; �) where V � N

F

, every

g 2 V ours in C, and every q appearing in �

ours in C.

suh that

(N1) if 9g

1

; g

2

:P 2 	, then g

1

; g

2

2 V and

(g

1

; g

2

; P ) 2 E,

(N2) if 8g

1

; g

2

:P 2 	 and g

1

; g

2

2 V , then

(g

1

; g

2

; P ) 2 E,

(N3) if 9g:P

q

2 	, then g 2 V and (g; P

q

) 2 � ,

(N4) R 2 ! and R v* S implies S 2 !,

(N5) if g

1

; g

2

2 V , then

f(g

1

; g

2

; <); (g

1

; g

2

;=); (g

2

; g

1

; <)g \ E 6= ;;

(N6) if q appears in C, then, for eah g

0

2 V , there

exists a P

0

2 f<;=; >g suh that (g

0

; P

0

q

) 2 � .

The set of all Hintikka-labels for C and R is denoted

by �

C;R

.

Let us explain the intuition behind Hintikka-labels.

If � is a node in a Hintikka-tree T , I the anoni-

al model orresponding to T , and x 2 �

I

the do-

main element assoiated with �, then the Hintikka-

label L = (	; !; V; E; �) of � is a desription of x in I.

More preisely, (i) the Hintikka-set 	 is the set of on-

epts D 2 l(C;R) suh that x 2 D

I

(ii) ! is the set

of roles R 2 ROL suh that (y; x) 2 R

I

, where y is the

domain element orresponding to the preessor � of �

in T ; and (iii) the onstraint graph (V;E; �) desribes

the numerial suessors of x and their relationships:

if, for some g 2 N

F

, we have g 2 V , then g

I

(x) is

de�ned. By (N5) and (N6), (V;E; �) �xes the rela-

tionship between any two numerial suessors of x as

well as the relationship between any numerial sues-

sor of x and any rational number q appearing in the

input onept. By (N1), (N2), and (N3), the rela-

tionships stated by E and � are \onsistent" with the

Hintikka-set 	.

It is rather important that the onstraint graph

(V;E; �) �xes the relationship between any two nodes

of V : as already noted in Setion 3, every Hintikka-

tree T indues a (normal) onstraint graph G(T ) that

desribes the \numerial part" of the anonial inter-

pretation orresponding to T , and should thus be sat-

is�able. Sine G(T ) is normal, by Theorem 8 it suf-

�es to demand that G(T ) should be onsistent. The

omplete determination of the relationships between

nodes of the onstraint graphs (V;E; �) in Hintikka-

labels will allow us to ensure the onsisteny of G(T )



using a loal ondition whih an be veri�ed by loop-

ing automata. This ondition is part of the de�nition

of Hintikka-tuples, whih are introdued next.

De�nition 12 (Tuple-graph, Hintikka-tuple).

Let C be a onept in PNF and R a role hierarhy.

With b

C;R

, we denote

℄fD 2 l(C;R) jD = 9R:E or D = 9Rg

1

; g

2

:Pg

+

X

(>n R C)2l(C;R)

n:

Let � = (L

0

; : : : ; L

b

C;R

) be an b

C;R

+ 1-tuple

of Hintikka-labels with L

i

= (	

i

; !

i

; V

i

; E

i

; �

i

) for

i � b

C;R

. A onstraint graph G = (V;E; �) is a tuple-

graph for � if

V = V

0

[ fig j 1 � i � b

C;R

and g 2 V

i

g

E � E

0

[ f(ig

1

; ig

2

; P ) j 1 � i � b

C;R

and (g

1

; g

2

; P ) 2 E

i

g

� = �

0

[ f(ig; P

q

) j 1 � i � b

C;R

and (g; P

q

) 2 �

i

g

suh that

(G1) if 9Rg; g

0

:P is unmarked in 	

0

, then there exists

an i with 1 � i � b

C;R

suh that ig; g

0

2 V ,

R 2 !

i

, and (ig; g

0

; P ) 2 E,

(G2) if 9Rg; g

0

:P is marked in 	

i

with 1 � i � b

C;R

,

then g; ig

0

2 V , Inv(R) 2 !

i

, and (g; ig

0

; P ) 2 E,

(G3) if 8Rg; g

0

:P 2 	

0

, R 2 !

i

, g 2 V

i

, and g

0

2 V

0

for some i with 1 � i � b

C;R

, then (ig; g

0

; P ) 2 E,

(G4) if 8Rg; g

0

:P 2 	

i

, Inv(R) 2 !

i

, g 2 V

0

, and

g

0

2 V

i

for some i with 1 � i � b

C;R

, then

(g; ig

0

; P ) 2 E.

The tuple � is a Hintikka-tuple i� the following ondi-

tions are satis�ed:

(M1) if 9R:D is unmarked in 	

0

, then there exists an

i with 1 � i � b

C;R

suh that R 2 !

i

and D 2 	

i

,

(M2) if (> n R D) 2 	

0

, then either

� (> n R D) is unmarked in 	

0

and there ex-

ists a set I � f1; : : : ; b

C;R

g of ardinality n

suh that, for eah i 2 I , we have R 2 !

i

and

D 2 	

i

or

� (> n R D) is marked in 	

0

and there exists

a set I � f1; : : : ; b

C;R

g of ardinality n � 1

suh that, for eah i 2 I , we have R 2 !

i

and

D 2 	

i

,

(M3) if 9R:D or (> n R D) is marked in 	

i

with

1 � i � b

C;R

, then Inv(R) 2 !

i

and D 2 	

0

,

(M4) if 8R:D 2 	

0

and R 2 !

i

with 1 � i � b

C;R

,

then D 2 	

i

,

(M5) if 8R:D 2 	

i

and Inv(R) 2 !

i

with 1 � i �

b

C;R

, then D 2 	

0

,

(M6) if 8R:D 2 	

0

, S 2 !

i

with 1 � i � b

C;R

,

Trans(S), and S v* R, then 8S:D 2 	

i

,

(M7) if 8R:D 2 	

i

and Inv(S) 2 !

i

with 1 � i �

b

C;R

, Trans(S), and S v* R, then 8S:D 2 	

0

,

(M8) if (6 n R D) 2 	

0

, then either

� (6 n R D) is unmarked in 	

0

and the ar-

dinality of the set fi j 1 � i � b

C;R

; R 2

!

i

and D 2 	

i

g is at most n or

� (6 n R D) is marked in 	

0

and the ar-

dinality of the set fi j 1 � i � b

C;R

; R 2

!

i

and D 2 	

i

g is at most n� 1,

(M9) if D 2 	

0

, Inv(R) 2 !

i

, and (6 n R D) 2 	

i

for 1 � i � b

C;R

, then (6 n R D) is marked in 	

i

,

(M10) there exists a tuple-graph for � that has a on-

sistent normalization.

Exept for (M10), whih refers to tuple-graphs and

is the aforementioned loal ondition enforing onsis-

teny of indued onstraint graphs, the properties of

Hintikka-tuples should be quite easy to understand.

Before we disuss tuple graphs and (M10) in more

detail, let us introdue Hintikka-trees.

De�nition 13 (Hintikka-tree). An b

C;R

-ary �

C;R

-

tree T with T (�) = (	

�

; !

�

; V

�

; E

�

; �

�

) is a Hintikka-tree

for C and R i� it satis�es the following onditions:

(T1) C 2 	

�

,

(T2) all onepts in 	

�

are unmarked, and

(T3) for all � 2 f1; : : : ; b

C;R

g

�

, the tuple

(T (�); T (�1); : : : ; T (�b

C;R

)) is a Hintikka-tuple.

Let T be a Hintikka-tree, � 2 f1; : : : ; b

C;R

g

�

a node

in T , and T (�) = (	; !; V; E; �). We use 	

T

(�) to

denote 	 and !

T

to denote !.

We an now return to the disussion of Prop-

erty (M10). As is apparent from their de�nition,

tuple-graphs are built by taking the union of all

the onstraint graphs that appear as a part of the

Hintikka-labels in a Hintikka-tuple. The onstraint

graph G(T ) indued by a Hintikka-tree T , in turn,

is onstruted from tuple-graphs: by (T3), for eah

node � of T , the tuple

�

T

(�) := (T (�); T (�1); : : : ; T (�b

C;R

))



indued onstraint graph G(T )

tuple-graphs G

T

(�) / G

n

T

(�)

onstraint graphs from Hintikka-labels

Figure 2: Hintikka-trees and onstraint graphs.

is a Hintikka-tuple. By (M10), there exists a tuple-

graph G

T

(�) for �

T

(�) whih has a onsistent nor-

malization G

n

T

(�). Modulo some tehnial details, the

onstraint graph G(T ) indued by T an be viewed

as the union of the onstraint graphs G

n

T

(�) for all

nodes � of T . Figure 2 illustrates the relationship be-

tween the various onstraint graphs involved. In

[

14

℄

,

we prove that the onsisteny of the normalizations

G

n

T

(�) enfored by (M10) implies onsisteny of the

onstraint graphG(T ) (whih is neessary for T to be a

proper abstration of a Q-SHIQ-interpretation). The

hardest part of this proof is to show that G(T ) satis-

�es Property 1 of onsisteny, i.e., that it ontains no

<-yle: for this proof, it is ruial that

1. the tuple-graph G

T

(�) overlaps with the tuple-

graph G

T

(�) if � is a suessor of � in T , and

2. the onstraint graphs (V;E; �), whih are part of

Hintikka-tuples and thus used to build of tuple-

graphs, �x the relationship between any two ele-

ments of V as disussed above.

Using the fat that the onstraint graph indued

by Hintikka-trees is onsistent, the following, entral

lemma an be established:

Lemma 14. A onept C in PNF and a role hierarhy

R have a model i� they have a Hintikka-tree.

5 De�ning Looping Automata

To prove deidability of Q-SHIQ-onept satis�abil-

ity, it remains to de�ne a looping automaton A

C;R

for

eah onept C and role hierarhy R suh that A

C;R

aepts exatly the Hintikka-trees for C and R. Using

the notion of Hintikka-tuples from De�nition 12, this

is rather straightforward.

De�nition 15. Let C be a onept in PNF, R a role

hierarhy, and b

C;R

as in De�nition 12. The looping

automaton A

C;R

= (Q;M;�; I) is de�ned as follows:

� Q :=M := �

C;R

� I := f(	; !; V; E; �) 2 Q j C 2 	 and all onepts

in 	 are unmarked g.

� � � Q

b

C;R

+2

suh that (L;L

0

; L

1

; : : : ; L

b

C;R

) 2 �

i�

{ L = L

0

and

{ (L;L

1

; : : : ; L

b

C;R

) is a Hintikka-tuple.

As a onsequene of the following lemma and

Lemma 14, we an redue satis�ability of onepts (in

PNF) w.r.t. role hierarhies to the emptiness of the

language aepted by looping automata.

Lemma 16. T is a Hintikka-tree for C and R i�

T 2 L(A

C;R

).

It is an immediate onsequene of Lemmas 4, 14,

and 16 and the deidability of the emptiness prob-

lem of looping automata

[

23

℄

that satis�ability of

Q-SHIQ-onepts w.r.t. role hierarhies is deidable.

However, the presented automata-based algorithm ad-

ditionally provides us with a tight omplexity bound

if the numbers inside number restritions are assumed

to be enoded unarily: an ExpTime upper bound is

obtained by showing that the size of A

C;R

is at most

exponential in the size of C and R and noting that the

emptiness problem for looping automata is in PTime

[

23

℄

. The ExpTime lower bound is an immediate on-

sequene of the fat that SHIQ-onept satis�ability

is already ExpTime-hard

[

22

℄

.



Theorem 17. If numbers inside number restritions

are enoded unarily, then satis�ability of Q-SHIQ-

onepts w.r.t. role hierarhies is ExpTime-omplete.

Sine subsumption an be redued to (un)satis�ability,

Q-SHIQ-onept subsumption w.r.t. role hierarhies

is also ExpTime-omplete.

6 Future Work

In this paper, we have presented the Desription Logi

Q-SHIQ, whih extends the well-known DL SHIQ

with several onrete domain onept onstrutors

that allow the adequate representation of numerial

knowledge. As argued in the introdution,Q-SHIQ is

a ontribution to several interesting appliation areas.

However, we regard the work presented in this paper

only as a �rst step. As disussed in

[

14

℄

, there ex-

ist many possible future researh problems onneted

with the Q-SHIQ Desription Logi. Let us highlight

three of them:

(1) To makeQ-SHIQ available for use in appliations,

modern DL systems like FaCT and RACER, whih are

implementations of the SHIQ Desription Logi, need

to be extended to Q-SHIQ. Unfortunately, the re-

sults presented in this paper annot immediately be

used for this task: the aforementioned DL systems

are based on tableau-style algorithms while the dei-

sion proedure desribed in this paper is automata-

based. Hene, it would be interesting to devise a

tableau-based algorithm for Q-SHIQ-onept satis�-

ability. As disussed in

[

15

℄

in the ontext of T DL, the

automata-based algorithm presented in this paper an

provide important information (i.e., a \regular model

property") for this task.

(2) If Q-SHIQ is to be used for reasoning about ER

diagrams as skethed in the introdution, one is usu-

ally not interested in the satis�ability of onepts in

arbitrary models, but rather in the satis�ability in �-

nite models

[

3

℄

. These two problems do not oinide

sine SHIQ, and hene alsoQ-SHIQ, laks the �nite

model property

[

11

℄

. Thus, it is worthwhile to inves-

tigate the deidability and omplexity of �nite model

reasoning with Q-SHIQ.

(3) For some appliations, it is desirable to refer to

natural numbers instead of rational numbers. As a

simple example, onsider the onept

9(left-neighbor numhild):=

2

u 9(left-neighbor numhild); (numhild):<

u 9(right-neighbor numhild):=

3

u 9(numhild); (right-neighbor numhild):<;

where numhild is a onrete feature representing the

number of hildren. Clearly, the above onept should

be unsatis�able. In Q-SHIQ, however, this onept

is satis�able sine, in a model, the number of hildren

of the desribed person may e.g. be 2:5. It would thus

be interesting to add a onept onstrutor 9g:nat to

Q-SHIQ expressing that the �ller of the onrete fea-

ture g is a natural number. If the extended logi should

be deidable at all, then at least it seems to require

some serious modi�ations of the presented deision

proedure: as noted in

[

17

℄

in the ontext of T DL,

Theorem 8 does not hold if the satis�ability of on-

straint graphs over non-dense strutures suh as N is

onsidered. However, if Q-SHIQ is extended with an

9g:nat onstrutor, then onepts of the resulting logi

an learly be used to desribe onstraint graphs all of

whose nodes are labeled with the nat prediates. This

means that, e�etively, we have to deide satis�ability

of these onstraint graphs over N.

We should like to note that, in many aspets,

Q-SHIQ is already on the border to undeidability:

for example, it seems rather unlikely that any kind of

arithmetis an be added to Q-SHIQ without losing

deidability. More preisely, it follows from results in

[

18; 16

℄

that the addition of a onept onstrutor ex-

pressing the addition of two numbers already yields

undeidability of reasoning.
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