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Abstract

Recently, the Description Logic (DL) SHZQ
has found a large number of applications.
This success is due to the fact that SHZQ
combines a rich expressivity with efficient
reasoning. One weakness of SHZQ, how-
ever, limits its usability in several application
areas: numerical knowledge such as knowl-
edge about the age, weight, or temperature of
real-world entities cannot be adequately rep-
resented. In this paper, we present Q-SHZQ,
an extension of SHZQ that aims at closing
this gap, and show that reasoning with the
extended DL is ExpPTIME-complete.

1 DMotivation

Description Logics (DLs) are a family of knowledge
representation formalisms, which are—apart from
their classical application in KR—nowadays used in
various application areas such as reasoning about en-
tity relationship (ER) diagrams and providing a for-
mal basis for the so-called semantic web [4; 6]. One
of the most influential DLs proposed during the last
years is the SHZQ Description Logic, whose success is
based mainly on the following two facts: first, SHZQ
is a very expressive DL providing for, e.g., transitive
roles, inverse roles, and number restrictions, but its
reasoning problems are nevertheless decidable in Ex-
PTIME [13; 22]. Second, SHZQ has been implemented
in efficient DL systems such as FaCT and RACER,
which can, despite the high worst-case complexity of
reasoning with SHZQ, deal surprisingly well even with
huge knowledge bases [10; 7).

Although, as we just argued, SHZ Q’s expressive power
is one of the main reasons for its success, there is
still room for improvement. In particular, SHZQ can-
not adequately represent numerical knowledge such as

knowledge about the age, weight, or temperature of
real-world entities, which, as we will later discuss in
more detail, is crucial for many important applica-
tions [2; 12; 6; 17]. In this paper, we extend SHZQ
with a set of concept constructors that belong to the
so-called concrete domain family of constructors and
allow a straightforward representation of numerical
knowledge. Let us view a concrete example of knowl-
edge representation with the resulting DL, which is
called Q-SHZQ: the concept

Grandfather M Jage.=g1 M (> 20 relatives Human)
M Vrelatives age, age.<

describes Grandfathers who are 91 years old, have at
least 20 relatives (such constraints are called “qual-
ified number restrictions”), and are older than all of
these relatives. Note that we can refer to rational num-
bers such as “91” and also compare numbers using
predicates such as “<”. We argue that the additional
expressivity provided by Q-SHZQ is rather useful in
many application areas. Let us briefly review three
examples:

(1) As described in [5; 4], reasoning about ER dia-
grams is an important application area of Description
Logics. One shortcoming of the standard way to en-
code ER diagrams, which is to use a fragment of the
SHIQ Description Logic, can be described as follows:
ER diagrams make use of so-called attributes to repre-
sent non-relational data such as numbers and strings
to be stored in the database. If SHZQ is used for
representing ER diagrams, constraints concerning the
values of attributes cannot be expressed. To give a
simple example, if there exists an entity Employee hav-
ing two attributes Birthday and Employment-date, then
it cannot be expressed that employees should be born
before they are hired. If Q-SHZQ is used for repre-
senting ER diagrams, such numerical data constraints
on attributes can easily be handled. This topic is dis-
cussed in more detail in [19].



(2) In [17; 16], the Description Logic 7DL is moti-
vated as a valuable tool for the representation of tem-
poral conceptual knowledge. T DL can be obtained
from the well-known DL ALC [20] by adding general
TBoxes and concrete domain style concept construc-
tors that allow to represent relations between rational
numbers such as “=" and “<”. Indeed, it is not hard
to see that 7DL is a proper fragment of Q-SHZQ.
Thus, Q-SHZQ is also well-suited for reasoning about
temporal conceptual knowledge as described in [17;
16]. Moreover, Q-SHZQ significantly extends the ex-
pressive power provided by 7T DL, even in the tempo-
ral/numerical component of the logic. For example, if
Q-SHTQ is used for temporal reasoning, then one can
refer to concrete time points and time intervals such
as 4 or [1,12]. This is not possible in TDL.

(3) A rapidly developing application area of DLs is
their use as an ontology language for the semantic
web [6]. As noted in [6; 9], the representation of
“concrete datatypes” such as numbers is an impor-
tant task in this context. However, in DLs such as
OIL and DAML+OIL, which have been proposed in
this application area, appropriate expressivity is ei-
ther not provided or not taken into account for rea-
soning, which is done by a translation into SHZQ or
related DLs. In [12], Horrocks and Sattler propose
to extend SHOQ, a close relative of SHZQ, with so-
called unary concrete domains in order to integrate
concrete datatypes. However, this solution is not re-
ally satisfying since, as is explained in more detail in
[16], unary concrete domains are of very limited ex-
pressivity. If Q-SHZQ is used as the target logic in
translations of OIL and DAML+OIL, a rather power-
ful means for describing numerical concrete datatypes
becomes available.

As the main result of this paper, we prove reasoning
with Q-SHZQ to be decidable in EXPTIME by de-
vising an automata-based decision procedure. Thus,
Q-SHTQ sensibly enhances the expressive power of
SHIQ without increasing the worst-case complexity
of reasoning. This paper is accompanied by a technical
report that contains more details and full proofs [14].

2 Syntax and Semantics

In this section, we introduce the Description Logic
Q-SHIQ in detail. We first give the syntax and se-
mantics of Q-SHZQ-roles, then introduce some useful
abbreviations, and finally define syntax and semantics

of Q-SHIQ-concepts.

Definition 1. Let N;r, Nig, and N,r be countably in-
finite and mutually disjoint sets of regular role names,

transitive role names, and abstract features, respec-
tively. Moreover, let Ng = N,g W Nyg W Nap. The set
of Q-SHZQ-roles ROL is NkU{R~ | R € Nr}. A role
inclusion is of the form R C S, for R, S € ROL. A role
hierarchy is a set of role inclusions.

An interpretation T = (AT,.T) consists of a set AT,
called the domain of Z, and a function -7 which maps
every role R € ROL to a subset R of AT x AT such
that, for R € Ng, S € Nir, and f € Nag, we have

o (¢,y) € BT iff (y,x) € R,
o if (z,y) € ST and (y,z) € ST, then (z,z) € S7,

e f7 is functional.

An interpretation 7 is a model of a role hierarchy R
iff RT C ST for each RC S € R.

We introduce some notation to make the following con-
siderations easier:

(1) The function Inv yields the inverse of a role. More
precisely, for R € ROL, we set

Inv(R) := R~ if R is a role name,
T S if R=S" for arole name S.

(2) Since set inclusion is transitive and RZ C ST im-
plies Inv(R)T C Inv(S)Z, for a role hierarchy R, we
introduce [E g as the reflexive-transitive closure of

RU{lnv(R)CInv(S) | RC S € R}.

(3) We call a role R € ROL transitive with respect to
a role hierarchy R iff R is interpreted in a transitive
relation in every model of R. It is not hard to see that
this is the case iff the following predicate evaluates to
true:

true if there exists a role S € Nir
s.t. S’ E’RR and R ERS”
for some S’,S" € {S,Inv(S)}
false otherwise.

Transg (R) :=

(4) A role R € ROL is called simple with respect to a
role hierarchy R iff Transz(S) does not hold for any
S € ROL with S ER.

For both “ E »” and Transgk, we omit the index if clear
from the context. Note that no transitive role is simple
since [ is defined as the reflerive-transitive closure.
For the same reason, we have Trans(R) for all R € Nig.
However, roles must obviously not be in N¢g in order to
be transitive. For example, if R € Ng, then R~ is also
transitive. Similarly, if S € Nwr, R ¢ N, S~ C R,
R C S, then R is transitive.



(cnbD)yf = c¢*tnbDf, (CuDbD)yf=c*ubDf, -C%=AT\C1,
(3R.C)Y = {z € AT | There is some y € AT with (z,y) € R and y € C*},
(VR.C)T = {z € AT|For all y € AT, if (z,y) € RT, then y € CT},

(KnRC) = {zeAT|t{y](s,y) € B and y € C7} <},
(>nRC) = {zeAT|ty](n,y) € R and y € CT} > n}),
(AU,,U».P)Y = {z € AT | There are q; € UL and ¢o € UZ with ¢, P g2}
(VU,,Us.P) = {x € AT |Forall ¢ € U and ¢ € Uf, we have ¢, Pgo}
(3g.P)* = {xe ATl |g%(x) is defined and g% (z) P ¢}

Figure 1: Q-SHZQ concept semantics.

We are now ready to define Q-SHZQ-concepts and
their semantics.

Definition 2. Let N¢ and N be countably infinite
sets of concept names and concrete features, respec-
tively, such that N¢, Nr, and N are mutually dis-
joint. A path is a sequence R; --- Rypg consisting of
roles Ry, ..., R; € ROL and a concrete feature g € N¢r.
A path Ry---Rpg in which Ry,..., Ry are abstract
features (i.e., from N,g) is called feature path. The set
of Q-SHIQ-concepts is the smallest set such that

1. every concept name C' € N¢ is a concept,

2. if C and D are concepts and R € ROL, then CND,
CuD,-C,VYR.C, and dR.C are concepts,

3. if C is a concept, R € ROL is simple, and n € N,
then (< n R C) and (= n R C) are concepts,

4. if uq and us are feature paths and P is a predicate
from the set {<,<,=,#,>,>}, then Juy,us.P
and Vuq,us.P are concepts,

5. if R € ROL is simple, g; and g» are con-
crete features, and P € {<, <, =, #,>,>}, then
dRg1,g2.P and YRg1, g».P are concepts, and

6. if g is a concrete feature, P € {<, <, =, #,>, >},
and ¢ € Q, then 3¢.P, is a concept.

We use T as an abbreviation for ALI=A (for some fixed
A € N¢). The interpretation function -Z of interpre-
tations 7 = (AT, .T) maps, additionally, every concept
C to a subset CT of AT, and every concrete feature
g to a partial function g% from AZ to the set of ra-
tional numbers @Q such that the equations in Figure 1
are satisfied, where U; and U, denote paths, £S de-
notes the cardinality of the set S, and, for every path
U=R;y---Rpg, U” is defined as

{(xaq)gAIXQ| 3y1,...,yk+1 =11,

(vi,yit1) € RF for 1 <i <k, and g”(yxt1) = q}.

An interpretation 7 is a model of a concept C iff
CT #£ 0. C is called satisfiable with respect to a role

hierarchy R iff there exists a model of C and R. A
concept D subsumes a concept C with respect to R
(written C Cg D) iff C7 C D7 holds for each model
T of R.

Throughout this paper, we denote concept names by
A and B, concepts by C, D, and FE, roles by P, R,
and S, abstract features by f, concrete features by g,
paths by U, feature paths by u, and predicates by P.

In the following sections, we show that Q-SHZQ-
concept satisfiability is decidable in deterministic ex-
ponential time. This also yields decidability and an
ExPTIME upper complexity bound for concept sub-
sumption: we have C' Cr D iff CM—D is unsatisfiable
w.r.t. R.

Most modern Description Logics do not only consist of
a concept language but also provide for a TBox com-
ponent. Formally, a TBox is a finite set of concept
equations C = D, where C' and D are concepts, and
an interpretation Z is a model of a TBox 7 iff it sat-
isfies CT = D7 for all (C' = D) € T. In the presence
of TBoxes, one is usually interested in the satisfiabil-
ity of concepts w.r.t. TBoxes and role hierarchies, i.e.,
in whether there exists a model Z of C, 7, and R.
However, as shown in [11], in the presence of role hi-
erarchies and transitive roles, it is possible to polyno-
mially reduce concept satisfiability w.r.t. TBoxes and
role hierarchies to concept satisfiability w.r.t. role hi-
erarchies, only. Hence, we do not explicitly consider
TBoxes in what follows.

Let us discuss the Q-SHZ Q-concept language in some
more detail. Since exhaustive information on SHZQ
can be found in, e.g., [13], we concentrate on the addi-
tional concept constructors 3Uy, Us.P, YUy, Us.P, and
dg.P,, which, as has already been noted, are often
called “concrete domain constructors”. Concrete do-
mains have been introduced by Baader and Hanschke
as a means for representing “concrete knowledge” such
as knowledge about numbers, strings, and spatial ex-
tensions [1]. More precisely, Baader and Hanschke ex-
tend the basic propositionally closed DL ALC with



concrete domains, where a concrete domain D is com-
prised of a set called the domain and a set of predicates
with a fixed extension on this domain. It is impor-
tant to note that Baader and Hanschke do not com-
mit themselves to a particular concrete domain, but
rather view the concrete domain D as a parameter to
their logic, which they call ALC(D). From the con-
crete domain perspective, Q-SHZQ can be viewed as
being equipped with one particular concrete domain,
whose domain are the rationals and which is equipped
with binary predicates <, <,=,#,>,> and with (in-
finitely many) unary predicates P,, where ¢ € Q and
Pe{<, <= #,>,>)

The paths U; and U, that may appear inside
Q-SHZQ’s binary concrete domain constructors
3U,,U,.P and YU, U,.P are of a rather special form:
either (i) Uy and U, are feature paths or (ii) U; has
the form Rg; and Us has the form g5. Let us illustrate
the expressive power of these two variants of the same
constructors: using Variant (i), we can, e.g., describe
people whose mother’s spouse earns more than their
father (we use parentheses for better readability):

J(mother spouse wage), (father wage).>

The example illustrates the main advantage of Vari-
ant (i): we can talk about sequences of features. This
variant of Q-SHZQ’s binary concrete domain con-
structors are precisely the concrete domain construc-
tors offered by ALC(D) and the temporal DL TDL
mentioned in the introduction. The main disadvan-
tage of Variant (i) is that, inside paths, we may only
use abstract features but no roles from N,g. For ex-
ample, if we want to describe people having an older
neighbor by the concept

A(neighbor, age), (age).>,

then “neighbor” should clearly be from N,g rather than
from N,, since otherwise we would enforce that the de-
scribed persons have at most a single neighbor. There-
fore, we need Variant (ii) of the binary concrete do-
main constructors to define this concept. Note that
Variant (ii) is neither provided by ALC(D) nor by
TDL, but rather is a restricted version of the concrete
domain constructors defined in [8].

It is not hard to see that we could also have admit-
ted variants dg;, Rg>.P and Vg;, Rg>.P of the binary
concrete constructors since this variant is just syntac-
tic sugar: dg1, Rg>.P is equivalent to 3Rgs, g1.P and
Vg1, Rg>.P is equivalent to VRg, g1.P, where P de-
notes the inverse of the predicate P—for example, “<”
is “>” and “=” is “=". Obviously, the most general
approach would be to allow arbitrary paths inside the

binary concrete domain constructors.! The resulting
logic, however, cannot easily be handled by the Exp-
TIME decision procedure for concept satisfiability pre-
sented in the remainder of this paper.

Only simple roles are allowed in Variant (ii) of the
binary concrete domain constructors. Similarly, roles
used inside number restrictions are also required to
be simple. As proved in [13], the latter restriction
is crucial since admitting non-simple roles inside num-
ber restrictions yields undecidable reasoning problems.
Non-simple roles inside the binary concrete domain
constructors cannot be handled by the EXPTIME de-
cision procedure presented in this paper. However, it
is as of now unknown whether admitting them yields
undecidability of reasoning.

As a last comment concerning the binary concrete do-
main constructors, note that there exist existential and
universal versions of the binary concrete domain con-
structors but only an existential version of the unary
concrete domain constructor. It is not hard to see that
we could also have admitted a universal version since
Vg.P, (with the obvious semantics) is clearly equiva-
lent to Vg, .U dg.P,, where Vg, g.7 simply expresses
that there exists no successor for the concrete fea-
ture g. Similarly, the universal version of Variant (i)
of the binary concrete domain constructors can be ex-
pressed in terms of the existential version of Variant (i)
of this constructor. This does, however, not hold for
Variant (ii) of the binary concrete domain constructors
since it accepts non-functional roles as arguments. For
this reason, we have chosen to include universal ver-
sions of both Variant (i) and (ii) for uniformity.

It may look strange at first sight that Q-SHZQ pro-
vides for both abstract features and number restric-
tions since, as is well-known, number restrictions, tran-
sitive roles, and role hierarchies can be used to enforce
that a role Ry from N,r is interpreted functionally:
just use the concept VR.(< 1 Ry T), where R € N,
and employ the role hierarchy to ensure that S & R for
every “relevant” role S (i.e. for the roles occurring in
the concept and role hierarchy whose satisfiability is
to be decided). The reason for this redundancy is that
number restrictions are, in principle, a strictly more
general means of expressivity than abstract features,
but having abstract features explicitly available allows
for a straightforward definition of Variant (i) of the
concrete domain constructors.

! Admitting arbitrary paths inside the unary concrete
domain constructor is not an issue since the concept
3R, - - - Rig.P, (with the obvious semantics) can be written
as dRy. -+ .3R;.39.P;,.



3 Preliminaries

Decidability and the EXPTIME upper complexity
bound for Q-SHZQ-concept satisfiability is estab-
lished by devising an automata-based decision proce-
dure. The general idea behind this procedure is to
define, for a given concept C' and role hierarchy R, a
looping tree-automaton Ac, r that accepts exactly the
so-called Hintikka-trees for C' and R. These Hintikka-
trees are abstractions of models of C'and R, i.e., C and
R have a model if and only if C' and R have a Hintikka-
tree. The obvious advantage of Hintikka-trees over
models is that they are trees and thus amenable to
tree automata techniques. Once the automaton Ao,n
is defined, it remains to apply the standard emptiness
test for tree automata: clearly, the language accepted
by the constructed automaton is empty iff C' is satis-
fiable w.r.t. R.

In this section, we introduce the basic notions under-
lying the decision procedure sketched above. We start
with developing a useful normal form (called path nor-
mal form) for Q-SHZQ-concepts, and then introduce
looping tree-automata. Finally, we define constraint
graphs, which will play an important role in represent-
ing the “numerical part” of Q-SHZQ-interpretations
in Hintikka-trees.

3.1 Normal Forms

We start with formulating a property of role hierar-
chies that we will generally assume to be satisfied in
what follows:

A role hierarchy R is called admissible iff all
f € Naf are simple w.r.t. R.

Demanding admissibility of role hierarchies is closely
related to requiring roles R that appear inside number
restrictions (< n R C) and (> n R C) to be simple:
since abstract features are interpreted in functional re-
lations, they are “inherently number restricted”, i.e.,
for each f € N, (< 1 f T) is satisfied by every
domain element in every interpretation. However, it
seems that, in contrast to admitting arbitrary roles
inside number restrictions, dropping admissibility of
role hierarchies does not seem to lead to undecidabil-
ity of reasoning. Indeed, we claim that the decision
procedure presented in this paper can, in principle, be
extended to also deal with non-admissible role hierar-
chies. We nevertheless restrict ourselves to admissible
role hierarchies since (i) this eliminates several case
distinctions in the proofs, and (ii) we agree with Hor-
rocks and Sattler [11] who argue that non-simple fea-
tures are rather unnatural: if f € Nf is non-simple,

then there exists a role R € Ng such that Trans(R)
and R E f. Hence, R is both functional and transitive
which produces strange effects: for any interpretation
Z, R* may not contain any acyclic paths of length
greater 1. Hence, the concept IR.AR.T is satisfiable
only in models that contain either (i) a domain element
a which is its own R-successor or (ii) two domain el-
ements a and b, where b is R-successor of a and of
itself (the same holds for the concept IR.IR.IR.T).
To avoid such effects, which do not seem to promote
writing understandable knowledge bases, we generally
require role hierarchies to be admissible.

Let us now turn our attention towards the path normal
form for Q-SHZQ-concepts, which was first described
in [17] in the context of the Description Logic TDL.
Definition 3. A Q-SHZQ-concept C is in negation
normal form (NNF) if negation occurs only in front
of concept names. Moreover, C is in path normal
form (PNF) iff it is in NNF and, for all subconcepts
3U;,Us.P and YUy, U,.P of C, we have either

1. Uy = g1 and Uy = g» for some g1, g> € N¢g or

2. Uy = Rg; and Uy = g5 for some R € Nor U N\g
and 91,92 € N¢k.

It is not hard to see (c.f. [14]) that every Q-SHZQ-
concept can be converted into an equivalent one in
NNF. In what follows, we use ~C' to denote the result
of converting —C' to NNF. The following lemma shows
that we can even assume Q-SHZQ-concepts to be in
PNF.

Lemma 4. Satisfiability of Q-SHZQ-concepts can
be polynomially reduced to satisfiability of Q-SHIQ-
concepts in PNF.

Proof We first define an auxiliary mapping and then
use this mapping to translate Q-SHZQ-concepts into
equivalent ones in PNF. Let C be a Q-SHZQ-concept.
For every feature path u = f;--- f,g used in C, we
assume that [g], [fng],-.-,[f1 - fng] are concrete fea-
tures not used in C'. We inductively define a mapping
A from concrete paths u in C to concepts as follows:

AMg) = T
A fu)y = Qlfu], flu]. =) 1 AfA\(u)
For every Q-SHZQ-concept C, a corresponding con-
cept p(C) is obtained by

o first replacing» all subconcepts Vui,us.P where
U fl(l) e ,ﬁj)gi for i € {1,2} with

Vf1(1)- - -W,E?-Vgl,gl-#
L Vfl(Q) . Vf,gz)Vgg,gggé (] E'Ul,’UQ.P



e and then replacing all subconcepts Ju, us.P with
Alwa], [w2]- P11 A(ur) 1 A(uz).

Now let C' be a Q-SHI Q-concept. Using the rewriting
rules from [14], we can convert C into an equivalent
concept C’ in NNF. It is then easy to check that C’
is satisfiable iff p(C") is satisfiable. Moreover, p(C")
is clearly in PNF and the translation can be done in
polynomial time. a

Intuitively, Lemma 4 states that Variant (i) of the
binary concrete domain constructors discussed in
the previous section can be reduced to the forms
Afgi1,g2.P and gy, g2.P. Variant (ii) of the binary
concrete domain constructors does not need to be ma-
nipulated in order to fit into the PNF scheme. Let us
remark that our algorithm’s need for PNF is the rea-
son why we cannot handle arbitrary paths inside the
binary concrete domain constructors: it is an interest-
ing exercise to check that the constructor YUy, Us.P
with Uy = Ry---Rpg and Uy = Si---Spg'.P can
be reduced to the forms IRg;,g>.P and gy, go.P if
Pe{<,<,=,>,>} but not if P is “#”.

3.2 Automata and Constraint Graphs

At the core of the decision procedure to be devel-
oped are so-called looping tree-automata, i.e., finite
automata on infinite trees for which every run is ac-
cepting [23; 21].

Definition 5. Let M be aset and &k > 1. A k-ary M-
tree is amapping T : {1,...,k}* = M that labels each
node a € {1,...,k}* with T'(a) € M. Intuitively, the
node ai is the i-th child of a. We use € to denote the
empty word (corresponding to the root of the tree).

A looping automaton A = (Q,M,I,A) for k-ary M-
trees is defined by a finite set @) of states, a finite al-
phabet M, a subset I C () of initial states, and a
transition relation A C Q x M x Q.

A run of A on an M-tree T
r:{l,...,k}* > Q with r(¢) € I and

is a mapping

(r(a), T(a),r(al),...,r(ak)) € A

for each a € {1,...,k}*. The language L(A) of M-
trees accepted by A is

L(A) := {T | there is a run of A on T'}.

Vardi and Wolper [23] show that the emptiness prob-
lem for looping automata, i.e., the problem to decide
whether L(A) = 0 for a given looping automaton A,
is decidable in polynomial time.

We now introduce constraint graphs. As already
noted, such graphs will be used to represent the “nu-
merical part” of Q-SHZ Q-interpretations in Hintikka-
trees.

Definition 6. A constraint graph is a directed graph
G = (V,E, ), where V is a countable set of nodes,

EQVXVX{<,S,:,#,Z,>}
is a set of labeled edges, and
TCVXx{P,|Pe{<,<,=#>>}and ¢ € Q}

is a node labeling relation. In what follows, we some-
times write 7(v) for {P, | (v, P,) € 7}.

A constraint graph G = (V, E, 1) is called satisfiable
over S—where S is a set equipped with a total order-
ing <—iff there exists a total mapping § from V to S
such that

1. §(v) Pgq for all P, € 7(v) and
2. §(v1) P 6(vs) for all (vy,ve, P) € E.

Such a mapping 4 is called a solution for G.

We will see later that every Hintikka-tree 7" induces
a constraint graph which represents the “numerical
part” of the canonical interpretation described by T.
As should be intuitively clear, these induced constraint
graphs have to be satisfiable in order for Hintikka-
trees to be proper abstractions of interpretations.
Since, later on, we must define looping automata
which accept exactly the Hintikka-trees for a concept
C and role hierarchy R, such automata should be
able to verify the satisfiability of (induced) constraint
graphs. This check is the main problem to be solved
when developing an automata-based decision proce-
dure for Q-SHZQ-concept satisfiability: the induced
constraint graph and its satisfiability are “global” no-
tions while automata work “locally”. This problem
can be overcome as follows: first, we define Hintikka
trees such that their induced constraint graphs have
a certain form (we will call such constraint graphs
normal); second, we formulate an adequate criterion
for the satisfiability of normal constraint graphs; and
third, we show how this criterion can be verified by
“local tests” that can be performed by automata. Let
us start with introducing normal constraint graphs and
the criterion for their satisfiability, which is called con-
sistency.

Definition 7. Let G = (V,E,7) be a constraint
graph. G is called normal if it satisfies the following
conditions:

1. (v1,v2, P) € E implies P € {<, =},



2. (v, P;) € T implies P € {<,=,>},

3. for each rational number ¢ appearing in 7 and
each node v € V, we have (v, P;) € 7 for some
Pe{<,=>}

Let @, denote addition modulo n. A <-cycle O in
a normal constraint graph G is a a finite non-empty
sequence of nodes vy, . .., vk—1 € V such that (i) for all
i < k, there exists a P such that (v;, vig,1, P) € E and
(ii) there exists an i < k such that (v, vig,1,<) € E.

A normal constraint graph G is consistent iff it satisfies
the following conditions:

1. G contains no <-cycle,

2. for all v € V, there exists a ¢ € Q such that qPq’
for all Py € 7(v),

3. for all (v1,vs, P) € V, there exist ¢1,¢2 € Q such
that

L4 (I1P‘I2a
e ¢, P'q for all P,; € 7(v1), and
o ¢z P'qfor all P; € 7(v2).

It may appear that Property 3 of consistency is
too weak since it only demands the existence of
rationals ¢qp,qs for each edge between v; and ws
separately instead of for all such edges simultane-
ously: a normal constraint graph with set of edges
{(v1,v2, <), (v1,v2,=)} is clearly unsatisfiable, but
does not violate Property 3. This, however, is compen-
sated by Property 1 which is violated in this example.

One can show that consistency is indeed an adequate
criterion for the satisfiability of normal constraint
graphs.

Theorem 8. A normal constraint graph G is satisfi-
able over Q iff G is consistent.

It is interesting to note that Theorem 8 also holds if
satisfiability over R is considered instead of satisfiabil-
ity over @ (the same proof works). However, as noted
in [17], Theorem 8 does not hold if satisfiability over
non-dense structures such as N is considered.

Intuitively, every constraint graph G = (V, E,7) can
be converted into a normal one (called a normalization
of G) by first specializing the relations in E and 7 such
that Conditions 1 and 2 of normality are satisfied and
then augmenting 7 such that Condition 3 holds.

Definition 9 (Normalization). A constraint graph
G = (V,E,7) is a normalization of the constraint
graph G' = (V, E', ") iff it is normal and the following
conditions are satisfied:

1. (v1,v2,P) € E' with P € {<,=} implies
(’Ul,’Ug,P) S E,

2. (v1,v2,>) € E' implies (vy,v1,<) € E,
(v1,v2,<) € E' implies {(v1,vs,<), (v1,v2,=)} N

3.
E#9,
4. (v1,v9,>) € E" implies {(va,v1, <), (v1,v2,=)} N
E #10,

5. (v1,v2,#) € E' implies {(v1,v2, <), (v2,v1,<)} N
E #19,

6. if (v, P;) € 7, then there exists a v' € V and a P’
such that (v', P;) € 7/,

€ 7 with P € {<,=,>} implies

Q)}mT # wa and

<)
v,>,) € 7' implies {(v, >), (v,
7& ) € T’ implies {(Ua <Q)a (Ua >q)} nr 7& 0

10.

Due to Theorem 8 and the obvious fact that a con-
straint graph is satisfiable iff one of its normalizations
is satisfiable, a constraint graph G is satisfiable iff it
has a consistent normalization. This property will play
an important role for establishing the correspondence
between Hintikka-trees and canonical interpretations.

4 Defining Hintikka-trees

In this section, we define Hintikka-trees, which are,
as has already been noted, abstractions of canonical
(tree-shaped) interpretations. Let us start with defin-
ing, for each concept C' (in PNF) and role hierarchy R,
the set of concepts cl(C, R) that are “relevant” for de-
ciding whether a given interpretation is a model of C'
and R: for a given concept C' and role hierarchy R,
we use cl(C,R) to denote the smallest set such that

1. C ed(C,R),

2. T ec(C,R),

3. if VR.D € cl(C,R), Trans(S), and S ER, then
VS.D € cl(C,R), and

4. cl(C,R) is closed under subformulas and ~ (c.f.
the remark below Definition 3).

Note that #cl(C, R) is linear in the length of C' and the
number of role inclusions in R.

Hintikka-trees are defined in several steps. We start
with introducing Hintikka-sets, which form the basis
for the definition of so-called Hintikka-labels. As the
name indicates, Hintikka-labels are used as node la-
bels in Hintikka-trees. We then define Hintikka-tuples,



which are tuples of Hintikka-labels that describe a
valid label configuration for a node and its direct suc-
cessors in a Hintikka-tree (Hintikka-tuples will also be
rather convenient for defining looping automata that
accept Hintikka-trees). Eventually, we use Hintikka-
labels and Hintikka-tuples to define Hintikka-trees.

Intuitively, each node « of a Hintikka-tree T' describes
a domain element x of the corresponding canonical
model Z. The node label of & consists of several parts,
one of them a Hintikka-set. This Hintikka-set contains
all concepts D from cl(C,R) such that z € DT.

Definition 10 (Hintikka-set). Let C' be a concept
in PNF and R a role hierarchy. A set ¥ C cl(C,R) is
a Hintikka-set for C and R iff it satisfies the following
conditions:

(S1) if C1 M Cy € ¥, then {C1,C5} C T,

(S2) if C1 UCs € ¥, then {C1,Co}NT # (),

(S3) {A,-A} Z ¥ for all concept names A,

(S4) if f e Njpisusedin Cor R, then (1 fT) €T,
(S5) if (<n RD)ec(C,R), then {D,~D}NT #0,
(S6) Tew

Concepts of the form AR.D, (> n R D), (< n R D),
and JRgi,g2.P may appear either marked or wun-
marked in .

The marking of concepts is a technical trick that allows
us to deal with the inverse role constructor. Intuitively,
edges of a Hintikka-tree T describe role successor re-
lationships of the corresponding canonical model 7.
If 3R.D occurs in the Hintikka-set of a node 3, then
there has to exist a “witness” for this concept: either
(i) there exists a successor 7 of B such that the edge
from 8 to  represents an R role relationship and D
is in the Hintikka-set of 7, or (ii) # has a predeces-
sor a, the edge from a to § represents an Inv(R) role
relationship, and D occurs in the Hintikka-set of a.
The marking of concepts is used for bookkeeping of
these two possibilities: if 3R.D occurs marked in the
Hintikka-set of 3, then its predecessor is a “witness”
for AR.D and we do not need to enforce the existence
of a witness among (’s successors. The marking of
(=n R D), (<n R D), and 3Rg, go.P concepts can
be explained similarly. Hintikka-sets are one of the
components of Hintikka-labels:

Definition 11 (Hintikka-label). Let C' be a con-
cept in PNF and R a role hierarchy. A Hintikka-label
(U,w,V,E, 1) for C and R consists of

1. a Hintikka-set ¥ for C' and R,

2. a set w C ROL of roles occurring in C or R, and

3. a constraint graph (V, E,7) where V C N, every
g € V occurs in C, and every ¢ appearing in 7
occurs in C.

such that

(N1) if dg1,9..P € U, then g¢g1,90 € V and
(gvaQap)eEa

(N2) if Vgi,92.P € ¥ and ¢1,9o0 € V, then
(gvaQap)eEa

(N3) if 3g.P, € ¥, then g € V and (g, P,) € 7,
(N4) R € wand R ES implies S € w,

(N5) if g1,92 € V, then
{(glag2a<)7(917927:)7(g2agla<)} nEg ;é 07

(N6) if ¢ appears in C, then, for each ¢’ € V, there
exists a P’ € {<,=, >} such that (¢, P)) € 7.

The set of all Hintikka-labels for C' and R is denoted
by FC’,R-

Let us explain the intuition behind Hintikka-labels.
If « is a node in a Hintikka-tree T, Z the canoni-
cal model corresponding to T, and z € Az the do-
main element associated with «, then the Hintikka-
label L = (¥,w,V, E, ) of a is a description of z in Z.
More precisely, (i) the Hintikka-set ¥ is the set of con-
cepts D € cl(C,R) such that z € DT (ii) w is the set
of roles R € ROL such that (y,z) € RZ, where y is the
domain element corresponding to the precessor 3 of &
in T’; and (iii) the constraint graph (V, E, 7) describes
the numerical successors of z and their relationships:
if, for some g € Ner, we have g € V, then g7 (z) is
defined. By (N5) and (NG6), (V, E,7) fixes the rela-
tionship between any two numerical successors of = as
well as the relationship between any numerical succes-
sor of z and any rational number ¢ appearing in the
input concept. By (N1), (N2), and (IN3), the rela-
tionships stated by E and 7 are “consistent” with the
Hintikka-set W.

It is rather important that the constraint graph
(V, E, ) fixes the relationship between any two nodes
of V: as already noted in Section 3, every Hintikka-
tree T induces a (normal) constraint graph G(T') that
describes the “numerical part” of the canonical inter-
pretation corresponding to 7', and should thus be sat-
isfiable. Since G(T') is normal, by Theorem 8 it suf-
fices to demand that G(T) should be consistent. The
complete determination of the relationships between
nodes of the constraint graphs (V, E,7) in Hintikka-
labels will allow us to ensure the consistency of G(T')



using a local condition which can be verified by loop-
ing automata. This condition is part of the definition
of Hintikka-tuples, which are introduced next.
Definition 12 (Tuple-graph, Hintikka-tuple).
Let C be a concept in PNF and R a role hierarchy.
With bz, we denote

#t{D € cl(C,R) |D =3R.E or D = 3ARg1, g».P}

+ Z n.

(>n R C)ec(C,R)

Let x = (Lo,...,Lbo) be an ber + 1-tuple
of Hintikka-labels with L; = (¥;,w;, Vi, E;, ;) for
i < bcr- A constraint graph G = (V, E, ) is a tuple-
graph for y if

V. = WU{ig|1<i<bor and g € V;}
E O EyU{(ig1,ig2, P)|1<i<bcr
and (917927})) € El}
T = 1oU{(ig,Py) |1 <i<bcr and (¢9,P;) € ;}
such that

(G1) if3Rg, ¢'.P is unmarked in ¥y, then there exists
an 7 with 1 < i < beg such that ig, g’ € V,
R € w;, and (ig,¢', P) € E,

(G2) if 3Rg, ¢'.P is marked in ¥; with 1 <i < b¢o g,
then g,ig" € V, Inv(R) € w;, and (g,ig’, P) € E,

(G3) if VRg,g'.P € ¥y, R€ w;, g € Vi, and g’ € Vj
for some i with 1 <4 < be g, then (ig,¢', P) € E,

(G4) if VRg,¢'.P € ¥;, Inv(R) € w;, g € Vp, and
g € V; for some i with 1 < i < beg, then
(g9,i9',P) € E.

The tuple x is a Hintikka-tuple iff the following condi-
tions are satisfied:

(M1) if 3R.D is unmarked in ¥y, then there exists an
i with 1 <i < b¢ g such that R € w; and D € ¥,

(M2) if (> n R D) € ¥y, then either

e (> n R D) is unmarked in ¥, and there ex-
ists a set I C {1,...,bcr} of cardinality n
such that, for each ¢ € I, we have R € w; and
D e ¥, or

e (> n R D) is marked in ¥, and there exists
aset I C {1,...,bcr} of cardinality n — 1
such that, for each i € I, we have R € w; and
D eV,

(M3) if 3R.D or (> n R D) is marked in ¥; with
1 <i <bg,r, then Inv(R) € w; and D € ¥,

(M4) if VR.D € ¥y and R € w; with 1 < i < bo g,
then D € ¥;,

(M5) if VR.D € U; and Inv(R) € w; with 1 < i <
bc,r, then D € ¥y,

(M6) if YR.D € Wy, S € w; with 1 < i < beg,
Trans(S), and S E R, then VS.D € ¥,

(MT7) if VR.D € ¥; and Inv(S) € w; with 1 < i <
b, Trans(S), and S E R, then VS.D € ¥y,

(M8) if (<n R D) € ¥, then either

e (< n R D) is unmarked in ¥y and the car-
dinality of the set {i | 1 < i < ber,R €
w; and D € ¥;} is at most n or

e (< n R D) is marked in ¥, and the car-
dinality of the set {i | 1 < i < begr,R €
w; and D € ¥;} is at most n — 1,

(M9) if D € ¥y, Inv(R) € w;, and (K n RD) € ¥,
for 1 <i < b¢ gz, then (< n R D) is marked in ¥;,

(M10) there exists a tuple-graph for y that has a con-
sistent normalization.

Except for (M10), which refers to tuple-graphs and
is the aforementioned local condition enforcing consis-
tency of induced constraint graphs, the properties of
Hintikka-tuples should be quite easy to understand.
Before we discuss tuple graphs and (M10) in more
detail, let us introduce Hintikka-trees.

Definition 13 (Hintikka-tree). An bo r-ary I'c z-
tree T with T'(¢) = (U, we, Ve, E¢, 7) is a Hintikka-tree
for C and R iff it satisfies the following conditions:

(T1) Cev,,
(T2) all concepts in ¥, are unmarked, and

(T3) for all @ € {1,...,bc,r}*, the tuple
(T(), T(al),...,T(abc,r)) is a Hintikka-tuple.

Let T be a Hintikka-tree, @ € {1,...,bcr}* a node
in T, and T(a) = (¥,w,V,E, 7). We use ¥r(a) to
denote ¥ and wr to denote w.

We can now return to the discussion of Prop-
erty (M10). As is apparent from their definition,
tuple-graphs are built by taking the union of all
the constraint graphs that appear as a part of the
Hintikka-labels in a Hintikka-tuple. The constraint
graph G(T') induced by a Hintikka-tree T, in turn,
is constructed from tuple-graphs: by (T3), for each
node « of T', the tuple

xr(a) = (T(a),T(al),...,T(abcr))



fffffffffffffffff induced constraint graph G(T')
tuple-graphs Gr(a) / G (a)

,,,,,,,,,,,,,,, constraint graphs from Hintikka-labels

Figure 2: Hintikka-trees and constraint graphs.

is a Hintikka-tuple. By (M10), there exists a tuple-
graph Gr(a) for xyr(a) which has a consistent nor-
malization G%(«). Modulo some technical details, the
constraint graph G(T') induced by T can be viewed
as the union of the constraint graphs G7.(a) for all
nodes a of T'. Figure 2 illustrates the relationship be-
tween the various constraint graphs involved. In [14],
we prove that the consistency of the normalizations
G.(a) enforced by (M10) implies consistency of the
constraint graph G(T') (which is necessary for T to be a
proper abstraction of a Q-SHZ Q-interpretation). The
hardest part of this proof is to show that G(T') satis-
fies Property 1 of consistency, i.e., that it contains no
<-cycle: for this proof, it is crucial that

1. the tuple-graph G7(a) overlaps with the tuple-
graph Gr(B) if S is a successor of « in T, and

2. the constraint graphs (V, E, 1), which are part of
Hintikka-tuples and thus used to build of tuple-
graphs, fix the relationship between any two ele-
ments of V' as discussed above.

Using the fact that the constraint graph induced
by Hintikka-trees is consistent, the following, central
lemma can be established:

Lemma 14. A concept C in PNF and a role hierarchy
R have a model iff they have a Hintikka-tree.

5 Defining Looping Automata

To prove decidability of Q-SHZQ-concept satisfiabil-
ity, it remains to define a looping automaton A¢c z for
each concept C' and role hierarchy R such that Ac
accepts exactly the Hintikka-trees for C' and R. Using

the notion of Hintikka-tuples from Definition 12, this
is rather straightforward.

Definition 15. Let C be a concept in PNF, R a role
hierarchy, and bz as in Definition 12. The looping
automaton Acr = (Q, M, A,I) is defined as follows:

¢« Q:=M:=Tcr
o [:={(¥,w,V,E, 7)€ Q| C € ¥ and all concepts
in ¥ are unmarked }.

e A C QP»*2gsuchthat (L,L',Ly,...,Lp, ) € A
iff

— L=L"and
— (L, Ly,..., Ly ) is a Hintikka-tuple.

As a consequence of the following lemma and
Lemma, 14, we can reduce satisfiability of concepts (in
PNF) w.r.t. role hierarchies to the emptiness of the
language accepted by looping automata.

Lemma 16. T is a Hintikka-tree for C' and R iff
T € L(AO,R).

It is an immediate consequence of Lemmas 4, 14,
and 16 and the decidability of the emptiness prob-
lem of looping automata [23] that satisfiability of
Q-SHTQ-concepts w.r.t. role hierarchies is decidable.
However, the presented automata-based algorithm ad-
ditionally provides us with a tight complexity bound
if the numbers inside number restrictions are assumed
to be encoded unarily: an EXPTIME upper bound is
obtained by showing that the size of A¢ z is at most
exponential in the size of C' and R and noting that the
emptiness problem for looping automata is in PTIME
[23]. The EXPTIME lower bound is an immediate con-
sequence of the fact that SHZQ-concept satisfiability
is already EXPTIME-hard [22].



Theorem 17. If numbers inside number restrictions
are encoded unarily, then satisfiability of Q-SHIQ-
concepts w.r.t. role hierarchies is EXPTIME-complete.

Since subsumption can be reduced to (un)satisfiability,
Q-SHTQ-concept subsumption w.r.t. role hierarchies
is also EXPTIME-complete.

6 Future Work

In this paper, we have presented the Description Logic
Q-SHIQ, which extends the well-known DL SHZIQ
with several concrete domain concept constructors
that allow the adequate representation of numerical
knowledge. As argued in the introduction, Q-SHZQ is
a contribution to several interesting application areas.
However, we regard the work presented in this paper
only as a first step. As discussed in [14], there ex-
ist many possible future research problems connected
with the Q-SHZQ Description Logic. Let us highlight
three of them:

(1) To make Q-SHZQ available for use in applications,
modern DL systems like FaCT and RACER, which are
implementations of the SHZ Q Description Logic, need
to be extended to Q-SHZQ. Unfortunately, the re-
sults presented in this paper cannot immediately be
used for this task: the aforementioned DL systems
are based on tableau-style algorithms while the deci-
sion procedure described in this paper is automata-
based. Hence, it would be interesting to devise a
tableau-based algorithm for Q-SHZQ-concept satisfi-
ability. As discussed in [15] in the context of TDL, the
automata-based algorithm presented in this paper can
provide important information (i.e., a “regular model
property”) for this task.

(2) If Q-SHZQ is to be used for reasoning about ER
diagrams as sketched in the introduction, one is usu-
ally not interested in the satisfiability of concepts in
arbitrary models, but rather in the satisfiability in fi-
nite models [3]. These two problems do not coincide
since SHZQ, and hence also Q-SHZO, lacks the finite
model property [11]. Thus, it is worthwhile to inves-
tigate the decidability and complexity of finite model
reasoning with Q-SHZQ.

(3) For some applications, it is desirable to refer to
natural numbers instead of rational numbers. As a
simple example, consider the concept

I(left-neighbor numchild).=,

M 3(left-neighbor numchild), (numchild).<
M I(right-neighbor numchild).=3

M J(numchild), (right-neighbor numchild).<,

where numchild is a concrete feature representing the

number of children. Clearly, the above concept should
be unsatisfiable. In Q-SHZQ, however, this concept
is satisfiable since, in a model, the number of children
of the described person may e.g. be 2.5. It would thus
be interesting to add a concept constructor 3g.nat to
Q-SHIQ expressing that the filler of the concrete fea-
ture g is a natural number. If the extended logic should
be decidable at all, then at least it seems to require
some serious modifications of the presented decision
procedure: as noted in [17] in the context of TDL,
Theorem 8 does not hold if the satisfiability of con-
straint graphs over non-dense structures such as N is
considered. However, if Q-SHZQ is extended with an
Jg.nat constructor, then concepts of the resulting logic
can clearly be used to describe constraint graphs all of
whose nodes are labeled with the nat predicates. This
means that, effectively, we have to decide satisfiability
of these constraint graphs over IN.

We should like to note that, in many aspects,
Q-SHITQ is already on the border to undecidability:
for example, it seems rather unlikely that any kind of
arithmetics can be added to Q-SHZQ without losing
decidability. More precisely, it follows from results in
[18; 16] that the addition of a concept constructor ex-
pressing the addition of two numbers already yields
undecidability of reasoning.
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