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Abstract. We describe BDD-based decision procedures forK. Our approach is
inspired by the automata-theoretic approach, but we avoid explicit automata con-
struction. Our algorithms compute the fixpoint of a set of types, which are sets of
formulas satisfying some consistency conditions. We use BDDs to represent and
manipulate such sets. Experimental results show that our algorithms are competi-
tive with contemporary methods using benchmarks from TANCS 98 and TANCS
2000.

1 Introduction

In the last 20 years, modal logic has been applied to numerous areas of computer
science, including artificial intelligence, program verification, hardware verification,
database theory, and distributed computing. In this paper, we restrict our attention to
the smallest normal modal logicK [14] and describe a new approach to decide the sat-
isfiability of formulas in this logic. Since modal logic extends propositional logic, the
study in modal satisfiability is deeply connected with that of propositional satisfiability.
In the past, a variety of approaches to propositional satisfiability have been combined
with various approaches to handle modal connectives and implemented successfully.
For example, a tableau based decision procedure forK is presented in [18, 14]. It is
built on top of the propositional tableau construction procedure by forming a fully ex-
panded propositional tableau and generating successor nodes “on demand”. A similar
method uses the Davis-Longemann-Loveland method as the propositional engine by
treating all modal subformulas as propositions and, when a satisfying assignment is
found, checking modal subformulas for the legality of this assignment [13, 27]. An-
other approach to modal satisfiability, the inverse calculus forK [30] can be seen as a
modalized version of propositional resolution. Non-propositional based methods take a
different approach to the problem. It is well known that formulas inK can be translated
to first order formulas via standard translation [28, 21]. Recently, it has been shown
that, by encoding the modal depth infomation into the translation, a first-order theorem
prover can be used efficiently for deciding modal satisfiability [2]. The latter approach
works nicely with a resolution-based first-order theorem prover, which can be used
as a decision procedure for modal satisfiability by using appropriate resolution strate-
gies [16]. Other approaches for modal satisfiability such as mosaics, type elimination,
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or automata-theoretic approaches are well-suited for proving exact upper complexity
bounds, but are rarely used in actual implementations [5, 14, 29].

The algorithms presented here are inspired by the automata-theoretic approach for
logics with the tree-model property [29]. In that approach one proceeds in two steps.
First, an input formula is translated to a tree automaton that accepts all tree models
of the formula. Second, the automaton is tested for non-emptiness, i.e., does it accept
some tree. In our approach, we combine the two steps and apply the non-emptiness test
without explicitly constructing the automaton. As was pointed out in [3], the inverse
method described in [30] can also be viewed as an implementation of the automata-
theoretic approach that avoids an explicit automata construction.

The logicK is simple enough for the automaton non-emptiness test to consist of
a single fixpoint computation. This computation starts with a set of states and then
repeatedly applies a monotone operator until a fixpoint is reached. In the automata that
correspond to formulas, each state is atype, i.e., a set of formulas satisfying some
consistency conditions. The algorithms presented here all start from some set of types,
and then repeatedly apply a monotone operator until a fixpoint is reached: either they
start with the set ofall types and remove those types with “possibilities”3' for which
no “witness” can be found, or they start with the set of types having no possibilities
3', and add those types whose possibilities are witnessed by a type in the set. The
two approaches, top-down and bottom-up, corresponds to the two ways in which non-
emptiness can be tested for automata forK: via a greatest fixpoint computation for
automata on infinite trees or via a least fixpoint computation for automata on finite trees.
The bottom-up approach is closely related to the inverse method described in [30], while
the top-down approach is reminiscent of the “type-elimination” method developed for
Propositional Dynamic Logic in [23].

The key idea underlying our implementation is that of representing sets of types and
operating on them symbolically. Our implementation uses Binary Decision Diagrams
(BDDs) [6]: BDDs are a compact representation of propositional formulas, and com-
monly used as a compact representation of states. One of their advantages is that they
come with efficient operations for certain manipulations on BDDs. This paper consists
of a viability study for our approach. To see whether it yields competitive algorithms,
we used existing benchmarks of modal formulas, TANCS 98 [15] and TANCS 2000
[19], and we compared our algorithms with *SAT [27] and DLP [22]. A straightfor-
ward implementation of our approach did not yield a competitive algorithm, but an
optimized implementation did yield a competitive algorithm (see Fig. 1) indicating the
viability of our approach.

The paper is organized as follows. After introducing the modal logicK in Section 2,
we present our algorithms and discuss how they can be implemented using BDD pack-
ages in Section 3. In Section 4, we discuss three optimizations that we applied, and
compare in Section 5 the performance of our implementations with *SAT on formulas
from TANCS 98 and TANCS 2000.



2 Preliminaries

In this section, we introduce the syntax and semantics of the modal logicK, as well as
types and how they can be used to encode a Kripke structure.

The set ofK formulas is constructed from a set of propositional variables� =

fq

1

; q

2

; : : :g, and is the least set containing� and being closed under Boolean operators
^ and: and the unary modality2. As usual, we use other Boolean operators as abbre-
viations, and3' as an abbreviation for:2:'. The set of propositional variables used
in a formula' is denotedAP (').

A formula inK is interpreted in a Kripke structureK = hV;W;R;Li, whereV is
a set (containing�) of propositions,W is a set of possible worlds,R �W �W is the
accessibility relation on worlds, andL :W ! V ! f0; 1g a labeling function for each
state. The notion of a formula' beingsatisfiedin a worldw of a Kripke structureK
(written asK;w j= q) is inductively defined as follows:

– K;w j= q for q 2 � iff L(w)(q) = 1

– K;w j= ' ^  iff K;w j= ' andK;w j=  

– K;w j= :' iff K;w 6j= '

– K;w j= 2' iff, for all w0, if (w;w0) 2 R, thenK;w0 j= '

The abbreviated operators can be defined as follows:

– K;w j= ' _  iff K;w j= ' orK;w j=  

– K;w j= 3' iff there existsw0 with (w;w

0

) 2 R andK;w0 j= '.

A formula is satisfiableif there existK;w with K;w j=  . In this case,K is called
a modelof  .

To simplify the following considerations, we restrict our attention to formulas in a
certain normal form. A formula of K is said to be inbox normal form(BNF) if all
its subformulas are of the form' ^ ' 0, ' _ '0, 2', :2', q, or:q whereq 2 AP ( ).
All K formulas can be obviously converted into BNF by pushing negation inwards and,
if not stated otherwise, we assume all formulas to be in BNF. Theclosureof a formula

l( ) is defined as the smallest set such that, for all subformula' of  , if ' is not:' 0,
thenf';:'g � 
l( ).

Our algorithms will work ontypes, i.e., sets of (sub)formulas that are consistent
w.r.t. the Boolean operators, and where (negated) box formulas are treated as atoms. A
seta � 
l( ) of formulas is called a -type(or simply a type if is clear from the
context) if it satisfies the following conditions:

– If ' = :'

0, then' 2 a iff '0 =2 a.
– If ' = '

0

^ '

00, then' 2 a iff '0 2 a and'00 2 a.
– If ' = '

0

_ '

00, then' 2 a iff '0 2 a or'00 2 a.

For a setA of types, we define the relation� � A�A as follows:

�(a; a

0

) iff for all 2'0 2 a, we have'0 2 a0.

Given a setA � 2


l( ) of types, we can construct a Kripke structureK
A

using the
relation� as follows:K

A

= hAP ( ); A;�;Li with L(a)(q) = 1 iff q 2 a. Then we
almost have that, for all' 2 
l( ):



K; a j= ' iff ' 2 a. (�)

The only reason why(�) might be false is due to formulas of the form:2' 2 a: it
might be the case that' 2 b for all b with �(a; b), i.e., a negated box formula might
not be “witnessed”.

3 Our Algorithms

The two algorithms presented here take a certain “initial” set of types and apply repeat-
edly a monotone operator to it. If this application reaches a fixpoint, we can show that
it yields a set of types where the above construction yields indeed a Kripke structure
that satisfies the condition(�), i.e., all negated box formulas are indeed “witnessed” by
someb 2 A. This Kripke structure is then a model of iff  2 a for somea 2 A.

The first algorithm follows a “top-down” approach, i.e., it starts with the set
A � 2


l( ) of all types, and the monotone operator removes those types containing
negated box formulas which are not witnessed in the current set of types. Dually, the
second, “bottom-up”, approach starts with the set of types that do not contain negated
box formulas, and then adds those types whose negated box formulas are witnessed in
the current set of types.

Both algorithms follow the following scheme, in whichX;X 0 are sets of types:

X = Initial( )

repeat
X

0

( X

X ( Iterate(X

0

)

until X = X

0

if existsx 2 X such that 2 x then return “ is satisfiable”
else return “ is not satisfiable”
endif
Since this algorithm works on a fixed set of types and uses a monotone operator

Iterate(�), it obviously terminates. In fact, we can show that it will terminate ind + 1

iterations, whered is the modal nesting depth of the input formula . It remains to
defineInitial( ) andIterate(�).

3.1 Top-Down Approach

The top-down approach is closely related to the type elimination approach which is,
in general, used for more complex modal logics, see, e.g., Section 6 of [14]. For the
algorithm pursuing the top-down approach, the functionsInitial( ) andIterate(�)
are defined as follows:

– Initial( ) is the set ofall  -types.
– Iterate(A) := A n bad(A), wherebad(A) are the types inA that contain unwit-

nessed negated box formulas. More precisely,

bad(A) := fa 2 A j there exists:2' 2 a and, for allb 2 A with �(a; b);

we have' 2 bg:



3.2 Bottom-Up Approach

As mentioned above, the algorithm pursuing the bottom-up approach starts with a small
set of types (i.e., those without negated box formulas), and repeatedly adds those types
whose negated box formulas are witnessed in the current set. More precisely, for the
bottom-up approach, the functionsInitial( ) andIterate(�) are defined as follows:

– Initial( ) is the set of all those types that do not require any witnesses, i.e., they
do not contain any negated box formula or, equivalently, they contain all positive
box formulas in
l( ):

Initial( ) := fa � 
l( ) j a is a type and2' 2 a for each2' 2 
l( )g:

– Iterate(A) := A [ supp(A), wheresupp(A) is the set of those types whose
negated box formulas are witnessed by types inA. More precisely,

supp(A) := fa � 
l( ) j a is a type and for all:2' 2 a, there existsb 2 A
with :' 2 b and�(a; b)g:

We say that a type insupp(A) is witnessedby a type inA.

3.3 Implementations

We use Binary Decision Diagrams (BDDs) [6, 1] to represent sets of types. BDDs, or
more precisely, Reduced Ordered Binary Decision Diagrams (ROBDDs), are obtained
from binary decision trees by following a fixed variable splitting order and by merging
nodes that have identical child-diagrams. BDDs provide a canonical form of represen-
tation for Boolean functions. Experience has shown that BDDs provide a very compact
representation for very large Boolean functions. Consequently, over the last decade,
BDDs have had a dramatic impact in the areas of synthesis, testing, and verification of
digital systems [4, 7]

In this section, we describe how our two algorithms are implemented using BDDs.
First, we define abit-vector representationof types. Since types are complete in the
sense that either a subformula or its negation must belong to a type, it is possible for a
formula and its negation to be represented using a single BDD variable.

The representation of typesa � 
l( ) as bit vectors is defined as follows: Since
both formulas and their negations are in
l( ), we define


l

+

( ) = f'

i

2 
l( ) j '

i

is not of the form:'0g;

l

�

( ) = f:' j ' 2 
l

+

( )g;

and usem for j 
l
+

( )j = j 
l( )j=2. For 
l
+

( ) = f'

1

; : : : '

m

g, a vectora =

ha

1

; : : : ; a

m

i 2 f0; 1g

m represents a set1
a � 
l( ) with of '

i

2 a iff a
i

= 1. A
set of such bit vectors can obviously be represented using a BDD withm variables. It
remains to “filter out” those bit vectors that represent types.

We define Consistent

 

as the characteristic predicate for types:
Consistent

 

(a) =

V

1�i�m

Cons

i

(a), whereCons
i

(a) is defined as follows:
1 Please note that this set is not necessarily a type.



– if '
i

is neither of the form'0 ^ '00 nor'0 _ '00, thenCons
i

(a) = 1,
– if '

i

= '

0

^ '

00, thenCons
i

(a) = (a

i

^ a

0

^ a

00

) _ (:a

i

^ (:a

0

_ :a

00

)),
– if '

i

= '

0

_ '

00, thenCons
i

(a) = (a

i

^ (a

0

_ a

00

)) _ (:a

i

^ :a

0

^ :a

00

),

wherea0 = a

`

if '0 = '

`

2 
l

+

( ), anda0 = :a

`

if '0 = :'

`

for '
`

2 
l

+

( ) (and
analogously fora00). From this, the implementation ofInitial is fairly straight forward:
For the top-down algorithm,

Initial( ) := fa 2 f0; 1g

m

j Consistent

 

(a)g;

and for the bottom-up algorithm,

Initial( ) := fa 2 f0; 1g

m

j Consistent

 

(a) ^

^

'

i

=2'

0

a

i

= 1g:

In the following, we do not distinguish between a type and its representation as a bit
vectora. Next, to specifybad(�) andsupp(�), we define auxiliary predicates:

– 3
1;i

(x) is read as “x needs a witness for a diamond operator at position i” and is
true iff x

i

= 0 and'
i

= 2'

0.
– 3

2;i

(y) is read as “y is a witness for a negated box formula at position i” and is
true iff '

i

= 2'

j

andy
j

= 0 or'
i

= 2:'

j

andy
j

= 1.
– 2

1;i

(x) is read as “x requires support for a box operator at position i” and is true
iff x

i

= 1 and'
i

= 2'

0.
– 2

2;i

(y) is read as “y provides support for a box operator at position i” and is true
iff '

i

= 2'

j

andy
j

= 1 or'
i

= 2:'

j

andy
j

= 0.

For a setA of types, we construct the BDD that represents the “maximal” accessi-
bility relation�, i.e., a relation that includes all those pairs(x;y) such thaty supports
all of x’s box formulas. For typesx;y 2 f0; 1g

m, we define

�(x;y) =
^

1�i�m

(2

1;i

(x) ! 2

2;i

(y)):

Given a setA of types, we write the corresponding characteristic function as�

A

. Both
the top-down and the bottom-up algorithm can be defined using the predicates�

A

, �,
3

j;i

, and2
j;i

.
The predicatebad is true on those types that contain a negated box formula'

i

=

:2'

j

that is not witnessed in the current set of types. The corresponding predicate for
bit vectors�

bad

i

can then be written as follows:

�

bad

i

(X)

(x) = 3

1;i

(x) ^ 8y : ((�

X

(y) ^�(x;y)) ! :3

2;i

(y));

and thusbad(X) can be written as�
bad(X)

(x) =

W

1�i�m

�

bad

i

(X)

(x):

In our implementation, we compute the characteristic function�

bad

i

(X)

of the com-
plement of eachbad

i

(X) and use it in the implementation of the top-down and the
bottom-up algorithm. It is easy to see that�

bad

i

(X)

is equivalent to

3

1;i

(x)! 9y : (�

X

(y) ^�(x; y) ^3

2;i

(y)):



For the top-down algorithm, theIterate function can be written as:

�

Xnbad(X)

:= �

X

(x) ^

^

1�i�m

(�

bad

i

(X)

(x))

For the bottom-up algorithm, additionally, we must take care of only adding those bit
vectors representing types, and so theIterate function can be implemented as:

�

X[supp(X)

:= �

X

(x) _ (�

Consistent

 

(x) ^

^

1�i�m

(�

bad

i

(X)

(x))

These functions can be written more succinctly using the pre-image function for the
relation�:

preim

�

(�

N

)(x) = 9y : �

N

(y) ^�(x;y):

Using pre-images, we can rewrite�
bad

i

(X)

as follows:

�

bad

i

(X)

(x) = 3

1;i

(x)! preim

�

(�

X

(y) ^3

2;i

(y)):

Finally, the bottom-up algorithm is implemented as an iteration over the sets
�

X[supp(X)

, and the top-down algorithm is implemented as iterations over�

Xnbad(X)

.
Both stop when a fixpoint is reached. Then checking whether is present in a type of
this fixpoint is trivial.

The pre-image operation is a key operation in both the bottom-up and the top-down
approaches. It is also known to be a key operation in symbolic model checking [7] and
it has been the subject of extensive research (cf. [8, 11, 24, 9]) since it can be a quite
time and space consuming operation. Various optimizations can be applied to the pre-
image computation to reduce the time and space requirements. A method of choice is
that ofconjunctive partitioningcombined withearly quantification. The idea is to avoid
building a monolithic BDD for the relation� since this BDD can be quite large. Rather,
we take advantage of the fact that� is defined as a conjunction of simple conditions.
Thus, to compute the pre-image we have to evaluate a quantified Boolean formula of
the form(9y

1

) : : : (9y

n

)(


1

^ : : :^ 


m

), where the

i

’s are Boolean formulas. Suppose,
however, that a variabley

j

does not occur in the clauses

i+1

; : : : ; 


m

. Then the formula
can be rewritten as

(9y

1

) : : : (9y

j�1

)(9y

j+1

) : : : (9y

n

)((9y

j

)(


1

^ : : : ^ 


i

) ^ (


i+1

^ : : : ^ 


m

)):

This enables us to apply existential quantification to smaller BDDs. Of course, there are
many ways in which one can cluster and re-order the


i

’s. We used the methodology
developed in [24], called the “IWLS 95” methodology, to compute pre-images.

4 Optimizations

The decision procedures described above handles a formula in four steps. Firstly, the
formula is converted into box normal form. Secondly, a set of bit vectors representing
types is generated. Thirdly, this set is updated through a fixpoint process. Finally, the
answer of the algorithm depends on a simple syntactic check of this fixpoint. In this sec-
tion, we will describe three different optimization techniques, each related to a different
step of the procedure.



4.1 Particles

In the approaches presented so far, we memorize and take care of redundant infor-
mation: for example, a bit vector represents both a conjunction and the corresponding
conjuncts, whereas the truth value of the former is determined by the truth value of
the latter. Now we propose a representation where we only keep track of the “non-
redundant” subformulas, which possibly reduces the size of the corresponding BDDs.
To do so, it is convenient to work on formulas in a different normal form.

A K formula is said to be innegation normal form(NNF) if all its subformulas
are of the form'^'0,'_'0,2',3', q, or:q whereq 2 AP ( ). We writeNNF ( )

for the NNF of andsub( ) for the set of subformulas ofNNF ( ). All K formulas
can be converted into negation normal form by pushing negation inwards.

A setp � sub( ) is afull  -particle if it satisfies the following conditions:

– If ' = :'

0, then' 2 p implies'0 =2 p.
– If ' = '

0

^ '

00, then' 2 p implies'0 2 p and'00 2 p.
– If ' = '

0

_ '

00, then' 2 p implies'0 2 p or'00 2 p.

Thus, in contrast to a type, a full particle may contain both'

0 and'00, but neither'0^'00

nor'0 _ '00.
For particles,�(�; �) is defined as for types. From a set of particlesP and the cor-

responding�(�; �), we can construct a Kripke structureK
P

in the same way as from a
set of types.

For the top-down approach, the auxiliary functionsInitial(�) andIterate(�) for
full particles are defined as follows:

– Initial( ) is the set of all full -particles.
– Iterate(P ) = P � bad(P ), wherebad(P ) is the particles inP that contain unwit-

nessed diamond formulas, i.e.

bad(P ) = fp 2 P j there exists3' 2 p such that, for allq 2 P
with �(p; q); we have' =2 qg:

Analogously, these functions are defined for the bottom-up approach as follows:

– Initial( ) is the set of full -particlep that do not contain diamond formulas, i.e.,
3' =2 p for all 3' 2 sub( ).

– Iterate(P ) = P [ supp(P ), wheresupp(P ) is the set of witnessed particles, i.e., .

supp(P ) = fp � sub( ) j p is a -particle and, for all3' 2 p;
there existsq 2 P with ' 2 q and�(p; q)g:

While encoding particle sets by BDDs may require more BDD variables, we still
might see a reduction in BDD size because particles requires fewer constraints than
types.2 Besides a possible reduction in the size required to encode a bit-vector repre-
sentation of particle sets, the particle-based approaches also can improve running time.

2 Of course, BDD size is always formula dependent. In our experiments, we observed that par-
ticle approaches gives BDD sizes between a small constant factor (i.e., 2-3) larger to orders of
magnitudes smaller compared to type approaches.



We can see that for each iteration, the number of pre-image operations a type based
approach will need to do is equal to the total number of modal operators, while the
corresponding number for particle based approaches is only equal to the number of
diamond operators in the NNF form.

4.2 Lean Approaches

This optimization is also motivated by the idea to compress the size of the bit vector
representing a type by omitting redundant information. To this purpose, we first define
a set of “non-redundant” subformulasatom( ) as the set of those formulas in
l( )
that are neither conjunctions nor disjunctions, i.e., each' is of the form2' 0, q, :2'0,
or:q. By the definition of types, each typea � 
l( ) corresponds one-to-one to alean
typea0 := a \ atom( ). So storing types in lean form is equivalent to storing them in
full form.

Analogously, we can define a lean representation for particles. First, we define the
relevant subformulaspart( ) as follows: For' 2 sub( ), if ' is3'0, 2'0, q, or:q,
then' is in part( ). For a full particlep � sub( ), we define the correspondinglean
particle p0 as follows:p0 = p \ part( ). Because the (first) condition on particles is
more relaxed than that of atoms, a lean particle does not correspond to a single full
particle, but can represent several full particles. Although lean approaches can possibly
reduce the size required for representing worlds, we have to pay for these savings since
computingbad andsupp using lean types and particles can be more complicated.

4.3 Level-based evaluation

As already mentioned,K has the finite-tree-model property, i.e., each satisfiable formula
 of K has a finite tree model of depth bounded by the depthmd( ) of nested modal
operators in . Here, we take advantage of this property and, instead of representing
a complete model using a set of particles or types, we represent each layer (i.e., all
worlds being at the same distance from the root node) in the model using a separate
set (for a level-based approach in the context of the first-order approach toK, see [2]).
Since only a subset of all subformulas appears in one layer, the representation can be
more compact. We only present the optimization for the approach using (full) types.
The particle approach and the lean approaches can be constructed analogously. For
0 � i � md( ), we write


l

i

( ) := f' 2 
l( ) j ' occurs at modal depthi in  g;

and we adapt the definition of the possible accessibility relation� accordingly:

�

i

(a; a

0

) iff a � 
l

i

, a0 � 
l

i+1

, and'0 2 a0 for all 2'0 2 a.

A sequence of sets of typesA = hA

0

; A

1

; : : : ; A

d

i with A
i

� 2


l

i

( ) can be con-
verted into a tree Kripke structure

K

A

= hAP ( );

_

[

0�i�d

A

i

; R; Li

(where the worlds are the disjoint union of theA
i

) as follows:



– For a worlda 2 A

i

and q 2 AP ( ), we defineL(a)(q) = 1 if q 2 a, and
L(a)(q) = 0 if q =2 a.

– For a pair of statesa; a0, R(w;w0) = 1 iff, for somei, a 2 A

i

anda0 2 A

i+1

and
�

i

(a; a

0

).

The algorithm for level-based evaluation works as follows, whereX

i

are sets of
types/particles:

d = md( )

X

d

= Initial

d

( )

for i = d� 1 downto0 do
X

i

( Iterate(X

i+1

; i)

end for
if existsx 2 X

0

such that 2 x then return “ is satisfiable”
else return “ is not satisfiable”
endif
Please note that this algorithm works bottom-up in the sense that it starts with the

leaves of a tree modelat the deepest leveland then move up the tree model towards the
root, adding nodes that are “witnessed”. In contrast, the bottom-up approach presented
earlier can be said to start withall leaves of a tree model.

For the level based algorithm on types, the auxiliary functions are defined as fol-
lows:

– Initial

i

( ) = fa � 
l

i

( ) j a is a typeg.
– Iterate(A; i) = fa 2 Initial

i

( ) j for all :2' 2 a there existsb 2

A where:' 2 b and�
i

(a; b)g.

ForA a set of types of formulas at leveli+ 1, Iterate(A; i) represents all types of
formulas at leveli that are properly witnessed inA.

5 Results

We implemented the aforementioned algorithms in C++ using the CUDD 2.3.0 [25]
package for BDDs. The parser for the languages used in the benchmark suites are taken
with permission from *SAT [27]. In the following, we describe and compare the per-
formance of the different algorithms.3

As benchmarks, we used both theK part of TANCS 98 [15] and portions of the
MODAL PSPACE division of TANCS 2000 [19], and compared our implementation
with *SAT [27] and portions with DLP [22].4 We compared the different algorithms
with respect to the number of benchmark formulas whose satisfiability they can decide
within a specific time frame. In contrast to compare solvers formula by formula, this
approach gives a global view of their performance, and the risk of being drawn into

3 All the tests run on a Pentium 4 1.7GHz with 512MB of RAM, running Linux kernel version
2.4.2. The solver is compiled with gcc 2.96.

4 Our goal was to test the viability of our approach by comparing our algorithms to a known
competitive modal satisfiability solver. Thus, we chose *SAT and DLP as a representative
solvers. We return to this point in the conclusions.
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Fig. 2.Perf. on TANCS 98 (basic approaches)

too many details on how different solvers give preference to different formula classes is
minimized [26, 12].

The time out is set at 1000s and the space limit for BDDs is set at 384MB. For each
test case, we plot the number of formulas decided versus the time limit. Thus, the solver
with a higher curve is faster than one with a lower curve. The chart is scaled so the full
scale is the total number of cases in the benchmark.

5.1 TANCS 2000

The portion of TANCS 2000 we used is the easy-medium part of the Modal QBF for-
mulas in the MODAL PSPACE division. The problems are generated as QBF formulas
of different density, and encoded intoK with the Schmidt-Schauss-Smolka translation
(cnfSSS). TANCS 2000 also provides formulas from other translation schemes, namely
the Ladner translation and the Halpern and Moses translation. However, we restricted
our attention to cnfSSS since both *SAT and our algorithms could only handle very
small and separate parts of the other formulas, which made a comparison meaningless.
We also present results for DLP, a highly optimized tableaux engine.

With the optimizations described in this paper, we are able to achieve performance
comparable to other provers. The results can be found in Fig. 1, where the performance
of the level-based lean-particle approach represents our best BDD-based approach. This
approach uses all the optimizations presented in this paper, and turned out to perform
best of all our BDD-based approaches. We can see that, although the BDD-based ap-
proach has a higher overhead, it scales more gracefully than *SAT for the formula class
used in this test. We are still slower than DLP.
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Fig. 3. Performance on TANCS 98 (particles vs. types)

5.2 TANCS 98

To analyze the usefulness of each optimization technique used, we run the algorithm
with different optimization configurations on theK part of TANCS 98 benchmark suite5

[15], a scalable benchmark which contains both provable and non-provable formulas.

The basic algorithms To compare our approaches, we first run the basic algorithms
on TANCS 98. The results are presented in Fig. 2. We can see that *SAT clearly out-
performs our two basic algorithms. An explanation of this “weak” behavior of our ap-
proaches is that the intermediate results of the preimage operation are so large that the
BDDs space constraint is usually reached. Top-down slightly outperforms bottom-up
since bottom-up requires an extra conjunction per iteration step for theConsistent

predicate.

Optimizations Now we compare the variants using types with their full particle-based
variants. The results are presented in Fig. 3. We can see that, for TANCS 98, the particle
approach slightly outperforms the type approach. Most of the improvements come from
the use of negation normal form, which allows us to distinguish between diamonds and
boxes, resulting in the reduction of the image operations needed.

Next, for types and particles, bottom-up and top-down, we compared the “full” ap-
proaches with their lean variants (see Fig. 4). Intuitively, the full variants trade a larger
number of BDD variables in the representation of the transition relation for simpler
consistency constraints. On TANCS 98, we can see that the lean approaches outper-
form in each combination their full variants. This shows that, as a general guideline,
we should always attempt to reduce the number of BDD variables, since this results
in smaller BDDs. Indeed, experience in symbolic model checking suggests that BDD
size is typically the dominant factor when evaluating the performance of BDD-based
algorithms [17].

5 We did not use TANCS 2000 because unoptimized approaches time out on most of TANCS
2000 formulas, giving very little comparison between approaches.
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Fig. 4. Performance on TANCS 98 (lean vs. full)

Finally, we have compared the level-based approach with the top-down and the
bottom-up approach. It turns out that the level-based approach outperforms both, and
that, both for types and particles, the lean approach again outperforms the full one, see
Fig. 5. The reason for this is that, by taking advantage ofK’s layered model property, we
can split various space-consuming BDDs into smaller ones—depending on the modal
depth of the corresponding subformulas. This minimizes space-outs and improves run
time.

When compared with *SAT on the TANCS 98 benchmarks, all our approaches are
still weaker than *SAT. Our implementation, however, is still open to a number of op-
timizations. In BDD-based symbolic model checking, it turned out that performance
is extremely sensitive to the chosen order of BDD variables [7]. Moreover, there are
different approaches to conjunctive partitioning [20]. So far, we did not optimize our
implementation with respect to these aspects, and so we have yet to investigate the ef-
fect of problem-specific heuristics for variable ordering and conjunctive partitioning on
the performance of our solver.

6 Conclusions

We have described various BDD-based decision procedures forK. Our approach is in-
spired by the automata-theoretic approach, but we avoid explicit automata construction.
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Fig. 5. Performance on TANCS 98 (level-based evaluation)

We explored a variety of optimization techniques and concluded that, in general, it is
preferred to work with looser constraints; in general, we got the best performance with
lean particles. We also showed that it is necessary to use a level-based approach to
obtain a competitive implementation.

Our goal in this paper was not to develop the “fastestK solver”, but rather to see
whether the BDD-based approach is viable. From the competitiveness of our approach
relative to *SAT on portions of the TANCS 2000 benchmark suite, we conclude that the
BDD-based approach does deserve further study. In particular, we plan to study other
optimizations strategies and also compare our approach to other modal satisfiability
solvers.
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