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Abstract. This paper investigates the relationship between automata- and tableau-based inference
procedures for description logics. To be more precise, we develop an abstract notion of what a
tableau-based algorithm is, and then show, on this abstractlevel, how tableau-based algorithms can
be converted into automata-based algorithms. In particular, this allows us to characterize a large class
of tableau-based algorithms that imply an ExpTime upper-bound for reasoning in the description
logics for which such an algorithm exists.

1. Introduction

Description logics (DLs) [1] are a family of knowledge representation languages which can be used
to represent the terminological knowledge of an application domain in a structured and formally well-
understood way. The namedescription logicsis motivated by the fact that, on the one hand, the important
notions of the domain are described byconcept descriptions, i.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary predicates) using the concept and role constructors
provided by the particular DL. On the other hand, DLs differ from their predecessors, such as semantic
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networks and frames [31, 25], in that they are equipped with aformal, logic-based semantics, which can,
e.g., be given by a translation into first-order predicate logic.

Knowledge representation systems based on description logics (DL systems) [38, 26] provide their
users with various inference capabilities (like subsumption and instance checking) that allow them to de-
duce implicit knowledge from the explicitly represented knowledge. In order to ensure a reasonable and
predictable behavior of a DL system, these inference problems should at least be decidable, and prefer-
ably of low complexity. Consequently, the expressive powerof the DL in question must be restricted in
an appropriate way. If the imposed restrictions are too severe, however, then the important notions of
the application domain can no longer be expressed. Investigating this trade-off between the expressivity
of DLs and the complexity of their inference problems has been one of the most important issues in DL
research (see [11] for an overview of complexity results).

The focus of this research has, however, changed in the last 15 years. In the beginning of the 1990ies,
DL researchers investigated the border between tractable and intractable DLs [13, 14], and systems that
employed so-called structural subsumption algorithms, which first normalize the concept descriptions,
and then recursively compare the syntactic structure of thenormalized descriptions, were still prevalent
[30, 23, 24, 29]. It quickly turned out, however, that structural subsumption algorithms can handle only
very inexpressive languages, and that one cannot expect a DLof reasonable expressive power to have
tractable inference problems. For expressive DLs, tableau-based inference procedures turned out to be
quite useful. After the first such tableau-based subsumption algorithm was developed by Schmidt-Schauß
and Smolka [33] for the DLALC, this approach was extended to various other DLs and also to other
inference problems such as the instance problem (see [5] foran overview).

Most of these early tableau-based algorithms for DLs were ofoptimal worst-case complexity: they
treated DLs with a PSpace-complete subsumption problem, and the algorithms needed only polynomial
space. Thus, by designing a tableau-based algorithm for such a DL one could solve two problems simul-
taneously: prove an optimal complexity upper-bound, and describe an algorithm that is easy to implement
and optimize [2, 18], thus yielding a practical reasoning system for this DL. Modern tableau-based DL
reasoners such asFaCT [17] andRACER [15] are based on very expressive DLs (likeSHIQ [21]),
which have an ExpTime-complete subsumption problem. Despite the high worst-case complexity of the
underlying logics, the systemsFaCT andRACER behave quite well in realistic applications. This is
mainly due to the fact that their implementors have developed a great variety of sophisticated optimiza-
tion techniques for tableau-based algorithms (see [18] foran overview of these techniques). Tableau-
based algorithms are, however, notoriously bad at proving ExpTime upper-bounds.1 In many cases,
ExpTime upper-bounds are easily established using automata-based approaches (see, e.g., Section 5.3 in
[9]). However, automata-based algorithms are not amenableto the sophisticated optimization techniques
that have been developed for (tableau-based) state-of-the-art DL reasoners. Until now, it was thus com-
mon practice to devise two different algorithms for every ExpTime-complete DL, an automata-based one
for establishing the exact worst-case complexity, and a tableau-based one for the implementation.

This paper investigates the (rather close) relationship between automata- and tableau-based algo-
rithms. To be more precise, we develop an abstract notion of what a tableau-based algorithm is, and then
show, on this abstract level, how tableau-based algorithmscan be converted into automata-based algo-
rithms. In particular, this allows us to characterize a large class of tableau-based algorithms that imply an

1The only such result we know of [12] treats the case ofALC with general concept inclusions (GCIs), and even in this simple
case the algorithm is very complicated.
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ExpTime upper-bound for reasoning in the DLs for which such an algorithm exists. We consider this to
be a very useful result since, in many cases, it eliminates the need for developing two algorithms for the
same DL: one can now design a tableau-based algorithm, use our general result to obtain an ExpTime
upper-bound, and then base a practical implementation on the very same algorithm. We illustrate the
usefulness of our framework by reproving the known ExpTime upper-bounds for the description logic
ALC with a universal role [34], and for the extensionALCQI of ALC by qualified number restrictions
and inverse roles [10].

In the next section, we introduce the abstract notion of a tableau system. In order to motivate and
illustrate the technical definitions, we first consider the example of a tableau-based algorithm forALC
with a universal role. In Section 3, we define additional restrictions on tableau systems that ensure an
exponential upper-bound on reasoning. This upper-bound isshown via a translation of tableau systems
into looping tree automata. In Section 4, we show how tableausystems can directly be used to obtain
a tableau-based decision procedure, which can be the basis for an optimized implementation. The main
problem to be solved there is to ensure termination of the tableau-based algorithm. In Section 5, we apply
the abstract framework to a more complex DL: we design a tableau system for the DLALCQI, thus
giving an alternative proof of the known ExpTime upper-bound for reasoning in this DL (with numbers
in number restrictions coded in unary). Finally, in Section6, we discuss related work. In particular, we
will explain how the present version of this article improves over a previous version [3].

2. Formalizing Tableau Algorithms

In this section, we develop an abstract formalization of tableau algorithms. To this end, we first discuss
an extension of the standard tableau-based algorithm for the basic description logicALC to ALC with
a universal modality (ALCU ), and then use this concrete example as a guide when devisingthe abstract
framework.

2.1. A Tableau Algorithm for ALCU

We start with introducing the syntax and semantics ofALC

U :

Definition 2.1. (ALCU syntax)
Let N

C

andN
R

be pairwise disjoint and countably infinite sets ofconcept namesand role names. We
assume thatN

R

contains a special roleu, which is called the universal role. The set ofALC

U -concepts
CON

ALC

U

is the smallest set such that

� every concept name is anALCU -concept, and

� if C andD areALCU -concepts andr is a role name, then the following expressions are also
ALC

U -concepts::C; C uD; C tD; 9r:C; 8r:C:

A general concept inclusion (GCI)is an expressionC v D, where bothC andD areALCU -
concepts. A finite set of GCIs is calledALCU -TBox.

As usual, we will use> as abbreviation for an arbitrary propositional tautology,? for :>, andC ! D

for :C tD.
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Note that there exist several different TBox formalisms that vary considerably w.r.t. expressive power
(see [4]). The kind of TBoxes adopted here are among the most general ones available. They are
supported by modern DL reasoners such asFaCT andRACER. However, in the presence of the universal
role, reasoning w.r.t. such complex TBoxes can be reduced toreasoning without a TBox (see below).

Like all DLs,ALCU is equipped with a Tarski-style set-theoretic semantics.

Definition 2.2. (ALCU semantics)
An interpretationI is a pair(�I

; �

I

), where�I is a non-empty set, called thedomain, and �I is the
interpretation function. The interpretation function maps each concept nameA to a subsetAI of �I and
each role namer to a subsetrI of �I

��

I . It interprets the universal roleu as the universal relation
u

I

:= �

I

��

I , and is extended to arbitraryALCU -concepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9r:C)

I

:= fd 2 �

I

j There ise 2 �

I with (d; e) 2 r

I ande 2 C

I

g

(8r:C)

I

:= fd 2 �

I

j For alle 2 �

I , if (d; e) 2 r

I , thene 2 C

I

g

The interpretationI is amodelof theALCU -conceptC iff CI

6= ;, and it is a model of the TBoxT iff
C

I

� D

I holds for allC v D 2 T .

The main inference problems related to a TBox are satisfiability and subsumption of concepts.

Definition 2.3. (ALCU inference problems)
TheALCU -conceptC is satisfiable w.r.t. the TBoxT iff C andT have a common model, andC is
subsumed bytheALCU -conceptD w.r.t. the TBoxT (written C v

T

D) iff C

I

� D

I holds for all
modelsI of T . If the TBox is empty, then we say thatC is satisfiable rather than thatC is satisfiable
w.r.t. ;, and thatC is subsumed byD (C v D) rather than thatC is subsumed byD w.r.t. ; (C v

;

D).

SinceC v

T

D iff C u :D is unsatisfiable w.r.t.T , it is sufficient to design a satisfiability algorithm.
In addition, in the presence of the universal modality, satisfiability w.r.t. a TBoxT can be reduced
to satisfiability w.r.t. the empty TBox (i.e., satisfiability): it is easy to see thatC

0

is satisfiable w.r.t.
T = fC

1

v D

1

; : : : ; C

n

v D

n

g iff C

0

u 8u:(C

1

! D

1

) u : : : u 8u:(C

n

! D

n

) is satisfiable.
Consequently, we will restrict our attention to the satisfiability problem (i.e., w.r.t. the empty TBox).

We now discuss an extension of the standard tableau-based satisfiability algorithm forALC that
handles the universal modality. In the context of DLs, the standard algorithm forALC has first been
described in [33]; more modern accounts can, e.g., be found in [5]. It can rightfully be viewed as the
ancestor from which all state-of-the-art tableau-based algorithms for description logics are descended.
Such algorithms are nowadays the standard approach for reasoning in DLs, and they underlie modern
and efficient reasoning systems such asFaCT andRACER, which are based on DLs that are much more
expressive thanALC.

Tableau algorithms are characterized by an underlying datastructure, a set of completion rules, and
a number of so-called clash-triggers. To decide the satisfiability of an input conceptC, the algorithm
starts with an initial instance of the data structure constructed fromC, and repeatedly applies completion



F. Baader et al. / From Tableaux to Automata 5

rules to it. This rule application can be viewed as an attemptto construct a model for the input, or as
making implicit knowledge explicit. Rule application continues until either one of the clash-triggers
applies, which means that the attempt to construct a model has failed, or all implicit knowledge has been
made explicit without encountering a clash-trigger. In thelatter case, the algorithm has succeeded to
construct (a representation of) a model. To be more precise,the tableau algorithms considered in this
paper may be non-deterministic, i.e., there may exist completion rules that yield more than one possible
outcome. In this case, the algorithm returns “satisfiable” iff there exists at leastoneway to apply the non-
deterministic rules such that a model of the input is obtained. Note that only the choice of the outcome of
non-deterministic rules is true “don’t know” non-determinism (and thus requires backtracking), whereas
the order of rule applications is basically “don’t care” non-determinism.

Before we can define the data structure underlying theALC

U tableau algorithm, so-called completion
trees, we must introduce some notation. Given anALC

U -conceptC, its negation normal form (NNF)
is an equivalent2 concept such that negation occurs only in front of concept names. Such a concept can
easily be computed by pushing negation as far as possible into concepts, using de Morgan’s rules and
the usual duality rules for quantifiers. In the following, wew.l.o.g. assume that the input concepts to the
ALC

U tableau algorithm are in negation normal form. IfC is anALCU -concept then we usesub(C) to
denote the set of all subconcepts ofC.

Definition 2.4. (Completion trees)
LetC be anALCU -concept in NNF. Acompletion treefor C is a labeled tree3 t = (V;E;N ; E) of finite
out-degree such that(V;E) is a tree, each nodea 2 V is labeled with a subsetN (a) of sub(C) and each
edge(a; b) 2 E is labeled with a role nameE(a; b) occurring inC.

The completion rules are given in Figure 1, whereRt is the only non-deterministic rule. To decide
satisfiability of a conceptC in NNF, theALCU tableau algorithm starts with the initial completion tree

T

C

:= (fxg; ;; fx 7! fCg; ;)

and repeatedly applies completion rules. Rule applicationstops in one of the following two cases:

1. the obtained completion treet = (V;E;N ; E) contains a clash, i.e. there is a nodea 2 V and a
concept nameA such thatfA;:Ag � N (a);

2. t is saturated, i.e. no more completion rules are applicable tot.

If we consider onlyALC-concepts (i.e.,ALCU -concepts not containing the universal role), then we
can drop theRU rule. In this case, the described algorithm terminates for any input and any sequence
of rule applications. Things are not so simple if we admit theuniversal role: because of theRU rule,
the algorithm need not terminate, both on satisfiable and on unsatisfiable inputs. For example, rule
application to the concept8u:9r:> continues indefinitely. However, the algorithm then computes an
infinite “increasing” sequence of completion trees: in eachstep, the tree and its node labels may only
grow but never shrink. In case of non-termination, there thus exists a unique completion tree computed by

2Two concepts are equivalent iff they subsume each other w.r.t. the empty TBox.
3Here and in the following, a tree is an acyclic directed graph(V;E) with a unique root where every node other than the root is
reachable from the root and has exactly one predecessor. Theedge relationE is a subsetof V � V , and thus the successors of
a given node are not ordered.
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Ru if C
1

u C

2

2 N (a) andfC
1

; C

2

g 6� N (a)

thenN (a) := N (a) [ fC

1

; C

2

g

Rt if C
1

t C

2

2 N (a) andfC
1

; C

2

g \ N (a) = ;

thenN (a) := N (a) [ fCg for someC 2 fC

1

; C

2

g

R9 if 9r:C 2 N (a) and there is nor-successorb of a with C 2 N (b),

then generate a new successorb of a, and setE(a; b) := r andN (b) := fCg

R8 if 8r:C 2 N (a) andb is anr-successor ofa with C =2 N (b)

then setN (b) := N (b) [ fCg

RU if 8u:C 2 N (a) andC =2 N (b)

then setN (b) := N (b) [ fCg

Figure 1. Completion rules forALCU .

this run of the algorithm “in the limit”. Thus, both terminating and non-terminating runs of the algorithm
“compute” a unique completion tree. This (possibly infinite) completion tree is calledsaturatediff no
more completion rules are applicable to it.

The tableau algorithm forALCU is sound and complete in the following sense:

� Soundness. If the algorithm computes a saturated and clash-free completion tree for the inputC,
thenC is satisfiable.

� Completeness. If the inputC is satisfiable, then there is a run of the algorithm that computes a
saturated and clash-free completion tree for this input.

Given these notions of soundness and completeness, it should be clear that we want our algorithm to com-
pute saturated completion trees. Obviously, any terminating run of the algorithm yields a saturated com-
pletion tree. For this reason, the order of rule applications is in this case “don’t care” non-deterministic.
For a non-terminating run, this is only true if we require completion rules to be applied in afair4 manner.
Ensuring fairness is a simple task: we can, e.g., always apply completion rules to those nodes in the tree
that are as close to the root as possible. This yields a fair strategy since the out-degree of completion
trees constructed for an inputC is bounded by the cardinality of the setsub(C).

Although the procedure as described until now does not necessarily terminate and thus is no decision
procedure for satisfiability, quite surprisingly we will see that it already provides us with enough infor-
mation to deduce an ExpTime upper-bound forALC

U -concept satisfiability (and thus, in particular, with
a decidability result). This will be shown by a translation into a tree automaton, which basically accepts
saturated and clash-free completion trees for the input. Weview this as a rather convenient feature of
our framework: to obtain an ExpTime decision procedure, it is sufficient to design a sound and complete

4Intuitively, fairness means that rules are applied such that every applicable rule will eventually be applied unless itis made
inapplicable by the application of other rules.
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tableau algorithm and not even bother to prove termination,a usually hard task (see Section 3 for details).
Moreover, we will show in Section 4 that a given non-terminating sound and complete tableau proce-
dure can always be turned into a terminating sound and complete procedure. This yields a tableau-based
decisionprocedure, which is, however, not necessarily of ExpTime complexity.

2.2. The General Framework

We now develop a general notion of tableau algorithms. It is in the nature of this endeavor that our for-
malism will be a rather abstract one. We start with defining the core notion: tableau systems. Intuitively,
the purpose of a tableau system is to capture all the details of a tableau algorithm such as the one for
ALC

U discussed in the previous section. The setI of inputs used in the following definition can be
thought of as consisting of all possible conceptsC (or pairs(C;T ) of conceptsC and TBoxesT ) of the
DL under consideration.

Definition 2.5. (Tableau system)
Let I be a set ofinputs. A tableau system forI is a tuple

S = (NLE;GME;EL; k; �

S

;R; C);

whereNLE, GME, andEL are sets ofnode label elements, global memory elements, andedge labels,
respectively,k is a natural number (thepattern depth), and�S is a function mapping each input� 2 I to
a tuple

�

S

= (nle; gme; el; ini)

such that

� nle � NLE, gme � GME, andel � EL are finite;

� ini is a subset of}(nle)� }(gme), where}(�) denotes powerset.

The definitions ofR andC depend on the notion of anS-pattern. Such a pattern is a pair(t; �) consisting
of a a finite labeled tree

t = (V;E; n; `);

of depth at mostk with n : V ! }(NLE) and` : E ! EL node and edge labeling functions, and a subset
� of GME.

� R, the collection ofcompletion rules, is a function mapping eachS-pattern to a finite set of non-
empty finite sets ofS-patterns;

� C, the collection ofclash-triggers, is a set ofS-patterns.

To illustrate tableau systems, we now define a tableau systemS

ALC

U

that describes theALCU tableau
algorithm discussed in the previous section. As the set of inputsI for S

ALC

U

, we simply use the set of
all ALCU -concepts in NNF. Now for the tableau system itself. Intuitively, NLE is the set of elements
that may appear in node labels of completion trees,independentlyof the input. In the case ofALCU ,
NLE is thus simplyCON

ALC

U

. Similarly, EL is the set of edge labels, also independently of the input.
In the case ofALCU , EL is thus the set of role namesN

R

. The rôle of the global memory component
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can be illustrated by theRU rule. In contrast to the other rules, which are local in the sense that they
are concerned with a single node of the completion tree or a single node and its successor nodes, the
RU rule is global: it considers twoarbitrary nodesa andb in the completion tree. The global memory
component contains information relevant for such global rules. For theRU rule, it is important to know
which conceptsC must be propagated to all nodes since8u:C is contained in some node. Thus, the
global memory component also contains concepts, which means that, in the case ofALCU , GME is also
CON

ALC

U

. The numberk restricts the size of the trees in patterns. We will considerit in more detail
when describing the rules and clash-triggers.

The function�S describes the impact of the input on the form of the constructed completion trees.
More precisely,nle fixes the node label elements that may be used in a completion tree for a particular
input, andel fixes the edge labels. Similarly,gme fixes the possible elements of the global memory
component for a particular input. Finally,ini describes the possible initial node labels of the root of
the completion tree as well as the initial value of the globalmemory component. Note that the initial
root label and the initial value of the global memory component are not necessarily unique, but rather
there can be many choices—a possible source of (don’t know) non-determinism that does not show up
in theALCU algorithm. To illustrate the function�S , let us define it for the tableau systemS

ALC

U

. For
simplicity, we writenle

S

ALC

U

(C) to refer to the first element of the tupleCS

ALC

U , gme
S

ALC

U

(C) to

refer to the second element of the tupleCS

ALC

U , and so forth. For each inputC 2 CON

ALC

U

, we have

nle

S

ALC

U

(C) = sub(C);

gme

S

ALC

U

(C) = sub(C);

el

S

ALC

U

(C) = fr 2 N

R

j r appears in Cg;

ini

S

ALC

U

(C) = f(fCg; ;)g:

It remains to formalize the completion rules and clash-triggers. First observe that, in theALCU

tableau, every clash-trigger as well as every rule premise and consequence (except for theRU rule)
concerns only a single node either alone or together with itssuccessors in the completion tree. For this
reason, we can restrict the depth of the trees in patterns tok = 1. The globalRU rule is handled through
the global memory component (see the description of the rules below).

The collection of completion rulesRmaps patterns to finite sets of finite sets of patterns. Intuitively,
if P is a pattern andfP

1

; : : : ; P

m

g 2 R(P ), then this means that a rule of the collection can be applied
to all completion trees “matching” the patternP . For this, the tree part of the pattern must match a
subtree of the completion tree, and the global memory component of the pattern must coincide with the
global memory component of the completion tree. If a rule matches a completion tree in this sense, then
it non-deterministically replaces the matched subtree of the completion tree with a subtree matching the
tree part of one of the patternsP

1

; : : : ; P

m

(we will give a formal definition of this later on). In addition,
the global memory component of the completion tree is replaced by the global memory component of
the right-hand side pattern. IffP

1

; : : : ; P

m

g 2 R(P ), then we will usually write

P !

R

fP

1

; : : : ; P

m

g

to indicate the rule induced by this element ofR(P ). Similar to the application of such a rule, a comple-
tion tree contains a clash if this completion tree matches a pattern inC.
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To illustrate this, let us again consider the case ofALC

U . ForALCU , the set of clash-triggersC
consists of all patterns whose tree has a root label containing bothA and:A for some concept nameA.
The effect of this is that a completion tree contains a clash iff one of its node labels containsA and:A
for some concept nameA.

With two exceptions, the collection of completion rules is defined by a straightforward translation of
the rules in Figure 1. For each patternP = (t; �) with t = (V;E; n; `) a tree of depth� 1 with root v

0

,
R(P ) is the smallest set of finite sets of patterns such that the following holds:

Ru if the root labeln(v
0

) contains the conceptC u D and fC;Dg 6� n(v

0

), thenR(P ) contains
the singleton setf((V;E; n0; `); �)g, wheren0(v) = n(v) for all v 2 V n fv

0

g andn0(v
0

) =

n(v

0

) [ fC;Dg;

Rt if the root labeln(v
0

) contains the conceptC t D andfC;Dg \ n(v

0

) = ;, thenR(P ) contains
the setf((V;E; n0; `); �); ((V;E; n00 ; `); �)g, wheren0(v) = n

00

(v) = n(v) for all v 2 V n fv

0

g

andn0(v
0

) = n(v

0

) [ fCg andn00(v
0

) = n(v

0

) [ fDg;

R9 if the root labeln(v
0

) contains the concept9r:C, u
1

; : : : ; u

m

are all the sons ofv
0

with `(v

0

; u

i

) =

r, andC 62 n(u

i

) for all i; 1 � i � m, thenR(P ) contains the setfP
0

; P

1

; : : : ; P

m

g, where

� P

0

= ((V

0

; E

0

; n

0

; `

0

); �), whereu
0

is a node not contained inV , V
0

= V [ fu

0

g, E0

=

E [ f(v

0

; u

0

)g, n
0

= n [ fu

0

7! fCgg, `0 = ` [ f(v

0

; u

0

) 7! rg,

� for i = 1; : : : ;m, P
i

= ((V;E; n

i

; `); �), wheren
i

(v) = n(v) for all v 2 V n fu

i

g and
n

i

(u

i

) = n(u

i

) [ fCg;

R8 if n(v
0

) contains the concept8r:C, `(v
0

; v

1

) = r for somev
1

2 V , andC =2 n(v

1

), thenR(P )
containsf((V;E; n0; `); �)g, wheren0(v) = n(v) for all v 2 V n fv

1

g andn0(v
1

) = n(v

1

)[fCg;

RU1 if 8u:C 2 n(v

0

) andC =2 �, thenR(P ) contains the setf(t; � [ fCg)g.

RU2 if � contains the conceptC, andC =2 n(v

0

), thenR(P ) containsf((V;E; n0; `); �)g, where
n

0

(v) = n(v) for all v 2 V n fv

0

g andn0(v
0

) = n(v

0

) [ fCg.

The first exception is theRU rule, which is now split into two rules. The first rule stores the information
about which concepts must hold at all nodes in the global memory component, and the second then
propagates the concepts stored in this component to all other nodes.

The second exception is the treatment of existential restrictions. The rule in Figure 1 is deterministic:
it always generates anewr-successor of the given node. In contrast, the rule handlingexistential restric-
tions introduced above (don’t know) non-deterministically chooses between generating a new successor
or re-using one of the old ones. Basically, this is the price we have to pay for having a very general
framework. The reason why one can always create a new individual when treating existential restrictions
inALCU is thatALCU is invariant under bisimulation [7], and thus one can duplicate successors in mod-
els without changing validity. We could have tailored our framework such that the deterministic rule for
ALC

U can be used, but then we basically would have restricted its applicability to DLs invariant under
bisimulation, a property that is violated by other DLs such as those providing for number restrictions
(see Section 6 in [3] for a more detailed discussion of this issue).

Let us now continue with the general definitions. Tableau systems are a rather general notion. In
fact, as described until now they are too general to be usefulfor our purposes. For example, tableau
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algorithms described by such tableau systems need not be monotonic: completion rules could repeatedly
(even indefinitely) add and remove the same piece of information. To prevent such pathologic behavior,
we now formulate a number of conditions that “well-behaved”tableau systems are supposed to satisfy.
For the following definitions, fix a set of inputsI and a tableau systemS = (NLE;GME;EL; k; �

S

;R; C)

for I. Before we can define admissibility of tableau systems, we must introduce an “inclusion relation”
between patterns.

Definition 2.6. Let P = (t; �) andP 0

= (t

0

; �

0

) with t = (V;E; n; `) andt0 = (V

0

; E

0

; n

0

; `

0

) beS-
patterns. We writeP - P

0 iff the following conditions are satisfied:� � �

0 and there is an injection
� : V ! V

0 that maps the root oft to the root oft0 and satisfies the following conditions:

� for all x 2 V , we haven(x) � n

0

(�(x));

� for all x; y 2 V , if (x; y) 2 E, then(�(x); �(y)) 2 E

0 and
`(x; y) = `

0

(�(x); �(y)).

If � is the identity onV (and thusV � V

0), then we writeP � P

0 (andP � P

0 if, additionally,P 6= P

0).
If � = �

0, � is a bijection, andn(x) = n

0

(�(x)) for all x 2 V , then we writeP � P

0. To make the
injection (bijection)� explicit, we sometimes writeP -

�

P

0 (P �

�

P

0).

Let � 2 I be an input. We say thatP = (t; �) is apattern for� iff � is a subset ofgme
S

(�), the
labels of all nodes int are subsets ofnle

S

(�), and the labels of all edges int belong toel
S

(�). The
patternP is saturatediff R(P ) = ;.

Definition 2.7. (Admissible)
The tableau systemS is calledadmissibleiff it satisfies, for allS-patternsP andP 0, the following
conditions:

1. If P !

R

fP

1

; : : : ; P

m

g, thenP � P

i

for all i; 1 � i �m.

2. If P !

R

fP

1

; : : : ; P

m

g, P 0 is saturated, andP - P

0, then there exists ani; 1 � i � m, such that
P

i

- P

0.

3. For all inputs� 2 I, if P is a pattern for� andP !

R

fP

1

; : : : ; P

m

g, then the patternsP
i

are
patterns for�.

4. If P 2 C andP - P

0, thenP 0

2 C.

It is in order to discuss the intuition underlying the above conditions. Condition 1 basically says that rule
application always adds nodes, elements of node labels, or elements of the global memory component.
Condition 2 can be understood as follows. Assume that a (non-deterministic) rule is applicable toP and
thatP 0 is a “superpattern” ofP that is saturated (i.e., all applicable rules have already been applied).
Then the non-deterministic rule can be applied in such a way that the obtained new pattern is still a
subpattern ofP 0. Intuitively, this condition can be used to reachP 0 from P by repeated rule application.
Condition 3 says that, by applying completion rules for someinput�, we stay within the limits given by
the values of the�S function. Condition 4 states that applicability of clash-triggers is monotonic, i.e., if a
pattern triggers a clash, all its “superpatterns” also trigger a clash.



F. Baader et al. / From Tableaux to Automata 11

It is easy to see that these conditions are satisfied by the tableau systemS
ALC

U

for ALCU . For
Condition 1, this is obvious since the rules only add nodes, elements of node labels, or elements of the
global memory component, but never remove them. Condition 3holds since rules only add subconcepts
of existing concepts to the node label or the global memory component. Condition 4 is also clear: if
P = (t; �) and the label of the root oft containsA and:A, then the label of the root of the tree of every
superpattern ofP also containsA and:A.

The most interesting condition is Condition 2. We illustrate it by considering the treatment of dis-
junction and of existential restrictions inS

ALC

U

. First, assume thatP !

R

fP

1

; P

2

g where the root label
of the treet of P containsC tD and the root labels of the trees ofP

1

andP
2

are obtained from the root
label oft by respectively addingC andD. If P - P

0, then the root label of the tree ofP 0 also contains
C t D. If, in addition,P 0 is saturated, then this root label already containsC or D. In the first case,
P

0

- P

1

and in the secondP 0

- P

2

.
Second, consider the rules handling existential restrictions. Thus, letP - P

0, and assume that
the root label of the treet of P contains the existential restriction9r:C and that the root oft hasm
r-successorsu

1

; : : : ; u

m

. Then the existential restriction9r:C induces the ruleP !

R

fP

0

; : : : ; P

m

g

where the patternsP
0

; : : : ; P

m

are as defined above. If, in addition,P 0 is saturated, then the root of its
tree has anr-successor whose label containsC. If this is a “new”r-successor (i.e., one not in the range
of the injection� that ensuresP - P

0), thenP
0

- P

0.5 Otherwise, there is anr-successoru
i

of the root
of t such that the label of�(u

i

) in the tree ofP 0 containsC. In this case,P
i

- P

0.
We now introduceS-trees, the abstract counterpart of completion trees, and define what it means for

a pattern to match into anS-tree.

Definition 2.8. (S-tree, matching)
An S-tree is a pairT = (t; �) where� � GME andt = (V;E; n; `) is a labeled tree with finite out-
degree, a countable set of nodesV , and the node and edge labeling functionsn : V ! }(NLE) and
` : E ! EL. Any nodex 2 V defines a patternT; x, the k-neighborhoodof x in T , as follows:
T; x := ((V

0

; E

0

; n

0

; `

0

); �) where

� V

0

= fxg [ fy 2 V j there is a path fromx to y of length� k in tg;

� E

0

; n

0

; `

0 are the restrictions ofE;n; ` to V 0.

The tree(V 0

; E

0

; n

0

; `

0

) of T; x is denoted byt; x. If P is an arbitraryS-pattern andx 2 V , then we say
thatP matchesx in T iff P � T; x (see Definition 2.6).

For the tableau system forALCU introduced above,S
ALC

U

-trees are basically the completion trees
defined in Section 2. The only difference is thatS

ALC

U

-trees have an additional global memory compo-
nent�.

Later on, we need sub-tree relations betweenS-trees in analogy to the inclusion relations “-” and
“�” between patterns introduced in Definition 2.6. These relations are defined on trees exactly as for
patterns, and we also use the same relation symbols for them.

We are now ready to describe rule application on an abstract level. Intuitively, the ruleP !

R

fP

1

; : : : ; P

m

g can be applied to the nodex in theS-treeT if P � T; x, and its application yields the

5This shows that we cannot replace- by� in the statement of Condition 2. In fact, we cannot be sure that the new successor
introduced inP

0

has the same name as the new successor inP

0.
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new treeT 0, which is obtained fromT by adding new nodes toT; x and/or extending labels of nodes
from T; x and/or extending the global memory component, as indicatedby someP

i

. This intuition is
formalized in the following definition.

Definition 2.9. (Rule application)
LetS be an admissible tableau system,T = (t; �) be anS-tree, andP !

R

fP

1

; : : : ; P

m

g be a rule ofS.
TheS-treeT 0 = (t

0

; �

0

) is obtained fromT by application of this rule to a nodex of t iff the following
conditions hold:

1. P �

�

T; x for some bijection�.

2. There is ani; 1 � i � m such thatT 0 is obtained fromT by replacingT; x by P
i

.
To be more precise, lett = (V;E; n; `), P = (t

0

; �

0

) wheret
0

= (V

0

; E

0

; n

0

; `

0

), andP
i

=

(t

i

; �

i

) wheret
i

= (V

i

; E

i

; n

i

; `

i

), and assume (without loss of generality) thatV \V

i

= ;. Let�0

be the extension of� to V

i

that is the identity onV
i

n V

0

. Then�0 = �

i

andt0 = (V

0

; E

0

; n

0

; `

0

),
where

(a) V 0

= V [ (V

i

n V

0

);

(b) E

0

= E [ f(�

0

(y); �

0

(z)) j (y; z) 2 E

i

g;

(c) n

0

(y

0

) = n(y

0

) if y0 =2 ran(�

0

) andn0(y0) = n

i

(y) if y0 = �

0

(y) for somey 2 V

i

;

(d) `

0

(y; z) = `(y; z) for all (y; z) 2 E, and
`

0

(y

0

; z

0

) = `

i

(y; z) if y0 = �

0

(y), z0 = �

0

(z), and(y; z) 2 E

i

.

For a fixed ruleP !

R

fP

1

; : : : ; P

m

g, a fixed choice ofP
i

, and a fixed nodex in T , the results of the
rule application is unique. It is easy to check that, in the case ofS

ALC

, rule application as defined above
captures precisely the intuitive understanding of rule application employed in Section 2.

To finish our abstract definition of tableau algorithms, we need some way to describe the set ofS-
trees that can be obtained by starting with an initialS-tree for an input�, and then repeatedly applying
completion rules. This leads to the notion ofS-trees for�.

Definition 2.10. (S-tree for �)
LetS be an admissible tableau system, and let� be an input forS. The set ofS-trees for� is the smallest
set ofS-trees such that

1. All initial S-trees for� belong to this set, where an initialS-tree for� is of the form

((fv

0

g; ;; fv

0

7! �g; ;); �)

wherev
0

is a node and(�; �) 2 ini

S

(�).

2. If T is anS-tree for� andT 0 can be obtained fromT by the application of a completion rule, then
T

0 is anS-tree for�.

3. If T
0

; T

1

; : : : is an infinite sequence ofS-trees for� with T

i

= ((V

i

; E

i

; n

i

; `

i

); �

i

) such that

(a) T
0

is an initialS-tree for� and

(b) for all i � 0, T
i+1

can be obtained fromT
i

by the application of a completion rule,
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then theS-treeT!

= ((V;E; n; `); �) is also anS-tree for�, where

� V =

S

i�0

V

i

,

� E =

S

i�0

E

i

,

� n =

S

i�0

n

i

,

� ` =

S

i�0

`

i

, and

� � =

S

i�0

�

i

.

Rule application may terminate after finitely many steps or continue forever. The last case of Defini-
tion 2.10 deals with such infinite sequences of rule applications. TheS-treeT! can be viewed as the
limit of the sequence ofS-treesT

0

; T

1

; : : : This limit exists since admissibility ofS implies that rule
application is monotonic w.r.t. the sub-tree relationship“�”, i.e., it extendsS-trees by new nodes or by
additional elements in node labels, but it never removes nodes or elements of node labels.

Let us now define when anS-tree is saturated and clash-free.

Definition 2.11. (Saturated, clash-free)
Let S be an admissible tableau system. We say that theS-treeT is

� saturatedif, for every nodex in T and every patternP , P � T; x impliesR(P ) = ;;

� clash-freeif, for every nodex in T and everyP 2 C, we haveP 6� T; x.

Saturatedness says that no completion rule is applicable totheS-tree, and anS-tree is clash-free if no
clash-trigger can be applied to any of its nodes.

Finally, we define soundness and completeness of tableau systems w.r.t. a certain property of its set
of inputs. If the inputs are concepts (pairs consisting of a concept and a TBox), the property is usually
satisfiability of the concept (w.r.t. the TBox).

Definition 2.12. (Sound, complete)
LetP � I be a property. The tableau systemS is called

� sound forP iff, for any � 2 I, the existence of a saturated and clash-freeS-tree for� implies that
� 2 P;

� complete forP iff, for any � 2 P, there exists a saturated and clash-freeS-tree for�.

It should be noted that the algorithmic treatment of tableausystems requires a stronger notion of com-
pleteness: an additional condition is needed to ensure thatthe out-degree ofS-trees is appropriately
bounded (see Definition 3.1 and Definition 4.2 below).

Taking into account the known soundness and completeness results for theALCU tableau algorithm
described in Figure 1, it is straightforward to check that the tableau systemS

ALC

U

is sound and complete
w.r.t. satisfiability of concepts. Note, in particular, that saturatedS-trees for an input� are precisely those
S-trees for� that can be obtained by exhaustive or infinite andfair rule application.
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3. ExpTime Automata-based Decision Procedures from Tableau Systems

In this section, we define the class of “ExpTime-admissible”tableau systems. If such a tableau system
is sound and complete for a propertyP, then it gives rise to an ExpTime algorithm for decidingP.6 In
the case whereP is satisfiability of description logic concepts (w.r.t. a TBox), this means that the mere
existence of an ExpTime-admissible tableau system for the DL implies an ExpTime upper-bound for
concept satisfiability (w.r.t. TBoxes) in this DL. The ExpTime upper-bound is shown via a translation of
the inputs of the ExpTime-admissible tableau system into certain automata working oninfinite trees. For
this reason, ExpTime-admissible tableau systems neednot deal with the issue of termination. Indeed,
non-terminating tableau algorithms such as the one forALC

U introduced in Section 2.1 may yield Exp-
Time-admissible tableau systems.

Throughout this section, we consider a fixed set of inputsI and a fixed tableau systemS = (NL;GME;

EL; k; �

S

;R; C) for I, which is sound and complete w.r.t. some propertyP.6 As usual, the exponential
upper-bound of decidingP is assumed to be in the “size” of the input� 2 I. Thus, we assume that
the set of inputs is equipped with a size function, which assigns to an input� 2 I a natural number, its
sizej�j.

3.1. Basic Notions

Recall that a tableau systemS is sound and complete for a propertyP if, for any input�, we have
� 2 P iff there exists a (potentially infinite) saturated and clash-freeS-tree for�. The fundamental
idea for obtaining an ExpTime upper-bound for decidingP is to use automata on infinite trees to check
for the existence of a clash-free and saturatedS-tree for a given input�. More precisely, each input�
is converted into a tree automatonA

�

such that there exists a clash-free and saturatedS-tree for� iff
A

�

accepts a non-empty language. Since tree automata work on trees of some fixed out-degree, this
approach only works if the (size of the) input determines such a fixed out-degree for theS-trees to be
considered. This motivates the following definition.

Definition 3.1. (p-complete)
Let p be a polynomial. The tableau systemS is calledp-complete forP iff, for any � 2 P, there exists
a saturated and clash-freeS-tree for� with out-degree bounded byp(j�j).

Throughout this section, we assume that there exists a polynomial p such that the fixed tableau systemS
is p-complete w.r.t. the propertyP under consideration.

The tableau systemS
ALC

U

defined in Section 2 is easily proved to bei-complete, withi being the
identity function on the natural numbers: using the formulation of the rules, it is easily proved that the
out-degree of everyS

ALC

U

-tree for the inputC is bounded by the number of concepts of the form9r:D
in sub(C) and thus also by the lengthjCj of the conceptC.

It should be noted that most standard description logic tableau algorithms [5] also exploitp-complete-
ness of the underlying logic: although this is not made explicit in the formulation of the algorithm itself,
it is usually one of the central arguments in termination proofs.7 The intuition thatp-completeness isnot
an artefact of using an automata-based approach is reinforced by the fact that a similar strengthening of

6More precisely, we must demand a slightly stronger version of completeness, as introduced in Definition 3.1 below.
7An exception are algorithms that treat qualifying number restrictions with numbers coded in binary in a naive way [16, 35]
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completeness is needed in Section 4, where we construct tableau-based decision procedures from tableau
systems.

To ensure that the automatonA
�

can be computed and tested for emptiness in exponential time, we
require the function�S of the tableau systemS and the rules ofS to exhibit an “acceptable” computational
behavior. This is captured by the following definition. In this definition, we assume that all patterns are
appropriately encoded in some finite alphabet, and thus can be the input for a decision procedure. The
size of a patternP is the sum of the sizes of its global memory component and its node and edge labels,
where the size of a node label (global memory component) is the sum of the sizes of its node label
elements (global memory elements).

Definition 3.2. (ExpTime-admissible)
The tableau systemS is calledExpTime-admissibleiff the following conditions are satisfied:

1. S is admissible (see Definition 2.7);

2. ini
S

(�) andel
S

(�) can be computed in time exponential inj�j, and the size of each edge label in
el

S

(�) is polynomial inj�j;

3. the cardinality ofnle
S

(�) and the size of each global memory element innle

S

(�) is polynomial in
j�j, andnle

S

(�) can be computed in time exponential inj�j;

4. the cardinality ofgme
S

(�) and the size of each node label element ingme

S

(�) is polynomial in
j�j, andgme

S

(�) can be computed in time exponential inj�j;

5. for each patternP it can be checked in time exponential in the size ofP whether, for all patterns
P

0, P 0

� P impliesR(P 0

) = ;;

6. for each patternP it can be checked in time exponential in the size ofP whether there is a clash-
triggerP 0

2 C such thatP 0

� P .

Note that Point 2 of ExpTime-admissibility implies that, for each� 2 I, the cardinality of the sets
ini

S

(�) and el
S

(�) are at most exponential inj�j. The cardinality of the set of node label elements
nle

S

(�) is explicitly required (in Point 3) to be polynomial. For theactual set of node labels (which
are sets of node label elements), this yields an exponentialupper-bound on its cardinality, but the size
of each node label is polynomial inj�j. The same is true for the gobal memory component (Point 4).
ExpTime-admissibility ensures that the size of eachk-neighborhoodT; x is polynomial inj�j since

� p-completeness implies that we consider onlyS-treesT of out-degree bounded byp(j�j), and thus
the out-degree of eachk-neighborhood is polynomial inj�j;

� k-neighborhoods have constant depthk (not depending on the input);

� the sizes of the global memory component and of edge and node labels are polynomial inj�j.

Thus, the fifth point ensures that the saturatedness condition can be checked in time exponential inj�j
for a given neighborhoodT; x of T . The sixth point yields the same for clash-freeness.

Most standard tableau algorithms for ExpTime-complete DLstrivially satisfy the conditions of Exp-
Time-admissibility. For example, it is easy to show that thetableau systemS

ALC

U

defined in Section 2
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is ExpTime-admissible. We have already shown admissibility of S
ALC

U

, and Point 2, 3, and 4 are
immediate consequences of the definitions ofini

S

ALC

U

, nle
S

ALC

U

, gme
S

ALC

U

, andel
S

ALC

U

. To see that
Points 5 and 6 are satisfied as well, first note that the definition of the rules and clash-triggers inS

ALC

U

is invariant under isomorphism of patterns. For this reason, the decision problem in Point 5 reduces to
checking whether a given patternP is saturated (see the definition of this notion below Definition 2.6),
and the decision problem in Point 6 reduces to checking whether a given pattern is a clash-trigger. As
an example, we consider the rule handling existential restrictions. LetP = ((V;E; n; `); �) be a pattern
whose tree has rootv

0

, and assume that9r:C 2 n(v

0

). This existential restriction contributes a set of
patterns toR(P ) iff C 62 n(u) for all r-successorsu of v

0

. Obviously, this can be checked in time
polynomial in the size of the pattern.

The remainder of the present section is concerned with converting ExpTime-admissible tableau sys-
tems into automata-based decision procedures, as outlinedabove. The major challenge is to bring to-
gether the different philosophies underlying tableau algorithms and automata-based approaches for de-
ciding concept satisfiability: tableau algorithm activelytry to constructa model for the input by applying
rules, as reflected in the Definitions 2.9 and 2.10, whereas automata are based on the concept of “accep-
tance” of a tree, i.e., they verify whether agiventree actually describes a model. Of course, the emptiness
test for the automaton then again checks whether such a tree exists. Due to these different perspectives,
it is not straightforward to construct automata that directly check for the existence ofS-trees for an input
�. To overcome this problem, we first introduce the (less constructive) notion ofS-treescompatible with
�, and investigate the relationship of this notion toS-treesfor �, as introduced in Definition 2.10.

Definition 3.3. (S-tree compatible with�)
Let � be an input andT = ((V;E; n; `); �) anS-tree with rootv

0

. ThenT is compatible with� iff it
satisfies the following conditions:

1. � � }(gme

S

(�));

2. n(x) � }(nle

S

(�)) for eachx 2 V ;

3. `(x; y) 2 el

S

(�) for each(x; y) 2 E;

4. there exists(�; �) 2 ini

S

(�) such that� � n(v

0

) and� � �;

5. the out-degree ofT is bounded byp(j�j).

Below, we will show that, given an ExpTime-admissible tableau systemS that is sound andp-complete
for some propertyP and an input� for S, we can construct a looping tree automaton of size exponential
in the size of� that accepts exactly the saturated and clash-freeS-trees compatible with�. Since the
emptiness problem for looping tree automata can be decided in time polynomial (actually, linear) in the
size of the automaton, this shows that the existence of saturated and clash-freeS-trees compatible with
� can be decided in exponential time. SinceS is sound andp-complete forP, we have� 2 P iff there
is a saturated and clash-freeS-treefor �. Thus, we must investigate the connection betweenS-trees for
� andS-trees compatible with�. This is done in the next lemma.

Lemma 3.1. There exists a clash-free and saturatedS-tree that iscompatible with� iff there exists a
clash-free and saturatedS-treefor �.
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Proof:
The “if” direction is straightforward: letT = ((V;E; n; `); �) be a clash-free and saturatedS-tree for
�. SinceS is sound andp-complete forP, we can w.l.o.g. assume that the out-degree of the tree ofT is
bounded byp(j�j). It is not hard to show thatT is compatible with�, i.e. satisfies Conditions 1 to 5 of
Definition 3.3:

� Each initialS-tree satisfies Conditions 1, 2, and 3 of compatibility, and Condition 3 of admissi-
bility ensures that rule application adds only global memory elements fromgme

S

(�), node label
elements fromnle

S

(�), and edge labels fromel
S

(�).

� Each initialS-tree satisfies Condition 4 of compatibility, and rule application cannot delete ele-
ments from node labels or from the global memory component.

� Since we assume the out-degree ofT to be bounded byp(j�j), Condition 5 of compatibility is also
satisfied.

Now for the “only if” direction. LetT = (t; �) be a clash-free and saturatedS-tree that is compatible
with �, and letv

0

be the root of the treet = (V;E; n; `). To construct a clash-free and saturatedS-tree
for �, we first construct a (possibly infinite) sequence

T

1

� T

2

� T

3

� � � �

of S-trees for� such thatT
i

-

�

i

T for all i � 1. The construction will be such that the injections�
i

that yieldT
i

- T also build an increasing chain, i.e.,�
i+1

extends�
i

for all i � 1. In the construction,
we use a countably infinite setV 0 from which the nodes of theS-treesT

i

are taken. We fix an arbitrary
enumerationx

0

; x

1

; : : : of V 0, and writex < y if x 2 V

0 occurs beforey 2 V

0 in this enumeration. We
then proceed as follows:

� SinceT is compatible with�, there exists(�; �) 2 ini

S

(�) such that� � n(v

0

) and� � �. Define
T

1

to be the initialS-tree((fx
0

g; ;; fx

0

7! �g; ;); �): Obviously,T
1

-

�

1

T for �
1

:= fx

0

7! v

0

g.

� Now, assume thatT
i

-

�

i

T is already constructed. IfT
i

is saturated, thenT
i

is the lastS-tree
in the sequence. Otherwise, choose the least nodex in the tree ofT

i

(w.r.t. the fixed ordering
< on V

0) such thatP � T

i

; x for some patternP that is not saturated, i.e. there exists a rule
P !

R

fP

1

; : : : ; P

m

g. SinceT
i

-

�

i

T , we haveP - T; �

i

(x). SinceT is saturated, the pattern
T; �

i

(x) is saturated. By Condition 2 of admissibility, we haveP
j

- T; �

i

(x) for somej with
1 � j � m. We apply the ruleP !

R

fP

1

; : : : ; P

m

g to x in T

i

such thatP
j

� T

i+1

; x. If the tree
of T

i+1

contains new nodes, then they are taken without loss of generality from V

0. Admissibility
yields T

i

� T

i+1

and the fact thatP
j

- T; �

i

(x) implies that we can define an injection�
i+1

extending�
i

such thatT
i+1

-

�

i+1

T .

In the definition of the clash-free and saturatedS-treeT � for �, we distinguish two cases:

1. if the constructed sequence is finite andT

n

is the lastS-tree in the sequence, then setT

�

:= T

n

;

2. otherwise, letT � be theS-treeT! obtained from the sequenceT
1

; T

2

; : : : as in Case 3 of Defini-
tion 2.10.
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In both cases,T � is obviously anS-tree for� by definition. In addition, we haveT � -
�

T where� is
the injection obtained as the union of the injections�

i

for i � 1.
It remains to be shown thatT � is clash-free and saturated. We concentrate on the second case, where

T

�

= T

!, since the first case is similar, but simpler. Clash-freeness is an easy consequence ofT

�

- T .
In fact, by Condition 4 of admissibility, clash-freeness ofT implies thatT � - T is also clash-free.

To show saturatedness ofT �, we must look atT � and its relationship to theS-treesT
i

in more detail.
SinceT

i

� T

�

- T and the out-degree of the tree ofT is bounded byp(j�j), the out-degrees of the
trees ofT

i

andT � are also bounded byp(j�j). For a given nodex of the tree ofT �, we consider its
k-neighborhoodT �; x. Since the rules ofS only add nodes or elements of node labels or of the global
memory component (see Condition 1 in the definition of admissibility), and since the out-degree ofx is
bounded byp(j�j) and the setsnle

S

(�) andgme
S

(�) are finite, there is ani such thatx is a node ofT
i

and “the neighborhood ofx does not change after stepi,” i.e., T
i

; x = T

i+1

; x = : : : = T

�

; x.
Now assume thatT � is not saturated, i.e., there exists a nodex in the tree ofT � to which a rule applies,

i.e.,P � T

�

; x for some patternP with R(P ) 6= ;. Let i be such thatT
i

; x = T

i+1

; x = : : : = T

�

; x.
Thus, for j � i, a rule applies to the nodex in the tree ofT

i

. In the construction of the sequence
T

1

; T

2

; T

3

; : : :, we apply a rule only to the least node to which a rule is applicable. Consequently, from
the ith step on, we only apply rules to nodesy � x. Since there are only finitely many such nodes (see
the definition of the order< above), there is one nodey � x to which rules are applied infinitely often.
However, each rule application strictly increases the global memory component, the number of nodes in
thek-neighborhood ofy, or the label of a node in thisk-neighborhood. This contradicts the fact that the
out-degree of the trees of theT

i

is bounded byp(j�j), all node labels are subsets of the finite setnle

S

(�),
and all global memory components are subsets of the finite setgme

S

(�). ut

3.2. Accepting CompatibleS-trees Using Looping Automata

Recall that we assume our tableau systemS to be sound andp-complete w.r.t. a propertyP. By
Lemma 3.1, to check whether an input has propertyP, it thus suffices to verify the existence of a sat-
urated and clash-freeS-tree that is compatible with�. In this section, we show how this can be done
using an automata-based approach.

As usual, the automata work ond-ary infinite trees (for some fixed natural numberd) whose nodes
are labeled by elements of a finite label set and whose edges are ordered, i.e., we can talk about thei-th
son of a node. To be more precise, letM be a set andd � 1. A d-ary infiniteM -tree is a mapping
t : f1; : : : ; dg

�

! M that labels each node� 2 f1; : : : ; dg

� with t(�) 2 M . Intuitively, the node�i is
thei-th child of�. We use� to denote the empty word, corresponding to the root of the tree.

Definition 3.4. (Looping tree automata)
A looping tree automatonA = (Q;M; I;�) working ond-ary M -trees consists of a finite setQ of
states, a finite alphabetM , a setI � Q of initial states, and a transition relation� � Q�M �Q

d.
A run of A on anM -treet is a mappingR : f1; : : : ; dg

�

! Q such thatR(�) 2 I and

(R(�); t(�); R(�1); : : : ; R(�d)) 2 �

for each� 2 f1; : : : ; dg�. Thelanguageof d-aryM -treesaccepted byA is

L(A) := ft j there is a run ofA on thed-aryM -treetg:
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In contrast to patterns, whose trees can have depth up tok, transitions of looping tree automata consider
only subtrees of depth1. This makes it hard to give a direct translation of an input into a looping
automaton that accepts the saturated and clash-freeS-trees that are compatible with this input. For this
reason, we first introduce a new type of tree automata “with transitions of depthk,” and show that they
can be translated into looping tree automata.

For a setQ and integersk; d, we denote the set of all (full)d-ary trees of depthk with node labels in
Q by Tk

d

(Q). If R is an infinited-aryQ-tree andx a node inR, thenR; x denotes thek-neighborhood
of x, i.e., the fulld-ary subtree oft of depthk with rootx.

Definition 3.5. (Looping tree automata with transitions of depth k)
A looping tree automatonA = (Q;M; I;�) with transitions of depthk working ond-ary M -trees
consists of a finite setQ of states, a finite alphabetM , a setI � T

k

d

(Q) of initial trees, and a set of
transitions� �M � T

k

d

(Q).
A run ofA on anM -treet is a mappingR : f1; : : : ; dg

�

! Q (i.e., ad-aryQ-tree) such thatR; � 2 I

and
(t(�); (R;�)) 2 �

for each node� in f1; : : : ; dg�. Thelanguageof d-aryM -treesaccepted byA is

L(A) := ft j there is a run ofA on thed-aryM -treetg:

It is easy to see thatnormallooping tree automata (as introduced in Definition 3.4) basically consitute
the special case where the transitions are of depth1. The following lemma shows that looping tree
automata of depthk > 1 arenot more powerful than normal looping tree automata. We define the size
of a tree automatonA = (Q;M; I;�) asjAj := jQj+ jM j+ jIj+ j�j.

Lemma 3.2. Any looping tree automatonA of depthk > 1 working ond-aryM -trees can be reduced
in time polynomial injAjd to a normal looping tree automaton that accepts the same language.

Proof:
LetA = (Q;M; I;�) be a looping tree automaton with transitions of depthk. The normal looping tree
automatonB = (P;M; J;�) is defined as follows:

� P := ft j (m; t) 2 � for somem 2Mg;

� J := I \ P ;

� (t

0

;m; t

1

; : : : ; t

d

) 2 � iff (m; t

0

) 2 � and t
1

; : : : ; t

d

2 P are such thatt
i

coincides with the
subtree oft

0

at nodei up to depthk � 1.

Clearly,jP j is bounded byj�j, jJ j is bounded byjIj, andj�j is bounded byjP jd � j�j. It is also easy to
see thatB can be computed in time polynomial injAjd. It remains to be shown thatL(A) = L(B). First,
assume thatt 2 L(A) and thatR is a run ofA on t. It is easy to see that the following is a run ofB on t:

S : f1; : : : ; dg

�

! P : � 7! R;�:
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Second, assume thatR0 is a run ofB on t. If p is an element ofP � T

k

d

(Q), then we denote the label of
its root byrl(p). We claim that the following is a run ofA on t:

S

0

: f1; : : : ; dg

�

! Q : � 7! rl(R

0

(�)):

This is an easy consequence of the fact thatS

0

; � = R

0

(�) holds for all� 2 f1; : : : ; dg. ut

The next obstacle on our way towards translating an input into a looping automaton that accepts
the saturated and clash-freeS-trees that are compatible with this input is that theS-trees introduced in
Section 2 are not of a fixed arityd and that their edges are labeled, but not ordered. It is, however, not
hard to convertS-trees compatible with a given input intod-aryM -trees for appropriated andM . This
is achieved by (i) “padding” with additional dummy nodes, and (ii) representing edge labels via node
labels.

Definition 3.6. (Padding)
Let � 2 I be an input andt = (V;E; n; `) be the tree component of anS-tree compatible with�. Let
v

0

denote the root oft. For eachx 2 V , we used(x) to denote the out-degree ofx in t. We assume that
the successors of each nodex 2 V are linearly ordered and that, for each nodex 2 V n fv

0

g, s(x) = i

iff x is thei-th successor of its predecessor. We inductively define a function m from f1; : : : ; p(j�j)g

�

to V [ f℄g (where℄ 62 V ) as follows:8

� m(�) = v

0

;

� if m(�) = x 2 V , (x; y) 2 E, ands(y) = i, thenm(�i) = y;

� if m(�) = x 2 V andd(x) < i, thenm(�i) = ℄;

� if m(�) = ℄, thenm(�i) = ℄ for all i 2 f1; : : : ; p(j�j)g.

Let tl
S

(�) denote the set(}(nle
S

(�))� el

S

(�))[f(℄; ℄)g. Thepadding�
t

of t is thep(j�j)-ary tl
S

(�)-
tree defined by setting

1. �
t

(�) = (n(v

0

); e

0

) wheree
0

is an arbitrary (but fixed) element ofel
S

(�);

2. �
t

(�) = (n(x);�) if � 6= �,m(�) = x 6= ℄, and`(y; x) = � wherey is the predecessor ofx in t;

3. �
t

(�) = (℄; ℄) if m(�) = ℄.

Given the tree componentt of a pattern for� of out-degree at mostp(j�j), its k-padding�k

t

is
the full p(j�j)-ary tl

S

(�)-treeof depthk obtained by adding the missing nodes with label(℄; ℄) and by
representing edge labels via node labels, analogous to the definition of�

t

above.

The final obstacle on our way towards translating an input into a looping automaton that accepts
the saturated and clash-freeS-trees that are compatible with this input is the presence ofthe global
memory component in our framework. Transitions of looping automata (even if they are of depthk)
are local, whereas the notion of saturatedness involves theglobal memory component. For this reason,
we define for each input� 2 I and each� � gme

S

(�) a looping automatonA�

�

that accepts a non-
empty language iff there exists a saturated and clash-freeS-tree that is compatible with� and has global
memory component�.

8Note that thep used here stems fromp-completeness.
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Definition 3.7. (Automaton for input � and global memory component�)
Let � 2 I be an input,h = p(j�j), and� � gme

S

(�). The looping automatonA�

�

= (Q;M; I;�) with
transitions of depthk is defined as follows:

� Q :=M := tl

S

(�);

� I consists of all elementst of Tk

h

(Q) whose root label is of the formrl(t) = (	; e

0

) where	 is
such that there exists a tuple(�; �) 2 ini

S

(�) with � � 	 and� � �.

� (m; t) 2 � iff the following two conditions are satisfied:

1. m = rl(t);

2. either all nodes oft are labeled with(℄; ℄) or there is a patternP �

= (s; �) that satisfies the
following conditions:

(a) t = �

k

s

;

(b) for each patternP with P � P

�, P is saturated (i.e.R(P ) = ;);

(c) for each patternP 2 C, we haveP 6� P

�.

The following lemma shows that the automatonA�

�

accepts exactly the paddings of saturated and clash-
freeS-trees that are compatible with� and have global memory component�. Consequently, it accepts
a non-empty set of trees iff there exists a saturated and clash-freeS-tree that is compatible with� and
has global memory component�.

Lemma 3.3. Let � 2 I be an input and� � gme

S

(�). Then

L(A

�

�

) = f�

t

j (t; �) is a saturated and clash-freeS-tree compatible with�g:

Proof:
First, assume that(t; �) is a saturated and clash-freeS-tree compatible with�. We claim that�

t

itself
is a run ofA�

�

on�
t

. In fact,�
t

; � 2 I is an immediate consequence of the definition of padding and
Condition 4 in the definition ofS-trees compatible with�. Now, consider some node� of �

t

. The first
condition in the definition of� is satisfied since we have�

t

as run on itself. Thus, consider the second
condition. If�

t

(�) = (℄; ℄), then the definition of padding implies that all the nodes below � also have
label(℄; ℄), and thus the second condition in the definition of� is satisfied. Otherwise, it is easy to see
that the patternP � defined by (a) in the second condition of the definition of� is ak-neighborhood int.
Sincet is saturated and clash-free,P � thus satisfies (b) and (c) as well. This completes the proof that�

t

is a run ofA�

�

on�
t

, and thus shows that�
t

2 L(A

�

�

).
Second, assume thatbt is a tree accepted byA�

�

. Because of the first condition in the definition of
�, bt itself is a run ofA�

�

on bt. The definitions ofQ, I, and� imply that there is anS-treeT = (t; �)

compatible with� such that�
t

=

b

t. The treet can be obtained frombt by “reversing” the padding
procedure. It remains to be shown that(t; �) is saturated and clash-free. Thus, consider a nodex of t,
and let� be the corresponding node in�

t

=

b

t. Sincex is a node int, the node� has a label different
from (℄; ℄). It is easy to see that the patternP � defined by (a) in the second condition in the definition of
the transition relation coincides withT; x. Thus (b) and (c) in this condition imply that no rule and no
clash-trigger is applicable tox. ut
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We are now ready to prove the main result of this section: the ExpTime upper-bound induced by
ExpTime-admissible tableau systems.

Theorem 3.1. Let I be a set of inputs,P � I a property, andp a polynomial. If there exists an Exp-
Time-admissible tableau systemS for I that is sound andp-complete forP, thenP is decidable in
ExpTime.

Proof:
Let � 2 I be an input. To decide whether� 2 P, we construct for each� � gme

S

(�) the automaton
A

�

�

. By Lemmas 3.1 and 3.3,� 2 P iff at least one of these automata accepts a non-empty language.
It remains to be shown that this algorithm can be executed in exponential time. Letn = j�j and

h = p(j�j). To see that each automatonA�

�

can be constructed in time exponential inn, note that, by
Conditions 2 and 3 of ExpTime-admissibility, we can compute}(nle

S

(�)) andel
S

(�) in time exponen-
tial in n, and thus the same holds fortl

S

(�) = Q =M . By Condition 2, to show thatI can be computed
in exponential time it suffices to show thatTk

h

(Q) is of size exponential inn. This is the case since

jT

k

h

(Q)j = jQj

h

k+1

�1, jQj is exponential inn, h is polynomial inn, andk is a constant. The transition
relation� can be computed in exponential time due to the Conditions 5 and 6 of ExpTime-admissibility
and the facts thatj�j � jM j � jT

k

h

(Q)j, p is a polynomial andk is a constant. Since the automatonA�

�

can be computed in exponential time, its size is at most exponential in j�j. Thus, Lemma 3.2 and the
fact that the emptiness test for looping tree automata can berealized in polynomial time [36] imply that
emptiness of each automatonA�

�

can be tested in time exponential in the input. By Condition 4of Exp-
Time-admissibility we can enumerate all global memory components� � gme

S

(�) in exponential time,
and there are exponentially many of them. Thus, the algorithm performs exponentially many ExpTime
tests, which is still in ExpTime. ut

Since we have shown that the tableau systemS

ALC

U

is ExpTime-admissible as well as sound andp-
complete (for some polynomialp) for satisfiability ofALCU -concepts, we can immediately put Theo-
rem 3.1 to work:

Corollary 3.1. ALCU -concept satisfiability is in ExpTime.

4. Tableau-based Decision Procedures from Tableau Systems

The tableau systems introduced in Section 2.2 cannot immediately be used as tableau-based decision
procedures since rule application need not terminate. The purpose of this section is to show that, under
certain natural conditions, the addition of a straightforward cycle detection mechanism turns them into
(terminating) decision procedures. The resulting procedures are structurally similar to standard tableau-
based algorithms for description logics, such as the ones underlying systems likeFaCT andRACER. In
contrast to the ExpTime algorithm constructed in the previous section, the procedures obtained here are
usually not worst-case optimal—a weakness that is shared byalmost all tableau algorithms for ExpTime-
complete logics, and that is usually viewed as the price one has to pay for more easily implementable
and optimizable decision procedures.

Fix a set of inputsI and a tableau systemS = (NLE;GME;EL; k; �

S

;R; C) for I. As in the previous
section, we require thatS has a number of computational properties. Since we do consider decidability
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rather than complexity issues in this section, it is sufficient for our purposes to impose effectiveness (and
not efficiency) constraints. We start with modifying Definition 3.2:

Definition 4.1. (Recursive Tableau System)
S is calledrecursiveiff the following conditions are satisfied:

1. S is admissible (see Definition 2.7);

2. ini
S

(�) can be computed effectively;

3. for each patternP it can be checked effectively whether, for all patternsP

0, P 0

� P implies
R(P

0

) = ;; if this is not the case, then we can effectively determine a rule

P

0

!

R

fP

1

; : : : ; P

m

g

and a bijection� such thatP 0

�

�

P .

4. for each patternP it can be checked effectively whether there is a clash-trigger P 0

2 C such that
P

0

� P .

The main difference between this definition and Definition 3.2 is Condition 3, which now requires that,
besides checking the applicability of rules, we can effectively apply at least one rule whenever some
rule is applicable at all. Another difference is that we do not actually need to compute the setsel

S

(�),
nle

S

(�), andgme
S

(�) in order to apply rules.
Analogously to the case of ExpTime-admissibility, it can beverified that the tableau systemS

ALC

U

is recursive. In particular, for the second part of Condition 3 we can again use the fact that the rules of
S

ALC

U

are invariant under isomorphism of patterns: this means that it suffices to compute, for a given
non-saturated patternP , a set of patternsfP

1

; : : : ; P

m

g such thatP !

R

fP

1

; : : : ; P

m

g. It is easy to see
that this can be effectively done for the rules ofS

ALC

U

.
We now define a more relaxed variant of Definition 3.1.

Definition 4.2. (f -complete)
Let f : N ! N be a recursive function. The tableau systemS is calledf -complete forP iff, for any
� 2 P, there exists a saturated and clash-freeS-tree for� with out-degree bounded byf(j�j).

Since we have already shown thatS

ALC

U

is p-complete for some polynomialp, S
ALC

U

is clearlyf -
complete for the (computable) functionf induced by the polynomialp.

In order to implement a cycle detection mechanism, we introduce the notion of blocking: given an
S-treeT = (t; �), wheret = (V;E; n; `), we denote byE� the transitive and reflexive closure ofE and
say thatx 2 V is blockediff there existu; v 2 V such that

� uE

�

x andvE�

x;

� uE

�

v and the path fromu to v is of length� k;

� (T; u)

k�1

� (T; v)

k�1

, where(T; u)
k�1

and(T; v)
k�1

denote thek� 1 neighbourhoods ofu and
v in T , respectively.
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Preconditions: Let I be a set of inputs,P � I a property,f a recursive function, andS a recursive
tableau system forI that is sound andf -complete forP.

Algorithm: Returntrue on input� 2 I if the proceduretableau(T ) defined below returnstrue for at
least one initialS-treeT for �. Otherwise returnfalse.

proceduretableau(T )

If P � T; x for someP 2 C and nodex in T or the out-degree ofT exceedsf(j�j),

then returnfalse.

If no rule is applicable to a non-blocked nodex in T ,

then returntrue.

Take a a non-blocked nodex in T and a ruleP !

R

fP

1

; : : : ; P

m

g with P � T; x.

Let T
i

be the result of applying the above rule such thatP

i

� T

i

; x, for 1 � i � m.

If at least one oftableau(T
1

); tableau(T

2

); : : : ; tableau(T

m

) returnstrue,

then returntrue.

Returnfalse.

Figure 2. Decision procedure forP .

Note that, fork = 1, this blocking condition reduces tou 6= v andn(u) = n(v), which corresponds to
the well-known “equality-blocking” technique that is usedin various DL tableau algorithms [19, 5]. For
k = 2, we obtain a more general variant of the “double-blocking” mechanism used for description logics
such asSHIQ [20]. Our version is more general since, in the double-blocking variant, the isomorphic
2-neighborhoods in the third item above would be smaller andcontain only a single node on depth 1.

The tableau-based decision procedure forP induced by the tableau systemS is described in Figure 2.
Note that the selection of rules and nodes in the proceduretableau is “don’t care” non-deterministic: for
the soundness and completeness of the algorithm, it does notmatter which rule we apply when to which
node.

Let us verify that the individual steps performed by the algorithm in Figure 2 are actually effective:

� the initial trees for an input� can be computed effectively, sinceini
S

(�) can be computed effec-
tively by Condition 2 of Definition 4.1;

� the condition in the first “if” statement can be checked effectively by Condition 4 of Definition 4.1
and sincef is a recursive function;

� the applicability of rules can be checked by the first part of Condition 3 of Definition 4.1;

� finally, that we can effectively take a rule and apply it to a nodex follows from the second part of
Condition 3 of Definition 4.1.

We now turn to termination, soundness, and completeness of the algorithm.
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Lemma 4.1. (Termination)
Suppose the preconditions of Figure 2 are satisfied. Then thealgorithm of Figure 2 terminates for any
input� 2 I.

Proof:
Let � 2 I. The number of initial trees for� is finite and can be computed effectively. Hence, it is
sufficient to show that the proceduretableau terminates on any initial tree for�. For each step in which
the procedure does not immediately returntrue or false, nodes are added to the tree,n(x) properly
increases for some nodesx, or � properly increases (due to Condition 1 of admissibility). Hence, since
n(x) � }(nle

S

(�)) for any nodex and� � }(gme

S

(�)) for any tree constructed during a run oftableau,
it is sufficient to show that both the out-degree and the depthof the trees constructed is bounded. The out-
degree of the trees is bounded byf(j�j) (more precisely, as soon as one rule application yields a tree with
out-degree larger thanf(j�j), the algorithm returnsfalse in the next step). Due to the blocking condition,
the length ofE-paths does not exceed the number of pairwise non-isomorphic labelled trees(V;E; n; l)
of depth� k � 1 and outdegree� f(j�j) such thatran(n) � }(nle

S

(�)) andran(`) � el

S

(�)). ut

Lemma 4.2. (Soundness)
Suppose the preconditions of Figure 2 are satisfied. If the algorithm of Figure 2 returnstrue on input�,
then� 2 P.

Proof:
Suppose the algorithm returnstrue on input�. Then the algorithm terminates with a clash-freeS-tree
T = (t; �), t = (V;E; n; `), whose out-degree does not exceedf(j�j) and such that no rule is applicable
to a non-blocked node inT . AsS is sound forP, it is sufficient to show that there exists a saturated and
clash-freeS-tree for�. To this end, we construct a clash-free and saturatedS-tree

T

0

= ((V

0

; E

0

; n

0

; `

0

); �)

that is compatible with� (from which, by Lemma 3.1, we obtain a clash-free and saturated S-tree for�).
Say that a nodex 2 V is directly blockedif it is blocked but its predecessor is not blocked. For any suchx
pick ay with yE�

x such that the path fromy tox has length� k and(T; x)
k�1

� (T; y)

k�1

, and say that
x is blocked byy. Now,V 0 consists of all non-empty sequenceshv

0

; x

1

; : : : ; x

n

i, wherev
0

is the root of
V , thex

1

; : : : ; x

n

2 V are directly blocked or not blocked, and(x
i

; x

i+1

) 2 E if x
i

is not blocked orx
i

is blocked by somey 2 V such that(y; x
i+1

) 2 E. DefineE0 by setting, for~x = hv

0

; x

1

; : : : ; x

n

i 2 V

0

and~y 2 V

0, (~x; ~y) 2 E

0 iff there existsx
n+1

such that~y = hv

0

; x

1

; : : : ; x

n

; x

n+1

i. Definen0 by setting
n

0

(hv

0

; x

1

; : : : ; x

n

i) = n(x

n

). Finally, definè 0 by

� `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(x

n

; x

n+1

) if x
n

is not blocked;

� `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(y; x

n+1

) if x
n

is blocked andy blocksx
n

.

We show thatT 0 is a clash-free and saturatedS-tree which is compatible with�. Compatibility is readily
checked using the definition ofT 0. SinceT is clash-free and no rule is applicable to a non-blocked node
of T , we can prove clash-freeness and saturatedness ofT

0 by showing that anyS-patternP that matches
T

0

; ~x for some node~x in t

0 also matches aT; x for some non-blocked nodex in t. But one can easily
show by induction onm for 0 � m � k and anyhv

0

; x

0

; : : : ; x

n

i 2 V

0 that
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� (T

0

; hv

0

; x

1

; : : : ; x

n

i)

m

� (T; x

n

)

m

if x
n

is not blocked and

� (T

0

; hv

0

; x

1

; : : : ; x

n

i)

m

� (T; y)

m

if x
n

is blocked byy.

The base case (m = 0) is trivial. Thus, consider the induction stepm� 1! m for m� 1 < k.9

First, consider the case wherex
n

is not blocked. By definition ofT 0, the label of the root node
hv

0

; x

1

; : : : ; x

n

i of (T 0; hv
0

; x

1

; : : : ; x

n

i)

m

coincides with the label of the root nodex
n

of (T; x
n

)

m

.
Thus, it is sufficient to show that the respective successor nodes have isomorphic neighborhoods of
depthm� 1. Let z be a successor ofx

n

in T , and lethv
0

; x

1

; : : : ; x

n

; zi be the corresponding successor
of hv

0

; x

1

; : : : ; x

n

i in T

0 (which exists sincex
n

is not blocked). Ifz is not blocked, the induction
yields (T 0; hv

0

; x

1

; : : : ; x

n

; zi)

m�1

� (T; z)

m�1

and we are done. Otherwise,z is blocked by some
nodey. By induction, we know that(T 0; hv

0

; x

1

; : : : ; x

n

; zi)

m�1

� (T; y)

m�1

. In addition, the facts
that y blocks z and thatm � 1 � k � 1 implies that(T; y)

m�1

� (T; z)

m�1

. Thus, we also have
(T

0

; hv

0

; x

1

; : : : ; x

n

; zi)

m�1

� (T; z)

m�1

in this case.
Second, consider the case wherex

n

is blocked by some nodey. Let hv
0

; x

1

; : : : ; x

i

; yi be the node in
T

0 corresponding toy. By construction ofT 0 we have(T 0; hv
0

; x

1

; :::; x

i

; yi)

m

� (T

0

; hv

0

; x

1

; :::; x

n

i)

m

.
Thus, it is sufficient to show that(T 0; hv

0

; x

1

; : : : ; x

i

; yi)

m

� (T; y)

m

. Sincey is not blocked, this is an
instance of the first case in the induction step, which we havealready shown.

This finishes the induction proof. It follows that fromP � T

0

; hv

0

; x

1

; : : : ; x

n

i, P anS-pattern, we
can deduceP � T; x

n

if x
n

is not blocked andP � T; y if x
n

is blocked byy. ut

Lemma 4.3. (Completeness)
Suppose the preconditions of Figure 2 are satisfied. If� 2 P, then the algorithm of Figure 2 returnstrue
on input�.

Proof:
Suppose� 2 P. SinceS is f -complete forP, there exists a clash-free and saturatedS-treeT = (t; �),
t = (V;E; n; `), for � whose out-degree does not exceedf(j�j). We useT to “guide” the algorithm to
anS-tree of out-degree at mostf(j�j) in which no clash-trigger applies and no rule is applicable to a
non-blocked node. This will be done in a way such that all constructedS-treesT 0 satisfyT 0 - T .

For the start, we need to choose an appropriate initialS-treeT
1

. Letv
0

be the root oft. SinceS-trees
for � are also compatible with�, the definition of compatibility implies that there exists(�; �) 2 ini

S

(�)

such that� � n(v

0

) and� � �. DefineT
1

to be the initialS-tree((fv
0

g; ;; fv

0

7! �g; ;); �): Clearly,
T

1

- T . We start the proceduretableau with the treeT
1

.
Now suppose thattableau is called with someS-treeT 0 such thatT 0 - T . If no rule is applicable to a

non-blocked node inT 0, we are done: sinceT 0 - T andT is clash-free and of out-degree at mostf(j�j),
the same holds forT 0. Now suppose that a rule is applicable to a non-blocked node inT 0. Assume that the
tableau procedure has chosen the ruleP !

R

fP

1

; : : : ; P

m

g with P � T

0

; x. SinceT 0 -
�

T for some
� , we haveP - T; �(x). SinceT is saturated,T; �(x) is saturated. By Condition 2 of admissibility, we
haveP

j

- T; �(x) for somej; 1 � j � m. So we “guide” thetableau procedure to continue exploring
theS-treeT 0

j

obtained fromT 0 by applying the ruleP !

R

fP

1

; : : : ; P

m

g such thatP
j

� T

0

j

; x. Now,
P

j

- T; �(x) impliesT 0
j

- T .

9Note that the induction step goes through only form � 1 < k because the blocking condition ensures isomorphism of
neighborhoods only up to depthk � 1.
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Since thetableau procedure terminates on any input, the “guidance” process will also terminate and
thus succeeds in finding anS-tree of out-degree at mostf(j�j) in which no clash-trigger applies and no
rule is applicable to a non-blocked node. Hence,tableau(T

1

) returnstrue. ut

The three lemmas just proved imply that we have succeeded in converting the tableau systemS into a
decision procedure forP.

Theorem 4.1. Suppose the preconditions of Figure 2 are satisfied. Then thealgorithm of Figure 2 effec-
tively decidesP.

5. A Tableau System forALCQI

As an example for a more expressive DL that can be treated within our framework, we consider the DL
ALCQI, which extendsALC with qualified number restrictions and inverse roles. Qualified number
restrictions ((>mr:C) and(6mr:C)) can be used to state constraints on the number ofr-successors
belonging to a given conceptC, and the inverse roles allow us to use both a roler and its inverser�

when building a complex concept.

Definition 5.1. (ALCQI Syntax and Semantics)
Let N

C

andN
R

be pairwise disjoint and countably infinite sets of concept and role names. The set of
ALCQI-roles is defined asROL

ALCQI

:= N

R

[ fr

�

j r 2 N

R

g.
The set ofALCQI-conceptsCON

ALCQI

is the smallest set such that

� every concept name is a concept, and

� if C andD areALCQI-concepts andr 2 ROL

ALCQI

is a role, then:C;CuD;CtD; (6mr:C)

and(>mr:C) are alsoALCQI-concepts.

TBoxes are defined as in the case ofALC, i.e., they are finite sets of GCIsC v D, whereC;D 2

CON

ALCQI

.
The semantics ofALCQI is defined as forALC, where the additional constructors are interpreted

as follows:

(r

�

)

I

:= f(y; x) j (x; y) 2 r

I

g;

(6mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

(>mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

where#S denotes the cardinality of the setS.

Although the constructors9r:C and8r:C are not explicitly present inALCQI, they can be simulated
by (> 1 r:C) and(6 0 r::C), respectively. Thus,ALCQI really extendsALC.

The definition of negation normal form can easily be extendedtoALCQI (see, e.g., [16]). As in the
ALC

U case, we assume that all inputs to the tableau algorithm are in NNF. We usennf(C) to denote the
negation normal form of a conceptC. With sub(C;T ), we denote the set of subconcepts of the concept
C and the TBoxT . In addition, we define theclosureof theALCQI conceptC and the TBoxT as


l(C;T ) := sub(C;T ) [ fnnf(:D) j D 2 sub(C;T )g:
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In order to simplify the treatment of inverse roles, we denote the inverseof theALCQI-role r by r, i.e.,
r = r

� if r is a role name, andr = s if r = s

� for a role names.
Completion trees forALCQI look like completion trees forALC, with the only difference that edges

may also be labeled with inverse roles. In fact, to handle a number restriction of the form(> 1 r�:C)
(which corresponds to the existential restriction9r�:C) in the label of the nodev, the tableau algorithm
may introduce anr�-successor ofv. To simplify the presentation, in the following we say that anodew
is anr-neighborof a nodev in a completion tree((V;E; n; `); �), if (v; w) 2 E and`(v; w) = r or if
(w; v) 2 E and`(w; v) = r.

The fact that edges can also be labeled by inverse roles complicates the treatment of number restric-
tions by tableau rules. For a given node, we need to count the number of other nodes it is related to
via the roler. Without inverse roles, this is quite easy: we just take the direct successors reached by an
edge labeled withr. With inverse roles, we must also count the direct predecessor if the corresponding
edge is labeled withr, and therefore the patterns appearing in the rules and clashtriggers for number
restrictions are of depth (at most) 2. Since the root node, which does not have a predecessor, requires a
special treatment, we reserve a special concept nameROOT for marking the roots ofS-trees.

The TBox is stored in the global memory component, similar tothe way value restrictions with the
universal role are handled byS

ALC

U

. However, since the TBox is constant, the tableau rules neednot
modify the global memory component after its initialisation.

Definition 5.2. (S
ALCQI

)
The tableau systemS

ALCQI

is defined as follows:NLE := CON

ALCQI

is the set of allALCQI-
concepts,GME := fC v D j fC;Dg � CON

ALCQI

g is the set of all possibleALCQI GCIs,EL :=

ROL

ALCQI

is the set of allALCQI-roles, the pattern-depthk is set to 2, and the function�SALCQI

assigns to any input pair(C;T ) the following tuple(nle
S

ALCQI

; gme

S

ALCQI

; el

S

ALCQI

; ini

S

ALCQI

):

nle

S

ALCQI

(C;T ) := 
l(C;T ) [ fROOTg;

gme

S

ALCQI

(C;T ) := T ;

el

S

ALCQI

(C;T ) := fr; r

�

j r 2 N

R

occurs inC or T g;

ini

S

ALCQI

(C;T ) := f(fC;ROOTg;T )g:

The rules and clash-triggers ofS
ALCQI

are introduced in the two following definitions.

Before formally introducing them, let us discuss the rules of S
ALCQI

on an intuitive level. In addition
to the rules handling conjunctions and disjunctions,S

ALCQI

has one rule that treats TBox axioms and
two rules for number restrictions:

RT For every GCIC v D, the conceptnnf(:C tD) is added to every node.

R> To satisfy an at-least restriction(>mr:C) for a nodev, the rule creates or modifies the necessary
neighbors one-by-one. In a single step, it (non-deterministically) addsC to v’s predecessor if the
corresponding edge is labelled withr, or it addsC to the label of an existingr-successor ofv, or
it creates a newr-successor ofv with labelfCg.

As already noted above, the root ofS
ALCQI

-trees is a special case since it doesn’t have any pre-
decessors. For better readability, the handling of the rootnode is described in a separate rule,
R>

ROOT

.
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RC If a nodev contains an at-most restriction(6mr:C), then this so-calledchoose-ruleadds either the
conceptC or the conceptnnf(:C) to the label of allr-neighbours ofv. Without this rule, there
could ber-neighbors that are neither counted as being inC nor as being in:C, which is obviously
impossible.

Definition 5.3. (The rules ofS
ALCQI

)
Let P = (t; �) be a pattern of depth� 2 with t = (V;E; n; `), and letv

0

be the root oft. ThenR(P )
is the smallest set of finite sets of patterns that contains all the sets of patterns required by the individual
rules. TheRu andRt rules are treated analogously to theS

ALC

U

case. The conditions for the remaining
rules are as follows:

RT if C v D 2 � andnnf(:C tD) =2 n(v

0

)), thenR(P ) contains the setf((V;E; n0; `); �)g with
n

0

(v

0

) = n(v

0

) [ fnnf(:C tD)g andn0(v) = n(v) for all v 2 V n fv

0

g.

R> if the label n(v
s

) contains the concept(>mr:C) for a sonv
s

of v
0

, and there are less than
m r-neighboursv of v

s

with C 2 n(v), thenR(P ) contains the setfP
0

; P

1

; : : : ; P

t

g, where
fu

1

; : : : ; u

t

g consists of allr-neighbours ofv
s

with C =2 n(u

i

) and

1. P
0

= ((V

0

; E

0

; n

0

; `

0

); �), whereu
0

=2 V , V
0

= V [ fu

0

g, E
0

= E [ f(v

s

; u

0

)g, n
0

=

n [ fu

0

7! fCgg, and`
0

= ` [ f(v

s

; u

0

) 7! rg,

2. for 1 � i � t, P
i

= ((V;E; n

i

; `); �), wheren
i

(v) = n(v) for all v 2 V n fu

i

g and
n

0

i

(u

i

) = n

i

(u

i

) [ fCg;

R>

ROOT

if the root labeln(v
0

) contains the concept(>mr:C) and theROOT marker, and if there are
less thanm r-neighborsv of v

0

with C 2 n(v), thenR(P ) contains the setfP
0

; P

1

; : : : ; P

t

g,
wherefu

1

; : : : ; u

t

g consists of allr-neighbours ofv
0

with C =2 n(u

i

) and

1. P
0

= ((V

0

; E

0

; n

0

; `

0

); �), whereu
0

=2 V , V
0

= V [ fu

0

g, E
0

= E [ f(v

0

; u

0

)g, n
0

=

n [ fu

0

7! fCgg, and`
0

= ` [ f(v

0

; u

0

) 7! rg,

2. for 1 � i � t, P
i

= ((V;E; n

i

; `); �), wheren
i

(v) = n(v) for all v 2 V n fu

i

g and
n

0

i

(u

i

) = n

i

(u

i

) [ fCg;

RC if, for some nodev 2 V , the labeln(v) contains the concept(6mr:C) andv0 is anr-neighbour ofv
with n(v0)\fC; nnf(:C)g = ;, thenR(P ) contains the setf((V;E; n0; `); �); ((V;E; n00 ; `); �)g,
wheren0(v0) = n(v

0

) [ fCg, n00(v0) = n(v

0

) [ fnnf(:C)g, andn0(v�) = n

00

(v

�

) = n(v

�

) for all
v

�

2 V n fv

0

g.

Let us briefly discuss the doubling of theR> rule, which is due to the presence of inverse roles. To deal
with a concept(6mr:C) 2 n(v), theR> rule has to take into account potentialr-predecessors ofv
satisfyingC. This is achieved by defining theR> rule such that, in patterns,v is not the root node, but
rather a son of the root node. For this reason, theR> rule can never be applied to concepts(6mr:C) in
the label of the root node since we cannot match the root node with a node on level 1 in a pattern. This
necessitates the additionalR>

ROOT

rule.

Definition 5.4. (S
ALCQI

Clash triggers)
The set of clash-triggersC contains all patterns((V;E; n; `); �) with depth� 2 such that, for some
v 2 V , we have one of the following:
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� fA;:Ag 2 n(v) for some concept nameA;

� (6mr:C) 2 n(v) andv has more thanm r-neighbors containingC.

Admissibility, ExpTime-admissibility, and recursive admissibility of S
ALCQI

can be shown as forS
ALC

U

.
The proof of soundness and completeness is similar to known soundness and completeness proofs for
tableau algorithms for DLs containing qualified number restrictions and inverse roles (see, e.g., [21]). In
order to havep-completeness for an appropriate polynomialp, we must assume that numbers in number
restrictions(>mr:C) and(6mr:C) are given in unary coding, i.e., that the numberm contributes lin-
early rather than logarithmically to the size of the input. As an immediate consequence of Theorem 3.1,
we obtain the following upper-bound for the satisfiability problem w.r.t. TBoxes inALCQI.

Corollary 5.1. ALCQI-concept satisfiability w.r.t. TBoxes is in ExpTime if numbers are coded in
unary.

6. Related Work

In this paper, we have proposed an abstract framework for thedevelopment of tableau algorithms. The
most prominent feature of this framework is that it allows toprove tight ExpTime-complexity bounds,
and to obtain (tableau) algorithms that can serve as the basis for efficient implementations—without
investing double work. We only know of one other attempt to capture tableau algorithms in an abstract
framework, namely [22]. The main difference is that the framework in [22] is much less fine-grained than
ours, and indeed also captures quite different types of algorithms such as resolution-based ones. For this
reason, it does not allow for fain-grained complexity analyses such as the one performed in Section 3.

Closely related to our work is the attempt to implement automata-based algorithms in an efficient
way. This is the case since, as we have seen in Section 3, automata are well-suited for proving Exp-
Time upper bounds: if they can be efficiently implemented, there is again no reason to do double work
for obtaining theoretical complexity results and practical implementations. Let us discuss two recent
approaches:

(1) In [6], Baader and Tobies show that the so-called inversemethod for deciding satisfiability of the
modal logicK can be viewed as an implementation of the automata-theoretic approach. SinceK is
known to be a notational variant of the description logicALC [32], this observation is of direct relevance
for the area of description logic as well. It is particularlyinteresting since there exist quite efficient
implementations of the inverse method [37].

(2) Pan et al. propose a BDD-based decision procedure for themodal logicK, and show that it can
be implemented rather efficiently [27, 28]. They also note that their method is inspired by and closely
related to the automata approach.

Although the developments in the implementation of automata-based algorithms are promising, we be-
lieve that tableau-based implementations of ExpTime-complete logics will continue to play an important
role in DL and related areas.

Finally, we should like to comment on the differences between the present version of this article and its
conference version [3]. To achieve more generality, we haveextended our initial formlism as proposed
in [3] in two directions: first, we have introduced the globalmemory component that can be used to
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formulate rules of a global flavour. Such rules are useful fordealing with the universal modality, with
TBoxes, and with nominals (concept names that have to be interpreted in singleton sets). Second, we
have generalized our framework to patterns of arbitrary depth—in [3], only patterns of depth at most 1
are allowed. This generalization helps to capture some tableau algorithms, such as the one forALCQI

in Section 5, in a much more natural way.
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