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Abstract. This paper investigates the relationship between auteraathtableau-based inference
procedures for description logics. To be more precise, weldp an abstract notion of what a
tableau-based algorithm is, and then show, on this absénaadt how tableau-based algorithms can
be converted into automata-based algorithms. In partighia allows us to characterize a large class
of tableau-based algorithms that imply an ExpTime uppemidfor reasoning in the description
logics for which such an algorithm exists.

1. Introduction

Description logics (DLs) [1] are a family of knowledge repeatation languages which can be used
to represent the terminological knowledge of an applicatiomain in a structured and formally well-
understood way. The nandescription logicss motivated by the fact that, on the one hand, the important
notions of the domain are described dpncept descriptions.e., expressions that are built from atomic
concepts (unary predicates) and atomic roles (binary pagel) using the concept and role constructors
provided by the particular DL. On the other hand, DLs diffiemf their predecessors, such as semantic
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networks and frames [31, 25], in that they are equipped withraal, logic-based semantics, which can,
e.g., be given by a translation into first-order predicatgdo

Knowledge representation systems based on descriptidacs|@QL systems) [38, 26] provide their
users with various inference capabilities (like subsuorpéind instance checking) that allow them to de-
duce implicit knowledge from the explicitly representedwtedge. In order to ensure a reasonable and
predictable behavior of a DL system, these inference prablehould at least be decidable, and prefer-
ably of low complexity. Consequently, the expressive poafdhe DL in question must be restricted in
an appropriate way. If the imposed restrictions are toorsevwwever, then the important notions of
the application domain can no longer be expressed. Inastggthis trade-off between the expressivity
of DLs and the complexity of their inference problems hasbaee of the most important issues in DL
research (see [11] for an overview of complexity results).

The focus of this research has, however, changed in theBagdrs. In the beginning of the 1990ies,
DL researchers investigated the border between tractablén&ractable DLs [13, 14], and systems that
employed so-called structural subsumption algorithmsgchvfirst normalize the concept descriptions,
and then recursively compare the syntactic structure ofitiimalized descriptions, were still prevalent
[30, 23, 24, 29]. It quickly turned out, however, that sttuat subsumption algorithms can handle only
very inexpressive languages, and that one cannot expect @ Bdasonable expressive power to have
tractable inference problems. For expressive DLs, tabieeed inference procedures turned out to be
quite useful. After the first such tableau-based subsumptigorithm was developed by Schmidt-Schauf?
and Smolka [33] for the DLALC, this approach was extended to various other DLs and alsth&y o
inference problems such as the instance problem (see [&hforerview).

Most of these early tableau-based algorithms for DLs wemptimal worst-case complexity: they
treated DLs with a PSpace-complete subsumption problechtrenalgorithms needed only polynomial
space. Thus, by designing a tableau-based algorithm fora i one could solve two problems simul-
taneously: prove an optimal complexity upper-bound, arsdidiege an algorithm that is easy to implement
and optimize [2, 18], thus yielding a practical reasoningtem for this DL. Modern tableau-based DL
reasoners such d&CT [17] and RACER [15] are based on very expressive DLs (liK&{ZQ [21]),
which have an ExpTime-complete subsumption problem. Despé high worst-case complexity of the
underlying logics, the systenfaCT and RACER behave quite well in realistic applications. This is
mainly due to the fact that their implementors have devalapgreat variety of sophisticated optimiza-
tion techniques for tableau-based algorithms (see [18hfooverview of these techniques). Tableau-
based algorithms are, however, notoriously bad at provirgTEne upper-bounds. In many cases,
ExpTime upper-bounds are easily established using autehzested approaches (see, e.g., Section 5.3 in
[9]). However, automata-based algorithms are not amenalthes sophisticated optimization techniques
that have been developed for (tableau-based) state-@frtHal reasoners. Until now, it was thus com-
mon practice to devise two different algorithms for everpiExme-complete DL, an automata-based one
for establishing the exact worst-case complexity, and lz#abbased one for the implementation.

This paper investigates the (rather close) relationshipvden automata- and tableau-based algo-
rithms. To be more precise, we develop an abstract notiorhaf @tableau-based algorithm is, and then
show, on this abstract level, how tableau-based algorittemsbe converted into automata-based algo-
rithms. In particular, this allows us to characterize adastass of tableau-based algorithms that imply an

The only such result we know of [12] treats the caseddiC with general concept inclusions (GCIs), and even in thigotm
case the algorithm is very complicated.
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ExpTime upper-bound for reasoning in the DLs for which suclkalgorithm exists. We consider this to
be a very useful result since, in many cases, it eliminatesi¢ed for developing two algorithms for the
same DL: one can now design a tableau-based algorithm, usgeaeral result to obtain an ExpTime
upper-bound, and then base a practical implementation @nahy same algorithm. We illustrate the
usefulness of our framework by reproving the known ExpTirppar-bounds for the description logic
ALC with a universal role [34], and for the extensigiCC Q7 of ALC by qualified number restrictions
and inverse roles [10].

In the next section, we introduce the abstract notion of etabsystem. In order to motivate and
illustrate the technical definitions, we first consider tharaple of a tableau-based algorithm f4CC
with a universal role. In Section 3, we define additionalieibns on tableau systems that ensure an
exponential upper-bound on reasoning. This upper-boustdg/n via a translation of tableau systems
into looping tree automata. In Section 4, we show how tab&atems can directly be used to obtain
a tableau-based decision procedure, which can be the lbasia bptimized implementation. The main
problem to be solved there is to ensure termination of tHedabbased algorithm. In Section 5, we apply
the abstract framework to a more complex DL: we design a sabsystem for the DLALC QZ, thus
giving an alternative proof of the known ExpTime upper-baddor reasoning in this DL (with numbers
in number restrictions coded in unary). Finally, in Secttonwe discuss related work. In particular, we
will explain how the present version of this article imprewvaver a previous version [3].

2. Formalizing Tableau Algorithms

In this section, we develop an abstract formalization ofe@ib algorithms. To this end, we first discuss
an extension of the standard tableau-based algorithm éobakic description logigl LC to ALC with

a universal modality 4£C"), and then use this concrete example as a guide when detigirapstract
framework.

2.1. A Tableau Algorithm for ALCY

We start with introducing the syntax and semanticsiaiC?:

Definition 2.1. (A£CY syntax)

Let Nc andNg be pairwise disjoint and countably infinite setsamincept nameandrole names We
assume thalilg contains a special role, which is called the universal role. The set4fCY-concepts
CON 4 .cv is the smallest set such that

e every concept name is atLCY -concept, and

e if C and D are ALCY-concepts and- is a role name, then the following expressions are also
AccY-concepts-C, CnN D, CUD, 3r.C, Vr.C.

A general concept inclusion (GCI¥ an expressiol® T D, where bothC' and D are ALCY-
concepts. A finite set of GCls is callediCC”-TBox

As usual, we will user as abbreviation for an arbitrary propositional tautolagyfor -7, andC — D
for -C' U D.
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Note that there exist several different TBox formalisms tzety considerably w.r.t. expressive power
(see [4]). The kind of TBoxes adopted here are among the mastrgl ones available. They are
supported by modern DL reasoners such®&ST andRACER. However, in the presence of the universal
role, reasoning w.r.t. such complex TBoxes can be reduceshsoning without a TBox (see below).

Like all DLs, ALCY is equipped with a Tarski-style set-theoretic semantics.

Definition 2.2. (A£CY semantics)

An interpretationZ is a pair(AZ,-Z), whereA” is a non-empty set, called tliwmain and-Z is the
interpretation function The interpretation function maps each concept nanea subset” of A” and
each role name to a subset? of AT x AT, Itinterprets the universal role as the universal relation
u” := AT x AT, and is extended to arbitrapy£C" -concepts as follows:

(~C)T = AT\ C*
nD)" = NnD
C T CI T
U D) = ubD
C T CI T
(Ir.C)* := {d € AT | There ise € AT with (d,e) € r* ande € C*}
(vr.C)T :={d € AT | Foralle € AL, if (d,e) € r*, thene € C7}

The interpretatior? is amodelof the ALCY-conceptC iff CZ # 0, and it is a model of the TBoX iff
ctc DfholdsforalCC DeT.

The main inference problems related to a TBox are satistigbihd subsumption of concepts.

Definition 2.3. (A£CY inference problems)

The ALCY-conceptC is satisfiable w.r.t. the TBof iff C and7 have a common model, ard is

subsumed byhe ALCY-conceptD w.rt. the TBoxT (written C T4 D) iff ¢ C DT holds for all
modelsZ of 7. If the TBox is empty, then we say thét is satisfiable rather than thét is satisfiable
w.r.t. ), and thatC is subsumed by (C C D) rather than tha€' is subsumed by w.r.t. § (C Ty D).

SinceC Ty D iff C 11 —D is unsatisfiable w.r.tT, it is sufficient to design a satisfiability algorithm.
In addition, in the presence of the universal modality, s$iatbility w.r.t. a TBox7 can be reduced
to satisfiability w.r.t. the empty TBox (i.e., satisfiabjlit it is easy to see thaf is satisfiable w.r.t.
T ={Cy C Dy,...,C,, T D,} iff Co MYu.(C; — Di)MN...N0Vu.(C, — D,) is satisfiable.
Consequently, we will restrict our attention to the satisfity problem (i.e., w.r.t. the empty TBoXx).

We now discuss an extension of the standard tableau-basistiabdity algorithm for ALC that
handles the universal modality. In the context of DLs, ttengard algorithm fotALC has first been
described in [33]; more modern accounts can, e.g., be foufil].i It can rightfully be viewed as the
ancestor from which all state-of-the-art tableau-basgdrahms for description logics are descended.
Such algorithms are nowadays the standard approach favmiegsin DLs, and they underlie modern
and efficient reasoning systems suclFaST andRACER, which are based on DLs that are much more
expressive thatl LC.

Tableau algorithms are characterized by an underlying statature, a set of completion rules, and
a number of so-called clash-triggers. To decide the sdiilfinof an input concept’, the algorithm
starts with an initial instance of the data structure careséd fromC, and repeatedly applies completion
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rules to it. This rule application can be viewed as an attampbnstruct a model for the input, or as
making implicit knowledge explicit. Rule application conies until either one of the clash-triggers
applies, which means that the attempt to construct a moddhiilad, or all implicit knowledge has been
made explicit without encountering a clash-trigger. In lditer case, the algorithm has succeeded to
construct (a representation of) a model. To be more prettisetableau algorithms considered in this
paper may be non-deterministic, i.e., there may exist cetigpi rules that yield more than one possible
outcome. In this case, the algorithm returns “satisfialifahere exists at leagineway to apply the non-
deterministic rules such that a model of the input is obthimdote that only the choice of the outcome of
non-deterministic rules is true “don’t know” non-deteriisim (and thus requires backtracking), whereas
the order of rule applications is basically “don’t care” rdeterminism.

Before we can define the data structure underlyingai€" tableau algorithm, so-called completion
trees, we must introduce some notation. GivendtC-conceptC, its negation normal form (NNF)
is an equivalerftconcept such that negation occurs only in front of conceptasa Such a concept can
easily be computed by pushing negation as far as possildecaricepts, using de Morgan’s rules and
the usual duality rules for quantifiers. In the following, we.o.g. assume that the input concepts to the
ALCY tableau algorithm are in negation normal formClis an.A£CY-concept then we usaib(C) to
denote the set of all subconcepts(of

Definition 2.4. (Completion trees)

Let C' be anALCY-concept in NNF. Acompletion tredor C is a labeled treét = (V, E, N, £) of finite
out-degree such th@V, F) is a tree, each nodec V is labeled with a subset(a) of sub(C) and each
edge(a, b) € E is labeled with a role nam&(a, b) occurring inC'.

The completion rules are given in Figure 1, whete is the only non-deterministic rule. To decide
satisfiability of a concepf’ in NNF, the ALCY tableau algorithm starts with the initial completion tree

Te = ({I},@, {1” = {C}aw)
and repeatedly applies completion rules. Rule applicattops in one of the following two cases:

1. the obtained completion trée= (V, E, N, £) contains a clashi.e. there is a node € V and a
concept namel such thaf{ A, —=A} C N (a);

2. tis saturatedi.e. no more completion rules are applicablé.to

If we consider only4LC-concepts (i.e. ALCY-concepts not containing the universal role), then we
can drop theRU rule. In this case, the described algorithm terminates figriaput and any sequence
of rule applications. Things are not so simple if we admit tineversal role: because of tHdJ rule,
the algorithm need not terminate, both on satisfiable andrmatisfiable inputs. For example, rule
application to the conceptu.dr.T continues indefinitely. However, the algorithm then conaguan
infinite “increasing” sequence of completion trees: in esp, the tree and its node labels may only
grow but never shrink. In case of non-termination, theres #ixists a unique completion tree computed by

2Two concepts are equivalent iff they subsume each othdr the. empty TBox.

3Here and in the following, a tree is an acyclic directed gréighE) with a unique root where every node other than the root is
reachable from the root and has exactly one predecessoedfeerelatior is a sulsetof V' x V, and thus the successors of
a given node are not ordered.
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RM if C1MCy € N(a) and{Cl,Cg} Z /\/(a)
then/\/(a) = N(a) U {Cl, CQ}
RL if C1UCy EN(G) and{C’l,Cg}ﬂ/\/'(a) =0
thenN (a) := N (a) U {C} for someC € {Cy,Cs}
R3 if Ir.C' € N (a) and there is ne-successob of a with C' € N (b),
then generate a new successof a, and se€ (a,b) := r andN (b) := {C}
RY  if Vr.C € N(a) andbis anr-successor of with C ¢ N (b)
then set\V'(b) := N (b) U {C'}

RU  if Yu.C € N(a) andC ¢ N (b)
then set\/(b) := N (b) U {C'}

Figure 1. Completion rules fod2CY.

this run of the algorithm “in the limit”. Thus, both termirag and non-terminating runs of the algorithm
“compute” a unique completion tree. This (possibly infihitempletion tree is calledaturatediff no
more completion rules are applicable to it.

The tableau algorithm fal£CY is sound and complete in the following sense:

e Soundnesslf the algorithm computes a saturated and clash-free cetiopl tree for the inpug,
thenC is satisfiable.

e Completenessilf the input C' is satisfiable, then there is a run of the algorithm that cdega
saturated and clash-free completion tree for this input.

Given these notions of soundness and completeness, itshealear that we want our algorithm to com-
pute saturated completion trees. Obviously, any ternrigatiin of the algorithm yields a saturated com-
pletion tree. For this reason, the order of rule applicati@rin this case “don’t care” non-deterministic.
For a non-terminating run, this is only true if we require qoetion rules to be applied infair* manner.
Ensuring fairness is a simple task: we can, e.g., alwayyamhpletion rules to those nodes in the tree
that are as close to the root as possible. This yields a faitegly since the out-degree of completion
trees constructed for an inpGtis bounded by the cardinality of the seb(C).

Although the procedure as described until now does not sadgsterminate and thus is no decision
procedure for satisfiability, quite surprisingly we willesthat it already provides us with enough infor-
mation to deduce an ExpTime upper-boundfofC" -concept satisfiability (and thus, in particular, with
a decidability result). This will be shown by a translatiomoi a tree automaton, which basically accepts
saturated and clash-free completion trees for the input.viélg this as a rather convenient feature of
our framework: to obtain an ExpTime decision procedures #ifficient to design a sound and complete

“Intuitively, fairness means that rules are applied suchekary applicable rule will eventually be applied unless imade
inapplicable by the application of other rules.
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tableau algorithm and not even bother to prove terminatiarsually hard task (see Section 3 for details).
Moreover, we will show in Section 4 that a given non-termimgtsound and complete tableau proce-
dure can always be turned into a terminating sound and cdenpiecedure. This yields a tableau-based
decisionprocedure, which is, however, not necessarily of ExpTinmamgexity.

2.2. The General Framework

We now develop a general notion of tableau algorithms. I ihée nature of this endeavor that our for-
malism will be a rather abstract one. We start with definingdbre notion: tableau systems. Intuitively,
the purpose of a tableau system is to capture all the detadistableau algorithm such as the one for
AcLCY discussed in the previous section. The 3eif inputs used in the following definition can be
thought of as consisting of all possible conce@téor pairs(C, 7T') of concepts” and TBoxesT") of the
DL under consideration.

Definition 2.5. (Tableau system)
LetJ be a set ofnputs A tableau system fd¥ is a tuple

S = (NLE, GME, EL, k,-*, R, (),

whereNLE, GME, andEL are sets ohode label elementglobal memory elementandedge labels
respectivelyk is a natural number (theattern depth, and-° is a function mapping each inplite J to
atuple

I = (nle, gme, el, ini)

such that
e nle C NLE, gme C GME, andel C EL are finite;
e iniis asubset of(nle) x p(gme), wherep(-) denotes powerset.

The definitions ofR andC depend on the notion of atpattern Such a pattern is a pdit, 1) consisting
of a a finite labeled tree
t = (V’E7n?£)?

of depth at most withn : V' — ©(NLE) and? : E — EL node and edge labeling functions, and a subset
1 of GME.

e R, the collection ofcompletion rulesis a function mapping each-pattern to a finite set of non-
empty finite sets of-patterns;

e C, the collection otlash-triggers is a set ofS-patterns.

To illustrate tableau systems, we now define a tableau syStgsps that describes thel£CY tableau
algorithm discussed in the previous section. As the setmiftsD for S, ..v, we simply use the set of
all ALCY-concepts in NNF. Now for the tableau system itself. Inteity, NLE is the set of elements
that may appear in node labels of completion tréedependenthof the input. In the case oflLCY,
NLE is thus simplyCON ,..v. Similarly, EL is the set of edge labels, also independently of the input.
In the case ofALCY, EL is thus the set of role namé&. The rdle of the global memory component
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can be illustrated by thBU rule. In contrast to the other rules, which are local in thessethat they
are concerned with a single node of the completion tree ongleshode and its successor nodes, the
RU rule is global: it considers twarbitrary nodesa andb in the completion tree. The global memory
component contains information relevant for such globlsuFor theRU rule, it is important to know
which concept€” must be propagated to all nodes sineeC is contained in some node. Thus, the
global memory component also contains concepts, which s, in the case ofl£CY, GME is also
CON 4,.cv. The number restricts the size of the trees in patterns. We will consitlgr more detail
when describing the rules and clash-triggers.

The function-* describes the impact of the input on the form of the constdicompletion trees.
More preciselynle fixes the node label elements that may be used in a complegerfdr a particular
input, andel fixes the edge labels. Similarlgme fixes the possible elements of the global memory
component for a particular input. Finallipi describes the possible initial node labels of the root of
the completion tree as well as the initial value of the glain@mory component. Note that the initial
root label and the initial value of the global memory compurere not necessarily unique, but rather
there can be many choices—a possible source of (don't knowjdeterminism that does not show up
in the ALCY algorithm. To illustrate the functior?, let us define it for the tableau systesn ..v. For
simplicity, we writenles, . ., (C) to refer to the first element of the tupl@®.acct gmesAwU(C) to

refer to the second element of the tup]éAccU, and so forth. For each inpat € CON ,,.v, we have

nleSAch (C) = sub(C);
gmes .., (C) = sub(C);
els, .ov (O) = {r € Ng | r appearsin ¢

inis .0 (€)= {({C},0)}

It remains to formalize the completion rules and clashgeig. First observe that, in thécc?
tableau, every clash-trigger as well as every rule premigkcansequence (except for tR& rule)
concerns only a single node either alone or together witbLiteessors in the completion tree. For this
reason, we can restrict the depth of the trees in patterhs=td. The globalRU rule is handled through
the global memory component (see the description of the tdéow).

The collection of completion ruleéR maps patterns to finite sets of finite sets of patterns. eyt
if PisapatternandP,...,P,} € R(P), then this means that a rule of the collection can be applied
to all completion trees “matching” the pattefh For this, the tree part of the pattern must match a
subtree of the completion tree, and the global memory coetoof the pattern must coincide with the
global memory component of the completion tree. If a rulealnes a completion tree in this sense, then
it non-deterministically replaces the matched subtred@itbmpletion tree with a subtree matching the
tree part of one of the patterdy, .. . , P, (we will give a formal definition of this later on). In additip
the global memory component of the completion tree is reulduy the global memory component of
the right-hand side pattern. {,, ..., P,,} € R(P), then we will usually write

P—)R {Pl,...,Pm}

to indicate the rule induced by this elementfP). Similar to the application of such a rule, a comple-
tion tree contains a clash if this completion tree matchesttem inC.
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To illustrate this, let us again consider the caseddfCV. For ALCY, the set of clash-trigger§
consists of all patterns whose tree has a root label contalmbth A and—A for some concept namé.
The effect of this is that a completion tree contains a clffstni of its node labels containé and—-A
for some concept namé.

With two exceptions, the collection of completion rules éided by a straightforward translation of
the rules in Figure 1. For each pattath= (¢, 1) with ¢ = (V, E,n, ) a tree of depth< 1 with root vy,
R(P) is the smallest set of finite sets of patterns such that thexwig holds:

R if the root labeln(vy) contains the concept’ M D and{C,D} Z n(vy), thenR(P) contains
the singleton sef((V, E,n’,¢),u)}, wheren/(v) = n(v) forallv € V \ {vp} andn’(vy) =
n(UO) U {Ca D};

RLI if the root labeln(vg) contains the concegt LI D and{C, D} N n(vy) =
the set{((V, E,n',¢), ), (V. E,n",¢), )}, wheren'(v) = n"(v) = n(o
andn’(vg) = n(vy) U {C} andn”(vg) = n(vg) U {D};

(), thenR(P) contains
)forallv € V' \ {vp}

R3 if the root labeln(vy) contains the conceptr.C, uy, . . ., u,, are all the sons afy with £(vg, u;) =
r,andC ¢ n(u;) forall 4,1 < i < m, thenR(P) contains the setPy, P, ..., Py}, where

e Py = ((Vo, Ep,no, %), 1), whereu is a node not contained i, Vo = V U {up}, E' =
EU{(vo,uw)},no =nU{ug — {C}}, ¢ = LU {(vg,up) — r},

o fori =1,...,m, P, = ((V,E,n;,), ), wheren;(v) = n(v) forallv € V' \ {u;} and
ni(u;) = n(u;) U{C};

RV if n(vg) contains the conceptr.C, £(vg,v1) = r for somev; € V, andC ¢ n(v1), thenR(P)
contains{((V, E,n',£), )}, wheren/(v) = n(v) forallv € V' \ {v1} andn/(vy) = n(v1) U{C};

RU1 if Yu.C € n(vg) andC' ¢ u, thenR(P) contains the sef(¢, u U {C})}.

RU2 if p contains the concepf, andC' ¢ n(vy), thenR(P) contains{((V, E,n’,£), )}, where
n'(v) = n(v) forallv € V' \ {vo} andn/(vg) = n(vy) U {C}.

The first exception is thBU rule, which is now split into two rules. The first rule storbe information
about which concepts must hold at all nodes in the global nmgroomponent, and the second then
propagates the concepts stored in this component to all ndukes.

The second exception is the treatment of existential otisnis. The rule in Figure 1 is deterministic:
it always generatesrewr-successor of the given node. In contrast, the rule handkigjential restric-
tions introduced above (don't know) non-deterministicahooses between generating a new successor
or re-using one of the old ones. Basically, this is the prieehave to pay for having a very general
framework. The reason why one can always create a new indivighen treating existential restrictions
in ALCY is thatALCY is invariant under bisimulation [7], and thus one can digtécsuccessors in mod-
els without changing validity. We could have tailored owmnfrework such that the deterministic rule for
ALCY can be used, but then we basically would have restrictegficability to DLs invariant under
bisimulation, a property that is violated by other DLs sushttzose providing for number restrictions
(see Section 6 in [3] for a more detailed discussion of thliges.

Let us now continue with the general definitions. Tableauesys are a rather general notion. In
fact, as described until now they are too general to be usefubur purposes. For example, tableau
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algorithms described by such tableau systems need not betombct completion rules could repeatedly
(even indefinitely) add and remove the same piece of infdamaflo prevent such pathologic behavior,
we now formulate a number of conditions that “well-behavétileau systems are supposed to satisfy.
For the following definitions, fix a set of inpufsand a tableau systesi= (NLE, GME, EL, k, -5, R,C)

for 3. Before we can define admissibility of tableau systems, wstiimtroduce an “inclusion relation”
between patterns.

Definition 2.6. Let P = (¢,u) and P’ = (¢, p') with ¢t = (V, E,n,¢) andt' = (V', E',n',¢') be S-
patterns. We write? < P’ iff the following conditions are satisfieqz C p' and there is an injection
7 : V — V' that maps the root dfto the root oft’ and satisfies the following conditions:

e forall z € V, we haven(z) C n/(r(z));

e forallz,y € V, if (z,y) € E, then(n(z),n(y)) € E' and
Uz,y) =l (r(z), m(y)).

If 7 is the identity orl/ (and thus/ C V'), then we writeP < P’ (andP < P’ if, additionally, P # P’).
If » = p', 7 is a bijection, andi(z) = n/(n(z)) for all z € V, then we writeP ~ P’. To make the
injection (bijection)r explicit, we sometimes writ@ =<, P' (P ~, P’).

LetT" € J be an input. We say thdt = (¢, ) is apattern forD" iff 4 is a subset ogmeg(T"), the
labels of all nodes int are subsets ofleg(I"), and the labels of all edges tnbelong toelg(I"). The
patternP is saturatediff R(P) = ().

Definition 2.7. (Admissible)
The tableau systen§ is calledadmissibleiff it satisfies, for all S-patternsP and P’, the following
conditions:

1. fP -z {P,...,P,} thenP < P;foralli,1 <i <m.

2. f P - {P,..., Py}, P is saturated, ané =< P’, then there exists a1 <4 < m, such that
P3P

3. For all inputsI" € 7, if P is a pattern fol" andP —x {Pi,..., Py}, then the pattern®; are
patterns fod".

4. If PeCandP 3 P', thenP’ € C.

Itis in order to discuss the intuition underlying the abowaditions. Condition 1 basically says that rule
application always adds nodes, elements of node labeldemeats of the global memory component.
Condition 2 can be understood as follows. Assume that a ¢@berministic) rule is applicable 18 and
that P’ is a “superpattern” of? that is saturated (i.e., all applicable rules have alreasnbapplied).
Then the non-deterministic rule can be applied in such a Wway the obtained new pattern is still a
subpattern of”’. Intuitively, this condition can be used to reaBhfrom P by repeated rule application.
Condition 3 says that, by applying completion rules for sanpeit T', we stay within the limits given by
the values of the® function. Condition 4 states that applicability of clastygers is monotonic, i.e., if a
pattern triggers a clash, all its “superpatterns” alsayiiga clash.
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It is easy to see that these conditions are satisfied by theatalsystemS ,..v for AccY. For
Condition 1, this is obvious since the rules only add nodkesnents of node labels, or elements of the
global memory component, but never remove them. Conditibal@s since rules only add subconcepts
of existing concepts to the node label or the global memormpmment. Condition 4 is also clear: if
P = (t, ) and the label of the root d@fcontainsA and—A, then the label of the root of the tree of every
superpattern oP also containsd and—-A.

The most interesting condition is Condition 2. We illustrittby considering the treatment of dis-
junction and of existential restrictions B, v . First, assume tha? —x {P;, »} where the root label
of the treet of P containsC' LI D and the root labels of the trees Bf and P, are obtained from the root
label oft by respectively adding’ andD. If P < P’, then the root label of the tree &f also contains
C U D. If, in addition, P’ is saturated, then this root label already contaiher D. In the first case,
P' 2 P and in the secon®’ 3 Ps.

Second, consider the rules handling existential reginsti Thus, letP < P’, and assume that
the root label of the tree of P contains the existential restrictiofr.C' and that the root of hasm
r-SUCCEeSSOr% 1, ..., umy. Then the existential restrictiofr.C' induces the rule® —x {Py,..., Py}
where the patterns, ..., P, are as defined above. If, in additioR; is saturated, then the root of its
tree has am-successor whose label contaifis If this is a “new” r-successor (i.e., one not in the range
of the injectionr that ensure® < P’), thenP, < P'.> Otherwise, there is arsuccessot; of the root
of ¢ such that the label af (u;) in the tree ofP’ containsC. In this casep; 3 P'.

We now introduceS-trees, the abstract counterpart of completion trees, afidedwhat it means for
a pattern to match into afi-tree.

Definition 2.8. (S-tree, matching)

An S-treeis a pairT = (t,u) wherey C GME andt = (V, E,n,£) is a labeled tree with finite out-
degree, a countable set of nodésand the node and edge labeling functiens V' — ©(NLE) and
¢ : E — EL. Any nodez € V defines a patterf, z, the k-neighborhoodof x in T, as follows:
T,z :=((V',E'" n ¢), 1) where

o V' ={z}U{y € V| thereis a path from to y of length< k in ¢};
e E' n' ¢ are the restrictions o/, n,/to V'.

The tree(V', E',n', ¢') of T, x is denoted by, z. If P is an arbitraryS-pattern and: € V, then we say
that P matchese in T iff P ~ T, x (see Definition 2.6).

For the tableau system fot£CY introduced aboveS iccv-trees are basically the completion trees
defined in Section 2. The only difference is ti$a} .. -trees have an additional global memory compo-
nentyu.

Later on, we need sub-tree relations betwgeinees in analogy to the inclusion relations™and
“<" between patterns introduced in Definition 2.6. These i@tat are defined on trees exactly as for
patterns, and we also use the same relation symbols for them.

We are now ready to describe rule application on an abstesel.| Intuitively, the ruleP — %
{P,..., Py} can be applied to the nodein the S-treeT' if P ~ T, z, and its application yields the

5This shows that we cannot replageby < in the statement of Condition 2. In fact, we cannot be surettieanew successor
introduced inP, has the same name as the new successBf.in
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new treeT”, which is obtained fron¥" by adding new nodes t@, z and/or extending labels of nodes
from T, z and/or extending the global memory component, as indicayesomeP;. This intuition is
formalized in the following definition.

Definition 2.9. (Rule application)

Let S be an admissible tableau systéfh= (¢, 1) be anS-tree, and® — {Pi,..., Py} bearule ofS.
The S-treeT’ = (¢, 1) is obtained fronil” by application of this rule to a nodeof ¢ iff the following
conditions hold:

1. P ~,; T,z for some bijectionr.

2. Thereis an, 1 <4 < m such thafl” is obtained fronil" by replacingT’, = by P;.
To be more precise, lét = (V, E,n,t), P = (to, o) Wherety = (Vy, Eg,no, %), andP; =
(t;, ni) wheret; = (V;, E;,n;, £;), and assume (without loss of generality) thah V; = (). Letr’
be the extension af to V; that is the identity orV; \ V;. Theny' = u; andt’ = (V' E',n/, '),
where

@ V'=vVu(WV;\ W)
(b) E' = EU{(7'(y),7'(2)) | (y,2) € Ei};
(©) n'(v') =n)if ¥ ¢ ran(x") andn’(y') = n;(y) if ¥y = «'(y) for somey € V;;
(d) #(y,z) = L(y, z) forall (y,z) € E, and
Uy, 2") = Llily,2) ity = 7'(y), 2 = 7'(2), and(y, 2) € E;.

For a fixed ruleP —% {P,..., Py}, afixed choice off;, and a fixed node in T', the results of the
rule application is unique. It is easy to check that, in theeaaf S 4.¢, rule application as defined above
captures precisely the intuitive understanding of ruldiapgfion employed in Section 2.

To finish our abstract definition of tableau algorithms, wedeome way to describe the set%f
trees that can be obtained by starting with an inifigkee for an inpuf”, and then repeatedly applying
completion rules. This leads to the notion$trees forT".

Definition 2.10. (S-tree for T")
Let S be an admissible tableau system, and'lbe an input fotS. The set ofS-trees forT" is the smallest
set of S-trees such that

1. All initial S-trees forl" belong to this set, where an initifktree forl" is of the form

(({vo}, 0, {vo — A}, 0), )
whereuvy is a node andA, i) € inig(T).

2. If T'is anS-tree forl’ andT” can be obtained frori by the application of a completion rule, then
T’ is anS-tree forT".

3. If Ty, Ty, . .. is an infinite sequence &f-trees forl” with T; = ((V;, E;, n;, ¢;), i) such that

(a) Ty is an initial S-tree forT" and
(b) foralli > 0, T;;1 can be obtained frori; by the application of a completion rule,
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then theS-treeT* = ((V, E,n, /), u) is also anS-tree forT", where

o = Uz’ZO E;,
o n= Uizo n;,

o £ =50, and
* u= Uizo M-

Rule application may terminate after finitely many steps antinue forever. The last case of Defini-
tion 2.10 deals with such infinite sequences of rule apptinat TheS-treeT“ can be viewed as the
limit of the sequence of-treesTy, T1,... This limit exists since admissibility af implies that rule
application is monotonic w.r.t. the sub-tree relationshifj, i.e., it extendsS-trees by new nodes or by
additional elements in node labels, but it never removegsod elements of node labels.

Let us now define when afi-tree is saturated and clash-free.

Definition 2.11. (Saturated, clash-free)
Let S be an admissible tableau system. We say thabtireeT is

e saturatedif, for every noder in T' and every patter®, P ~ T, z impliesR(P) = (;
e clash-freeif, for every nodez in T' and everyP € C, we haveP « T, x.

Saturatedness says that no completion rule is applicaliteets-tree, and arb-tree is clash-free if no
clash-trigger can be applied to any of its nodes.

Finally, we define soundness and completeness of tabletensysv.r.t. a certain property of its set
of inputs. If the inputs are concepts (pairs consisting obr@cept and a TBox), the property is usually
satisfiability of the concept (w.r.t. the TBox).

Definition 2.12. (Sound, complete)
LetP C J be a property. The tableau systéhis called

e sound forP iff, forany I € J, the existence of a saturated and clash-Hdeece forl" implies that
rep;

e complete forP iff, for any T" € P, there exists a saturated and clash-féeteee forT".

It should be noted that the algorithmic treatment of tablegtems requires a stronger notion of com-
pleteness: an additional condition is needed to ensuretlibabut-degree of-trees is appropriately
bounded (see Definition 3.1 and Definition 4.2 below).

Taking into account the known soundness and completensssréor theA£CY tableau algorithm
described in Figure 1, it is straightforward to check thattétbleau systerfi , ..v is sound and complete
w.r.t. satisfiability of concepts. Note, in particular, taturateds-trees for an inpul’ are precisely those
S-trees forl” that can be obtained by exhaustive or infinite &id rule application.
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3. ExpTime Automata-based Decision Procedures from TableaSystems

In this section, we define the class of “ExpTime-admissiltéddleau systems. If such a tableau system
is sound and complete for a propefy then it gives rise to an ExpTime algorithm for decidiBd In
the case wher@® is satisfiability of description logic concepts (w.r.t. ad®B, this means that the mere
existence of an ExpTime-admissible tableau system for théniplies an ExpTime upper-bound for
concept satisfiability (w.r.t. TBoxes) in this DL. The ExpTé upper-bound is shown via a translation of
the inputs of the ExpTime-admissible tableau system intaceautomata working omfinite trees. For
this reason, ExpTime-admissible tableau systems needeal with the issue of termination. Indeed,
non-terminating tableau algorithms such as the oneti6€" introduced in Section 2.1 may yield Exp-
Time-admissible tableau systems.

Throughout this section, we consider a fixed set of infuetad a fixed tableau systesh= (NL, GME,
EL,%,-%,R,C) for 3, which is sound and complete w.r.t. some propé?t§ As usual, the exponential
upper-bound of decidin@® is assumed to be in the “size” of the inpite J. Thus, we assume that
the set of inputs is equipped with a size function, whichgssito an inpul’ € J a natural number, its
size|T|.

3.1. Basic Notions

Recall that a tableau systefis sound and complete for a propef®if, for any inputT’, we have

' € P iff there exists a (potentially infinite) saturated and hldfiee S-tree forI'. The fundamental
idea for obtaining an ExpTime upper-bound for decidihgs to use automata on infinite trees to check
for the existence of a clash-free and saturafetee for a given inpuf’. More precisely, each input

is converted into a tree automatoty such that there exists a clash-free and satur&téete forI" iff

Ar accepts a non-empty language. Since tree automata worlees of some fixed out-degree, this
approach only works if the (size of the) input determineshsaidixed out-degree for th€-trees to be
considered. This motivates the following definition.

Definition 3.1. (p-complete)
Let p be a polynomial. The tableau systéfhis calledp-complete forP iff, for any I € P, there exists
a saturated and clash-fréetree forT" with out-degree bounded Ip(|T'|).

Throughout this section, we assume that there exists a @lalp such that the fixed tableau systém
is p-complete w.r.t. the propert® under consideration.

The tableau systerfl , ..v defined in Section 2 is easily proved to beomplete, with: being the
identity function on the natural numbers: using the forrtialaof the rules, it is easily proved that the
out-degree of ever§ , . .v-tree for the inpuC' is bounded by the number of concepts of the fatimD
in sub(C') and thus also by the lengtty’| of the concept'.

It should be noted that most standard description logietabhlgorithms [5] also explgitcomplete-
ness of the underlying logic: although this is not made eigh the formulation of the algorithm itself,
itis usually one of the central arguments in terminatiorofsd The intuition thaip-completeness isot
an artefact of using an automata-based approach is re@afdrg the fact that a similar strengthening of

5More precisely, we must demand a slightly stronger versfamompleteness, as introduced in Definition 3.1 below.
"An exception are algorithms that treat qualifying numbetrietions with numbers coded in binary in a naive way [14, 35
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completeness is needed in Section 4, where we construettablased decision procedures from tableau
systems.

To ensure that the automatofy can be computed and tested for emptiness in exponential wame
require the function® of the tableau systeii and the rules of to exhibit an “acceptable” computational
behavior. This is captured by the following definition. Irstidefinition, we assume that all patterns are
appropriately encoded in some finite alphabet, and thus eahebinput for a decision procedure. The
size of a patterrP is the sum of the sizes of its global memory component ancbite mnd edge labels,
where the size of a node label (global memory component)asstim of the sizes of its node label
elements (global memory elements).

Definition 3.2. (ExpTime-admissible)
The tableau systerfi is calledExpTime-admissibléf the following conditions are satisfied:

1. Sis admissible (see Definition 2.7);

2. inig(T") andelg(T") can be computed in time exponential|If{, and the size of each edge label in
elg(T") is polynomial in|T|;

3. the cardinality ofleg(T") and the size of each global memory elementliy (T") is polynomial in
||, andnleg(I") can be computed in time exponential|ifj;

4. the cardinality ogme¢(T") and the size of each node label elemengrite¢(T") is polynomial in
||, andgmeg(I") can be computed in time exponential|iH;

5. for each patterr® it can be checked in time exponential in the sizéPolvhether, for all patterns
P', P! ~ P impliesR(P") = 0;

6. for each patterr® it can be checked in time exponential in the sizéPoivhether there is a clash-
trigger P’ € C such thatP’ ~ P.

Note that Point 2 of ExpTime-admissibility implies thatr feachI’ € J, the cardinality of the sets
inig(I") andelg(I") are at most exponential iii'|. The cardinality of the set of node label elements
nleg(T") is explicitly required (in Point 3) to be polynomial. For thetual set of node labels (which
are sets of node label elements), this yields an exponargj@r-bound on its cardinality, but the size
of each node label is polynomial ji'|. The same is true for the gobal memory component (Point 4).
ExpTime-admissibility ensures that the size of eaateighborhoodr’, z is polynomial in|T'| since

e p-completeness implies that we consider ofitfreesT” of out-degree bounded by|T"|), and thus
the out-degree of eadirneighborhood is polynomial ifT|;

e k-neighborhoods have constant deptfnot depending on the input);
e the sizes of the global memory component and of edge and abééslare polynomial iff"|.

Thus, the fifth point ensures that the saturatedness conditin be checked in time exponential it}
for a given neighborhood’, z of T'. The sixth point yields the same for clash-freeness.

Most standard tableau algorithms for ExpTime-complete Dikally satisfy the conditions of Exp-
Time-admissibility. For example, it is easy to show thatthi@leau systens , .. defined in Section 2
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is ExpTime-admissible. We have already shown admissibdit S .., and Point 2, 3, and 4 are
immediate consequences of the definitionsnef, . ., nles, .., gmeg , andelg, ., . To see that
Points 5 and 6 are satisfied as well, first note that the defimdf the rules and clash-triggers $, ..v

is invariant under isomorphism of patterns. For this reatiom decision problem in Point 5 reduces to
checking whether a given pattefnis saturated (see the definition of this notion below Defnit2.6),
and the decision problem in Point 6 reduces to checking venetlgiven pattern is a clash-trigger. As
an example, we consider the rule handling existentialiotisins. LetP = ((V, E,n, /), 1) be a pattern
whose tree has rooey, and assume that.C' € n(vp). This existential restriction contributes a set of
patterns toR(P) iff C' ¢ n(u) for all r-successors of vy. Obviously, this can be checked in time
polynomial in the size of the pattern.

The remainder of the present section is concerned with ctingeExpTime-admissible tableau sys-
tems into automata-based decision procedures, as outlin@ee. The major challenge is to bring to-
gether the different philosophies underlying tableau rdtlgms and automata-based approaches for de-
ciding concept satisfiability: tableau algorithm activedyto constructa model for the input by applying
rules, as reflected in the Definitions 2.9 and 2.10, wheretmsraia are based on the concept of “accep-
tance” of atree, i.e., they verify whethegaentree actually describes a model. Of course, the emptiness
test for the automaton then again checks whether such axists. eDue to these different perspectives,
it is not straightforward to construct automata that digecheck for the existence d-trees for an input
I'. To overcome this problem, we first introduce the (less cansve) notion ofS-treescompatible with
I', and investigate the relationship of this notionStdreesfor I', as introduced in Definition 2.10.

Definition 3.3. (S-tree compatible with I')
LetT be an input and” = ((V, E,n,¢), ) anS-tree with rootvy. ThenT is compatible withl™ iff it
satisfies the following conditions:

=

- 1 € p(gmeg(I));
2. n(z) C p(nleg(T)) for eachz € V;

w

. l(z,y) € elg(T) for each(x,y) € F;
4. there existgA, v) € inig(T") such thatA C n(vy) andv C p;
5. the out-degree df is bounded by(|T|).

Below, we will show that, given an ExpTime-admissible tablesystent that is sound ang-complete
for some propertyP? and an inpul” for S, we can construct a looping tree automaton of size expadenti
in the size ofT" that accepts exactly the saturated and clash-$-¢eees compatible witli'. Since the
emptiness problem for looping tree automata can be decidéohé polynomial (actually, linear) in the
size of the automaton, this shows that the existence ofaatliand clash-freg-trees compatible with
I" can be decided in exponential time. Sirés sound ang-complete forP, we havel’ € P iff there

is a saturated and clash-fréetreefor I". Thus, we must investigate the connection betwgdrees for

I" andS-trees compatible with'. This is done in the next lemma.

Lemma 3.1. There exists a clash-free and saturafettee that iscompatible withl™ iff there exists a
clash-free and saturatettreefor I".
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Proof:

The “if” direction is straightforward: leT” = ((V, E,n,¢), 1) be a clash-free and saturat§etree for
I'. SinceS is sound angh-complete forP, we can w.l.0.g. assume that the out-degree of the tr@eif
bounded by(|T'|). Itis not hard to show thdf' is compatible withl", i.e. satisfies Conditions 1 to 5 of
Definition 3.3:

e Each initial S-tree satisfies Conditions 1, 2, and 3 of compatibility, amhdition 3 of admissi-
bility ensures that rule application adds only global memelements frongmeg(T'), node label
elements fromnleg (T"), and edge labels fromlg(T").

e Each initial S-tree satisfies Condition 4 of compatibility, and rule apalion cannot delete ele-
ments from node labels or from the global memory component.

¢ Since we assume the out-degred'ab be bounded by(|T"|), Condition 5 of compatibility is also
satisfied.

Now for the “only if” direction. LetT = (¢, 1) be a clash-free and saturatgdree that is compatible
with T', and letvy be the root of the tree= (V, E, n,¢). To construct a clash-free and saturatettee
for T', we first construct a (possibly infinite) sequence

Th ST XT3 =< ---

of S-trees forT" such thatl’; 3, T for all > 1. The construction will be such that the injections
that yield7; =< T also build an increasing chain, i.ey,, 1 extendsr; for all i > 1. In the construction,
we use a countably infinite s&t’ from which the nodes of th8-treesT; are taken. We fix an arbitrary
enumerationrg, z1, ... of V/, and writez < y if x € V' occurs beforey € V' in this enumeration. We

then proceed as follows:

e SinceT is compatible witl", there exist§A, v) € inig(I") such that\ C n(vy) andr C u. Define
Ty to be the initialS-tree(({zo }, 0, {zo — A}, 0),v). Obviously, T} 3., T form := {zg — vo}.

~

e Now, assume thdl; =, T is already constructed. If; is saturated, theff; is the lastS-tree
in the sequence. Otherwise, choose the least noitkethe tree ofT; (w.r.t. the fixed ordering
< on V') such thatP ~ T;,z for some patternP that is not saturated, i.e. there exists a rule
P -z {P,...,Py}. SinceT; 2., T, we haveP 3 T,n;(z). SinceT is saturated, the pattern
T, m;(x) is saturated. By Condition 2 of admissibility, we hake < T, 7;(x) for some; with
1 <j <m.We apply the rule®? = {P,..., Py} tozinT; such thatP; ~ T;; 1, z. If the tree
of T; 1 contains new nodes, then they are taken without loss of gktyeirom /. Admissibility
yields T; < T;;; and the fact thaP’; < T, m;(z) implies that we can define an injection.
extendingr; such thatl; | 3., 1.

In the definition of the clash-free and saturatetteeT™* for ', we distinguish two cases:
1. if the constructed sequence is finite &ndis the lastS-tree in the sequence, then §&t:= T,;;

2. otherwise, lef™ be theS-tree T obtained from the sequen@g, T, ... as in Case 3 of Defini-
tion 2.10.
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In both casesT™ is obviously anS-tree forI" by definition. In addition, we havé&™ =<, T wherer is
the injection obtained as the union of the injectiafgor i > 1.

It remains to be shown thdt* is clash-free and saturated. We concentrate on the seceagdwhere
T* = T“, since the first case is similar, but simpler. Clash-freengan easy consequencelof < T'.
In fact, by Condition 4 of admissibility, clash-freenessibimplies that7™ < T is also clash-free.

To show saturatednessBf, we must look afl™* and its relationship to th&-treesT; in more detail.
SinceT; < T* =X T and the out-degree of the tree Bfis bounded by(|T'|), the out-degrees of the
trees ofT; andT™* are also bounded by(|T'|). For a given node: of the tree ofT™*, we consider its
k-neighborhoodr™*, z. Since the rules of only add nodes or elements of node labels or of the global
memory component (see Condition 1 in the definition of aditiity), and since the out-degree ofis
bounded by(|T'|) and the setsles(T") andgmeg(T") are finite, there is ainsuch that: is a node off;

and “the neighborhood af does not change after stépi.e., T;,z = T;11,z = ... = T*, x.
Now assume that™ is not saturated, i.e., there exists a nodethe tree ofl™* to which a rule applies,
i.e., P ~ T* x for some patterr® with R(P) # (. Leti be such thaf;,z = T;11,2 = ... = T*, .

Thus, forj > 4, a rule applies to the node in the tree of7;. In the construction of the sequence
T,,T5,T5,. .., we apply arule only to the least node to which a rule is applie. Consequently, from
theith step on, we only apply rules to nodes< x. Since there are only finitely many such nodes (see
the definition of the ordex above), there is one node< z to which rules are applied infinitely often.
However, each rule application strictly increases the glofremory component, the number of nodes in
the k-neighborhood ofy, or the label of a node in this-neighborhood. This contradicts the fact that the
out-degree of the trees of tfig¢is bounded by(|T'|), all node labels are subsets of the finiterdet (T"),

and all global memory components are subsets of the finitgnse(T"). O

3.2. Accepting CompatibleS-trees Using Looping Automata

Recall that we assume our tableau systéno be sound ang-complete w.r.t. a propert?. By
Lemma 3.1, to check whether an input has prop@hyit thus suffices to verify the existence of a sat-
urated and clash-fre@-tree that is compatible witlt. In this section, we show how this can be done
using an automata-based approach.

As usual, the automata work a@hary infinite trees (for some fixed natural numlgmwhose nodes
are labeled by elements of a finite label set and whose edgesdered, i.e., we can talk about thth
son of a node. To be more precise, Mtbe a set and > 1. A d-ary infinite M-tree is a mapping
t:{1,...,d}* — M that labels each node € {1,...,d}* with t(a) € M. Intuitively, the nodevi is
thei-th child of . We user to denote the empty word, corresponding to the root of the tre

Definition 3.4. (Looping tree automata)
A looping tree automatod = (Q, M, I, A) working ond-ary M-trees consists of a finite s of
states, a finite alphab@t, a setl C Q of initial states, and a transition relatian C Q x M x Q<.

A run of 4 on anM-treet is amappingR : {1,...,d}* — @ such thatR(e) € I and

(R(a),t(a), R(al),...,R(ad)) € A
for eacha € {1,...,d}*. Thelanguageof d-ary M-treesaccepted by is

L(A) := {t | there is a run ofd on thed-ary M-treet}.
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In contrast to patterns, whose trees can have depth kpttansitions of looping tree automata consider
only subtrees of deptth. This makes it hard to give a direct translation of an inpuo ia looping
automaton that accepts the saturated and clashSkteees that are compatible with this input. For this
reason, we first introduce a new type of tree automata “withgitions of deptit,” and show that they
can be translated into looping tree automata.

For a set) and integer:, d, we denote the set of all (fulj-ary trees of deptlk with node labels in
Q by T’;(Q). If R is an infinited-ary Q-tree andz a node inR, then R, x denotes thé&-neighborhood
of z, i.e., the fulld-ary subtree of of depthk with root x.

Definition 3.5. (Looping tree automata with transitions of depth k)
A looping tree automatod = (Q, M, I, A) with transitions of depthk working ond-ary M-trees
consists of a finite sef) of states, a finite alphabétl, a setl C T’;(Q) of initial trees, and a set of
transitionsA C M x T*(Q).
Arunof A onanM-treet isamappingR : {1,...,d}* — Q (i.e., ad-ary Q-tree) such thak,e € I
and
(t(a), (R, ) € A

for each nodevin {1, ..., d}*. Thelanguageof d-ary M-treesaccepted by is
L(A) := {t | there is a run ofd on thed-ary M-treet}.

Itis easy to see thatormallooping tree automata (as introduced in Definition 3.4)dxbi consitute
the special case where the transitions are of déptfThe following lemma shows that looping tree
automata of depttk > 1 arenot more powerful than normal looping tree automata. We defiaeite
of a tree automatol = (Q, M, I, A) as|A| := |Q| + |M| + |I] + |A].

Lemma 3.2. Any looping tree automatol of depthk > 1 working ond-ary M-trees can be reduced
in time polynomial in|.4|? to a normal looping tree automaton that accepts the samaadgeg

Proof:
Let A = (Q, M, I,A) be alooping tree automaton with transitions of defatirhe normal looping tree
automatons = (P, M, J, ©) is defined as follows:

e P:={t|(m,t) € Aforsomemn € M},
e J:=INP;

o (to,m,t1,...,tq) € O iff (m,ty) € A andty,...,ty € P are such that; coincides with the
subtree of at node: up to deptht — 1.

Clearly,|P| is bounded byA|, |J| is bounded byI|, and|©| is bounded byP|? - |A|. Itis also easy to
see tha3 can be computed in time polynomial id|?. It remains to be shown thd@t(A) = L(B). First,
assume that € L(.A) and thatR is a run of 4 ont. It is easy to see that the following is a run®bn ¢:

S:{1,...,d}* > P:a— R, a.
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Second, assume th&t is a run of B ont. If p is an element of? C T’;(Q), then we denote the label of
its root byrl(p). We claim that the following is a run ofl on¢:

S {1, d} = Q:aw (R (a)).
This is an easy consequence of the fact ffatv = R'(«) holds for alla € {1,...,d}. O

The next obstacle on our way towards translating an inpat antooping automaton that accepts
the saturated and clash-fréetrees that are compatible with this input is that 8¥rees introduced in
Section 2 are not of a fixed arity and that their edges are labeled, but not ordered. It is, Yenvaot
hard to converfS-trees compatible with a given input intbary M -trees for appropriaté and M. This
is achieved by (i) “padding” with additional dummy nodesddii) representing edge labels via node
labels.

Definition 3.6. (Padding)

LetT" € J be an input and = (V, E, n,{) be the tree component of afitree compatible with". Let
vp denote the root of. For eachr € V', we used(z) to denote the out-degree ofin ¢. We assume that
the successors of each nadec V' are linearly ordered and that, for each nade V' \ {vg}, s(z) =i
iff = is thei-th successor of its predecessor. We inductively define etitumm from {1,...,p(|I')) }*
to V U {#} (wheref ¢ V) as follows®

m(e

) = vo;
e if m(a) =2 €V, (z,y) € E,ands(y) = i, thenm(«wi) = y;
(

o it m(e) =2 € V andd(z) < i, thenm(ai) = f;

o if m(a) =4, thenm(ai) =fforalli € {1,...,p(|T'])}.

Lettlg(T") denote the sdlp(nles(T')) x elg(T')) U{(H, #)}. ThepaddingIl, of ¢ is thep(|T'|)-ary tls(T")-
tree defined by setting

1. Ti(e) = (n(vo), eg) Whereeq is an arbitrary (but fixed) element effs (T");
2. I (a) = (n(x),0) if a # ¢, m(a) = z # §f, andl(y, z) = © wherey is the predecessor afin ¢;
3. Thy(a) = () if m(a) = £.

Given the tree componeritof a pattern forl" of out-degree at mogi(|T'|), its k-padding I} is
the full p(|T'|)-ary tls(T")-tree of depthk obtained by adding the missing nodes with lagel) and by
representing edge labels via node labels, analogous tceethtin of IT; above.

The final obstacle on our way towards translating an input atooping automaton that accepts
the saturated and clash-frégtrees that are compatible with this input is the presencthefglobal
memory component in our framework. Transitions of loopingoaata (even if they are of depth
arelocal, whereas the notion of saturatedness involvegtbbal memory component. For this reason,
we define for each inpuf € J and eachu C gmeg(T) a looping automatomd;: that accepts a non-
empty language iff there exists a saturated and clashsieee that is compatible with and has global
memory component.

8Note that thep used here stems fromcompleteness.
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Definition 3.7. (Automaton for input T" and global memory componentu)
LetI" € J be an inputh = p(|T'|), andp C gmeg(T'). The looping automatorly: = (Q, M, I, A) with
transitions of deptlt is defined as follows:

o Q:=M :=tlg(I);

e I consists of all elementsof T#(Q) whose root label is of the form(t) = (T, ey) where ¥ is
such that there exists a tugl#, v) € inig(I") with A C ¥ andv C p.

e (m,t) € Aiff the following two conditions are satisfied:

1. m =rl(t);

2. either all nodes of are labeled with(}, ) or there is a patter®* = (s, i) that satisfies the
following conditions:
(@) t =103
(b) for each patter® with P ~ P*, P is saturated (i.eR(P)
(c) for each patter® € C, we haveP £ P*.

0);

The following lemma shows that the automatdfi accepts exactly the paddings of saturated and clash-
free S-trees that are compatible withand have global memory componentConsequently, it accepts

a non-empty set of trees iff there exists a saturated and-flas S-tree that is compatible with and

has global memory componeint

Lemma 3.3. LetI" € J be an input angk C gmeg(I'). Then

L(Af) = {11, | (¢, p) is a saturated and clash-fréetree compatible with'}.

Proof:
First, assume thdt, ;1) is a saturated and clash-fréetree compatible witi*. We claim thafll, itself
is a run of A% onIL;. In fact,II;,e € I is an immediate consequence of the definition of padding and
Condition 4 in the definition of-trees compatible witli'. Now, consider some nodeof TI;. The first
condition in the definition of\ is satisfied since we haJdé&; as run on itself. Thus, consider the second
condition. IfII;(«) = (4, ), then the definition of padding implies that all the node®Wwet also have
label (4,4), and thus the second condition in the definitionofs satisfied. Otherwise, it is easy to see
that the patterd* defined by (a) in the second condition of the definitiorois ak-neighborhood in.
Sincet is saturated and clash-freB; thus satisfies (b) and (c) as well. This completes the prafith
is a run of A} onII;, and thus shows thaf, € L(A}).

Second, assume thais a tree accepted byi. Because of the first condition in the definition of
A, titself is a run of AL ont. The definitions ofQ, I, andA imply that there is ars-treeT = (¢, 1)
compatible withl' such thatll, = ¢. The treet can be obtained from by “reversing” the padding
procedure. It remains to be shown tliat.) is saturated and clash-free. Thus, consider a nodkt,
and leto be the corresponding node ify = ¢. Sincez is a node irt, the nodex has a label different
from (f, ). Itis easy to see that the pattei defined by (a) in the second condition in the definition of
the transition relation coincides with, 2. Thus (b) and (c) in this condition imply that no rule and no
clash-trigger is applicable to. O
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We are now ready to prove the main result of this section: tkgTine upper-bound induced by
ExpTime-admissible tableau systems.

Theorem 3.1. Let J be a set of inputsP C J a property, angh a polynomial. If there exists an Exp-
Time-admissible tableau systethfor J that is sound ang-complete forP, then?P is decidable in
ExpTime.

Proof:
LetI" € J be an input. To decide wheth&re P, we construct for each C gmeg(I") the automaton
AL. By Lemmas 3.1 and 3.3, € P iff at least one of these automata accepts a non-empty lgegua
It remains to be shown that this algorithm can be executecporential time. Let. = |T'| and
h = p(|T']). To see that each automatetf: can be constructed in time exponentiakinnote that, by
Conditions 2 and 3 of ExpTime-admissibility, we can computeles(I")) andelg(T") in time exponen-
tial in n, and thus the same holds fdg(T') = Q@ = M. By Condition 2, to show that can be computed
in exponential time it suffices to show thTﬁf,fL(Q) is of size exponential im. This is the case since
ITHQ)| = |Q""' 1, |Q| is exponential im, h is polynomial inn, andk is a constant. The transition
relation A can be computed in exponential time due to the Conditionsi%anf ExpTime-admissibility
and the facts thatA| < |M] - |TF(Q)|, p is a polynomial and is a constant. Since the automatd#
can be computed in exponential time, its size is at most extaad in |T'|. Thus, Lemma 3.2 and the
fact that the emptiness test for looping tree automata caasdized in polynomial time [36] imply that
emptiness of each automatet}: can be tested in time exponential in the input. By Conditiaf Exp-
Time-admissibility we can enumerate all global memory congntsy, C gme¢(T") in exponential time,
and there are exponentially many of them. Thus, the alguorjierforms exponentially many ExpTime
tests, which is still in ExpTime. O

Since we have shown that the tableau system . v is ExpTime-admissible as well as sound gnd
complete (for some polynomial) for satisfiability of ALCY-concepts, we can immediately put Theo-
rem 3.1 to work:

Corollary 3.1. ALCY-concept satisfiability is in ExpTime.

4. Tableau-based Decision Procedures from Tableau Systems

The tableau systems introduced in Section 2.2 cannot inatedgibe used as tableau-based decision
procedures since rule application need not terminate. Tingoge of this section is to show that, under
certain natural conditions, the addition of a straightfargvcycle detection mechanism turns them into
(terminating) decision procedures. The resulting prooesiare structurally similar to standard tableau-
based algorithms for description logics, such as the onéderiying systems lik&aCT andRACER. In
contrast to the ExpTime algorithm constructed in the prewvisection, the procedures obtained here are
usually not worst-case optimal—a weakness that is sharethiiyst all tableau algorithms for ExpTime-
complete logics, and that is usually viewed as the price @seth pay for more easily implementable
and optimizable decision procedures.

Fix a set of input$y and a tableau systesi= (NLE, GME, EL, k, -*, R, C) for J. As in the previous
section, we require thaf has a number of computational properties. Since we do cenditidability
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rather than complexity issues in this section, it is suffitfer our purposes to impose effectiveness (and
not efficiency) constraints. We start with modifying Definit 3.2:

Definition 4.1. (Recursive Tableau System)
S is calledrecursiveiff the following conditions are satisfied:

1. Sis admissible (see Definition 2.7);
2. inig(T") can be computed effectively;

3. for each patterr it can be checked effectively whether, for all patted¥s P’ ~ P implies
R(P") = 0; if this is not the case, then we can effectively determinele r

P, —R {Pl,... ,Pm}
and a bijectionr such thatP’ ~, P.

4. for each pattert® it can be checked effectively whether there is a clash-nidgf € C such that
P~ P.

The main difference between this definition and Definitiok i8.Condition 3, which now requires that,
besides checking the applicability of rules, we can effetyi apply at least one rule whenever some
rule is applicable at all. Another difference is that we do actually need to compute the setg(T"),
nles(T"), andgme¢(T") in order to apply rules.

Analogously to the case of ExpTime-admissibility, it canveeified that the tableau systef, ..v
is recursive. In particular, for the second part of Condit®we can again use the fact that the rules of
S ircv are invariant under isomorphism of patterns: this mearisitisaffices to compute, for a given
non-saturated patterR, a set of pattern§P, ..., P,,} suchthatP —% {Pi,..., P,}. Itis easy to see
that this can be effectively done for the rulesf ;v .

We now define a more relaxed variant of Definition 3.1.

Definition 4.2. (f-complete)
Let f : N — N be a recursive function. The tableau syst&ris called f-complete forP iff, for any
I' € P, there exists a saturated and clash-fseeee forT" with out-degree bounded b¥(|T|).

Since we have already shown th, ..v is p-complete for some polynomial, S ,..v is clearly f-
complete for the (computable) functighinduced by the polynomiat.

In order to implement a cycle detection mechanism, we inttecthe notion of blocking: given an
S-treeT = (t, u), wheret = (V, E,n, /), we denote byE* the transitive and reflexive closure Bfand
say thatr € V is blockediff there existu, v € V such that

o uE*randvE*z;
e yF*v and the path from to v is of length> k;

o (T,u)g—1 ~ (T,v)p—1, where(T,u)r_, and(T,v),_, denote thé: — 1 neighbourhoods af and
v in T, respectively.
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Preconditions Let J be a set of inputsP C J a property,f a recursive function, and a recursive
tableau system fd¥ that is sound ang-complete forP.

Algorithm Returntrue on inputl’ € J if the procedureableau(7) defined below returnsrue for at
least one initialS-treeT for I'. Otherwise returifialse.

proceduretableau(T)

If P~ T,z for someP € C and noder in T" or the out-degree df exceedsf (|T'|),
then returrfalse.

If  norule is applicable to a non-blocked nodén T,
then returrtrue.

Take a a non-blocked nodein T"and a ruleP —z {P,..., Py} with P ~ T, z.
Let T; be the result of applying the above rule such that- T;, z, for 1 < i < m.

If  atleast one ofableau(T}),tableau(7T%), ..., tableau(7),) returnstrue,
then returrtrue.

Returnfalse.

Figure 2. Decision procedure f@t.

Note that, fork = 1, this blocking condition reduces 0 # v andn(u) = n(v), which corresponds to
the well-known “equality-blocking” technique that is usedsarious DL tableau algorithms [19, 5]. For
k = 2, we obtain a more general variant of the “double-blockinggamanism used for description logics
such asSHZQ [20]. Our version is more general since, in the double-blugk/ariant, the isomorphic
2-neighborhoods in the third item above would be smalleramdain only a single node on depth 1.

The tableau-based decision procedurefanduced by the tableau syste#tis described in Figure 2.
Note that the selection of rules and nodes in the proceghibteau is “don’t care” non-deterministic: for
the soundness and completeness of the algorithm, it doewsatter which rule we apply when to which
node.

Let us verify that the individual steps performed by the athm in Figure 2 are actually effective:

e the initial trees for an inpuf’ can be computed effectively, singég(I") can be computed effec-
tively by Condition 2 of Definition 4.1;

e the condition in the first “if” statement can be checked affety by Condition 4 of Definition 4.1
and sincef is a recursive function;

¢ the applicability of rules can be checked by the first part ofdition 3 of Definition 4.1;

e finally, that we can effectively take a rule and apply it to @@o follows from the second part of
Condition 3 of Definition 4.1.

We now turn to termination, soundness, and completene$e @ligorithm.
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Lemma 4.1. (Termination)
Suppose the preconditions of Figure 2 are satisfied. Thealtjogithm of Figure 2 terminates for any
inputT” € 7.

Proof:

LetT" € 3. The number of initial trees for is finite and can be computed effectively. Hence, it is
sufficient to show that the procedurgbleau terminates on any initial tree far. For each step in which
the procedure does not immediately retdrne or false, nodes are added to the treg(z) properly
increases for some nodesor . properly increases (due to Condition 1 of admissibilityende, since
n(z) C p(nleg(I")) for any noder andu C p(gmeg(T)) for any tree constructed during a runtebleau,

it is sufficient to show that both the out-degree and the defutie trees constructed is bounded. The out-
degree of the trees is bounded ByT'|) (more precisely, as soon as one rule application yieldseanitn
out-degree larger thaf(|T'|), the algorithm returnfalse in the next step). Due to the blocking condition,
the length ofE-paths does not exceed the number of pairwise non-isonwlphelled tree$V, E, n, 1)

of depth< £ — 1 and outdegree f(|I'|) such thatan(n) C p(nles(I")) andran(¥) C elg(T)). a

Lemma 4.2. (Soundness)
Suppose the preconditions of Figure 2 are satisfied. If therdlhm of Figure 2 returngrue on inputTl’,
thenl” € P.

Proof:

Suppose the algorithm returmgie on inputl’. Then the algorithm terminates with a clash-figdree

T = (t,p), t = (V, E,n, ), whose out-degree does not excgé{d’|) and such that no rule is applicable
to a non-blocked node . As S is sound forP, it is sufficient to show that there exists a saturated and
clash-freeS-tree forI'. To this end, we construct a clash-free and satur&ttae

T'=((V,E'\n",l), 1)

that is compatible witi® (from which, by Lemma 3.1, we obtain a clash-free and satdr&ttree for").
Say that a node € V isdirectly blockedf it is blocked but its predecessor is not blocked. For arghau
pick ay with y E*x such that the path fromto x has length> k£ and(T', z);—1 ~ (T, y)x—1, and say that
x is blocked byy. Now, V' consists of all non-empty sequendes, z1, . .., z,), whereuv, is the root of
V,thexy,...,z, € V are directly blocked or not blocked, afd;, z; 1) € E if z; is not blocked or:;
is blocked by somg € V such thafy, z;.1) € E. DefineE’ by setting, forz = (vg, z1,...,z,) € V'
andy € V', (#,y) € E'iff there existsz,, 1 such thatj = (vy, z1, ..., 2z, z,11). Definen’ by setting
n'((vo, z1,...,2n)) = n(zy,). Finally, define?’ by

o V'({(vo, @1y ypn), (Vo, T1y- -y Tny Tpa1)) = €(xn, Tpa1) if z, is Not blocked;
o V'({(vo, @1, ), (Vo, T1y. -y Ty, Tn1)) = L(y, Tny1) if z, is blocked and; blocksz,,.

We show thafl” is a clash-free and saturatSetree which is compatible with. Compatibility is readily
checked using the definition @'. SinceT is clash-free and no rule is applicable to a non-blocked node
of T', we can prove clash-freeness and saturatedneBSkyf showing that anys-patternP that matches
T', 7 for some noder in ¢’ also matches &, » for some non-blocked nodein ¢. But one can easily
show by induction omn for 0 < m < k and any(vg, zg, . .., z,) € V' that
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o (T" (vo,x1,...,Zpn))m ~ (T, 2y)m if z, is not blocked and
o (T (vo,x1,-- ., Zn))m ~ (T,y)m If z, is blocked byy.

The base caser( = 0) is trivial. Thus, consider the induction step— 1 — m form — 1 < k.°

First, consider the case whetg is not blocked. By definition off”, the label of the root node
(vo, X1, .., 2n) Of (T',{vy,x1,...,2,))m coincides with the label of the root nodg, of (T, z;)m.
Thus, it is sufficient to show that the respective successdes have isomorphic neighborhoods of
depthm — 1. Let z be a successor af, in T', and let(vg, z1, . . ., z,, z) be the corresponding successor
of (vg,z1,...,2,) iIn T' (which exists sincer,, is not blocked). Ifz is not blocked, the induction
yields (T, (vo, 1, .-, Zp, 2))m-1 ~ (T,2)m-1 and we are done. Otherwise,is blocked by some
nodey. By induction, we know thaf7’, (vy, z1,...,Zn, 2))m-1 ~ (T,y)m-1. In addition, the facts
that y blocks z and thatm — 1 < k — 1 implies that(T,y)m—1 ~ (T, 2)m-1. Thus, we also have
(T', (vo, 1y« s Tpy 2))m—1 ~ (T, 2)m—1 in this case.

Second, consider the case whefes blocked by some nodg Let (vg, z1, ..., z;,y) be the node in
T’ corresponding tg. By construction of” we have(T", (vo, z1, ..., Zi, Y))m ~ (T, (Vo, 1, ooy Tn ) ) m-
Thus, it is sufficient to show thafl”, (vo, z1, ...,z y))m ~ (T, y)m. Sincey is not blocked, this is an
instance of the first case in the induction step, which we ladready shown.

This finishes the induction proof. It follows that frof ~ T", (vg, z1, . .., z,), P an S-pattern, we
can deduce® ~ T, x,, if z, is not blocked and® ~ T,y if z,, is blocked byy. O

Lemma 4.3. (Completeness)
Suppose the preconditions of Figure 2 are satisfieD.dfP, then the algorithm of Figure 2 returnsie
on inputl’.

Proof:

Supposd” € P. SinceS is f-complete forP, there exists a clash-free and saturafetieeT = (¢, i),
t = (V,E,n,?), for T" whose out-degree does not excegdd’|). We useT to “guide” the algorithm to
an S-tree of out-degree at mogi{|I’|) in which no clash-trigger applies and no rule is applicablat
non-blocked node. This will be done in a way such that all toiged S-treesT” satisfyT” < T'.

For the start, we need to choose an appropriate irfitiaeeT;. Letvy be the root of. SinceS-trees
for I" are also compatible with, the definition of compatibility implies that there exigts, v/) € inig(T")
such thatA C n(vg) andv C u. DefineT; to be the initialS-tree (({vo}, 0, {vo — A}, 0),v). Clearly,
T, = T. We start the procedutableau with the tre€eT.

Now suppose thatbleau is called with some-treeT” such thafl” 3 T'. If no rule is applicable to a
non-blocked node ifi”, we are done: sincé’ X T andT is clash-free and of out-degree at mg§if’|),
the same holds fdf’. Now suppose that a rule is applicable to a non-blocked no@é iAssume that the
tableau procedure has chosen the rite—x {P,..., P, } with P ~ T’ z. SinceT’ 3, T for some
7, we haveP 3 T, 7(z). SinceT is saturated7’, 7(x) is saturated. By Condition 2 of admissibility, we
haveP; 3 T, 7(x) for somej, 1 < j < m. So we “guide” thetableau procedure to continue exploring
the S-tree T} obtained fromI” by applying the rule? —z {Pi,..., Py} such thatP’; ~ T}, z. Now,
P; 3T, 7(z) impliesT; 3 T.

°Note that the induction step goes through only for— 1 < k because the blocking condition ensures isomorphism of
neighborhoods only up to depkh— 1.
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Since thetableau procedure terminates on any input, the “guidance” procésiao terminate and
thus succeeds in finding &ftree of out-degree at mog({|T'|) in which no clash-trigger applies and no
rule is applicable to a non-blocked node. HeredJeau(7}) returnstrue. a

The three lemmas just proved imply that we have succeededniveding the tableau systefinto a
decision procedure fdp.

Theorem 4.1. Suppose the preconditions of Figure 2 are satisfied. Thealdgiogithm of Figure 2 effec-
tively decidesp.

5. A Tableau System forALCOT

As an example for a more expressive DL that can be treatedrvatir framework, we consider the DL
ALCQT, which extendsALC with qualified number restrictions and inverse roles. Qigalinumber
restrictions (> mr.C') and (< mr.C)) can be used to state constraints on the numbersafccessors
belonging to a given concept, and the inverse roles allow us to use both a robnd its inverse-—
when building a complex concept.

Definition 5.1. (ALC QT Syntax and Semantics)
Let Nc andNg be pairwise disjoint and countably infinite sets of conceqt eole names. The set of
ALCQTI-rolesis defined aROL 42co7 :== Nr U {r~ | r € Nr}.

The set ofALC QZ-conceptLON 4. o7 is the smallest set such that

e every concept name is a concept, and

e if CandD areALCQZ-concepts and € ROL 4-corisarole, then-C,CND,CUD, (< mr.C)
and(>mr.C) are alsQALC QZ-concepts.

TBoxes are defined as in the caseAf£C, i.e., they are finite sets of GCIS C D, whereC,D ¢
CONACCQI-

The semantics oALC Q7 is defined as ford£C, where the additional constructors are interpreted
as follows:

(r ) = {@w,2) ]| (z,y) €r’},
(Kmr.C)t = {de AT |#{y|(d,y)erf AyeCT} <m},
mr.C)t = {de AT |#{y|(d,y)erfAyeCT} >m},

where+#S denotes the cardinality of the sgt

Although the constructor3r.C' andVr.C are not explicitly present il £C QZ, they can be simulated
by (> 1r.C) and(< 0r.—C), respectively. ThusALC Q7 really extends4LC.

The definition of negation normal form can easily be extertded£C Q7 (see, e.g., [16]). As in the
ALCY case, we assume that all inputs to the tableau algorithrmad&lF. We usennf(C) to denote the
negation normal form of a concept With sub(C, 7"), we denote the set of subconcepts of the concept
C and the TBox7 . In addition, we define thelosureof the ALC QT conceptC and the TBoxX7 as

c(C,T) :==sub(C, T)U {nnf(=D) | D € sub(C, T)}.
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In order to simplify the treatment of inverse roles, we dertbé inverseof the ALC QZ-roler by 7, i.e.,
7=r"if risarole name, and= s if r = s for arole names.

Completion trees farl LC QT look like completion trees fad LC, with the only difference that edges
may also be labeled with inverse roles. In fact, to handleraber restriction of the forni>1r".C)
(which corresponds to the existential restrictiénm .C') in the label of the node, the tableau algorithm
may introduce am~—-successor of. To simplify the presentation, in the following we say thataew
is anr-neighborof a nodev in a completion tre€(V, E, n,¢), n), if (v,w) € E andl(v,w) = r or if
(w,v) € E andl(w,v) =T.

The fact that edges can also be labeled by inverse roles watgd the treatment of number restric-
tions by tableau rules. For a given node, we need to countuhtbar of other nodes it is related to
via the roler. Without inverse roles, this is quite easy: we just take finectl successors reached by an
edge labeled witlr. With inverse roles, we must also count the direct predecdsthe corresponding
edge is labeled witi¥, and therefore the patterns appearing in the rules and tiggjers for number
restrictions are of depth (at most) 2. Since the root nodégiwthoes not have a predecessor, requires a
special treatment, we reserve a special concept DT for marking the roots of-trees.

The TBox is stored in the global memory component, similahtoway value restrictions with the
universal role are handled y, ..v. However, since the TBox is constant, the tableau rules need
modify the global memory component after its initialisatio

Definition 5.2. (S4rcor)

The tableau systemy 4-coz is defined as follows:NLE := CON 4.co7 is the set of allALCOZ-
conceptsGME := {C C D | {C,D} C CON4rcoz} is the set of all possiblel£LC QT GCls,EL :=
ROL 4rcor is the set of allALC QZ-roles, the pattern-depth is set to 2, and the functiorr4ccez
assigns to any input paj’, 7) the following tuple(nles, .co7:8Mes 10070 €lSarcors iNSAscor):

nIeSALCQI(C T) = c(C,T)U{ROOT},
gmeSALCQI(C, T) = T,
elsireor (CiT) = {r,r™ | r € NgoccursinC or T},
iNiseor(C,T) = {({C,ROOT} T)}.

The rules and clash-triggers 8f1.c o7 are introduced in the two following definitions.

Before formally introducing them, let us discuss the ruleS g-coz on an intuitive level. In addition
to the rules handling conjunctions and disjunctiofig, coz has one rule that treats TBox axioms and
two rules for number restrictions:

RT Forevery GCIC C D, the concephnf(—=C' U D) is added to every node.

R> To satisfy an at-least restrictidie m r.C') for a nodew, the rule creates or modifies the necessary
neighbors one-by-one. In a single step, it (non-deteritidaity) addsC' to v's predecessor if the
corresponding edge is labelled withor it addsC' to the label of an existing-successor of, or
it creates a new-successor of with label {C'}..

As already noted above, the root 8fi.coz-trees is a special case since it doesn't have any pre-
decessors. For better readability, the handling of the nodle is described in a separate rule,

R>RrooT-
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RC If a nodewv contains an at-most restrictige m r.C), then this so-calledhoose-ruleadds either the
conceptC or the concephnf(—=C') to the label of allr-neighbours ofy. Without this rule, there
could ber-neighbors that are neither counted as being imor as being in~C', which is obviously
impossible.

Definition 5.3. (The rules ofS 4co7)

Let P = (¢, ) be a pattern of deptk 2 with ¢ = (V, E, n,¢), and letvy be the root oft. ThenR(P)

is the smallest set of finite sets of patterns that contalibakets of patterns required by the individual
rules. TheRr andRLi rules are treated analogously to thie..u case. The conditions for the remaining
rules are as follows:

RT if C C D € pandnnf(=C U D) ¢ n(v)), thenR(P) contains the sef((V, E,n’,¢), )} with
n'(vg) = n(vg) U {nnf(=C U D)} andn’(v) = n(v) forallv € V' \ {vo}.

R> if the label n(vs) contains the concept>mr.C) for a sonwv, of vy, and there are less than
m r-neighboursv of vy with C' € n(v), thenR(P) contains the se{Py, P, ..., P;}, where
{u1,...,u;} consists of all--neighbours of; with C' ¢ n(u;) and

1. PO = ((VbaEOanOagO)?N’)’ WhereUO ¢ V’ VO =VUu {UO}’ EO =EU {(US’UO)}’ no =
nU{ug — {C}}, andly = LU {(vs,ug) — 7},

2. forl < i <t B = ((V,E,n;,¢),u), wheren;(v) = n(v) forallv € V' \ {u;} and
n;(u;) = ni(u;) U{C},

R>root Iif the root labeln(vy) contains the concefgt= m r.C') and theROOT marker, and if there are
less thanm r-neighborsv of vy with C' € n(v), thenR(P) contains the sefP, Py, ..., P},
where{us,...,u;} consists of ali-neighbours oby with C' ¢ n(u;) and

1. PO = ((VE),E[),TZ(),E[)),/J;), WhereUO ¢ V’ VO =VUu {’LL[)}, EO = LU {(UO’UO)}’ no =
nU{ug — {C}}, andly = LU {(vo,up) — 7},

2. for1 < i <t, P, = ((V,E,ni,{),p), wheren;(v) = n(v) forallv € V' \ {u;} and
n;(u;) = ni(u;) U{C},

RC if, for some node € V, the labeln(v) contains the concep& m r.C') andv’ is anr-neighbour ofy
with n(v")N{C, nnf(=C)} = (), thenR(P) contains the set((V, E,n’, £), ), (V, E,n" ,0), )},
wheren'(v') = n(v') U{C}, n"(v") = n(v') U {nnf(=C)}, andn'(v*) = n"(v*) = n(v*) for all
v eV \ {v'}.

Let us briefly discuss the doubling of tRe> rule, which is due to the presence of inverse roles. To deal
with a concept(<mr.C') € n(v), theR > rule has to take into account potentiapredecessors af
satisfyingC'. This is achieved by defining tHe> rule such that, in patterns,is not the root node, but
rather a son of the root node. For this reasonRberule can never be applied to conceptsm r.C) in

the label of the root node since we cannot match the root ndifleawnode on level 1 in a pattern. This
necessitates the additiorRErooT rule.

Definition 5.4. (S 4,cor Clash triggers)
The set of clash-trigger€§ contains all pattern$(V, E,n,¢), ;1) with depth< 2 such that, for some
v € V, we have one of the following:
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e {A,-A} € n(v) for some concept name;
e (<mr.C) € n(v) andv has more tham: r-neighbors containing’.

Admissibility, ExpTime-admissibility, and recursive asibility of S 4.coz can be shown as f& v
The proof of soundness and completeness is similar to knowndness and completeness proofs for
tableau algorithms for DLs containing qualified numberriesons and inverse roles (see, e.g., [21]). In
order to havey-completeness for an appropriate polynomialve must assume that numbers in number
restrictions(>m r.C') and(< mr.C) are given in unary coding, i.e., that the numbercontributes lin-
early rather than logarithmically to the size of the input @ immediate consequence of Theorem 3.1,
we obtain the following upper-bound for the satisfiabilitpplem w.r.t. TBoxes indLC OT.

Corollary 5.1. ALCQT-concept satisfiability w.r.t. TBoxes is in ExpTime if nunmbeare coded in
unary.

6. Related Work

In this paper, we have proposed an abstract framework fodekielopment of tableau algorithms. The
most prominent feature of this framework is that it allowgtove tight ExpTime-complexity bounds,
and to obtain (tableau) algorithms that can serve as the baskefficient implementations—without
investing double work. We only know of one other attempt tptaee tableau algorithms in an abstract
framework, namely [22]. The main difference is that the feavark in [22] is much less fine-grained than
ours, and indeed also captures quite different types ofitthgas such as resolution-based ones. For this
reason, it does not allow for fain-grained complexity asak/such as the one performed in Section 3.

Closely related to our work is the attempt to implement agttarbased algorithms in an efficient
way. This is the case since, as we have seen in Section 3, atat@re well-suited for proving Exp-
Time upper bounds: if they can be efficiently implementedrehis again no reason to do double work
for obtaining theoretical complexity results and pradticaplementations. Let us discuss two recent
approaches:

(1) In [6], Baader and Tobies show that the so-called invens¢hod for deciding satisfiability of the
modal logic K can be viewed as an implementation of the automata-theaapfiroach. Sincé is
known to be a notational variant of the description lagi€C [32], this observation is of direct relevance
for the area of description logic as well. It is particulamhteresting since there exist quite efficient
implementations of the inverse method [37].

(2) Pan et al. propose a BDD-based decision procedure fomtigal logic K, and show that it can
be implemented rather efficiently [27, 28]. They also nott their method is inspired by and closely
related to the automata approach.

Although the developments in the implementation of aut@rtetsed algorithms are promising, we be-
lieve that tableau-based implementations of ExpTime-detapogics will continue to play an important
role in DL and related areas.

Finally, we should like to comment on the differences betw#e present version of this article and its
conference version [3]. To achieve more generality, we lextended our initial formlism as proposed
in [3] in two directions: first, we have introduced the glolbaémory component that can be used to
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formulate rules of a global flavour. Such rules are usefuldfealing with the universal modality, with
TBoxes, and with hominals (concept names that have to bepneted in singleton sets). Second, we
have generalized our framework to patterns of arbitrantidefin [3], only patterns of depth at most 1
are allowed. This generalization helps to capture someadalbdlgorithms, such as the one $#6£C QT

in Section 5, in a much more natural way.
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