
From Tableaux to Automata for

Des
ription Logi
s

Franz Baader

1

, Jan Hladik

1

, Carsten Lutz

1

, and Frank Wolter

2

1

Theoreti
al Computer S
ien
e, TU Dresden,

D-01062 Dresden, Germany

fbaader,hladik,lutzg�t
s.inf.tu-dresden.de

2

Department of Computer S
ien
e, University of Liverpool

Liverpool L69 7ZF, U.K.

frank�
s
.liv.a
.uk

Abstra
t. This paper investigates the relationship between automata-

and tableau-based inferen
e pro
edures for Des
ription Logi
s. To be

more pre
ise, we develop an abstra
t notion of what a tableau-based al-

gorithm is, and then show, on this abstra
t level, how tableau-based algo-

rithms
an be
onverted into automata-based algorithms. In parti
ular,

this allows us to
hara
terize a large
lass of tableau-based algorithms

that imply an ExpTime upper-bound for reasoning in the des
ription

logi
s for whi
h su
h an algorithm exists.

1 Introdu
tion

Des
ription logi
s (DLs) [1℄ are a family of knowledge representation languages

whi
h
an be used to represent the terminologi
al knowledge of an appli
ation

domain in a stru
tured and formally well-understood way. The name des
ription

logi
s is motivated by the fa
t that, on the one hand, the important notions of

the domain are des
ribed by
on
ept des
riptions, i.e., expressions that are built

from atomi

on
epts (unary predi
ates) and atomi
 roles (binary predi
ates)

using the
on
ept and role
onstru
tors provided by the parti
ular DL. On the

other hand, DLs di�er from their prede
essors, su
h as semanti
 networks and

frames [25, 21℄, in that they are equipped with a formal, logi
-based semanti
s,

whi
h
an, e.g., be given by a translation into �rst-order predi
ate logi
.

Knowledge representation systems based on des
ription logi
s (DL systems)

[30, 22℄ provide their users with various inferen
e
apabilities (like subsumption

and instan
e
he
king) that allow them to dedu
e impli
it knowledge from the

expli
itly represented knowledge. In order to ensure a reasonable and predi
table

behavior of a DL system, these inferen
e problems should at least be de
idable,

and preferably of low
omplexity. Consequently, the expressive power of the DL

in question must be restri
ted in an appropriate way. If the imposed restri
tions

are too severe, however, then the important notions of the appli
ation domain

an no longer be expressed. Investigating this trade-o� between the expressivity

of DLs and the
omplexity of their inferen
e problems has been one of the most

important issues in DL resear
h (see [9℄ for an overview of
omplexity results).

The fo
us of this resear
h has, however,
hanged in the last 15 years. In

the beginning of the 1990ies, DL resear
hers investigated the border between

tra
table and intra
table DLs [11, 12℄, and systems that employed so-
alled

stru
tural subsumption algorithms, whi
h �rst normalize the
on
ept des
rip-

tions, and then re
ursively
ompare the synta
ti
 stru
ture of the normalized

des
riptions, were still prevalent [24, 19, 20, 23℄. It qui
kly turned out, however,

that stru
tural subsumption algorithms
an handle only very inexpressive lan-

guages, and that one
annot expe
t a DL of reasonable expressive power to

have tra
table inferen
e problems. For expressive DLs, tableau-based inferen
e

pro
edures turned out to be quite useful. After the �rst su
h tableau-based sub-

sumption algorithm was developed by S
hmidt-S
hau� and Smolka [27℄ for the

DL ALC, this approa
h was extended to various other DLs and also to other

inferen
e problems su
h as the instan
e problem (see [4℄ for an overview).

Most of these early tableau-based algorithms for DLs were of optimal worst-

ase
omplexity: they treated DLs with a PSpa
e-
omplete subsumption prob-

lem, and the algorithms needed only polynomial spa
e. Thus, by designing a

tableau-based algorithm for su
h a DL one
ould solve two problems simulta-

neously: prove an optimal
omplexity upper-bound, and des
ribe an algorithm

that is easy to implement and optimize [2℄, thus yielding a pra
ti
al reasoning

system for this DL. Modern tableau-based DL reasoners su
h as FaCT [15℄ and

RACER [13℄ are based on very expressive DLs (like SHIQ [18℄), whi
h have an

ExpTime-
omplete subsumption problem. Despite the high worst-
ase
omplex-

ity of the underlying logi
s, the systems FaCT and RACER behave quite well in

realisti
 appli
ations. This is mainly due to the fa
t that their implementors have

developed a great variety of sophisti
ated optimization te
hniques for tableau-

based algorithms (see [16℄ for an overview of these te
hniques). Tableau-based

algorithms are, however, notoriously bad at proving ExpTime upper-bounds.

3

In

many
ases, ExpTime upper-bounds are easily established using automata-based

approa
hes (see, e.g., Se
tion 5.3 in [7℄). However, to the best of our knowledge,

there exist no pra
ti
al DL reasoners based on automata te
hniques. Until now,

it was thus
ommon pra
ti
e to devise two di�erent algorithms for every Exp-

Time-
omplete DL, an automata-based one for establishing the exa
t worst-
ase

omplexity, and a tableau-based one for the implementation.

This paper investigates the (rather
lose) relationship between automata- and

tableau-based algorithms. To be more pre
ise, we develop an abstra
t notion of

what a tableau-based algorithm is, and then show, on this abstra
t level, how

tableau-based algorithms
an be
onverted into automata-based algorithms. In

parti
ular, this allows us to
hara
terize a large
lass of tableau-based algorithms

that imply an ExpTime upper-bound for reasoning in the DLs for whi
h su
h

an algorithm exists. We
onsider this to be a very useful result sin
e, in many

ases, it eliminates the need for developing two algorithms for the same DL: one

an now design a tableau-based algorithm, use our general result to obtain an

ExpTime upper-bound, and then base a pra
ti
al implementation on the very

3

The only su
h result we know of [10℄ treats the
ase of ALC with general
on
ept

in
lusions (GCIs), and even in this simple
ase the algorithm is very
ompli
ated.

same algorithm. We illustrate the usefulness of our framework by reproving the

known ExpTime upper-bounds for the des
ription logi
 ALC with general
on-

ept in
lusions [26℄, and for the extension ALCQI of ALC by quali�ed number

restri
tions and inverse roles [8℄.

In the next se
tion, we introdu
e the abstra
t notion of a tableau system.

In order to motivate and illustrate the te
hni
al de�nitions, we �rst
onsider

the example of a tableau-based algorithm for ALC with general
on
ept in
lu-

sions. In Se
tion 3, we de�ne additional restri
tions on tableau systems that

ensure an exponential upper-bound on reasoning. This upper-bound is shown

via a translation of tableau systems into looping tree automata. In Se
tion 4,

we show how tableau systems
an dire
tly be used to obtain a tableau-based de-

ision pro
edure, whi
h
an be the basis for an optimized implementation. The

main problem to be solved there is to ensure termination of the tableau-based

algorithm. In Se
tion 5, we apply the abstra
t framework to a more
omplex

DL: we design a tableau system for the DL ALCQI, thus giving an alternative

proof of the known ExpTime upper-bound for reasoning in this DL. Finally, in

Se
tion 6, we dis
uss possible variants and extensions of the abstra
t framework.

2 Formalizing Tableau Algorithms

In this se
tion, we develop an abstra
t formalization of tableau algorithms. To

this end, we �rst dis
uss the standard tableau-based algorithm for the basi

des
ription logi
 ALC, and then use this
on
rete example as a guide when

devising the abstra
t framework.

2.1 A Tableau Algorithm for ALC

We start with introdu
ing the syntax and semanti
s of ALC:

De�nition 1 (ALC Syntax). Let N

C

and N

R

be pairwise disjoint and
ountably

in�nite sets of
on
ept names and role names. The set of ALC-
on
epts CON

ALC

is the smallest set su
h that

{ every
on
ept name is an ALC-
on
ept, and

{ if C and D are ALC-
on
epts and r is a role name, then the following ex-

pressions are also ALC-
on
epts: :C; C uD; C tD; 9r:C; 8r:C:

A general
on
ept in
lusion (GCI) is an expression C v D, where both C and D

are ALC-
on
epts. A �nite set of GCIs is
alled ALC-TBox. We use TBOX

ALC

to denote the set of all ALC-TBoxes.

As usual, we will use > as abbreviation for an arbitrary propositional tautology,

? for :>, and C ! D for :C tD.

Note that there exist several di�erent TBox formalisms that vary
onsid-

erably w.r.t. expressive power (see [3℄). The kind of TBoxes adopted here are

among the most general ones available. They are supported by modern DL rea-

soners su
h as FaCT and RACER.

Like all DLs, ALC is equipped with a Tarski-style set-theoreti
 semanti
s.

De�nition 2 (ALC Semanti
s). An interpretation I is a pair (�

I

; �

I

), where

�

I

is a non-empty set,
alled the domain, and �

I

is the interpretation fun
tion.

The interpretation fun
tion maps ea
h
on
ept name A to a subset A

I

of �

I

and ea
h role name r to a subset r

I

of �

I

� �

I

. It is extended to arbitrary

ALC-
on
epts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9r:C)

I

:= fd 2 �

I

j There is e 2 �

I

with (d; e) 2 r

I

and e 2 C

I

g

(8r:C)

I

:= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 r

I

, then e 2 C

I

g

The interpretation I is a model of the ALC-
on
ept C i� C

I

6= ;, and it is a

model of the TBox T i� C

I

� D

I

holds for all C v D 2 T .

The main inferen
e problems related to a TBox are satis�ability and sub-

sumption of
on
epts.

De�nition 3 (ALC Inferen
e Problems). The ALC-
on
ept C is satis�able

w.r.t. the TBox T i� C and T have a
ommon model, and C is subsumed by

the ALC-
on
ept D w.r.t. the TBox T (written C v

T

D) i� C

I

� D

I

holds for

all models I of T .

Sin
e C v

T

D i� C u :D is unsatis�able w.r.t. T , it is suÆ
ient to design a

satis�ability algorithm. We now dis
uss the standard tableau-based satis�ability

algorithm for ALC. This algorithm has �rst been des
ribed in [27℄; more modern

a

ounts
an, e.g., be found in [4℄. It
an rightfully be viewed as the an
estor

from whi
h all state-of-the-art tableau-based algorithms for des
ription logi
s are

des
ended. Su
h algorithms are nowadays the standard approa
h for reasoning

in DLs, and they underlie modern and eÆ
ient reasoning systems su
h as FaCT

and RACER, whi
h are based on DLs that are mu
h more expressive than ALC.

Tableau algorithms are
hara
terized by an underlying data stru
ture, a set

of
ompletion rules, and a number of so-
alled
lash-triggers. To de
ide the sat-

is�ability of an input
on
ept C w.r.t. an input TBox T , the algorithm starts

with an initial instan
e of the data stru
ture
onstru
ted from C and T , and

repeatedly applies
ompletion rules to it. This rule appli
ation
an be viewed

as an attempt to
onstru
t a model for the input, or as making impli
it knowl-

edge expli
it. Rule appli
ation
ontinues until either one of the
lash-triggers

applies, whi
h means that the attempt to
onstru
t a model has failed, or all

impli
it knowledge has been made expli
it without en
ountering a
lash-trigger.

In the latter
ase, the algorithm has su

eeded to
onstru
t (a representation

of) a model. To be more pre
ise, the tableau algorithms
onsidered in this paper

may be non-deterministi
, i.e., there may exist
ompletion rules that yield more

than one possible out
ome. In this
ase, the algorithm returns \satis�able" i�

there exists at least one way to apply the non-deterministi
 rules su
h that a

Ru if C

1

u C

2

2 N (a) and fC

1

; C

2

g 6� N (a)

then N (a) := N (a) [fC

1

; C

2

g

Rt if C

1

t C

2

2 N (a) and fC

1

; C

2

g \ N (a) = ;

then N (a) := N (a) [fCg for some C 2 fC

1

; C

2

g

R9 if 9r:C 2 N (a) and there is no r-su

essor b of a with C 2 N (b),

then generate a new su

essor b of a, and set E(a; b) := r and N (b) := fCg

R8 if 8r:C 2 N (a) and b is an r-su

essor of a with C =2 N (b)

then set N (b) := N (b) [fCg

RT if C v D 2 T and nnf(C ! D) =2 N (a)

then set N (a) := N (a) [fnnf(C ! D)g

Fig. 1. Completion rules for ALC.

model of the input is obtained. Note that only the
hoi
e of the out
ome of non-

deterministi
 rules is true \don't know" non-determinism (and thus requires

ba
ktra
king), whereas the order of rule appli
ations is basi
ally \don't
are"

non-determinism.

Before we
an de�ne the data stru
ture underlying the ALC tableau algo-

rithm, so-
alled
ompletion trees, we must introdu
e some notation. Given an

ALC-
on
ept C, its negation normal form is an equivalent

4

on
ept su
h that

negation o

urs only in front of
on
ept names. Su
h a
on
ept
an easily be

omputed by pushing negation as far as possible into
on
epts, using de Morgan's

rules and the usual duality rules for quanti�ers. We will denote the negation nor-

mal form of C by nnf(C). If C is an ALC-
on
ept and T an ALC-TBox, then

we use sub(C; T) to denote the set of all sub
on
epts of the
on
epts in the set

fnnf(C)g [

[

DvE2T

fnnf(D ! E)g:

De�nition 4 (Completion Trees). Let C be an ALC-
on
ept and T an ALC-

TBox. A
ompletion tree for C and T is a labeled tree

5

T = (V;E;N ; E) of �nite

out-degree su
h that (V;E) is a tree, ea
h node a 2 V is labeled with a subset

N (a) of sub(C; T) and ea
h edge (a; b) 2 E is labeled with a role name E(a; b)

o

urring in C or T .

The
ompletion rules are given in Figure 1, where Rt is the only non-

deterministi
 rule. To de
ide satis�ability of a
on
ept C w.r.t. a TBox T , the

ALC tableau algorithm starts with the initial
ompletion tree

T

C;T

:= (fxg; ;; fx 7! fnnf(C)g; ;)

4

Two
on
epts are equivalent i� they subsume ea
h other w.r.t. the empty TBox.

5

Here and in the following, a tree is an a
y
li
 dire
ted graph (V;E) with a unique

root where every node other than the root is rea
hable from the root and has exa
tly

one prede
essor. The edge relation E is a subset of V � V , and thus the su

essors

of a given node are not ordered.

and repeatedly applies
ompletion rules. Rule appli
ation stops in one of the

following two
ases:

1. the obtained
ompletion tree T = (V;E;N ; E)
ontains a
lash, i.e. there is

a node a 2 V and a
on
ept name A su
h that fA;:Ag � N (a);

2. T is saturated, i.e. no more
ompletion rule is appli
able to T .

If we
onsider only empty TBoxes (and thus drop the RT rule), then the

des
ribed algorithm terminates for any input and any sequen
e of rule appli
a-

tions. Things are not so simple if we admit non-empty TBoxes: be
ause of the

RT rule, the algorithm need not terminate, both on satis�able and on unsat-

is�able inputs. For example, rule appli
ation to the
on
ept > and the TBox

f> v 9R:>g
ontinues inde�nitely. However, the algorithm then
omputes an

in�nite \in
reasing" sequen
e of
ompletion trees: in ea
h step, the tree and its

node labels may only grow but never shrink. In
ase of non-termination, there

thus exists a unique
ompletion tree
omputed by this run of the algorithm \in

the limit". Thus, both terminating and non-terminating runs of the algorithm

\
ompute" a unique
ompletion tree. This (possibly in�nite)
ompletion tree is

alled saturated i� no more
ompletion rule is appli
able to it.

The tableau algorithm for ALC is sound and
omplete in the following sense:

{ Soundness. If the algorithm
omputes a saturated and
lash-free
ompletion

tree for the input C; T , then C is satis�able w.r.t. T .

{ Completeness. If the input C; T is satis�able, then there is a run of the

algorithm that
omputes a saturated and
lash-free
ompletion tree for this

input.

Given these notions of soundness and
ompleteness, it should be
lear that we

want our algorithm to
ompute saturated
ompletion trees. Obviously, any ter-

minating run of the algorithm yields a saturated
ompletion tree. For this reason,

the order of rule appli
ations is in this
ase \don't
are" non-deterministi
. For

a non-terminating run, this is only true if we require
ompletion rules to be ap-

plied in a fair

6

manner. Ensuring fairness is a simple task: we
an, e.g., always

apply
ompletion rules to those nodes in the tree that are as
lose to the root

as possible. This yields a fair strategy sin
e the out-degree of
ompletion trees

onstru
ted for an input C; T is bounded by the
ardinality of the set sub(C; T).

Although the pro
edure as des
ribed until now does not ne
essarily terminate

and thus is no de
ision pro
edure for satis�ability, quite surprisingly we will

see that it already provides us with enough information to dedu
e an Exp-

Time upper-bound for ALC-
on
ept satis�ability (and thus, in parti
ular, with

a de
idability result). This will be shown by a translation into a tree automaton,

whi
h basi
ally a

epts saturated and
lash-free
ompletion trees for the input.

We view this as a rather
onvenient feature of our framework: to obtain an Exp-

Time de
ision pro
edure, it is suÆ
ient to design a sound and
omplete tableau

6

Intuitively, fairness means that rules are applied su
h that every appli
able rule will

eventually be applied unless it is made inappli
able by the appli
ation of other rules.

algorithm and not even bother to prove termination, a usually hard task (see

Se
tion 3 for details). Moreover, we will show in Se
tion 4 that a given non-

terminating sound and
omplete tableau pro
edure
an always be turned into a

terminating sound and
omplete pro
edure. This yields a tableau-based de
ision

pro
edure, whi
h is, however, not ne
essarily of ExpTime
omplexity.

2.2 The General Framework

We now develop a general notion of tableau algorithms. It is in the nature of

this endeavor that our formalism will be a rather abstra
t one. We start with

de�ning the
ore notion: tableau systems. Intuitively, the purpose of a tableau

system is to
apture all the details of a tableau algorithm su
h as the one for

ALC dis
ussed in the previous se
tion. The set I of inputs used in the following

de�nition
an be thought of as
onsisting of all possible pairs (C; T) of
on
epts

C and TBoxes T of the DL under
onsideration.

De�nition 5 (Tableau System). Let I be a set of inputs. A tableau system

for I is a tuple

S = (NLE;EL; �

S

;R; C);

where NLE and EL are sets of node label elements and edge labels, respe
tively,

and �

S

is a fun
tion mapping ea
h input � 2 I to a tuple

�

S

= (nle; el; ini)

su
h that

{ nle � NLE and el � EL are �nite;

{ ini is a subset of }(nle), where }(�) denotes powerset.

The de�nitions of R and C depend on the notion of an S-pattern, whi
h is a

�nite labeled tree

(V;E; n; `);

of depth at most one with n : V ! }(NLE) and ` : E ! EL node and edge labeling

fun
tions.

{ R, the
olle
tion of
ompletion rules, is is a fun
tion mapping ea
h S-pattern

to a �nite set of non-empty �nite sets of S-patterns;

{ C, the
olle
tion of
lash-triggers, is a set of S-patterns.

To illustrate tableau systems, we now de�ne a tableau system S

ALC

that de-

s
ribes the ALC tableau algorithm dis
ussed in the previous se
tion. Intuitively,

NLE is the set of elements that may appear in node labels of
ompletion trees,

independently of the input. In the
ase of ALC, NLE is thus simply CON

ALC

.

Similarly, EL is the set of edge labels, also independently of the input. In the

ase of ALC, EL is thus the set of role names N

R

.

The fun
tion �

S

des
ribes the impa
t of the input on the form of the
on-

stru
ted
ompletion trees. More pre
isely, nle �xes the node label elements that

may be used in a
ompletion tree for a parti
ular input, and el �xes the edge

labels. Finally, ini des
ribes the possible initial node labels of the root of the
om-

pletion tree. Note that the initial root label is not ne
essarily unique, but rather

there
an be many
hoi
es|a possible sour
e of (don't know) non-determinism

that does not show up in the ALC algorithm.

To illustrate the fun
tion �

S

, let us de�ne it for the tableau system S

ALC

.

For simpli
ity, we write nle

S

ALC

(C; T) to refer to the �rst element of the tuple

(C; T)

S

ALC

, el

S

ALC

(C; T) to refer to the se
ond element of the tuple (C; T)

S

ALC

,

and so forth. For ea
h input C; T 2 CON

ALC

� TBOX

ALC

, we have

nle

S

ALC

(C; T) = sub(C; T);

el

S

ALC

(C; T) = fr 2 N

R

j r appears in C or T g;

ini

S

ALC

(C; T) = ffnnf(C)gg:

It remains to formalize the
ompletion rules and
lash-triggers. First observe

that, in the ALC tableau, every
lash-trigger, every rule premise, and every rule

onsequen
e
on
erns only a single node either alone or together with its su

es-

sors in the
ompletion tree. This observation motivates our de�nition of patterns,

whi
h formalize
lash-triggers as well as pre- and post-
onditions of
ompletion

rules. The
olle
tion of
ompletion rules R maps patterns to �nite sets of �nite

sets of patterns. Intuitively, if P is a pattern and fP

1

; : : : ; P

k

g 2 R(P), then this

means that a rule of the
olle
tion
an be applied to
ompletion trees mat
hing

the pattern P , non-deterministi
ally repla
ing the \area" mat
hing P with an

\area" mat
hing one of the patterns P

1

; : : : ; P

k

(we will give a formal de�nition

of this later on). If fP

1

; : : : ; P

k

g 2 R(P), then we will usually write

P !

R

fP

1

; : : : ; P

k

g

to indi
ate the rule indu
ed by this element of R(P). Similar to the appli
ation

of su
h a rule, a
ompletion tree
ontains a
lash if this
ompletion tree mat
hes

a pattern in C.

To illustrate this, let us again
onsider the
ase of ALC. For ALC, the set

of
lash-triggers C
onsists of all patterns whose root label
ontains both A and

:A for some
on
ept name A. Thus, a
ompletion tree
ontains a
lash if one of

its nodes labels
ontains A and :A for some
on
ept name A.

With one ex
eption, the
olle
tion of
ompletion rules is de�ned by a straight-

forward translation of the rules in Figure 1. For ea
h pattern P = (V;E; n; `)

with root v

0

, R(P) is the smallest set of �nite sets of patterns su
h that the

following holds:

Ru if the root label n(v

0

)
ontains the
on
ept C u D and fC;Dg 6� n(v

0

),

then R(P)
ontains the singleton set f(V;E; n

0

; `)g, where n

0

(v) = n(v) for

all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [fC;Dg;

Rt if the root label n(v

0

)
ontains the
on
ept C t D and fC;Dg \ n(v

0

) =

;, then R(P)
ontains the set f(V;E; n

0

; `); (V;E; n

00

; `)g, where n

0

(v) =

n

00

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [fCg and n

00

(v

0

) =

n(v

0

) [fDg;

R9 if the root label n(v

0

)
ontains the
on
ept 9r:C, u

1

; : : : ; u

m

are all the sons

of v

0

with `(v

0

; u

i

) = r, and C 62 n(u

i

) for all i; 1 � i � m, then R(P)

ontains the set fP

0

; P

1

; : : : ; P

m

g, where

{ P

0

= (V

0

; E

0

; n

0

; `

0

), where u

0

is a node not
ontained in V , V

0

= V [

fu

0

g, E

0

= E [f(v

0

; u

0

)g, n

0

= n[fu

0

7! fCgg, `

0

= `[f(v

0

; u

0

) 7! rg,

{ for i = 1; : : : ;m, P

i

= (V;E; n

i

; `), where n

i

(v) = n(v) for all v 2 V nfu

i

g

and n

i

(u

i

) = n(u

i

) [fCg;

R8 if n(v

0

)
ontains the
on
ept 8r:C, `(r; v

1

) = r for some v

1

2 V , and

C =2 n(v

1

), then R(P)
ontains f(V;E; n

0

; `)g, where n

0

(v) = n(v) for all

v 2 V n fv

1

g and n

0

(v

1

) = n(v

1

) [fCg;

RT if C v D 2 T and nnf(C ! D) =2 n(v

0

), then R(P)
ontains the set

f(V;E; n

0

; `)g, where n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [

fnnf(C ! D)g.

The ex
eption is the treatment of existential restri
tions. The rule in Figure 1

is deterministi
: it always generates a new r-su

essor of the given node. In

ontrast, the rule handling existential restri
tions introdu
ed above (don't know)

non-deterministi
ally
hooses between generating a new su

essor or re-using one

of the old ones. Basi
ally, this is the pri
e we have to pay for having a very general

framework. The reason why one
an always
reate a new individual when treating

existential restri
tions in ALC is that ALC is invariant under bisimulation [5℄,

and thus one
an dupli
ate su

essors in models without
hanging validity. We

ould have tailored our framework su
h that the deterministi
 rule for ALC
an

be used, but then we basi
ally would have restri
ted its appli
ability to DLs

invariant under bisimulation (see Se
tion 6 for a more detailed dis
ussion of this

issue).

Let us now
ontinue with the general de�nitions. Tableau systems are a rather

general notion. In fa
t, as des
ribed until now they are too general to be useful for

our purposes. For example, tableau algorithms des
ribed by su
h tableau systems

need not be monotoni
:
ompletion rules
ould repeatedly (even inde�nitely) add

and remove the same pie
e of information. To prevent su
h pathologi
 behavior,

we now formulate a number of
onditions that \well-behaved" tableau systems

are supposed to satisfy. For the following de�nitions, �x a set of inputs I and a

tableau system S = (NLE;EL; �

S

;R; C) for I. Before we
an de�ne admissibility

of tableau systems, we must introdu
e an \in
lusion relation" between patterns.

De�nition 6. Let P = (V;E; n; `) and P

0

= (V

0

; E

0

; n

0

; `

0

) be S-patterns. We

write P - P

0

i� the following
onditions are satis�ed: there is an inje
tion

� : V ! V

0

that maps the root of P to the root of P

0

and satis�es the following

onditions:

{ for all x 2 V , we have n(x) � n

0

(�(x));

{ for all x; y 2 V , if (x; y) 2 E, then (�(x); �(y)) 2 E

0

and

`(x; y) = `

0

(�(x); �(y));

If � is the identity on V , then we write P � P

0

(and P � P

0

if, additionally,

P 6= P

0

). If � is a bije
tion and n(x) = n

0

(�(x)) for all x 2 V , then we write

P � P

0

. To make the inje
tion (bije
tion) � expli
it, we sometimes write P -

�

P

0

(P �

�

P

0

).

Let � 2 I be an input. We say that P is a pattern for � i� the labels of

all nodes in P are subsets of nle

S

(�) and the labels of all edges in P belong to

el

S

(�). The pattern P is saturated i� R(P) = ;.

De�nition 7 (Admissible). The tableau system S is
alled admissible i� it

satis�es, for all S-patterns P = (V;E; n; `) and P

0

= (V

0

; E

0

; n

0

; `

0

), the following

onditions:

1. If P !

R

fP

1

; : : : ; P

k

g, then P � P

i

for all i; 1 � i � k.

2. If P !

R

fP

1

; : : : ; P

k

g, P

0

is saturated, and P - P

0

, then there exists an

i; 1 � i � k, su
h that P

i

- P

0

.

3. For all inputs � 2 I, if P is a pattern for � and P !

R

fP

1

; : : : ; P

k

g, then

the patterns P

i

are patterns for � .

4. If P 2 C and P - P

0

, then P

0

2 C.

It is in order to dis
uss the intuition underlying the above
onditions. Condition 1

basi
ally says that rule appli
ation always adds nodes or elements of node labels.

Condition 2
an be understood as follows. Assume that a (non-deterministi
) rule

is appli
able to P and that P

0

is a \superpattern" of P that is saturated (i.e.,

all appli
able rules have already been applied). Then the non-deterministi
 rule

an be applied in su
h a way that the obtained new pattern is still a subpattern

of P

0

. Intuitively, this
ondition
an be used to rea
h P

0

from P by repeated rule

appli
ation. Condition 3 says that, by applying
ompletion rules for some input

� , we stay within the limits given by the values of the �

S

fun
tion. Condition 4

states that appli
ability of
lash-triggers is monotoni
, i.e., if a pattern triggers

a
lash, all its \superpatterns" also trigger a
lash.

It is easy to see that these
onditions are satis�ed by the tableau system

S

ALC

for ALC. For Condition 1, this is obvious sin
e the rules only add nodes

or elements of node labels, but never remove them. Condition 3 holds sin
e rules

only add sub
on
epts of existing
on
epts to the node label. Condition 4 is also

lear: if the label of the root of P
ontains A and :A, then the label of the root

of every superpattern also
ontains A and :A.

The most interesting
ondition is Condition 2. We illustrate it by
onsidering

the treatment of disjun
tion and of existential restri
tions in S

ALC

. First, assume

that P !

R

fP

1

; P

2

g where the root label of P
ontains CtD and the root labels

of P

1

and P

2

are obtained from the root label of P by respe
tively adding C and

D. If P - P

0

, then the root label of P

0

also
ontains C tD. If, in addition, P

0

is

saturated, then its root label already
ontains C or D. In the �rst
ase, P

0

- P

1

and in the se
ond P

0

- P

2

.

Se
ond,
onsider the rules handling existential restri
tions. Thus, let P - P

0

,

and assume that the root label of P
ontains the existential restri
tion 9r:C and

that the root of P hasm r-su

essors u

1

; : : : ; u

m

. Then the existential restri
tion

9r:C indu
es the rule P !

R

fP

0

; : : : ; P

m

g where the patterns P

0

; : : : ; P

m

are as

de�ned above. If, in addition, P

0

is saturated, then its root has an r-su

essor

whose label
ontains C. If this is a \new" r-su

essor (i.e., one not in the range

of the inje
tion � that ensures P - P

0

), then P

0

- P

0

.

7

Otherwise, there is an

r-su

essor u

i

of the root of P su
h that the label of �(u

i

) in P

0

ontains C. In

this
ase, P

i

- P

0

.

We now introdu
e S-trees, the abstra
t
ounterpart of
ompletion trees, and

de�ne what it means for a pattern to mat
h into an S-tree.

De�nition 8 (S-tree, Mat
hing). An S-tree is a labeled tree T = (V;E; n; `)

with �nite out-degree, a
ountable set of nodes V , and the node and edge labeling

fun
tions n : V ! }(NLE) and ` : E ! EL.

Any node x 2 V de�nes a pattern T; x, the neighborhood of x in T , as

follows: T; x := (V

0

; E

0

; n

0

; `

0

) where

{ V

0

= fxg [fy 2 V j (x; y) 2 Eg;

{ E

0

; n

0

; `

0

are the restri
tions of E; n; ` to V

0

;

If P = (V

0

; E

0

; n

0

; `

0

) is an arbitrary S-pattern and x 2 V , then we say that

P mat
hes x in T i� P � T; x (see De�nition 6).

For the tableau system for ALC introdu
ed above, S

ALC

-trees are exa
tly the

ompletion trees de�ned in Se
tion 2.

We are now ready to des
ribe rule appli
ation on an abstra
t level. Intuitively,

the rule P !

R

fP

1

; : : : ; P

k

g
an be applied to the node x in the tree T if

P � T; x, and its appli
ation yields the new tree T

0

, whi
h is obtained from

T by adding new su

essor nodes of x and/or extending the node labels, as

indi
ated by some P

i

. This intuition is formalized in the following de�nition.

De�nition 9 (Rule Appli
ation). Let S be an admissible tableau system,

T = (V;E; n; `) be an S-tree, and P !

R

fP

1

; : : : ; P

k

g be a rule of S. The S-tree

T

0

= (V

0

; E

0

; n

0

; `

0

) is obtained from T by appli
ation of this rule to a node x 2 V

i� the following holds:

1. V � V

0

;

2. E

0

= E [f(x; y) j y 2 V

0

n V g;

3. `

0

extends `, i.e., `(y; z) = `

0

(y; z) for all (y; z) 2 E;

4. P �

�

T; x for some bije
tion �;

5. P

i

�

�

0

T

0

; x for some i; 1 � i � k and bije
tion �

0

extending �;

8

6. for all y 2 V with y =2 ran(�), we have n(y) = n

0

(y).

Thus, rule appli
ation may add some new su

essors of x, may extend the la-

bels of the existing su

essors of x and of x itself, and otherwise leaves the

7

This shows that we
annot repla
e - by � in the statement of Condition 2. In fa
t,

we
annot be sure that the new su

essor introdu
ed in P

0

has the same name as

the new su

essor in P

0

.

8

Note that Condition 1 in the de�nition of admissibility implies that P

i

di�ers from

P in that the root may have additional su

essors, and that the node labels may

be larger. Thus, �

0

di�ers from � in that the additional su

essors of the root are

mapped to the elements of V

0

n V .

edge relation and the node and edge labels un
hanged. For a �xed rule P !

R

fP

1

; : : : ; P

k

g, a �xed
hoi
e of P

i

, and a �xed node x in T , the results of the

rule appli
ation is unique up to the names of the new nodes in V

0

nV . It is easy

to
he
k that, in the
ase of S

ALC

, rule appli
ation as de�ned above
aptures

pre
isely the intuitive understanding of rule appli
ation employed in Se
tion 2.

To �nish our abstra
t de�nition of tableau algorithms, we need some way to

des
ribe the set of S-trees that
an be obtained by starting with an initial S-tree

for an input � , and then repeatedly applying
ompletion rules. This leads to the

notion of S-trees for � .

De�nition 10 (S-tree for �). Let S be an admissible tableau system, and let

� be an input for S. The set of S-trees for � is the smallest set of S-trees su
h

that

1. All initial S-trees for � belong to this set, where an initial S-tree for � is of

the form

(fv

0

g; ;; fv

0

7! �g; ;)

where v

0

is a node and � 2 ini

S

(�).

2. If T is an S-tree for � and T

0

an be obtained from T by the appli
ation of

a
ompletion rule, then T

0

is an S-tree for � .

3. If T

0

; T

1

; : : : is an in�nite sequen
e of S-trees for � with T

i

= (V

i

; E

i

; n

i

; `

i

)

su
h that

(a) T

0

is an initial S-tree for � and

(b) for all i � 0, T

i+1

an be obtained from T

i

by the appli
ation of a
om-

pletion rule,

then the tree T

!

= (V;E; n; `) is also an S-tree for � , where

{ V =

S

i�0

V

i

,

{ E =

S

i�0

E

i

,

{ n =

S

i�0

n

i

, and

{ ` =

S

i�0

`

i

.

Rule appli
ation may terminate after �nitely many steps or
ontinue forever.

The last
ase of De�nition 10 deals with su
h in�nite sequen
es of rule appli-

ations. The S-tree T

!

an be viewed as the limit of the sequen
e of S-trees

T

0

; T

1

; : : : This limit exists sin
e admissibility of S implies that rule appli
ation

is monotoni
, i.e., it extends S-trees by new nodes or by additional elements in

node labels, but it never removes nodes or elements of node labels.

Let us now de�ne when an S-tree is saturated and
lash-free.

De�nition 11 (Saturated, Clash-free). Let S be an admissible tableau sys-

tem. We say that the S-tree T = (V;E; n; `) is

{ saturated if, for every node x in T and every pattern P , P � T; x implies

R(P) = ;;

{
lash-free if, for every node x in T and every P 2 C, we have P 6� T; x.

Saturatedness says that no
ompletion rule is appli
able to the S-tree, and an

S-tree is
lash-free if no
lash-trigger
an be applied to any of its nodes.

Finally, we de�ne soundness and
ompleteness of tableau systems w.r.t. a

ertain property of its set of inputs. If the inputs are pairs
onsisting of a
on
ept

and a TBox, the property is usually satis�ability of the
on
ept w.r.t. the TBox.

De�nition 12 (Sound, Complete). Let P � I be a property. The tableau

system S is
alled

{ sound for P i�, for any � 2 I, the existen
e of a saturated and
lash-free

S-tree for � implies that � 2 P;

{
omplete for P i�, for any � 2 P, there exists a saturated and
lash-free

S-tree for � .

It should be noted that the algorithmi
 treatment of tableau systems requires

a stronger notion of
ompleteness: an additional
ondition is needed to ensure

that the out-degree of S-trees is appropriately bounded (see De�nition 13 and

De�nition 20 below).

Taking into a

ount the known soundness and
ompleteness results for the

ALC tableau algorithm des
ribed in Figure 1, it is straightforward to
he
k that

the tableau system S

ALC

is sound and
omplete w.r.t. satis�ability of
on
epts

w.r.t. TBoxes. Note, in parti
ular, that saturated S-trees for an input � are

pre
isely those S-trees for � that
an be obtained by exhaustive or in�nite and

fair rule appli
ation.

3 ExpTime Automata-based De
ision Pro
edures from

Tableau Systems

In this se
tion, we de�ne the
lass of \ExpTime-admissible" tableau systems. If

su
h a tableau system is sound and
omplete for a property P , then it gives rise

to an ExpTime algorithm for de
iding P .

9

In the
ase where P is satis�ability

of des
ription logi

on
epts w.r.t. a (general) TBox, this means that the mere

existen
e of an ExpTime-admissible tableau system for the DL implies an Exp-

Time upper-bound for
on
ept satis�ability w.r.t. (general) TBoxes in this DL.

The ExpTime upper-bound is shown via a translation of the inputs of the Exp-

Time-admissible tableau system into
ertain automata working on in�nite trees.

For this reason, ExpTime-admissible tableau systems need not deal with the

issue of termination. Indeed, non-terminating tableau algorithms su
h as the

one for ALC with general TBoxes introdu
ed in Se
tion 2.1 may yield ExpTime-

admissible tableau systems.

Throughout this se
tion, we
onsider a �xed set of inputs I and a �xed

tableau system S = (NL;EL; �

S

;R; C) for I, whi
h is sound and
omplete w.r.t.

some property P .

9

As usual, the exponential upper-bound of de
iding P is as-

sumed to be in the \size" of the input � 2 I. Thus, we assume that the set

9

More pre
isely, we must demand a slightly stronger version of
ompleteness, as in-

trodu
ed in De�nition 13 below.

of inputs is equipped with a size fun
tion, whi
h assigns to an input � 2 I a

natural number, its size j� j.

3.1 Basi
 Notions

Re
all that a tableau system S is sound and
omplete for a property P if, for

any input � , we have � 2 P i� there exists a (potentially in�nite) saturated

and
lash-free S-tree for � . The fundamental idea for obtaining an ExpTime

upper-bound for de
iding P is to use automata on in�nite trees to
he
k for the

existen
e of a
lash-free and saturated S-tree for a given input � . More pre
isely,

ea
h input � is
onverted into a tree automatonA

�

su
h that there exists a
lash-

free and saturated S-tree for � i� A

�

a

epts a non-empty language. Sin
e tree

automata work on trees of some �xed out-degree, this approa
h only works if

the (size of the) input determines su
h a �xed out-degree for the S-trees to be

onsidered. This motivates the following de�nition.

De�nition 13 (p-Complete). Let p be a polynomial. The tableau system S is

alled p-
omplete for P i�, for any � 2 P, there exists a saturated and
lash-free

S-tree for � with out-degree bounded by p(j� j).

Throughout this se
tion, we assume that there exists a polynomial p su
h that

the �xed tableau system S is p-
omplete w.r.t. the property P under
onsidera-

tion.

The tableau system S

ALC

de�ned in Se
tion 2 is easily proved to be i-

omplete, with i being the identity fun
tion on the natural numbers: using the

formulation of the rules, it is easily proved that the out-degree of every S

ALC

-

tree for the input (C; T) is bounded by the number of
on
epts of the form 9r:D

in sub(C; T) and thus also by

j(C; T)j := jCj+

X

C

1

vC

2

2T

(jnnf(C

1

! C

2

)j);

where jEj denotes the length of the
on
ept E.

It should be noted that most standard des
ription logi
 tableau algorithms

also exploit p-
ompleteness of the underlying logi
: although this is not made

expli
it in the formulation of the algorithm itself, it is usually one of the
entral

arguments in termination proofs. The intuition that p-
ompleteness is not an

artefa
t of using an automata-based approa
h is reinfor
ed by the fa
t that a

similar strengthening of
ompleteness is needed in Se
tion 4, where we
onstru
t

tableau-based de
ision pro
edures from tableau systems.

To ensure that the automaton A

�

an be
omputed and tested for emptiness

in exponential time, we require the fun
tion �

S

of the tableau system S and the

rules of S to exhibit an \a

eptable"
omputational behavior. This is
aptured

by the following de�nition. In this de�nition, we assume that all patterns are

appropriately en
oded in some �nite alphabet, and thus
an be the input for a

de
ision pro
edure. The size of a pattern P is the sum of the sizes of its node

and edge labels, where the size of a node label is the sum of the sizes of its node

label elements.

De�nition 14 (ExpTime-admissible). The tableau system S is
alled Exp-

Time-admissible i� the following
onditions are satis�ed:

1. S is admissible (see De�nition 7);

2. ini

S

(�) and el

S

(�)
an be
omputed in time exponential in j� j, and the size

of ea
h edge label in el

S

(�) is polynomial in j� j;

3. the
ardinality of nle

S

(�) and the size of ea
h node label element in nle

S

(�)

is polynomial in j� j, and nle

S

(�)
an be
omputed in time exponential in

j� j;

4. for ea
h pattern P it
an be
he
ked in time exponential in the size of P

whether, for all patterns P

0

, P

0

� P implies R(P

0

) = ;;

5. for ea
h pattern P it
an be
he
ked in time exponential in the size of P

whether there is a
lash-trigger P

0

2 C su
h that P

0

� P .

Note that Point 2 of ExpTime-admissibility implies that, for ea
h � 2 I, the

ardinality of the sets ini

S

(�) and el

S

(�) are at most exponential in j� j. The

ardinality of the set of node label elements nle

S

(�) is expli
itly required (in

Point 3) to be polynomial. For the a
tual set of node labels (whi
h are sets of

node label elements), this yields an exponential upper-bound on its
ardinality,

but the size of ea
h node label is polynomial in j� j. Sin
e p-
ompleteness implies

that we
onsider only S-trees T of out-degree bounded by p(j� j), and sin
e the

sizes of edge and node labels are polynomial in j� j, the size of ea
h neighborhood

T; x is polynomial in j� j. Thus, the fourth point ensures that the saturatedness

ondition
an be
he
ked in time exponential in j� j for a given neighborhood

T; x of T . The �fth point yields the same for
lash-freeness.

Most standard des
ription logi
 tableau algorithms for ExpTime-
omplete

DLs trivially satisfy the
onditions of ExpTime-admissibility. For example, it is

easy to show that the tableau system S

ALC

de�ned in Se
tion 2 is ExpTime-

admissible. We have already shown admissibility of S

ALC

, and Point 2 and 3

are immediate
onsequen
es of the de�nitions of ini

S

ALC

, nle

S

ALC

, and el

S

ALC

.

To see that Points 4 and 5 are satis�ed as well, �rst note that the de�nition of

the rules and
lash-triggers in S

ALC

is invariant under isomorphism of patterns.

For this reason, the de
ision problem in Point 4 redu
es to
he
king whether a

given pattern P is saturated (see the de�nition of this notion below De�nition 6),

and the de
ision problem in Point 5 redu
es to
he
king whether a given pat-

tern is a
lash-trigger. As an example, we
onsider the rule handling existential

restri
tions. Let P = (V;E; n; `) be a pattern with root v

0

, and assume that

9r:C 2 n(v

0

). This existential restri
tion
ontributes a set of patterns to R(P)

i� C 62 n(u) for all r-su

essors u of v

0

. Obviously, this
an be
he
ked in time

polynomial in the size of the pattern.

The remainder of the present se
tion is
on
erned with
onverting tableau

systems into automata-based de
ision pro
edures, as outlined above. The ma-

jor
hallenge is to bring together the di�erent philosophies underlying tableau

algorithms and automata-based approa
hes for de
iding
on
ept satis�ability:

tableau algorithm a
tively try to
onstru
t a model for the input by applying

rules, as re
e
ted in the De�nitions 9 and 10, whereas automata are based on

the
on
ept of \a

eptan
e" of a tree, i.e., they verifying whether a given tree

a
tually des
ribes a model. Of
ourse, the emptiness test for the automaton then

again
he
ks whether su
h a tree exists. Due to these di�erent perspe
tives, it

is not straightforward to
onstru
t automata that dire
tly
he
k for the exis-

ten
e of S-trees for an input � . To over
ome this problem, we �rst introdu
e

the (less
onstru
tive) notion of S-trees
ompatible with � , and investigate the

relationship of this notion to S-trees for � , as introdu
ed in De�nition 10.

De�nition 15 (S-tree
ompatible with �). Let � be an input and T =

(V;E; n; `) an S-tree with root v

0

. Then T is
ompatible with � i� it satis�es

the following
onditions:

1. n(x) � }(nle

S

(�)) for ea
h x 2 V ;

2. `(x; y) 2 el

S

(�) for ea
h (x; y) 2 E;

3. there exists � 2 ini

S

(�) su
h that � � n(v

0

);

4. the out-degree of T is bounded by p(j� j).

Below, we will show that, given an ExpTime-admissible tableau system S that

is sound and p-
omplete for some property P and an input � for S, we
an

onstru
t a looping tree automaton of size exponential in the size of � that

a

epts exa
tly the saturated and
lash-free S-trees
ompatible with � . Sin
e the

emptiness problem for looping tree automata
an be de
ided in time polynomial

(a
tually, linear) in the size of the automaton, this shows that the existen
e of

saturated and
lash-free S-trees
ompatible with �
an be de
ided in exponential

time. Sin
e S is sound and p-
omplete for P , we have � 2 P i� there is a

saturated and
lash-free S-tree for � . Thus, we must investigate the
onne
tion

between S-trees for � and S-trees
ompatible with � . This is done in the next

lemma.

In the proof of the lemma, we need sub-tree relations between S-trees in

analogy to the in
lusion relations \-" and \�" between patterns introdu
ed in

De�nition 6. These relations are de�ned on trees exa
tly as for patterns, and we

also use the same relation symbols for them.

Lemma 1. There exists a
lash-free and saturated S-tree that is
ompatible

with � i� there exists a
lash-free and saturated S-tree for � .

Proof. The \if" dire
tion is straightforward: let T = (V;E; n; `) be a
lash-free

and saturated S-tree for � . Sin
e S is sound and p-
omplete for P , we
an w.l.o.g.

assume that the out-degree of T is bounded by p(j� j). It is not hard to show

that T is
ompatible with � , i.e. satis�es Conditions 1 to 4 of De�nition 15:

{ Ea
h initial S-tree satis�es Conditions 1 and 2 of
ompatibility, and Con-

dition 3 of admissibility ensures that rule appli
ation adds only node label

elements from nle

S

(�) and edge labels from el

S

(�).

{ Ea
h initial S-tree satis�es Condition 3 of
ompatibility, and rule appli
ation

annot delete elements from node labels.

{ Sin
e we assume the out-degree of T to be bounded by p(j� j), Condition 4

of
ompatibility is also satis�ed.

Now for the \only if" dire
tion. Let T = (V;E; n; `) be a
lash-free and

saturated S-tree with root v

0

that is
ompatible with � . To
onstru
t a
lash-

free and saturated S-tree for � , we �rst
onstru
t a (possibly in�nite) sequen
e

T

1

� T

2

� T

3

� � � �

of S-trees for � su
h that T

i

-

�

i

T for all i � 1. The
onstru
tion will be

su
h that the inje
tions �

i

that yield T

i

- T also build an in
reasing
hain, i.e.,

�

i+1

extends �

i

for all i � 1. In the
onstru
tion, we use a
ountably in�nite

set V

0

from whi
h the nodes of the trees T

i

are taken. We �x an arbitrary

enumeration x

0

; x

1

; : : : of V

0

, and write x < y if x 2 V

0

o

urs before y 2 V

0

in

this enumeration. We then pro
eed as follows:

{ Sin
e T is
ompatible with � , there exists � 2 ini

S

(�) su
h that � � n(v

0

).

De�ne T

1

to be the initial S-tree (fx

0

g; ;; fx

0

7! �g; ;): Obviously, T

1

-

�

1

T

for �

1

:= fx

0

7! v

0

g.

{ Now, assume that T

i

-

�

i

T is already
onstru
ted. If T

i

is saturated, then

T

i

is the last tree in the sequen
e. Otherwise,
hoose the least node x in T

i

(w.r.t. the �xed ordering < on V

0

) su
h that P � T

i

; x for some pattern

P that is not saturated, i.e. there exists a rule P !

R

fP

1

; : : : ; P

k

g. Sin
e

T

i

-

�

i

T , we have P - T; �

i

(x). Sin
e T is saturated, the pattern T; �

i

(x) is

saturated. By Condition 2 of admissibility, we have P

j

- T; �

i

(x) for some

j with 1 � j � k. We apply the rule P !

R

fP

1

; : : : ; P

k

g to x in T

i

su
h

that P

j

� T

i+1

; x. If T

i+1

ontains new nodes, then they are taken from V

0

.

Admissibility yields T

i

� T

i+1

and the fa
t that P

j

- T; �

i

(x) implies that

we
an de�ne an inje
tion �

i+1

su
h that T

i+1

-

�

i+1

T .

In the de�nition of the
lash-free and saturated S-tree T

�

for � , we distinguish

two
ases:

1. if the
onstru
ted sequen
e is �nite and T

n

is the last tree in the sequen
e,

then set T

�

:= T

n

;

2. otherwise, let T

�

be the S-tree T

!

obtained from the sequen
e T

1

; T

2

; : : : as

in Case 3 of De�nition 10.

In both
ases, T

�

is obviously an S-tree for � by de�nition. In addition, we have

T

�

-

�

T where � is the inje
tion obtained as the union of the inje
tions �

i

for

i � 1.

It remains to be shown that T

�

is
lash-free and saturated. We
on
entrate

on the se
ond
ase, where T

�

= T

!

, sin
e the �rst
ase is similar, but simpler.

Clash-freeness is an easy
onsequen
e of T

�

- T . In fa
t, by Condition 4 of

admissibility,
lash-freeness of T implies that T

�

- T is also
lash-free.

To show saturatedness of T

�

, we must look at T

�

and its relationship to the

trees T

i

in more detail. Sin
e T

i

� T

�

- T and the out-degree of T is bounded

by p(j� j), the out-degrees of the trees T

i

and T

�

are also bounded by p(j� j). For

a given node x of T

�

, we
onsider its neighborhood T

�

; x. Sin
e the rules of S

only add nodes or elements of node labels (see Condition 1 in the de�nition of

admissibility), and sin
e the out-degree of x is bounded by p(j� j) and the set

nle

S

(�) is �nite, there is an i su
h that x is a node of T

i

and \the neighborhood

of x does not
hange after step i," i.e., T

i

; x = T

i+1

; x = : : : = T

�

; x.

Now assume that T

�

is not saturated, i.e., there exists a node x in T

�

to

whi
h a rule applies, i.e., P � T

�

; x for some pattern P with R(P) 6= ;. Let i

be su
h that T

i

; x = T

i+1

; x = : : : = T

�

; x. Thus, for j � i, a rule applies to

the node x in T

i

. In the
onstru
tion of the sequen
e T

1

; T

2

; T

3

; : : :, we apply a

rule only to the least node to whi
h a rule is appli
able. Consequently, from the

ith step on, we only apply rules to nodes y � x. Sin
e there are only �nitely

many su
h nodes (see the de�nition of the order < above), there is one node

y � x to whi
h rules are applied in�nitely often. However, ea
h rule appli
ation

stri
tly in
reases the number of su

essors of y, or the label of y or of one of its

su

essors. This
ontradi
ts the fa
t that the out-degree of y in the trees T

i

is

bounded by p(j� j) and all node labels are subsets of the �nite set nle

S

(�). ut

3.2 A

epting Compatible S-trees Using Looping Automata

Re
all that we assume our tableau system S to be sound and p-
omplete w.r.t. a

property P . By Lemma 1, to
he
k whether an input has property P , it thus suf-

�
es to verify the existen
e of a saturated and
lash-free S-tree that is
ompatible

with � . In this se
tion, we show how this
an be done using an automata-based

approa
h.

As usual, the automata work on k-ary in�nite trees (for some �xed natural

number k) whose nodes are labeled by elements of a �nite label set and whose

edges are ordered, i.e., we
an talk about the i-th son of a node. To be more

pre
ise, letM be a set and k � 1. A k-ary M-tree is a mapping T : f1; : : : ; kg

�

!

M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the node

�i is the i-th
hild of �. We use � to denote the empty word,
orresponding to

the root of the tree.

De�nition 16 (Looping Tree Automata). A looping tree automaton A =

(Q;M; I;�) working on k-ary M-trees
onsists of a �nite set Q of states, a

�nite alphabet M , a set I � Q of initial states, and a transition relation � �

Q�M �Q

k

.

A run of A on an M-tree T is a mapping R : f1; : : : ; kg

�

! Q su
h that

R(�) 2 I and

(R(�); T (�); R(�1); : : : ; R(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

. The language of k-ary M-trees a

epted by A is

L(A) := fT j there is a run of A on the k-ary M-tree Tg:

Note that, in
ontrast to the S-trees
onsidered above, the trees de�ned here

are in�nite trees of a �xed arity k, where edges are not labeled, but ordered.

It is, however, not hard to
onvert S-trees
ompatible with a given input into

k-ary M -trees for appropriate k and M . This is a
hieved by (i) \padding" with

additional dummy nodes, and (ii) representing edge labels via node labels.

De�nition 17 (Padding). Let � 2 I be an input and T = (V;E; n; `) an S-

tree with root v

0

2 V that is
ompatible with � . For ea
h x 2 V , we use d(x)

to denote the out-degree of x in T . We assume that the su

essors of ea
h node

x 2 V are linearly ordered and that, for ea
h node x 2 V n fv

0

g, s(x) = i i� x

is the i-th su

essor of its prede
essor. We indu
tively de�ne a fun
tion m from

f1; : : : ; p(j� j)g

�

to V [f℄g (where ℄ 62 V) as follows:

{ m(�) = v

0

;

{ if m(�) = x, (x; y) 2 E, and s(y) = i, then m(�i) = y;

{ if m(�) = x and d(x) < i, then m(�i) = ℄;

{ if m(�) = ℄, then m(�i) = ℄ for all i 2 f1; : : : ; p(j� j)g.

Let tl

S

(�) denote the set (}(nle

S

(�))� el

S

(�))[f(℄; ℄)g. The padding P

T

of T

is the p(j� j)-ary tl

S

(�)-tree de�ned by setting

1. P

T

(�) = (n(v

0

); e

0

) where e

0

is an arbitrary (but �xed) element of el

S

(�);

2. P

T

(�) = (n(x); �) if � 6= �, m(�) = x 6= ℄, and `(y; x) = � where y is the

(unique) prede
essor of x in T ;

3. P

T

(�) = (℄; ℄) if m(�) = ℄.

We now de�ne, for ea
h input � 2 I, a looping automaton A

�

that a

epts

a non-empty language i� there exists a saturated and
lash-free S-tree that is

ompatible with � .

De�nition 18 (Automaton for Input �). Let � 2 I be an input and h =

p(j� j). The automaton A

�

is de�ned as follows:

{ Q :=M := tl

S

(�);

{ I := f(; e

0

) j � � 	 for some � 2 ini

S

(�)g;

{ ((�

0

; �

0

); (�;�); (�

1

; �

1

); : : : ; (�

h

; �

h

)) 2 � i� the following two
onditions

are satis�ed:

1. (�

0

; �

0

) = (�;�);

2. either �

0

= �

1

= � � � = �

h

= ℄,

or there is a 0 � k � h su
h that �

0

; : : : ; �

k

di�er from ℄, �

k+1

= � � � =

�

h

= ℄, and the pattern P

�

= (V

�

; E

�

; n

�

; `

�

) de�ned as

{ V

�

:= fi j 0 � i � kg,

{ E

�

:= f(0; i) j i 2 V

�

n f0gg,

{ n

�

= fi 7! �

i

j i 2 V

�

g, and

{ `

�

:= f(0; i) 7! �

i

j i 2 V

�

n f0gg

satis�es the following
onditions:

(a) for ea
h pattern P with P � P

�

, P is saturated (i.e. R(P) = ;);

(b) for ea
h pattern P 2 C, we have P 6� P

�

.

The following lemma shows that the automaton A

�

a

epts exa
tly the paddings

of saturated and
lash-free S-trees
ompatible with � . Consequently, it a

epts

a non-empty set of trees i� there exists a saturated and
lash-free S-tree
om-

patible with � .

Lemma 2. Let � 2 I be an input. Then

L(A

�

) = fP

T

j T is a saturated and
lash-free S-tree
ompatible with �g:

Proof. First, assume that T is a saturated and
lash-free S-tree
ompatible with

� . We
laim that P

T

itself is a run of A

�

on P

T

. In fa
t, P

T

(�) 2 I is an imme-

diate
onsequen
e of the de�nition of padding and Condition 3 in the de�nition

of S-trees
ompatible with � . Now,
onsider some node � of P

T

. The �rst
on-

dition in the de�nition of � is satis�ed sin
e we have P

T

as run on itself. Thus,

onsider the se
ond
ondition. If P

T

(�) = (℄; ℄), then the de�nition of padding

implies that all the su

essor nodes of � also have label (℄; ℄), and thus the se
-

ond
ondition in the de�nition of � is satis�ed. Otherwise, it is easy to see that

the pattern P

�

de�ned in the se
ond
ondition in the de�nition of � is also a

pattern in T . Sin
e T is saturated and
lash-free, P

�

thus satis�es (a) and (b)

in the se
ond
ondition in the de�nition of �. This
ompletes the proof that P

T

is a run of A

�

on P

T

, and thus shows that P

T

2 L(A

�

).

Se
ond, assume that

b

T is a tree a

epted by A

�

. Be
ause of the �rst
ondition

in the de�nition of �,

b

T itself is a run of A

�

on

b

T . The de�nitions of Q, I , and �

imply that there is an S-tree T
ompatible with � su
h that P

T

=

b

T . This tree

an be obtained from

b

T by removing all the padding. It remains to be shown

that T is saturated and
lash-free. Thus,
onsider a node x of T , and let � be

the
orresponding node in P

T

=

b

T . Sin
e x is a node in T , the node � has a label

di�erent from (℄; ℄). Let us now
onsider the transition from � to its su

essor

nodes. It is easy to see that the pattern P

�

de�ned in the se
ond
ondition in

the de�nition of the transition relation
oin
ides with T; x. Thus (a) and (b) in

this
ondition imply that no rule and no
lash-trigger is appli
able to x. ut

We are now ready to prove the main result of this se
tion: the ExpTime

upper-bound indu
ed by ExpTime-admissible tableau systems.

Theorem 1. Let I be a set of inputs, P � I a property, and p a polynomial.

If there exists an ExpTime-admissible tableau system S for I that is sound and

p-
omplete for P, then P is de
idable in ExpTime.

Proof. Let � 2 I be an input. To de
ide whether � 2 P , we
onstru
t the

automaton A

�

and then
he
k whether it a

epts a non-empty language. By

Lemmas 1 and 2, this algorithm is
orre
t. Thus, it remains to be shown that

it
an be exe
uted in exponential time. To see that the automaton A

�

an be

onstru
ted in time exponential in j� j, note that, by Conditions 2 and 3 of Exp-

Time-admissibility, we
an
ompute }(nle

S

(�)) and el

S

(�) in time exponential in

j� j, and thus the same holds for tl

S

(�) = Q =M , and I . The transition relation

�
an be
omputed in exponential time due to the Conditions 4 and 5 of Exp-

Time-admissibility and the fa
t that p is a polynomial. Sin
e the automaton
an

be
omputed in exponential time, its size is at most exponential in j� j. Thus, it

remains to note that the emptiness test for looping tree automata
an be realized

in polynomial time [29℄. ut

Sin
e we have shown that the tableau system S

ALC

is ExpTime-admissible as

well as sound and p-
omplete (for some polynomial p) for satis�ability of ALC-

on
epts w.r.t. (general) TBoxes, we
an immediately put Theorem 1 to work:

Corollary 1. ALC-
on
ept satis�ability w.r.t. TBoxes is in ExpTime.

4 Tableau-based De
ision Pro
edures from Tableau

Systems

The tableau systems des
ribed in Se
tion 2.2
annot immediately be used as

tableau-based de
ision pro
edures sin
e rule appli
ation need not terminate.

The purpose of this se
tion is to show that, under
ertain natural
onditions,

the addition of a straightforward
y
le dete
tion me
hanism turns them into (ter-

minating) de
ision pro
edures. The resulting pro
edures are stru
turally similar

to standard tableau-based algorithms for des
ription logi
s, su
h as the ones un-

derlying systems like FaCT and RACER. In
ontrast to the ExpTime algorithm

onstru
ted in the previous se
tion, the pro
edures obtained here are usually not

worst-
ase optimal|a pri
e we have to pay for more easily implementable and

optimizable de
ision pro
edures.

Fix a set of inputs I and a tableau system S = (NLE;EL; �

S

;R; C) for I. As in

the previous se
tion, we require that S has a number of
omputational properties.

Sin
e we do not
onsider
omplexity issues in this se
tion, it is suÆ
ient for our

purposes to impose e�e
tiveness (and not eÆ
ien
y)
onstraints. We start with

modifying De�nition 14:

De�nition 19 (Re
ursive Tableau System). S is
alled re
ursive i� the

following
onditions are satis�ed:

1. S is admissible (see De�nition 7);

2. ini

S

(�)
an be
omputed e�e
tively;

3. for ea
h pattern P it
an be
he
ked e�e
tively whether, for all patterns P

0

,

P

0

� P implies R(P

0

) = ;; if this is not the
ase, then we
an e�e
tively

determine a rule

P

0

!

R

fP

1

; : : : ; P

k

g

and a bije
tion � su
h that P

0

�

�

P .

4. for ea
h pattern P it
an be
he
ked e�e
tively whether there is a
lash-trigger

P

0

2 C su
h that P

0

� P .

The main di�eren
e between this de�nition and De�nition 14 is Condition 3,

whi
h now requires that, besides
he
king the appli
ability of rules, we
an ef-

fe
tively apply at least one rule whenever some rule is appli
able at all. Another

di�eren
e is that we do not a
tually need to
ompute the sets el

S

(�) and nle

S

(�)

in order to apply rules.

Analogously to the
ase of ExpTime-admissibility, it
an be veri�ed that the

tableau system S

ALC

is re
ursive. In parti
ular, for the se
ond part of Condition 3

we
an again use the fa
t that the rules of S

ALC

are invariant under isomorphism

Pre
onditions: Let I be a set of inputs, P � I a property, f a re
ursive fun
tion, and

S a re
ursive tableau system for I that is sound and f -
omplete for P.

Algorithm: Return true on input � 2 I if the pro
edure tableau(T) de�ned below

returns true for at least one initial S-tree T for � . Otherwise return false.

pro
edure tableau(T)

If P � T; x for some P 2 C and node x in T or the out-degree of T ex
eeds f(j� j),

then return false.

If no rule is appli
able to a non-blo
ked node x in T ,

then return true.

Take a a non-blo
ked node x in T and a rule P !

R

fP

1

; : : : ; P

k

g with P � T; x.

Let T

i

be the result of applying the above rule su
h that P

i

� T

i

; x, for 1 � i � k.

If at least one of tableau(T

1

); tableau(T

2

); : : : ; tableau(T

k

) returns true,

then return true.

Return false.

Fig. 2. De
ision pro
edure for P.

of patterns: this means that it suÆ
es to
ompute, for a given non-saturated

pattern P , a set of patterns fP

1

; : : : ; P

k

g su
h that P !

R

fP

1

; : : : ; P

k

g. It is

easy to see that this
an be e�e
tively done for the rules of S

ALC

.

We now de�ne a more relaxed variant of De�nition 13.

De�nition 20 (f-
omplete). Let f : N ! N be a re
ursive fun
tion. The

tableau system S is
alled f -
omplete for P i�, for any � 2 P, there exists a

saturated and
lash-free S-tree for � with out-degree bounded by f(j� j).

Sin
e we have already shown that S

ALC

is p-
omplete for some polynomial p,

S

ALC

is
learly f -
omplete for the (
omputable) fun
tion f indu
ed by the poly-

nomial p.

In order to implement a
y
le dete
tion me
hanism, we introdu
e the notion

of blo
king: given an S-tree T = (V;E; n; `), we denote by E

�

the transitive

and re
exive
losure of E and say that x 2 V is blo
ked i� there exist distin
t

u; v 2 V su
h that uE

�

x, vE

�

x, and n(u) = n(v). Note that this
orresponds to

the well-known \equality-blo
king" te
hnique that is used in various DL tableau

algorithms [17, 4℄.

The tableau-based de
ision pro
edure for P indu
ed by the tableau system

S is des
ribed in Figure 2. Note that the sele
tion of rules and nodes in the

\else" part of the pro
edure tableau is \don't
are" non-deterministi
: for the

soundness and
ompleteness of the algorithm, it does not matter whi
h rule we

apply when to whi
h node.

Let us verify that the individual steps performed by the algorithm in Figure 2

are a
tually e�e
tive:

{ the initial trees for an input �
an be
omputed e�e
tively, sin
e ini

S

(�)
an

be
omputed e�e
tively by Condition 2 of De�nition 19;

{ the
ondition in the �rst \if" statement
an be
he
ked e�e
tively by Con-

dition 4 of De�nition 19 and sin
e f is a re
ursive fun
tion;

{ the appli
ability of rules
an be
he
ked by the �rst part of Condition 3 of

De�nition 19;

{ �nally, that we
an e�e
tively take a rule and apply it to a node x follows

from the se
ond part of Condition 3 of De�nition 19.

We now turn to termination, soundness, and
ompleteness of the algorithm.

Lemma 3 (Termination). Suppose the pre
onditions of Figure 2 are satis�ed.

Then the algorithm of Figure 2 terminates for any input � 2 I.

Proof. Let � 2 I. The number of initial trees for � is �nite and
an be
omputed

e�e
tively. Hen
e, it is suÆ
ient to show that the pro
edure tableau terminates on

any initial tree for � . For ea
h step in whi
h the pro
edure does not immediately

return true or false, a node is added to the tree or n(x) properly in
reases for some

node x (due to Condition 1 of admissibility). Hen
e, sin
e n(x) � }(nle

S

(�))

for any node x and any tree
onstru
ted during a run of tableau, it is suÆ
ient

to show that both the out-degree and the depth of the trees
onstru
ted is

bounded. But the out-degree of the trees is bounded by f(j� j) (more pre
isely,

as soon as one rule appli
ation yields a tree with out-degree larger than f(j� j),

the algorithm returns false in the next step) and the length of E-paths does not

ex
eed 2

jnle

S

(�)j

sin
e rules are not applied to blo
ked nodes. ut

Lemma 4 (Soundness). Suppose the pre
onditions of Figure 2 are satis�ed.

If the algorithm of Figure 2 returns true on input � , then � 2 P.

Proof. Suppose the algorithm returns true on input � . Then the algorithm termi-

nates with a
lash-free S-tree T = (V;E; n; `) whose out-degree does not ex
eed

f(j� j) and su
h that no rule is appli
able to a non-blo
ked node in T . As S is

sound for P , it is suÆ
ient to show that there exists a saturated and
lash-free

S-tree for � . To this end we
onstru
t a
lash-free and saturated S-tree

T

0

= (V

0

; E

0

; n

0

; `

0

)

whi
h is
ompatible with � (from whi
h, by Lemma 1, we obtain a
lash-free

and saturated S-tree for �). Say that a node x 2 V is dire
tly blo
ked if it is

blo
ked but its prede
essor is not blo
ked. If y is the (uniquely determined) node

y 6= x with yE

�

x and n(x) = n(y), then y is said to blo
k x.

Now, V

0

onsists of all non-empty sequen
es hv

0

; x

1

; : : : ; x

n

i, where v

0

is

the root of V , the x

1

; : : : ; x

n

2 V are dire
tly blo
ked or not blo
ked, and

(x

i

; x

i+1

) 2 E if x

i

is not blo
ked or x

i

is blo
ked by some y 2 V su
h that

(y; x

i+1

) 2 E. De�ne E

0

by setting, for x = hv

0

; x

1

; : : : ; x

n

i 2 V

0

and y 2 V

0

,

(x;y) 2 E

0

i� there exists x

n+1

su
h that y = hv

0

; x

1

; : : : ; x

n

; x

n+1

i. De�ne n

0

by setting n

0

(hv

0

; x

1

; : : : ; x

n

i) = n(x

n

). Finally, de�ne `

0

by

{ `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(x

n

; x

n+1

) if x

n

is not blo
ked;

{ `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(y; x

n+1

) if x

n

is blo
ked and y

blo
ks x

n

.

We show that T

0

is a
lash-free and saturated S-tree whi
h is
ompatible with � .

Compatibility is readily
he
ked using the de�nition of T

0

. Sin
e T is
lash-free

and no rule is appli
able to a non-blo
ked node of T , we
an prove
lash-freeness

and saturatedness of T

0

by showing that any S-pattern P that mat
hes T

0

;x

for some node x in T

0

also mat
hes a T; x for some non-blo
ked node x in

T . Thus, assume that P �

�

T

0

; hv

0

; x

1

; : : : ; x

n

i, for some bije
tion � . If x

n

is

not blo
ked, then P �

�

0

T; x

n

, where �

0

is obtained from � by
omposing �

with the mapping that assigns x

n

to hv

0

; x

1

; : : : ; x

n

i and x

n+1

to ea
h su

essor

hv

0

; x

1

; : : : ; x

n

; x

n+1

i of hv

0

; x

1

; : : : ; x

n

i. Similarly, if x

n

is blo
ked by y, then

P �

�

0

T; y, where �

0

is obtained from � by
omposing � with the mapping that

assigns y to hv

0

; x

1

; : : : ; x

n

i and x

n+1

to ea
h su

essor hv

0

; x

1

; : : : ; x

n

; x

n+1

i of

hv

0

; x

1

; : : : ; x

n

i. ut

Lemma 5 (Completeness). Suppose the pre
onditions of Figure 2 are satis-

�ed. If � 2 P, then the algorithm of Figure 2 returns true on input � .

Proof. Suppose � 2 P . Sin
e S is f -
omplete for P , there exists a
lash-free and

saturated S-tree T = (V;E; n; `) for � whose out-degree does not ex
eed f(j� j).

We use T to \guide" the algorithm to an S-tree of out-degree at most f(j� j) in

whi
h no
lash-trigger applies and no rule is appli
able to a non-blo
ked node.

This will be done in a way su
h that all
onstru
ted S-trees T

0

satisfy T

0

- T .

For the start, we need to
hoose an appropriate initial S-tree T

1

. Let v

0

be

the root of T . Sin
e S-trees for � are also
ompatible with � , the de�nition of

ompatibility implies that there exists � 2 ini

S

(�) su
h that � � n(v

0

). De�ne

T

1

to be the initial S-tree (fv

0

g; ;; fv

0

7! �g; ;): Clearly, T

1

- T . We start the

pro
edure tableau with the tree T

1

.

Now suppose that tableau is
alled with some S-tree T

0

su
h that T

0

- T .

If no rule is appli
able to a non-blo
ked node in T

0

, we are done: sin
e T

0

- T

and T is
lash-free and of out-degree at most f(j� j), the same holds for T

0

.

Now suppose that a rule is appli
able to a non-blo
ked node in T

0

. Assume that

the tableau pro
edure has
hosen the rule P !

R

fP

1

; : : : ; P

k

g with P � T

0

; x.

Sin
e T

0

-

�

T for some � , we have P - T; �(x). Sin
e T is saturated, T; �(x)

is saturated. By Condition 2 of admissibility, we have P

j

- T; �(x) for some

j; 1 � j � k. So we \guide" the tableau pro
edure to
ontinue exploring the

S-tree T

0

j

obtained from T

0

by applying the rule P !

R

fP

1

; : : : ; P

k

g su
h that

P

j

� T

0

j

; x. Now, P

j

- T; �(x) implies T

0

j

- T .

Sin
e the tableau pro
edure terminates on any input, the \guidan
e" pro
ess

will also terminate and thus su

eeds in �nding an S-tree of out-degree at most

f(j� j) in whi
h no
lash-trigger applies and no rule is appli
able to a non-blo
ked

node. Hen
e, tableau(T

1

) returns true. ut

The three lemmas just proved imply that we have su

eeded in
onverting the

tableau system S into a de
ision pro
edure for P .

Theorem 2. Suppose the pre
onditions of Figure 2 are satis�ed. Then the al-

gorithm of Figure 2 e�e
tively de
ides P.

5 A Tableau System for ALCQI

As an example for a more expressive DL that
an be treated within our frame-

work, we
onsider the DL ALCQI, whi
h extends ALC with quali�ed num-

ber restri
tions and inverse roles. Quali�ed number restri
tions ((>mr:C) and

(6mr:C))
an be used to state
onstraints on the number of r-su

essors be-

longing to a given
on
ept C, and the inverse roles allow us to use both a role r

and its inverse r

�

when building a
omplex
on
ept.

De�nition 21 (ALCQI Syntax and Semanti
s). Let N

C

and N

R

be pair-

wise disjoint and
ountably in�nite sets of
on
ept and role names. The set of

ALCQI-roles is de�ned as ROL

ALCQI

:= N

R

[fr

�

j r 2 N

R

g.

The set of ALCQI-
on
epts CON

ALCQI

is the smallest set su
h that

{ every
on
ept name is a
on
ept, and

{ if C and D are ALCQI-
on
epts and r 2 ROL

ALCQI

is a role, then :C;C u

D;C tD; (6mr:C) and (>mr:C) are also ALCQI-
on
epts.

TBoxes are de�ned as in the
ase of ALC, i.e., they are �nite sets of GCIs

C v D where C;D 2 CON

ALCQI

.

The semanti
s of ALCQI is de�ned as for ALC, where the additional
on-

stru
tors are interpreted as follows:

(r

�

)

I

:= f(y; x) j (x; y) 2 r

I

g;

(6mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

(>mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

where #S denotes the
ardinality of the set S.

Although the
onstru
tors 9r:C and 8r:C are not expli
itly present in ALCQI,

they
an be simulated by (> 1 r:C) and (6 0 r::C), respe
tively. Thus, ALCQI

really extends ALC.

The de�nition of negation normal form (and thus of the fun
tion nnf)
an

easily be extended to ALCQI (see, e.g., [14℄), and the same is true for the

fun
tion sub. In addition, we de�ne the
losure of the ALCQI
on
ept C and

the TBox T as

l(C; T) := sub(C; T) [fnnf(:D) j D 2 sub(C; T)g:

In order to simplify the treatment of inverse roles, we denote the inverse of the

ALCQI-role r by r, i.e., r = r

�

if r is a role name, and r = s if r = s

�

for a

role name s.

Completion trees for ALCQI look like
ompletion trees for ALC, with the

only di�eren
e that edges may also be labeled with inverse roles. In fa
t, to

handle a number restri
tion of the form (> 1 r

�

:C) (whi
h
orresponds to the

existential restri
tion 9r

�

:C) in the label of the node v, the tableau algorithm

may introdu
e an r

�

-su

essor of v.

The fa
t that edges
an also be labeled by inverse roles
ompli
ates the

treatment of number restri
tions by tableau rules. For a given node, we need to

ount the number of other nodes it is related to via the role r. Without inverse

roles, this is quite easy: we just take the dire
t su

essors rea
hed by an edge

labeled with r. With inverse roles, we must also
ount the dire
t prede
essor if

the
orresponding edge is labeled with r. However, our framework only allows for

patterns of depth one, and thus the rules
annot simultaneously look at a node

together with its dire
t prede
essor and its dire
t su

essors. To over
ome this

problem, we introdu
e new
on
ept names M

r;C

for every pair r; C appearing

in a number restri
tion (>mr:C) or (6mr:C). The intuitive meaning of these

\marker
on
epts" is the following: if the label of node v
ontains M

r;C

, then

the edge leading to v from its dire
t prede
essor u is labeled with r and the label

of u
ontains C. Sin
e the root node of the tree does not have a prede
essor,

these
on
epts are not allowed to appear in the root node. We will ensure this

by enfor
ing that the root label
ontains :M

r;C

. Given a
on
ept C and a TBox

T , the set of ne
essary marker
on
epts is

M

C;T

:= fM

r;C

;:M

r;C

j f(>mr:C); (6mr:C)g \
l(C; T) 6= ; for some mg:

De�nition 22 (S

ALCQI

). The tableau system S

ALCQI

is de�ned as follows:

NLE := CON

ALCQI

is the set of all ALCQI-
on
epts, EL := ROL

ALCQI

is the

set of all ALCQI-roles, and the fun
tion �

S

ALCQI

assigns to any input pair (C; T)

the following tuple (nle

S

ALCQI

; el

S

ALCQI

; ini

S

ALCQI

):

nle

S

ALCQI

(C; T) :=
l(C; T) [M

C;T

;

el

S

ALCQI

(C; T) := fr; r

�

j r 2 N

R

o

urs in C or T g;

ini

S

ALCQI

(C; T) := ffnnf(C)g [f:M

r;C

j :M

r;C

2 M

C;T

gg:

The rules and
lash-triggers of S

ALCQI

are introdu
ed in the next two de�nitions.

In order to de�ne the rules and
lash-triggers, we need to
ount the r-

neighbors of a given node v in an S

ALCQI

-tree, i.e., the nodes that are either

r-su

essors of v or the (unique) prede
essor of v in
ase v is an r-su

essor of

this prede
essor. The problem is that we must do this in a pattern, where the

prede
essor is not expli
itly present. Instead, we use the presen
e of the marker

on
epts M

r;D

in the label of v.

10

Let P be a pattern with root v

0

. We say that

v

0

has k r-neighbors
ontaining D i�

{ either M

r;D

is not in the label of v

0

and v

0

has exa
tly k r-su

essors whose

labels
ontain D;

{ or M

r;D

is in the label of v

0

and v

0

has exa
tly k � 1 r-su

essors whose

labels
ontain D.

10

The rules and
lash-triggers are de�ned su
h that the presen
e of the marker
on
ept

M

r;D

in the label of a node v in a saturated and
lash-free S

ALCQI

-tree implies that

v is an r-su

essor of its father w and that the label of w
ontains D.

In addition to the rules handling
onjun
tions, disjun
tions, and the TBox ax-

ioms, S

ALCQI

has three rules

11

that treat number restri
tions. Before introdu
-

ing them formally, we give brief intuitive explanations of these rules:

R> To satisfy an at-least restri
tion (>mr:C), the rule
reates the ne
essary

neighbors one-by-one. In a single step, it adds M

r;C

to the label of the root

of the pattern, or it adds C to the label of an existing r-su

essor of the

root, or it
reates a new r-su

essor of the root with label fCg.

RC If the root label of the pattern
ontains the at-most restri
tion (6mr:C),

then this so-
alled
hoose-rule adds either the
on
ept C or the
on
ept

nnf(:C) to the label of all r-su

essors of the root. In addition, this rule also

takes the (not expli
itly present) prede
essor node into a

ount by \guessing"

whether the given node is an r-su

essor of its prede
essor and whether the

label of this prede
essor
ontains C. This is done by adding either M

r;C

or

:M

r;C

to the label of the root.

R" This rule propagates the information
ontained in the marker
on
epts to

the prede
essor node, i.e., if the label of an r-su

essor of the root
ontains

M

r;C

, then we add C to the label of the root; if the label of an r-su

essor

of the root
ontains :M

r;C

, then we add :C to the label of the root.

De�nition 23 (The rules of S

ALCQI

). Let P = (V;E; n; `) be a pattern with

root v

0

. Then R(P) is the smallest set of �nite sets of patterns that
ontains all

the sets of patterns required by the Ru, Rt, and RT rules, and in addition the

following sets:

R>

1

if the root label n(v

0

)
ontains the
on
ept (>mr:C) as well as the
on
ept

M

r;C

, and there are less than m � 1 nodes v for whi
h `(v

0

; v) = r and

C 2 n(v), then R(P)
ontains the set fP

0

; P

1

; : : : ; P

t

g, where fu

1

; : : : ; u

t

g

onsists of all sons of v

0

with `(v

0

; u

i

) = r and C =2 n(u

i

) and

1. P

0

= (V

0

; E

0

; n

0

; `

0

), where u

0

=2 V , V

0

= V [fu

0

g, E

0

= E [f(v

0

; u

0

)g,

n

0

= n [fu

0

7! fCgg, and `

0

= ` [f(v

0

; u

0

) 7! rg,

2. for 1 � i � t, P

i

= (V;E; n

i

; `), where n

i

(v) = n(v) for all v 2 V n fu

i

g

and n

0

i

(u

i

) = n

i

(u

i

) [fCg;

R>

2

if the root label n(v

0

)
ontains the
on
ept (>mr:C), but not the
on-

ept M

r;C

, and if there are less than m nodes v for whi
h `(v

0

; v) = r and

C 2 n(v), then R(P)
ontains the set fP

�1

; P

0

; P

1

; : : : ; P

t

g, where t and

P

0

; : : : ; P

t

are de�ned as in the R>

1

-rule, and

3. P

�1

= (V;E; n

�1

; `), where n

�1

(v) = n(v) for all v 2 V n fv

0

g and

n

�1

(v

0

) = n(v

0

) [fM

r;C

g;

RC

1

if the root label n(v

0

)
ontains the
on
ept (6mr:C) and `(v

0

; v

1

) = r for

some v

1

2 V with n(v

1

) \ fC; nnf(:C)g = ;, then R(P)
ontains the set

f(V;E; n

0

; `); (V;E; n

00

; `)g, where n

0

(v

1

) = n(v

1

) [fCg, n

00

(v

1

) = n(v

1

) [

fnnf(:C)g, and n

0

(v) = n

00

(v) = n(v) for all v 2 V n fv

1

g;

11

For better readability, ea
h rule will be split into two sub-rules.

RC

2

if the root label n(v

0

)
ontains the
on
ept (6mr:C), but neither M

r;C

nor :M

r;C

, then R(P)
ontains the set f(V;E; n

0

; `); (V;E; n

00

; `)g, where

n

0

(v

0

) = n(v

0

)[fM

r;C

g, n

00

(v

0

) = n(v

0

)[f:M

r;C

g and n

0

(v) = n

00

(v) = n(v)

for all v 2 V n fv

0

g;

R"

1

if there is a son v

1

of the root v

0

with M

r;C

2 n(v

1

) and `(v

0

; v

1

) = r,

but C 62 n(v

0

), then R(P)
ontains the singleton set fP

0

g, where P

0

=

(V;E; n

0

; `) and n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [fCg;

R"

2

if there is a son v

1

of the root v

0

with :M

r;C

2 n(v

1

) and `(v

0

; v

1

) = r,

but nnf(:C) 62 n(v

0

), then R(P)
ontains the singleton set fP

0

g, where

P

0

= (V;E; n

0

; `) and n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [

fnnf(:C)g.

In S

ALCQI

, we also need two additional
lash-triggers. First, we have a
lash

whenever the label of the node v
ontains a marker
on
ept that is in
on
i
t

with the a
tual label of the edge
onne
ting the prede
essor of v with v. Se
ond,

we need a
lash-trigger that dete
ts that an at-most restri
tion is violated.

De�nition 24. The set of
lash-triggers C
ontains all the
lash triggers of

S

ALC

, and additionally

{ all patterns (V;E; n; `) su
h that there exists an edge (v; w) 2 E, roles r; s,

and a
on
ept C with `(v; w) = r, M

s;C

2 n(w), and r 6= s;

{ all patterns (V;E; n; `) with root v

0

su
h that (6mr:C) 2 n(v

0

) and v

0

has

more than m r-neighbors
ontaining C.

Admissibility, ExpTime-admissibility, and re
ursive admissibility of S

ALCQI

an be shown as for S

ALC

. The proof of soundness and
ompleteness is similar

to known soundness and
ompleteness proofs for tableau algorithms for DLs

ontaining quali�ed number restri
tions and inverse roles (see, e.g., [18℄). In order

to have p-
ompleteness for an appropriate polynomial p, we must assume that

numbers in number restri
tions are given in unary
oding, i.e., the number m

really
ontributes with m to the size of the input. As an immediate
onsequen
e

of Theorem 1, we obtain the following upper-bound for the satis�ability problem

in ALCQI.

Corollary 2. ALCQI-
on
ept satis�ability w.r.t. TBoxes is in ExpTime.

6 Variants and Extensions

When de�ning the abstra
t notion of a tableau system, we had several degrees

of freedom. The de
isions we made were motivated by our desire to stay as
lose

as possible to the \usual" tableau-based algorithms for DLs while at the same

time obtaining a notion that is as general as possible. While writing the paper,

we have noti
ed that several de
isions
ould have been made di�erently. In the

following, we mention three alternative de
isions, one leading to a restri
ted

variant and two leading to extensions of the framework. Embedding the two

extensions into our framework is the subje
t of future work.

6.1 Changing the De�nition of Subpatterns

Re
all that our treatment of existential restri
tions in the tableau system S

ALC

di�ers from the usual treatment in tableau-based algorithms for ALC in that

it leads to a non-deterministi
 rule, whi
h
hooses between generating a new r-

su

essor or re-using an old one. In
ontrast, the usual rules treating existential

restri
tions always generate a new su

essor.

Why
ould we not employ the usual rule for handling existential restri
tions?

The reason is that then the tableau system would not be admissible. In fa
t,

the proof that Condition 2 of De�nition 7 is satis�ed for S

ALC

(given below

De�nition 7) strongly depends on the fa
t that r-su

essors
an be re-used. To

be more pre
ise, assume that P is a pattern whose root label
onsists of 9r:A for

a
on
ept name A, and whose root has exa
tly one su

essor u

1

, whi
h is an r-

su

essor with an empty label. Let P

0

be the pattern that is obtained from P by

adding A to the label of u

1

. Obviously, P - P

0

and P

0

is saturated. However, if

we
onsider the pattern P

1

that is obtained from P by adding a new r-su

essor

with label fAg, then P

1

6- P

0

. Thus, the deterministi
 rule P !

R

fP

1

g does not

satisfy Condition 2 of De�nition 7.

Could we
hange the framework su
h that the usual deterministi
 rule for

handling existential restri
tions be
omes admissible? One way to a
hieve this

would be to
hange the de�nition of the subpattern relation - (see De�nition 6)

by removing the requirement that � be inje
tive. In fa
t, with this new de�nition,

we would have P

1

- P

0

in the example above. By
onsistently repla
ing the old

version of - with this new version, we would obtain a framework where all the

results of Se
tions 3 and 4 still hold, and where the usual deterministi
 rule for

handling existential restri
tions in ALC is admissible.

Why did we not use this modi�ed framework? Intuitively, if we use a non-

inje
tive mapping � in the de�nition of -, then the a
tual number of r-su

essors

of a given node is irrelevant as long as we have one su

essor of ea
h \type."

Thus, a
lash-trigger that �res if a
ertain number of su

essors is ex
eeded

(like the one used in Se
tion 5) does not make sense. In fa
t, with the modi�ed

de�nition of -, a pattern P 2 C having at least m su

essors of the root node

ould be a subpattern of a pattern T; x where x has only one su

essor. Thus,

the modi�ed framework
ould not treat a DL like ALCQI, where the number of

su

essors (and not just their type)
ounts. For DLs like ALC, where the number

of su

essors of a given type is irrelevant,

12

the modi�ed framework
ould be

used, and would probably lead to simpler rules. However, we think that number

restri
tions are important enough in DLs to justify the use of a framework that

an handle them, even if this leads to a somewhat more
omplex treatment of

other
onstru
tors.

12

This follows from the bisimulation invarian
e of ALC, whi
h is an immediate
onse-

quen
e of bisimulation invarian
e of its synta
ti
 variant, multi-modal K

m

[5℄.

6.2 Using Larger Patterns

In our
urrent framework, patterns (the
lash-triggers and left-hand sides of

rules) are trees of depth at most one, i.e., we
onsider one node and its dire
t

su

essors when de�ning rules and
lash-triggers. In some
ases, it would be

more
onvenient to have larger patterns available. A
ase in point are DLs with

inverse roles (like ALCQI), where it would be more
onvenient to have not only

the dire
t su

essors of a node available, but also its dire
t prede
essor. In our

de�nition of the tableau system for ALCQI, we had to employ spe
ial markers

to memorize whether the prede
essor belongs to a
ertain
on
ept. Though this

works, it is not very natural, and it leads to rather
ompli
ated rules. Thus, a

natural extension motivated by ALCQI and similar DLs is to
onsider patterns

onsisting of a node together with its dire
t prede
essor and its dire
t su

essors.

This would yield a new framework that is
lose to two-way automata [28℄.

Why have we not made this extension? In
luding the prede
essor of a node

in the de�nition of patterns is an extension that appears to be tailored to the

treatment of DLs with inverse roles. Thus, it has the
avor of an ad-ho
 exten-

sion, with the
lear danger that adding another
onstru
tor may motivate yet

another extension of the framework.

Is there a more general extension? Instead of restri
ting patterns to being

ertain trees of depth 2, a more general extension would be to use as patterns

trees of some �xed depth k or patterns whose depth is bounded by some fun
tion

of the input size. We
onje
ture that it is possible to extend our framework in

this dire
tion while retaining the results shown in this paper. In
ontrast to the

extension of patterns by prede
essor nodes, this appears to require some more

work, though.

6.3 Allowing for Global Information

In the present framework, rules are lo
al in that they
onsider only one node and

its dire
t su

essors. The extension mentioned in the previous subse
tion extends

the s
ope of rules but leaves it still lo
al (bounded by the depth of patterns). In

some
ases, it would be
onvenient to be able to a

ess global information that

an in
uen
e the behavior of rules and
an also be
hanged by rules.

Is su
h global information useful? A typi
al example where it would be
on-

venient to allow for global information are DLs with so-
alled nominals, i.e.,

on
ept names that must be interpreted as singletons, and thus stand for a sin-

gle element of the interpretation domain. Assume that N is su
h a nominal. If N

o

urs in the label of two di�erent nodes of a
ompletion tree, then this means

that these nodes represent the same individual in the
orresponding model, and

thus the whole label sets of these nodes must
oin
ide in a saturated and
lash-

free
ompletion tree. Thus, rules and
lash-triggers that are designed to realizing

this are
on
erned with information about nodes that may be quite far apart

from ea
h other in the tree. One way of ensuring this
ould be to have, in ad-

dition to the
ompletion tree with its lo
al node labels, a global book-keeping

omponent that
ontains information about the labels of all nominals. A rule

that en
ounters the nominal N in the label of node v may then use the infor-

mation in the book-keeping
omponent for nominal N to extend the label of v,

but it may also extend the book-keeping
omponent based on what is found in

the label of v. Thus, through this book-keeping
omponent, information
an be

passed between nodes that are far apart from ea
h other in the tree.

Is this extension too general? We believe that this extension is harmless

as long as the number of possible \states" of the book-keeping
omponent is

appropriately bounded by the size of the input. Of
ourse, this depends on the

exa
t de�nition of the book-keeping
omponent and its intera
tion with rules

and
lash-triggers. The integration of su
h a book-keeping
omponent into our

framework and the proof that the results shown in the present paper still hold

in this extended framework is a subje
t of future resear
h.

Referen
es

1. F. Baader, D. Calvanese, D. M
Guinness, D. Nardi, and P. F. Patel-S
hneider, edi-

tors. The Des
ription Logi
 Handbook: Theory, Implementation, and Appli
ations.

Cambridge University Press, 2003.

2. F. Baader, E. Fran
oni, B. Hollunder, B. Nebel, and H.-J. Pro�tli
h. An empiri
al

analysis of optimization te
hniques for terminologi
al representation systems or:

Making KRIS get a move on. Applied Arti�
ial Intelligen
e. Spe
ial Issue on

Knowledge Base Management, 4:109{132, 1994.

3. F. Baader and W. Nutt. Basi
 des
ription logi
s. In [1℄, pages 43{95. 2003.

4. F. Baader and U. Sattler. An overview of tableau algorithms for des
ription logi
s.

Studia Logi
a, 69:5{40, 2001.

5. P. Bla
kburn, M. de Rijke, and Y. Venema. Modal Logi
, volume 53 of Cambridge

Tra
ts in Theoreti
al Computer S
ien
e. Cambridge University Press, 2001.

6. R. J. Bra
hman and H. J. Levesque, editors. Readings in Knowledge Representa-

tion. Morgan Kaufmann, Los Altos, 1985.

7. D. Calvanese and G. DeGia
omo. Expressive des
ription logi
s. In [1℄, pages

178{218. 2003.

8. G. De Gia
omo and M. Lenzerini. TBox and ABox reasoning in expressive des
rip-

tion logi
s. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Pro
. of the 5th

Int. Conf. on the Prin
iples of Knowledge Representation and Reasoning (KR'96),

pages 316{327. Morgan Kaufmann, Los Altos, 1996.

9. F. Donini. Complexity of reasoning. In [1℄, pages 96{136. 2003.

10. F. Donini and F. Massa

i. EXPTIME tableaux for ALC. A
ta Informati
a,

124(1):87{138, 2000.

11. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
omplexity of
on
ept

languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Pro
. of the 2nd

Int. Conf. on the Prin
iples of Knowledge Representation and Reasoning (KR'91),

pages 151{162. Morgan Kaufmann, Los Altos, 1991.

12. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tra
table
on
ept languages.

In Pro
. of the 12th Int. Joint Conf. on Arti�
ial Intelligen
e (IJCAI'91), pages

458{463, Sydney (Australia), 1991.

13. V. Haarslev and R. M�oller. RACER system des
ription. In Pro
. of the Int. Joint

Conf. on Automated Reasoning (IJCAR 2001), 2001.

14. B. Hollunder and F. Baader. Qualifying number restri
tions in
on
ept languages.

In Pro
. of the 2nd Int. Conf. on the Prin
iples of Knowledge Representation and

Reasoning (KR'91), pages 335{346, 1991.

15. I. Horro
ks. Using an expressive des
ription logi
: FaCT or �
tion? In Pro
. of the

6th Int. Conf. on Prin
iples of Knowledge Representation and Reasoning (KR'98),

pages 636{647, 1998.

16. I. Horro
ks. Implementation and optimization te
hniques. In [1℄, pages 306{346.

2003.

17. I. Horro
ks and U. Sattler. A des
ription logi
 with transitive and inverse roles

and role hierar
hies. J. of Logi
 and Computation, 9(3):385{410, 1999.

18. I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for very expressive

des
ription logi
s. J. of the Interest Group in Pure and Applied Logi
, 8(3):239{

264, 2000.

19. R. Ma
Gregor. The evolving te
hnology of
lassi�
ation-based knowledge repre-

sentation systems. In J. F. Sowa, editor, Prin
iples of Semanti
 Networks, pages

385{400. Morgan Kaufmann, Los Altos, 1991.

20. E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bull., 2(3),

1991.

21. M. Minsky. A framework for representing knowledge. In J. Haugeland, editor,

Mind Design. The MIT Press, 1981. A longer version appeared in The Psy
hology

of Computer Vision (1975). Republished in [6℄.

22. R. M�oller and V. Haarslev. Des
ription logi
 systems. In [1℄, pages 282{305. 2003.

23. P. F. Patel-S
hneider, D. L. M
Guiness, R. J. Bra
hman, L. Alperin Resni
k, and

A. Borgida. The CLASSIC knowledge representation system: Guiding prin
iples

and implementation rational. SIGART Bull., 2(3):108{113, 1991.

24. C. Peltason. The BACK system | an overview. SIGART Bull., 2(3):114{119,

1991.

25. M. R. Quillian. Word
on
epts: A theory and simulation of some basi

apabilities.

Behavioral S
ien
e, 12:410{430, 1967. Republished in [6℄.

26. K. S
hild. A
orresponden
e theory for terminologi
al logi
s: Preliminary report.

In Pro
. of the 12th Int. Joint Conf. on Arti�
ial Intelligen
e (IJCAI'91), pages

466{471, 1991.

27. M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
riptions with
omple-

ments. Arti�
ial Intelligen
e, 48(1):1{26, 1991.

28. M. Y. Vardi. Reasoning about the past with two-way automata. In Pro
. of the

25th Int. Coll. on Automata, Languages and Programming (ICALP'98), volume

1443 of Le
ture Notes in Computer S
ien
e, pages 628{641. Springer-Verlag, 1998.

29. M. Y. Vardi and P. Wolper. Automata-theoreti
 te
hniques for modal logi
s of

programs. J. of Computer and System S
ien
es, 32:183{221, 1986. A prelimi-

nary version appeared in Pro
. of the 16th ACM SIGACT Symp. on Theory of

Computing (STOC'84).

30. W. A. Woods and J. G. S
hmolze. The KL-ONE family. In F. W. Lehmann, edi-

tor, Semanti
 Networks in Arti�
ial Intelligen
e, pages 133{178. Pergamon Press,

1992. Published as a spe
ial issue of Computers & Mathemati
s with Appli
ations,

Volume 23, Number 2{9.

