
From Tableaux to Automata for

Desription Logis

Franz Baader

1

, Jan Hladik

1

, Carsten Lutz

1

, and Frank Wolter

2

1

Theoretial Computer Siene, TU Dresden,

D-01062 Dresden, Germany

fbaader,hladik,lutzg�ts.inf.tu-dresden.de

2

Department of Computer Siene, University of Liverpool

Liverpool L69 7ZF, U.K.

frank�s.liv.a.uk

Abstrat. This paper investigates the relationship between automata-

and tableau-based inferene proedures for Desription Logis. To be

more preise, we develop an abstrat notion of what a tableau-based al-

gorithm is, and then show, on this abstrat level, how tableau-based algo-

rithms an be onverted into automata-based algorithms. In partiular,

this allows us to haraterize a large lass of tableau-based algorithms

that imply an ExpTime upper-bound for reasoning in the desription

logis for whih suh an algorithm exists.

1 Introdution

Desription logis (DLs) [1℄ are a family of knowledge representation languages

whih an be used to represent the terminologial knowledge of an appliation

domain in a strutured and formally well-understood way. The name desription

logis is motivated by the fat that, on the one hand, the important notions of

the domain are desribed by onept desriptions, i.e., expressions that are built

from atomi onepts (unary prediates) and atomi roles (binary prediates)

using the onept and role onstrutors provided by the partiular DL. On the

other hand, DLs di�er from their predeessors, suh as semanti networks and

frames [25, 21℄, in that they are equipped with a formal, logi-based semantis,

whih an, e.g., be given by a translation into �rst-order prediate logi.

Knowledge representation systems based on desription logis (DL systems)

[30, 22℄ provide their users with various inferene apabilities (like subsumption

and instane heking) that allow them to dedue impliit knowledge from the

expliitly represented knowledge. In order to ensure a reasonable and preditable

behavior of a DL system, these inferene problems should at least be deidable,

and preferably of low omplexity. Consequently, the expressive power of the DL

in question must be restrited in an appropriate way. If the imposed restritions

are too severe, however, then the important notions of the appliation domain

an no longer be expressed. Investigating this trade-o� between the expressivity

of DLs and the omplexity of their inferene problems has been one of the most

important issues in DL researh (see [9℄ for an overview of omplexity results).



The fous of this researh has, however, hanged in the last 15 years. In

the beginning of the 1990ies, DL researhers investigated the border between

tratable and intratable DLs [11, 12℄, and systems that employed so-alled

strutural subsumption algorithms, whih �rst normalize the onept desrip-

tions, and then reursively ompare the syntati struture of the normalized

desriptions, were still prevalent [24, 19, 20, 23℄. It quikly turned out, however,

that strutural subsumption algorithms an handle only very inexpressive lan-

guages, and that one annot expet a DL of reasonable expressive power to

have tratable inferene problems. For expressive DLs, tableau-based inferene

proedures turned out to be quite useful. After the �rst suh tableau-based sub-

sumption algorithm was developed by Shmidt-Shau� and Smolka [27℄ for the

DL ALC, this approah was extended to various other DLs and also to other

inferene problems suh as the instane problem (see [4℄ for an overview).

Most of these early tableau-based algorithms for DLs were of optimal worst-

ase omplexity: they treated DLs with a PSpae-omplete subsumption prob-

lem, and the algorithms needed only polynomial spae. Thus, by designing a

tableau-based algorithm for suh a DL one ould solve two problems simulta-

neously: prove an optimal omplexity upper-bound, and desribe an algorithm

that is easy to implement and optimize [2℄, thus yielding a pratial reasoning

system for this DL. Modern tableau-based DL reasoners suh as FaCT [15℄ and

RACER [13℄ are based on very expressive DLs (like SHIQ [18℄), whih have an

ExpTime-omplete subsumption problem. Despite the high worst-ase omplex-

ity of the underlying logis, the systems FaCT and RACER behave quite well in

realisti appliations. This is mainly due to the fat that their implementors have

developed a great variety of sophistiated optimization tehniques for tableau-

based algorithms (see [16℄ for an overview of these tehniques). Tableau-based

algorithms are, however, notoriously bad at proving ExpTime upper-bounds.

3

In

many ases, ExpTime upper-bounds are easily established using automata-based

approahes (see, e.g., Setion 5.3 in [7℄). However, to the best of our knowledge,

there exist no pratial DL reasoners based on automata tehniques. Until now,

it was thus ommon pratie to devise two di�erent algorithms for every Exp-

Time-omplete DL, an automata-based one for establishing the exat worst-ase

omplexity, and a tableau-based one for the implementation.

This paper investigates the (rather lose) relationship between automata- and

tableau-based algorithms. To be more preise, we develop an abstrat notion of

what a tableau-based algorithm is, and then show, on this abstrat level, how

tableau-based algorithms an be onverted into automata-based algorithms. In

partiular, this allows us to haraterize a large lass of tableau-based algorithms

that imply an ExpTime upper-bound for reasoning in the DLs for whih suh

an algorithm exists. We onsider this to be a very useful result sine, in many

ases, it eliminates the need for developing two algorithms for the same DL: one

an now design a tableau-based algorithm, use our general result to obtain an

ExpTime upper-bound, and then base a pratial implementation on the very

3

The only suh result we know of [10℄ treats the ase of ALC with general onept

inlusions (GCIs), and even in this simple ase the algorithm is very ompliated.



same algorithm. We illustrate the usefulness of our framework by reproving the

known ExpTime upper-bounds for the desription logi ALC with general on-

ept inlusions [26℄, and for the extension ALCQI of ALC by quali�ed number

restritions and inverse roles [8℄.

In the next setion, we introdue the abstrat notion of a tableau system.

In order to motivate and illustrate the tehnial de�nitions, we �rst onsider

the example of a tableau-based algorithm for ALC with general onept inlu-

sions. In Setion 3, we de�ne additional restritions on tableau systems that

ensure an exponential upper-bound on reasoning. This upper-bound is shown

via a translation of tableau systems into looping tree automata. In Setion 4,

we show how tableau systems an diretly be used to obtain a tableau-based de-

ision proedure, whih an be the basis for an optimized implementation. The

main problem to be solved there is to ensure termination of the tableau-based

algorithm. In Setion 5, we apply the abstrat framework to a more omplex

DL: we design a tableau system for the DL ALCQI, thus giving an alternative

proof of the known ExpTime upper-bound for reasoning in this DL. Finally, in

Setion 6, we disuss possible variants and extensions of the abstrat framework.

2 Formalizing Tableau Algorithms

In this setion, we develop an abstrat formalization of tableau algorithms. To

this end, we �rst disuss the standard tableau-based algorithm for the basi

desription logi ALC, and then use this onrete example as a guide when

devising the abstrat framework.

2.1 A Tableau Algorithm for ALC

We start with introduing the syntax and semantis of ALC:

De�nition 1 (ALC Syntax). Let N

C

and N

R

be pairwise disjoint and ountably

in�nite sets of onept names and role names. The set of ALC-onepts CON

ALC

is the smallest set suh that

{ every onept name is an ALC-onept, and

{ if C and D are ALC-onepts and r is a role name, then the following ex-

pressions are also ALC-onepts: :C; C uD; C tD; 9r:C; 8r:C:

A general onept inlusion (GCI) is an expression C v D, where both C and D

are ALC-onepts. A �nite set of GCIs is alled ALC-TBox. We use TBOX

ALC

to denote the set of all ALC-TBoxes.

As usual, we will use > as abbreviation for an arbitrary propositional tautology,

? for :>, and C ! D for :C tD.

Note that there exist several di�erent TBox formalisms that vary onsid-

erably w.r.t. expressive power (see [3℄). The kind of TBoxes adopted here are

among the most general ones available. They are supported by modern DL rea-

soners suh as FaCT and RACER.

Like all DLs, ALC is equipped with a Tarski-style set-theoreti semantis.



De�nition 2 (ALC Semantis). An interpretation I is a pair (�

I

; �

I

), where

�

I

is a non-empty set, alled the domain, and �

I

is the interpretation funtion.

The interpretation funtion maps eah onept name A to a subset A

I

of �

I

and eah role name r to a subset r

I

of �

I

� �

I

. It is extended to arbitrary

ALC-onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9r:C)

I

:= fd 2 �

I

j There is e 2 �

I

with (d; e) 2 r

I

and e 2 C

I

g

(8r:C)

I

:= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 r

I

, then e 2 C

I

g

The interpretation I is a model of the ALC-onept C i� C

I

6= ;, and it is a

model of the TBox T i� C

I

� D

I

holds for all C v D 2 T .

The main inferene problems related to a TBox are satis�ability and sub-

sumption of onepts.

De�nition 3 (ALC Inferene Problems). The ALC-onept C is satis�able

w.r.t. the TBox T i� C and T have a ommon model, and C is subsumed by

the ALC-onept D w.r.t. the TBox T (written C v

T

D) i� C

I

� D

I

holds for

all models I of T .

Sine C v

T

D i� C u :D is unsatis�able w.r.t. T , it is suÆient to design a

satis�ability algorithm. We now disuss the standard tableau-based satis�ability

algorithm for ALC. This algorithm has �rst been desribed in [27℄; more modern

aounts an, e.g., be found in [4℄. It an rightfully be viewed as the anestor

from whih all state-of-the-art tableau-based algorithms for desription logis are

desended. Suh algorithms are nowadays the standard approah for reasoning

in DLs, and they underlie modern and eÆient reasoning systems suh as FaCT

and RACER, whih are based on DLs that are muh more expressive than ALC.

Tableau algorithms are haraterized by an underlying data struture, a set

of ompletion rules, and a number of so-alled lash-triggers. To deide the sat-

is�ability of an input onept C w.r.t. an input TBox T , the algorithm starts

with an initial instane of the data struture onstruted from C and T , and

repeatedly applies ompletion rules to it. This rule appliation an be viewed

as an attempt to onstrut a model for the input, or as making impliit knowl-

edge expliit. Rule appliation ontinues until either one of the lash-triggers

applies, whih means that the attempt to onstrut a model has failed, or all

impliit knowledge has been made expliit without enountering a lash-trigger.

In the latter ase, the algorithm has sueeded to onstrut (a representation

of) a model. To be more preise, the tableau algorithms onsidered in this paper

may be non-deterministi, i.e., there may exist ompletion rules that yield more

than one possible outome. In this ase, the algorithm returns \satis�able" i�

there exists at least one way to apply the non-deterministi rules suh that a



Ru if C

1

u C

2

2 N (a) and fC

1

; C

2

g 6� N (a)

then N (a) := N (a) [ fC

1

; C

2

g

Rt if C

1

t C

2

2 N (a) and fC

1

; C

2

g \ N (a) = ;

then N (a) := N (a) [ fCg for some C 2 fC

1

; C

2

g

R9 if 9r:C 2 N (a) and there is no r-suessor b of a with C 2 N (b),

then generate a new suessor b of a, and set E(a; b) := r and N (b) := fCg

R8 if 8r:C 2 N (a) and b is an r-suessor of a with C =2 N (b)

then set N (b) := N (b) [ fCg

RT if C v D 2 T and nnf(C ! D) =2 N (a)

then set N (a) := N (a) [ fnnf(C ! D)g

Fig. 1. Completion rules for ALC.

model of the input is obtained. Note that only the hoie of the outome of non-

deterministi rules is true \don't know" non-determinism (and thus requires

baktraking), whereas the order of rule appliations is basially \don't are"

non-determinism.

Before we an de�ne the data struture underlying the ALC tableau algo-

rithm, so-alled ompletion trees, we must introdue some notation. Given an

ALC-onept C, its negation normal form is an equivalent

4

onept suh that

negation ours only in front of onept names. Suh a onept an easily be

omputed by pushing negation as far as possible into onepts, using de Morgan's

rules and the usual duality rules for quanti�ers. We will denote the negation nor-

mal form of C by nnf(C). If C is an ALC-onept and T an ALC-TBox, then

we use sub(C; T ) to denote the set of all subonepts of the onepts in the set

fnnf(C)g [

[

DvE2T

fnnf(D ! E)g:

De�nition 4 (Completion Trees). Let C be an ALC-onept and T an ALC-

TBox. A ompletion tree for C and T is a labeled tree

5

T = (V;E;N ; E) of �nite

out-degree suh that (V;E) is a tree, eah node a 2 V is labeled with a subset

N (a) of sub(C; T ) and eah edge (a; b) 2 E is labeled with a role name E(a; b)

ourring in C or T .

The ompletion rules are given in Figure 1, where Rt is the only non-

deterministi rule. To deide satis�ability of a onept C w.r.t. a TBox T , the

ALC tableau algorithm starts with the initial ompletion tree

T

C;T

:= (fxg; ;; fx 7! fnnf(C)g; ;)

4

Two onepts are equivalent i� they subsume eah other w.r.t. the empty TBox.

5

Here and in the following, a tree is an ayli direted graph (V;E) with a unique

root where every node other than the root is reahable from the root and has exatly

one predeessor. The edge relation E is a subset of V � V , and thus the suessors

of a given node are not ordered.



and repeatedly applies ompletion rules. Rule appliation stops in one of the

following two ases:

1. the obtained ompletion tree T = (V;E;N ; E) ontains a lash, i.e. there is

a node a 2 V and a onept name A suh that fA;:Ag � N (a);

2. T is saturated, i.e. no more ompletion rule is appliable to T .

If we onsider only empty TBoxes (and thus drop the RT rule), then the

desribed algorithm terminates for any input and any sequene of rule applia-

tions. Things are not so simple if we admit non-empty TBoxes: beause of the

RT rule, the algorithm need not terminate, both on satis�able and on unsat-

is�able inputs. For example, rule appliation to the onept > and the TBox

f> v 9R:>g ontinues inde�nitely. However, the algorithm then omputes an

in�nite \inreasing" sequene of ompletion trees: in eah step, the tree and its

node labels may only grow but never shrink. In ase of non-termination, there

thus exists a unique ompletion tree omputed by this run of the algorithm \in

the limit". Thus, both terminating and non-terminating runs of the algorithm

\ompute" a unique ompletion tree. This (possibly in�nite) ompletion tree is

alled saturated i� no more ompletion rule is appliable to it.

The tableau algorithm for ALC is sound and omplete in the following sense:

{ Soundness. If the algorithm omputes a saturated and lash-free ompletion

tree for the input C; T , then C is satis�able w.r.t. T .

{ Completeness. If the input C; T is satis�able, then there is a run of the

algorithm that omputes a saturated and lash-free ompletion tree for this

input.

Given these notions of soundness and ompleteness, it should be lear that we

want our algorithm to ompute saturated ompletion trees. Obviously, any ter-

minating run of the algorithm yields a saturated ompletion tree. For this reason,

the order of rule appliations is in this ase \don't are" non-deterministi. For

a non-terminating run, this is only true if we require ompletion rules to be ap-

plied in a fair

6

manner. Ensuring fairness is a simple task: we an, e.g., always

apply ompletion rules to those nodes in the tree that are as lose to the root

as possible. This yields a fair strategy sine the out-degree of ompletion trees

onstruted for an input C; T is bounded by the ardinality of the set sub(C; T ).

Although the proedure as desribed until now does not neessarily terminate

and thus is no deision proedure for satis�ability, quite surprisingly we will

see that it already provides us with enough information to dedue an Exp-

Time upper-bound for ALC-onept satis�ability (and thus, in partiular, with

a deidability result). This will be shown by a translation into a tree automaton,

whih basially aepts saturated and lash-free ompletion trees for the input.

We view this as a rather onvenient feature of our framework: to obtain an Exp-

Time deision proedure, it is suÆient to design a sound and omplete tableau

6

Intuitively, fairness means that rules are applied suh that every appliable rule will

eventually be applied unless it is made inappliable by the appliation of other rules.



algorithm and not even bother to prove termination, a usually hard task (see

Setion 3 for details). Moreover, we will show in Setion 4 that a given non-

terminating sound and omplete tableau proedure an always be turned into a

terminating sound and omplete proedure. This yields a tableau-based deision

proedure, whih is, however, not neessarily of ExpTime omplexity.

2.2 The General Framework

We now develop a general notion of tableau algorithms. It is in the nature of

this endeavor that our formalism will be a rather abstrat one. We start with

de�ning the ore notion: tableau systems. Intuitively, the purpose of a tableau

system is to apture all the details of a tableau algorithm suh as the one for

ALC disussed in the previous setion. The set I of inputs used in the following

de�nition an be thought of as onsisting of all possible pairs (C; T ) of onepts

C and TBoxes T of the DL under onsideration.

De�nition 5 (Tableau System). Let I be a set of inputs. A tableau system

for I is a tuple

S = (NLE;EL; �

S

;R; C);

where NLE and EL are sets of node label elements and edge labels, respetively,

and �

S

is a funtion mapping eah input � 2 I to a tuple

�

S

= (nle; el; ini)

suh that

{ nle � NLE and el � EL are �nite;

{ ini is a subset of }(nle), where }(�) denotes powerset.

The de�nitions of R and C depend on the notion of an S-pattern, whih is a

�nite labeled tree

(V;E; n; `);

of depth at most one with n : V ! }(NLE) and ` : E ! EL node and edge labeling

funtions.

{ R, the olletion of ompletion rules, is is a funtion mapping eah S-pattern

to a �nite set of non-empty �nite sets of S-patterns;

{ C, the olletion of lash-triggers, is a set of S-patterns.

To illustrate tableau systems, we now de�ne a tableau system S

ALC

that de-

sribes the ALC tableau algorithm disussed in the previous setion. Intuitively,

NLE is the set of elements that may appear in node labels of ompletion trees,

independently of the input. In the ase of ALC, NLE is thus simply CON

ALC

.

Similarly, EL is the set of edge labels, also independently of the input. In the

ase of ALC, EL is thus the set of role names N

R

.

The funtion �

S

desribes the impat of the input on the form of the on-

struted ompletion trees. More preisely, nle �xes the node label elements that



may be used in a ompletion tree for a partiular input, and el �xes the edge

labels. Finally, ini desribes the possible initial node labels of the root of the om-

pletion tree. Note that the initial root label is not neessarily unique, but rather

there an be many hoies|a possible soure of (don't know) non-determinism

that does not show up in the ALC algorithm.

To illustrate the funtion �

S

, let us de�ne it for the tableau system S

ALC

.

For simpliity, we write nle

S

ALC

(C; T ) to refer to the �rst element of the tuple

(C; T )

S

ALC

, el

S

ALC

(C; T ) to refer to the seond element of the tuple (C; T )

S

ALC

,

and so forth. For eah input C; T 2 CON

ALC

� TBOX

ALC

, we have

nle

S

ALC

(C; T ) = sub(C; T );

el

S

ALC

(C; T ) = fr 2 N

R

j r appears in C or T g;

ini

S

ALC

(C; T ) = ffnnf(C)gg:

It remains to formalize the ompletion rules and lash-triggers. First observe

that, in the ALC tableau, every lash-trigger, every rule premise, and every rule

onsequene onerns only a single node either alone or together with its sues-

sors in the ompletion tree. This observation motivates our de�nition of patterns,

whih formalize lash-triggers as well as pre- and post-onditions of ompletion

rules. The olletion of ompletion rules R maps patterns to �nite sets of �nite

sets of patterns. Intuitively, if P is a pattern and fP

1

; : : : ; P

k

g 2 R(P ), then this

means that a rule of the olletion an be applied to ompletion trees mathing

the pattern P , non-deterministially replaing the \area" mathing P with an

\area" mathing one of the patterns P

1

; : : : ; P

k

(we will give a formal de�nition

of this later on). If fP

1

; : : : ; P

k

g 2 R(P ), then we will usually write

P !

R

fP

1

; : : : ; P

k

g

to indiate the rule indued by this element of R(P ). Similar to the appliation

of suh a rule, a ompletion tree ontains a lash if this ompletion tree mathes

a pattern in C.

To illustrate this, let us again onsider the ase of ALC. For ALC, the set

of lash-triggers C onsists of all patterns whose root label ontains both A and

:A for some onept name A. Thus, a ompletion tree ontains a lash if one of

its nodes labels ontains A and :A for some onept name A.

With one exeption, the olletion of ompletion rules is de�ned by a straight-

forward translation of the rules in Figure 1. For eah pattern P = (V;E; n; `)

with root v

0

, R(P ) is the smallest set of �nite sets of patterns suh that the

following holds:

Ru if the root label n(v

0

) ontains the onept C u D and fC;Dg 6� n(v

0

),

then R(P ) ontains the singleton set f(V;E; n

0

; `)g, where n

0

(v) = n(v) for

all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [ fC;Dg;

Rt if the root label n(v

0

) ontains the onept C t D and fC;Dg \ n(v

0

) =

;, then R(P ) ontains the set f(V;E; n

0

; `); (V;E; n

00

; `)g, where n

0

(v) =

n

00

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [ fCg and n

00

(v

0

) =

n(v

0

) [ fDg;



R9 if the root label n(v

0

) ontains the onept 9r:C, u

1

; : : : ; u

m

are all the sons

of v

0

with `(v

0

; u

i

) = r, and C 62 n(u

i

) for all i; 1 � i � m, then R(P )

ontains the set fP

0

; P

1

; : : : ; P

m

g, where

{ P

0

= (V

0

; E

0

; n

0

; `

0

), where u

0

is a node not ontained in V , V

0

= V [

fu

0

g, E

0

= E [f(v

0

; u

0

)g, n

0

= n[fu

0

7! fCgg, `

0

= `[f(v

0

; u

0

) 7! rg,

{ for i = 1; : : : ;m, P

i

= (V;E; n

i

; `), where n

i

(v) = n(v) for all v 2 V nfu

i

g

and n

i

(u

i

) = n(u

i

) [ fCg;

R8 if n(v

0

) ontains the onept 8r:C, `(r; v

1

) = r for some v

1

2 V , and

C =2 n(v

1

), then R(P ) ontains f(V;E; n

0

; `)g, where n

0

(v) = n(v) for all

v 2 V n fv

1

g and n

0

(v

1

) = n(v

1

) [ fCg;

RT if C v D 2 T and nnf(C ! D) =2 n(v

0

), then R(P ) ontains the set

f(V;E; n

0

; `)g, where n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [

fnnf(C ! D)g.

The exeption is the treatment of existential restritions. The rule in Figure 1

is deterministi: it always generates a new r-suessor of the given node. In

ontrast, the rule handling existential restritions introdued above (don't know)

non-deterministially hooses between generating a new suessor or re-using one

of the old ones. Basially, this is the prie we have to pay for having a very general

framework. The reason why one an always reate a new individual when treating

existential restritions in ALC is that ALC is invariant under bisimulation [5℄,

and thus one an dupliate suessors in models without hanging validity. We

ould have tailored our framework suh that the deterministi rule for ALC an

be used, but then we basially would have restrited its appliability to DLs

invariant under bisimulation (see Setion 6 for a more detailed disussion of this

issue).

Let us now ontinue with the general de�nitions. Tableau systems are a rather

general notion. In fat, as desribed until now they are too general to be useful for

our purposes. For example, tableau algorithms desribed by suh tableau systems

need not be monotoni: ompletion rules ould repeatedly (even inde�nitely) add

and remove the same piee of information. To prevent suh pathologi behavior,

we now formulate a number of onditions that \well-behaved" tableau systems

are supposed to satisfy. For the following de�nitions, �x a set of inputs I and a

tableau system S = (NLE;EL; �

S

;R; C) for I. Before we an de�ne admissibility

of tableau systems, we must introdue an \inlusion relation" between patterns.

De�nition 6. Let P = (V;E; n; `) and P

0

= (V

0

; E

0

; n

0

; `

0

) be S-patterns. We

write P - P

0

i� the following onditions are satis�ed: there is an injetion

� : V ! V

0

that maps the root of P to the root of P

0

and satis�es the following

onditions:

{ for all x 2 V , we have n(x) � n

0

(�(x));

{ for all x; y 2 V , if (x; y) 2 E, then (�(x); �(y)) 2 E

0

and

`(x; y) = `

0

(�(x); �(y));

If � is the identity on V , then we write P � P

0

(and P � P

0

if, additionally,

P 6= P

0

). If � is a bijetion and n(x) = n

0

(�(x)) for all x 2 V , then we write



P � P

0

. To make the injetion (bijetion) � expliit, we sometimes write P -

�

P

0

(P �

�

P

0

).

Let � 2 I be an input. We say that P is a pattern for � i� the labels of

all nodes in P are subsets of nle

S

(� ) and the labels of all edges in P belong to

el

S

(� ). The pattern P is saturated i� R(P ) = ;.

De�nition 7 (Admissible). The tableau system S is alled admissible i� it

satis�es, for all S-patterns P = (V;E; n; `) and P

0

= (V

0

; E

0

; n

0

; `

0

), the following

onditions:

1. If P !

R

fP

1

; : : : ; P

k

g, then P � P

i

for all i; 1 � i � k.

2. If P !

R

fP

1

; : : : ; P

k

g, P

0

is saturated, and P - P

0

, then there exists an

i; 1 � i � k, suh that P

i

- P

0

.

3. For all inputs � 2 I, if P is a pattern for � and P !

R

fP

1

; : : : ; P

k

g, then

the patterns P

i

are patterns for � .

4. If P 2 C and P - P

0

, then P

0

2 C.

It is in order to disuss the intuition underlying the above onditions. Condition 1

basially says that rule appliation always adds nodes or elements of node labels.

Condition 2 an be understood as follows. Assume that a (non-deterministi) rule

is appliable to P and that P

0

is a \superpattern" of P that is saturated (i.e.,

all appliable rules have already been applied). Then the non-deterministi rule

an be applied in suh a way that the obtained new pattern is still a subpattern

of P

0

. Intuitively, this ondition an be used to reah P

0

from P by repeated rule

appliation. Condition 3 says that, by applying ompletion rules for some input

� , we stay within the limits given by the values of the �

S

funtion. Condition 4

states that appliability of lash-triggers is monotoni, i.e., if a pattern triggers

a lash, all its \superpatterns" also trigger a lash.

It is easy to see that these onditions are satis�ed by the tableau system

S

ALC

for ALC. For Condition 1, this is obvious sine the rules only add nodes

or elements of node labels, but never remove them. Condition 3 holds sine rules

only add subonepts of existing onepts to the node label. Condition 4 is also

lear: if the label of the root of P ontains A and :A, then the label of the root

of every superpattern also ontains A and :A.

The most interesting ondition is Condition 2. We illustrate it by onsidering

the treatment of disjuntion and of existential restritions in S

ALC

. First, assume

that P !

R

fP

1

; P

2

g where the root label of P ontains CtD and the root labels

of P

1

and P

2

are obtained from the root label of P by respetively adding C and

D. If P - P

0

, then the root label of P

0

also ontains C tD. If, in addition, P

0

is

saturated, then its root label already ontains C or D. In the �rst ase, P

0

- P

1

and in the seond P

0

- P

2

.

Seond, onsider the rules handling existential restritions. Thus, let P - P

0

,

and assume that the root label of P ontains the existential restrition 9r:C and

that the root of P hasm r-suessors u

1

; : : : ; u

m

. Then the existential restrition

9r:C indues the rule P !

R

fP

0

; : : : ; P

m

g where the patterns P

0

; : : : ; P

m

are as

de�ned above. If, in addition, P

0

is saturated, then its root has an r-suessor



whose label ontains C. If this is a \new" r-suessor (i.e., one not in the range

of the injetion � that ensures P - P

0

), then P

0

- P

0

.

7

Otherwise, there is an

r-suessor u

i

of the root of P suh that the label of �(u

i

) in P

0

ontains C. In

this ase, P

i

- P

0

.

We now introdue S-trees, the abstrat ounterpart of ompletion trees, and

de�ne what it means for a pattern to math into an S-tree.

De�nition 8 (S-tree, Mathing). An S-tree is a labeled tree T = (V;E; n; `)

with �nite out-degree, a ountable set of nodes V , and the node and edge labeling

funtions n : V ! }(NLE) and ` : E ! EL.

Any node x 2 V de�nes a pattern T; x, the neighborhood of x in T , as

follows: T; x := (V

0

; E

0

; n

0

; `

0

) where

{ V

0

= fxg [ fy 2 V j (x; y) 2 Eg;

{ E

0

; n

0

; `

0

are the restritions of E; n; ` to V

0

;

If P = (V

0

; E

0

; n

0

; `

0

) is an arbitrary S-pattern and x 2 V , then we say that

P mathes x in T i� P � T; x (see De�nition 6).

For the tableau system for ALC introdued above, S

ALC

-trees are exatly the

ompletion trees de�ned in Setion 2.

We are now ready to desribe rule appliation on an abstrat level. Intuitively,

the rule P !

R

fP

1

; : : : ; P

k

g an be applied to the node x in the tree T if

P � T; x, and its appliation yields the new tree T

0

, whih is obtained from

T by adding new suessor nodes of x and/or extending the node labels, as

indiated by some P

i

. This intuition is formalized in the following de�nition.

De�nition 9 (Rule Appliation). Let S be an admissible tableau system,

T = (V;E; n; `) be an S-tree, and P !

R

fP

1

; : : : ; P

k

g be a rule of S. The S-tree

T

0

= (V

0

; E

0

; n

0

; `

0

) is obtained from T by appliation of this rule to a node x 2 V

i� the following holds:

1. V � V

0

;

2. E

0

= E [ f(x; y) j y 2 V

0

n V g;

3. `

0

extends `, i.e., `(y; z) = `

0

(y; z) for all (y; z) 2 E;

4. P �

�

T; x for some bijetion �;

5. P

i

�

�

0

T

0

; x for some i; 1 � i � k and bijetion �

0

extending �;

8

6. for all y 2 V with y =2 ran(�), we have n(y) = n

0

(y).

Thus, rule appliation may add some new suessors of x, may extend the la-

bels of the existing suessors of x and of x itself, and otherwise leaves the

7

This shows that we annot replae - by � in the statement of Condition 2. In fat,

we annot be sure that the new suessor introdued in P

0

has the same name as

the new suessor in P

0

.

8

Note that Condition 1 in the de�nition of admissibility implies that P

i

di�ers from

P in that the root may have additional suessors, and that the node labels may

be larger. Thus, �

0

di�ers from � in that the additional suessors of the root are

mapped to the elements of V

0

n V .



edge relation and the node and edge labels unhanged. For a �xed rule P !

R

fP

1

; : : : ; P

k

g, a �xed hoie of P

i

, and a �xed node x in T , the results of the

rule appliation is unique up to the names of the new nodes in V

0

nV . It is easy

to hek that, in the ase of S

ALC

, rule appliation as de�ned above aptures

preisely the intuitive understanding of rule appliation employed in Setion 2.

To �nish our abstrat de�nition of tableau algorithms, we need some way to

desribe the set of S-trees that an be obtained by starting with an initial S-tree

for an input � , and then repeatedly applying ompletion rules. This leads to the

notion of S-trees for � .

De�nition 10 (S-tree for � ). Let S be an admissible tableau system, and let

� be an input for S. The set of S-trees for � is the smallest set of S-trees suh

that

1. All initial S-trees for � belong to this set, where an initial S-tree for � is of

the form

(fv

0

g; ;; fv

0

7! �g; ;)

where v

0

is a node and � 2 ini

S

(� ).

2. If T is an S-tree for � and T

0

an be obtained from T by the appliation of

a ompletion rule, then T

0

is an S-tree for � .

3. If T

0

; T

1

; : : : is an in�nite sequene of S-trees for � with T

i

= (V

i

; E

i

; n

i

; `

i

)

suh that

(a) T

0

is an initial S-tree for � and

(b) for all i � 0, T

i+1

an be obtained from T

i

by the appliation of a om-

pletion rule,

then the tree T

!

= (V;E; n; `) is also an S-tree for � , where

{ V =

S

i�0

V

i

,

{ E =

S

i�0

E

i

,

{ n =

S

i�0

n

i

, and

{ ` =

S

i�0

`

i

.

Rule appliation may terminate after �nitely many steps or ontinue forever.

The last ase of De�nition 10 deals with suh in�nite sequenes of rule appli-

ations. The S-tree T

!

an be viewed as the limit of the sequene of S-trees

T

0

; T

1

; : : : This limit exists sine admissibility of S implies that rule appliation

is monotoni, i.e., it extends S-trees by new nodes or by additional elements in

node labels, but it never removes nodes or elements of node labels.

Let us now de�ne when an S-tree is saturated and lash-free.

De�nition 11 (Saturated, Clash-free). Let S be an admissible tableau sys-

tem. We say that the S-tree T = (V;E; n; `) is

{ saturated if, for every node x in T and every pattern P , P � T; x implies

R(P ) = ;;

{ lash-free if, for every node x in T and every P 2 C, we have P 6� T; x.



Saturatedness says that no ompletion rule is appliable to the S-tree, and an

S-tree is lash-free if no lash-trigger an be applied to any of its nodes.

Finally, we de�ne soundness and ompleteness of tableau systems w.r.t. a

ertain property of its set of inputs. If the inputs are pairs onsisting of a onept

and a TBox, the property is usually satis�ability of the onept w.r.t. the TBox.

De�nition 12 (Sound, Complete). Let P � I be a property. The tableau

system S is alled

{ sound for P i�, for any � 2 I, the existene of a saturated and lash-free

S-tree for � implies that � 2 P;

{ omplete for P i�, for any � 2 P, there exists a saturated and lash-free

S-tree for � .

It should be noted that the algorithmi treatment of tableau systems requires

a stronger notion of ompleteness: an additional ondition is needed to ensure

that the out-degree of S-trees is appropriately bounded (see De�nition 13 and

De�nition 20 below).

Taking into aount the known soundness and ompleteness results for the

ALC tableau algorithm desribed in Figure 1, it is straightforward to hek that

the tableau system S

ALC

is sound and omplete w.r.t. satis�ability of onepts

w.r.t. TBoxes. Note, in partiular, that saturated S-trees for an input � are

preisely those S-trees for � that an be obtained by exhaustive or in�nite and

fair rule appliation.

3 ExpTime Automata-based Deision Proedures from

Tableau Systems

In this setion, we de�ne the lass of \ExpTime-admissible" tableau systems. If

suh a tableau system is sound and omplete for a property P , then it gives rise

to an ExpTime algorithm for deiding P .

9

In the ase where P is satis�ability

of desription logi onepts w.r.t. a (general) TBox, this means that the mere

existene of an ExpTime-admissible tableau system for the DL implies an Exp-

Time upper-bound for onept satis�ability w.r.t. (general) TBoxes in this DL.

The ExpTime upper-bound is shown via a translation of the inputs of the Exp-

Time-admissible tableau system into ertain automata working on in�nite trees.

For this reason, ExpTime-admissible tableau systems need not deal with the

issue of termination. Indeed, non-terminating tableau algorithms suh as the

one for ALC with general TBoxes introdued in Setion 2.1 may yield ExpTime-

admissible tableau systems.

Throughout this setion, we onsider a �xed set of inputs I and a �xed

tableau system S = (NL;EL; �

S

;R; C) for I, whih is sound and omplete w.r.t.

some property P .

9

As usual, the exponential upper-bound of deiding P is as-

sumed to be in the \size" of the input � 2 I. Thus, we assume that the set

9

More preisely, we must demand a slightly stronger version of ompleteness, as in-

trodued in De�nition 13 below.



of inputs is equipped with a size funtion, whih assigns to an input � 2 I a

natural number, its size j� j.

3.1 Basi Notions

Reall that a tableau system S is sound and omplete for a property P if, for

any input � , we have � 2 P i� there exists a (potentially in�nite) saturated

and lash-free S-tree for � . The fundamental idea for obtaining an ExpTime

upper-bound for deiding P is to use automata on in�nite trees to hek for the

existene of a lash-free and saturated S-tree for a given input � . More preisely,

eah input � is onverted into a tree automatonA

�

suh that there exists a lash-

free and saturated S-tree for � i� A

�

aepts a non-empty language. Sine tree

automata work on trees of some �xed out-degree, this approah only works if

the (size of the) input determines suh a �xed out-degree for the S-trees to be

onsidered. This motivates the following de�nition.

De�nition 13 (p-Complete). Let p be a polynomial. The tableau system S is

alled p-omplete for P i�, for any � 2 P, there exists a saturated and lash-free

S-tree for � with out-degree bounded by p(j� j).

Throughout this setion, we assume that there exists a polynomial p suh that

the �xed tableau system S is p-omplete w.r.t. the property P under onsidera-

tion.

The tableau system S

ALC

de�ned in Setion 2 is easily proved to be i-

omplete, with i being the identity funtion on the natural numbers: using the

formulation of the rules, it is easily proved that the out-degree of every S

ALC

-

tree for the input (C; T ) is bounded by the number of onepts of the form 9r:D

in sub(C; T ) and thus also by

j(C; T )j := jCj+

X

C

1

vC

2

2T

(jnnf(C

1

! C

2

)j);

where jEj denotes the length of the onept E.

It should be noted that most standard desription logi tableau algorithms

also exploit p-ompleteness of the underlying logi: although this is not made

expliit in the formulation of the algorithm itself, it is usually one of the entral

arguments in termination proofs. The intuition that p-ompleteness is not an

artefat of using an automata-based approah is reinfored by the fat that a

similar strengthening of ompleteness is needed in Setion 4, where we onstrut

tableau-based deision proedures from tableau systems.

To ensure that the automaton A

�

an be omputed and tested for emptiness

in exponential time, we require the funtion �

S

of the tableau system S and the

rules of S to exhibit an \aeptable" omputational behavior. This is aptured

by the following de�nition. In this de�nition, we assume that all patterns are

appropriately enoded in some �nite alphabet, and thus an be the input for a

deision proedure. The size of a pattern P is the sum of the sizes of its node

and edge labels, where the size of a node label is the sum of the sizes of its node

label elements.



De�nition 14 (ExpTime-admissible). The tableau system S is alled Exp-

Time-admissible i� the following onditions are satis�ed:

1. S is admissible (see De�nition 7);

2. ini

S

(� ) and el

S

(� ) an be omputed in time exponential in j� j, and the size

of eah edge label in el

S

(� ) is polynomial in j� j;

3. the ardinality of nle

S

(� ) and the size of eah node label element in nle

S

(� )

is polynomial in j� j, and nle

S

(� ) an be omputed in time exponential in

j� j;

4. for eah pattern P it an be heked in time exponential in the size of P

whether, for all patterns P

0

, P

0

� P implies R(P

0

) = ;;

5. for eah pattern P it an be heked in time exponential in the size of P

whether there is a lash-trigger P

0

2 C suh that P

0

� P .

Note that Point 2 of ExpTime-admissibility implies that, for eah � 2 I, the

ardinality of the sets ini

S

(� ) and el

S

(� ) are at most exponential in j� j. The

ardinality of the set of node label elements nle

S

(� ) is expliitly required (in

Point 3) to be polynomial. For the atual set of node labels (whih are sets of

node label elements), this yields an exponential upper-bound on its ardinality,

but the size of eah node label is polynomial in j� j. Sine p-ompleteness implies

that we onsider only S-trees T of out-degree bounded by p(j� j), and sine the

sizes of edge and node labels are polynomial in j� j, the size of eah neighborhood

T; x is polynomial in j� j. Thus, the fourth point ensures that the saturatedness

ondition an be heked in time exponential in j� j for a given neighborhood

T; x of T . The �fth point yields the same for lash-freeness.

Most standard desription logi tableau algorithms for ExpTime-omplete

DLs trivially satisfy the onditions of ExpTime-admissibility. For example, it is

easy to show that the tableau system S

ALC

de�ned in Setion 2 is ExpTime-

admissible. We have already shown admissibility of S

ALC

, and Point 2 and 3

are immediate onsequenes of the de�nitions of ini

S

ALC

, nle

S

ALC

, and el

S

ALC

.

To see that Points 4 and 5 are satis�ed as well, �rst note that the de�nition of

the rules and lash-triggers in S

ALC

is invariant under isomorphism of patterns.

For this reason, the deision problem in Point 4 redues to heking whether a

given pattern P is saturated (see the de�nition of this notion below De�nition 6),

and the deision problem in Point 5 redues to heking whether a given pat-

tern is a lash-trigger. As an example, we onsider the rule handling existential

restritions. Let P = (V;E; n; `) be a pattern with root v

0

, and assume that

9r:C 2 n(v

0

). This existential restrition ontributes a set of patterns to R(P )

i� C 62 n(u) for all r-suessors u of v

0

. Obviously, this an be heked in time

polynomial in the size of the pattern.

The remainder of the present setion is onerned with onverting tableau

systems into automata-based deision proedures, as outlined above. The ma-

jor hallenge is to bring together the di�erent philosophies underlying tableau

algorithms and automata-based approahes for deiding onept satis�ability:

tableau algorithm atively try to onstrut a model for the input by applying

rules, as reeted in the De�nitions 9 and 10, whereas automata are based on

the onept of \aeptane" of a tree, i.e., they verifying whether a given tree



atually desribes a model. Of ourse, the emptiness test for the automaton then

again heks whether suh a tree exists. Due to these di�erent perspetives, it

is not straightforward to onstrut automata that diretly hek for the exis-

tene of S-trees for an input � . To overome this problem, we �rst introdue

the (less onstrutive) notion of S-trees ompatible with � , and investigate the

relationship of this notion to S-trees for � , as introdued in De�nition 10.

De�nition 15 (S-tree ompatible with � ). Let � be an input and T =

(V;E; n; `) an S-tree with root v

0

. Then T is ompatible with � i� it satis�es

the following onditions:

1. n(x) � }(nle

S

(� )) for eah x 2 V ;

2. `(x; y) 2 el

S

(� ) for eah (x; y) 2 E;

3. there exists � 2 ini

S

(� ) suh that � � n(v

0

);

4. the out-degree of T is bounded by p(j� j).

Below, we will show that, given an ExpTime-admissible tableau system S that

is sound and p-omplete for some property P and an input � for S, we an

onstrut a looping tree automaton of size exponential in the size of � that

aepts exatly the saturated and lash-free S-trees ompatible with � . Sine the

emptiness problem for looping tree automata an be deided in time polynomial

(atually, linear) in the size of the automaton, this shows that the existene of

saturated and lash-free S-trees ompatible with � an be deided in exponential

time. Sine S is sound and p-omplete for P , we have � 2 P i� there is a

saturated and lash-free S-tree for � . Thus, we must investigate the onnetion

between S-trees for � and S-trees ompatible with � . This is done in the next

lemma.

In the proof of the lemma, we need sub-tree relations between S-trees in

analogy to the inlusion relations \-" and \�" between patterns introdued in

De�nition 6. These relations are de�ned on trees exatly as for patterns, and we

also use the same relation symbols for them.

Lemma 1. There exists a lash-free and saturated S-tree that is ompatible

with � i� there exists a lash-free and saturated S-tree for � .

Proof. The \if" diretion is straightforward: let T = (V;E; n; `) be a lash-free

and saturated S-tree for � . Sine S is sound and p-omplete for P , we an w.l.o.g.

assume that the out-degree of T is bounded by p(j� j). It is not hard to show

that T is ompatible with � , i.e. satis�es Conditions 1 to 4 of De�nition 15:

{ Eah initial S-tree satis�es Conditions 1 and 2 of ompatibility, and Con-

dition 3 of admissibility ensures that rule appliation adds only node label

elements from nle

S

(� ) and edge labels from el

S

(� ).

{ Eah initial S-tree satis�es Condition 3 of ompatibility, and rule appliation

annot delete elements from node labels.

{ Sine we assume the out-degree of T to be bounded by p(j� j), Condition 4

of ompatibility is also satis�ed.



Now for the \only if" diretion. Let T = (V;E; n; `) be a lash-free and

saturated S-tree with root v

0

that is ompatible with � . To onstrut a lash-

free and saturated S-tree for � , we �rst onstrut a (possibly in�nite) sequene

T

1

� T

2

� T

3

� � � �

of S-trees for � suh that T

i

-

�

i

T for all i � 1. The onstrution will be

suh that the injetions �

i

that yield T

i

- T also build an inreasing hain, i.e.,

�

i+1

extends �

i

for all i � 1. In the onstrution, we use a ountably in�nite

set V

0

from whih the nodes of the trees T

i

are taken. We �x an arbitrary

enumeration x

0

; x

1

; : : : of V

0

, and write x < y if x 2 V

0

ours before y 2 V

0

in

this enumeration. We then proeed as follows:

{ Sine T is ompatible with � , there exists � 2 ini

S

(� ) suh that � � n(v

0

).

De�ne T

1

to be the initial S-tree (fx

0

g; ;; fx

0

7! �g; ;): Obviously, T

1

-

�

1

T

for �

1

:= fx

0

7! v

0

g.

{ Now, assume that T

i

-

�

i

T is already onstruted. If T

i

is saturated, then

T

i

is the last tree in the sequene. Otherwise, hoose the least node x in T

i

(w.r.t. the �xed ordering < on V

0

) suh that P � T

i

; x for some pattern

P that is not saturated, i.e. there exists a rule P !

R

fP

1

; : : : ; P

k

g. Sine

T

i

-

�

i

T , we have P - T; �

i

(x). Sine T is saturated, the pattern T; �

i

(x) is

saturated. By Condition 2 of admissibility, we have P

j

- T; �

i

(x) for some

j with 1 � j � k. We apply the rule P !

R

fP

1

; : : : ; P

k

g to x in T

i

suh

that P

j

� T

i+1

; x. If T

i+1

ontains new nodes, then they are taken from V

0

.

Admissibility yields T

i

� T

i+1

and the fat that P

j

- T; �

i

(x) implies that

we an de�ne an injetion �

i+1

suh that T

i+1

-

�

i+1

T .

In the de�nition of the lash-free and saturated S-tree T

�

for � , we distinguish

two ases:

1. if the onstruted sequene is �nite and T

n

is the last tree in the sequene,

then set T

�

:= T

n

;

2. otherwise, let T

�

be the S-tree T

!

obtained from the sequene T

1

; T

2

; : : : as

in Case 3 of De�nition 10.

In both ases, T

�

is obviously an S-tree for � by de�nition. In addition, we have

T

�

-

�

T where � is the injetion obtained as the union of the injetions �

i

for

i � 1.

It remains to be shown that T

�

is lash-free and saturated. We onentrate

on the seond ase, where T

�

= T

!

, sine the �rst ase is similar, but simpler.

Clash-freeness is an easy onsequene of T

�

- T . In fat, by Condition 4 of

admissibility, lash-freeness of T implies that T

�

- T is also lash-free.

To show saturatedness of T

�

, we must look at T

�

and its relationship to the

trees T

i

in more detail. Sine T

i

� T

�

- T and the out-degree of T is bounded

by p(j� j), the out-degrees of the trees T

i

and T

�

are also bounded by p(j� j). For

a given node x of T

�

, we onsider its neighborhood T

�

; x. Sine the rules of S

only add nodes or elements of node labels (see Condition 1 in the de�nition of

admissibility), and sine the out-degree of x is bounded by p(j� j) and the set



nle

S

(� ) is �nite, there is an i suh that x is a node of T

i

and \the neighborhood

of x does not hange after step i," i.e., T

i

; x = T

i+1

; x = : : : = T

�

; x.

Now assume that T

�

is not saturated, i.e., there exists a node x in T

�

to

whih a rule applies, i.e., P � T

�

; x for some pattern P with R(P ) 6= ;. Let i

be suh that T

i

; x = T

i+1

; x = : : : = T

�

; x. Thus, for j � i, a rule applies to

the node x in T

i

. In the onstrution of the sequene T

1

; T

2

; T

3

; : : :, we apply a

rule only to the least node to whih a rule is appliable. Consequently, from the

ith step on, we only apply rules to nodes y � x. Sine there are only �nitely

many suh nodes (see the de�nition of the order < above), there is one node

y � x to whih rules are applied in�nitely often. However, eah rule appliation

stritly inreases the number of suessors of y, or the label of y or of one of its

suessors. This ontradits the fat that the out-degree of y in the trees T

i

is

bounded by p(j� j) and all node labels are subsets of the �nite set nle

S

(� ). ut

3.2 Aepting Compatible S-trees Using Looping Automata

Reall that we assume our tableau system S to be sound and p-omplete w.r.t. a

property P . By Lemma 1, to hek whether an input has property P , it thus suf-

�es to verify the existene of a saturated and lash-free S-tree that is ompatible

with � . In this setion, we show how this an be done using an automata-based

approah.

As usual, the automata work on k-ary in�nite trees (for some �xed natural

number k) whose nodes are labeled by elements of a �nite label set and whose

edges are ordered, i.e., we an talk about the i-th son of a node. To be more

preise, letM be a set and k � 1. A k-ary M-tree is a mapping T : f1; : : : ; kg

�

!

M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively, the node

�i is the i-th hild of �. We use � to denote the empty word, orresponding to

the root of the tree.

De�nition 16 (Looping Tree Automata). A looping tree automaton A =

(Q;M; I;�) working on k-ary M-trees onsists of a �nite set Q of states, a

�nite alphabet M , a set I � Q of initial states, and a transition relation � �

Q�M �Q

k

.

A run of A on an M-tree T is a mapping R : f1; : : : ; kg

�

! Q suh that

R(�) 2 I and

(R(�); T (�); R(�1); : : : ; R(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

. The language of k-ary M-trees aepted by A is

L(A) := fT j there is a run of A on the k-ary M-tree Tg:

Note that, in ontrast to the S-trees onsidered above, the trees de�ned here

are in�nite trees of a �xed arity k, where edges are not labeled, but ordered.

It is, however, not hard to onvert S-trees ompatible with a given input into

k-ary M -trees for appropriate k and M . This is ahieved by (i) \padding" with

additional dummy nodes, and (ii) representing edge labels via node labels.



De�nition 17 (Padding). Let � 2 I be an input and T = (V;E; n; `) an S-

tree with root v

0

2 V that is ompatible with � . For eah x 2 V , we use d(x)

to denote the out-degree of x in T . We assume that the suessors of eah node

x 2 V are linearly ordered and that, for eah node x 2 V n fv

0

g, s(x) = i i� x

is the i-th suessor of its predeessor. We indutively de�ne a funtion m from

f1; : : : ; p(j� j)g

�

to V [ f℄g (where ℄ 62 V ) as follows:

{ m(�) = v

0

;

{ if m(�) = x, (x; y) 2 E, and s(y) = i, then m(�i) = y;

{ if m(�) = x and d(x) < i, then m(�i) = ℄;

{ if m(�) = ℄, then m(�i) = ℄ for all i 2 f1; : : : ; p(j� j)g.

Let tl

S

(� ) denote the set (}(nle

S

(� ))� el

S

(� ))[ f(℄; ℄)g. The padding P

T

of T

is the p(j� j)-ary tl

S

(� )-tree de�ned by setting

1. P

T

(�) = (n(v

0

); e

0

) where e

0

is an arbitrary (but �xed) element of el

S

(� );

2. P

T

(�) = (n(x); �) if � 6= �, m(�) = x 6= ℄, and `(y; x) = � where y is the

(unique) predeessor of x in T ;

3. P

T

(�) = (℄; ℄) if m(�) = ℄.

We now de�ne, for eah input � 2 I, a looping automaton A

�

that aepts

a non-empty language i� there exists a saturated and lash-free S-tree that is

ompatible with � .

De�nition 18 (Automaton for Input � ). Let � 2 I be an input and h =

p(j� j). The automaton A

�

is de�ned as follows:

{ Q :=M := tl

S

(� );

{ I := f(	; e

0

) j � � 	 for some � 2 ini

S

(� )g;

{ ((�

0

; �

0

); (�;�); (�

1

; �

1

); : : : ; (�

h

; �

h

)) 2 � i� the following two onditions

are satis�ed:

1. (�

0

; �

0

) = (�;�);

2. either �

0

= �

1

= � � � = �

h

= ℄,

or there is a 0 � k � h suh that �

0

; : : : ; �

k

di�er from ℄, �

k+1

= � � � =

�

h

= ℄, and the pattern P

�

= (V

�

; E

�

; n

�

; `

�

) de�ned as

{ V

�

:= fi j 0 � i � kg,

{ E

�

:= f(0; i) j i 2 V

�

n f0gg,

{ n

�

= fi 7! �

i

j i 2 V

�

g, and

{ `

�

:= f(0; i) 7! �

i

j i 2 V

�

n f0gg

satis�es the following onditions:

(a) for eah pattern P with P � P

�

, P is saturated (i.e. R(P ) = ;);

(b) for eah pattern P 2 C, we have P 6� P

�

.

The following lemma shows that the automaton A

�

aepts exatly the paddings

of saturated and lash-free S-trees ompatible with � . Consequently, it aepts

a non-empty set of trees i� there exists a saturated and lash-free S-tree om-

patible with � .



Lemma 2. Let � 2 I be an input. Then

L(A

�

) = fP

T

j T is a saturated and lash-free S-tree ompatible with �g:

Proof. First, assume that T is a saturated and lash-free S-tree ompatible with

� . We laim that P

T

itself is a run of A

�

on P

T

. In fat, P

T

(�) 2 I is an imme-

diate onsequene of the de�nition of padding and Condition 3 in the de�nition

of S-trees ompatible with � . Now, onsider some node � of P

T

. The �rst on-

dition in the de�nition of � is satis�ed sine we have P

T

as run on itself. Thus,

onsider the seond ondition. If P

T

(�) = (℄; ℄), then the de�nition of padding

implies that all the suessor nodes of � also have label (℄; ℄), and thus the se-

ond ondition in the de�nition of � is satis�ed. Otherwise, it is easy to see that

the pattern P

�

de�ned in the seond ondition in the de�nition of � is also a

pattern in T . Sine T is saturated and lash-free, P

�

thus satis�es (a) and (b)

in the seond ondition in the de�nition of �. This ompletes the proof that P

T

is a run of A

�

on P

T

, and thus shows that P

T

2 L(A

�

).

Seond, assume that

b

T is a tree aepted by A

�

. Beause of the �rst ondition

in the de�nition of �,

b

T itself is a run of A

�

on

b

T . The de�nitions of Q, I , and �

imply that there is an S-tree T ompatible with � suh that P

T

=

b

T . This tree

an be obtained from

b

T by removing all the padding. It remains to be shown

that T is saturated and lash-free. Thus, onsider a node x of T , and let � be

the orresponding node in P

T

=

b

T . Sine x is a node in T , the node � has a label

di�erent from (℄; ℄). Let us now onsider the transition from � to its suessor

nodes. It is easy to see that the pattern P

�

de�ned in the seond ondition in

the de�nition of the transition relation oinides with T; x. Thus (a) and (b) in

this ondition imply that no rule and no lash-trigger is appliable to x. ut

We are now ready to prove the main result of this setion: the ExpTime

upper-bound indued by ExpTime-admissible tableau systems.

Theorem 1. Let I be a set of inputs, P � I a property, and p a polynomial.

If there exists an ExpTime-admissible tableau system S for I that is sound and

p-omplete for P, then P is deidable in ExpTime.

Proof. Let � 2 I be an input. To deide whether � 2 P , we onstrut the

automaton A

�

and then hek whether it aepts a non-empty language. By

Lemmas 1 and 2, this algorithm is orret. Thus, it remains to be shown that

it an be exeuted in exponential time. To see that the automaton A

�

an be

onstruted in time exponential in j� j, note that, by Conditions 2 and 3 of Exp-

Time-admissibility, we an ompute }(nle

S

(� )) and el

S

(� ) in time exponential in

j� j, and thus the same holds for tl

S

(� ) = Q =M , and I . The transition relation

� an be omputed in exponential time due to the Conditions 4 and 5 of Exp-

Time-admissibility and the fat that p is a polynomial. Sine the automaton an

be omputed in exponential time, its size is at most exponential in j� j. Thus, it

remains to note that the emptiness test for looping tree automata an be realized

in polynomial time [29℄. ut



Sine we have shown that the tableau system S

ALC

is ExpTime-admissible as

well as sound and p-omplete (for some polynomial p) for satis�ability of ALC-

onepts w.r.t. (general) TBoxes, we an immediately put Theorem 1 to work:

Corollary 1. ALC-onept satis�ability w.r.t. TBoxes is in ExpTime.

4 Tableau-based Deision Proedures from Tableau

Systems

The tableau systems desribed in Setion 2.2 annot immediately be used as

tableau-based deision proedures sine rule appliation need not terminate.

The purpose of this setion is to show that, under ertain natural onditions,

the addition of a straightforward yle detetion mehanism turns them into (ter-

minating) deision proedures. The resulting proedures are struturally similar

to standard tableau-based algorithms for desription logis, suh as the ones un-

derlying systems like FaCT and RACER. In ontrast to the ExpTime algorithm

onstruted in the previous setion, the proedures obtained here are usually not

worst-ase optimal|a prie we have to pay for more easily implementable and

optimizable deision proedures.

Fix a set of inputs I and a tableau system S = (NLE;EL; �

S

;R; C) for I. As in

the previous setion, we require that S has a number of omputational properties.

Sine we do not onsider omplexity issues in this setion, it is suÆient for our

purposes to impose e�etiveness (and not eÆieny) onstraints. We start with

modifying De�nition 14:

De�nition 19 (Reursive Tableau System). S is alled reursive i� the

following onditions are satis�ed:

1. S is admissible (see De�nition 7);

2. ini

S

(� ) an be omputed e�etively;

3. for eah pattern P it an be heked e�etively whether, for all patterns P

0

,

P

0

� P implies R(P

0

) = ;; if this is not the ase, then we an e�etively

determine a rule

P

0

!

R

fP

1

; : : : ; P

k

g

and a bijetion � suh that P

0

�

�

P .

4. for eah pattern P it an be heked e�etively whether there is a lash-trigger

P

0

2 C suh that P

0

� P .

The main di�erene between this de�nition and De�nition 14 is Condition 3,

whih now requires that, besides heking the appliability of rules, we an ef-

fetively apply at least one rule whenever some rule is appliable at all. Another

di�erene is that we do not atually need to ompute the sets el

S

(� ) and nle

S

(� )

in order to apply rules.

Analogously to the ase of ExpTime-admissibility, it an be veri�ed that the

tableau system S

ALC

is reursive. In partiular, for the seond part of Condition 3

we an again use the fat that the rules of S

ALC

are invariant under isomorphism



Preonditions: Let I be a set of inputs, P � I a property, f a reursive funtion, and

S a reursive tableau system for I that is sound and f -omplete for P.

Algorithm: Return true on input � 2 I if the proedure tableau(T ) de�ned below

returns true for at least one initial S-tree T for � . Otherwise return false.

proedure tableau(T )

If P � T; x for some P 2 C and node x in T or the out-degree of T exeeds f(j� j),

then return false.

If no rule is appliable to a non-bloked node x in T ,

then return true.

Take a a non-bloked node x in T and a rule P !

R

fP

1

; : : : ; P

k

g with P � T; x.

Let T

i

be the result of applying the above rule suh that P

i

� T

i

; x, for 1 � i � k.

If at least one of tableau(T

1

); tableau(T

2

); : : : ; tableau(T

k

) returns true,

then return true.

Return false.

Fig. 2. Deision proedure for P.

of patterns: this means that it suÆes to ompute, for a given non-saturated

pattern P , a set of patterns fP

1

; : : : ; P

k

g suh that P !

R

fP

1

; : : : ; P

k

g. It is

easy to see that this an be e�etively done for the rules of S

ALC

.

We now de�ne a more relaxed variant of De�nition 13.

De�nition 20 (f-omplete). Let f : N ! N be a reursive funtion. The

tableau system S is alled f -omplete for P i�, for any � 2 P, there exists a

saturated and lash-free S-tree for � with out-degree bounded by f(j� j).

Sine we have already shown that S

ALC

is p-omplete for some polynomial p,

S

ALC

is learly f -omplete for the (omputable) funtion f indued by the poly-

nomial p.

In order to implement a yle detetion mehanism, we introdue the notion

of bloking: given an S-tree T = (V;E; n; `), we denote by E

�

the transitive

and reexive losure of E and say that x 2 V is bloked i� there exist distint

u; v 2 V suh that uE

�

x, vE

�

x, and n(u) = n(v). Note that this orresponds to

the well-known \equality-bloking" tehnique that is used in various DL tableau

algorithms [17, 4℄.

The tableau-based deision proedure for P indued by the tableau system

S is desribed in Figure 2. Note that the seletion of rules and nodes in the

\else" part of the proedure tableau is \don't are" non-deterministi: for the

soundness and ompleteness of the algorithm, it does not matter whih rule we

apply when to whih node.

Let us verify that the individual steps performed by the algorithm in Figure 2

are atually e�etive:

{ the initial trees for an input � an be omputed e�etively, sine ini

S

(� ) an

be omputed e�etively by Condition 2 of De�nition 19;



{ the ondition in the �rst \if" statement an be heked e�etively by Con-

dition 4 of De�nition 19 and sine f is a reursive funtion;

{ the appliability of rules an be heked by the �rst part of Condition 3 of

De�nition 19;

{ �nally, that we an e�etively take a rule and apply it to a node x follows

from the seond part of Condition 3 of De�nition 19.

We now turn to termination, soundness, and ompleteness of the algorithm.

Lemma 3 (Termination). Suppose the preonditions of Figure 2 are satis�ed.

Then the algorithm of Figure 2 terminates for any input � 2 I.

Proof. Let � 2 I. The number of initial trees for � is �nite and an be omputed

e�etively. Hene, it is suÆient to show that the proedure tableau terminates on

any initial tree for � . For eah step in whih the proedure does not immediately

return true or false, a node is added to the tree or n(x) properly inreases for some

node x (due to Condition 1 of admissibility). Hene, sine n(x) � }(nle

S

(� ))

for any node x and any tree onstruted during a run of tableau, it is suÆient

to show that both the out-degree and the depth of the trees onstruted is

bounded. But the out-degree of the trees is bounded by f(j� j) (more preisely,

as soon as one rule appliation yields a tree with out-degree larger than f(j� j),

the algorithm returns false in the next step) and the length of E-paths does not

exeed 2

jnle

S

(� )j

sine rules are not applied to bloked nodes. ut

Lemma 4 (Soundness). Suppose the preonditions of Figure 2 are satis�ed.

If the algorithm of Figure 2 returns true on input � , then � 2 P.

Proof. Suppose the algorithm returns true on input � . Then the algorithm termi-

nates with a lash-free S-tree T = (V;E; n; `) whose out-degree does not exeed

f(j� j) and suh that no rule is appliable to a non-bloked node in T . As S is

sound for P , it is suÆient to show that there exists a saturated and lash-free

S-tree for � . To this end we onstrut a lash-free and saturated S-tree

T

0

= (V

0

; E

0

; n

0

; `

0

)

whih is ompatible with � (from whih, by Lemma 1, we obtain a lash-free

and saturated S-tree for � ). Say that a node x 2 V is diretly bloked if it is

bloked but its predeessor is not bloked. If y is the (uniquely determined) node

y 6= x with yE

�

x and n(x) = n(y), then y is said to blok x.

Now, V

0

onsists of all non-empty sequenes hv

0

; x

1

; : : : ; x

n

i, where v

0

is

the root of V , the x

1

; : : : ; x

n

2 V are diretly bloked or not bloked, and

(x

i

; x

i+1

) 2 E if x

i

is not bloked or x

i

is bloked by some y 2 V suh that

(y; x

i+1

) 2 E. De�ne E

0

by setting, for x = hv

0

; x

1

; : : : ; x

n

i 2 V

0

and y 2 V

0

,

(x;y) 2 E

0

i� there exists x

n+1

suh that y = hv

0

; x

1

; : : : ; x

n

; x

n+1

i. De�ne n

0

by setting n

0

(hv

0

; x

1

; : : : ; x

n

i) = n(x

n

). Finally, de�ne `

0

by

{ `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(x

n

; x

n+1

) if x

n

is not bloked;

{ `

0

(hv

0

; x

1

; : : : ; x

n

i ; hv

0

; x

1

; : : : ; x

n

; x

n+1

i) = `(y; x

n+1

) if x

n

is bloked and y

bloks x

n

.



We show that T

0

is a lash-free and saturated S-tree whih is ompatible with � .

Compatibility is readily heked using the de�nition of T

0

. Sine T is lash-free

and no rule is appliable to a non-bloked node of T , we an prove lash-freeness

and saturatedness of T

0

by showing that any S-pattern P that mathes T

0

;x

for some node x in T

0

also mathes a T; x for some non-bloked node x in

T . Thus, assume that P �

�

T

0

; hv

0

; x

1

; : : : ; x

n

i, for some bijetion � . If x

n

is

not bloked, then P �

�

0

T; x

n

, where �

0

is obtained from � by omposing �

with the mapping that assigns x

n

to hv

0

; x

1

; : : : ; x

n

i and x

n+1

to eah suessor

hv

0

; x

1

; : : : ; x

n

; x

n+1

i of hv

0

; x

1

; : : : ; x

n

i. Similarly, if x

n

is bloked by y, then

P �

�

0

T; y, where �

0

is obtained from � by omposing � with the mapping that

assigns y to hv

0

; x

1

; : : : ; x

n

i and x

n+1

to eah suessor hv

0

; x

1

; : : : ; x

n

; x

n+1

i of

hv

0

; x

1

; : : : ; x

n

i. ut

Lemma 5 (Completeness). Suppose the preonditions of Figure 2 are satis-

�ed. If � 2 P, then the algorithm of Figure 2 returns true on input � .

Proof. Suppose � 2 P . Sine S is f -omplete for P , there exists a lash-free and

saturated S-tree T = (V;E; n; `) for � whose out-degree does not exeed f(j� j).

We use T to \guide" the algorithm to an S-tree of out-degree at most f(j� j) in

whih no lash-trigger applies and no rule is appliable to a non-bloked node.

This will be done in a way suh that all onstruted S-trees T

0

satisfy T

0

- T .

For the start, we need to hoose an appropriate initial S-tree T

1

. Let v

0

be

the root of T . Sine S-trees for � are also ompatible with � , the de�nition of

ompatibility implies that there exists � 2 ini

S

(� ) suh that � � n(v

0

). De�ne

T

1

to be the initial S-tree (fv

0

g; ;; fv

0

7! �g; ;): Clearly, T

1

- T . We start the

proedure tableau with the tree T

1

.

Now suppose that tableau is alled with some S-tree T

0

suh that T

0

- T .

If no rule is appliable to a non-bloked node in T

0

, we are done: sine T

0

- T

and T is lash-free and of out-degree at most f(j� j), the same holds for T

0

.

Now suppose that a rule is appliable to a non-bloked node in T

0

. Assume that

the tableau proedure has hosen the rule P !

R

fP

1

; : : : ; P

k

g with P � T

0

; x.

Sine T

0

-

�

T for some � , we have P - T; �(x). Sine T is saturated, T; �(x)

is saturated. By Condition 2 of admissibility, we have P

j

- T; �(x) for some

j; 1 � j � k. So we \guide" the tableau proedure to ontinue exploring the

S-tree T

0

j

obtained from T

0

by applying the rule P !

R

fP

1

; : : : ; P

k

g suh that

P

j

� T

0

j

; x. Now, P

j

- T; �(x) implies T

0

j

- T .

Sine the tableau proedure terminates on any input, the \guidane" proess

will also terminate and thus sueeds in �nding an S-tree of out-degree at most

f(j� j) in whih no lash-trigger applies and no rule is appliable to a non-bloked

node. Hene, tableau(T

1

) returns true. ut

The three lemmas just proved imply that we have sueeded in onverting the

tableau system S into a deision proedure for P .

Theorem 2. Suppose the preonditions of Figure 2 are satis�ed. Then the al-

gorithm of Figure 2 e�etively deides P.



5 A Tableau System for ALCQI

As an example for a more expressive DL that an be treated within our frame-

work, we onsider the DL ALCQI, whih extends ALC with quali�ed num-

ber restritions and inverse roles. Quali�ed number restritions ((>mr:C) and

(6mr:C)) an be used to state onstraints on the number of r-suessors be-

longing to a given onept C, and the inverse roles allow us to use both a role r

and its inverse r

�

when building a omplex onept.

De�nition 21 (ALCQI Syntax and Semantis). Let N

C

and N

R

be pair-

wise disjoint and ountably in�nite sets of onept and role names. The set of

ALCQI-roles is de�ned as ROL

ALCQI

:= N

R

[ fr

�

j r 2 N

R

g.

The set of ALCQI-onepts CON

ALCQI

is the smallest set suh that

{ every onept name is a onept, and

{ if C and D are ALCQI-onepts and r 2 ROL

ALCQI

is a role, then :C;C u

D;C tD; (6mr:C) and (>mr:C) are also ALCQI-onepts.

TBoxes are de�ned as in the ase of ALC, i.e., they are �nite sets of GCIs

C v D where C;D 2 CON

ALCQI

.

The semantis of ALCQI is de�ned as for ALC, where the additional on-

strutors are interpreted as follows:

(r

�

)

I

:= f(y; x) j (x; y) 2 r

I

g;

(6mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

(>mr:C)

I

:= fd 2 �

I

j #fy j (d; y) 2 r

I

^ y 2 C

I

g � mg;

where #S denotes the ardinality of the set S.

Although the onstrutors 9r:C and 8r:C are not expliitly present in ALCQI,

they an be simulated by (> 1 r:C) and (6 0 r::C), respetively. Thus, ALCQI

really extends ALC.

The de�nition of negation normal form (and thus of the funtion nnf) an

easily be extended to ALCQI (see, e.g., [14℄), and the same is true for the

funtion sub. In addition, we de�ne the losure of the ALCQI onept C and

the TBox T as

l(C; T ) := sub(C; T ) [ fnnf(:D) j D 2 sub(C; T )g:

In order to simplify the treatment of inverse roles, we denote the inverse of the

ALCQI-role r by r, i.e., r = r

�

if r is a role name, and r = s if r = s

�

for a

role name s.

Completion trees for ALCQI look like ompletion trees for ALC, with the

only di�erene that edges may also be labeled with inverse roles. In fat, to

handle a number restrition of the form (> 1 r

�

:C) (whih orresponds to the

existential restrition 9r

�

:C) in the label of the node v, the tableau algorithm

may introdue an r

�

-suessor of v.



The fat that edges an also be labeled by inverse roles ompliates the

treatment of number restritions by tableau rules. For a given node, we need to

ount the number of other nodes it is related to via the role r. Without inverse

roles, this is quite easy: we just take the diret suessors reahed by an edge

labeled with r. With inverse roles, we must also ount the diret predeessor if

the orresponding edge is labeled with r. However, our framework only allows for

patterns of depth one, and thus the rules annot simultaneously look at a node

together with its diret predeessor and its diret suessors. To overome this

problem, we introdue new onept names M

r;C

for every pair r; C appearing

in a number restrition (>mr:C) or (6mr:C). The intuitive meaning of these

\marker onepts" is the following: if the label of node v ontains M

r;C

, then

the edge leading to v from its diret predeessor u is labeled with r and the label

of u ontains C. Sine the root node of the tree does not have a predeessor,

these onepts are not allowed to appear in the root node. We will ensure this

by enforing that the root label ontains :M

r;C

. Given a onept C and a TBox

T , the set of neessary marker onepts is

M

C;T

:= fM

r;C

;:M

r;C

j f(>mr:C); (6mr:C)g \ l(C; T ) 6= ; for some mg:

De�nition 22 (S

ALCQI

). The tableau system S

ALCQI

is de�ned as follows:

NLE := CON

ALCQI

is the set of all ALCQI-onepts, EL := ROL

ALCQI

is the

set of all ALCQI-roles, and the funtion �

S

ALCQI

assigns to any input pair (C; T )

the following tuple (nle

S

ALCQI

; el

S

ALCQI

; ini

S

ALCQI

):

nle

S

ALCQI

(C; T ) := l(C; T ) [M

C;T

;

el

S

ALCQI

(C; T ) := fr; r

�

j r 2 N

R

ours in C or T g;

ini

S

ALCQI

(C; T ) := ffnnf(C)g [ f:M

r;C

j :M

r;C

2 M

C;T

gg:

The rules and lash-triggers of S

ALCQI

are introdued in the next two de�nitions.

In order to de�ne the rules and lash-triggers, we need to ount the r-

neighbors of a given node v in an S

ALCQI

-tree, i.e., the nodes that are either

r-suessors of v or the (unique) predeessor of v in ase v is an r-suessor of

this predeessor. The problem is that we must do this in a pattern, where the

predeessor is not expliitly present. Instead, we use the presene of the marker

onepts M

r;D

in the label of v.

10

Let P be a pattern with root v

0

. We say that

v

0

has k r-neighbors ontaining D i�

{ either M

r;D

is not in the label of v

0

and v

0

has exatly k r-suessors whose

labels ontain D;

{ or M

r;D

is in the label of v

0

and v

0

has exatly k � 1 r-suessors whose

labels ontain D.

10

The rules and lash-triggers are de�ned suh that the presene of the marker onept

M

r;D

in the label of a node v in a saturated and lash-free S

ALCQI

-tree implies that

v is an r-suessor of its father w and that the label of w ontains D.



In addition to the rules handling onjuntions, disjuntions, and the TBox ax-

ioms, S

ALCQI

has three rules

11

that treat number restritions. Before introdu-

ing them formally, we give brief intuitive explanations of these rules:

R> To satisfy an at-least restrition (>mr:C), the rule reates the neessary

neighbors one-by-one. In a single step, it adds M

r;C

to the label of the root

of the pattern, or it adds C to the label of an existing r-suessor of the

root, or it reates a new r-suessor of the root with label fCg.

RC If the root label of the pattern ontains the at-most restrition (6mr:C),

then this so-alled hoose-rule adds either the onept C or the onept

nnf(:C) to the label of all r-suessors of the root. In addition, this rule also

takes the (not expliitly present) predeessor node into aount by \guessing"

whether the given node is an r-suessor of its predeessor and whether the

label of this predeessor ontains C. This is done by adding either M

r;C

or

:M

r;C

to the label of the root.

R" This rule propagates the information ontained in the marker onepts to

the predeessor node, i.e., if the label of an r-suessor of the root ontains

M

r;C

, then we add C to the label of the root; if the label of an r-suessor

of the root ontains :M

r;C

, then we add :C to the label of the root.

De�nition 23 (The rules of S

ALCQI

). Let P = (V;E; n; `) be a pattern with

root v

0

. Then R(P ) is the smallest set of �nite sets of patterns that ontains all

the sets of patterns required by the Ru, Rt, and RT rules, and in addition the

following sets:

R>

1

if the root label n(v

0

) ontains the onept (>mr:C) as well as the onept

M

r;C

, and there are less than m � 1 nodes v for whih `(v

0

; v) = r and

C 2 n(v), then R(P ) ontains the set fP

0

; P

1

; : : : ; P

t

g, where fu

1

; : : : ; u

t

g

onsists of all sons of v

0

with `(v

0

; u

i

) = r and C =2 n(u

i

) and

1. P

0

= (V

0

; E

0

; n

0

; `

0

), where u

0

=2 V , V

0

= V [fu

0

g, E

0

= E [f(v

0

; u

0

)g,

n

0

= n [ fu

0

7! fCgg, and `

0

= ` [ f(v

0

; u

0

) 7! rg,

2. for 1 � i � t, P

i

= (V;E; n

i

; `), where n

i

(v) = n(v) for all v 2 V n fu

i

g

and n

0

i

(u

i

) = n

i

(u

i

) [ fCg;

R>

2

if the root label n(v

0

) ontains the onept (>mr:C), but not the on-

ept M

r;C

, and if there are less than m nodes v for whih `(v

0

; v) = r and

C 2 n(v), then R(P ) ontains the set fP

�1

; P

0

; P

1

; : : : ; P

t

g, where t and

P

0

; : : : ; P

t

are de�ned as in the R>

1

-rule, and

3. P

�1

= (V;E; n

�1

; `), where n

�1

(v) = n(v) for all v 2 V n fv

0

g and

n

�1

(v

0

) = n(v

0

) [ fM

r;C

g;

RC

1

if the root label n(v

0

) ontains the onept (6mr:C) and `(v

0

; v

1

) = r for

some v

1

2 V with n(v

1

) \ fC; nnf(:C)g = ;, then R(P ) ontains the set

f(V;E; n

0

; `); (V;E; n

00

; `)g, where n

0

(v

1

) = n(v

1

) [ fCg, n

00

(v

1

) = n(v

1

) [

fnnf(:C)g, and n

0

(v) = n

00

(v) = n(v) for all v 2 V n fv

1

g;

11

For better readability, eah rule will be split into two sub-rules.



RC

2

if the root label n(v

0

) ontains the onept (6mr:C), but neither M

r;C

nor :M

r;C

, then R(P ) ontains the set f(V;E; n

0

; `); (V;E; n

00

; `)g, where

n

0

(v

0

) = n(v

0

)[fM

r;C

g, n

00

(v

0

) = n(v

0

)[f:M

r;C

g and n

0

(v) = n

00

(v) = n(v)

for all v 2 V n fv

0

g;

R"

1

if there is a son v

1

of the root v

0

with M

r;C

2 n(v

1

) and `(v

0

; v

1

) = r,

but C 62 n(v

0

), then R(P ) ontains the singleton set fP

0

g, where P

0

=

(V;E; n

0

; `) and n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [ fCg;

R"

2

if there is a son v

1

of the root v

0

with :M

r;C

2 n(v

1

) and `(v

0

; v

1

) = r,

but nnf(:C) 62 n(v

0

), then R(P ) ontains the singleton set fP

0

g, where

P

0

= (V;E; n

0

; `) and n

0

(v) = n(v) for all v 2 V n fv

0

g and n

0

(v

0

) = n(v

0

) [

fnnf(:C)g.

In S

ALCQI

, we also need two additional lash-triggers. First, we have a lash

whenever the label of the node v ontains a marker onept that is in onit

with the atual label of the edge onneting the predeessor of v with v. Seond,

we need a lash-trigger that detets that an at-most restrition is violated.

De�nition 24. The set of lash-triggers C ontains all the lash triggers of

S

ALC

, and additionally

{ all patterns (V;E; n; `) suh that there exists an edge (v; w) 2 E, roles r; s,

and a onept C with `(v; w) = r, M

s;C

2 n(w), and r 6= s;

{ all patterns (V;E; n; `) with root v

0

suh that (6mr:C) 2 n(v

0

) and v

0

has

more than m r-neighbors ontaining C.

Admissibility, ExpTime-admissibility, and reursive admissibility of S

ALCQI

an be shown as for S

ALC

. The proof of soundness and ompleteness is similar

to known soundness and ompleteness proofs for tableau algorithms for DLs

ontaining quali�ed number restritions and inverse roles (see, e.g., [18℄). In order

to have p-ompleteness for an appropriate polynomial p, we must assume that

numbers in number restritions are given in unary oding, i.e., the number m

really ontributes with m to the size of the input. As an immediate onsequene

of Theorem 1, we obtain the following upper-bound for the satis�ability problem

in ALCQI.

Corollary 2. ALCQI-onept satis�ability w.r.t. TBoxes is in ExpTime.

6 Variants and Extensions

When de�ning the abstrat notion of a tableau system, we had several degrees

of freedom. The deisions we made were motivated by our desire to stay as lose

as possible to the \usual" tableau-based algorithms for DLs while at the same

time obtaining a notion that is as general as possible. While writing the paper,

we have notied that several deisions ould have been made di�erently. In the

following, we mention three alternative deisions, one leading to a restrited

variant and two leading to extensions of the framework. Embedding the two

extensions into our framework is the subjet of future work.



6.1 Changing the De�nition of Subpatterns

Reall that our treatment of existential restritions in the tableau system S

ALC

di�ers from the usual treatment in tableau-based algorithms for ALC in that

it leads to a non-deterministi rule, whih hooses between generating a new r-

suessor or re-using an old one. In ontrast, the usual rules treating existential

restritions always generate a new suessor.

Why ould we not employ the usual rule for handling existential restritions?

The reason is that then the tableau system would not be admissible. In fat,

the proof that Condition 2 of De�nition 7 is satis�ed for S

ALC

(given below

De�nition 7) strongly depends on the fat that r-suessors an be re-used. To

be more preise, assume that P is a pattern whose root label onsists of 9r:A for

a onept name A, and whose root has exatly one suessor u

1

, whih is an r-

suessor with an empty label. Let P

0

be the pattern that is obtained from P by

adding A to the label of u

1

. Obviously, P - P

0

and P

0

is saturated. However, if

we onsider the pattern P

1

that is obtained from P by adding a new r-suessor

with label fAg, then P

1

6- P

0

. Thus, the deterministi rule P !

R

fP

1

g does not

satisfy Condition 2 of De�nition 7.

Could we hange the framework suh that the usual deterministi rule for

handling existential restritions beomes admissible? One way to ahieve this

would be to hange the de�nition of the subpattern relation - (see De�nition 6)

by removing the requirement that � be injetive. In fat, with this new de�nition,

we would have P

1

- P

0

in the example above. By onsistently replaing the old

version of - with this new version, we would obtain a framework where all the

results of Setions 3 and 4 still hold, and where the usual deterministi rule for

handling existential restritions in ALC is admissible.

Why did we not use this modi�ed framework? Intuitively, if we use a non-

injetive mapping � in the de�nition of -, then the atual number of r-suessors

of a given node is irrelevant as long as we have one suessor of eah \type."

Thus, a lash-trigger that �res if a ertain number of suessors is exeeded

(like the one used in Setion 5) does not make sense. In fat, with the modi�ed

de�nition of -, a pattern P 2 C having at least m suessors of the root node

ould be a subpattern of a pattern T; x where x has only one suessor. Thus,

the modi�ed framework ould not treat a DL like ALCQI, where the number of

suessors (and not just their type) ounts. For DLs like ALC, where the number

of suessors of a given type is irrelevant,

12

the modi�ed framework ould be

used, and would probably lead to simpler rules. However, we think that number

restritions are important enough in DLs to justify the use of a framework that

an handle them, even if this leads to a somewhat more omplex treatment of

other onstrutors.

12

This follows from the bisimulation invariane of ALC, whih is an immediate onse-

quene of bisimulation invariane of its syntati variant, multi-modal K

m

[5℄.



6.2 Using Larger Patterns

In our urrent framework, patterns (the lash-triggers and left-hand sides of

rules) are trees of depth at most one, i.e., we onsider one node and its diret

suessors when de�ning rules and lash-triggers. In some ases, it would be

more onvenient to have larger patterns available. A ase in point are DLs with

inverse roles (like ALCQI), where it would be more onvenient to have not only

the diret suessors of a node available, but also its diret predeessor. In our

de�nition of the tableau system for ALCQI, we had to employ speial markers

to memorize whether the predeessor belongs to a ertain onept. Though this

works, it is not very natural, and it leads to rather ompliated rules. Thus, a

natural extension motivated by ALCQI and similar DLs is to onsider patterns

onsisting of a node together with its diret predeessor and its diret suessors.

This would yield a new framework that is lose to two-way automata [28℄.

Why have we not made this extension? Inluding the predeessor of a node

in the de�nition of patterns is an extension that appears to be tailored to the

treatment of DLs with inverse roles. Thus, it has the avor of an ad-ho exten-

sion, with the lear danger that adding another onstrutor may motivate yet

another extension of the framework.

Is there a more general extension? Instead of restriting patterns to being

ertain trees of depth 2, a more general extension would be to use as patterns

trees of some �xed depth k or patterns whose depth is bounded by some funtion

of the input size. We onjeture that it is possible to extend our framework in

this diretion while retaining the results shown in this paper. In ontrast to the

extension of patterns by predeessor nodes, this appears to require some more

work, though.

6.3 Allowing for Global Information

In the present framework, rules are loal in that they onsider only one node and

its diret suessors. The extension mentioned in the previous subsetion extends

the sope of rules but leaves it still loal (bounded by the depth of patterns). In

some ases, it would be onvenient to be able to aess global information that

an inuene the behavior of rules and an also be hanged by rules.

Is suh global information useful? A typial example where it would be on-

venient to allow for global information are DLs with so-alled nominals, i.e.,

onept names that must be interpreted as singletons, and thus stand for a sin-

gle element of the interpretation domain. Assume that N is suh a nominal. If N

ours in the label of two di�erent nodes of a ompletion tree, then this means

that these nodes represent the same individual in the orresponding model, and

thus the whole label sets of these nodes must oinide in a saturated and lash-

free ompletion tree. Thus, rules and lash-triggers that are designed to realizing

this are onerned with information about nodes that may be quite far apart

from eah other in the tree. One way of ensuring this ould be to have, in ad-

dition to the ompletion tree with its loal node labels, a global book-keeping

omponent that ontains information about the labels of all nominals. A rule



that enounters the nominal N in the label of node v may then use the infor-

mation in the book-keeping omponent for nominal N to extend the label of v,

but it may also extend the book-keeping omponent based on what is found in

the label of v. Thus, through this book-keeping omponent, information an be

passed between nodes that are far apart from eah other in the tree.

Is this extension too general? We believe that this extension is harmless

as long as the number of possible \states" of the book-keeping omponent is

appropriately bounded by the size of the input. Of ourse, this depends on the

exat de�nition of the book-keeping omponent and its interation with rules

and lash-triggers. The integration of suh a book-keeping omponent into our

framework and the proof that the results shown in the present paper still hold

in this extended framework is a subjet of future researh.

Referenes

1. F. Baader, D. Calvanese, D. MGuinness, D. Nardi, and P. F. Patel-Shneider, edi-

tors. The Desription Logi Handbook: Theory, Implementation, and Appliations.

Cambridge University Press, 2003.

2. F. Baader, E. Franoni, B. Hollunder, B. Nebel, and H.-J. Pro�tlih. An empirial

analysis of optimization tehniques for terminologial representation systems or:

Making KRIS get a move on. Applied Arti�ial Intelligene. Speial Issue on

Knowledge Base Management, 4:109{132, 1994.

3. F. Baader and W. Nutt. Basi desription logis. In [1℄, pages 43{95. 2003.

4. F. Baader and U. Sattler. An overview of tableau algorithms for desription logis.

Studia Logia, 69:5{40, 2001.

5. P. Blakburn, M. de Rijke, and Y. Venema. Modal Logi, volume 53 of Cambridge

Trats in Theoretial Computer Siene. Cambridge University Press, 2001.

6. R. J. Brahman and H. J. Levesque, editors. Readings in Knowledge Representa-

tion. Morgan Kaufmann, Los Altos, 1985.

7. D. Calvanese and G. DeGiaomo. Expressive desription logis. In [1℄, pages

178{218. 2003.

8. G. De Giaomo and M. Lenzerini. TBox and ABox reasoning in expressive desrip-

tion logis. In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors, Pro. of the 5th

Int. Conf. on the Priniples of Knowledge Representation and Reasoning (KR'96),

pages 316{327. Morgan Kaufmann, Los Altos, 1996.

9. F. Donini. Complexity of reasoning. In [1℄, pages 96{136. 2003.

10. F. Donini and F. Massai. EXPTIME tableaux for ALC. Ata Informatia,

124(1):87{138, 2000.

11. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The omplexity of onept

languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Pro. of the 2nd

Int. Conf. on the Priniples of Knowledge Representation and Reasoning (KR'91),

pages 151{162. Morgan Kaufmann, Los Altos, 1991.

12. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tratable onept languages.

In Pro. of the 12th Int. Joint Conf. on Arti�ial Intelligene (IJCAI'91), pages

458{463, Sydney (Australia), 1991.

13. V. Haarslev and R. M�oller. RACER system desription. In Pro. of the Int. Joint

Conf. on Automated Reasoning (IJCAR 2001), 2001.



14. B. Hollunder and F. Baader. Qualifying number restritions in onept languages.

In Pro. of the 2nd Int. Conf. on the Priniples of Knowledge Representation and

Reasoning (KR'91), pages 335{346, 1991.

15. I. Horroks. Using an expressive desription logi: FaCT or �tion? In Pro. of the

6th Int. Conf. on Priniples of Knowledge Representation and Reasoning (KR'98),

pages 636{647, 1998.

16. I. Horroks. Implementation and optimization tehniques. In [1℄, pages 306{346.

2003.

17. I. Horroks and U. Sattler. A desription logi with transitive and inverse roles

and role hierarhies. J. of Logi and Computation, 9(3):385{410, 1999.

18. I. Horroks, U. Sattler, and S. Tobies. Pratial reasoning for very expressive

desription logis. J. of the Interest Group in Pure and Applied Logi, 8(3):239{

264, 2000.

19. R. MaGregor. The evolving tehnology of lassi�ation-based knowledge repre-

sentation systems. In J. F. Sowa, editor, Priniples of Semanti Networks, pages

385{400. Morgan Kaufmann, Los Altos, 1991.

20. E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bull., 2(3),

1991.

21. M. Minsky. A framework for representing knowledge. In J. Haugeland, editor,

Mind Design. The MIT Press, 1981. A longer version appeared in The Psyhology

of Computer Vision (1975). Republished in [6℄.

22. R. M�oller and V. Haarslev. Desription logi systems. In [1℄, pages 282{305. 2003.

23. P. F. Patel-Shneider, D. L. MGuiness, R. J. Brahman, L. Alperin Resnik, and

A. Borgida. The CLASSIC knowledge representation system: Guiding priniples

and implementation rational. SIGART Bull., 2(3):108{113, 1991.

24. C. Peltason. The BACK system | an overview. SIGART Bull., 2(3):114{119,

1991.

25. M. R. Quillian. Word onepts: A theory and simulation of some basi apabilities.

Behavioral Siene, 12:410{430, 1967. Republished in [6℄.

26. K. Shild. A orrespondene theory for terminologial logis: Preliminary report.

In Pro. of the 12th Int. Joint Conf. on Arti�ial Intelligene (IJCAI'91), pages

466{471, 1991.

27. M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with omple-

ments. Arti�ial Intelligene, 48(1):1{26, 1991.

28. M. Y. Vardi. Reasoning about the past with two-way automata. In Pro. of the

25th Int. Coll. on Automata, Languages and Programming (ICALP'98), volume

1443 of Leture Notes in Computer Siene, pages 628{641. Springer-Verlag, 1998.

29. M. Y. Vardi and P. Wolper. Automata-theoreti tehniques for modal logis of

programs. J. of Computer and System Sienes, 32:183{221, 1986. A prelimi-

nary version appeared in Pro. of the 16th ACM SIGACT Symp. on Theory of

Computing (STOC'84).

30. W. A. Woods and J. G. Shmolze. The KL-ONE family. In F. W. Lehmann, edi-

tor, Semanti Networks in Arti�ial Intelligene, pages 133{178. Pergamon Press,

1992. Published as a speial issue of Computers & Mathematis with Appliations,

Volume 23, Number 2{9.


