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Abstra
t. Previously, we have investigated both standard and non-

standard inferen
es in the presen
e of terminologi
al 
y
les for the de-

s
ription logi
 EL, whi
h allows for 
onjun
tions, existential restri
tions,

and the top 
on
ept. The present paper is 
on
erned with two problems

left open by this previous work, namely the instan
e problem and the

problem of 
omputing most spe
i�
 
on
epts w.r.t. des
riptive seman-

ti
s, whi
h is the usual �rst-order semanti
s for des
ription logi
s. We

will show that|like subsumption|the instan
e problem is polynomial

in this 
ontext. Similar to the 
ase of the least 
ommon subsumer, the

most spe
i�
 
on
ept w.r.t. des
riptive semanti
s need not exist, but we

are able to 
hara
terize the 
ases in whi
h it exists and give a de
idable

suÆ
ient 
ondition for the existen
e of the most spe
i�
 
on
ept. Under

this 
ondition, it 
an be 
omputed in polynomial time.

1 Introdu
tion

Early des
ription logi
 (DL) systems allowed the use of value restri
tions (8r:C),

but not of existential restri
tions (9r:C). Thus, one 
ould express that all 
hil-

dren are male using the value restri
tion 8
hild:Male, but not that someone has

a son using the existential restri
tion 9
hild:Male. The main reason was that,

when 
larifying the logi
al status of property ar
s in semanti
 networks and

slots in frames, the de
ision was taken that ar
s/slots should be read as value

restri
tions (see, e.g., [12℄). On
e one 
onsiders more expressive DLs allowing

for full negation, existential restri
tions 
ome in as the dual of value restri
tions

[14℄. Thus, for histori
al reasons, DLs that allow for existential, but not for value

restri
tions, were until re
ently mostly unexplored.

The re
ent interest in su
h DLs has at least two reasons. On the one hand,

there are indeed appli
ations where DLs without value restri
tions appear to be

suÆ
ient. For example, SNOMED, the Systematized Nomen
lature of Medi
ine

[16, 15℄ employs the DL EL, whi
h allows for 
onjun
tions, existential restri
-

tions, and the top 
on
ept. On the other hand, non-standard inferen
es in DLs

[11℄, like 
omputing the least 
ommon subsumer, often make sense only for DLs

?
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that do not allow for full negation. Thus, the de
ision of whether to use DLs

with value restri
tions or with existential restri
tions be
omes again relevant.

Non-standard inferen
es were introdu
ed to support building and maintain-

ing large DL knowledge bases. For example, 
omputing the most spe
i�
 
on
ept

of an individual and the least 
ommon subsumer of 
on
epts 
an be used in the

bottom-up 
onstru
tion of des
ription logi
 knowledge bases. Instead of de�ning

the relevant 
on
epts of an appli
ation domain from s
rat
h, this methodology

allows the user to give typi
al examples of individuals belonging to the 
on-


ept to be de�ned. These individuals are then generalized to a 
on
ept by �rst


omputing the most spe
i�
 
on
ept of ea
h individual (i.e., the least 
on
ept

des
ription in the available des
ription language that has this individual as an in-

stan
e), and then 
omputing the least 
ommon subsumer of these 
on
epts (i.e.,

the least 
on
ept des
ription in the available des
ription language that subsumes

all these 
on
epts). The knowledge engineer 
an then use the 
omputed 
on
ept

as a starting point for the 
on
ept de�nition.

The most spe
i�
 
on
ept (ms
) of a given ABox individual need not exist

in languages allowing for existential restri
tions or number restri
tions. For the

DL ALN (whi
h allows for 
onjun
tions, value restri
tions, and number restri
-

tions), it was shown in [6℄ that the most spe
i�
 
on
ept always exists if one adds


y
li
 
on
ept de�nitions with greatest �xpoint semanti
s. If one wants to use

this approa
h for the bottom-up 
onstru
tion of knowledge bases, then one must

also be able to solve the standard inferen
es (the subsumption and the instan
e

problem) and to 
ompute the least 
ommon subsumer in the presen
e of 
y
li



on
ept de�nitions. Thus, in order to adapt the approa
h also to the DL EL,

the impa
t on both standard and non-standard inferen
es of 
y
li
 de�nitions in

this DL had to be investigated �rst.

The paper [5℄ 
onsiders 
y
li
 terminologies in EL w.r.t. the three types of se-

manti
s (greatest �xpoint, least �xpoint, and des
riptive semanti
s) introdu
ed

by Nebel [13℄, and shows that the subsumption problem 
an be de
ided in poly-

nomial time in all three 
ases. This is in strong 
ontrast to the 
ase of DLs with

value restri
tions. Even for the small DL FL

0

(whi
h allows for 
onjun
tions

and value restri
tions only), adding 
y
li
 terminologies in
reases the 
omplex-

ity of the subsumption problem from polynomial (for 
on
ept des
riptions) to

PSPACE [1℄. The main tool in the investigation of 
y
li
 de�nitions in EL is

a 
hara
terization of subsumption through the existen
e of so-
alled simulation

relations, whi
h 
an be 
omputed in polynomial time [9℄. The results in [5℄ also

show that 
y
li
 de�nitions with least �xpoint semanti
s are not interesting in

EL. For this reason, all the extensions of these results mentioned below are


on
erned with greatest �xpoint (gfp) and des
riptive semanti
s only.

The 
hara
terization of subsumption in EL w.r.t. gfp-semanti
s through the

existen
e of 
ertain simulation relations on the graph asso
iated with the termi-

nology is used in [4℄ to 
hara
terize the least 
ommon subsumer via the produ
t

of this graph with itself. This shows that, w.r.t. gfp semanti
s, the l
s always

exists, and the binary l
s 
an be 
omputed in polynomial time. (The n-ary l
s

may grow exponentially even in EL without 
y
li
 terminologies [7℄.) For 
y
li




terminologies in EL with des
riptive semanti
s, the l
s need not exist. In [2℄, pos-

sible 
andidates P

k

(k � 0) for the l
s are introdu
ed, and it is shown that the

l
s exists i� one of these 
andidates is the l
s. In addition, a suÆ
ient 
ondition

for the existen
e of the l
s is given, and it is shown that, under this 
ondition,

the l
s 
an be 
omputed in polynomial time.

In [4℄, the 
hara
terization of subsumption w.r.t. gfp-semanti
s is also ex-

tended to the instan
e problem in EL. This is then used to show that, w.r.t.

gfp-semanti
s, the instan
e problem in EL 
an be de
ided in polynomial time

and that the ms
 in EL always exists, and 
an be 
omputed in polynomial time.

Given the positive results for gfp-semanti
s regarding both standard infer-

en
es (subsumption and instan
e) and non-standard inferen
es (l
s and ms
),

one might be tempted to restri
t the attention to gfp-semanti
s. However, ex-

isting DL systems like FaCT [10℄ and Ra
er [8℄ allow for terminologi
al 
y
les

(even more general in
lusion axioms), but employ des
riptive semanti
s. In some


ases it may be desirable to use a semanti
s that is 
onsistent with the one em-

ployed by these systems even if one works with a DL that is 
onsiderably less

expressive than then one available in them. For example, non-standard infer-

en
es that support building DL knowledge bases are often restri
ted to rather

inexpressive DLs (either be
ause they do not make sense for more expressive

DLs or be
ause they 
an 
urrently only be handled for su
h DLs). Nevertheless,

it may be desirable that the result of these inferen
es (like the ms
 or the l
s)

is again in a format that is a

epted by systems like FaCT and Ra
er. This is

not the 
ase if the ms
 algorithm produ
es a 
y
li
 terminology that must be

interpreted with gfp-semanti
s.

The subsumption problem and the problem of 
omputing least 
ommon sub-

sumers in EL w.r.t 
y
li
 terminologies with des
riptive semanti
s have already

been ta
kled in [5℄ and [2℄, respe
tively. In the present paper we address the in-

stan
e problem and the problem of 
omputing the most spe
i�
 
on
ept in this

setting. We will show that the instan
e problem is polynomial also in this 
on-

text. Unfortunately, the most spe
i�
 
on
ept w.r.t des
riptive semanti
s need

not exist, but|similar to the 
ase of the least 
ommon subsumer|we are able to


hara
terize the 
ases in whi
h it exists and give a de
idable suÆ
ient 
ondition

for the existen
e of the most spe
i�
 
on
ept. Under this 
ondition, it 
an be


omputed in polynomial time.

2 Cy
li
 terminologies and most spe
i�
 
on
epts in EL

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. The


onstru
tors determine the expressive power of the DL. In this paper, we restri
t

the attention to the DL EL, whose 
on
ept des
riptions are formed using the


onstru
tors top-
on
ept (>), 
onjun
tion (C u D), and existential restri
tion

(9r:C). The semanti
s of EL-
on
ept des
riptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset



name of 
onstru
tor Syntax Semanti
s


on
ept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tion 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g


on
ept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I


on
ept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1. Syntax and semanti
s of EL

A

I

of �

I

and ea
h role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third


olumn of Table 1.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of

the form A � D, where A is a 
on
ept name and D a 
on
ept des
ription.

In addition, we require that TBoxes do not 
ontain multiple de�nitions, i.e.,

there 
annot be two distin
t 
on
ept des
riptions D

1

and D

2

su
h that both

A � D

1

and A � D

2

belongs to the TBox. Con
ept names o

urring on the left-

hand side of a de�nition are 
alled de�ned 
on
epts. All other 
on
ept names

o

urring in the TBox are 
alled primitive 
on
epts. Note that we allow for


y
li
 dependen
ies between the de�ned 
on
epts, i.e., the de�nition of A may

refer (dire
tly or indire
tly) to A itself. An interpretation I is a model of the

TBox T i� it satis�es all its 
on
ept de�nitions, i.e., A

I

= D

I

for all de�nitions

A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a 
on
ept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map ea
h individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all 
on
ept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semanti
s of (possibly 
y
li
) EL-TBoxes we have de�ned above is 
alled

des
riptive semanti
 by Nebel [13℄. For some appli
ations, it is more appropriate

to interpret 
y
li
 
on
ept de�nitions with the help of an appropriate �xpoint

semanti
s. However, in this paper we restri
t our attention to des
riptive seman-

ti
s (see [5, 4℄ for de�nitions and results 
on
erning 
y
li
 terminologies in EL

with �xpoint semanti
s).

De�nition 1. Let T be an EL-TBox and A an EL-ABox, let C;D be 
on
ept

des
riptions (possibly 
ontaining de�ned 
on
epts of T ), and a an individual

name o

urring in A. Then,

{ C is subsumed by D w.r.t. des
riptive semanti
s (C v

T

D) i� C

I

� D

I

holds for all models I of T .



{ a is an instan
e of C w.r.t. des
riptive semanti
s (A j=

T

C(a)) i� a

I

2 C

I

holds for all models I of T together with A.

On the level of 
on
ept des
riptions, the most spe
i�
 
on
ept of a given ABox

individual a is the least 
on
ept des
ription E (of the DL under 
onsideration)

that has a as an instan
e. An extensions of this de�nition to the level of (possibly


y
li
) TBoxes is not 
ompletely trivial. In fa
t, assume that a is an individual in

the ABox A and that T is a TBox. It should be obvious that taking as the ms


of a the least de�ned 
on
ept A in T su
h that A j=

T

A(a) is too weak sin
e

the l
s would then strongly depend on the de�ned 
on
epts that are already

present in T . However, a se
ond approa
h (whi
h might look like the obvious

generalization of the de�nition of the ms
 in the 
ase of 
on
ept des
riptions) is

also not quite satisfa
tory. We 
ould say that the ms
 of a is the least 
on
ept

des
ription C (possibly using de�ned 
on
epts of T ) su
h that A j=

T

C(a). The

problem is that this de�nition does not allow us to use the expressive power of


y
li
 de�nitions when 
onstru
ting the ms
.

To avoid this problem, we allow the original TBox to be extended by new

de�nitions when 
onstru
ting the ms
. We say that the TBox T

2

is a 
onservative

extension of the TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive


on
epts and roles. Thus, T

2

may 
ontain new de�nitions A � D, but then D

does not introdu
e new primitive 
on
epts and roles (i.e., all of them already

o

ur in T

1

), and A is a new 
on
ept name (i.e., A does not o

ur in T

1

). The

name \
onservative extension" is justi�ed by the fa
t that the new de�nitions

in T

2

do not in
uen
e the subsumption relationships between de�ned 
on
epts

in T

1

(see [4℄ for details).

De�nition 2. Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the indi-

vidual name a, and let T

2

be a 
onservative extension of T

1


ontaining the de�ned


on
ept E.

1

Then E in T

2

is a most spe
i�
 
on
ept of a in A and T

1

w.r.t.

des
riptive semanti
s (ms
) i� the following two 
onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h

that A j=

T

3

F (a), then E v

T

3

F .

In the 
ase of 
on
ept des
riptions, the ms
 is unique up to equivalen
e. In

the presen
e of (possibly 
y
li
) TBoxes, this uniqueness property also holds,

though its formulation is more 
ompli
ated (see [4℄ for details).

3 Chara
terizing subsumption in 
y
li
 EL-TBoxes

In this se
tion, we re
all the 
hara
terizations of subsumption w.r.t. des
riptive

semanti
s developed in [5℄. To this purpose, we must represent TBoxes by de-

s
ription graphs, and introdu
e the notion of a simulation on des
ription graphs.

1

Without loss of generality we assume that the ms
 is given by a de�ned 
on
ept

rather than a 
on
ept des
ription sin
e one 
an always introdu
e an appropriate

de�nition for the des
ription. For the same reason, we 
an in the following restri
t

the instan
e problem and the subsumption problem to de�ned 
on
epts.



Before we 
an translate EL-TBoxes into des
ription graphs, we must normalize

the TBoxes. In the following, let T be an EL-TBox, N

def

the de�ned 
on
epts

of T , N

prim

the primitive 
on
epts of T , and N

role

the roles of T . We say that

the EL-TBox T is normalized i� A � D 2 T implies that D is of the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [5℄, one 
an (without loss of generality) restri
t the attention

to normalized TBox. In the following, we thus assume that all TBoxes are nor-

malized. Normalized EL-TBoxes 
an be viewed as graphs whose nodes are the

de�ned 
on
epts, whi
h are labeled by sets of primitive 
on
epts, and whose

edges are given by the existential restri
tions. For the rest of this se
tion, we �x

a normalized EL-TBox T with primitive 
on
epts N

prim

, de�ned 
on
epts N

def

,

and roles N

role

.

De�nition 3. An EL-des
ription graph is a graph G = (V;E; L) where

{ V is a set of nodes;

{ E � V �N

role

� V is a set of edges labeled by role names;

{ L: V ! 2

N

prim

is a fun
tion that labels nodes with sets of primitive 
on
epts.

The normalized TBox T 
an be translated into the following EL-des
ription graph

G

T

= (N

def

; E

T

; L

T

):

{ the nodes of G

T

are the de�ned 
on
epts of T ;

{ if A is a de�ned 
on
ept and A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its

de�nition in T , then

� L

T

(A) = fP

1

; : : : ; P

m

g, and

� A is the sour
e of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Simulations are binary relations between nodes of two EL-des
ription graphs

that respe
t labels and edges in the sense de�ned below.

De�nition 4. Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-des
ription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

su
h

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

W.r.t. gfp-semanti
s,A is subsumed by B i� there is a simulation Z: G

T

*

� G

T

su
h that (B;A) 2 Z (see [5℄). W.r.t. des
riptive semanti
s, the simulation Z

must satisfy some additional properties for this equivalen
e to hold. To de�ne

these properties, we must introdu
e some notation.



B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Fig. 1. A (B;A)-simulation 
hain.

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Fig. 2. A partial (B;A)-simulation 
hain.

De�nition 5. The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � in G

T

is Z-

simulated by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � in G

T

i� (B

i

; A

i

) 2 Z

for all i � 0. In this 
ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation


hain w.r.t. Z (see Figure 1).

If (B;A) 2 Z, then (S2) of De�nition 4 implies that, for every in�nite path

p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A su
h

that p

1

is Z-simulated by p

2

. In the following we 
onstru
t su
h a simulating

path step by step. The main point is, however, that the de
ision whi
h 
on
ept

A

n

to take in step n should depend only on the partial (B;A)-simulation 
hain

already 
onstru
ted, and not on the parts of the path p

1

not yet 
onsidered.

De�nition 6. A partial (B;A)-simulation 
hain is of the form depi
ted in Fig-

ure 2. A sele
tion fun
tion S for A;B and Z assigns to ea
h partial (B;A)-

simulation 
hain of this form a de�ned 
on
ept A

n

su
h that (A

n�1

; r

n

; A

n

) is

an edge in G

T

and (B

n

; A

n

) 2 Z. Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

and a de�ned 
on
ept A su
h that (B;A) 2 Z, one 
an use a sele
tion fun
tion

S for A;B and Z to 
onstru
t a Z-simulating path. In this 
ase we say that the

resulting (B;A)-simulation 
hain is S-sele
ted.

De�nition 7. Let A;B be de�ned 
on
epts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is 
alled (B;A)-syn
hronized i� there exists a sele
tion

fun
tion S for A;B and Z su
h that the following holds: for every in�nite S-

sele
ted (B;A)-simulation 
hain of the form depi
ted in Figure 1 there exists an

i � 0 su
h that A

i

= B

i

.

We are now ready to state the 
hara
terization of subsumption w.r.t. des
rip-

tive semanti
s from [5℄.

Theorem 1. Let T be an EL-TBox, and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

T

B.



2. There is a (B;A)-syn
hronized simulation Z: G

T

*

� G

T

su
h that (B;A) 2 Z.

In [5℄ it is also shown that, for a given EL-TBox T and de�ned 
on
epts

A;B in T , the existen
e of a (B;A)-syn
hronized simulation Z: G

T

*

� G

T

with

(B;A) 2 Z 
an be de
ided in polynomial time, whi
h shows that the subsump-

tion w.r.t. des
riptive semanti
s in EL is tra
table.

4 The instan
e problem

Assume that T is an EL-TBox and A an EL-ABox. In the following, we assume

that T is �xed and that all instan
e problems for A are 
onsidered w.r.t. this

TBox. In this setting, A 
an be translated into an EL-des
ription graph G

A

by

viewing A as a graph and extending it appropriately by the graph G

T

asso
iated

with T . The idea is then that the 
hara
terization of the instan
e problem should

be similar to the statement of Theorem 1: the individual a is an instan
e of A

in A and T i� there is an (A; a)-syn
hronized simulation Z: G

T

*

� G

A

su
h that

(A; a) 2 Z.

2

The formal de�nition of the EL-des
ription graph G

A

asso
iated

with the ABoxA and the TBox T given below was also used in [4℄ to 
hara
terize

the instan
e problem in EL w.r.t. gfp-semanti
s.

De�nition 8. Let T be an EL-TBox, A an EL-ABox, and G

T

= (V

T

; E

T

; L

T

)

be the EL-des
ription graph asso
iated with T . The EL-des
ription graph G

A

=

(V

A

; E

A

; L

A

) asso
iated with A and T is de�ned as follows:

{ the nodes of G

A

are the individual names o

urring in A together with the

de�ned 
on
epts of T , i.e.,

V

A

:= V

T

[ fa j a is an individual name o

urring in Ag;

{ the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned 
on
epts:

E

A

:= E

T

[ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r;B) 2 E

T

g;

{ if u 2 V

A

is a de�ned 
on
ept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L

T

(u) if u 2 V

T

;

otherwise, u is an ABox individual, and then its label is derived from the


on
ept assertions for u in A. In the following, let P denote primitive and

A denote de�ned 
on
epts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L

T

(A) if u 2 V

A

n V

T

:

2

The a
tual 
hara
terization of the instan
e problem turns out to be somewhat more


omplex, but for the moment the above is suÆ
ient to gives the right intuition.
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Fig. 3. The EL-des
ription graphs G

T

and G

A

of the example.

We are now ready to formulate our 
hara
terization of the instan
e problem

w.r.t. des
riptive semanti
s (see [3℄ for the proof).

Theorem 2. Let T be an EL-TBox, A an EL-ABox, A a de�ned 
on
ept in T

and a an individual name o

urring in A. Then the following are equivalent:

1. A j=

T

A(a).

2. There is a simulation Z: G

T

*

� G

A

su
h that

{ (A; a) 2 Z.

{ Z is (B; u)-syn
hronized for all (B; u) 2 Z.

As an example, we 
onsider the following TBox and ABox:

T := fA � P u 9r:Ag and A := fP (a); r(a; a); A(b); r(b; b)g:

It is easy to see that there is no simulation satisfy the 
onditions of Theorem 2

for A and a. In 
ontrast, the simulation Z := f(A;A); (A; b)g satis�es these


onditions for A and b (see also Figure 3).

Sin
e the existen
e of a syn
hronized simulation relation satisfying the 
on-

ditions stated in (2) of Theorem 2 
an be de
ided in polynomial time (see [3℄),

the instan
e problem w.r.t. des
riptive semanti
s is tra
table.

Corollary 1. The instan
e problem w.r.t. des
riptive semanti
s in EL 
an be

de
ided in polynomial time.

5 The most spe
i�
 
on
ept

In this se
tion, we will �rst show that the most spe
i�
 
on
ept w.r.t. des
riptive

semanti
s need not exist. Then, we will show that the most spe
i�
 
on
ept w.r.t.

gfp-semanti
s (see [4℄) 
oin
ides with the most spe
i�
 
on
ept w.r.t. des
riptive

semanti
s i� the ABox satis�es a 
ertain a
y
li
ity 
ondition. This yields a suf-

�
ient 
ondition for the existen
e of the ms
, whi
h is, however, not a ne
essary

one. We will then 
hara
terize the 
ases in whi
h the ms
 exists. Unfortunately,

it is not yet 
lear how to turn this 
hara
terization into a de
ision pro
edure for

the existen
e of the ms
.



5.1 The ms
 need not exist

Theorem 3. Let T

1

= ; and A = fr(b; b)g. Then b does not have an ms
 in A

and T

1

.

Proof. Assume to the 
ontrary that T

2

is a 
onservative extension of T

1

su
h

that the de�ned 
on
ept E in T

2

is an ms
 of b. Let G

A

be the EL-des
ription

graph 
orresponding to A and T

2

, as introdu
ed in De�nition 8. Sin
e b is an

instan
e of E, there is a simulation Z: G

T

2

*

� G

A

su
h that (E; b) 2 Z and Z is

(B; u)-syn
hronized for all (B; u) 2 Z.

Sin
e T

1

= ;, there is no edge in G

A

from b to a de�ned 
on
ept in T

2

. Thus,

the fa
t that Z is (E; b)-syn
hronized implies that there 
annot be an in�nite

path in G

T

2

(and thus G

A

) starting with E. Consequently, there is an upper-

bound n

0

on the length of the paths in G

T

2

(and thus G

A

) starting with E.

Now, 
onsider the TBox T

3

= fF

n

� 9r:F

n�1

; : : : ; F

1

� 9r:F

0

; F

0

� >g: It is

easy to see that T

3

is a 
onservative extension of T

2

(where we assume without

loss of generality that F

0

; : : : ; F

n

are 
on
ept names not o

urring in T

2

) and

that A j=

T

3

F

n

(b). Sin
e E is an ms
 of b, this implies that E v

T

3

F

n

. Thus,

there is an (F

n

; E)-syn
hronized simulation Y : G

T

3

*

� G

T

3

su
h that (F

n

; E) 2 Y .

However, for n > n

0

, the path

F

n

r

! F

n�1

r

! � � �

r

! F

0


annot be simulated by a path starting from E.

5.2 A suÆ
ient 
ondition for the existen
e of the ms


Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the individual name a.

Let G

A

= (V

A

; E

A

; L

A

) be the EL-des
ription graph 
orresponding to A and T

1

,

as introdu
ed in De�nition 8. We 
an view G

A

as the EL-des
ription graph of an

EL-TBox T

2

, i.e., let T

2

be the TBox su
h that G

A

= G

T

2

. It is easy to see that T

2

is a 
onservative extension of T

1

. By the de�nition of G

A

, the de�ned 
on
epts of

T

2

are the de�ned 
on
epts of T

1

together with the individual names o

urring

in A. To avoid 
onfusion we will denote the de�ned 
on
ept in T

2


orresponding

to the individual name b in A by C

b

.

In [4℄ it is shown that, w.r.t. gfp-semanti
s, the de�ned 
on
ept C

a

in T

2

is

the most spe
i�
 
on
ept of a in A and T

1

. W.r.t. des
riptive semanti
s, this is

only true if A does not 
ontain a 
y
le that is rea
hable from a.

De�nition 9. The ABox A is 
alled a-a
y
li
 i� there are no n � 1 and indi-

viduals a

0

; a

1

; : : : ; a

n

and roles r

1

; : : : ; r

n

su
h that

{ a = a

0

,

{ r

i

(a

i�1

; a

i

) 2 A for 1 � i � n,

{ there is a j; 0 � j < n su
h that a

j

= a

n

.

Theorem 4. Let T

1

, A, a, and T

2

be de�ned as above. Then the following are

equivalent:
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Fig. 4. The EL-des
ription graph G

A

in the proof of Proposition 1.

1. The de�ned 
on
ept C

a

in T

2

is the ms
 of a in A and T

1

.

2. A j=

T

2

C

a

(a).

3. A is a-a
y
li
.

A proof of this theorem 
an be found in [3℄. Given T and an a-a
y
li
 ABox

A, the graph G

A


an obviously be 
omputed in polynomial time, and thus the

ms
 
an in this 
ase be 
omputed in polynomial time.

Corollary 2. Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the indi-

vidual name a su
h that A is a-a
y
li
. Then the ms
 of a in T

1

and A always

exists, and it 
an be 
omputed in polynomial time.

The a-a
y
li
ity of A is thus a suÆ
ient 
ondition for the existen
e of the

ms
. The following proposition states that this is not a ne
essary 
ondition.

Proposition 1. There exists an EL-TBox T

1

and an EL-ABox A 
ontaining

the individual name a su
h that the ms
 of a in T

1

and A exists, even though A

is not a-a
y
li
.

Proof. Let T

1

= fB � 9r:Bg and A = fr(a; a); B(a)g. We show that B in T

1

is the ms
 of a in A and T

1

. Sin
e A is obviously not a-a
y
li
, this shows that

a-a
y
li
ity of A is not a ne
essary 
ondition for the existen
e of the ms
.

The instan
e relationship A j=

T

1

B(a) is trivially true sin
e B(a) 2 A. Now,

assume that T

3

is a 
onservative extension of T

1

, and that the de�ned 
on
ept F

in T

3

satis�es A j=

T

3

F (a). Let G

A

be the EL-des
ription graph 
orresponding to

A and T

3

, as introdu
ed in De�nition 8 (see Figure 4). Sin
e A j=

T

3

F (a), there

is a simulation Z: G

T

3

*

� G

A

su
h that (F; a) 2 Z and Z is (C; u)-syn
hronized

for all (C; u) 2 Z.

We must show that B v

T

3

F , i.e., there is an (F;B)-syn
hronized simulation

Y : G

T

3

*

� G

T

3

su
h that (F;B) 2 Y . We de�ne Y as follows:

Y := f(u; v) j (u; v) 2 Z and v is a de�ned 
on
ept in T

3

g [

f(u;B) j (u; a) 2 Zg:



Sin
e (F; a) 2 Z we have (F;B) 2 Y . Next, we show that Y is a simulation.

(S1) is trivially satis�ed sin
e T

1

(and thus also T

3

) does not 
ontain primitive


on
epts. Consequently, all node labels are empty.

(S2) Let (u; v) 2 Y and (u; r; v) be an edge in G

T

3

.

3

First, assume that v is a de�ned 
on
ept in T

3

and (u; v) 2 Z. Sin
e Z is a

simulation, there exists a node v

0

in G

A

su
h that (v; r; v

0

) is an edge in G

A

and

(u

0

; v

0

) 2 Z. By the de�nition of G

A

, this implies that also v

0

is a de�ned 
on
ept

in T

3

, and thus (v; r; v

0

) is an edge in G

T

3

and (u

0

; v

0

) 2 Y .

Se
ond, assume that v = B and (u; a) 2 Z. Sin
e Z is a simulation, there

exists a node v

0

in G

A

su
h that (a; r; v

0

) is an edge in G

A

and (u

0

; v

0

) 2 Z. Sin
e

there are only two edges with sour
e a in G

A

, we know that v

0

= a or v

0

= B.

If v

0

= B, then v

0

is a de�ned 
on
ept in T

3

, and thus (v; r; v

0

) is an edge in G

T

3

and (u

0

; v

0

) 2 Y . If v

0

= a, then (B; r;B) is an edge in G

T

3

and (u

0

; a) 2 Z yields

(u

0

; B) 2 Y .

Thus, we have shown that Y is indeed a simulation from G

T

3

to G

T

3

. It

remains to be shown that it is (F;B)-syn
hronized. Sin
e (B; r;B) is the only

edge in G

T

3

with sour
e B, the sele
tion fun
tion always 
hooses B. Thus, it is

enough to show that any in�nite path starting with F in G

T

3

eventually leads

to B. This is an easy 
onsequen
e of the fa
t that Z is (F; a)-syn
hronized and

that the only node in G

T

3

rea
hable in G

A

from a is B.

5.3 Chara
terizing when the ms
 exists

The example that demonstrates the non-existen
e of the ms
 given above (see

Theorem 3) shows that 
y
les in the ABox are problemati
. However, Proposi-

tion 1 shows that not all 
y
les 
ause problems. Intuitively, the reason for some


y
les being harmless is that they 
an be simulated by 
y
les in the TBox. For

this reason, it is not really ne
essary to have them in G

A

. In order to make

this more pre
ise, we will introdu
e a
y
li
 versions G

(k)

A

of G

A

, where 
y
les are

unraveled into paths up to depth k starting with a (see De�nition 10 below).

When viewed as the EL-des
ription graph of an EL-TBox, this graph 
ontains

a de�ned 
on
ept that 
orresponds to the individual a. Let us 
all this 
on
ept

P

k

. We will see below that the ms
 of a exists i� there is a k su
h that P

k

is

the ms
.

4

Unfortunately, it is not 
lear how this 
ondition 
an be de
ided in an

e�e
tive way.

De�nition 10. Let T

1

be a �xed EL-TBox with asso
iated EL-des
ription graph

G

T

1

= (V

T

1

; E

T

1

; L

T

1

), A an EL-ABox, a a �xed individual in A, and k � 0. Then

the graph G

(k)

A

:= (V

k

; E

k

; L

k

) is de�ned as follows:

V

k

:= V

T

1

[ fa

0

g [ fb

n

j b is an individual in A and 1 � n � kg;

3

Sin
e r is the only role o

urring in T

1

, it is also the only role o

urring in the


onservative extension T

3

of T

1

.

4

This result is similar to the 
hara
terization of the existen
e of the l
s w.r.t. des
rip-

tive semanti
s given in [2℄.
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Fig. 5. The EL-des
ription graph G

(2)

A

of the example in the proof of Proposition 1.

where a

0

and b

n

are new individual names;

E

k

:= E

T

1

[

f(b

i

; r; 


i+1

) j r(b; 
) 2 A; b

i

; 


i+1

2 V

k

n V

T

1

g [

f(b

i

; r; B) j A(b) 2 A; b

i

2 V

k

n V

T

1

; (A; r;B) 2 E

T

1

g;

If u is a node in V

T

1

, then

L

k

(u) := L

T

1

(u);

and if u = b

i

2 V

k

n V

T

1

, then

L

k

(u) := fP j P (b) 2 Ag [

[

A(b)2A

L

T

1

(A);

where P denotes primitive and A denotes de�ned 
on
epts.

As an example, 
onsider the TBox T

1

and the ABox A introdu
ed in the

proof of Proposition 1. The 
orresponding graph G

(2)

A

is depi
ted in Figure 5

(where the empty node labels are omitted).

Let T

(k)

2

be the EL-TBox 
orresponding to G

(k)

A

. In this TBox, a

0

is a de�ned


on
ept, whi
h we denote by P

k

. For example, the TBox 
orresponding to the

graph G

(2)

A

depi
ted in Figure 5 
onsists of the following de�nitions (where nodes


orresponding to individuals have been renamed

5

):

P

2

� 9r:A

1

u 9r:B; A

1

� 9r:A

2

u 9r:B; A

2

� 9r:B; B � 9r:B:

Any ms
 of a must be equivalent to one of the 
on
epts P

k

:

Theorem 5. Let T

1

be an EL-TBox, A an EL-ABox, and a an individual in A.

Then there exists an ms
 of a in A and T

1

i� there is a k � 0 su
h that P

k

in

T

(k)

2

is the ms
 of a in A and T

1

.

This theorem, whose proof 
an be found in [3℄, is an easy 
onsequen
e of

the following two lemmas. The �rst lemma states that a is an instan
e of the


on
epts P

k

.

5

This renaming is admissible sin
e these nodes 
annot o

ur on 
y
les



Lemma 1. A j=

T

(k)

2

P

k

(a) for all k � 0.

The se
ond lemma says that every 
on
ept that has a as an instan
e also

subsumes P

k

for an appropriate k. To make this more pre
ise, assume that T

2

is

a 
onservative extension of T

1

, and that F is a de�ned 
on
ept in T

2

su
h that

A j=

T

2

F (a). Let k := n � (n + m) where n is the number of de�ned 
on
epts

in T

2

and m is the number of individuals in A. In order to have a subsumption

relationship between P

k

and F , both must \live" in the same TBox. For this, we

simply take the union T

3

of T

(k)

2

and T

2

. Note that we may assume without loss

of generality that the only de�ned 
on
epts that T

(k)

2

and T

2

have in 
ommon

are the ones from T

1

. In fa
t, none of the new de�ned 
on
epts in T

(k)

2

(i.e.,

the elements of V

k

n V

T

1

) lies on a 
y
le, and thus we 
an rename them without


hanging the meaning of these 
on
epts. (Note that the 
hara
terization of sub-

sumption given in Theorem 1 implies that only for de�ned 
on
epts o

urring

on 
y
les their a
tual names are relevant.) Thus, T

3

is a 
onservative extension

of both T

(k)

2

and T

2

.

Lemma 2. If k := n � (n+m) where n is the number of de�ned 
on
epts in T

2

and m is the number of individuals in A, then P

k

v

T

3

F .

In the following, we assume without loss of generality that the TBoxes T

(k)

2

(k � 0) are renamed su
h that they share only the de�ned 
on
epts of T

1

.

Lemma 3. Let T := T

(k)

2

[ T

(k+1)

2

. Then P

k+1

v

T

P

k

.

Thus, the 
on
epts P

k

form a de
reasing 
hain w.r.t. subsumption. The in-

dividual a has an ms
 i� this 
hain be
omes stable.

Corollary 3. P

k

is the ms
 of a i� it is equivalent to P

k+i

for all i � 1.

As an example, 
onsider the TBox T

1

and the ABox A introdu
ed in the

proof of Proposition 1 (see also Figure 5). It is easy to see that in this 
ase P

0

is equivalent to P

k

for all k � 1, and thus P

0

is the ms
 of a in T

1

and A.

6 Con
lusion

The impa
t of 
y
li
 de�nitions in EL on both standard and non-standard in-

feren
es in now well-investigated. The only two questions left open are how to

give a de
idable 
hara
terization of the 
ases in whi
h the l
s/ms
 exists w.r.t.

des
riptive semanti
s, and to determine whether it 
an then be 
omputed in

polynomial time.

Though the 
hara
terizations of the existen
e of the l
s/ms
 given in [2℄ and

in this paper do not provide us with su
h a de
ision pro
edure, they 
an be seen

as a �rst step in this dire
tion. In addition, these 
hara
terizations 
an be used

to 
ompute approximations of the l
s/ms
.
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