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Abstract. Previously, we have investigated both standard and non-
standard inferences in the presence of terminological cycles for the de-
scription logic ££, which allows for conjunctions, existential restrictions,
and the top concept. The present paper is concerned with two problems
left open by this previous work, namely the instance problem and the
problem of computing most specific concepts w.r.t. descriptive seman-
tics, which is the usual first-order semantics for description logics. We
will show that—Ilike subsumption—the instance problem is polynomial
in this context. Similar to the case of the least common subsumer, the
most specific concept w.r.t. descriptive semantics need not exist, but we
are able to characterize the cases in which it exists and give a decidable
sufficient condition for the existence of the most specific concept. Under
this condition, it can be computed in polynomial time.

1 Introduction

Early description logic (DL) systems allowed the use of value restrictions (Vr.C),
but not of existential restrictions (3r.C'). Thus, one could express that all chil-
dren are male using the value restriction Vchild.Male, but not that someone has
a son using the existential restriction dchild.Male. The main reason was that,
when clarifying the logical status of property arcs in semantic networks and
slots in frames, the decision was taken that arcs/slots should be read as value
restrictions (see, e.g., [12]). Once one considers more expressive DLs allowing
for full negation, existential restrictions come in as the dual of value restrictions
[14]. Thus, for historical reasons, DLs that allow for existential, but not for value
restrictions, were until recently mostly unexplored.

The recent interest in such DLs has at least two reasons. On the one hand,
there are indeed applications where DLs without value restrictions appear to be
sufficient. For example, SNOMED, the Systematized Nomenclature of Medicine
[16,15] employs the DL ££, which allows for conjunctions, existential restric-
tions, and the top concept. On the other hand, non-standard inferences in DLs
[11], like computing the least common subsumer, often make sense only for DLs
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that do not allow for full negation. Thus, the decision of whether to use DLs
with value restrictions or with existential restrictions becomes again relevant.

Non-standard inferences were introduced to support building and maintain-
ing large DL knowledge bases. For example, computing the most specific concept
of an individual and the least common subsumer of concepts can be used in the
bottom-up construction of description logic knowledge bases. Instead of defining
the relevant concepts of an application domain from scratch, this methodology
allows the user to give typical examples of individuals belonging to the con-
cept to be defined. These individuals are then generalized to a concept by first
computing the most specific concept of each individual (i.e., the least concept
description in the available description language that has this individual as an in-
stance), and then computing the least common subsumer of these concepts (i.e.,
the least concept description in the available description language that subsumes
all these concepts). The knowledge engineer can then use the computed concept
as a starting point for the concept definition.

The most specific concept (msc) of a given ABox individual need not exist
in languages allowing for existential restrictions or number restrictions. For the
DL ALN (which allows for conjunctions, value restrictions, and number restric-
tions), it was shown in [6] that the most specific concept always exists if one adds
cyclic concept definitions with greatest fixpoint semantics. If one wants to use
this approach for the bottom-up construction of knowledge bases, then one must
also be able to solve the standard inferences (the subsumption and the instance
problem) and to compute the least common subsumer in the presence of cyclic
concept definitions. Thus, in order to adapt the approach also to the DL £L,
the impact on both standard and non-standard inferences of cyclic definitions in
this DL had to be investigated first.

The paper [5] considers cyclic terminologies in £L£ w.r.t. the three types of se-
mantics (greatest fixpoint, least fixpoint, and descriptive semantics) introduced
by Nebel [13], and shows that the subsumption problem can be decided in poly-
nomial time in all three cases. This is in strong contrast to the case of DLs with
value restrictions. Even for the small DL FLq (which allows for conjunctions
and value restrictions only), adding cyclic terminologies increases the complex-
ity of the subsumption problem from polynomial (for concept descriptions) to
PSPACE [1]. The main tool in the investigation of cyclic definitions in £L is
a characterization of subsumption through the existence of so-called simulation
relations, which can be computed in polynomial time [9]. The results in [5] also
show that cyclic definitions with least fixpoint semantics are not interesting in
EL. For this reason, all the extensions of these results mentioned below are
concerned with greatest fixpoint (gfp) and descriptive semantics only.

The characterization of subsumption in ££ w.r.t. gfp-semantics through the
existence of certain simulation relations on the graph associated with the termi-
nology is used in [4] to characterize the least common subsumer via the product
of this graph with itself. This shows that, w.r.t. gfp semantics, the lcs always
exists, and the binary lcs can be computed in polynomial time. (The n-ary lcs
may grow exponentially even in ££ without cyclic terminologies [7].) For cyclic



terminologies in ££ with descriptive semantics, the lcs need not exist. In [2], pos-
sible candidates Py (k > 0) for the lcs are introduced, and it is shown that the
lcs exists iff one of these candidates is the lcs. In addition, a sufficient condition
for the existence of the lcs is given, and it is shown that, under this condition,
the les can be computed in polynomial time.

In [4], the characterization of subsumption w.r.t. gfp-semantics is also ex-
tended to the instance problem in £L£. This is then used to show that, w.r.t.
gfp-semantics, the instance problem in ££ can be decided in polynomial time
and that the msc in ££ always exists, and can be computed in polynomial time.

Given the positive results for gfp-semantics regarding both standard infer-
ences (subsumption and instance) and non-standard inferences (lcs and msc),
one might be tempted to restrict the attention to gfp-semantics. However, ex-
isting DL systems like FaCT [10] and RACER [8] allow for terminological cycles
(even more general inclusion axioms), but employ descriptive semantics. In some
cases it may be desirable to use a semantics that is consistent with the one em-
ployed by these systems even if one works with a DL that is considerably less
expressive than then one available in them. For example, non-standard infer-
ences that support building DL knowledge bases are often restricted to rather
inexpressive DLs (either because they do not make sense for more expressive
DLs or because they can currently only be handled for such DLs). Nevertheless,
it may be desirable that the result of these inferences (like the msc or the lcs)
is again in a format that is accepted by systems like FaCT and RACER. This is
not the case if the msc algorithm produces a cyclic terminology that must be
interpreted with gfp-semantics.

The subsumption problem and the problem of computing least common sub-
sumers in £L w.r.t cyclic terminologies with descriptive semantics have already
been tackled in [5] and [2], respectively. In the present paper we address the in-
stance problem and the problem of computing the most specific concept in this
setting. We will show that the instance problem is polynomial also in this con-
text. Unfortunately, the most specific concept w.r.t descriptive semantics need
not exist, but—similar to the case of the least common subsumer—we are able to
characterize the cases in which it exists and give a decidable sufficient condition
for the existence of the most specific concept. Under this condition, it can be
computed in polynomial time.

2 Cyclic terminologies and most specific concepts in £L

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names and a set Ny of role names. The
constructors determine the expressive power of the DL. In this paper, we restrict
the attention to the DL £L£, whose concept descriptions are formed using the
constructors top-concept (T), conjunction (C M D), and existential restriction
(3r.C). The semantics of £L-concept descriptions is defined in terms of an in-
terpretation T = (A%,-T). The domain AZ of T is a non-empty set of individuals
and the interpretation function -* maps each concept name A € N¢ to a subset



|name of constructor |Syntax| Semantics

concept name A € N¢ A AT c AT

role name r € Ng r rT C AT x AT
top-concept T AT

conjunction cnb cTnD*

existential restriction Ir.C e € ATy : (z,y) €Erf Ay € CT}
|concept definition |A = D| AT = D7 |
individual name a € N;| a at e AT

concept assertion Ala) al € AT

role assertion r(a,b) (T, bF) ert

Table 1. Syntax and semantics of ££

AT of AT and each role r € Ny to a binary relation r* on A”. The extension of
T to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A terminology (or TBoz for short) is a finite set of concept definitions of
the form A = D, where A is a concept name and D a concept description.
In addition, we require that TBoxes do not contain multiple definitions, i.e.,
there cannot be two distinct concept descriptions D; and D, such that both
A = Dy and A = D5 belongs to the TBox. Concept names occurring on the left-
hand side of a definition are called defined concepts. All other concept names
occurring in the TBox are called primitive concepts. Note that we allow for
cyclic dependencies between the defined concepts, i.e., the definition of A may
refer (directly or indirectly) to A itself. An interpretation 7 is a model of the
TBox T iff it satisfies all its concept definitions, i.e., AZ = DT for all definitions
A=DinT.

An ABoz is a finite set of assertions of the form A(a) and r(a,b), where A is
a concept name, r is a role name, and a, b are individual names from a set ;.
Interpretations of ABoxes must additionally map each individual name a € N;
to an element a” of A”. An interpretation Z is a model of the ABox A iff it
satisfies all its assertions, i.e., aZ € AZ for all concept assertions A(a) in A and
(aT,b) € rT for all role assertions r(a,b) in A. The interpretation Z is a model
of the ABox A together with the TBox 7 iff it is a model of both 7 and A.

The semantics of (possibly cyclic) £L£-TBoxes we have defined above is called
descriptive semantic by Nebel [13]. For some applications, it is more appropriate
to interpret cyclic concept definitions with the help of an appropriate fixpoint
semantics. However, in this paper we restrict our attention to descriptive seman-
tics (see [5,4] for definitions and results concerning cyclic terminologies in ££
with fixpoint semantics).

Definition 1. Let T be an EL-TBox and A an EL-ABoz, let C, D be concept
descriptions (possibly containing defined concepts of T ), and a an individual
name occurring in A. Then,

— C' is subsumed by D w.r.t. descriptive semantics (C Tt D) iff CT C D*
holds for all models T of T .



— a is an instance of C w.r.t. descriptive semantics (A =7 C(a)) iff aT € O
holds for all models T of T together with A.

On the level of concept descriptions, the most specific concept of a given ABox
individual a is the least concept description E (of the DL under consideration)
that has a as an instance. An extensions of this definition to the level of (possibly
cyclic) TBoxes is not completely trivial. In fact, assume that @ is an individual in
the ABox A and that 7 is a TBox. It should be obvious that taking as the msc
of a the least defined concept A in T such that A =7 A(a) is too weak since
the les would then strongly depend on the defined concepts that are already
present in 7. However, a second approach (which might look like the obvious
generalization of the definition of the msc in the case of concept descriptions) is
also not quite satisfactory. We could say that the msc of a is the least concept
description C' (possibly using defined concepts of T7') such that A =7 C'(a). The
problem is that this definition does not allow us to use the expressive power of
cyclic definitions when constructing the msc.

To avoid this problem, we allow the original TBox to be extended by new
definitions when constructing the msc. We say that the TBox 75 is a conservative
extension of the TBox 77 iff 71 C 75 and 77 and 73 have the same primitive
concepts and roles. Thus, 75 may contain new definitions A = D, but then D
does not introduce new primitive concepts and roles (i.e., all of them already
occur in T), and A is a new concept name (i.e., A does not occur in 7;). The
name “conservative extension” is justified by the fact that the new definitions
in 75 do not influence the subsumption relationships between defined concepts
in 77 (see [4] for details).

Definition 2. Let Ty be an EL-TBozx and A an EL-ABox containing the indi-

vidual name a, and let Ty be a conservative extension of T containing the defined

concept E.1' Then E in T5 is a most specific concept of a in A and T; w.r.t.

descriptive semantics (msc) iff the following two conditions are satisfied:

1. AEr, E(a).

2. If T3 is a conservative extension of Ty and F a defined concept in Tz such
that A |=1; F(a), then E Cp, F.

In the case of concept descriptions, the msc is unique up to equivalence. In
the presence of (possibly cyclic) TBoxes, this uniqueness property also holds,
though its formulation is more complicated (see [4] for details).

3 Characterizing subsumption in cyclic £L£-TBoxes

In this section, we recall the characterizations of subsumption w.r.t. descriptive
semantics developed in [5]. To this purpose, we must represent TBoxes by de-
scription graphs, and introduce the notion of a simulation on description graphs.

! Without loss of generality we assume that the msc is given by a defined concept
rather than a concept description since one can always introduce an appropriate
definition for the description. For the same reason, we can in the following restrict
the instance problem and the subsumption problem to defined concepts.



Before we can translate ££-TBoxes into description graphs, we must normalize
the TBoxes. In the following, let 7 be an ££-TBox, Ng.s the defined concepts
of T, Nprim the primitive concepts of 7, and Ny the roles of 7. We say that
the EL£-TBox T is normalized iff A = D € T implies that D is of the form

P1|_|...|_|Pm|_|E|7‘1.Bl|_|...|_|E|7‘g.Bg,

for m,¢ >0, P,...,P, € Npri'rnv 1y...,7¢ € Npote, and By,...,By € Ndef- If
m=/¢=0,then D =T.

As shown in [5], one can (without loss of generality) restrict the attention
to normalized TBox. In the following, we thus assume that all TBoxes are nor-
malized. Normalized £L-TBoxes can be viewed as graphs whose nodes are the
defined concepts, which are labeled by sets of primitive concepts, and whose
edges are given by the existential restrictions. For the rest of this section, we fix
a normalized ££-TBox T with primitive concepts Npyim, defined concepts Ny,
and roles N,e.

Definition 3. An £L-description graph is a graph G = (V, E, L) where

— V is a set of nodes;
— ECV X Nypie XV is a set of edges labeled by role names;
— L: V. — 2Nerim s q function that labels nodes with sets of primitive concepts.

The normalized TBox T can be translated into the following £ L-description graph
G = (Naes, ET,LT):

— the nodes of Gy are the defined concepts of T ;
— if A is a defined concept and A= Py N ...M P, N3ry.ByN...M3r.By its
definition in T, then
b LT(A) = {Pla“'apm}} and
o A is the source of the edges (A,r1,B1),...,(A,re,By) € ET.

Simulations are binary relations between nodes of two £L-description graphs
that respect labels and edges in the sense defined below.

Definition 4. Let G; = (Vi, E;, L;) (1 = 1,2) be two £ L-description graphs. The
binary relation Z C Vi X Vo is a simulation from Gy to Go iff

(S1) (v1,v2) € Z implies Ly (v1) C La(v2); and
(S82) if (v1,v2) € Z and (vy,r,v]) € Ey, then there ezxists a node vy € V such
that (vy,vh) € Z and (ve,r,vh) € Es.

We write Z: G ~ Go to express that Z is a simulation from Gy to Gs.

W.r.t. gfp-semantics, A is subsumed by B iff there is a simulation Z: G ~Gr
such that (B, A) € Z (see [5]). W.r.t. descriptive semantics, the simulation Z
must satisfy some additional properties for this equivalence to hold. To define
these properties, we must introduce some notation.



B=By 3 B 3B 3B 5.
zZ\ ozl ozl 7|
A=A 3 A483 4,834,545,

Fig. 1. A (B, A)-simulation chain.

B=By 3B 3..."3" B,_, 3B,
AA) A

Fig. 2. A partial (B, A)-simulation chain.

Definition 5. The path p.: B = By = By 3 B, 3 Bs 33 - in Gr is Z-
simulated by the pathps: A = Ag 5 A1 B3 Ay B A3 B3 - inGr iff (B, A) € Z
for all i > 0. In this case we say that the pair (p1,p2) is a (B, A)-simulation
chain w.r.t. Z (see Figure 1).

If (B, A) € Z, then (S2) of Definition 4 implies that, for every infinite path
p1 starting with By := B, there is an infinite path p, starting with Ay := A such
that p; is Z-simulated by ps. In the following we construct such a simulating
path step by step. The main point is, however, that the decision which concept
A, to take in step n should depend only on the partial (B, A)-simulation chain
already constructed, and not on the parts of the path p; not yet considered.

Definition 6. A partial (B, A)-simulation chain is of the form depicted in Fig-
ure 2. A selection function S for A, B and Z assigns to each partial (B, A)-
simulation chain of this form a defined concept A, such that (An—1,rn, An) is
an edge in Gr and (Bp, An) € Z. Given a path B = By 3B 2B, B3B, % ...
and a defined concept A such that (B, A) € Z, one can use a selection function
S for A, B and 7 to construct a Z-simulating path. In this case we say that the
resulting (B, A)-simulation chain is S-selected.

Definition 7. Let A, B be defined concepts in T, and Z: Gr ~ Gr a simulation
with (B, A) € Z. Then Z is called (B, A)-synchronized iff there exists a selection
function S for A, B and Z such that the following holds: for every infinite S-
selected (B, A)-simulation chain of the form depicted in Figure 1 there exists an
1 >0 such that A; = B;.

We are now ready to state the characterization of subsumption w.r.t. descrip-
tive semantics from [5].

Theorem 1. Let T be an EL-TBozx, and A, B defined concepts in T. Then the
following are equivalent:

1. AC+ B.



2. There is a (B, A)-synchronized simulation Z: Gy ~ Gy such that (B, A) € Z.

In [5] it is also shown that, for a given ££-TBox T and defined concepts
A, B in T, the existence of a (B, A)-synchronized simulation Z: G ~ Gr with
(B, A) € Z can be decided in polynomial time, which shows that the subsump-
tion w.r.t. descriptive semantics in ££ is tractable.

4 The instance problem

Agsume that 7 is an ££-TBox and A an ££-ABox. In the following, we assume
that 7 is fixed and that all instance problems for A are considered w.r.t. this
TBox. In this setting, A can be translated into an £/L£-description graph G4 by
viewing A as a graph and extending it appropriately by the graph G7 associated
with 7. The idea is then that the characterization of the instance problem should
be similar to the statement of Theorem 1: the individual a is an instance of A
in A and 7T iff there is an (A, a)-synchronized simulation Z: G ~ G4 such that
(A,a) € Z.2 The formal definition of the £L-description graph G, associated
with the ABox A and the TBox 7 given below was also used in [4] to characterize
the instance problem in ££ w.r.t. gfp-semantics.

Definition 8. Let T be an EL-TBox, A an EL-ABoz, and G = (Vr, E7, L7)
be the £L-description graph associated with T . The EL-description graph G =
(Va,Ea,L4) associated with A and T is defined as follows:

— the nodes of Ga are the individual names occurring in A together with the
defined concepts of T, i.e.,

Va:=VyrU{a|a is an individual name occurring in A};

— the edges of G4 are the edges of G, the role assertions of A, and additional
edges linking the ABox individuals with defined concepts:

E, = Eru{(a,r,b) | r(a,b) € A} U
{(a,r,B) | A(a) € A and (4,1, B) € Er};
— if u € V4 is a defined concept, then it inherits its label from G, i.e.,
La(u)=Ly(u) ifu€Vy;

otherwise, u is an ABoz individual, and then its label is derived from the
concept assertions for u in A. In the following, let P denote primitive and
A denote defined concepts.

La(w):={P|Pw)e AU |J Lr(4) ifueVa\Vr.
A(u)eA

2 The actual characterization of the instance problem turns out to be somewhat more
complex, but for the moment the above is sufficient to gives the right intuition.



Fig. 3. The £L-description graphs G and G4 of the example.

We are now ready to formulate our characterization of the instance problem
w.r.t. descriptive semantics (see [3] for the proof).

Theorem 2. Let T be an EL-TBox, A an EL-ABozx, A a defined concept in T
and a an individual name occurring in A. Then the following are equivalent:

1. A7 Ala). R
2. There is a simulation Z: Gy ~ G4 such that
— (A,a) € Z.

— 7 is (B, u)-synchronized for all (B,u) € Z.
As an example, we consider the following TBox and ABox:
T:={A=PnN3r.A} and A:={P(a),r(a,a), A(D),r(b,b)}.

It is easy to see that there is no simulation satisfy the conditions of Theorem 2
for A and a. In contrast, the simulation Z := {(4, A),(A,b)} satisfies these
conditions for A and b (see also Figure 3).

Since the existence of a synchronized simulation relation satisfying the con-
ditions stated in (2) of Theorem 2 can be decided in polynomial time (see [3]),
the instance problem w.r.t. descriptive semantics is tractable.

Corollary 1. The instance problem w.r.t. descriptive semantics in EL can be
decided in polynomial time.

5 The most specific concept

In this section, we will first show that the most specific concept w.r.t. descriptive
semantics need not exist. Then, we will show that the most specific concept w.r.t.
gfp-semantics (see [4]) coincides with the most specific concept w.r.t. descriptive
semantics iff the ABox satisfies a certain acyclicity condition. This yields a suf-
ficient condition for the existence of the msc, which is, however, not a necessary
one. We will then characterize the cases in which the msc exists. Unfortunately,
it is not yet clear how to turn this characterization into a decision procedure for
the existence of the msc.



5.1 The msc need not exist

Theorem 3. Let T =0 and A = {r(b,b)}. Then b does not have an msc in A
and Ty.

Proof. Assume to the contrary that 75 is a conservative extension of 77 such
that the defined concept E in 73 is an msc of b. Let G4 be the £L-description
graph corresponding to A and 73, as introduced in Definition 8. Since b is an
instance of E, there is a simulation Z: Gy, ~ G4 such that (E,b) € Z and Z is
(B, u)-synchronized for all (B,u) € Z.

Since T; = ), there is no edge in G4 from b to a defined concept in 7. Thus,
the fact that Z is (E,b)-synchronized implies that there cannot be an infinite
path in G, (and thus G4) starting with E. Consequently, there is an upper-
bound ng on the length of the paths in G, (and thus G4) starting with E.
Now, consider the TBox T3 = {F,, = Ir.Fp,_1,..., Fi = Ir.Fy,Fp = T}. Tt is
easy to see that 73 is a conservative extension of 75 (where we assume without
loss of generality that Fp,...,F, are concept names not occurring in 72) and
that A =7, F,(b). Since E is an msc of b, this implies that E Cg; F,. Thus,
there is an (F},, F)-synchronized simulation Y: G7; ~ Gr; such that (F,,, E) € Y.
However, for n > ng, the path

F,5F,_15. .. 5 F

cannot be simulated by a path starting from FE. O

5.2 A sufficient condition for the existence of the msc

Let 71 be an ££-TBox and A an ££-ABox containing the individual name a.
Let G4 = (Va, Ea, L) be the £L-description graph corresponding to A and Ty,
as introduced in Definition 8. We can view G 4 as the £ L-description graph of an
EL-TBox Tz, i.e., let T2 be the TBox such that G4 = G;. It is easy to see that 7z
is a conservative extension of 7;. By the definition of G 4, the defined concepts of
T2 are the defined concepts of 77 together with the individual names occurring
in A. To avoid confusion we will denote the defined concept in 75 corresponding
to the individual name b in A by C}.

In [4] it is shown that, w.r.t. gfp-semantics, the defined concept C,, in T3 is
the most specific concept of @ in A and 7;. W.r.t. descriptive semantics, this is
only true if A does not contain a cycle that is reachable from a.

Definition 9. The ABoz A is called a-acyclic iff there are no n > 1 and indi-
viduals ag,ay,...,a, and roles ry,...,r, such that

- a = ap,
= ri(ai—1,a;) € A for 1 <i <m,
— there is a 3,0 < j <n such that a; = a,.

Theorem 4. Let T1, A, a, and T3 be defined as above. Then the following are
equivalent:



Ga

Fig. 4. The £L-description graph G4 in the proof of Proposition 1.

1. The defined concept C,, in Tz is the msc of a in A and Ty.
2. AEr Cu(a).

3. A is a-acyclic.

A proof of this theorem can be found in [3]. Given T and an a-acyclic ABox
A, the graph G4 can obviously be computed in polynomial time, and thus the
msc can in this case be computed in polynomial time.

Corollary 2. Let Ty be an EL-TBozx and A an EL-ABox containing the indi-
vidual name a such that A is a-acyclic. Then the msc of a in Ty and A always
exists, and it can be computed in polynomial time.

The a-acyclicity of A is thus a sufficient condition for the existence of the
msc. The following proposition states that this is not a necessary condition.

Proposition 1. There exists an EL-TBox Ty and an EL-ABoxr A containing
the individual name a such that the msc of a in Ty and A ezists, even though A
s not a-acyclic.

Proof. Let Ty = {B = 3r.B} and A = {r(a,a), B(a)}. We show that B in Ty
is the msc of a in A and 7;. Since A is obviously not a-acyclic, this shows that
a-acyclicity of A is not a necessary condition for the existence of the msc.

The instance relationship A =7, B(a) is trivially true since B(a) € A. Now,
assume that 73 is a conservative extension of 7, and that the defined concept F’
in 73 satisfies A =7, F'(a). Let G4 be the £L-description graph corresponding to
A and T3, as introduced in Definition 8 (see Figure 4). Since A =7, F(a), there
is a simulation Z: Gr, ~ G4 such that (F,a) € Z and Z is (C,u)-synchronized
for all (C,u) € Z.

We must show that B C7; F, i.e., there is an (F, B)-synchronized simulation
Y: Gr, ~ G, such that (F,B) € Y. We define Y as follows:

Y = {(u,v) | (u,v) € Z and v is a defined concept in T3} U
{(u,B) | (u,a) € Z}.



Since (F,a) € Z we have (F, B) € Y. Next, we show that Y is a simulation.

(S1) is trivially satisfied since 77 (and thus also 73) does not contain primitive
concepts. Consequently, all node labels are empty.

(S2) Let (u,v) € Y and (u,r,v) be an edge in G1;.?

First, assume that v is a defined concept in 73 and (u,v) € Z. Since Z is a
simulation, there exists a node v' in G4 such that (v,7,v") is an edge in G4 and
(u',v") € Z. By the definition of G 4, this implies that also v’ is a defined concept
in 73, and thus (v,r,v') is an edge in G, and (v',v") € Y.

Second, assume that v = B and (u,a) € Z. Since Z is a simulation, there
exists a node v’ in G 4 such that (a,r,v’) is an edge in G4 and (u/,v') € Z. Since
there are only two edges with source a in G4, we know that v = a or v' = B.
If o' = B, then v’ is a defined concept in 73, and thus (v,r,v’) is an edge in G,
and (u',v") € Y. If v' = a, then (B,r, B) is an edge in G, and (v, a) € Z yields
(u',B) €Y.

Thus, we have shown that Y is indeed a simulation from Gr, to Gr. It
remains to be shown that it is (F, B)-synchronized. Since (B,r, B) is the only
edge in G, with source B, the selection function always chooses B. Thus, it is
enough to show that any infinite path starting with F' in Gr, eventually leads
to B. This is an easy consequence of the fact that Z is (F,a)-synchronized and
that the only node in G7; reachable in G 4 from a is B. O

5.3 Characterizing when the msc exists

The example that demonstrates the non-existence of the msc given above (see
Theorem 3) shows that cycles in the ABox are problematic. However, Proposi-
tion 1 shows that not all cycles cause problems. Intuitively, the reason for some
cycles being harmless is that they can be simulated by cycles in the TBox. For
this reason, it is not really necessary to have them in G4. In order to make
this more precise, we will introduce acyclic versions gﬁ{“) of G 4, where cycles are
unraveled into paths up to depth k starting with a (see Definition 10 below).
When viewed as the £L-description graph of an ££-TBox, this graph contains
a defined concept that corresponds to the individual a. Let us call this concept
P,,. We will see below that the msc of a exists iff there is a & such that P is
the msc.* Unfortunately, it is not clear how this condition can be decided in an
effective way.

Definition 10. Let Ty be a fized £L-TBox with associated £ L-description graph
G = V5, Ex,,L7,), A an EL-ABoz, a a fized individual in A, and k > 0. Then

the graph gff) := (Vi, Ex, Li) is defined as follows:
Vi = Vr U{a®Y U {b™ | b is an individual in A and 1 <n <k},

% Since r is the only role occurring in 77, it is also the only role occurring in the
conservative extension T3 of 7i.

4 This result is similar to the characterization of the existence of the les w.r.t. descrip-
tive semantics given in [2].



Fig. 5. The £L-description graph QEL‘Q) of the example in the proof of Proposition 1.

where a° and b are new individual names;

Ek = ET1 U
{(o",r, ) [ r(b,e) € AV, T eV \VRT U
{(b*,r,B) | A(b) € A,b' € Vi \ V5, (A,r,B) € E; };

If u is a node in Vi, then
Li(u) := L (u);

and if u="b" € Vi, \ Vr;, then

Ly(u):={P|P(b) e AU ] Ln(4),
A(b)eA

where P denotes primitive and A denotes defined concepts.

As an example, consider the TBox 7; and the ABox A introduced in the
proof of Proposition 1. The corresponding graph gf) is depicted in Figure 5
(where the empty node labels are omitted).

Let 7'2(k) be the £L£-TBox corresponding to fo). In this TBox, a® is a defined
concept, which we denote by Pi. For example, the TBox corresponding to the
graph gf) depicted in Figure 5 consists of the following definitions (where nodes
corresponding to individuals have been renamed?®):

P,=3rAyNar.B, Ay =Ir.AsN3Ir.B, A, =3Ir.B, B=Ir.B.
Any msc of a must be equivalent to one of the concepts Py:

Theorem 5. Let Ty be an EL-TBozx, A an EL-ABox, and a an individual in A.
Then there exists an msc of a in A and Ty iff there is a k > 0 such that Py in

TQ(k) is the msc of a in A and T .

This theorem, whose proof can be found in [3], is an easy consequence of
the following two lemmas. The first lemma states that a is an instance of the
concepts Pj.

® This renaming is admissible since these nodes cannot occur on cycles



Lemma 1. A | Py(a) for all k > 0.

The second lemma says that every concept that has @ as an instance also
subsumes P, for an appropriate k. To make this more precise, assume that 75 is
a conservative extension of 71, and that F is a defined concept in 75 such that
A E7, F(a). Let k := n - (n+ m) where n is the number of defined concepts
in 73 and m is the number of individuals in A. In order to have a subsumption
relationship between P, and F', both must “live” in the same TBox. For this, we
simply take the union 73 of 7~2(1»‘) and 7>. Note that we may assume without loss
of generality that the only defined concepts that T;k) and 7> have in common
are the ones from 77. In fact, none of the new defined concepts in Tgw) (i.e.,
the elements of V}, \ V7;) lies on a cycle, and thus we can rename them without
changing the meaning of these concepts. (Note that the characterization of sub-
sumption given in Theorem 1 implies that only for defined concepts occurring
on cycles their actual names are relevant.) Thus, 73 is a conservative extension

of both 7;:*) and 75.

Lemma 2. If k:=n-(n+ m) where n is the number of defined concepts in Ty
and m 1is the number of individuals in A, then P, Cp, F.

In the following, we assume without loss of generality that the TBoxes T;k)
(k > 0) are renamed such that they share only the defined concepts of 7.

Lemma 3. Let T := TQ(k) U B(k+1). Then Py C7 Py.

Thus, the concepts Py form a decreasing chain w.r.t. subsumption. The in-
dividual @ has an msc iff this chain becomes stable.

Corollary 3. Py is the msc of a iff it is equivalent to Pyy; for all i > 1.

As an example, consider the TBox 7; and the ABox A introduced in the
proof of Proposition 1 (see also Figure 5). It is easy to see that in this case P,
is equivalent to Py for all £ > 1, and thus P, is the msc of @ in 77 and A.

6 Conclusion

The impact of cyclic definitions in ££ on both standard and non-standard in-
ferences in now well-investigated. The only two questions left open are how to
give a decidable characterization of the cases in which the les/msc exists w.r.t.
descriptive semantics, and to determine whether it can then be computed in
polynomial time.

Though the characterizations of the existence of the lcs/msc given in [2] and
in this paper do not provide us with such a decision procedure, they can be seen
as a first step in this direction. In addition, these characterizations can be used
to compute approximations of the lcs/msc.
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