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Abstrat. Previously, we have investigated both standard and non-

standard inferenes in the presene of terminologial yles for the de-

sription logi EL, whih allows for onjuntions, existential restritions,

and the top onept. The present paper is onerned with two problems

left open by this previous work, namely the instane problem and the

problem of omputing most spei� onepts w.r.t. desriptive seman-

tis, whih is the usual �rst-order semantis for desription logis. We

will show that|like subsumption|the instane problem is polynomial

in this ontext. Similar to the ase of the least ommon subsumer, the

most spei� onept w.r.t. desriptive semantis need not exist, but we

are able to haraterize the ases in whih it exists and give a deidable

suÆient ondition for the existene of the most spei� onept. Under

this ondition, it an be omputed in polynomial time.

1 Introdution

Early desription logi (DL) systems allowed the use of value restritions (8r:C),

but not of existential restritions (9r:C). Thus, one ould express that all hil-

dren are male using the value restrition 8hild:Male, but not that someone has

a son using the existential restrition 9hild:Male. The main reason was that,

when larifying the logial status of property ars in semanti networks and

slots in frames, the deision was taken that ars/slots should be read as value

restritions (see, e.g., [12℄). One one onsiders more expressive DLs allowing

for full negation, existential restritions ome in as the dual of value restritions

[14℄. Thus, for historial reasons, DLs that allow for existential, but not for value

restritions, were until reently mostly unexplored.

The reent interest in suh DLs has at least two reasons. On the one hand,

there are indeed appliations where DLs without value restritions appear to be

suÆient. For example, SNOMED, the Systematized Nomenlature of Mediine

[16, 15℄ employs the DL EL, whih allows for onjuntions, existential restri-

tions, and the top onept. On the other hand, non-standard inferenes in DLs

[11℄, like omputing the least ommon subsumer, often make sense only for DLs

?

Partially supported by the DFG under grant BA 1122/4-3.



that do not allow for full negation. Thus, the deision of whether to use DLs

with value restritions or with existential restritions beomes again relevant.

Non-standard inferenes were introdued to support building and maintain-

ing large DL knowledge bases. For example, omputing the most spei� onept

of an individual and the least ommon subsumer of onepts an be used in the

bottom-up onstrution of desription logi knowledge bases. Instead of de�ning

the relevant onepts of an appliation domain from srath, this methodology

allows the user to give typial examples of individuals belonging to the on-

ept to be de�ned. These individuals are then generalized to a onept by �rst

omputing the most spei� onept of eah individual (i.e., the least onept

desription in the available desription language that has this individual as an in-

stane), and then omputing the least ommon subsumer of these onepts (i.e.,

the least onept desription in the available desription language that subsumes

all these onepts). The knowledge engineer an then use the omputed onept

as a starting point for the onept de�nition.

The most spei� onept (ms) of a given ABox individual need not exist

in languages allowing for existential restritions or number restritions. For the

DL ALN (whih allows for onjuntions, value restritions, and number restri-

tions), it was shown in [6℄ that the most spei� onept always exists if one adds

yli onept de�nitions with greatest �xpoint semantis. If one wants to use

this approah for the bottom-up onstrution of knowledge bases, then one must

also be able to solve the standard inferenes (the subsumption and the instane

problem) and to ompute the least ommon subsumer in the presene of yli

onept de�nitions. Thus, in order to adapt the approah also to the DL EL,

the impat on both standard and non-standard inferenes of yli de�nitions in

this DL had to be investigated �rst.

The paper [5℄ onsiders yli terminologies in EL w.r.t. the three types of se-

mantis (greatest �xpoint, least �xpoint, and desriptive semantis) introdued

by Nebel [13℄, and shows that the subsumption problem an be deided in poly-

nomial time in all three ases. This is in strong ontrast to the ase of DLs with

value restritions. Even for the small DL FL

0

(whih allows for onjuntions

and value restritions only), adding yli terminologies inreases the omplex-

ity of the subsumption problem from polynomial (for onept desriptions) to

PSPACE [1℄. The main tool in the investigation of yli de�nitions in EL is

a haraterization of subsumption through the existene of so-alled simulation

relations, whih an be omputed in polynomial time [9℄. The results in [5℄ also

show that yli de�nitions with least �xpoint semantis are not interesting in

EL. For this reason, all the extensions of these results mentioned below are

onerned with greatest �xpoint (gfp) and desriptive semantis only.

The haraterization of subsumption in EL w.r.t. gfp-semantis through the

existene of ertain simulation relations on the graph assoiated with the termi-

nology is used in [4℄ to haraterize the least ommon subsumer via the produt

of this graph with itself. This shows that, w.r.t. gfp semantis, the ls always

exists, and the binary ls an be omputed in polynomial time. (The n-ary ls

may grow exponentially even in EL without yli terminologies [7℄.) For yli



terminologies in EL with desriptive semantis, the ls need not exist. In [2℄, pos-

sible andidates P

k

(k � 0) for the ls are introdued, and it is shown that the

ls exists i� one of these andidates is the ls. In addition, a suÆient ondition

for the existene of the ls is given, and it is shown that, under this ondition,

the ls an be omputed in polynomial time.

In [4℄, the haraterization of subsumption w.r.t. gfp-semantis is also ex-

tended to the instane problem in EL. This is then used to show that, w.r.t.

gfp-semantis, the instane problem in EL an be deided in polynomial time

and that the ms in EL always exists, and an be omputed in polynomial time.

Given the positive results for gfp-semantis regarding both standard infer-

enes (subsumption and instane) and non-standard inferenes (ls and ms),

one might be tempted to restrit the attention to gfp-semantis. However, ex-

isting DL systems like FaCT [10℄ and Raer [8℄ allow for terminologial yles

(even more general inlusion axioms), but employ desriptive semantis. In some

ases it may be desirable to use a semantis that is onsistent with the one em-

ployed by these systems even if one works with a DL that is onsiderably less

expressive than then one available in them. For example, non-standard infer-

enes that support building DL knowledge bases are often restrited to rather

inexpressive DLs (either beause they do not make sense for more expressive

DLs or beause they an urrently only be handled for suh DLs). Nevertheless,

it may be desirable that the result of these inferenes (like the ms or the ls)

is again in a format that is aepted by systems like FaCT and Raer. This is

not the ase if the ms algorithm produes a yli terminology that must be

interpreted with gfp-semantis.

The subsumption problem and the problem of omputing least ommon sub-

sumers in EL w.r.t yli terminologies with desriptive semantis have already

been takled in [5℄ and [2℄, respetively. In the present paper we address the in-

stane problem and the problem of omputing the most spei� onept in this

setting. We will show that the instane problem is polynomial also in this on-

text. Unfortunately, the most spei� onept w.r.t desriptive semantis need

not exist, but|similar to the ase of the least ommon subsumer|we are able to

haraterize the ases in whih it exists and give a deidable suÆient ondition

for the existene of the most spei� onept. Under this ondition, it an be

omputed in polynomial time.

2 Cyli terminologies and most spei� onepts in EL

Conept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names. The

onstrutors determine the expressive power of the DL. In this paper, we restrit

the attention to the DL EL, whose onept desriptions are formed using the

onstrutors top-onept (>), onjuntion (C u D), and existential restrition

(9r:C). The semantis of EL-onept desriptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset



name of onstrutor Syntax Semantis

onept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restrition 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

onept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I

onept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1. Syntax and semantis of EL

A

I

of �

I

and eah role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third

olumn of Table 1.

A terminology (or TBox for short) is a �nite set of onept de�nitions of

the form A � D, where A is a onept name and D a onept desription.

In addition, we require that TBoxes do not ontain multiple de�nitions, i.e.,

there annot be two distint onept desriptions D

1

and D

2

suh that both

A � D

1

and A � D

2

belongs to the TBox. Conept names ourring on the left-

hand side of a de�nition are alled de�ned onepts. All other onept names

ourring in the TBox are alled primitive onepts. Note that we allow for

yli dependenies between the de�ned onepts, i.e., the de�nition of A may

refer (diretly or indiretly) to A itself. An interpretation I is a model of the

TBox T i� it satis�es all its onept de�nitions, i.e., A

I

= D

I

for all de�nitions

A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a onept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map eah individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all onept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semantis of (possibly yli) EL-TBoxes we have de�ned above is alled

desriptive semanti by Nebel [13℄. For some appliations, it is more appropriate

to interpret yli onept de�nitions with the help of an appropriate �xpoint

semantis. However, in this paper we restrit our attention to desriptive seman-

tis (see [5, 4℄ for de�nitions and results onerning yli terminologies in EL

with �xpoint semantis).

De�nition 1. Let T be an EL-TBox and A an EL-ABox, let C;D be onept

desriptions (possibly ontaining de�ned onepts of T ), and a an individual

name ourring in A. Then,

{ C is subsumed by D w.r.t. desriptive semantis (C v

T

D) i� C

I

� D

I

holds for all models I of T .



{ a is an instane of C w.r.t. desriptive semantis (A j=

T

C(a)) i� a

I

2 C

I

holds for all models I of T together with A.

On the level of onept desriptions, the most spei� onept of a given ABox

individual a is the least onept desription E (of the DL under onsideration)

that has a as an instane. An extensions of this de�nition to the level of (possibly

yli) TBoxes is not ompletely trivial. In fat, assume that a is an individual in

the ABox A and that T is a TBox. It should be obvious that taking as the ms

of a the least de�ned onept A in T suh that A j=

T

A(a) is too weak sine

the ls would then strongly depend on the de�ned onepts that are already

present in T . However, a seond approah (whih might look like the obvious

generalization of the de�nition of the ms in the ase of onept desriptions) is

also not quite satisfatory. We ould say that the ms of a is the least onept

desription C (possibly using de�ned onepts of T ) suh that A j=

T

C(a). The

problem is that this de�nition does not allow us to use the expressive power of

yli de�nitions when onstruting the ms.

To avoid this problem, we allow the original TBox to be extended by new

de�nitions when onstruting the ms. We say that the TBox T

2

is a onservative

extension of the TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive

onepts and roles. Thus, T

2

may ontain new de�nitions A � D, but then D

does not introdue new primitive onepts and roles (i.e., all of them already

our in T

1

), and A is a new onept name (i.e., A does not our in T

1

). The

name \onservative extension" is justi�ed by the fat that the new de�nitions

in T

2

do not inuene the subsumption relationships between de�ned onepts

in T

1

(see [4℄ for details).

De�nition 2. Let T

1

be an EL-TBox and A an EL-ABox ontaining the indi-

vidual name a, and let T

2

be a onservative extension of T

1

ontaining the de�ned

onept E.

1

Then E in T

2

is a most spei� onept of a in A and T

1

w.r.t.

desriptive semantis (ms) i� the following two onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh

that A j=

T

3

F (a), then E v

T

3

F .

In the ase of onept desriptions, the ms is unique up to equivalene. In

the presene of (possibly yli) TBoxes, this uniqueness property also holds,

though its formulation is more ompliated (see [4℄ for details).

3 Charaterizing subsumption in yli EL-TBoxes

In this setion, we reall the haraterizations of subsumption w.r.t. desriptive

semantis developed in [5℄. To this purpose, we must represent TBoxes by de-

sription graphs, and introdue the notion of a simulation on desription graphs.

1

Without loss of generality we assume that the ms is given by a de�ned onept

rather than a onept desription sine one an always introdue an appropriate

de�nition for the desription. For the same reason, we an in the following restrit

the instane problem and the subsumption problem to de�ned onepts.



Before we an translate EL-TBoxes into desription graphs, we must normalize

the TBoxes. In the following, let T be an EL-TBox, N

def

the de�ned onepts

of T , N

prim

the primitive onepts of T , and N

role

the roles of T . We say that

the EL-TBox T is normalized i� A � D 2 T implies that D is of the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [5℄, one an (without loss of generality) restrit the attention

to normalized TBox. In the following, we thus assume that all TBoxes are nor-

malized. Normalized EL-TBoxes an be viewed as graphs whose nodes are the

de�ned onepts, whih are labeled by sets of primitive onepts, and whose

edges are given by the existential restritions. For the rest of this setion, we �x

a normalized EL-TBox T with primitive onepts N

prim

, de�ned onepts N

def

,

and roles N

role

.

De�nition 3. An EL-desription graph is a graph G = (V;E; L) where

{ V is a set of nodes;

{ E � V �N

role

� V is a set of edges labeled by role names;

{ L: V ! 2

N

prim

is a funtion that labels nodes with sets of primitive onepts.

The normalized TBox T an be translated into the following EL-desription graph

G

T

= (N

def

; E

T

; L

T

):

{ the nodes of G

T

are the de�ned onepts of T ;

{ if A is a de�ned onept and A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its

de�nition in T , then

� L

T

(A) = fP

1

; : : : ; P

m

g, and

� A is the soure of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Simulations are binary relations between nodes of two EL-desription graphs

that respet labels and edges in the sense de�ned below.

De�nition 4. Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-desription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

suh

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

W.r.t. gfp-semantis,A is subsumed by B i� there is a simulation Z: G

T

*

� G

T

suh that (B;A) 2 Z (see [5℄). W.r.t. desriptive semantis, the simulation Z

must satisfy some additional properties for this equivalene to hold. To de�ne

these properties, we must introdue some notation.



B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Fig. 1. A (B;A)-simulation hain.

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Fig. 2. A partial (B;A)-simulation hain.

De�nition 5. The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � in G

T

is Z-

simulated by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � in G

T

i� (B

i

; A

i

) 2 Z

for all i � 0. In this ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation

hain w.r.t. Z (see Figure 1).

If (B;A) 2 Z, then (S2) of De�nition 4 implies that, for every in�nite path

p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A suh

that p

1

is Z-simulated by p

2

. In the following we onstrut suh a simulating

path step by step. The main point is, however, that the deision whih onept

A

n

to take in step n should depend only on the partial (B;A)-simulation hain

already onstruted, and not on the parts of the path p

1

not yet onsidered.

De�nition 6. A partial (B;A)-simulation hain is of the form depited in Fig-

ure 2. A seletion funtion S for A;B and Z assigns to eah partial (B;A)-

simulation hain of this form a de�ned onept A

n

suh that (A

n�1

; r

n

; A

n

) is

an edge in G

T

and (B

n

; A

n

) 2 Z. Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

and a de�ned onept A suh that (B;A) 2 Z, one an use a seletion funtion

S for A;B and Z to onstrut a Z-simulating path. In this ase we say that the

resulting (B;A)-simulation hain is S-seleted.

De�nition 7. Let A;B be de�ned onepts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is alled (B;A)-synhronized i� there exists a seletion

funtion S for A;B and Z suh that the following holds: for every in�nite S-

seleted (B;A)-simulation hain of the form depited in Figure 1 there exists an

i � 0 suh that A

i

= B

i

.

We are now ready to state the haraterization of subsumption w.r.t. desrip-

tive semantis from [5℄.

Theorem 1. Let T be an EL-TBox, and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

T

B.



2. There is a (B;A)-synhronized simulation Z: G

T

*

� G

T

suh that (B;A) 2 Z.

In [5℄ it is also shown that, for a given EL-TBox T and de�ned onepts

A;B in T , the existene of a (B;A)-synhronized simulation Z: G

T

*

� G

T

with

(B;A) 2 Z an be deided in polynomial time, whih shows that the subsump-

tion w.r.t. desriptive semantis in EL is tratable.

4 The instane problem

Assume that T is an EL-TBox and A an EL-ABox. In the following, we assume

that T is �xed and that all instane problems for A are onsidered w.r.t. this

TBox. In this setting, A an be translated into an EL-desription graph G

A

by

viewing A as a graph and extending it appropriately by the graph G

T

assoiated

with T . The idea is then that the haraterization of the instane problem should

be similar to the statement of Theorem 1: the individual a is an instane of A

in A and T i� there is an (A; a)-synhronized simulation Z: G

T

*

� G

A

suh that

(A; a) 2 Z.

2

The formal de�nition of the EL-desription graph G

A

assoiated

with the ABoxA and the TBox T given below was also used in [4℄ to haraterize

the instane problem in EL w.r.t. gfp-semantis.

De�nition 8. Let T be an EL-TBox, A an EL-ABox, and G

T

= (V

T

; E

T

; L

T

)

be the EL-desription graph assoiated with T . The EL-desription graph G

A

=

(V

A

; E

A

; L

A

) assoiated with A and T is de�ned as follows:

{ the nodes of G

A

are the individual names ourring in A together with the

de�ned onepts of T , i.e.,

V

A

:= V

T

[ fa j a is an individual name ourring in Ag;

{ the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned onepts:

E

A

:= E

T

[ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r;B) 2 E

T

g;

{ if u 2 V

A

is a de�ned onept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L

T

(u) if u 2 V

T

;

otherwise, u is an ABox individual, and then its label is derived from the

onept assertions for u in A. In the following, let P denote primitive and

A denote de�ned onepts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L

T

(A) if u 2 V

A

n V

T

:

2

The atual haraterization of the instane problem turns out to be somewhat more

omplex, but for the moment the above is suÆient to gives the right intuition.
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Fig. 3. The EL-desription graphs G

T

and G

A

of the example.

We are now ready to formulate our haraterization of the instane problem

w.r.t. desriptive semantis (see [3℄ for the proof).

Theorem 2. Let T be an EL-TBox, A an EL-ABox, A a de�ned onept in T

and a an individual name ourring in A. Then the following are equivalent:

1. A j=

T

A(a).

2. There is a simulation Z: G

T

*

� G

A

suh that

{ (A; a) 2 Z.

{ Z is (B; u)-synhronized for all (B; u) 2 Z.

As an example, we onsider the following TBox and ABox:

T := fA � P u 9r:Ag and A := fP (a); r(a; a); A(b); r(b; b)g:

It is easy to see that there is no simulation satisfy the onditions of Theorem 2

for A and a. In ontrast, the simulation Z := f(A;A); (A; b)g satis�es these

onditions for A and b (see also Figure 3).

Sine the existene of a synhronized simulation relation satisfying the on-

ditions stated in (2) of Theorem 2 an be deided in polynomial time (see [3℄),

the instane problem w.r.t. desriptive semantis is tratable.

Corollary 1. The instane problem w.r.t. desriptive semantis in EL an be

deided in polynomial time.

5 The most spei� onept

In this setion, we will �rst show that the most spei� onept w.r.t. desriptive

semantis need not exist. Then, we will show that the most spei� onept w.r.t.

gfp-semantis (see [4℄) oinides with the most spei� onept w.r.t. desriptive

semantis i� the ABox satis�es a ertain ayliity ondition. This yields a suf-

�ient ondition for the existene of the ms, whih is, however, not a neessary

one. We will then haraterize the ases in whih the ms exists. Unfortunately,

it is not yet lear how to turn this haraterization into a deision proedure for

the existene of the ms.



5.1 The ms need not exist

Theorem 3. Let T

1

= ; and A = fr(b; b)g. Then b does not have an ms in A

and T

1

.

Proof. Assume to the ontrary that T

2

is a onservative extension of T

1

suh

that the de�ned onept E in T

2

is an ms of b. Let G

A

be the EL-desription

graph orresponding to A and T

2

, as introdued in De�nition 8. Sine b is an

instane of E, there is a simulation Z: G

T

2

*

� G

A

suh that (E; b) 2 Z and Z is

(B; u)-synhronized for all (B; u) 2 Z.

Sine T

1

= ;, there is no edge in G

A

from b to a de�ned onept in T

2

. Thus,

the fat that Z is (E; b)-synhronized implies that there annot be an in�nite

path in G

T

2

(and thus G

A

) starting with E. Consequently, there is an upper-

bound n

0

on the length of the paths in G

T

2

(and thus G

A

) starting with E.

Now, onsider the TBox T

3

= fF

n

� 9r:F

n�1

; : : : ; F

1

� 9r:F

0

; F

0

� >g: It is

easy to see that T

3

is a onservative extension of T

2

(where we assume without

loss of generality that F

0

; : : : ; F

n

are onept names not ourring in T

2

) and

that A j=

T

3

F

n

(b). Sine E is an ms of b, this implies that E v

T

3

F

n

. Thus,

there is an (F

n

; E)-synhronized simulation Y : G

T

3

*

� G

T

3

suh that (F

n

; E) 2 Y .

However, for n > n

0

, the path

F

n

r

! F

n�1

r

! � � �

r

! F

0

annot be simulated by a path starting from E.

5.2 A suÆient ondition for the existene of the ms

Let T

1

be an EL-TBox and A an EL-ABox ontaining the individual name a.

Let G

A

= (V

A

; E

A

; L

A

) be the EL-desription graph orresponding to A and T

1

,

as introdued in De�nition 8. We an view G

A

as the EL-desription graph of an

EL-TBox T

2

, i.e., let T

2

be the TBox suh that G

A

= G

T

2

. It is easy to see that T

2

is a onservative extension of T

1

. By the de�nition of G

A

, the de�ned onepts of

T

2

are the de�ned onepts of T

1

together with the individual names ourring

in A. To avoid onfusion we will denote the de�ned onept in T

2

orresponding

to the individual name b in A by C

b

.

In [4℄ it is shown that, w.r.t. gfp-semantis, the de�ned onept C

a

in T

2

is

the most spei� onept of a in A and T

1

. W.r.t. desriptive semantis, this is

only true if A does not ontain a yle that is reahable from a.

De�nition 9. The ABox A is alled a-ayli i� there are no n � 1 and indi-

viduals a

0

; a

1

; : : : ; a

n

and roles r

1

; : : : ; r

n

suh that

{ a = a

0

,

{ r

i

(a

i�1

; a

i

) 2 A for 1 � i � n,

{ there is a j; 0 � j < n suh that a

j

= a

n

.

Theorem 4. Let T

1

, A, a, and T

2

be de�ned as above. Then the following are

equivalent:
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Fig. 4. The EL-desription graph G

A

in the proof of Proposition 1.

1. The de�ned onept C

a

in T

2

is the ms of a in A and T

1

.

2. A j=

T

2

C

a

(a).

3. A is a-ayli.

A proof of this theorem an be found in [3℄. Given T and an a-ayli ABox

A, the graph G

A

an obviously be omputed in polynomial time, and thus the

ms an in this ase be omputed in polynomial time.

Corollary 2. Let T

1

be an EL-TBox and A an EL-ABox ontaining the indi-

vidual name a suh that A is a-ayli. Then the ms of a in T

1

and A always

exists, and it an be omputed in polynomial time.

The a-ayliity of A is thus a suÆient ondition for the existene of the

ms. The following proposition states that this is not a neessary ondition.

Proposition 1. There exists an EL-TBox T

1

and an EL-ABox A ontaining

the individual name a suh that the ms of a in T

1

and A exists, even though A

is not a-ayli.

Proof. Let T

1

= fB � 9r:Bg and A = fr(a; a); B(a)g. We show that B in T

1

is the ms of a in A and T

1

. Sine A is obviously not a-ayli, this shows that

a-ayliity of A is not a neessary ondition for the existene of the ms.

The instane relationship A j=

T

1

B(a) is trivially true sine B(a) 2 A. Now,

assume that T

3

is a onservative extension of T

1

, and that the de�ned onept F

in T

3

satis�es A j=

T

3

F (a). Let G

A

be the EL-desription graph orresponding to

A and T

3

, as introdued in De�nition 8 (see Figure 4). Sine A j=

T

3

F (a), there

is a simulation Z: G

T

3

*

� G

A

suh that (F; a) 2 Z and Z is (C; u)-synhronized

for all (C; u) 2 Z.

We must show that B v

T

3

F , i.e., there is an (F;B)-synhronized simulation

Y : G

T

3

*

� G

T

3

suh that (F;B) 2 Y . We de�ne Y as follows:

Y := f(u; v) j (u; v) 2 Z and v is a de�ned onept in T

3

g [

f(u;B) j (u; a) 2 Zg:



Sine (F; a) 2 Z we have (F;B) 2 Y . Next, we show that Y is a simulation.

(S1) is trivially satis�ed sine T

1

(and thus also T

3

) does not ontain primitive

onepts. Consequently, all node labels are empty.

(S2) Let (u; v) 2 Y and (u; r; v) be an edge in G

T

3

.

3

First, assume that v is a de�ned onept in T

3

and (u; v) 2 Z. Sine Z is a

simulation, there exists a node v

0

in G

A

suh that (v; r; v

0

) is an edge in G

A

and

(u

0

; v

0

) 2 Z. By the de�nition of G

A

, this implies that also v

0

is a de�ned onept

in T

3

, and thus (v; r; v

0

) is an edge in G

T

3

and (u

0

; v

0

) 2 Y .

Seond, assume that v = B and (u; a) 2 Z. Sine Z is a simulation, there

exists a node v

0

in G

A

suh that (a; r; v

0

) is an edge in G

A

and (u

0

; v

0

) 2 Z. Sine

there are only two edges with soure a in G

A

, we know that v

0

= a or v

0

= B.

If v

0

= B, then v

0

is a de�ned onept in T

3

, and thus (v; r; v

0

) is an edge in G

T

3

and (u

0

; v

0

) 2 Y . If v

0

= a, then (B; r;B) is an edge in G

T

3

and (u

0

; a) 2 Z yields

(u

0

; B) 2 Y .

Thus, we have shown that Y is indeed a simulation from G

T

3

to G

T

3

. It

remains to be shown that it is (F;B)-synhronized. Sine (B; r;B) is the only

edge in G

T

3

with soure B, the seletion funtion always hooses B. Thus, it is

enough to show that any in�nite path starting with F in G

T

3

eventually leads

to B. This is an easy onsequene of the fat that Z is (F; a)-synhronized and

that the only node in G

T

3

reahable in G

A

from a is B.

5.3 Charaterizing when the ms exists

The example that demonstrates the non-existene of the ms given above (see

Theorem 3) shows that yles in the ABox are problemati. However, Proposi-

tion 1 shows that not all yles ause problems. Intuitively, the reason for some

yles being harmless is that they an be simulated by yles in the TBox. For

this reason, it is not really neessary to have them in G

A

. In order to make

this more preise, we will introdue ayli versions G

(k)

A

of G

A

, where yles are

unraveled into paths up to depth k starting with a (see De�nition 10 below).

When viewed as the EL-desription graph of an EL-TBox, this graph ontains

a de�ned onept that orresponds to the individual a. Let us all this onept

P

k

. We will see below that the ms of a exists i� there is a k suh that P

k

is

the ms.

4

Unfortunately, it is not lear how this ondition an be deided in an

e�etive way.

De�nition 10. Let T

1

be a �xed EL-TBox with assoiated EL-desription graph

G

T

1

= (V

T

1

; E

T

1

; L

T

1

), A an EL-ABox, a a �xed individual in A, and k � 0. Then

the graph G

(k)

A

:= (V

k

; E

k

; L

k

) is de�ned as follows:

V

k

:= V

T

1

[ fa

0

g [ fb

n

j b is an individual in A and 1 � n � kg;

3

Sine r is the only role ourring in T

1

, it is also the only role ourring in the

onservative extension T

3

of T

1

.

4

This result is similar to the haraterization of the existene of the ls w.r.t. desrip-

tive semantis given in [2℄.
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Fig. 5. The EL-desription graph G

(2)

A

of the example in the proof of Proposition 1.

where a

0

and b

n

are new individual names;

E

k

:= E

T

1

[

f(b

i

; r; 

i+1

) j r(b; ) 2 A; b

i

; 

i+1

2 V

k

n V

T

1

g [

f(b

i

; r; B) j A(b) 2 A; b

i

2 V

k

n V

T

1

; (A; r;B) 2 E

T

1

g;

If u is a node in V

T

1

, then

L

k

(u) := L

T

1

(u);

and if u = b

i

2 V

k

n V

T

1

, then

L

k

(u) := fP j P (b) 2 Ag [

[

A(b)2A

L

T

1

(A);

where P denotes primitive and A denotes de�ned onepts.

As an example, onsider the TBox T

1

and the ABox A introdued in the

proof of Proposition 1. The orresponding graph G

(2)

A

is depited in Figure 5

(where the empty node labels are omitted).

Let T

(k)

2

be the EL-TBox orresponding to G

(k)

A

. In this TBox, a

0

is a de�ned

onept, whih we denote by P

k

. For example, the TBox orresponding to the

graph G

(2)

A

depited in Figure 5 onsists of the following de�nitions (where nodes

orresponding to individuals have been renamed

5

):

P

2

� 9r:A

1

u 9r:B; A

1

� 9r:A

2

u 9r:B; A

2

� 9r:B; B � 9r:B:

Any ms of a must be equivalent to one of the onepts P

k

:

Theorem 5. Let T

1

be an EL-TBox, A an EL-ABox, and a an individual in A.

Then there exists an ms of a in A and T

1

i� there is a k � 0 suh that P

k

in

T

(k)

2

is the ms of a in A and T

1

.

This theorem, whose proof an be found in [3℄, is an easy onsequene of

the following two lemmas. The �rst lemma states that a is an instane of the

onepts P

k

.

5

This renaming is admissible sine these nodes annot our on yles



Lemma 1. A j=

T

(k)

2

P

k

(a) for all k � 0.

The seond lemma says that every onept that has a as an instane also

subsumes P

k

for an appropriate k. To make this more preise, assume that T

2

is

a onservative extension of T

1

, and that F is a de�ned onept in T

2

suh that

A j=

T

2

F (a). Let k := n � (n + m) where n is the number of de�ned onepts

in T

2

and m is the number of individuals in A. In order to have a subsumption

relationship between P

k

and F , both must \live" in the same TBox. For this, we

simply take the union T

3

of T

(k)

2

and T

2

. Note that we may assume without loss

of generality that the only de�ned onepts that T

(k)

2

and T

2

have in ommon

are the ones from T

1

. In fat, none of the new de�ned onepts in T

(k)

2

(i.e.,

the elements of V

k

n V

T

1

) lies on a yle, and thus we an rename them without

hanging the meaning of these onepts. (Note that the haraterization of sub-

sumption given in Theorem 1 implies that only for de�ned onepts ourring

on yles their atual names are relevant.) Thus, T

3

is a onservative extension

of both T

(k)

2

and T

2

.

Lemma 2. If k := n � (n+m) where n is the number of de�ned onepts in T

2

and m is the number of individuals in A, then P

k

v

T

3

F .

In the following, we assume without loss of generality that the TBoxes T

(k)

2

(k � 0) are renamed suh that they share only the de�ned onepts of T

1

.

Lemma 3. Let T := T

(k)

2

[ T

(k+1)

2

. Then P

k+1

v

T

P

k

.

Thus, the onepts P

k

form a dereasing hain w.r.t. subsumption. The in-

dividual a has an ms i� this hain beomes stable.

Corollary 3. P

k

is the ms of a i� it is equivalent to P

k+i

for all i � 1.

As an example, onsider the TBox T

1

and the ABox A introdued in the

proof of Proposition 1 (see also Figure 5). It is easy to see that in this ase P

0

is equivalent to P

k

for all k � 1, and thus P

0

is the ms of a in T

1

and A.

6 Conlusion

The impat of yli de�nitions in EL on both standard and non-standard in-

ferenes in now well-investigated. The only two questions left open are how to

give a deidable haraterization of the ases in whih the ls/ms exists w.r.t.

desriptive semantis, and to determine whether it an then be omputed in

polynomial time.

Though the haraterizations of the existene of the ls/ms given in [2℄ and

in this paper do not provide us with suh a deision proedure, they an be seen

as a �rst step in this diretion. In addition, these haraterizations an be used

to ompute approximations of the ls/ms.
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