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Abstrat

Desription Logis are a family of knowledge representation formalisms well-suited

for intensional reasoning about oneptual models of databases/data warehouses.

We extend Desription Logis with onrete domains (suh as integers and rational

numbers) that inlude aggregation funtions over these domains (suh as min, max,

ount, and sum) whih are usually available in database systems. We show that the

presene of aggregation funtions may easily lead to undeidability of (intensional)

inferene problems suh as satis�ability and subsumption. However, there are also

extensions for whih satis�ability and subsumption are deidable, and we present

deision proedures for the relevant inferene problems.

1 Motivation

Desription Logis (DLs) are a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologial knowl-

edge [35,29,4℄. In the last years, DLs that have enough expressive power to

apture standard formalisms for the oneptual modeling of databases suh

as entity-relationship diagrams or UML shemas [5,11,12,14,7,8,10,9℄ were de-

veloped. This means that a oneptual model desribed in one of these for-

malisms an be translated into a DL knowledge base. Additionally, one an

add rather powerful (integrity) onstraints to suh a knowledge base|a use-

ful feature when, for example, building an integrated shema for a heteroge-

neous database/data warehouse from the soure shemas. In this ase, these

additional onstraints an be used to desribe the relationship between the

entities/relations in the various soure shemas and their relationship to the

entities/relations in the integrated shema. Most importantly, one an use
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the reasoning servies of a DL system to hek the quality of the onep-

tual model. For example, one an infer impliit is-a links between entities and

relations and detet inonsistent entities or relations. In the ase that un-

intended is-a relations or inonsistenies are deteted, one an go bak and

modify the oneptual model aordingly. If only intended is-a relations and

no inonsistenies are deteted, the designer of the oneptual model an be

sure that no unintended is-a relations are implied by her model and that all

entities/relations are onsistent beause the reasoning servies in a DL system

suh as FaCT [22,32℄ or Raer [19℄ are provably orret deision proedures

for the orresponding inferene problems satis�ability and subsumption. In

this and other ways, the reasoning servies of the DL system an be used to

enhane the quality of the model. Additionally, the inferred is-a relations an

be used for semanti query optimisation. For more information on DLs for

reasoning about oneptual models, see [10℄, and for a desription of the tool

iom, whih implements these ideas, see [16℄.

Aggregation is a useful mehanism available in many expressive representation

formalisms suh as database shema and query languages. Most database sys-

tems provide a �xed set of aggregation funtions like sum, min, max, average,

and ount, whih an be used over onrete built-in domains (like the inte-

gers or the rational numbers) together with onrete built-in prediates (like

omparisons �, >, or omparisons with onstants). In the presene of huge

amounts of data, summarising this data using aggregation funtions plays a

entral rôle in databases and data warehouses. Hene it is only natural to

assume that aggregation should also be present in the oneptual model of an

information system in whih aggregation is used. However, we are aware only

of one extension of entity-relationship diagrams to model \abstrat" aggrega-

tion, i.e., the aggregation of omplex objets from less omplex ones [17℄, but

without expliit aggregation funtions and built-in prediates.

Sine Desription Logis have proved to be useful for reasoning about onep-

tual models, we extend existing DLs with aggregation funtions to evaluate

the potential of DLs to serve also as a logial basis for oneptual modeling

formalisms with aggregation funtions and built-in prediates, and to pro-

vide the same reasoning servies for suh an extended modeling formalism as

today's DL systems provide for standard ones.

As a basis for our investigation, we take the Desription Logi ALC [35,21,15℄.

Even thoughALC is rather expressive, it is far less expressive than the DLs used

for the enoding of entity-relationship diagrams or UML shemas. However,

it turns out that ALC is nevertheless an interesting starting point for this

investigation. In ALC, onepts (lasses) an be built using Boolean operators,

(i.e., and (u), or (t), and not (:)), and value restritions on those individuals

assoiated to an individual via a ertain role (binary relation). The value
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restritions an be existential or universal. For example, the onept

Human u 9has hild:(Human u Happy)

desribes those humans having (at least) a happy hild, whereas

Human u 8has hild:(Human u Happy)

desribes those humans having only happy hildren|without requiring that

they have hildren at all.

Most Desription Logis are restrited to talking about abstrat objets (suh

as objets representing humans, employees, or projets) with abstrat relations

between them (suh as \working for" or \being the boss of"). In [2℄, this

restrition was overome by providing the DLALC with an interfae to onrete

domains (suh as integers, rational numbers, or strings) and onrete relations

(suh as is-divisible-by, �, or is-pre�x-of). In this extended DL, whih is alled

ALC(D), abstrat individuals an be related to values in a onrete domain

D via features, i.e., funtional roles. This allows us to desribe extravagant

managers by the onept

Manager u 8year:8month:<(inome; expenses):

Eah instane of the above onept is a manager who, whenever she is related

to a year whih is related to a month, then this month is related via the

features inome and expenses to the amount of the her inome and expenses,

and the inome is stritly smaller than the expenses.

In [2℄, it was shown that a rather weak ondition (so-alled admissibility) on

the onrete domain suÆes to yield deidability of the usual inferene prob-

lems of this ombined logi. Moreover, it was shown in [27℄ that the omplexity

of these inferene problems sale niely with the omplexity of the onrete

domain.

However, looking more losely at the above onept desribing extravagant

managers, we note that it is too strit. A more reasonable desription would

take the annual inome (i.e., the sum over the inome of eah month) and

ompare it with the annual expenses. To ahieve this expressivity, we view

aggregation funtions as a means to de�ne new, omputed features, like the

annual inome. In Figure 1, a person, Josie, is given who spends, in some

months, more money than she earns, and in others less. If we want to know

whether she has ever had an extravagant year, we an ask whether Josie is

an instane of

Human u (9year:<( sum(month Æ inome);

sum(month Æ expenses)));

3



7.500 12.000 10.400

Concrete Domain: Integers Abstract domain

Year97

Josie

Jan96 Feb96 Dec96...income

income

income

8.000

10.500

9.800

Year96138.000

149.000

sum(

month month month

year year

expenses expenses expenses

oincome )

expenses )montho

monthsum(

Fig. 1. An example of aggregation.

where the omplex feature sum(monthÆinome) relates an individual to the sum

over all values reahable over month followed by inome. This new, omplex

feature is built using the aggregation funtion sum, the role name month, and

the feature inome.

In this paper, we present a generi extension of ALC(D) that is based on this

idea of de�ning new, omputed features using aggregation funtions. Even

though the underlying DL, ALC, is not expressive enough to serve as a logial

framework for the above mentioned formalisms for oneptual modeling, it

turns out that, given a onrete domain together with aggregation funtions

satisfying some very weak onditions, satis�ability and subsumption of this

extension is undeidable. Moreover, this result is not due to the underlying

Desription Logi ALC: we show that even for the very weak Desription Logi

FL

0

(whih allows for onjuntion and universal value restritions only), sat-

is�ability and subsumption beome undeidable when extended with a few

standard aggregation funtions.

However, the undeidability proofs reveal that this high omplexity is due to

the interation between universal value restritions and aggregation funtions.

We desribe three ways to regain deidability:

� Firstly, we restrit the underlying Desription Logi by disallowing universal

value restritions. We present a tableau-based algorithm that deides sat-

is�ability of this logi, provided that the onrete domain satis�es ertain

restritions (see below).

� Seondly, we show that this tableau algorithm an be further extended to

deide satis�ability of a restrition of ALC(D) with aggregation that allows
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for (universal and existential) value restritions and only disallows the in-

teration between aggregation funtions and value restritions. Sine this

logi is losed under negation, this tableau algorithm an also be used to

deide subsumption between onepts.

Like for ALC(D), both tableau algorithms depend on the onrete do-

main, i.e., they require that satis�ability of ertain onjuntions of onrete

prediates is deidable. For example, the (non-negative) integers or rational

numbers with omparisons >;�; : : : possibly involving onstants, together

with the aggregation funtions min, max, and ount are onrete domains

for whih the satis�ability of these onjuntions an be deided.

� Thirdly, we restrit the aggregation funtions to ontain only min and max.

We show that, for standard onrete domains suh as integers or ratio-

nal numbers, together with omparisons and aggregation funtions min and

max, satis�ability and subsumption of ALC(D) with aggregation funtions

is deidable.

The paper is organised as follows: In Setion 2, the basi Desription Logi

ALC(D) as introdued in [2℄ is de�ned. This logi is then extended with aggre-

gation funtions in Setion 3. Next, to give the reader a better insight into the

expressive power added by aggregation funtions, we present in Setion 4 two

generi undeidability results. In Setion 5, we present three generi deidabil-

ity results and, �nally, ompare these results with similar ones in Setion 6.

2 Preliminaries: The Basi Desription Logi ALC(D)

In this setion, we reall syntax and semantis of ALC(D), the Desription

Logi introdued in [2℄, whih underlies the following investigation. ALC(D)

is an extension of the well-known Desription Logi ALC (see [35,21,15℄) by

so-alled onrete domains. Firstly, we formally speify a onrete domain.

De�nition 1 (Conrete Domains)

A onrete domain D = (dom(D); pred(D)) onsists of

� a set dom(D) (the domain), and

� a set of prediate symbols pred(D).

Eah prediate symbol P 2 pred(D) is assoiated with an arity n and an n-ary

relation P

D

� dom(D)

n

.

Seondly, for a given onrete domain D, the syntax of ALC(D)-onepts is

de�ned in [2℄ as follows:
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De�nition 2 (Syntax of ALC(D)) Let N

C

, N

R

, and N

F

be disjoint sets of

onept, role, and feature names. A feature hain u = f

1

: : : f

m

is a non-empty

sequene of features f

i

. The set of ALC(D)-onepts is the smallest set suh

that

(1) every onept name is a onept and

(2) if C, D are onepts, R is a role or a feature name, P 2 pred(D) is an

n-ary prediate name, and u

1

; : : : ; u

n

are feature hains, then (C u D),

(C tD), (:C), (8R:C), (9R:C), and P (u

1

; : : : ; u

n

) are onepts.

In order to �x the exat meaning of these onepts, their semantis is de�ned

in the usual model-theoreti way.

De�nition 3 (Semantis of ALC(D)) An interpretation I = (�

I

; �

I

) on-

sists of a �nite non-empty set �

I

disjoint from dom(D), alled the domain of

I, and a funtion �

I

whih maps

� every onept C to a subset C

I

of �

I

,

� every role R to a binary relation R

I

over �

I

, and

� every feature name f 2 N

F

to a partial funtion f

I

: �

I

! �

I

[ dom(D).

Furthermore, I has to satisfy the following properties:

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fd 2 �

I

j There exists e with (d; e) 2 R

I

and e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j For all e, if (d; e) 2 R

I

, then e 2 C

I

g; and

P (u

1

; : : : ; u

n

)

I

= fd 2 �

I

j (u

I

1

(d); : : : ; u

I

n

(d)) 2 P

D

g;

where, for u = f

1

: : : f

m

a feature hain, u

I

(a) = f

I

m

(f

I

m�1

(: : : (f

I

1

(a) : : :).

A onept C is alled satis�able i� there is some interpretation I suh that

C

I

6= ;. Suh an interpretation is alled a model of C. A onept D subsumes

a onept C (written C v D) i� C

I

� D

I

holds for eah interpretation I. Two

onepts are said to be equivalent (written C � D) if they mutually subsume

eah other. For an interpretation I, an individual a 2 �

I

is alled an instane

of a onept C i� a 2 C

I

. If f

I

(a) = b (or (a; b) 2 R

I

), then b is alled an

f -suessor (or R-suessor) of a.

Please note that, in ontrast to the semantis de�ned in [2℄, we restrit our

attention to �nite interpretations, i.e., those with a �nite domain. ForALC(D),

this does not make a di�erene sine, as a orollary of the results in [2℄,

ALC(D) has the �nite model property. That is, eah satis�able onept has
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a �nite model. However, in the presene of aggregation funtions, this will

make a di�erene sine adding aggregation funtions makes ALC(D) lose the

�nite model property. That is, there are satis�able onepts that have in�nite

models only. Sine our investigation is motivated by the above mentioned

database appliations and databases are, in general, �nite strutures, it is

indeed neessary to restrit our attention to �nite models. For the same reason,

�nite model reasoning in Desription Logis has, e.g., been onsidered in [6℄.

In [2℄, subsumption and satis�ability are proved to be deidable for ALC(D)-

onepts, provided that the onrete domain is admissible. A tableau-based

deision proedure for these and other inferene problems is presented. We

reall the de�nition of admissibility:

De�nition 4 Admissibility A onrete domain D is alled admissible i�

(1) pred(D) is losed under negation, i.e., pred(D) ontains, for eah n-ary

prediate symbol P in pred(D), an n-ary prediate symbol

�

P with

�

P

D

=

dom(D)

n

n P

D

,

(2) pred(D) ontains a unary prediate name >

D

for dom(D), and

(3) satis�ability of �nite onjuntions over pred(D) is deidable, i.e., satis�-

ability of formulae of the form

P

1

(x

(1)

1

; : : : ; x

(1)

n

1

) ^ : : : ^ P

1

(x

(k)

1

; : : : ; x

(k)

n

k

)

is deidable, where P

i

are prediate names of arity n

i

.

Moreover, the authors show how two disjoint onrete domains D

1

and D

2

(e.g., the integers and strings) an be ombined into a single, new onrete

domain D

1;2

. If D

1

and D

2

are admissible, then D

1;2

is also admissible. Due

to this observation, we will restrit our attention to extensions of ALC with

single onrete domains.

As a onsequene of De�nition 3, an instane of a onept P (u

1

; : : : ; u

n

) has

neessarily a u

i

-suessor that is in dom(D) for eah 1 � i � n. Thus, to ensure

that, for a onrete feature f , an individual has an f -suessor in dom(�), we

an make use of a prediate restrition >

�

(f) if the prediate >

�

is available.

Otherwise, we an make use, for example, of the equality P

=

(f; f). To express

that an individual has no f -suessor at all, we will use the abbreviation

no

f

= 8f:(A u :A).

As ALC(D) allows for negation and onjuntion of onepts, all Boolean op-

erators an be expressed, and we will use C ) D as a shorthand for :C tD.

Another onsequene of the presene of these two operators is that subsump-

tion and (un)satis�ability an be redued to eah other:

� C v D i� C u :D is unsatis�able, and
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� C is unsatis�able i� C v A u :A (for some onept name A).

3 Extension of ALC(D) With Aggregation

In order to de�ne aggregation appropriately, �rst, we will introdue the notion

of multisets: in ontrast to simple sets, an individual an our more than

one in a multiset|but only �nitely often. For example, the multiset ff1gg

is di�erent from the multiset ff1; 1gg. Multisets are needed to make sure, for

example, that one's annual inome is alulated orretly from one's monthly

inome in the ase that the same amount is earned in several months.

De�nition 5 (Multisets) A multiset M over S is a mapping M : S ! N,

where M(s) denotes the number of ourrenes of s in M . A multiset M over

S is said to be �nite i� fs j M(s) 6= 0g is a �nite set. The set of all �nite

multisets of S is denoted MS(S). We use the notation ffa

1

; : : : ; a

n

gg when

enumerating the members a

i

of a �nite multiset to distinguish multisets from

sets.

For multisets M , M

0

over S, we write M � M

0

if M(s) � M

0

(s) for eah

s 2 S, and we write s 2 M if M(s) � 1. For M � M

0

, we use M

0

nM to

denote the multiset with (M

0

nM)(s) :=M

0

(s)�M(s) for all s 2 S.

Sine the aggregation funtions strongly depend on the spei� onrete do-

mains, the notion of a onrete domain is extended aordingly. Furthermore,

the notion of onrete features is introdued. Suh a onrete feature is either

a feature name, a feature hain, or built using an aggregation funtion on a

role and a feature name.

De�nition 6 (Syntax of ALC(�)) The notion of a onrete domain D as in-

trodued in De�nition 1 is extended with a set of aggregation funtions agg(D),

where eah

�

2 agg(D) is assoiated with a partial funtion

�

D

from the set of

�nite multisets of dom(D) into dom(D). To underline the fat that a onrete

domain provides aggregation funtions, it is denoted �.

The set of onrete features is de�ned as follows:

� Eah feature name f 2 N

F

is a onrete feature,

� a feature hain f

1

: : : f

n

is a onrete feature, and

� an aggregated feature f

1

: : : f

n

�

(RÆf) is a onrete feature, where f; f

1

; : : : ; f

n

are feature names, R is a role name, and

�

2 agg(�) is an aggregation fun-

tion.

Finally, ALC(�)-onepts are obtained from ALC(D)-onepts by allowing, ad-

ditionally, the use of onrete features f

i

in prediate restritions P (f

1

; : : : ; f

n

)
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(reall that in ALC(D) only feature hains were allowed).

It remains to extend the semantis of ALC(�) to the new feature-forming

operator:

De�nition 7 (Semantis of ALC(�)) An ALC(�)-interpretation I is an

ALC(D)-interpretation that, additionally, interprets aggregated features as fol-

lows. To de�ne the semantis of aggregated features, we introdue the multiset

M

RÆf

a

whih maps eah element z 2 dom(�) to the number of a's R-suessors

that have z as f -suessor:

M

RÆf

a

(z) := #fb 2 �

I

j (a; b) 2 R

I

and f

I

(b) = zg:

Finally, the semantis of aggregated features is de�ned as follows:

(f

1

: : : f

n

�

(R Æ f))

I

(a) :=

8

>

<

>

:

�

�

(M

RÆf

a

0

) if (f

1

: : : f

n

)

I

(a) = a

0

2 �

I

unde�ned if (f

1

: : : f

n

)

I

(a) 62 �

I

and

�

�

(M

RÆf

a

0

) is alled the (f

1

: : : f

n

�

(R Æ f))-suessor of a, provided that it

is de�ned.

We point out two onsequenes of this de�nition, whih might not be obvious

at �rst sight:

(a) If a has an R-suessor b with an abstrat f -suessor, then b has no

inuene on M

RÆf

a

: it is de�ned in suh a way that it takes only into aount

R Æ f -suessors of a in the onrete domain dom(�).

(b) Sine �

I

is �nite, eah M

RÆf

a

0

is neessarily a �nite multiset. However,

there are two reasons why (f

1

: : : f

n

�

(RÆf))

I

(a) might not be de�ned: �rstly,

a might have no f

1

: : : f

n

-suessor a

0

in �

I

. Seondly, aggregation funtions

an be partial. For example, the (standard) min or max over an empty set is

unde�ned. Hene if dom(�) is the set of rational numbers, integers, et., and

if a has no R-suessor in I with an f -suessor in the onrete domain, then

M

RÆf

a

is the empty multiset, and thus (max(R Æ f))

I

(a) is unde�ned.

In the following, we will make use of the aggregation funtions ount, sum, min,

and max, whih are supposed to be de�ned as usual, i.e., for �nite multisets
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M over the rational numbers (or any subset of the rational numbers) we have

ount(M) =

P

y2M

M(y)

sum(M) =

P

y2M

M(y) � y

min(M) =

8

>

<

>

:

m if there exists m 2M suh that n � m for all n 2M

unde�ned if no suh m exists

max(M) =

8

>

<

>

:

m if there exists m 2M suh that n � m for all n 2M

unde�ned if no suh m exists

4 Undeidability Results

In this setion, the expressive power added to ALC(D) by aggregation fun-

tions is illustrated. It turns out that, for a onrete domain � satisfying some

rather weak onditions, reasoning in ALC(�) and its restrition FL

0

(�) be-

ome undeidable in the presene of standard aggregation funtions like min,

max, and sum.

4.1 A �rst undeidability result

The following theorem states that admissibility of a onrete domain does no

longer guarantee deidability of the interesting inferene problems:

Theorem 8 For a onrete domain � where

� dom(�) inludes the non-negative integers,

� pred(�) ontains a (unary) prediate P

=1

that tests for equality with 1, and

a (binary) equality P

=

,

� agg(�) ontains min, max, and sum,

satis�ability and subsumption of ALC(�)-onepts are undeidable.

Remark 9 (a) At �rst sight, this undeidability result may appear to be very

restrited. Note, however, that it does not require that dom(�) is the set of

non-negative integers, but that it just requires that dom(�) ontains the non-

negative integers. This makes the undeidability result not only more general,
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but also stronger. For example, omputations over the real numbers are, in

general, easier than omputations over the non-negative integers; e.g., the �rst

order theory of +; �;� is undeidable over the non-negative integers, whereas

it is deidable over the real numbers.

Furthermore, the aggregation funtions min, max, and sum are among those

normally onsidered as built-in funtions for databases (see, for example,

[18,28,26,36℄). Finally, to test whether a ertain value equals 1 or whether two

values are equal is possible in all database systems with built-in prediates.

(b) We do not suppose that � is admissible|although this preondition would

not weaken the undeidability result. Nevertheless, in the sequel, we will make

use of the onept >

�

(f) desribing all those (abstrat) individuals having an

f -suessor in the onrete domain. This is in aordane with the preondi-

tions of Theorem 8 beause >

�

(f) (if not available in �) an be introdued

as abbreviation, e.g., for P

=

(f; f).

() Undeidability is not due to the fat that we require �

I

to be �nite. The

proof works analogously for in�nite interpretations (where M

RÆf

a

is de�ned

appropriately in the ase that a has in�nitely many R-suessors); see [3℄.

Proof of Theorem 8: The proof is by redution of Hilbert's 10th problem

[13℄ to satis�ability of onepts, i.e., for polynomials P;Q 2 N [x

1

; : : : ; x

m

℄,

we onstrut an ALC(�)-onept C

P;Q

that is satis�able i� the polynomial

equation

P (x

1

; : : : ; x

m

) = Q(x

1

; : : : ; x

m

) (1)

has a solution in N

m

. In the sequel, we write x as shorthand for (x

1

; : : : ; x

m

)

and x

i

j

as shorthand for the monomial x

i

j1

1

� � �x

i

jm

m

.

The idea of the redution is to represent the (sub)term struture of the poly-

nomial P (Q) as a tree related to an instane of C

P;Q

via the feature P (Q).

Eah polynomial is supposed to be of the form

a

0

+ a

1

x

i

1

+ : : :+ a

j

x

i

j

+ : : : a

n

x

i

n

;

where, for simpliity, all monomials x

i

j

are assumed to be di�erent.

When building the redution onept C

P;Q

, one enounters three main prob-

lems:

(a) We only know that dom(�) ontains N , but the solution of Equation 1

must be in N

m

, and � need not provide a prediate that tests for being a

non-negative integer.

(b) It has to be guaranteed that (the representation of) eah variable x

i

is

assoiated with the same non-negative integer wherever it ours in a model

11



of C

P;Q

.

() The redution asks for the representation of alulations suh as addition,

multipliation, and exponentiation.

These problems an be overome as follows:

(a) is solved by making use of the onept E

R

g

,

E

R

g

:= (8R:P

=1

(f)) u P

=

(sum(R Æ f); g);

whose instanes have as g-suessors the number of their R-suessors. Hene

their g-suessor is de�ned and in N .

(b) This problem is solved by introduing features x

i

for eah variable x

i

and

by making strong use of the onepts E

R

x

i

de�ned above (to make sure that

x

i

-suessors are non-negative integers) and the following onept Inv:

Inv := u

1�i�m

(8R:>

�

(x

i

) u P

=

(min(R Æ x

i

);max(R Æ x

i

)) u P

=

(x

i

;max(R Æ x

i

))):

Let a be an instane of Inv. Then the �rst onjunt ensures that all R-

suessors of a have an x

i

-suessor in dom(�). The seond onjunt ensures

that all R Æ x

i

-suessors of a oinide and, �nally, the third onjunt ensures

that a's x

i

-suessor oinides with the x

i

-suessors of its R-suessors.

Using Inv at all levels of nested onepts, we an guarantee that all \relevant"

individuals in a model of C

P;Q

have the same x

i

-suessor for eah variable x

i

.

() Addition an be realised by the aggregation funtion sum, and multipli-

ation (and hene exponentiation) an be redued to addition; for details see

the explanation of the redution onepts below.

For the representation of onstants (like the oeÆients) we will use the fol-

lowing abbreviations:

E

R

1

:= (8R:(P

=1

(f))) u P

=1

(sum(R Æ f)) (exatly 1 R-suessor)

E

R

n

:= 8R:

�

t

1�i�n

(P

=1

(f

i

) u u

j 6=i

no

f

j

)

�

u (exatly n R-suessors)

u

1�i�n

P

=1

(sum(R Æ f

i

))

where no

f

j

is the abbreviation for 8f

j

:(A u :A) mentioned in Setion 2. It

is easy to see that eah instane of E

R

1

has exatly 1 R-suessor. Now, for

an instane a of E

R

n

, every R-suessor has exatly one f

i

-suessor for some

i; 1 � i � n, and this f

i

-suessor has value 1 (�rst line). The onstraint on the

onrete feature sum(R Æ f

i

) (seond line) makes sure that, for eah i, there is

12



exatly one R-suessor with an f

i

-suessor, whih implies that a has exatly

n R-suessors. For those familiar with Desription Logis, we point out that

E

R

n

is indeed equivalent to the number restrition (= nR).

Summing up, for � as desribed in Theorem 8, we have de�ned the following

abbreviations:

no

f

desribes individuals with no f -suessor

E

R

1

desribes individuals with exatly 1 R-suessor

E

R

n

desribes individuals with exatly n R-suessors

E

R

g

desribes individuals a with exatly g

I

(a) R-suessors

Inv desribes individuals a whose x

i

-suessor oinides with the

x

i

-suessor of eah of its R-suessors

The de�nition of the redution onept C

P;Q

and the auxiliary onepts used

in this de�nition an be found in Figures 3 and 4. Figure 2 skethes a model

of C

P;Q

. Let us now explain the de�nition of C

P;Q

:

(1) First, we de�ne C

P;Q

suh that, for eah interpretation I, eah instane

a 2 C

I

P;Q

has exatly one P -suessor p in C

I

P

and exatly one Q-suessor

q in C

I

Q

. The individual p represents the polynomial P , and q represents

Q; see Conept 2. Conept 3 is similar to Inv and makes sure that, for eah

j, the x

j

-suessor of p is in dom(�) and the same as the x

j

-suessor of q.

Using the feature s to store the value of the evaluation of the polynomials,

Conept 4 makes sure that the value of the polynomial P when evaluated

with the x

j

-suessors (whih are already ensured to be the same for p

and for q) is the same as of Q.

(2) An instane p of C

P

has

� for eah summand A

j

= a

j

x

i

j

of P one R-suessor, whih is an instane

of C

A

j

; see the �rst two onjunts of Conept 5. The use of the onepts

E

H

j

ensures that all C

A

j

are disjoint, and thus to ensure that eah

summand is represented by a di�erent R-suessor.

� an s-suessor, whih is the sum of the s-suessors of its R-suessors;

see the last onjunt of Conept 5.

Given that the s-suessor of eah R-suessor of p is the value of the jth

summand, the s-suessor of p is the orresponding value of P , namely

the sum over P 's summands. Again, the onept Inv makes sure that eah

x

i

-suessor of p oinides with the x

i

-suessors of its R-suessors, and

thus the summands are evaluated by the same tuple.

(3) The onept C

Q

is de�ned analogously.

(4) For eah summand A

j

= a

j

x

i

j

, we use a onept C

A

j

. An instane a of

C

A

j

has a

j

R-suessors, eah of them representing the monomial x

i

j

; see

13
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.
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R
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A
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1

X

i

j1

�1

1

X

i

j1

�1

1

X

i

j1

�2

1

X

i

j1

�2

1

C

x

i

j

C

x

i

j

C

x

i

j

a

j

R-sus.

X

i

jm

m

x

i

j1

1

R-sus.

x

1

R-sus.

x

1

R-sus.

x

i

j2

2

R-sus.

Fig. 2. The intuitive struture of a model of C

P;Q

.

Conept 7. The last onjunt makes sure that the s-suessor (represent-

ing the value of A

j

) is omputed orretly: sine a has a

j

R-suessors,

eah of them representing x

i

j

, the s-suessor of a is the sum over the

s-suessors of its R-suessors, namely a

j

times x

i

j

.

(5) C

x

i

j

is more ompliated. An instane  of it has two di�erent kinds of

role suessors:

� For eah of the m fators x

i

jk

k

in x

i

j

,  has one R

k

-suessor in X

i

jk

k

,

whose s

k

-suessor stands for its value x

i

jk

k

. The onept Exp

x

i

j

guar-

antees this fat. In Exp

x

i

j

, we use the seond onjunt instead of Inv to

propagate the value of x

k

down to the aording subtree. The last on-

junt of Exp

x

i

j

makes sure that the respetive values s

k

are propagated

upwards to .

� Then, in order to multiply them fators x

i

jk

k

, we make use of the onept

Mult

m

1

explained below. Again, the s-suessor of  denotes the value of

this alulation, namely x

i

j

.
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C

P;Q

:=E

P

1

u E

Q

1

u 8P:C

P

u 8Q:C

Q

u (2)

u

1�j�m

 

P

=

(sum(P Æ x

j

); sum(Q Æ x

j

))

!

u (3)

P

=

(sum(P Æ s); sum(Q Æ s)) (4)

C

P

:=E

R

n+1

u u

0�j�n

9R:(C

A

j

u E

H

j

) u Inv u P

=

(s; sum(R Æ s)) (5)

C

A

j

:=E

R

a

j

u 8R:C

x

i

j

u Inv u P

=

(s; sum(R Æ s)) (6)

C

x

i

j

:=Exp

x

i

j

uMult

m

1

(7)

Fig. 3. The redution onept C

P;Q

and some of its subonepts.

(6) For X

i

k

, we have to distinguish two ases : If i > 0, an instane b of

X

i

k

is the root of an x

k

-ary R-tree of depth i where the s-suessor of

eah node is the sum of the s-suessors of its R-suessors. Finally, the

s-suessor of a node one level above the leaves (whih represents x

1

k

)

equals its x

k

-suessor|whih is the same for all nodes in the whole tree.

Sine dom(�) is only required to ontain the non-negative integers, we

have to ensure that all x

k

-suessors are non-negative integers. This is

realised by making use of the onept E

R

x

k

.

Otherwise, i = 0, and the value assoiated to this fator is 1; see the

onept X

0

k

.

Thus, we use the possibilities to onstrut trees and to sum up in order

to ompute exponentiation.

(7) Finally, the situation in whih we start multipliation looks as follows:

An instane u of Mult

m

1

is the root of the multipliation tree, u is also

an instane of C

x

i

j

, and we want to multiply the s

k

-suessors x

i

jk

k

(k =

1; : : : ; m) of u. To this purpose, we attah an additional R-tree of depth

m�1 to u. This tree is, at level k, of outdegree x

i

jk

k

, whih is the value of

s

k

of at the node u, and its s-suessor of nodes on level k� 1 represents

x

i

jk

k

� : : : � x

i

jm�1

m�1

x

i

jm

m

. At level m� 1, we make sure that the s

m

-suessors

oinide with the s-suessor. Again, we sum up the values from the

bottom to the top by using the onept P

=

(s; sum(R Æ s)), and we make

sure that all nodes have the same s

i

suessor by a onept similar to Inv;

see Conept 13.

It remains to be shown that C

P;Q

is satis�able i� P (x) = Q(x) admits a

solution in the non-negative integers.
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Exp

x

i

j

:= u

1�k�m

 

E

R

k

1

u P

=

(x

k

; sum(R

k

Æ x

k

)) u (8)

8R

k

:X

i

jk

k

u P

=

(s

k

; sum(R

k

Æ s

k

))

!

(9)

Mult

m

m

:=P

=

(s; s

m

) (10)

for 1 � k < m : (11)

Mult

m

k

:=E

R

s

k

u P

=

(s; sum(R Æ s)) u 8R:Mult

m

k+1

u (12)

m

u

`=k+1

 

P

=

(min(R Æ s

`

);max(R Æ s

`

)) u P

=

(min(R Æ s

`

); s

`

)

!

(13)

X

0

k

:=P

=1

(s) (14)

X

1

k

:=E

R

x

k

u P

=

(s; x

k

) (15)

X

`

k

:=E

R

x

k

u 8R:X

`�1

k

u P

=

(s; sum(R Æ s)) u (16)

P

=

(min(R Æ x

k

);max(R Æ x

k

)) u P

=

(x

k

;max(R Æ x

k

)); ` � 2

Fig. 4. Subonepts of C

P;Q

used for the representation of alulations.

\(" The onstrution of a (�nite) model M of C

P;Q

from P , Q, and a solu-

tion n

1

; : : : ; n

m

2 N

m

for x is not diÆult. M an be onstruted along the

explanations given for C

P;Q

in the following way: We start at the bottom of

the tree M by introduing instanes

� x

1

k

of X

1

k

that have n

k

R-suessors, eah of them having 1 as f -suessor

(to satisfy E

R

x

k

), n

k

as x

k

suessor, and n

k

as s-suessor.

� x

0

k

of X

0

k

that have n

k

R-suessors, eah of them having 1 as f -suessor,

n

k

as x

k

suessor, and 1 as s-suessor.

Then, for eah monomial x

i

j

, the orresponding subtrees representing n

i

jk

k

are

built. Starting with (opies of) x

1

k

and x

0

k

, we build trees of depth i

jk

and degree

n

k

. Next, instanes  of C

x

i

j

are introdued, where eah  has as R

k

-suessor

the subtree representing the fator n

i

jk

k

in n

i

j1

1

� � �n

i

jm

m

. Now, we append an-

other subtree to eah , namely the one representing the multipliation of the

values n

i

jk

k

. This tree is of depth m� 1 and degree n

i

jk

k

at level k� 1. The re-

maining onstrution is straightforward. We �rst take a

j

disjoint opies of the

's standing for C

x

i

j

(inluding the orresponding subtree) as R-suessors of

an instane a of C

A

j

, then we append these as as R-suessors to an instane

16



p of C

P

. We suppose that the same onstrution has been arried out for Q,

whih lead to an instane q of C

Q

. Finally, p and q are P (resp. Q) -suessors

of an instane  of C

P;Q

.

At eah node of the tree onstruted in this way (exept for the root node),

the s-suessor of an individual equals the sum over the s-suessors of its R-

suessors, and eah node has the same x

k

-suessors. The fat that a solution

n

1

; : : : ; n

m

2 N

m

for x has been used implies that p's s-suessor oinides

with q's s-suessor, as required by the de�nition of C

P;Q

.

\)" Given a model M for C

P;Q

with  2 C

I

P;Q

, due to the presene of Inv

and similar onepts in C

P;Q

, all x

k

-suessors of all \relevant" role suessors

of  oinide|where \relevant" role suessors are those whose existene is

expliitly required by C

P;Q

. Again, following the desription of C

P;Q

, we have

that (x

I

1

(); : : : ; x

I

m

()) is a solution for P (x) = Q(x). Due to the use of the

onepts E

R

x

k

, this solution is in N

m

. 2

4.2 Tightening the result

A loser investigation of the onept C

P;Q

reveals that (a) negation ours only

in the onept no

f

, (b) the only plae where existential restrition ours is in

the onepts C

P

and C

Q

, and () the only plae where disjuntion t ours is

in the onepts E

R

n

desribing individuals having exatly n R-suessors.

We will show that the onepts no

f

, E

R

n

and C

P

an be rewritten into equiv-

alent onepts without negation, disjuntion and existential restrition, by

extending only slightly the set of onrete prediates. Hene, the redution

onept C

P;Q

an be written using only onjuntion u and universal value

restrition 8R:C. As introdued in [1℄, let FL

0

denote the set of those on-

epts that are built using onjuntion and universal value restrition only, and

let FL

0

(�) denote the extension of this language by onrete domains with

aggregation. Then the following undeidability result is an immediate onse-

quene of the possibility to rewrite the redution onept C

P;Q

without using

negation, disjuntion, and existential restrition.

Theorem 10 For a onrete domain � where

� dom(�) inludes the non-negative integers N,

� pred(�) ontains, for all non-negative integers n, (unary) prediates P

=n

that test for equality with n, the (binary) equality prediate P

=

, and the

(binary) inequality prediate P

6=

,

� agg(�) ontains min;max; sum,

satis�ability and subsumption of FL

0

(�)-onepts are undeidable.
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Remark 11 (a) Admissible onrete domains as de�ned in [2℄ are losed

under negation, e.g., the presene of a prediate P

=

in pred(�) implies the

presene of its negation P

6=

. Hene for admissible onrete domains, the only

di�erene between the preonditions of Theorem 8 and Theorem 10 are the

unary prediates P

=n

.

(b) We reall that, aording to the semantis of FL

0

(�), an individual a

an only be an instane of the onept P

6=

(f; g) if a has an f - as well as a

g-suessor in the onrete domain dom(�).

PROOF. As observed above, it suÆes to de�ne FL

0

(�)-onepts no

0

f

, E

0

n

R

,

and C

0

P

whih an play the rôle of no

f

, E

R

n

, and C

P

in the redution onept

C

P;Q

of the proof of Theorem 8.

no

0

f

: This onept is used to make sure that an individual has no f -suessor.

It an learly be replaed by

no

0

f

:= 8f:P

6=

(g; g);

where P

6=

(g; g) plays the rôle of the empty onept Au:A used in the de�nition

of no

f

.

E

0

n

R

: Given a onrete domain � that provides, for all non-negative integers

n, a unary prediate P

=n

that tests for equality with n, we an de�ne a onept

E

0

n

R

whose instanes have exatly n R-suessors:

E

0

n

R

:= 8R:P

=1

(f) u P

=n

(sum(R Æ f)):

Obviously, replaing E

R

n

by E

0

n

R

in C

P;Q

preserves its property of serving as a

redution onept for Hilbert's 10th problem. Avoiding existential restrition

in C

P

is more ompliated.

C

0

P

: In C

P

, existential restritions are used to make sure that, for eah mono-

mial A

j

, there is one R-suessor representing this monomial. This an also

be expressed by introduing, for eah j, exatly one R

j

-suessor (using E

R

j

1

),

and then using universal value restritions to make sure that this R

j

-suessor

is an instane of C

A

j

. Additionally, the x

j

-suessors are propagated to the

R

j

-suessors. All this is ensured by the �rst line of C

0

P

.

C

0

P

:= u

0�j�n

�

E

R

j

1

u 8R

j

:C

A

j

u u

0�`�m

P

=

(x

`

; sum(R

j

Æ x

`

)) u

P

=

(s

j

; sum(R

j

Æ s))

�

u Add

s

0

;:::;s

n
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It remains to enfore that the sum over all s-suessors of all R

j

-suessors

of an instane p of C

0

P

oinides with p's s-suessor. For this purpose, the

seond line of C

0

P

makes sure that p has an s

j

-suessor whih oinides with

the s-suessor of its R

j

-suessor, and the onept Add

s

0

;:::;s

n

is used to sum

up p's s

j

-suessors. It is de�ned as follows,

Add

s

0

;:::;s

n

= add

s

01

s

0

;s

1

u add

s

012

s

01

;s

2

u : : : u add

s

s

012:::n�1

;s

n

;

where

add

u

t;t

0

:= E

0

2

R

u 8R:P

=

(g; g) u P

=

(t;max(R Æ g)) u P

=

(t

0

;min(R Æ g)) u

P

=

(u; sum(R; g))

The idea underlying this addition is the following. Firstly, the addition of n+1

numbers is redued to the addition of two numbers: In Add

s

0

;:::;s

n

, the s

0

- and

the s

1

-suessor of p are summed up and the result is stored as s

01

-suessor

of p. Similarly, the s

01

- and the s

2

-suessor are summed up and the result is

stored as s

012

-suessor of p, and so forth, until only two arguments are left.

The sum of these last numbers is the result of the whole addition, and stored

as s-suessor of p.

Seondly, the addition of two numbers given as t- and t

0

-suessors and the

storage of the result as u-suessor is realised by the onept add

u

t;t

0

. Let p be

an instane of add

u

t;t

0

, let x be p's t-suessor, and let x

0

be p's t

0

-suessor.

The �rst two onjunts of add

u

t;t

0

ensure that p has exatly two R-suessors,

eah of whih has a g-suessor in the onrete domain. Next, we ensure that

x oinides with the maximum of p's R Æ g-suessors, and that x

0

oinides

with the minimum of p's R Æ g-suessors. Hene M

RÆg

p

= ffx; x

0

gg, and thus

the last onjunt ensures that p's u-suessor oinides with x+ x

0

.

Again, replaing C

P

by C

0

P

and C

Q

by C

0

Q

in C

P;Q

preserves its property of

serving as a redution onept for Hilbert's 10th problem, whih is|together

with the aforementioned replaements|an FL

0

(�)-onept.

Undeidability of subsumption follows from undeidability of satis�ability be-

ause a onept C is satis�able i� it is not subsumed by an unsatis�able

onept, and beause the FL

0

(�)-onept P

6=

(f; f) is suh an unsatis�able

onept. 2

5 Deidability Results

The undeidability proofs in the previous setion heavily use universal value

restrition in ombination with aggregation funtions, in partiular sum. In
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this setion, we will show that this interation is indeed the ause for the

undeidability: we will give three generi deidability results, whih are all

obtained by disallowing this kind of interation.

The �rst result is obtained by restriting the abstrat part of the Desription

Logi. In Setion 5.1, EL(�) is obtained from ALC(�) by disallowing universal

value restritions. We present a tableau algorithm that deides satis�ability

for this restrited logi. This algorithm is generi in that we give a rather

weak property of onrete domains that implies deidability of satis�ability

for EL(�)-onepts. In Setion 5.3, we present several onrete domains that

satisfy this property, all of them involving the aggregation funtions min, max,

and ount. However, sine EL(�) is not losed under negation, the tableau

algorithm annot be used to deide subsumption.

For the seond result, we have hosen a Desription Logi that is losed un-

der negation, i.e., where subsumption an be redued to satis�ability. In Se-

tion 5.2, ALC(�)

�

is obtained by restriting ALC(�) in suh a way that no

interation between aggregation funtions and universal value restritions an

our. Sine this Desription Logi is propositionally losed, also existential re-

stritions annot interat with aggregation funtions. This interation is possi-

ble in EL(�), and thereforeALC(�)

�

is not an extension of EL(�). The onrete

domains � for whih ALC(�)

�

is deidable are the same as those for whih

EL(�) has been proved deidable; they are desribed in Setion 5.3. However,

this seond deidability result is not as generi as the �rst one beause the way

in whih the algorithm treats negated onrete prediates strongly depends on

the aggregation funtions.

Finally, the third result is obtained by restriting the aggregation funtions to

min and max. For onrete domains � involving only min and max, deidability

of satis�ability and subsumption of ALC(�)-onepts is shown by a redution

to a known deidable Desription Logi. From Setion 4, it is lear that this

result annot be extended to a onrete domain also ontaining sum.

5.1 Deidability of EL(�)

In this setion, a generi deidability result is presented for EL(�), a restrition

of ALC(�) that does not ontain universal value restritions. We start by

de�ning EL(�).

De�nition 12 (Syntax of EL(�)) EL(�) denotes the Desription Logi that

is obtained from ALC(�) by disallowing universal value restritions (8R:C)

and by restriting the use of negation to onept names.
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Satis�ability of EL(�)-onepts is deided by a tableau algorithm that tries

to onstrut, for an input onept C

0

, a model of C

0

. To this purpose, it

breaks down C

0

into subonepts, hereby making expliit all onstraints on

individuals in this model. It �rst works on the abstrat part of the model while

olleting onstraints on the onrete part. If the abstrat part is suessfully

proessed, it ends with a set of onrete onstraints for whih satis�ability

must be deidable, and whose solution an be used to onstrut the missing

onrete part of the model. The attempt to onstrut a model either fails (in

the abstrat or the onrete part) with obvious inonsistenies|in whih ase

C

0

is unsatis�able|or it sueeds and ends with a desription of a model of

C

0

.

In ontrast to the algorithm in [2℄ for ALC(D), onstraints now also involve

variables for multisets over the onrete domain|besides individual variables

for elements in the abstrat and in the onrete domain. To apture the re-

lation between individual and multiset variables, new onstraints will be in-

trodued to make expliit that an individual variable stands for an element

of a multiset. Then, besides onrete individual variables, aggregated multiset

variables an our in prediate restritions.

De�nition 13 (Constraint Systems) Let � = �

A

[ �

�

= fa; b; ; : : :g [

fx; y; z; : : :g be an in�nite set of abstrat and onrete individual variables,

and let � = fX; Y; Z; : : :g be an in�nite set of multiset variables. We assume

that �

A

, �

�

, and � are disjoint. The set of aggregated variables, f

�

(X) j

�

2

agg(�) and X 2 �g, is denoted by agg(�). Constraints are of the form:

a :C for a 2 �

A

; C an EL(�)-onept;

(a; b) :R for a; b 2 �

A

; R 2 N

R

;

(a; `) :f for a 2 �

A

; ` 2 �; f 2 N

F

;

(a; Y ) : (R Æ f) for a 2 �

A

; R 2 N

R

; f 2 N

F

; Y 2 �;

P (�

1

; : : : ; �

n

) for �

i

2 �

�

[ agg(�); and

x :Y for x 2 �

�

; Y 2 �:

Constraints of the form P (�

1

; : : : ; �

n

) or x : Y are alled �-onstraints. A

onstraint system is a �nite set of onstraints. A variable ` is said to be an R-

suessor (resp. an f

1

: : : f

n

-suessor) of an abstrat variable a in a onstraint

system S i� (a; `) :R 2 S (resp. (a; y

1

) : f

1

; (y

1

; y

2

) : f

2

; : : : ; (y

n�1

; `) : f

n

2 S

for some y

1

; : : : ; y

n�1

2 �

A

). An aggregated variable

�

(Y ) is said to be an

f

1

: : : f

n

�

(R Æ f)-suessor of a in S i� there is an f

1

: : : f

n

-suessor b of a

in S and (b; Y ) : (R Æ f) 2 S.

Next, the semantis of onstraint systems is de�ned. Sine we want to deide

satis�ability of EL(�)-onstraints where � involves the aggregation funtion

21



ount (whih returns the number of elements in a multiset), it will turn out

to be ruial that no two abstrat variables are interpreted by the same indi-

vidual. Hene we will restrit our attention to so-alled m-models.

De�nition 14 (Semantis of onstraints) We onsider interpretations I

that, additionally, map individual variables to individuals of the onrete or

the abstrat domain, and multiset variables to �nite multisets over the onrete

domain, i.e.,

a

I

2 �

I

for a 2 �

A

;

x

I

2 dom(�) for x 2 �

�

;

X

I

2 MS(dom(�)) for X 2 �:

An interpretation I satis�es a onstraint of the form

a :C i� a

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; `) :f i� f

I

(a

I

) = `

I

;

(a; Y ) : (R Æ f) i� M

RÆf

a

I

= Y

I

;

P (�

1

; : : : ; �

n

) i� P

�

(�

I

1

; : : : ; �

I

n

); (17)

x :Y i� x

I

2 Y

I

; (18)

where, for �

i

=

�

(X), we de�ne

�

(X)

I

:=

�

�

(X

I

).

A onstraint system S is satis�able i� there exists an interpretation satisfying

all onstraints in S suh that b

I

6= 

I

for all b;  2 �

A

with b 6=  and f(a; b) :

R; (a; ) : Rg � S for some a 2 �

A

and R 2 N

R

. Suh an interpretation is

alled an m-model of S.

For a onstraint system S, the onjuntion S

�

is de�ned as follows:

S

�

:=

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y ours in S

ffx

i

j x

i

:Y 2 Sgg � Y:

A solution of S

�

in � is a mapping
^
� that maps eah individual variable x in

S

�

to an element x̂ 2 dom(�) and eah multiset variable Y in S

�

to a �nite

multiset

^

Y over dom(�) suh that

� if

�

(Y ) is an aggregated variable in S

�

, then

�

�

(

^

Y ) is de�ned

2

and

� the result of applying
^
� to (all variables in) S

�

is true in �, where � is

interpreted as multiset inlusion, eah prediate name P as P

�

, and eah

aggregation funtion

�

as

�

�

.

2

For example, we do not admit the empty set as a solution for Y in P (min(Y ))

sine min(;) is unde�ned.
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A onstraint system S is �-onsistent i� S

�

has a solution.

A onstraint system S ontains a lash i�

� fa :C; a ::Cg � S for some onept C, or

� f(a; x) : f; (a; b) : fg � S for a onrete variable x 2 �

�

and an abstrat

variable b 2 �

A

.

A onstraint system S ontains a fork i�, for a 2 �

A

and a feature name

f 2 N

F

, we have

� f(a; `) :f; (a; `

0

) :fg 2 S for two distint variables `; `

0

2 �

A

or `; `

0

2 �

�

, or

� f(a; Y ) : (R Æ f); (a; Z) : (R Æ f)g 2 S for two distint variables Y; Z 2 �.

If a onstraint system S ontains a fork f(x; `) : f; (x; `

0

) : fg (resp. f(a; Y ) :

(R Æ f); (a; Z) : (R Æ f)g), then we say that S

0

is obtained by fork elimination

from S i� S

0

is obtained from S by replaing eah ourrene of ` by `

0

(resp.

Y by Z).

The tableau algorithm for deiding satis�ability of EL(�)-onepts works on a

tree where eah node is labelled with a onstraint system. It starts with the

tree onsisting of a single leaf, the root, labelled with S = fa

0

: C

0

g, where

C

0

is the EL(�)-onept to be tested for satis�ability. The tableau algorithm

applies the ompletion rules introdued in Figure 5 to onstraint systems.

For Rule 4, reall the de�nition of u-suessors for aggregated features u in

De�nition 13. A rule an only be applied to a leaf labelled with a lash-free

onstraint system. Applying a rule S ! S

j

, for 1 � j � n, to suh a leaf leads

to the reation of n new suessors of this node, where the j-th suessor is

labelled with S

j

. The algorithm terminates if none of the rules an be applied

to any of the leaves.

A onstraint system S is omplete if none of the ompletion rules an be

applied to S. The tableau algorithm answers \C

0

is satis�able" i� after its

termination one of the leaves is labelled with a omplete, lash-free, and �-

onsistent onstraint system.

Lemma 15 Let C

0

be an EL(�)-onept, and let S be a onstraint system

obtained by applying the ompletion rules to fa

0

:C

0

g.

(1) If C

0

is satis�able, then fa

0

:C

0

g has an m-model.

(2) Let R be a ompletion rule that an be applied to S. Then S is satis�able

i� one of the systems S

i

obtained by applying R to S is satis�able.

(3) If S is a omplete, �-onsistent, and lash-free onstraint system, then S

has an m-model.

(4) If S ontains a lash or is not �-onsistent, then S does not have an

m-model.
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1. Conjuntion: If a : (C

1

u C

2

) 2 S and a :C

1

62 S or a :C

2

62 S, then

S ! S [ fa :C

1

; a :C

2

g.

2. Disjuntion: If a : (C

1

t C

2

) 2 S and a :C

1

62 S and a :C

2

62 S, then

S ! S

1

= S [ fa :C

1

g;

S ! S

2

= S [ fa :C

2

g:

3.a. Existential restrition on roles: If a : (9R:C) 2 S for a role name R,

fb

1

; : : : ; b

n

g are all R-suessors of a, and b

i

: C 62 S for all b

i

, then

S ! S

i

= S [ fb

i

: Cg

S ! S

n+1

= S [ f(a; b) :R; b : Cg

for a new variable b 2 �

A

.

3.b. Existential restrition on features: If a : (9f:C) 2 S for a feature

name f and if there is no f -suessor b of a with b :C 2 S, then

S ! S [ f(a; b) :f; b : Cg.

for a new variable b 2 �

A

. If forks were reated, then eliminate these forks.

4. Conrete prediates: If a :P (u

1

; : : : ; u

n

) 2 S and a does not have

u

i

-suessors �

i

with P (�

1

; : : : ; �

n

) 2 S, then, for eah u

i

let

S

i

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

f(a; b

i1

) :f

i1

; (b

i1

; b

i2

) :f

i2

; : : : ; (b

im

i

�1

; y

i

) :f

im

i

g

if u

i

= f

i1

f

i2

: : : f

im

i

f(a; b

i1

) :f

i1

; (b

i1

; b

i2

) :f

i2

; : : : ; (b

im

i

�1

; b

im

i

) :f

im

i

;

(b

im

i

; Y

i

) : (R

i

Æ f

i

)g

if u

i

= f

i1

f

i2

: : : f

im

i

�

i

(R

i

Æ f

i

)

for new variables b

ij

2 �

A

; y

i

2 �

�

, Y

i

2 �. Let �

i

be the u

i

-suessor of a

in S

i

. Then

S ! S [ fP (�

1

; : : : ; �

n

)g [

S

1�i�n

S

i

:

If forks were reated, then eliminate these forks.

5. Element assertions: If f(a; b) :R; (b; z) :f; (a; Y ) : (R Æ f)g � S

for z 2 �

�

and z :Y 62 S then

S ! S [ fz :Y g:

Fig. 5. The ompletion rules for EL(�).

(5) The tableau algorithm terminates when applied to fa

0

:C

0

g.

Before proving Lemma 15, let us omment on Rule 3.a, whih is non-standard.

Consider, for example, the following C:

C := (9R:P

�2

(f)) u (9R:P

=2

(f)) u P

�1

(ount(R Æ f))

This onept ontains the aggregation funtion ount, whih returns the num-

ber of (not neessarily distint) elements of a multiset, and is satis�able.

However, a tableau algorithm that generates, for eah onstraint of the form
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a :9R:C, a new R-suessor of a would either not detet that C is satis�able

(i.e., it would be inomplete), or it would need to swith bak to abstrat

reasoning (and identify both R-suessors of a) after having tested the onsis-

teny of the onrete onstraints. The latter alternative an easily be seen to

neessitate alternation between �-onsisteny heks and tableau rule appli-

ations, and thus makes termination of the whole algorithm problemati. To

design a omplete tableau algorithm that swithes only one from \abstrat"

to \onrete" reasoning, existential restritions are handled by trying all pos-

sibilities to generate as few R-suessors as possible. This is realised by trying

to reuse, for a onstraint a : (9R:C), already existing R-suessor of a. For the

ase that this reuse is not possible, a new R-suessor is also introdued. As

a onsequene, we an restrit our attention to those models that interpret

di�erent R-suessors as di�erent individuals, i.e., to m-models.

PROOF. (Lemma 15.1:) Eah model of C

0

is obviously an m-model of fa

0

:

C

0

g.

(Lemma 15.2:) (ii))(i) is obvious beause eah S

i

obtained by applying the

ompletion rules to S is a superset of S where variables were possibly renamed

due to fork elimination, and thus an m-model of S

i

is also an m-model of S

(modulo the mapping of renamed variables).

(i))(ii): We only onsider Rules 3.a, 4, and 5 beause Rules 1, 2, and 3.b are

obvious and similar to those used in other tableau-based algorithms; see, for

example, [15,2℄.

Let I be an m-model of S as de�ned in the preondition of Rule 3.a. Hene

there is some  2 �

I

with (a

I

; ) 2 R

I

and  2 C

I

. If b

I

i

=  for some

R-suessor b

i

of a, then I is an m-model of S

i

. Otherwise, I extended with

b

I

=  is an m-model of S

n+1

.

Let I be an m-model of S as de�ned in the preondition of Rule 4 and let S

0

be obtained by applying Rule 4 to S. Then a :P (u

1

; : : : ; u

n

) 2 S and, for eah

u

i

with 1 � i � n, if

� u

i

is a feature hain f

i1

f

i2

: : : f

im

i

, then a

I

has f

i1

: : : f

ij

-suessors 

ij

2 �

I

for 1 � j < m

i

, and an f

i1

f

i2

: : : f

im

i

-suessor z

im

i

2 dom(�). If we de�ne

b

I

ij

= 

ij

and y

I

im

i

= z

im

i

, then I satis�es S

i

as de�ned in Rule 4.

� u

i

is an aggregated feature f

i1

f

i2

: : : f

im

i

�

i

(R

i

Æ f

i

), then a

I

has f

i1

: : : f

ij

-

suessors 

ij

2 �

I

for 1 � j � m

i

. If we de�ne b

I

ij

= 

ij

and Y

I

= M

R

i

Æf

i



im

i

,

then Y

I

is by de�nition the appropriate multiset, and I satis�es S

i

as

de�ned in Rule 4.

Given I as extended above to the newly introdued variables and �

i

as de�ned

in Rule 4, we have that �

i

is indeed interpreted as the u

i

-suessor of a, namely

25



u

I

i

(a

I

) = �

I

i

for all 1 � i � n. Sine I satis�es a :P (u

1

; : : : ; u

n

), we thus have

that I satis�es P (�

1

; : : : ; �

n

).

Let I be an m-model of S, and let S

0

be obtained by applying Rule 5 to S.

Then f(a; b) : R; (b; z) : f; (a; Y ) : (R Æ f)g � S and z 2 �

�

. Thus z

I

is an

f -suessor of an R-suessor of a

I

in dom(�). By de�nition, z

I

2M

RÆf

a

I

, and,

sine I is an m-model of S, Y

I

=M

RÆf

a

I

. Hene z

I

2 Y

I

, and thus I satis�es

S [ fz :Y g = S

0

.

(Lemma 15.3:) Let S be a omplete, �-onsistent, and lash-free onstraint

system involving onrete and multiset variables fx

1

; : : : ; x

m

; X

1

; : : : ; X

n

g,

and let
^
� be a solution for S

�

. In partiular, we have ffx̂

j

j x

j

:X

i

2 Sgg �

^

X

i

for all multiset variables X

i

ourring in S. To de�ne an m-model for S, we

�rst de�ne a \quasi-model" I

0

as follows:

�

I

0

:= �

A

;

a

I

0

:= a for abstrat variables a 2 �

A

;

x

I

0

:= x̂ for onrete variables x 2 �

�

;

X

I

0

:=

^

X for multiset variables X 2 �;

A

I

0

:= fb 2 �

I

0

j b :A 2 Sg for onept names A 2 N

C

;

R

I

0

:= f(a; b) 2 �

I

0

��

I

0

j (a; b) :R 2 Sg for role names R 2 N

R

;

f

I

0

() :=

8

>

>

>

>

>

<

>

>

>

>

>

:

b if (; b) :f 2 S for b 2 �

A

;

x̂ if (; x) :f 2 S for x 2 �

�

;

unde�ned else:

for feature names f 2 N

F

:

The interpretation of feature names f is well-de�ned beause S is lash-free

and ontains no forks. The only reason why I

0

might not be an m-model of S

is the following. An abstrat individual a may have less R-suessors having

an f -suessor in dom(�) than required by the solution for the orresponding

multiset variable X

i

, that is, for onstraints (a;X

i

) : (RÆf) 2 S, we might have

M

RÆf

a

I

0

(

^

X

i

. Due to the absene of universal value restritions, an m-model

I of S an be obtained from I

0

by simply adding R-suessors d

Rfj

a

and the

laking R Æ f -suessors ŷ

Rfj

a

. More preisely, for a multiset variable X with

(a;X) : (R Æ f) 2 S, let

^

X nM

RÆf

a

= ffŷ

Rf1

a

; ŷ

Rf2

a

; : : :gg:
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Then

�

I

:= �

I

0

℄

S

(a;X):(RÆf)2S

fd

Rfj

a

j ŷ

Rfj

a

2

^

X nM

RÆf

a

g;

A

I

:= A

I

0

;

R

I

:= R

I

0

[

S

(a;X):(RÆf)2S

f(a; d

Rfj

a

) j ŷ

Rfj

a

2

^

X nM

RÆf

a

g

for role names R 2 N

R

;

f

I

() :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

b if (; b) :f 2 S;

x̂ if (; x) :f 2 S;

ŷ

Rfj

a

if  = d

Rfj

a

unde�ned else:

for feature names f 2 N

F

Clearly, for two abstrat variables a 6= b we have a

I

6= b

I

. Thus, it remains to

show that I satis�es all onstraints in S. This an be easily done by indution

on the struture of onepts. By onstrution of I,

^

X

i

=M

RÆf

a

I

for all multiset

variables with (a;X

i

) : (R Æ f) 2 S. Furthermore,
^
� being a solution for S

�

implies that I satis�es all �-onstraints in S. By de�nition, I satis�es all

onstraints of the form (a; b) : R, (a; b) : f , (a; x) : f , and b : A for onept

names A. Sine S is lash-free, I satis�es all onstraints of the form b : :A.

By indution and beause S is omplete, I satis�es all onstraints of the form

a : (C

1

u C

2

), a : (C

1

t C

2

), and a : (9R:C) for role or feature names R.

(Lemma 15.4:) Obviously, a onstraint system ontaining a lash annot have

an m-model. For �-onsisteny, we show that an m-model I of S yields a

solution of the onjuntion S

�

, whih is de�ned in De�nition 14 as follows:

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y ours in S

ffx

i

j x

i

:Y 2 Sgg � Y

Due to Line 17 of De�nition 14, I satis�es all onstraints of the form P (�

1

;

: : : ; �

n

) 2 S, and thus the �rst part of S

�

. Line 18 of De�nition 14 implies that

I satis�es the inlusions in S

�

when read with set semantis. Now, if Y ours

in S, then, by de�nition of the semantis, M

RÆf

a

I

= Y

I

for (a; Y ) : (R Æ f) 2 S.

Sine I is an m-model, all R-suessors of a in S are interpreted as di�erent

objets, and thus Y

I

= ffx

I

i

j x

i

: Y 2 Sgg. Thus, I also satis�es the seond

part of S

�

.

(Lemma 15.5:) Termination is an immediate onsequene of the fat that (i)

the relational struture of the onstraint systems generated by the tableau

algorithm are trees, (ii) all onepts in onstraints added by the ompletion

rules are subonepts of the onept C

0

, whose number is linear in the length

of C

0

, (iii) these trees are of bounded width and breadth, and that (iv) these
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trees are generated in a monotoni way, i.e., no onstraints are removed. Prop-

erties (i), (ii), and (iv) are an immediate onsequene of the de�nition of the

ompletion rules. Property (iii) is due to the fat that (iii)

0

the (maximum)

length of onepts ourring in onstraints on a suessor node of a is less

than the (maximum) length of onepts in onstraints on a and (iii)

00

the gen-

eration of new suessors is triggered by onstraints of the form a :C (Rule 3

and 4) or (a :Y ) : (R Æ f) (Rule 5). Eah suh onstraint triggers at most one

the generation of new variables. To see that Property (iv) holds, we eliminate

forks in suh a way that \old" variables are kept in the onstraint system and,

if replaement is neessary, new variables are replaed with \old" ones. 2

Remark 16 In the proof of Lemma 15.3, the extension of I

0

to an m-model

I of a omplete and lash-free onstraint system was only possible beause we

disallowed the use of universal value restrition: This enables us to add laking

RÆf -suessors for some a without the neessity to hek again whether these

new R-suessors satisfy all universal value restritions a :8R:C.

As an immediate onsequene of Lemma 15, we have the following deidability

result.

Theorem 17 If � is a onrete domain suh that �-onsisteny is deidable,

then satis�ability of EL(�)-onepts is deidable.

In Setion 5.3, we will show deidability of �-onsisteny for various onrete

domains involving min, max, ount, and omparisons (possibly with onstants).

Next, we will desribe a deidable Desription Logi with onrete domains

and aggregation funtions that is propositionally losed.

5.2 Deidability of ALC(�)

�

So far, we have only proved deidability of satis�ability of EL(�)-onepts.

However, EL(�) is not losed under negation, and thus subsumption annot be

redued to satis�ability.

3

Closing EL(�) under negation, one obtains ALC(�),

and the key problem one enounters when trying to extend the tableau algo-

rithm to deide satis�ability of ALC(�)-onepts (and thus also subsumption

of ALC(�)) was already disussed in Remark 16, i.e., R-suessors required by

a solution of a multiset variable Y annot be simply added to a quasi-model

sine they might be subjet to universal value restritions. More importantly,

generating a \prophylati" R-suessor from whih the missing ones ould be

opied does not even work for the aggregation funtions min, max, and ount.

3

So far, it is unlear for whih � subsumption of EL(�)-onepts is deidable|the

only exeptions are the domains mentioned in Theorem 26.
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For example, onsider the following onept

P

�

1

(ount(R Æ f)) u 8R:>

�

(f) u

P

�7

(max(R Æ h)) u P

�3

(min(R Æ h)) u 9R:P

=

5

(h)

Let a be an instane of this onept. The �rst onjunt ensures that a has at

most one R-suessor with an f -suessor in dom(�). The universal restri-

tion implies that eah R-suessor of a has an f -suessor in dom(�). Finally,

the seond line implies that a has at least three R-suessors, and thus this

onept is unsatis�able. This interation between universal value restritions

and onrete domain prediates seems to prohibit to do �rst reasoning on

the abstrat domain, then on the onrete domain, and then stop. In on-

trast, it seems to require various steps bak and forth between abstrat and

onrete reasoning, for whih one would need to guarantee termination while

not orrupting orretness. The undeidability results in Setion 4 imply that

this is possible only for rather restrited onrete domains. Hene we onsider

ALC(�)

�

, a propositionally losed restrition of ALC(�) where this interation

annot our.

De�nition 18 Let C, D be ALC(�)-onepts where C is a sub-expression of

D and let R = R

1

� � �R

n

be a (possibly empty) hain of role or feature names.

Then C is at level R in D i�

4

� R is empty and C = D,

� D = :D

1

and C is at level R in D

1

, or

� D = D

1

uD

2

or D = D

1

tD

2

and C is at level R in D

1

or D

2

, or

� D = 9R:D

1

or D = 8R:D

1

, R = RR

0

, and C is at level R

0

in D

1

.

An ALC(�)-onept D is an ALC(�)

�

-onept if, whenever a onept of the

form P (: : : ; f

1

: : : f

k

�

(R Æ f); : : :) is at level R in D, then no onept of the

form 9R:C or 8R:C is at level Rf

1

: : : f

k

in D.

For example,

9R:(B u 8S:P

�

(h; fmax(T Æ g)))

is an ALC(�)

�

-onept, but

9R:(B u 8S:P

�

(h; fmax(T Æ g))) u 8R:9S:8f:9T:A

is not an ALC(�)

�

-onept beause P

�

(�; fmax(T Æg)) ours on level RS in it,

and an existential restrition on T ours at level RSf in it. Please note also

that ALC(�)

�

is not an extension of EL(�). For example, 9R:AuP (

�

(R Æ f))

4

Please note that a onept an be at several levels in another one.
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is an EL(�)-onept, but not an ALC(�)

�

-onept. Finally, it is easily veri�ed

that the set of ALC(�)

�

-onepts is losed under negation.

In the following, we will present an extended tableau algorithm that de-

ides satis�ability (and thus also subsumption) of ALC(�)

�

-onepts, provided

that �-onsisteny is deidable. The extended algorithm works on ALC(�)

�

-

onepts in negation normal form (NNF), i.e., onepts where negation ours

in front of onept names only.

This normal form is more omplex than usual, and it depends on the aggrega-

tion funtions available. In the following, we assume that the onrete domain

� is as de�ned in Corollary 25, i.e., the only aggregation funtions onsidered

are min, max, and ount.

In the de�nition of the NNF, we use an abbreviation NC(u) that desribes

those individuals having no u-suessors in the onrete domain, whih is ex-

plained in detail after the de�nition. For aggregated features u, NC(u) depends

on the aggregation funtion in u, and is de�ned di�erently for ount and min

or max beause the former is de�ned on all �nite multisets, whereas the latter

are unde�ned on the empty multiset.

De�nition 19 (NNF) For a feature hain u = f

1

: : : f

k

, de�ne

�(u) = >

�

(f

1

) t >

�

(f

1

f

2

) t : : : t >

�

(f

1

: : : f

k

);

where >

�

denotes the unary onrete prediate for the onrete domain dom(�).

Again, we use >

A

as an abbreviation for A t :A, and we use ?

A

as an ab-

breviation for A u :A. For a onrete feature u, NC(u) is de�ned as follows:

NC(u) :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�(f

1

: : : f

k�1

) t 8f

1

:8f

2

: : : :8f

k

:>

A

if u = f

1

: : : f

k

�(f

1

: : : f

k

) t 8f

1

: : : :8f

k

:8R:8f:>

A

if u = f

1

: : : f

k

min(R Æ f)

or u = f

1

: : : f

k

max(R Æ f)

�(f

1

: : : f

k

) t 8f

1

: : : :8f

k

:?

A

if u = f

1

: : : f

k

ount(R Æ f)

An ALC(�)

�

-onept is in negation normal form (NNF) i� negation ours

only in front of onept names. If � is admissible,

5

eah ALC(�)

�

-onept

an be transformed into NNF by pushing negation inwards, making use of the

5

See De�nition 4.

30



following equivalenes:

:(C tD) � :C u :D :(C uD) � :C t :D ::C � C

:(9R:C) � (8R::C) :(8R:C) � (9R::C)

:(P (u

1

; : : : ; u

n

)) � P (u

1

; : : : ; u

n

) t t

1�i�n

NC(u

i

) ,

where P is the onrete prediate for the negation of P .

All but the last equivalene of the above de�nition are obvious. The last one

is due to the fat that, for eah interpretation I and onrete feature u, a is

an instane of NC(u) i� a has no u-suessor in dom(�).

u = f

1

: : : f

k

: For a having no u-suessor in dom(�), there are two possibili-

ties.

(i) The feature hain \goes too early" into the onrete domain, i.e, there is

an ` < k suh that a has an f

1

: : : f

`

-suessor in the onrete domain.

This ase is overed by �(f

1

: : : f

k�1

).

(ii) The feature hain \remains" in the abstrat domain (inluding the ase

where it \breaks too early"). This ase is overed by the seond disjunt

of NC(u).

u = f

1

: : : f

k

�

(R Æ f) for

�

2 fmin;maxg : Again, there are two possibilities

for a having no u-suessor in dom(�).

(i) a has no f

1

: : : f

k

-suessor in �

I

. This is the ase if (i)

0

a has, for some

` � k, an f

1

: : : f

`

-suessor in dom(�), or if (i)

00

a has, for some 1 � ` < k,

an f

1

: : : f

`

-suessor in �

I

having no f

`+1

-suessor. Case (i)

0

is overed

by �(f

1

: : : f

k

), and ase (i)

00

by the seond disjunt.

(ii) a has an f

1

: : : f

k

-suessor a

0

2 �

I

and

�

�

(M

RÆf

a

0

) is unde�ned. Sine (on

�nite multisets) min and max are unde�ned only on the empty set, the

seond disjunt also overs this ase.

u = f

1

: : : f

k

ount(R Æ f) : Analogously to the previous ase, with the only dif-

ferene that, sine ount is de�ned on all �nite multisets, (ii) annot our

and thus the seond disjunt orretly overs ase (i)

00

.

To obtain a sound and omplete tableau algorithm for onepts involving uni-

versal value restritions, we extend the tableau algorithm de�ned in Setion 5.1

by Rule 6 in Figure 6.

6. Universal value restrition: If a : (8R:C) 2 S for a feature or

role name R and if there is an R-suessor b of a with b : C 62 S, then

S ! S [ fb : Cg

Fig. 6. The ompletion rule for universal value restritions.
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We use the same tehnial lemma as in Setion 5.1 to show that the tableau

algorithm deides satis�ability (and thus subsumption) of ALC(�)

�

-onepts.

Lemma 20 Let � be an admissible onrete domain with aggregation fun-

tions min, max, and ount, let C

0

be an ALC(�)

�

-onept in NNF, and let S

be a onstraint system obtained by applying the modi�ed ompletion rules to

fa

0

:C

0

g.

(1) If C

0

is satis�able, then fa

0

:C

0

g has an m-model.

(2) Let R be a ompletion rule that an be applied to S. Then S is satis�able

i� one of the systems S

i

obtained by applying R to S is satis�able.

(3) If S is a omplete, �-onsistent, and lash-free onstraint system, then S

has an m-model.

(4) If S ontains a lash or is not �-onsistent, then S does not have an

m-model.

(5) The tableau algorithm terminates when applied to fa

0

:C

0

g.

PROOF. We prove only those parts of Lemma 20 that are di�erent from

those in Lemma 15.

(Lemma 20.2 (i))(ii):) Rule 6 is standard; see, e.g., [2℄.

(Lemma 20.3:) An m-model I for a lash-free, omplete, and �-onsistent

onstraint system S an be de�ned in a way similar to the one in the proof

of Lemma 15.3. Let S be a lash-free, omplete, and �-onsistent onstraint

system,
^
� a solution for S

�

, and I

0

the \quasi-model" of S as de�ned in the

proof of Lemma 15.3. Then I

0

an be extended in the same way to an m-

model of S as in the proof of Lemma 15.3 sine the additional elements d

Rfj

a

are not subjet to universal value restritions due to the syntati restrition

of ALC(�)

�

.

The proof of Lemma 20.4 is similar to the proof of Lemma 15.4. Again, an

m-model of S obviously yields a solution for S

�

.

The proof of Lemma 20.5 is similar to the proof of Lemma 15.5 with the

additional observation that also Rule 6 adds only onstraints that are shorter

than those that triggered the appliability of this rule. 2

As a onsequene, we have the following deidability result.

Theorem 21 If � is an admissible onrete domain suh that

� agg(�) = fmin;max; ountg and

� �-onsisteny is deidable,
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then satis�ability and subsumption of ALC(�)

�

-onepts is deidable.

This result is not as generi as the deidability result for EL(�)-onepts

in that it is onerned with a �xed set of aggregation funtions. It ould

have been formulated more generially by using an NNF with a prediate

unde�ned(�(Y )) on aggregated multiset variables. However, this would have

been unneessarily ompliated and would not have given any new insights.

Thus, to adapt the tableau algorithm to onrete domains with other aggrega-

tion funtions, the NNF has to be modi�ed appropriately. The result applies

to all aggregation funtions for whih this is possible. For example, sum ould

be treated in the same way as ount.

In the proof of the soundness of the algorithm, \opies" of abstrat variables

were used to generate abstrat individuals that are required by the solution of

the onrete onstraints. This was only possible due to the syntati restrition

of ALC(�)

�

. In Setion 5.4, we will see that this restrition an be removed

for ertain onrete domains involving only the aggregation funtions min and

max.

5.3 Conrete domains for whih �-onsisteny is deidable

In Theorem 17, we have seen that deidability of �-onsisteny implies de-

idability of satis�ability of EL(�)-onepts. The same ondition implies that

satis�ability and subsumption ofALC(�)

�

-onepts is deidable (Theorem 21).

In this setion, we will give examples for onrete domains for whih �-

onsisteny is indeed deidable. Basially, the behaviour of aggregation fun-

tions is axiomatised so that aggregated multiset variables

�

(Y ) an be replaed

by individual variables y

�

, a tehnique also used in [34℄. For dom(�) the set

of non-negative integers, integers, or rational numbers, the relations <, >,

=, �, and � are de�ned as usual. Furthermore, for n 2 dom(�), the unary

prediates =

n

;�

n

;�

n

; >

n

; <

n

are omparisons with n.

Lemma 22 If � is a onrete domain suh that

� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;maxg,

then �-onsisteny is deidable.

Obviously, eah � in Lemma 22 satis�es the �rst two properties in the de�ni-

tion of admissibility (De�nition 4), and the third one follows from the proof of

Lemma 22. Thus eah � in Lemma 22 satis�es all onditions of Theorem 17

and 21.
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PROOF. Let S be a onstraint system, let � be de�ned as in the preondition

of Lemma 22, and let S

�

be the onjuntion of �-onstraints in S as de�ned

in De�nition 14.

�-onsisteny of S is equivalent to satis�ability of S

�

and is deided by trans-

forming S

�

into a set D

S

of linear (in)equalities without aggregation funtions

that is satis�able i� S

�

is satis�able. Satis�ability of D

S

an then easily be

deided using|depending on the onrete domain|linear or integer program-

ming [30℄. To this purpose, for eah term max(Y ) (resp. min(Y )) ourring in

S

�

, a new variable y

max

(resp. y

min

) is introdued in an intermediate set of on-

straints D

0

S

. More preisely, D

0

S

is the set of all onrete prediates P (�

1

; �

2

) in

S

�

where eah ourrene of max(Y ) is replaed by y

max

, and eah ourrene

of min(Y ) is replaed by y

min

. Then D

S

is obtained from D

0

S

by replaing

onstraints by appropriate (in)equalities and adding axioms to apture the

interation between min(Y );max(Y ) and z :Y , i.e.,

D

S

:= fy

min

� y

max

j y

min

or y

max

ours in D

0

S

g [

fy

min

� z j y

min

ours in D

0

S

and (z :Y ) 2 Sg [

fy

max

� z j y

max

ours in D

0

S

and (z :Y ) 2 Sg [

fx ./ y j P

./

2 fP

�

; P

�

; P

>

; P

<

; P

=

g and P

./

(x; y) 2 D

0

S

g [

fx ./ n j P

./

n

2 fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g and P

./

n

(x) 2 D

0

S

g

Claim 23 D

S

is satis�able i� S is �-onsistent.

The only onstraints imposed on min(Y ) (resp. max(Y )) is that min(Y ) is less

than or equal to (resp. max(Y ) is greater than or equal to) eah element in

Y . Moreover, the only elements that are required to be in Y are those x

i

with

x

i

: Y 2 S, the minimum, and the maximum of Y . Eah solution of S

�

is

learly also a solution of D

S

. Now suppose we have a solution of D

S

where

x̂ 2 dom(�) is the value for eah variable x inD

S

. Then we an de�ne solutions

^

Y for multiset variables Y in S

�

by

^

Y := ffx̂ j x :Y 2 Sgg [ ffŷ

min

; ŷ

max

gg;

whih learly yields �nite multisets. Sine we started from a solution of D

S

,

this solution satis�es all prediate restritions in S. Furthermore, the solution

satis�es max(

^

Y ) = ŷ

max

and min(

^

Y ) = ŷ

min

. By de�nition, this solution also

satis�es the multiset inlusion onjunts in S

�

. 2

This axiomatisation of the behaviour of aggregation funtions an also be

extended to ount.

Lemma 24 If � is a onrete domain suh that
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� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;max; ountg,

then �-onsisteny is deidable.

PROOF. The deision proedure is similar to the one given in the proof

of Lemma 22, with the only di�erene that, in addition, aggregated multiset

variables involving ount are also replaed by appropriate individual variables

y

ount

, and that the behaviour of ount is axiomatised. To this purpose, Boolean

ombinations of linear inequalities D

y

ount

are added to D

S

for eah aggregated

multiset variable ount(Y ) ourring in S.

More preisely, given a onstraint system S and a onrete domain � as de-

sribed in Lemma 24, D

0

S

ontains all onjunts in S

�

, where eah ourrene

of max(Y ) is replaed by y

max

, eah ourrene of min(Y ) by y

min

, and eah

ourrene of ount(Y ) by y

ount

. Then D

#

S

is de�ned as follows:

D

#

S

:= D

S

[

S

y

ount

ours in D

0

S

D

y

ount

;

where D

S

is de�ned as in the proof of Lemma 22 (now with the additional

variables y

ount

), and D

y

ount

is de�ned as follows. For better readability, we

use x

Y

as a shorthand for those onrete variables known to belong to Y , i.e.,

x

Y

:= fx 2 �

�

j x :Y 2 Sg, and we use #x

Y

for the ardinality of x

Y

.

D

y

ount

:=

 

�

#x

Y

= y

ount

^

W

x2x

Y

x = y

min

^

W

x2x

Y

x = y

max

�

_

�

#x

Y

= y

ount

� 1 ^

W

x2x

Y

(x = y

min

_ x = y

max

)

�

_

(#x

Y

� y

ount

� 2)

!

^

y

ount

2 Z ^ y

ount

� 0

The disjuntion is neessary beause we have to distinguish between the ase

where some of the onrete variables known to belong to a multiset oinide

with its minimum and/or maximum (in whih ase the ardinality an be

equal to #x

Y

, resp. #x

Y

+1), and the ase where both the minimum and the

maximum are distint from values for onrete variables in x

Y

. This distintion

is neessary, for example, to apture that

x :Y ^=

4

(x) ^ �

6

(max(Y )) ^ �

2

(min(Y ))

implies that the ardinality of a solution for Y is greater than or equal to

#x

Y

+ 2 = 3.
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Transforming D

y

ount

into disjuntive normal form, satis�ability of D

#

S

an be

deided by testing separately eah disjunt together with the (in)equalities

stemming from D

S

. Thus we only need to deide satis�ability of a set of

(in)equalities whih, again, an be deided using linear, integer, or mixed

programming tehniques; see, for example, [30℄. 2

Taking the results of this setion together with the results of Setion 5.1 and

5.2, we obtain the following deidability result.

Corollary 25 If � is a onrete domain suh that

� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;max; ountg,

then satis�ability of EL(�)-onepts as well as satis�ability and subsumption

of ALC(�)

�

-onepts is deidable.

5.4 Deidability of ALC(D

max

min

)

Finally, we present our last deidability result, namely the one for subsumption

and satis�ability of ALC(�) for ertain onrete domains � involving only the

aggregation funtions min, and max.

Theorem 26 If � is a onrete domain suh that

� � is admissible,

� pred(�) ontains a binary relation symbol P

=

for equality in �, and a binary

relation symbol P

�

for a linear ordering on dom(�), and

� agg(�) = fmin;maxg,

then satis�ability and subsumption of ALC(�)-onepts is deidable.

We suppose that min and max have the standard semantis as de�ned in

Remark 9 for � = P

�

.

PROOF. In the following, a onrete domain as desribed in the preon-

ditions of Theorem 26 is alled D

max

min

. One possibility to prove Theorem 26

would be to further modify the tableau algorithm from Setion 5.2. However,

there is a shorter proof, namely by a translation to ALCP(D), a natural ex-

tension of ALC(D) introdued in [20℄. More preisely, eah ALC(D

max

min

)-onept

D an be translated into an ALCP(D)-onept �(D) suh that D is satis�able

36



i� �(D) is satis�able. In [20℄, satis�ability of ALCP(D)-onepts was shown

to be deidable, provided that D is admissible. Thus admissibility of D

max

min

also implies deidability of the satis�ability of ALC(D

max

min

)-onepts. Moreover,

ALC(D

max

min

) is losed under negation, hene subsumption an be redued to

(un)satis�ability. We start by introduing ALCP(D).

De�nition 27 (Syntax and semantis of ALCP(D)) If, for 1 � i � m, R

i

is a role or a feature name, then u = R

1

: : : R

m

is alled role/feature hain.

For a role/feature hain u and a 2 �

I

, b 2 �

I

[ dom(�), we have (a; b) 2 u

I

i� there are a

1

; : : : ; a

m�1

with

(a; a

1

) 2 R

I

1

; (a

m�1

; b) 2 R

I

m

; and (a

i

; a

i+1

) 2 R

I

i+1

for all 1 � i � m� 2;

where, for a feature name f , (w; z) 2 f

I

i� f

I

(w) = z.

ALCP(D) is obtained from ALC(D) by adding onepts of the form

8u

1

; : : : ; u

n

:P (generalised value restrition) and

9u

1

; : : : ; u

n

:P (generalised exists restrition):

where P is a onrete prediate of arity n and u

1

; : : : ; u

n

are role/feature

hains.

An ALCP(D) interpretation must satisfy, additionally,

(8u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j For all y

1

; : : : ; y

n

with (x; y

i

) 2 u

I

i

for all

1 � i � n; we have (y

1

; : : : ; y

n

) 2 P

�

g;

(9u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j For all 1 � i � n there is y

i

with (x; y

i

) 2 u

I

i

and (y

1

; : : : ; y

n

) 2 P

�

g:

For pure feature hains u

1

; : : : ; u

n

, the onept 9u

1

; : : : ; u

n

:P is, by de�nition,

equivalent to P (u

1

; : : : ; u

n

).

The idea of the translation from ALC(D

max

min

) into ALCP(D) is to introdue

new feature names f

min(RÆf)

and f

max(RÆf)

and to use the new generalised re-

stritions to make sure that f

min(RÆf)

(x) oinides with the minimum of x's

R Æ f -suessors.

The translation � from ALC(D

max

min

) to ALCP(D) is de�ned indutively on the

struture of onepts and trivial for all onept forming operators (the exat

de�nition is given below); the only hanges it makes are for aggregated fea-

tures: Whenever features of the form f

1

: : : f

k

min(RÆf) (resp. f

1

: : : f

k

max(RÆ

f)) our, new feature names f

min(RÆf)

(resp. f

max(RÆf)

) are introdued. Then
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these aggregated features are replaed by feature hains f

1

: : : f

k

f

min(RÆf)

(resp.

f

1

: : : f

k

f

max(RÆf)

). Finally, we make sure that the f

1

: : : f

k

f

min(RÆf)

-suessor is

the minimum of all f

1

: : : f

k

Rf -suessors. For this, we add onepts of the

form

6

(9 (f

1

: : : f

k

Rf); (f

1

: : : f

k

f

min(RÆf)

): P

=

) u

(:9 (f

1

: : : f

k

f); (f

1

: : : f

k

Rf

min(RÆf)

): P

<

):

The �rst onjunt makes sure that the f

1

: : : f

k

f

min(RÆf)

-suessor (exists and)

oinides with one of the f

1

: : : f

k

Rf -suessors. The seond onjunt ensures

that none of the f

1

: : : f

k

Rf -suessors is smaller than the f

1

: : : f

k

f

min(RÆf)

-

suessor. For max, we add similar onepts. Please note that we annot re-

plae the negated existential quanti�er by a universal one sine, in ALCP(D),

the universal one quanti�es over all role-suessors, and not only over those

in the onrete domain. Thus using the universal quanti�er would require all

f

1

: : : f

k

Rf -suessors to be in the onrete domain|in ontrast to the seman-

tis of ALC(�). More preisely, � is de�ned as follows:

�(C uD) = �(C) u �(D); �(C tD) = �(C) t �(D)

�(9R:C) = 9R:�(C); �(8R:C) = 8R:�(C)

�(P (u

1

; : : : ; u

n

)) = 9�(u

1

); : : : ; �(u

n

):P u u

1�i�n

 (u

i

);

where, for a onrete feature u and

�

2 fmin;maxg

�(u) =

8

>

<

>

:

u if u is a feature hain

f

1

: : : f

k

f

�

(RÆf)

if u = f

1

: : : f

k

�

(R Æ f)

 (u) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

>

A

if u is a feature hain

9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

max(RÆf)

):P

=

u

:9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

max(RÆf)

):P

>

if u = f

1

: : : f

k

max(R Æ f)

9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

min(RÆf)

):P

=

u

:9(f

1

: : : f

k

f); (f

1

: : : f

k

Rf

min(RÆf)

):P

<

if u = f

1

: : : f

k

min(R Æ f)

By onstrution, eah model of an ALC(D

max

min

)-onept D an be transformed

into a model of �(D) by de�ning f

I

�

(RÆf)

(x) :=

�

(RÆf)

I

(x) for

�

2 fmin;maxg.

Vie versa, the orretness proof in [20℄ implies that ALCP(D) has the �nite

model property. Hene eah satis�able ALCP(D)-onept �(D) has a �nite

model I whih is, by onstrution, also a model of D. 2

6

We use 9u; v:P

<

as an abbreviation for 9v; u:

�

P

�

, and 9u; v:P

>

as an abbreviation

for 9u; v:

�

P

�

.
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Intuitively, the reason for deidability of ALC(D

max

min

) an be seen in the fat

that min;max only depend on the \boundaries" of a multiset and not on its

\inside"|in ontrast to all other standard aggregation funtions suh as sum

or ount.

6 Related Work and Conlusion

Reasoning with onstraints involving aggregation funtions is a ruial task

for many advaned information systems like deision support and on-line-

analytial proessing systems, data warehouses, and (statistial) databases

[34,18,28,14,26,36℄. The more the amount of data that are proessed by these

systems grows, the more important aggregation funtions beome for sum-

marising, onsolidating, and analysing these large amounts of data. Hene,

traditional tehniques for query rewriting, query optimisation, view mainte-

nane, and intensional reasoning must be extended suh that they are able to

ope with aggregation funtions. Sine Desription Logis have been proved

useful for these tasks, we have extended them with aggregation funtions and

investigated the e�et of this extension on the deidability of the subsumption

and the satis�ability problem.

The two undeidability results presented in this paper indiate that this task

will be diÆult. The aggregation funtions min, max, and sum that suÆe to

obtain undeidability are among the \well-behaved" ones: aggregation fun-

tions like average are muh more diÆult to handle. For example, min and max

are multiple-invariant (i.e., the multipliity of an element of the multiset does

not matter), and min, max, and sum are monotoni|in ontrast to average.

Furthermore, min, max, and sum are distributive, i.e., for an aggregation fun-

tion agg 2 fmin;max; sumg and two disjoint multisetsM;M

0

, agg(M[M

0

) an

be omputed using agg(M) and agg(M

0

) only|in ontrast to average. Hene,

our undeidability result annot be said to be aused by using too powerful

aggregation funtions.

Arguing from another perspetive, extending ALC(D) with aggregation fun-

tions yields a rather expressive family of Desription Logis, and thus it might

not be very surprising that a variety of these Desription Logis is undeid-

able. In ontrast, FL

0

is, to our knowledge, the weakest Desription Logi ever

onsidered and thus the undeidability result of FL

0

(�) with min;max, and

sum only is rather surprising.

In [28℄, the expressive power of Datalog with onstants, built-in prediates

for omparisons (with onstants), and aggregation funtions is investigated.

The undeidability results desribed there are orthogonal to those presented

here sine (1) our pre-requisites are weaker and (2) in ontrast to Datalog, the
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Desription Logis desribed here do not provide any reursion mehanisms.

For (1), for example, the results desribed in [28℄ onern �xed domains suh

as the non-negative integers, whereas our results involve domains ontaining

the non-negative integers.

In [34℄, the authors investigate the omplexity of the satis�ability problem

of aggregation onstraints, i.e., sets of equations over aggregated multiset

variables and element variables. Besides some deidability results (with ex-

at bounds), some undeidability results are presented. These do not imply

those desribed here sine in [34℄, all undeidability results either involve the

aggregation funtions sum and ount, and possibly average.

Investigating these undeidability results more losely, we identify two soures

of this omplexity: the aggregation funtion sum and the interation between

(loal) universal quanti�ation in onepts of the form 8R:C and aggregation

funtions. Indeed, the deidability result for ALC(D

max

min

) shows that min and

max alone are far less expressive than in ombination with sum|whih is not

too surprising. To obtain a generi deidability result, we further restrited the

underlying Desription Logi to EL, presented a tableau algorithm that deides

satis�ability of EL(�)-onepts, and �nally showed how this algorithm an be

extended to deide satis�ability of ALC(�)

�

-onepts. The logi ALC(�)

�

was

designed suh that the omplex interation between universal value restritions

and aggregation funtions mentioned above do not arise. By onstrution,

ALC(�)

�

is losed under negation, and thus the tableau algorithm an also be

used to deide subsumption of ALC(�)

�

-onepts.

This tableau algorithm is parameterised by a deision proedure for satis�abil-

ity of ertain onjuntions of onrete prediates involving aggregation fun-

tions, i.e., �-onsisteny. Hene any onrete domain for whih �-onsisteny

is deidable an be used to form a logi ALC(�)

�

for whih intensional rea-

soning is deidable|provided that the negation normal form for onepts is

adapted aordingly. In this paper, we showed that the (non-negative) inte-

gers or rational numbers with omparisons (possibly with onstants) and ag-

gregation funtions min, max, and ount are among those deidable onrete

domains. However, we did not exhaustively lassify all \standard" onrete

domains, but believe that it is interesting to �nd other expressive onrete

domains with aggregation funtions for whih �-onsisteny is deidable. For

example, it would be interesting to see the onsequene of replaing the aggre-

gation funtion ount in Lemma 22 by sum. It should be noted that adding sum

to the onrete domain onsidered in the lemma makes �-onsisteny undeid-

able. This is as an easy onsequene of one of Theorem 3.1 and Corollary 3.1

in [34℄.

These deidability results are orthogonal to the deidability results in [31℄ for

ontainment of onjuntive queries with aggregation in the query head: we
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have less powerful aggregation funtions, but allow to use them in a more

omplex way. More preisely, we allow to build onepts in whih aggregation

ours at various levels in nested onepts. The exat onnetion between our

deidable DLs EL(�) and ALC(�)

�

and onjuntive queries with aggregation

is a topi for future researh.

Finally, we would like to point out that, in the presene of aggregation fun-

tions and for data warehouse, OLAP, and similar appliations, another infer-

ene problem plays a ruial role, whih is unrelated to logial standard infer-

ene problems suh as satis�ability and subsumption, namely summarisability

[25℄. Assume you have already summarised some base data up to a ertain

level of granularity using ertain aggregation funtions. Next, the same base

data needs to be summarised again up to (possibly) a di�erent level of granu-

larity and (possibly) using di�erent aggregation funtions. In ase this seond

summary an be omputed from the �rst one, this fat an be exploited sine

(a) the summarised data is probably smaller and (b) the base data might no

longer be available. Thus deiding this question of \what an be omputed

from what" an help in semanti query optimisation, and hene is subjet to

a variety of investigations. Various formalisms have been introdued that allow

to speify how data an be summarised, i.e., formalisms to speify dimensions

along whih data an be summarised, and investigated w.r.t. the omplex-

ity of summarisability, see e.g., [23,33,24℄. These formalisms vary w.r.t. their

expressive power, and allow, roughly speaking, to populate a given, partially

ordered, �nite set of ategories. For example, ity, provine, and state are ate-

gories that an be populated with Toronto, Alberta, and Canada, respetively.

The partial order on the ategories is then \transferred" in a appropriately

restrited form to the instanes. In [23℄, it is shown that, for distributive ag-

gregation funtions suh as min, max, ount, and sum and a given population

of ategories (i.e., a given model), it is o-NP-omplete to deide whether the

summary up to a ertain ategory an be omputed from other summaries to

other ategories . Please note that this result is restrited to summarisation

along a single dimension and w.r.t. a single aggregation funtion.

Due to the tree model property of most desription logis and the DAG-like

struture of dimensions, the above mentioned frameworks annot be diretly

mapped into desription logis. Moreover, the standard desription logi infer-

ene problems take into aount all interpretations or all models of a knowl-

edge base. In ontrast, summarisability in the above mentioned frameworks

takes into aount a single one. To the best of our knowledge, there is no

useful notion of summarisability in desription logis. The introdution of this

inferene problem and the investigation of its omplexity will be part of future

investigations.
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