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Abstra
t

Des
ription Logi
s are a family of knowledge representation formalisms well-suited

for intensional reasoning about 
on
eptual models of databases/data warehouses.

We extend Des
ription Logi
s with 
on
rete domains (su
h as integers and rational

numbers) that in
lude aggregation fun
tions over these domains (su
h as min, max,


ount, and sum) whi
h are usually available in database systems. We show that the

presen
e of aggregation fun
tions may easily lead to unde
idability of (intensional)

inferen
e problems su
h as satis�ability and subsumption. However, there are also

extensions for whi
h satis�ability and subsumption are de
idable, and we present

de
ision pro
edures for the relevant inferen
e problems.

1 Motivation

Des
ription Logi
s (DLs) are a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologi
al knowl-

edge [35,29,4℄. In the last years, DLs that have enough expressive power to


apture standard formalisms for the 
on
eptual modeling of databases su
h

as entity-relationship diagrams or UML s
hemas [5,11,12,14,7,8,10,9℄ were de-

veloped. This means that a 
on
eptual model des
ribed in one of these for-

malisms 
an be translated into a DL knowledge base. Additionally, one 
an

add rather powerful (integrity) 
onstraints to su
h a knowledge base|a use-

ful feature when, for example, building an integrated s
hema for a heteroge-

neous database/data warehouse from the sour
e s
hemas. In this 
ase, these

additional 
onstraints 
an be used to des
ribe the relationship between the

entities/relations in the various sour
e s
hemas and their relationship to the

entities/relations in the integrated s
hema. Most importantly, one 
an use
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the reasoning servi
es of a DL system to 
he
k the quality of the 
on
ep-

tual model. For example, one 
an infer impli
it is-a links between entities and

relations and dete
t in
onsistent entities or relations. In the 
ase that un-

intended is-a relations or in
onsisten
ies are dete
ted, one 
an go ba
k and

modify the 
on
eptual model a

ordingly. If only intended is-a relations and

no in
onsisten
ies are dete
ted, the designer of the 
on
eptual model 
an be

sure that no unintended is-a relations are implied by her model and that all

entities/relations are 
onsistent be
ause the reasoning servi
es in a DL system

su
h as FaCT [22,32℄ or Ra
er [19℄ are provably 
orre
t de
ision pro
edures

for the 
orresponding inferen
e problems satis�ability and subsumption. In

this and other ways, the reasoning servi
es of the DL system 
an be used to

enhan
e the quality of the model. Additionally, the inferred is-a relations 
an

be used for semanti
 query optimisation. For more information on DLs for

reasoning about 
on
eptual models, see [10℄, and for a des
ription of the tool

i
om, whi
h implements these ideas, see [16℄.

Aggregation is a useful me
hanism available in many expressive representation

formalisms su
h as database s
hema and query languages. Most database sys-

tems provide a �xed set of aggregation fun
tions like sum, min, max, average,

and 
ount, whi
h 
an be used over 
on
rete built-in domains (like the inte-

gers or the rational numbers) together with 
on
rete built-in predi
ates (like


omparisons �, >, or 
omparisons with 
onstants). In the presen
e of huge

amounts of data, summarising this data using aggregation fun
tions plays a


entral rôle in databases and data warehouses. Hen
e it is only natural to

assume that aggregation should also be present in the 
on
eptual model of an

information system in whi
h aggregation is used. However, we are aware only

of one extension of entity-relationship diagrams to model \abstra
t" aggrega-

tion, i.e., the aggregation of 
omplex obje
ts from less 
omplex ones [17℄, but

without expli
it aggregation fun
tions and built-in predi
ates.

Sin
e Des
ription Logi
s have proved to be useful for reasoning about 
on
ep-

tual models, we extend existing DLs with aggregation fun
tions to evaluate

the potential of DLs to serve also as a logi
al basis for 
on
eptual modeling

formalisms with aggregation fun
tions and built-in predi
ates, and to pro-

vide the same reasoning servi
es for su
h an extended modeling formalism as

today's DL systems provide for standard ones.

As a basis for our investigation, we take the Des
ription Logi
 ALC [35,21,15℄.

Even thoughALC is rather expressive, it is far less expressive than the DLs used

for the en
oding of entity-relationship diagrams or UML s
hemas. However,

it turns out that ALC is nevertheless an interesting starting point for this

investigation. In ALC, 
on
epts (
lasses) 
an be built using Boolean operators,

(i.e., and (u), or (t), and not (:)), and value restri
tions on those individuals

asso
iated to an individual via a 
ertain role (binary relation). The value
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restri
tions 
an be existential or universal. For example, the 
on
ept

Human u 9has 
hild:(Human u Happy)

des
ribes those humans having (at least) a happy 
hild, whereas

Human u 8has 
hild:(Human u Happy)

des
ribes those humans having only happy 
hildren|without requiring that

they have 
hildren at all.

Most Des
ription Logi
s are restri
ted to talking about abstra
t obje
ts (su
h

as obje
ts representing humans, employees, or proje
ts) with abstra
t relations

between them (su
h as \working for" or \being the boss of"). In [2℄, this

restri
tion was over
ome by providing the DLALC with an interfa
e to 
on
rete

domains (su
h as integers, rational numbers, or strings) and 
on
rete relations

(su
h as is-divisible-by, �, or is-pre�x-of). In this extended DL, whi
h is 
alled

ALC(D), abstra
t individuals 
an be related to values in a 
on
rete domain

D via features, i.e., fun
tional roles. This allows us to des
ribe extravagant

managers by the 
on
ept

Manager u 8year:8month:<(in
ome; expenses):

Ea
h instan
e of the above 
on
ept is a manager who, whenever she is related

to a year whi
h is related to a month, then this month is related via the

features in
ome and expenses to the amount of the her in
ome and expenses,

and the in
ome is stri
tly smaller than the expenses.

In [2℄, it was shown that a rather weak 
ondition (so-
alled admissibility) on

the 
on
rete domain suÆ
es to yield de
idability of the usual inferen
e prob-

lems of this 
ombined logi
. Moreover, it was shown in [27℄ that the 
omplexity

of these inferen
e problems s
ale ni
ely with the 
omplexity of the 
on
rete

domain.

However, looking more 
losely at the above 
on
ept des
ribing extravagant

managers, we note that it is too stri
t. A more reasonable des
ription would

take the annual in
ome (i.e., the sum over the in
ome of ea
h month) and


ompare it with the annual expenses. To a
hieve this expressivity, we view

aggregation fun
tions as a means to de�ne new, 
omputed features, like the

annual in
ome. In Figure 1, a person, Josie, is given who spends, in some

months, more money than she earns, and in others less. If we want to know

whether she has ever had an extravagant year, we 
an ask whether Josie is

an instan
e of

Human u (9year:<( sum(month Æ in
ome);

sum(month Æ expenses)));
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8.000

10.500

9.800

Year96138.000

149.000
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month month month
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oincome )

expenses )montho

monthsum(

Fig. 1. An example of aggregation.

where the 
omplex feature sum(monthÆin
ome) relates an individual to the sum

over all values rea
hable over month followed by in
ome. This new, 
omplex

feature is built using the aggregation fun
tion sum, the role name month, and

the feature in
ome.

In this paper, we present a generi
 extension of ALC(D) that is based on this

idea of de�ning new, 
omputed features using aggregation fun
tions. Even

though the underlying DL, ALC, is not expressive enough to serve as a logi
al

framework for the above mentioned formalisms for 
on
eptual modeling, it

turns out that, given a 
on
rete domain together with aggregation fun
tions

satisfying some very weak 
onditions, satis�ability and subsumption of this

extension is unde
idable. Moreover, this result is not due to the underlying

Des
ription Logi
 ALC: we show that even for the very weak Des
ription Logi


FL

0

(whi
h allows for 
onjun
tion and universal value restri
tions only), sat-

is�ability and subsumption be
ome unde
idable when extended with a few

standard aggregation fun
tions.

However, the unde
idability proofs reveal that this high 
omplexity is due to

the intera
tion between universal value restri
tions and aggregation fun
tions.

We des
ribe three ways to regain de
idability:

� Firstly, we restri
t the underlying Des
ription Logi
 by disallowing universal

value restri
tions. We present a tableau-based algorithm that de
ides sat-

is�ability of this logi
, provided that the 
on
rete domain satis�es 
ertain

restri
tions (see below).

� Se
ondly, we show that this tableau algorithm 
an be further extended to

de
ide satis�ability of a restri
tion of ALC(D) with aggregation that allows
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for (universal and existential) value restri
tions and only disallows the in-

tera
tion between aggregation fun
tions and value restri
tions. Sin
e this

logi
 is 
losed under negation, this tableau algorithm 
an also be used to

de
ide subsumption between 
on
epts.

Like for ALC(D), both tableau algorithms depend on the 
on
rete do-

main, i.e., they require that satis�ability of 
ertain 
onjun
tions of 
on
rete

predi
ates is de
idable. For example, the (non-negative) integers or rational

numbers with 
omparisons >;�; : : : possibly involving 
onstants, together

with the aggregation fun
tions min, max, and 
ount are 
on
rete domains

for whi
h the satis�ability of these 
onjun
tions 
an be de
ided.

� Thirdly, we restri
t the aggregation fun
tions to 
ontain only min and max.

We show that, for standard 
on
rete domains su
h as integers or ratio-

nal numbers, together with 
omparisons and aggregation fun
tions min and

max, satis�ability and subsumption of ALC(D) with aggregation fun
tions

is de
idable.

The paper is organised as follows: In Se
tion 2, the basi
 Des
ription Logi


ALC(D) as introdu
ed in [2℄ is de�ned. This logi
 is then extended with aggre-

gation fun
tions in Se
tion 3. Next, to give the reader a better insight into the

expressive power added by aggregation fun
tions, we present in Se
tion 4 two

generi
 unde
idability results. In Se
tion 5, we present three generi
 de
idabil-

ity results and, �nally, 
ompare these results with similar ones in Se
tion 6.

2 Preliminaries: The Basi
 Des
ription Logi
 ALC(D)

In this se
tion, we re
all syntax and semanti
s of ALC(D), the Des
ription

Logi
 introdu
ed in [2℄, whi
h underlies the following investigation. ALC(D)

is an extension of the well-known Des
ription Logi
 ALC (see [35,21,15℄) by

so-
alled 
on
rete domains. Firstly, we formally spe
ify a 
on
rete domain.

De�nition 1 (Con
rete Domains)

A 
on
rete domain D = (dom(D); pred(D)) 
onsists of

� a set dom(D) (the domain), and

� a set of predi
ate symbols pred(D).

Ea
h predi
ate symbol P 2 pred(D) is asso
iated with an arity n and an n-ary

relation P

D

� dom(D)

n

.

Se
ondly, for a given 
on
rete domain D, the syntax of ALC(D)-
on
epts is

de�ned in [2℄ as follows:
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De�nition 2 (Syntax of ALC(D)) Let N

C

, N

R

, and N

F

be disjoint sets of


on
ept, role, and feature names. A feature 
hain u = f

1

: : : f

m

is a non-empty

sequen
e of features f

i

. The set of ALC(D)-
on
epts is the smallest set su
h

that

(1) every 
on
ept name is a 
on
ept and

(2) if C, D are 
on
epts, R is a role or a feature name, P 2 pred(D) is an

n-ary predi
ate name, and u

1

; : : : ; u

n

are feature 
hains, then (C u D),

(C tD), (:C), (8R:C), (9R:C), and P (u

1

; : : : ; u

n

) are 
on
epts.

In order to �x the exa
t meaning of these 
on
epts, their semanti
s is de�ned

in the usual model-theoreti
 way.

De�nition 3 (Semanti
s of ALC(D)) An interpretation I = (�

I

; �

I

) 
on-

sists of a �nite non-empty set �

I

disjoint from dom(D), 
alled the domain of

I, and a fun
tion �

I

whi
h maps

� every 
on
ept C to a subset C

I

of �

I

,

� every role R to a binary relation R

I

over �

I

, and

� every feature name f 2 N

F

to a partial fun
tion f

I

: �

I

! �

I

[ dom(D).

Furthermore, I has to satisfy the following properties:

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fd 2 �

I

j There exists e with (d; e) 2 R

I

and e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j For all e, if (d; e) 2 R

I

, then e 2 C

I

g; and

P (u

1

; : : : ; u

n

)

I

= fd 2 �

I

j (u

I

1

(d); : : : ; u

I

n

(d)) 2 P

D

g;

where, for u = f

1

: : : f

m

a feature 
hain, u

I

(a) = f

I

m

(f

I

m�1

(: : : (f

I

1

(a) : : :).

A 
on
ept C is 
alled satis�able i� there is some interpretation I su
h that

C

I

6= ;. Su
h an interpretation is 
alled a model of C. A 
on
ept D subsumes

a 
on
ept C (written C v D) i� C

I

� D

I

holds for ea
h interpretation I. Two


on
epts are said to be equivalent (written C � D) if they mutually subsume

ea
h other. For an interpretation I, an individual a 2 �

I

is 
alled an instan
e

of a 
on
ept C i� a 2 C

I

. If f

I

(a) = b (or (a; b) 2 R

I

), then b is 
alled an

f -su

essor (or R-su

essor) of a.

Please note that, in 
ontrast to the semanti
s de�ned in [2℄, we restri
t our

attention to �nite interpretations, i.e., those with a �nite domain. ForALC(D),

this does not make a di�eren
e sin
e, as a 
orollary of the results in [2℄,

ALC(D) has the �nite model property. That is, ea
h satis�able 
on
ept has
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a �nite model. However, in the presen
e of aggregation fun
tions, this will

make a di�eren
e sin
e adding aggregation fun
tions makes ALC(D) lose the

�nite model property. That is, there are satis�able 
on
epts that have in�nite

models only. Sin
e our investigation is motivated by the above mentioned

database appli
ations and databases are, in general, �nite stru
tures, it is

indeed ne
essary to restri
t our attention to �nite models. For the same reason,

�nite model reasoning in Des
ription Logi
s has, e.g., been 
onsidered in [6℄.

In [2℄, subsumption and satis�ability are proved to be de
idable for ALC(D)-


on
epts, provided that the 
on
rete domain is admissible. A tableau-based

de
ision pro
edure for these and other inferen
e problems is presented. We

re
all the de�nition of admissibility:

De�nition 4 Admissibility A 
on
rete domain D is 
alled admissible i�

(1) pred(D) is 
losed under negation, i.e., pred(D) 
ontains, for ea
h n-ary

predi
ate symbol P in pred(D), an n-ary predi
ate symbol

�

P with

�

P

D

=

dom(D)

n

n P

D

,

(2) pred(D) 
ontains a unary predi
ate name >

D

for dom(D), and

(3) satis�ability of �nite 
onjun
tions over pred(D) is de
idable, i.e., satis�-

ability of formulae of the form

P

1

(x

(1)

1

; : : : ; x

(1)

n

1

) ^ : : : ^ P

1

(x

(k)

1

; : : : ; x

(k)

n

k

)

is de
idable, where P

i

are predi
ate names of arity n

i

.

Moreover, the authors show how two disjoint 
on
rete domains D

1

and D

2

(e.g., the integers and strings) 
an be 
ombined into a single, new 
on
rete

domain D

1;2

. If D

1

and D

2

are admissible, then D

1;2

is also admissible. Due

to this observation, we will restri
t our attention to extensions of ALC with

single 
on
rete domains.

As a 
onsequen
e of De�nition 3, an instan
e of a 
on
ept P (u

1

; : : : ; u

n

) has

ne
essarily a u

i

-su

essor that is in dom(D) for ea
h 1 � i � n. Thus, to ensure

that, for a 
on
rete feature f , an individual has an f -su

essor in dom(�), we


an make use of a predi
ate restri
tion >

�

(f) if the predi
ate >

�

is available.

Otherwise, we 
an make use, for example, of the equality P

=

(f; f). To express

that an individual has no f -su

essor at all, we will use the abbreviation

no

f

= 8f:(A u :A).

As ALC(D) allows for negation and 
onjun
tion of 
on
epts, all Boolean op-

erators 
an be expressed, and we will use C ) D as a shorthand for :C tD.

Another 
onsequen
e of the presen
e of these two operators is that subsump-

tion and (un)satis�ability 
an be redu
ed to ea
h other:

� C v D i� C u :D is unsatis�able, and
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� C is unsatis�able i� C v A u :A (for some 
on
ept name A).

3 Extension of ALC(D) With Aggregation

In order to de�ne aggregation appropriately, �rst, we will introdu
e the notion

of multisets: in 
ontrast to simple sets, an individual 
an o

ur more than

on
e in a multiset|but only �nitely often. For example, the multiset ff1gg

is di�erent from the multiset ff1; 1gg. Multisets are needed to make sure, for

example, that one's annual in
ome is 
al
ulated 
orre
tly from one's monthly

in
ome in the 
ase that the same amount is earned in several months.

De�nition 5 (Multisets) A multiset M over S is a mapping M : S ! N,

where M(s) denotes the number of o

urren
es of s in M . A multiset M over

S is said to be �nite i� fs j M(s) 6= 0g is a �nite set. The set of all �nite

multisets of S is denoted MS(S). We use the notation ffa

1

; : : : ; a

n

gg when

enumerating the members a

i

of a �nite multiset to distinguish multisets from

sets.

For multisets M , M

0

over S, we write M � M

0

if M(s) � M

0

(s) for ea
h

s 2 S, and we write s 2 M if M(s) � 1. For M � M

0

, we use M

0

nM to

denote the multiset with (M

0

nM)(s) :=M

0

(s)�M(s) for all s 2 S.

Sin
e the aggregation fun
tions strongly depend on the spe
i�
 
on
rete do-

mains, the notion of a 
on
rete domain is extended a

ordingly. Furthermore,

the notion of 
on
rete features is introdu
ed. Su
h a 
on
rete feature is either

a feature name, a feature 
hain, or built using an aggregation fun
tion on a

role and a feature name.

De�nition 6 (Syntax of ALC(�)) The notion of a 
on
rete domain D as in-

trodu
ed in De�nition 1 is extended with a set of aggregation fun
tions agg(D),

where ea
h

�

2 agg(D) is asso
iated with a partial fun
tion

�

D

from the set of

�nite multisets of dom(D) into dom(D). To underline the fa
t that a 
on
rete

domain provides aggregation fun
tions, it is denoted �.

The set of 
on
rete features is de�ned as follows:

� Ea
h feature name f 2 N

F

is a 
on
rete feature,

� a feature 
hain f

1

: : : f

n

is a 
on
rete feature, and

� an aggregated feature f

1

: : : f

n

�

(RÆf) is a 
on
rete feature, where f; f

1

; : : : ; f

n

are feature names, R is a role name, and

�

2 agg(�) is an aggregation fun
-

tion.

Finally, ALC(�)-
on
epts are obtained from ALC(D)-
on
epts by allowing, ad-

ditionally, the use of 
on
rete features f

i

in predi
ate restri
tions P (f

1

; : : : ; f

n

)
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(re
all that in ALC(D) only feature 
hains were allowed).

It remains to extend the semanti
s of ALC(�) to the new feature-forming

operator:

De�nition 7 (Semanti
s of ALC(�)) An ALC(�)-interpretation I is an

ALC(D)-interpretation that, additionally, interprets aggregated features as fol-

lows. To de�ne the semanti
s of aggregated features, we introdu
e the multiset

M

RÆf

a

whi
h maps ea
h element z 2 dom(�) to the number of a's R-su

essors

that have z as f -su

essor:

M

RÆf

a

(z) := #fb 2 �

I

j (a; b) 2 R

I

and f

I

(b) = zg:

Finally, the semanti
s of aggregated features is de�ned as follows:

(f

1

: : : f

n

�

(R Æ f))

I

(a) :=

8

>

<

>

:

�

�

(M

RÆf

a

0

) if (f

1

: : : f

n

)

I

(a) = a

0

2 �

I

unde�ned if (f

1

: : : f

n

)

I

(a) 62 �

I

and

�

�

(M

RÆf

a

0

) is 
alled the (f

1

: : : f

n

�

(R Æ f))-su

essor of a, provided that it

is de�ned.

We point out two 
onsequen
es of this de�nition, whi
h might not be obvious

at �rst sight:

(a) If a has an R-su

essor b with an abstra
t f -su

essor, then b has no

in
uen
e on M

RÆf

a

: it is de�ned in su
h a way that it takes only into a

ount

R Æ f -su

essors of a in the 
on
rete domain dom(�).

(b) Sin
e �

I

is �nite, ea
h M

RÆf

a

0

is ne
essarily a �nite multiset. However,

there are two reasons why (f

1

: : : f

n

�

(RÆf))

I

(a) might not be de�ned: �rstly,

a might have no f

1

: : : f

n

-su

essor a

0

in �

I

. Se
ondly, aggregation fun
tions


an be partial. For example, the (standard) min or max over an empty set is

unde�ned. Hen
e if dom(�) is the set of rational numbers, integers, et
., and

if a has no R-su

essor in I with an f -su

essor in the 
on
rete domain, then

M

RÆf

a

is the empty multiset, and thus (max(R Æ f))

I

(a) is unde�ned.

In the following, we will make use of the aggregation fun
tions 
ount, sum, min,

and max, whi
h are supposed to be de�ned as usual, i.e., for �nite multisets

9



M over the rational numbers (or any subset of the rational numbers) we have


ount(M) =

P

y2M

M(y)

sum(M) =

P

y2M

M(y) � y

min(M) =

8

>

<

>

:

m if there exists m 2M su
h that n � m for all n 2M

unde�ned if no su
h m exists

max(M) =

8

>

<

>

:

m if there exists m 2M su
h that n � m for all n 2M

unde�ned if no su
h m exists

4 Unde
idability Results

In this se
tion, the expressive power added to ALC(D) by aggregation fun
-

tions is illustrated. It turns out that, for a 
on
rete domain � satisfying some

rather weak 
onditions, reasoning in ALC(�) and its restri
tion FL

0

(�) be-


ome unde
idable in the presen
e of standard aggregation fun
tions like min,

max, and sum.

4.1 A �rst unde
idability result

The following theorem states that admissibility of a 
on
rete domain does no

longer guarantee de
idability of the interesting inferen
e problems:

Theorem 8 For a 
on
rete domain � where

� dom(�) in
ludes the non-negative integers,

� pred(�) 
ontains a (unary) predi
ate P

=1

that tests for equality with 1, and

a (binary) equality P

=

,

� agg(�) 
ontains min, max, and sum,

satis�ability and subsumption of ALC(�)-
on
epts are unde
idable.

Remark 9 (a) At �rst sight, this unde
idability result may appear to be very

restri
ted. Note, however, that it does not require that dom(�) is the set of

non-negative integers, but that it just requires that dom(�) 
ontains the non-

negative integers. This makes the unde
idability result not only more general,

10



but also stronger. For example, 
omputations over the real numbers are, in

general, easier than 
omputations over the non-negative integers; e.g., the �rst

order theory of +; �;� is unde
idable over the non-negative integers, whereas

it is de
idable over the real numbers.

Furthermore, the aggregation fun
tions min, max, and sum are among those

normally 
onsidered as built-in fun
tions for databases (see, for example,

[18,28,26,36℄). Finally, to test whether a 
ertain value equals 1 or whether two

values are equal is possible in all database systems with built-in predi
ates.

(b) We do not suppose that � is admissible|although this pre
ondition would

not weaken the unde
idability result. Nevertheless, in the sequel, we will make

use of the 
on
ept >

�

(f) des
ribing all those (abstra
t) individuals having an

f -su

essor in the 
on
rete domain. This is in a

ordan
e with the pre
ondi-

tions of Theorem 8 be
ause >

�

(f) (if not available in �) 
an be introdu
ed

as abbreviation, e.g., for P

=

(f; f).

(
) Unde
idability is not due to the fa
t that we require �

I

to be �nite. The

proof works analogously for in�nite interpretations (where M

RÆf

a

is de�ned

appropriately in the 
ase that a has in�nitely many R-su

essors); see [3℄.

Proof of Theorem 8: The proof is by redu
tion of Hilbert's 10th problem

[13℄ to satis�ability of 
on
epts, i.e., for polynomials P;Q 2 N [x

1

; : : : ; x

m

℄,

we 
onstru
t an ALC(�)-
on
ept C

P;Q

that is satis�able i� the polynomial

equation

P (x

1

; : : : ; x

m

) = Q(x

1

; : : : ; x

m

) (1)

has a solution in N

m

. In the sequel, we write x as shorthand for (x

1

; : : : ; x

m

)

and x

i

j

as shorthand for the monomial x

i

j1

1

� � �x

i

jm

m

.

The idea of the redu
tion is to represent the (sub)term stru
ture of the poly-

nomial P (Q) as a tree related to an instan
e of C

P;Q

via the feature P (Q).

Ea
h polynomial is supposed to be of the form

a

0

+ a

1

x

i

1

+ : : :+ a

j

x

i

j

+ : : : a

n

x

i

n

;

where, for simpli
ity, all monomials x

i

j

are assumed to be di�erent.

When building the redu
tion 
on
ept C

P;Q

, one en
ounters three main prob-

lems:

(a) We only know that dom(�) 
ontains N , but the solution of Equation 1

must be in N

m

, and � need not provide a predi
ate that tests for being a

non-negative integer.

(b) It has to be guaranteed that (the representation of) ea
h variable x

i

is

asso
iated with the same non-negative integer wherever it o

urs in a model

11



of C

P;Q

.

(
) The redu
tion asks for the representation of 
al
ulations su
h as addition,

multipli
ation, and exponentiation.

These problems 
an be over
ome as follows:

(a) is solved by making use of the 
on
ept E

R

g

,

E

R

g

:= (8R:P

=1

(f)) u P

=

(sum(R Æ f); g);

whose instan
es have as g-su

essors the number of their R-su

essors. Hen
e

their g-su

essor is de�ned and in N .

(b) This problem is solved by introdu
ing features x

i

for ea
h variable x

i

and

by making strong use of the 
on
epts E

R

x

i

de�ned above (to make sure that

x

i

-su

essors are non-negative integers) and the following 
on
ept Inv:

Inv := u

1�i�m

(8R:>

�

(x

i

) u P

=

(min(R Æ x

i

);max(R Æ x

i

)) u P

=

(x

i

;max(R Æ x

i

))):

Let a be an instan
e of Inv. Then the �rst 
onjun
t ensures that all R-

su

essors of a have an x

i

-su

essor in dom(�). The se
ond 
onjun
t ensures

that all R Æ x

i

-su

essors of a 
oin
ide and, �nally, the third 
onjun
t ensures

that a's x

i

-su

essor 
oin
ides with the x

i

-su

essors of its R-su

essors.

Using Inv at all levels of nested 
on
epts, we 
an guarantee that all \relevant"

individuals in a model of C

P;Q

have the same x

i

-su

essor for ea
h variable x

i

.

(
) Addition 
an be realised by the aggregation fun
tion sum, and multipli-


ation (and hen
e exponentiation) 
an be redu
ed to addition; for details see

the explanation of the redu
tion 
on
epts below.

For the representation of 
onstants (like the 
oeÆ
ients) we will use the fol-

lowing abbreviations:

E

R

1

:= (8R:(P

=1

(f))) u P

=1

(sum(R Æ f)) (exa
tly 1 R-su

essor)

E

R

n

:= 8R:

�

t

1�i�n

(P

=1

(f

i

) u u

j 6=i

no

f

j

)

�

u (exa
tly n R-su

essors)

u

1�i�n

P

=1

(sum(R Æ f

i

))

where no

f

j

is the abbreviation for 8f

j

:(A u :A) mentioned in Se
tion 2. It

is easy to see that ea
h instan
e of E

R

1

has exa
tly 1 R-su

essor. Now, for

an instan
e a of E

R

n

, every R-su

essor has exa
tly one f

i

-su

essor for some

i; 1 � i � n, and this f

i

-su

essor has value 1 (�rst line). The 
onstraint on the


on
rete feature sum(R Æ f

i

) (se
ond line) makes sure that, for ea
h i, there is

12



exa
tly one R-su

essor with an f

i

-su

essor, whi
h implies that a has exa
tly

n R-su

essors. For those familiar with Des
ription Logi
s, we point out that

E

R

n

is indeed equivalent to the number restri
tion (= nR).

Summing up, for � as des
ribed in Theorem 8, we have de�ned the following

abbreviations:

no

f

des
ribes individuals with no f -su

essor

E

R

1

des
ribes individuals with exa
tly 1 R-su

essor

E

R

n

des
ribes individuals with exa
tly n R-su

essors

E

R

g

des
ribes individuals a with exa
tly g

I

(a) R-su

essors

Inv des
ribes individuals a whose x

i

-su

essor 
oin
ides with the

x

i

-su

essor of ea
h of its R-su

essors

The de�nition of the redu
tion 
on
ept C

P;Q

and the auxiliary 
on
epts used

in this de�nition 
an be found in Figures 3 and 4. Figure 2 sket
hes a model

of C

P;Q

. Let us now explain the de�nition of C

P;Q

:

(1) First, we de�ne C

P;Q

su
h that, for ea
h interpretation I, ea
h instan
e

a 2 C

I

P;Q

has exa
tly one P -su

essor p in C

I

P

and exa
tly one Q-su

essor

q in C

I

Q

. The individual p represents the polynomial P , and q represents

Q; see Con
ept 2. Con
ept 3 is similar to Inv and makes sure that, for ea
h

j, the x

j

-su

essor of p is in dom(�) and the same as the x

j

-su

essor of q.

Using the feature s to store the value of the evaluation of the polynomials,

Con
ept 4 makes sure that the value of the polynomial P when evaluated

with the x

j

-su

essors (whi
h are already ensured to be the same for p

and for q) is the same as of Q.

(2) An instan
e p of C

P

has

� for ea
h summand A

j

= a

j

x

i

j

of P one R-su

essor, whi
h is an instan
e

of C

A

j

; see the �rst two 
onjun
ts of Con
ept 5. The use of the 
on
epts

E

H

j

ensures that all C

A

j

are disjoint, and thus to ensure that ea
h

summand is represented by a di�erent R-su

essor.

� an s-su

essor, whi
h is the sum of the s-su

essors of its R-su

essors;

see the last 
onjun
t of Con
ept 5.

Given that the s-su

essor of ea
h R-su

essor of p is the value of the jth

summand, the s-su

essor of p is the 
orresponding value of P , namely

the sum over P 's summands. Again, the 
on
ept Inv makes sure that ea
h

x

i

-su

essor of p 
oin
ides with the x

i

-su

essors of its R-su

essors, and

thus the summands are evaluated by the same tuple.

(3) The 
on
ept C

Q

is de�ned analogously.

(4) For ea
h summand A

j

= a

j

x

i

j

, we use a 
on
ept C

A

j

. An instan
e a of

C

A

j

has a

j

R-su

essors, ea
h of them representing the monomial x

i

j

; see
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.
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X

i
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1

X

i

j1

�1

1

X

i

j1

�1

1

X

i

j1

�2

1

X

i

j1

�2

1

C

x

i

j

C

x

i

j

C

x

i

j

a

j

R-su

s.

X

i

jm

m

x

i

j1

1

R-su

s.

x

1

R-su

s.

x

1

R-su

s.

x

i

j2

2

R-su

s.

Fig. 2. The intuitive stru
ture of a model of C

P;Q

.

Con
ept 7. The last 
onjun
t makes sure that the s-su

essor (represent-

ing the value of A

j

) is 
omputed 
orre
tly: sin
e a has a

j

R-su

essors,

ea
h of them representing x

i

j

, the s-su

essor of a is the sum over the

s-su

essors of its R-su

essors, namely a

j

times x

i

j

.

(5) C

x

i

j

is more 
ompli
ated. An instan
e 
 of it has two di�erent kinds of

role su

essors:

� For ea
h of the m fa
tors x

i

jk

k

in x

i

j

, 
 has one R

k

-su

essor in X

i

jk

k

,

whose s

k

-su

essor stands for its value x

i

jk

k

. The 
on
ept Exp

x

i

j

guar-

antees this fa
t. In Exp

x

i

j

, we use the se
ond 
onjun
t instead of Inv to

propagate the value of x

k

down to the a

ording subtree. The last 
on-

jun
t of Exp

x

i

j

makes sure that the respe
tive values s

k

are propagated

upwards to 
.

� Then, in order to multiply them fa
tors x

i

jk

k

, we make use of the 
on
ept

Mult

m

1

explained below. Again, the s-su

essor of 
 denotes the value of

this 
al
ulation, namely x

i

j

.
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C

P;Q

:=E

P

1

u E

Q

1

u 8P:C

P

u 8Q:C

Q

u (2)

u

1�j�m

 

P

=

(sum(P Æ x

j

); sum(Q Æ x

j

))

!

u (3)

P

=

(sum(P Æ s); sum(Q Æ s)) (4)

C

P

:=E

R

n+1

u u

0�j�n

9R:(C

A

j

u E

H

j

) u Inv u P

=

(s; sum(R Æ s)) (5)

C

A

j

:=E

R

a

j

u 8R:C

x

i

j

u Inv u P

=

(s; sum(R Æ s)) (6)

C

x

i

j

:=Exp

x

i

j

uMult

m

1

(7)

Fig. 3. The redu
tion 
on
ept C

P;Q

and some of its sub
on
epts.

(6) For X

i

k

, we have to distinguish two 
ases : If i > 0, an instan
e b of

X

i

k

is the root of an x

k

-ary R-tree of depth i where the s-su

essor of

ea
h node is the sum of the s-su

essors of its R-su

essors. Finally, the

s-su

essor of a node one level above the leaves (whi
h represents x

1

k

)

equals its x

k

-su

essor|whi
h is the same for all nodes in the whole tree.

Sin
e dom(�) is only required to 
ontain the non-negative integers, we

have to ensure that all x

k

-su

essors are non-negative integers. This is

realised by making use of the 
on
ept E

R

x

k

.

Otherwise, i = 0, and the value asso
iated to this fa
tor is 1; see the


on
ept X

0

k

.

Thus, we use the possibilities to 
onstru
t trees and to sum up in order

to 
ompute exponentiation.

(7) Finally, the situation in whi
h we start multipli
ation looks as follows:

An instan
e u of Mult

m

1

is the root of the multipli
ation tree, u is also

an instan
e of C

x

i

j

, and we want to multiply the s

k

-su

essors x

i

jk

k

(k =

1; : : : ; m) of u. To this purpose, we atta
h an additional R-tree of depth

m�1 to u. This tree is, at level k, of outdegree x

i

jk

k

, whi
h is the value of

s

k

of at the node u, and its s-su

essor of nodes on level k� 1 represents

x

i

jk

k

� : : : � x

i

jm�1

m�1

x

i

jm

m

. At level m� 1, we make sure that the s

m

-su

essors


oin
ide with the s-su

essor. Again, we sum up the values from the

bottom to the top by using the 
on
ept P

=

(s; sum(R Æ s)), and we make

sure that all nodes have the same s

i

su

essor by a 
on
ept similar to Inv;

see Con
ept 13.

It remains to be shown that C

P;Q

is satis�able i� P (x) = Q(x) admits a

solution in the non-negative integers.
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Exp

x

i

j

:= u

1�k�m

 

E

R

k

1

u P

=

(x

k

; sum(R

k

Æ x

k

)) u (8)

8R

k

:X

i

jk

k

u P

=

(s

k

; sum(R

k

Æ s

k

))

!

(9)

Mult

m

m

:=P

=

(s; s

m

) (10)

for 1 � k < m : (11)

Mult

m

k

:=E

R

s

k

u P

=

(s; sum(R Æ s)) u 8R:Mult

m

k+1

u (12)

m

u

`=k+1

 

P

=

(min(R Æ s

`

);max(R Æ s

`

)) u P

=

(min(R Æ s

`

); s

`

)

!

(13)

X

0

k

:=P

=1

(s) (14)

X

1

k

:=E

R

x

k

u P

=

(s; x

k

) (15)

X

`

k

:=E

R

x

k

u 8R:X

`�1

k

u P

=

(s; sum(R Æ s)) u (16)

P

=

(min(R Æ x

k

);max(R Æ x

k

)) u P

=

(x

k

;max(R Æ x

k

)); ` � 2

Fig. 4. Sub
on
epts of C

P;Q

used for the representation of 
al
ulations.

\(" The 
onstru
tion of a (�nite) model M of C

P;Q

from P , Q, and a solu-

tion n

1

; : : : ; n

m

2 N

m

for x is not diÆ
ult. M 
an be 
onstru
ted along the

explanations given for C

P;Q

in the following way: We start at the bottom of

the tree M by introdu
ing instan
es

� x

1

k

of X

1

k

that have n

k

R-su

essors, ea
h of them having 1 as f -su

essor

(to satisfy E

R

x

k

), n

k

as x

k

su

essor, and n

k

as s-su

essor.

� x

0

k

of X

0

k

that have n

k

R-su

essors, ea
h of them having 1 as f -su

essor,

n

k

as x

k

su

essor, and 1 as s-su

essor.

Then, for ea
h monomial x

i

j

, the 
orresponding subtrees representing n

i

jk

k

are

built. Starting with (
opies of) x

1

k

and x

0

k

, we build trees of depth i

jk

and degree

n

k

. Next, instan
es 
 of C

x

i

j

are introdu
ed, where ea
h 
 has as R

k

-su

essor

the subtree representing the fa
tor n

i

jk

k

in n

i

j1

1

� � �n

i

jm

m

. Now, we append an-

other subtree to ea
h 
, namely the one representing the multipli
ation of the

values n

i

jk

k

. This tree is of depth m� 1 and degree n

i

jk

k

at level k� 1. The re-

maining 
onstru
tion is straightforward. We �rst take a

j

disjoint 
opies of the


's standing for C

x

i

j

(in
luding the 
orresponding subtree) as R-su

essors of

an instan
e a of C

A

j

, then we append these as as R-su

essors to an instan
e
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p of C

P

. We suppose that the same 
onstru
tion has been 
arried out for Q,

whi
h lead to an instan
e q of C

Q

. Finally, p and q are P (resp. Q) -su

essors

of an instan
e 
 of C

P;Q

.

At ea
h node of the tree 
onstru
ted in this way (ex
ept for the root node),

the s-su

essor of an individual equals the sum over the s-su

essors of its R-

su

essors, and ea
h node has the same x

k

-su

essors. The fa
t that a solution

n

1

; : : : ; n

m

2 N

m

for x has been used implies that p's s-su

essor 
oin
ides

with q's s-su

essor, as required by the de�nition of C

P;Q

.

\)" Given a model M for C

P;Q

with 
 2 C

I

P;Q

, due to the presen
e of Inv

and similar 
on
epts in C

P;Q

, all x

k

-su

essors of all \relevant" role su

essors

of 
 
oin
ide|where \relevant" role su

essors are those whose existen
e is

expli
itly required by C

P;Q

. Again, following the des
ription of C

P;Q

, we have

that (x

I

1

(
); : : : ; x

I

m

(
)) is a solution for P (x) = Q(x). Due to the use of the


on
epts E

R

x

k

, this solution is in N

m

. 2

4.2 Tightening the result

A 
loser investigation of the 
on
ept C

P;Q

reveals that (a) negation o

urs only

in the 
on
ept no

f

, (b) the only pla
e where existential restri
tion o

urs is in

the 
on
epts C

P

and C

Q

, and (
) the only pla
e where disjun
tion t o

urs is

in the 
on
epts E

R

n

des
ribing individuals having exa
tly n R-su

essors.

We will show that the 
on
epts no

f

, E

R

n

and C

P


an be rewritten into equiv-

alent 
on
epts without negation, disjun
tion and existential restri
tion, by

extending only slightly the set of 
on
rete predi
ates. Hen
e, the redu
tion


on
ept C

P;Q


an be written using only 
onjun
tion u and universal value

restri
tion 8R:C. As introdu
ed in [1℄, let FL

0

denote the set of those 
on-


epts that are built using 
onjun
tion and universal value restri
tion only, and

let FL

0

(�) denote the extension of this language by 
on
rete domains with

aggregation. Then the following unde
idability result is an immediate 
onse-

quen
e of the possibility to rewrite the redu
tion 
on
ept C

P;Q

without using

negation, disjun
tion, and existential restri
tion.

Theorem 10 For a 
on
rete domain � where

� dom(�) in
ludes the non-negative integers N,

� pred(�) 
ontains, for all non-negative integers n, (unary) predi
ates P

=n

that test for equality with n, the (binary) equality predi
ate P

=

, and the

(binary) inequality predi
ate P

6=

,

� agg(�) 
ontains min;max; sum,

satis�ability and subsumption of FL

0

(�)-
on
epts are unde
idable.
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Remark 11 (a) Admissible 
on
rete domains as de�ned in [2℄ are 
losed

under negation, e.g., the presen
e of a predi
ate P

=

in pred(�) implies the

presen
e of its negation P

6=

. Hen
e for admissible 
on
rete domains, the only

di�eren
e between the pre
onditions of Theorem 8 and Theorem 10 are the

unary predi
ates P

=n

.

(b) We re
all that, a

ording to the semanti
s of FL

0

(�), an individual a


an only be an instan
e of the 
on
ept P

6=

(f; g) if a has an f - as well as a

g-su

essor in the 
on
rete domain dom(�).

PROOF. As observed above, it suÆ
es to de�ne FL

0

(�)-
on
epts no

0

f

, E

0

n

R

,

and C

0

P

whi
h 
an play the rôle of no

f

, E

R

n

, and C

P

in the redu
tion 
on
ept

C

P;Q

of the proof of Theorem 8.

no

0

f

: This 
on
ept is used to make sure that an individual has no f -su

essor.

It 
an 
learly be repla
ed by

no

0

f

:= 8f:P

6=

(g; g);

where P

6=

(g; g) plays the rôle of the empty 
on
ept Au:A used in the de�nition

of no

f

.

E

0

n

R

: Given a 
on
rete domain � that provides, for all non-negative integers

n, a unary predi
ate P

=n

that tests for equality with n, we 
an de�ne a 
on
ept

E

0

n

R

whose instan
es have exa
tly n R-su

essors:

E

0

n

R

:= 8R:P

=1

(f) u P

=n

(sum(R Æ f)):

Obviously, repla
ing E

R

n

by E

0

n

R

in C

P;Q

preserves its property of serving as a

redu
tion 
on
ept for Hilbert's 10th problem. Avoiding existential restri
tion

in C

P

is more 
ompli
ated.

C

0

P

: In C

P

, existential restri
tions are used to make sure that, for ea
h mono-

mial A

j

, there is one R-su

essor representing this monomial. This 
an also

be expressed by introdu
ing, for ea
h j, exa
tly one R

j

-su

essor (using E

R

j

1

),

and then using universal value restri
tions to make sure that this R

j

-su

essor

is an instan
e of C

A

j

. Additionally, the x

j

-su

essors are propagated to the

R

j

-su

essors. All this is ensured by the �rst line of C

0

P

.

C

0

P

:= u

0�j�n

�

E

R

j

1

u 8R

j

:C

A

j

u u

0�`�m

P

=

(x

`

; sum(R

j

Æ x

`

)) u

P

=

(s

j

; sum(R

j

Æ s))

�

u Add

s

0

;:::;s

n

18



It remains to enfor
e that the sum over all s-su

essors of all R

j

-su

essors

of an instan
e p of C

0

P


oin
ides with p's s-su

essor. For this purpose, the

se
ond line of C

0

P

makes sure that p has an s

j

-su

essor whi
h 
oin
ides with

the s-su

essor of its R

j

-su

essor, and the 
on
ept Add

s

0

;:::;s

n

is used to sum

up p's s

j

-su

essors. It is de�ned as follows,

Add

s

0

;:::;s

n

= add

s

01

s

0

;s

1

u add

s

012

s

01

;s

2

u : : : u add

s

s

012:::n�1

;s

n

;

where

add

u

t;t

0

:= E

0

2

R

u 8R:P

=

(g; g) u P

=

(t;max(R Æ g)) u P

=

(t

0

;min(R Æ g)) u

P

=

(u; sum(R; g))

The idea underlying this addition is the following. Firstly, the addition of n+1

numbers is redu
ed to the addition of two numbers: In Add

s

0

;:::;s

n

, the s

0

- and

the s

1

-su

essor of p are summed up and the result is stored as s

01

-su

essor

of p. Similarly, the s

01

- and the s

2

-su

essor are summed up and the result is

stored as s

012

-su

essor of p, and so forth, until only two arguments are left.

The sum of these last numbers is the result of the whole addition, and stored

as s-su

essor of p.

Se
ondly, the addition of two numbers given as t- and t

0

-su

essors and the

storage of the result as u-su

essor is realised by the 
on
ept add

u

t;t

0

. Let p be

an instan
e of add

u

t;t

0

, let x be p's t-su

essor, and let x

0

be p's t

0

-su

essor.

The �rst two 
onjun
ts of add

u

t;t

0

ensure that p has exa
tly two R-su

essors,

ea
h of whi
h has a g-su

essor in the 
on
rete domain. Next, we ensure that

x 
oin
ides with the maximum of p's R Æ g-su

essors, and that x

0


oin
ides

with the minimum of p's R Æ g-su

essors. Hen
e M

RÆg

p

= ffx; x

0

gg, and thus

the last 
onjun
t ensures that p's u-su

essor 
oin
ides with x+ x

0

.

Again, repla
ing C

P

by C

0

P

and C

Q

by C

0

Q

in C

P;Q

preserves its property of

serving as a redu
tion 
on
ept for Hilbert's 10th problem, whi
h is|together

with the aforementioned repla
ements|an FL

0

(�)-
on
ept.

Unde
idability of subsumption follows from unde
idability of satis�ability be-


ause a 
on
ept C is satis�able i� it is not subsumed by an unsatis�able


on
ept, and be
ause the FL

0

(�)-
on
ept P

6=

(f; f) is su
h an unsatis�able


on
ept. 2

5 De
idability Results

The unde
idability proofs in the previous se
tion heavily use universal value

restri
tion in 
ombination with aggregation fun
tions, in parti
ular sum. In
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this se
tion, we will show that this intera
tion is indeed the 
ause for the

unde
idability: we will give three generi
 de
idability results, whi
h are all

obtained by disallowing this kind of intera
tion.

The �rst result is obtained by restri
ting the abstra
t part of the Des
ription

Logi
. In Se
tion 5.1, EL(�) is obtained from ALC(�) by disallowing universal

value restri
tions. We present a tableau algorithm that de
ides satis�ability

for this restri
ted logi
. This algorithm is generi
 in that we give a rather

weak property of 
on
rete domains that implies de
idability of satis�ability

for EL(�)-
on
epts. In Se
tion 5.3, we present several 
on
rete domains that

satisfy this property, all of them involving the aggregation fun
tions min, max,

and 
ount. However, sin
e EL(�) is not 
losed under negation, the tableau

algorithm 
annot be used to de
ide subsumption.

For the se
ond result, we have 
hosen a Des
ription Logi
 that is 
losed un-

der negation, i.e., where subsumption 
an be redu
ed to satis�ability. In Se
-

tion 5.2, ALC(�)

�

is obtained by restri
ting ALC(�) in su
h a way that no

intera
tion between aggregation fun
tions and universal value restri
tions 
an

o

ur. Sin
e this Des
ription Logi
 is propositionally 
losed, also existential re-

stri
tions 
annot intera
t with aggregation fun
tions. This intera
tion is possi-

ble in EL(�), and thereforeALC(�)

�

is not an extension of EL(�). The 
on
rete

domains � for whi
h ALC(�)

�

is de
idable are the same as those for whi
h

EL(�) has been proved de
idable; they are des
ribed in Se
tion 5.3. However,

this se
ond de
idability result is not as generi
 as the �rst one be
ause the way

in whi
h the algorithm treats negated 
on
rete predi
ates strongly depends on

the aggregation fun
tions.

Finally, the third result is obtained by restri
ting the aggregation fun
tions to

min and max. For 
on
rete domains � involving only min and max, de
idability

of satis�ability and subsumption of ALC(�)-
on
epts is shown by a redu
tion

to a known de
idable Des
ription Logi
. From Se
tion 4, it is 
lear that this

result 
annot be extended to a 
on
rete domain also 
ontaining sum.

5.1 De
idability of EL(�)

In this se
tion, a generi
 de
idability result is presented for EL(�), a restri
tion

of ALC(�) that does not 
ontain universal value restri
tions. We start by

de�ning EL(�).

De�nition 12 (Syntax of EL(�)) EL(�) denotes the Des
ription Logi
 that

is obtained from ALC(�) by disallowing universal value restri
tions (8R:C)

and by restri
ting the use of negation to 
on
ept names.
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Satis�ability of EL(�)-
on
epts is de
ided by a tableau algorithm that tries

to 
onstru
t, for an input 
on
ept C

0

, a model of C

0

. To this purpose, it

breaks down C

0

into sub
on
epts, hereby making expli
it all 
onstraints on

individuals in this model. It �rst works on the abstra
t part of the model while


olle
ting 
onstraints on the 
on
rete part. If the abstra
t part is su

essfully

pro
essed, it ends with a set of 
on
rete 
onstraints for whi
h satis�ability

must be de
idable, and whose solution 
an be used to 
onstru
t the missing


on
rete part of the model. The attempt to 
onstru
t a model either fails (in

the abstra
t or the 
on
rete part) with obvious in
onsisten
ies|in whi
h 
ase

C

0

is unsatis�able|or it su

eeds and ends with a des
ription of a model of

C

0

.

In 
ontrast to the algorithm in [2℄ for ALC(D), 
onstraints now also involve

variables for multisets over the 
on
rete domain|besides individual variables

for elements in the abstra
t and in the 
on
rete domain. To 
apture the re-

lation between individual and multiset variables, new 
onstraints will be in-

trodu
ed to make expli
it that an individual variable stands for an element

of a multiset. Then, besides 
on
rete individual variables, aggregated multiset

variables 
an o

ur in predi
ate restri
tions.

De�nition 13 (Constraint Systems) Let � = �

A

[ �

�

= fa; b; 
; : : :g [

fx; y; z; : : :g be an in�nite set of abstra
t and 
on
rete individual variables,

and let � = fX; Y; Z; : : :g be an in�nite set of multiset variables. We assume

that �

A

, �

�

, and � are disjoint. The set of aggregated variables, f

�

(X) j

�

2

agg(�) and X 2 �g, is denoted by agg(�). Constraints are of the form:

a :C for a 2 �

A

; C an EL(�)-
on
ept;

(a; b) :R for a; b 2 �

A

; R 2 N

R

;

(a; `) :f for a 2 �

A

; ` 2 �; f 2 N

F

;

(a; Y ) : (R Æ f) for a 2 �

A

; R 2 N

R

; f 2 N

F

; Y 2 �;

P (�

1

; : : : ; �

n

) for �

i

2 �

�

[ agg(�); and

x :Y for x 2 �

�

; Y 2 �:

Constraints of the form P (�

1

; : : : ; �

n

) or x : Y are 
alled �-
onstraints. A


onstraint system is a �nite set of 
onstraints. A variable ` is said to be an R-

su

essor (resp. an f

1

: : : f

n

-su

essor) of an abstra
t variable a in a 
onstraint

system S i� (a; `) :R 2 S (resp. (a; y

1

) : f

1

; (y

1

; y

2

) : f

2

; : : : ; (y

n�1

; `) : f

n

2 S

for some y

1

; : : : ; y

n�1

2 �

A

). An aggregated variable

�

(Y ) is said to be an

f

1

: : : f

n

�

(R Æ f)-su

essor of a in S i� there is an f

1

: : : f

n

-su

essor b of a

in S and (b; Y ) : (R Æ f) 2 S.

Next, the semanti
s of 
onstraint systems is de�ned. Sin
e we want to de
ide

satis�ability of EL(�)-
onstraints where � involves the aggregation fun
tion
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ount (whi
h returns the number of elements in a multiset), it will turn out

to be 
ru
ial that no two abstra
t variables are interpreted by the same indi-

vidual. Hen
e we will restri
t our attention to so-
alled m-models.

De�nition 14 (Semanti
s of 
onstraints) We 
onsider interpretations I

that, additionally, map individual variables to individuals of the 
on
rete or

the abstra
t domain, and multiset variables to �nite multisets over the 
on
rete

domain, i.e.,

a

I

2 �

I

for a 2 �

A

;

x

I

2 dom(�) for x 2 �

�

;

X

I

2 MS(dom(�)) for X 2 �:

An interpretation I satis�es a 
onstraint of the form

a :C i� a

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; `) :f i� f

I

(a

I

) = `

I

;

(a; Y ) : (R Æ f) i� M

RÆf

a

I

= Y

I

;

P (�

1

; : : : ; �

n

) i� P

�

(�

I

1

; : : : ; �

I

n

); (17)

x :Y i� x

I

2 Y

I

; (18)

where, for �

i

=

�

(X), we de�ne

�

(X)

I

:=

�

�

(X

I

).

A 
onstraint system S is satis�able i� there exists an interpretation satisfying

all 
onstraints in S su
h that b

I

6= 


I

for all b; 
 2 �

A

with b 6= 
 and f(a; b) :

R; (a; 
) : Rg � S for some a 2 �

A

and R 2 N

R

. Su
h an interpretation is


alled an m-model of S.

For a 
onstraint system S, the 
onjun
tion S

�

is de�ned as follows:

S

�

:=

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y o

urs in S

ffx

i

j x

i

:Y 2 Sgg � Y:

A solution of S

�

in � is a mapping
^
� that maps ea
h individual variable x in

S

�

to an element x̂ 2 dom(�) and ea
h multiset variable Y in S

�

to a �nite

multiset

^

Y over dom(�) su
h that

� if

�

(Y ) is an aggregated variable in S

�

, then

�

�

(

^

Y ) is de�ned

2

and

� the result of applying
^
� to (all variables in) S

�

is true in �, where � is

interpreted as multiset in
lusion, ea
h predi
ate name P as P

�

, and ea
h

aggregation fun
tion

�

as

�

�

.

2

For example, we do not admit the empty set as a solution for Y in P (min(Y ))

sin
e min(;) is unde�ned.
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A 
onstraint system S is �-
onsistent i� S

�

has a solution.

A 
onstraint system S 
ontains a 
lash i�

� fa :C; a ::Cg � S for some 
on
ept C, or

� f(a; x) : f; (a; b) : fg � S for a 
on
rete variable x 2 �

�

and an abstra
t

variable b 2 �

A

.

A 
onstraint system S 
ontains a fork i�, for a 2 �

A

and a feature name

f 2 N

F

, we have

� f(a; `) :f; (a; `

0

) :fg 2 S for two distin
t variables `; `

0

2 �

A

or `; `

0

2 �

�

, or

� f(a; Y ) : (R Æ f); (a; Z) : (R Æ f)g 2 S for two distin
t variables Y; Z 2 �.

If a 
onstraint system S 
ontains a fork f(x; `) : f; (x; `

0

) : fg (resp. f(a; Y ) :

(R Æ f); (a; Z) : (R Æ f)g), then we say that S

0

is obtained by fork elimination

from S i� S

0

is obtained from S by repla
ing ea
h o

urren
e of ` by `

0

(resp.

Y by Z).

The tableau algorithm for de
iding satis�ability of EL(�)-
on
epts works on a

tree where ea
h node is labelled with a 
onstraint system. It starts with the

tree 
onsisting of a single leaf, the root, labelled with S = fa

0

: C

0

g, where

C

0

is the EL(�)-
on
ept to be tested for satis�ability. The tableau algorithm

applies the 
ompletion rules introdu
ed in Figure 5 to 
onstraint systems.

For Rule 4, re
all the de�nition of u-su

essors for aggregated features u in

De�nition 13. A rule 
an only be applied to a leaf labelled with a 
lash-free


onstraint system. Applying a rule S ! S

j

, for 1 � j � n, to su
h a leaf leads

to the 
reation of n new su

essors of this node, where the j-th su

essor is

labelled with S

j

. The algorithm terminates if none of the rules 
an be applied

to any of the leaves.

A 
onstraint system S is 
omplete if none of the 
ompletion rules 
an be

applied to S. The tableau algorithm answers \C

0

is satis�able" i� after its

termination one of the leaves is labelled with a 
omplete, 
lash-free, and �-


onsistent 
onstraint system.

Lemma 15 Let C

0

be an EL(�)-
on
ept, and let S be a 
onstraint system

obtained by applying the 
ompletion rules to fa

0

:C

0

g.

(1) If C

0

is satis�able, then fa

0

:C

0

g has an m-model.

(2) Let R be a 
ompletion rule that 
an be applied to S. Then S is satis�able

i� one of the systems S

i

obtained by applying R to S is satis�able.

(3) If S is a 
omplete, �-
onsistent, and 
lash-free 
onstraint system, then S

has an m-model.

(4) If S 
ontains a 
lash or is not �-
onsistent, then S does not have an

m-model.
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1. Conjun
tion: If a : (C

1

u C

2

) 2 S and a :C

1

62 S or a :C

2

62 S, then

S ! S [ fa :C

1

; a :C

2

g.

2. Disjun
tion: If a : (C

1

t C

2

) 2 S and a :C

1

62 S and a :C

2

62 S, then

S ! S

1

= S [ fa :C

1

g;

S ! S

2

= S [ fa :C

2

g:

3.a. Existential restri
tion on roles: If a : (9R:C) 2 S for a role name R,

fb

1

; : : : ; b

n

g are all R-su

essors of a, and b

i

: C 62 S for all b

i

, then

S ! S

i

= S [ fb

i

: Cg

S ! S

n+1

= S [ f(a; b) :R; b : Cg

for a new variable b 2 �

A

.

3.b. Existential restri
tion on features: If a : (9f:C) 2 S for a feature

name f and if there is no f -su

essor b of a with b :C 2 S, then

S ! S [ f(a; b) :f; b : Cg.

for a new variable b 2 �

A

. If forks were 
reated, then eliminate these forks.

4. Con
rete predi
ates: If a :P (u

1

; : : : ; u

n

) 2 S and a does not have

u

i

-su

essors �

i

with P (�

1

; : : : ; �

n

) 2 S, then, for ea
h u

i

let

S

i

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

f(a; b

i1

) :f

i1

; (b

i1

; b

i2

) :f

i2

; : : : ; (b

im

i

�1

; y

i

) :f

im

i

g

if u

i

= f

i1

f

i2

: : : f

im

i

f(a; b

i1

) :f

i1

; (b

i1

; b

i2

) :f

i2

; : : : ; (b

im

i

�1

; b

im

i

) :f

im

i

;

(b

im

i

; Y

i

) : (R

i

Æ f

i

)g

if u

i

= f

i1

f

i2

: : : f

im

i

�

i

(R

i

Æ f

i

)

for new variables b

ij

2 �

A

; y

i

2 �

�

, Y

i

2 �. Let �

i

be the u

i

-su

essor of a

in S

i

. Then

S ! S [ fP (�

1

; : : : ; �

n

)g [

S

1�i�n

S

i

:

If forks were 
reated, then eliminate these forks.

5. Element assertions: If f(a; b) :R; (b; z) :f; (a; Y ) : (R Æ f)g � S

for z 2 �

�

and z :Y 62 S then

S ! S [ fz :Y g:

Fig. 5. The 
ompletion rules for EL(�).

(5) The tableau algorithm terminates when applied to fa

0

:C

0

g.

Before proving Lemma 15, let us 
omment on Rule 3.a, whi
h is non-standard.

Consider, for example, the following C:

C := (9R:P

�2

(f)) u (9R:P

=2

(f)) u P

�1

(
ount(R Æ f))

This 
on
ept 
ontains the aggregation fun
tion 
ount, whi
h returns the num-

ber of (not ne
essarily distin
t) elements of a multiset, and is satis�able.

However, a tableau algorithm that generates, for ea
h 
onstraint of the form
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a :9R:C, a new R-su

essor of a would either not dete
t that C is satis�able

(i.e., it would be in
omplete), or it would need to swit
h ba
k to abstra
t

reasoning (and identify both R-su

essors of a) after having tested the 
onsis-

ten
y of the 
on
rete 
onstraints. The latter alternative 
an easily be seen to

ne
essitate alternation between �-
onsisten
y 
he
ks and tableau rule appli-


ations, and thus makes termination of the whole algorithm problemati
. To

design a 
omplete tableau algorithm that swit
hes only on
e from \abstra
t"

to \
on
rete" reasoning, existential restri
tions are handled by trying all pos-

sibilities to generate as few R-su

essors as possible. This is realised by trying

to reuse, for a 
onstraint a : (9R:C), already existing R-su

essor of a. For the


ase that this reuse is not possible, a new R-su

essor is also introdu
ed. As

a 
onsequen
e, we 
an restri
t our attention to those models that interpret

di�erent R-su

essors as di�erent individuals, i.e., to m-models.

PROOF. (Lemma 15.1:) Ea
h model of C

0

is obviously an m-model of fa

0

:

C

0

g.

(Lemma 15.2:) (ii))(i) is obvious be
ause ea
h S

i

obtained by applying the


ompletion rules to S is a superset of S where variables were possibly renamed

due to fork elimination, and thus an m-model of S

i

is also an m-model of S

(modulo the mapping of renamed variables).

(i))(ii): We only 
onsider Rules 3.a, 4, and 5 be
ause Rules 1, 2, and 3.b are

obvious and similar to those used in other tableau-based algorithms; see, for

example, [15,2℄.

Let I be an m-model of S as de�ned in the pre
ondition of Rule 3.a. Hen
e

there is some 
 2 �

I

with (a

I

; 
) 2 R

I

and 
 2 C

I

. If b

I

i

= 
 for some

R-su

essor b

i

of a, then I is an m-model of S

i

. Otherwise, I extended with

b

I

= 
 is an m-model of S

n+1

.

Let I be an m-model of S as de�ned in the pre
ondition of Rule 4 and let S

0

be obtained by applying Rule 4 to S. Then a :P (u

1

; : : : ; u

n

) 2 S and, for ea
h

u

i

with 1 � i � n, if

� u

i

is a feature 
hain f

i1

f

i2

: : : f

im

i

, then a

I

has f

i1

: : : f

ij

-su

essors 


ij

2 �

I

for 1 � j < m

i

, and an f

i1

f

i2

: : : f

im

i

-su

essor z

im

i

2 dom(�). If we de�ne

b

I

ij

= 


ij

and y

I

im

i

= z

im

i

, then I satis�es S

i

as de�ned in Rule 4.

� u

i

is an aggregated feature f

i1

f

i2

: : : f

im

i

�

i

(R

i

Æ f

i

), then a

I

has f

i1

: : : f

ij

-

su

essors 


ij

2 �

I

for 1 � j � m

i

. If we de�ne b

I

ij

= 


ij

and Y

I

= M

R

i

Æf

i




im

i

,

then Y

I

is by de�nition the appropriate multiset, and I satis�es S

i

as

de�ned in Rule 4.

Given I as extended above to the newly introdu
ed variables and �

i

as de�ned

in Rule 4, we have that �

i

is indeed interpreted as the u

i

-su

essor of a, namely
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u

I

i

(a

I

) = �

I

i

for all 1 � i � n. Sin
e I satis�es a :P (u

1

; : : : ; u

n

), we thus have

that I satis�es P (�

1

; : : : ; �

n

).

Let I be an m-model of S, and let S

0

be obtained by applying Rule 5 to S.

Then f(a; b) : R; (b; z) : f; (a; Y ) : (R Æ f)g � S and z 2 �

�

. Thus z

I

is an

f -su

essor of an R-su

essor of a

I

in dom(�). By de�nition, z

I

2M

RÆf

a

I

, and,

sin
e I is an m-model of S, Y

I

=M

RÆf

a

I

. Hen
e z

I

2 Y

I

, and thus I satis�es

S [ fz :Y g = S

0

.

(Lemma 15.3:) Let S be a 
omplete, �-
onsistent, and 
lash-free 
onstraint

system involving 
on
rete and multiset variables fx

1

; : : : ; x

m

; X

1

; : : : ; X

n

g,

and let
^
� be a solution for S

�

. In parti
ular, we have ffx̂

j

j x

j

:X

i

2 Sgg �

^

X

i

for all multiset variables X

i

o

urring in S. To de�ne an m-model for S, we

�rst de�ne a \quasi-model" I

0

as follows:

�

I

0

:= �

A

;

a

I

0

:= a for abstra
t variables a 2 �

A

;

x

I

0

:= x̂ for 
on
rete variables x 2 �

�

;

X

I

0

:=

^

X for multiset variables X 2 �;

A

I

0

:= fb 2 �

I

0

j b :A 2 Sg for 
on
ept names A 2 N

C

;

R

I

0

:= f(a; b) 2 �

I

0

��

I

0

j (a; b) :R 2 Sg for role names R 2 N

R

;

f

I

0

(
) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

b if (
; b) :f 2 S for b 2 �

A

;

x̂ if (
; x) :f 2 S for x 2 �

�

;

unde�ned else:

for feature names f 2 N

F

:

The interpretation of feature names f is well-de�ned be
ause S is 
lash-free

and 
ontains no forks. The only reason why I

0

might not be an m-model of S

is the following. An abstra
t individual a may have less R-su

essors having

an f -su

essor in dom(�) than required by the solution for the 
orresponding

multiset variable X

i

, that is, for 
onstraints (a;X

i

) : (RÆf) 2 S, we might have

M

RÆf

a

I

0

(

^

X

i

. Due to the absen
e of universal value restri
tions, an m-model

I of S 
an be obtained from I

0

by simply adding R-su

essors d

Rfj

a

and the

la
king R Æ f -su

essors ŷ

Rfj

a

. More pre
isely, for a multiset variable X with

(a;X) : (R Æ f) 2 S, let

^

X nM

RÆf

a

= ffŷ

Rf1

a

; ŷ

Rf2

a

; : : :gg:
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Then

�

I

:= �

I

0

℄

S

(a;X):(RÆf)2S

fd

Rfj

a

j ŷ

Rfj

a

2

^

X nM

RÆf

a

g;

A

I

:= A

I

0

;

R

I

:= R

I

0

[

S

(a;X):(RÆf)2S

f(a; d

Rfj

a

) j ŷ

Rfj

a

2

^

X nM

RÆf

a

g

for role names R 2 N

R

;

f

I

(
) :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

b if (
; b) :f 2 S;

x̂ if (
; x) :f 2 S;

ŷ

Rfj

a

if 
 = d

Rfj

a

unde�ned else:

for feature names f 2 N

F

Clearly, for two abstra
t variables a 6= b we have a

I

6= b

I

. Thus, it remains to

show that I satis�es all 
onstraints in S. This 
an be easily done by indu
tion

on the stru
ture of 
on
epts. By 
onstru
tion of I,

^

X

i

=M

RÆf

a

I

for all multiset

variables with (a;X

i

) : (R Æ f) 2 S. Furthermore,
^
� being a solution for S

�

implies that I satis�es all �-
onstraints in S. By de�nition, I satis�es all


onstraints of the form (a; b) : R, (a; b) : f , (a; x) : f , and b : A for 
on
ept

names A. Sin
e S is 
lash-free, I satis�es all 
onstraints of the form b : :A.

By indu
tion and be
ause S is 
omplete, I satis�es all 
onstraints of the form

a : (C

1

u C

2

), a : (C

1

t C

2

), and a : (9R:C) for role or feature names R.

(Lemma 15.4:) Obviously, a 
onstraint system 
ontaining a 
lash 
annot have

an m-model. For �-
onsisten
y, we show that an m-model I of S yields a

solution of the 
onjun
tion S

�

, whi
h is de�ned in De�nition 14 as follows:

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y o

urs in S

ffx

i

j x

i

:Y 2 Sgg � Y

Due to Line 17 of De�nition 14, I satis�es all 
onstraints of the form P (�

1

;

: : : ; �

n

) 2 S, and thus the �rst part of S

�

. Line 18 of De�nition 14 implies that

I satis�es the in
lusions in S

�

when read with set semanti
s. Now, if Y o

urs

in S, then, by de�nition of the semanti
s, M

RÆf

a

I

= Y

I

for (a; Y ) : (R Æ f) 2 S.

Sin
e I is an m-model, all R-su

essors of a in S are interpreted as di�erent

obje
ts, and thus Y

I

= ffx

I

i

j x

i

: Y 2 Sgg. Thus, I also satis�es the se
ond

part of S

�

.

(Lemma 15.5:) Termination is an immediate 
onsequen
e of the fa
t that (i)

the relational stru
ture of the 
onstraint systems generated by the tableau

algorithm are trees, (ii) all 
on
epts in 
onstraints added by the 
ompletion

rules are sub
on
epts of the 
on
ept C

0

, whose number is linear in the length

of C

0

, (iii) these trees are of bounded width and breadth, and that (iv) these
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trees are generated in a monotoni
 way, i.e., no 
onstraints are removed. Prop-

erties (i), (ii), and (iv) are an immediate 
onsequen
e of the de�nition of the


ompletion rules. Property (iii) is due to the fa
t that (iii)

0

the (maximum)

length of 
on
epts o

urring in 
onstraints on a su

essor node of a is less

than the (maximum) length of 
on
epts in 
onstraints on a and (iii)

00

the gen-

eration of new su

essors is triggered by 
onstraints of the form a :C (Rule 3

and 4) or (a :Y ) : (R Æ f) (Rule 5). Ea
h su
h 
onstraint triggers at most on
e

the generation of new variables. To see that Property (iv) holds, we eliminate

forks in su
h a way that \old" variables are kept in the 
onstraint system and,

if repla
ement is ne
essary, new variables are repla
ed with \old" ones. 2

Remark 16 In the proof of Lemma 15.3, the extension of I

0

to an m-model

I of a 
omplete and 
lash-free 
onstraint system was only possible be
ause we

disallowed the use of universal value restri
tion: This enables us to add la
king

RÆf -su

essors for some a without the ne
essity to 
he
k again whether these

new R-su

essors satisfy all universal value restri
tions a :8R:C.

As an immediate 
onsequen
e of Lemma 15, we have the following de
idability

result.

Theorem 17 If � is a 
on
rete domain su
h that �-
onsisten
y is de
idable,

then satis�ability of EL(�)-
on
epts is de
idable.

In Se
tion 5.3, we will show de
idability of �-
onsisten
y for various 
on
rete

domains involving min, max, 
ount, and 
omparisons (possibly with 
onstants).

Next, we will des
ribe a de
idable Des
ription Logi
 with 
on
rete domains

and aggregation fun
tions that is propositionally 
losed.

5.2 De
idability of ALC(�)

�

So far, we have only proved de
idability of satis�ability of EL(�)-
on
epts.

However, EL(�) is not 
losed under negation, and thus subsumption 
annot be

redu
ed to satis�ability.

3

Closing EL(�) under negation, one obtains ALC(�),

and the key problem one en
ounters when trying to extend the tableau algo-

rithm to de
ide satis�ability of ALC(�)-
on
epts (and thus also subsumption

of ALC(�)) was already dis
ussed in Remark 16, i.e., R-su

essors required by

a solution of a multiset variable Y 
annot be simply added to a quasi-model

sin
e they might be subje
t to universal value restri
tions. More importantly,

generating a \prophyla
ti
" R-su

essor from whi
h the missing ones 
ould be


opied does not even work for the aggregation fun
tions min, max, and 
ount.

3

So far, it is un
lear for whi
h � subsumption of EL(�)-
on
epts is de
idable|the

only ex
eptions are the domains mentioned in Theorem 26.
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For example, 
onsider the following 
on
ept

P

�

1

(
ount(R Æ f)) u 8R:>

�

(f) u

P

�7

(max(R Æ h)) u P

�3

(min(R Æ h)) u 9R:P

=

5

(h)

Let a be an instan
e of this 
on
ept. The �rst 
onjun
t ensures that a has at

most one R-su

essor with an f -su

essor in dom(�). The universal restri
-

tion implies that ea
h R-su

essor of a has an f -su

essor in dom(�). Finally,

the se
ond line implies that a has at least three R-su

essors, and thus this


on
ept is unsatis�able. This intera
tion between universal value restri
tions

and 
on
rete domain predi
ates seems to prohibit to do �rst reasoning on

the abstra
t domain, then on the 
on
rete domain, and then stop. In 
on-

trast, it seems to require various steps ba
k and forth between abstra
t and


on
rete reasoning, for whi
h one would need to guarantee termination while

not 
orrupting 
orre
tness. The unde
idability results in Se
tion 4 imply that

this is possible only for rather restri
ted 
on
rete domains. Hen
e we 
onsider

ALC(�)

�

, a propositionally 
losed restri
tion of ALC(�) where this intera
tion


annot o

ur.

De�nition 18 Let C, D be ALC(�)-
on
epts where C is a sub-expression of

D and let R = R

1

� � �R

n

be a (possibly empty) 
hain of role or feature names.

Then C is at level R in D i�

4

� R is empty and C = D,

� D = :D

1

and C is at level R in D

1

, or

� D = D

1

uD

2

or D = D

1

tD

2

and C is at level R in D

1

or D

2

, or

� D = 9R:D

1

or D = 8R:D

1

, R = RR

0

, and C is at level R

0

in D

1

.

An ALC(�)-
on
ept D is an ALC(�)

�

-
on
ept if, whenever a 
on
ept of the

form P (: : : ; f

1

: : : f

k

�

(R Æ f); : : :) is at level R in D, then no 
on
ept of the

form 9R:C or 8R:C is at level Rf

1

: : : f

k

in D.

For example,

9R:(B u 8S:P

�

(h; fmax(T Æ g)))

is an ALC(�)

�

-
on
ept, but

9R:(B u 8S:P

�

(h; fmax(T Æ g))) u 8R:9S:8f:9T:A

is not an ALC(�)

�

-
on
ept be
ause P

�

(�; fmax(T Æg)) o

urs on level RS in it,

and an existential restri
tion on T o

urs at level RSf in it. Please note also

that ALC(�)

�

is not an extension of EL(�). For example, 9R:AuP (

�

(R Æ f))

4

Please note that a 
on
ept 
an be at several levels in another one.
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is an EL(�)-
on
ept, but not an ALC(�)

�

-
on
ept. Finally, it is easily veri�ed

that the set of ALC(�)

�

-
on
epts is 
losed under negation.

In the following, we will present an extended tableau algorithm that de-


ides satis�ability (and thus also subsumption) of ALC(�)

�

-
on
epts, provided

that �-
onsisten
y is de
idable. The extended algorithm works on ALC(�)

�

-


on
epts in negation normal form (NNF), i.e., 
on
epts where negation o

urs

in front of 
on
ept names only.

This normal form is more 
omplex than usual, and it depends on the aggrega-

tion fun
tions available. In the following, we assume that the 
on
rete domain

� is as de�ned in Corollary 25, i.e., the only aggregation fun
tions 
onsidered

are min, max, and 
ount.

In the de�nition of the NNF, we use an abbreviation NC(u) that des
ribes

those individuals having no u-su

essors in the 
on
rete domain, whi
h is ex-

plained in detail after the de�nition. For aggregated features u, NC(u) depends

on the aggregation fun
tion in u, and is de�ned di�erently for 
ount and min

or max be
ause the former is de�ned on all �nite multisets, whereas the latter

are unde�ned on the empty multiset.

De�nition 19 (NNF) For a feature 
hain u = f

1

: : : f

k

, de�ne

�(u) = >

�

(f

1

) t >

�

(f

1

f

2

) t : : : t >

�

(f

1

: : : f

k

);

where >

�

denotes the unary 
on
rete predi
ate for the 
on
rete domain dom(�).

Again, we use >

A

as an abbreviation for A t :A, and we use ?

A

as an ab-

breviation for A u :A. For a 
on
rete feature u, NC(u) is de�ned as follows:

NC(u) :=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�(f

1

: : : f

k�1

) t 8f

1

:8f

2

: : : :8f

k

:>

A

if u = f

1

: : : f

k

�(f

1

: : : f

k

) t 8f

1

: : : :8f

k

:8R:8f:>

A

if u = f

1

: : : f

k

min(R Æ f)

or u = f

1

: : : f

k

max(R Æ f)

�(f

1

: : : f

k

) t 8f

1

: : : :8f

k

:?

A

if u = f

1

: : : f

k


ount(R Æ f)

An ALC(�)

�

-
on
ept is in negation normal form (NNF) i� negation o

urs

only in front of 
on
ept names. If � is admissible,

5

ea
h ALC(�)

�

-
on
ept


an be transformed into NNF by pushing negation inwards, making use of the

5

See De�nition 4.
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following equivalen
es:

:(C tD) � :C u :D :(C uD) � :C t :D ::C � C

:(9R:C) � (8R::C) :(8R:C) � (9R::C)

:(P (u

1

; : : : ; u

n

)) � P (u

1

; : : : ; u

n

) t t

1�i�n

NC(u

i

) ,

where P is the 
on
rete predi
ate for the negation of P .

All but the last equivalen
e of the above de�nition are obvious. The last one

is due to the fa
t that, for ea
h interpretation I and 
on
rete feature u, a is

an instan
e of NC(u) i� a has no u-su

essor in dom(�).

u = f

1

: : : f

k

: For a having no u-su

essor in dom(�), there are two possibili-

ties.

(i) The feature 
hain \goes too early" into the 
on
rete domain, i.e, there is

an ` < k su
h that a has an f

1

: : : f

`

-su

essor in the 
on
rete domain.

This 
ase is 
overed by �(f

1

: : : f

k�1

).

(ii) The feature 
hain \remains" in the abstra
t domain (in
luding the 
ase

where it \breaks too early"). This 
ase is 
overed by the se
ond disjun
t

of NC(u).

u = f

1

: : : f

k

�

(R Æ f) for

�

2 fmin;maxg : Again, there are two possibilities

for a having no u-su

essor in dom(�).

(i) a has no f

1

: : : f

k

-su

essor in �

I

. This is the 
ase if (i)

0

a has, for some

` � k, an f

1

: : : f

`

-su

essor in dom(�), or if (i)

00

a has, for some 1 � ` < k,

an f

1

: : : f

`

-su

essor in �

I

having no f

`+1

-su

essor. Case (i)

0

is 
overed

by �(f

1

: : : f

k

), and 
ase (i)

00

by the se
ond disjun
t.

(ii) a has an f

1

: : : f

k

-su

essor a

0

2 �

I

and

�

�

(M

RÆf

a

0

) is unde�ned. Sin
e (on

�nite multisets) min and max are unde�ned only on the empty set, the

se
ond disjun
t also 
overs this 
ase.

u = f

1

: : : f

k


ount(R Æ f) : Analogously to the previous 
ase, with the only dif-

feren
e that, sin
e 
ount is de�ned on all �nite multisets, (ii) 
annot o

ur

and thus the se
ond disjun
t 
orre
tly 
overs 
ase (i)

00

.

To obtain a sound and 
omplete tableau algorithm for 
on
epts involving uni-

versal value restri
tions, we extend the tableau algorithm de�ned in Se
tion 5.1

by Rule 6 in Figure 6.

6. Universal value restri
tion: If a : (8R:C) 2 S for a feature or

role name R and if there is an R-su

essor b of a with b : C 62 S, then

S ! S [ fb : Cg

Fig. 6. The 
ompletion rule for universal value restri
tions.
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We use the same te
hni
al lemma as in Se
tion 5.1 to show that the tableau

algorithm de
ides satis�ability (and thus subsumption) of ALC(�)

�

-
on
epts.

Lemma 20 Let � be an admissible 
on
rete domain with aggregation fun
-

tions min, max, and 
ount, let C

0

be an ALC(�)

�

-
on
ept in NNF, and let S

be a 
onstraint system obtained by applying the modi�ed 
ompletion rules to

fa

0

:C

0

g.

(1) If C

0

is satis�able, then fa

0

:C

0

g has an m-model.

(2) Let R be a 
ompletion rule that 
an be applied to S. Then S is satis�able

i� one of the systems S

i

obtained by applying R to S is satis�able.

(3) If S is a 
omplete, �-
onsistent, and 
lash-free 
onstraint system, then S

has an m-model.

(4) If S 
ontains a 
lash or is not �-
onsistent, then S does not have an

m-model.

(5) The tableau algorithm terminates when applied to fa

0

:C

0

g.

PROOF. We prove only those parts of Lemma 20 that are di�erent from

those in Lemma 15.

(Lemma 20.2 (i))(ii):) Rule 6 is standard; see, e.g., [2℄.

(Lemma 20.3:) An m-model I for a 
lash-free, 
omplete, and �-
onsistent


onstraint system S 
an be de�ned in a way similar to the one in the proof

of Lemma 15.3. Let S be a 
lash-free, 
omplete, and �-
onsistent 
onstraint

system,
^
� a solution for S

�

, and I

0

the \quasi-model" of S as de�ned in the

proof of Lemma 15.3. Then I

0


an be extended in the same way to an m-

model of S as in the proof of Lemma 15.3 sin
e the additional elements d

Rfj

a

are not subje
t to universal value restri
tions due to the synta
ti
 restri
tion

of ALC(�)

�

.

The proof of Lemma 20.4 is similar to the proof of Lemma 15.4. Again, an

m-model of S obviously yields a solution for S

�

.

The proof of Lemma 20.5 is similar to the proof of Lemma 15.5 with the

additional observation that also Rule 6 adds only 
onstraints that are shorter

than those that triggered the appli
ability of this rule. 2

As a 
onsequen
e, we have the following de
idability result.

Theorem 21 If � is an admissible 
on
rete domain su
h that

� agg(�) = fmin;max; 
ountg and

� �-
onsisten
y is de
idable,
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then satis�ability and subsumption of ALC(�)

�

-
on
epts is de
idable.

This result is not as generi
 as the de
idability result for EL(�)-
on
epts

in that it is 
on
erned with a �xed set of aggregation fun
tions. It 
ould

have been formulated more generi
ally by using an NNF with a predi
ate

unde�ned(�(Y )) on aggregated multiset variables. However, this would have

been unne
essarily 
ompli
ated and would not have given any new insights.

Thus, to adapt the tableau algorithm to 
on
rete domains with other aggrega-

tion fun
tions, the NNF has to be modi�ed appropriately. The result applies

to all aggregation fun
tions for whi
h this is possible. For example, sum 
ould

be treated in the same way as 
ount.

In the proof of the soundness of the algorithm, \
opies" of abstra
t variables

were used to generate abstra
t individuals that are required by the solution of

the 
on
rete 
onstraints. This was only possible due to the synta
ti
 restri
tion

of ALC(�)

�

. In Se
tion 5.4, we will see that this restri
tion 
an be removed

for 
ertain 
on
rete domains involving only the aggregation fun
tions min and

max.

5.3 Con
rete domains for whi
h �-
onsisten
y is de
idable

In Theorem 17, we have seen that de
idability of �-
onsisten
y implies de-


idability of satis�ability of EL(�)-
on
epts. The same 
ondition implies that

satis�ability and subsumption ofALC(�)

�

-
on
epts is de
idable (Theorem 21).

In this se
tion, we will give examples for 
on
rete domains for whi
h �-


onsisten
y is indeed de
idable. Basi
ally, the behaviour of aggregation fun
-

tions is axiomatised so that aggregated multiset variables

�

(Y ) 
an be repla
ed

by individual variables y

�

, a te
hnique also used in [34℄. For dom(�) the set

of non-negative integers, integers, or rational numbers, the relations <, >,

=, �, and � are de�ned as usual. Furthermore, for n 2 dom(�), the unary

predi
ates =

n

;�

n

;�

n

; >

n

; <

n

are 
omparisons with n.

Lemma 22 If � is a 
on
rete domain su
h that

� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;maxg,

then �-
onsisten
y is de
idable.

Obviously, ea
h � in Lemma 22 satis�es the �rst two properties in the de�ni-

tion of admissibility (De�nition 4), and the third one follows from the proof of

Lemma 22. Thus ea
h � in Lemma 22 satis�es all 
onditions of Theorem 17

and 21.
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PROOF. Let S be a 
onstraint system, let � be de�ned as in the pre
ondition

of Lemma 22, and let S

�

be the 
onjun
tion of �-
onstraints in S as de�ned

in De�nition 14.

�-
onsisten
y of S is equivalent to satis�ability of S

�

and is de
ided by trans-

forming S

�

into a set D

S

of linear (in)equalities without aggregation fun
tions

that is satis�able i� S

�

is satis�able. Satis�ability of D

S


an then easily be

de
ided using|depending on the 
on
rete domain|linear or integer program-

ming [30℄. To this purpose, for ea
h term max(Y ) (resp. min(Y )) o

urring in

S

�

, a new variable y

max

(resp. y

min

) is introdu
ed in an intermediate set of 
on-

straints D

0

S

. More pre
isely, D

0

S

is the set of all 
on
rete predi
ates P (�

1

; �

2

) in

S

�

where ea
h o

urren
e of max(Y ) is repla
ed by y

max

, and ea
h o

urren
e

of min(Y ) is repla
ed by y

min

. Then D

S

is obtained from D

0

S

by repla
ing


onstraints by appropriate (in)equalities and adding axioms to 
apture the

intera
tion between min(Y );max(Y ) and z :Y , i.e.,

D

S

:= fy

min

� y

max

j y

min

or y

max

o

urs in D

0

S

g [

fy

min

� z j y

min

o

urs in D

0

S

and (z :Y ) 2 Sg [

fy

max

� z j y

max

o

urs in D

0

S

and (z :Y ) 2 Sg [

fx ./ y j P

./

2 fP

�

; P

�

; P

>

; P

<

; P

=

g and P

./

(x; y) 2 D

0

S

g [

fx ./ n j P

./

n

2 fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g and P

./

n

(x) 2 D

0

S

g

Claim 23 D

S

is satis�able i� S is �-
onsistent.

The only 
onstraints imposed on min(Y ) (resp. max(Y )) is that min(Y ) is less

than or equal to (resp. max(Y ) is greater than or equal to) ea
h element in

Y . Moreover, the only elements that are required to be in Y are those x

i

with

x

i

: Y 2 S, the minimum, and the maximum of Y . Ea
h solution of S

�

is


learly also a solution of D

S

. Now suppose we have a solution of D

S

where

x̂ 2 dom(�) is the value for ea
h variable x inD

S

. Then we 
an de�ne solutions

^

Y for multiset variables Y in S

�

by

^

Y := ffx̂ j x :Y 2 Sgg [ ffŷ

min

; ŷ

max

gg;

whi
h 
learly yields �nite multisets. Sin
e we started from a solution of D

S

,

this solution satis�es all predi
ate restri
tions in S. Furthermore, the solution

satis�es max(

^

Y ) = ŷ

max

and min(

^

Y ) = ŷ

min

. By de�nition, this solution also

satis�es the multiset in
lusion 
onjun
ts in S

�

. 2

This axiomatisation of the behaviour of aggregation fun
tions 
an also be

extended to 
ount.

Lemma 24 If � is a 
on
rete domain su
h that
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� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;max; 
ountg,

then �-
onsisten
y is de
idable.

PROOF. The de
ision pro
edure is similar to the one given in the proof

of Lemma 22, with the only di�eren
e that, in addition, aggregated multiset

variables involving 
ount are also repla
ed by appropriate individual variables

y


ount

, and that the behaviour of 
ount is axiomatised. To this purpose, Boolean


ombinations of linear inequalities D

y


ount

are added to D

S

for ea
h aggregated

multiset variable 
ount(Y ) o

urring in S.

More pre
isely, given a 
onstraint system S and a 
on
rete domain � as de-

s
ribed in Lemma 24, D

0

S


ontains all 
onjun
ts in S

�

, where ea
h o

urren
e

of max(Y ) is repla
ed by y

max

, ea
h o

urren
e of min(Y ) by y

min

, and ea
h

o

urren
e of 
ount(Y ) by y


ount

. Then D

#

S

is de�ned as follows:

D

#

S

:= D

S

[

S

y


ount

o

urs in D

0

S

D

y


ount

;

where D

S

is de�ned as in the proof of Lemma 22 (now with the additional

variables y


ount

), and D

y


ount

is de�ned as follows. For better readability, we

use x

Y

as a shorthand for those 
on
rete variables known to belong to Y , i.e.,

x

Y

:= fx 2 �

�

j x :Y 2 Sg, and we use #x

Y

for the 
ardinality of x

Y

.

D

y


ount

:=

 

�

#x

Y

= y


ount

^

W

x2x

Y

x = y

min

^

W

x2x

Y

x = y

max

�

_

�

#x

Y

= y


ount

� 1 ^

W

x2x

Y

(x = y

min

_ x = y

max

)

�

_

(#x

Y

� y


ount

� 2)

!

^

y


ount

2 Z ^ y


ount

� 0

The disjun
tion is ne
essary be
ause we have to distinguish between the 
ase

where some of the 
on
rete variables known to belong to a multiset 
oin
ide

with its minimum and/or maximum (in whi
h 
ase the 
ardinality 
an be

equal to #x

Y

, resp. #x

Y

+1), and the 
ase where both the minimum and the

maximum are distin
t from values for 
on
rete variables in x

Y

. This distin
tion

is ne
essary, for example, to 
apture that

x :Y ^=

4

(x) ^ �

6

(max(Y )) ^ �

2

(min(Y ))

implies that the 
ardinality of a solution for Y is greater than or equal to

#x

Y

+ 2 = 3.
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Transforming D

y


ount

into disjun
tive normal form, satis�ability of D

#

S


an be

de
ided by testing separately ea
h disjun
t together with the (in)equalities

stemming from D

S

. Thus we only need to de
ide satis�ability of a set of

(in)equalities whi
h, again, 
an be de
ided using linear, integer, or mixed

programming te
hniques; see, for example, [30℄. 2

Taking the results of this se
tion together with the results of Se
tion 5.1 and

5.2, we obtain the following de
idability result.

Corollary 25 If � is a 
on
rete domain su
h that

� dom(�) is the set of non-negative integers, integers, or rational numbers,

� pred(�) = fP

<

; P

�

; P

>

; P

�

; P

=

g [

S

n2dom(�)

fP

�

n

; P

�

n

; P

>

n

; P

<

n

; P

=

n

g, and

� agg(�) = fmin;max; 
ountg,

then satis�ability of EL(�)-
on
epts as well as satis�ability and subsumption

of ALC(�)

�

-
on
epts is de
idable.

5.4 De
idability of ALC(D

max

min

)

Finally, we present our last de
idability result, namely the one for subsumption

and satis�ability of ALC(�) for 
ertain 
on
rete domains � involving only the

aggregation fun
tions min, and max.

Theorem 26 If � is a 
on
rete domain su
h that

� � is admissible,

� pred(�) 
ontains a binary relation symbol P

=

for equality in �, and a binary

relation symbol P

�

for a linear ordering on dom(�), and

� agg(�) = fmin;maxg,

then satis�ability and subsumption of ALC(�)-
on
epts is de
idable.

We suppose that min and max have the standard semanti
s as de�ned in

Remark 9 for � = P

�

.

PROOF. In the following, a 
on
rete domain as des
ribed in the pre
on-

ditions of Theorem 26 is 
alled D

max

min

. One possibility to prove Theorem 26

would be to further modify the tableau algorithm from Se
tion 5.2. However,

there is a shorter proof, namely by a translation to ALCP(D), a natural ex-

tension of ALC(D) introdu
ed in [20℄. More pre
isely, ea
h ALC(D

max

min

)-
on
ept

D 
an be translated into an ALCP(D)-
on
ept �(D) su
h that D is satis�able
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i� �(D) is satis�able. In [20℄, satis�ability of ALCP(D)-
on
epts was shown

to be de
idable, provided that D is admissible. Thus admissibility of D

max

min

also implies de
idability of the satis�ability of ALC(D

max

min

)-
on
epts. Moreover,

ALC(D

max

min

) is 
losed under negation, hen
e subsumption 
an be redu
ed to

(un)satis�ability. We start by introdu
ing ALCP(D).

De�nition 27 (Syntax and semanti
s of ALCP(D)) If, for 1 � i � m, R

i

is a role or a feature name, then u = R

1

: : : R

m

is 
alled role/feature 
hain.

For a role/feature 
hain u and a 2 �

I

, b 2 �

I

[ dom(�), we have (a; b) 2 u

I

i� there are a

1

; : : : ; a

m�1

with

(a; a

1

) 2 R

I

1

; (a

m�1

; b) 2 R

I

m

; and (a

i

; a

i+1

) 2 R

I

i+1

for all 1 � i � m� 2;

where, for a feature name f , (w; z) 2 f

I

i� f

I

(w) = z.

ALCP(D) is obtained from ALC(D) by adding 
on
epts of the form

8u

1

; : : : ; u

n

:P (generalised value restri
tion) and

9u

1

; : : : ; u

n

:P (generalised exists restri
tion):

where P is a 
on
rete predi
ate of arity n and u

1

; : : : ; u

n

are role/feature


hains.

An ALCP(D) interpretation must satisfy, additionally,

(8u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j For all y

1

; : : : ; y

n

with (x; y

i

) 2 u

I

i

for all

1 � i � n; we have (y

1

; : : : ; y

n

) 2 P

�

g;

(9u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j For all 1 � i � n there is y

i

with (x; y

i

) 2 u

I

i

and (y

1

; : : : ; y

n

) 2 P

�

g:

For pure feature 
hains u

1

; : : : ; u

n

, the 
on
ept 9u

1

; : : : ; u

n

:P is, by de�nition,

equivalent to P (u

1

; : : : ; u

n

).

The idea of the translation from ALC(D

max

min

) into ALCP(D) is to introdu
e

new feature names f

min(RÆf)

and f

max(RÆf)

and to use the new generalised re-

stri
tions to make sure that f

min(RÆf)

(x) 
oin
ides with the minimum of x's

R Æ f -su

essors.

The translation � from ALC(D

max

min

) to ALCP(D) is de�ned indu
tively on the

stru
ture of 
on
epts and trivial for all 
on
ept forming operators (the exa
t

de�nition is given below); the only 
hanges it makes are for aggregated fea-

tures: Whenever features of the form f

1

: : : f

k

min(RÆf) (resp. f

1

: : : f

k

max(RÆ

f)) o

ur, new feature names f

min(RÆf)

(resp. f

max(RÆf)

) are introdu
ed. Then

37



these aggregated features are repla
ed by feature 
hains f

1

: : : f

k

f

min(RÆf)

(resp.

f

1

: : : f

k

f

max(RÆf)

). Finally, we make sure that the f

1

: : : f

k

f

min(RÆf)

-su

essor is

the minimum of all f

1

: : : f

k

Rf -su

essors. For this, we add 
on
epts of the

form

6

(9 (f

1

: : : f

k

Rf); (f

1

: : : f

k

f

min(RÆf)

): P

=

) u

(:9 (f

1

: : : f

k

f); (f

1

: : : f

k

Rf

min(RÆf)

): P

<

):

The �rst 
onjun
t makes sure that the f

1

: : : f

k

f

min(RÆf)

-su

essor (exists and)


oin
ides with one of the f

1

: : : f

k

Rf -su

essors. The se
ond 
onjun
t ensures

that none of the f

1

: : : f

k

Rf -su

essors is smaller than the f

1

: : : f

k

f

min(RÆf)

-

su

essor. For max, we add similar 
on
epts. Please note that we 
annot re-

pla
e the negated existential quanti�er by a universal one sin
e, in ALCP(D),

the universal one quanti�es over all role-su

essors, and not only over those

in the 
on
rete domain. Thus using the universal quanti�er would require all

f

1

: : : f

k

Rf -su

essors to be in the 
on
rete domain|in 
ontrast to the seman-

ti
s of ALC(�). More pre
isely, � is de�ned as follows:

�(C uD) = �(C) u �(D); �(C tD) = �(C) t �(D)

�(9R:C) = 9R:�(C); �(8R:C) = 8R:�(C)

�(P (u

1

; : : : ; u

n

)) = 9�(u

1

); : : : ; �(u

n

):P u u

1�i�n

 (u

i

);

where, for a 
on
rete feature u and

�

2 fmin;maxg

�(u) =

8

>

<

>

:

u if u is a feature 
hain

f

1

: : : f

k

f

�

(RÆf)

if u = f

1

: : : f

k

�

(R Æ f)

 (u) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

>

A

if u is a feature 
hain

9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

max(RÆf)

):P

=

u

:9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

max(RÆf)

):P

>

if u = f

1

: : : f

k

max(R Æ f)

9(f

1

: : : f

k

Rf); (f

1

: : : f

k

f

min(RÆf)

):P

=

u

:9(f

1

: : : f

k

f); (f

1

: : : f

k

Rf

min(RÆf)

):P

<

if u = f

1

: : : f

k

min(R Æ f)

By 
onstru
tion, ea
h model of an ALC(D

max

min

)-
on
ept D 
an be transformed

into a model of �(D) by de�ning f

I

�

(RÆf)

(x) :=

�

(RÆf)

I

(x) for

�

2 fmin;maxg.

Vi
e versa, the 
orre
tness proof in [20℄ implies that ALCP(D) has the �nite

model property. Hen
e ea
h satis�able ALCP(D)-
on
ept �(D) has a �nite

model I whi
h is, by 
onstru
tion, also a model of D. 2

6

We use 9u; v:P

<

as an abbreviation for 9v; u:

�

P

�

, and 9u; v:P

>

as an abbreviation

for 9u; v:

�

P

�

.
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Intuitively, the reason for de
idability of ALC(D

max

min

) 
an be seen in the fa
t

that min;max only depend on the \boundaries" of a multiset and not on its

\inside"|in 
ontrast to all other standard aggregation fun
tions su
h as sum

or 
ount.

6 Related Work and Con
lusion

Reasoning with 
onstraints involving aggregation fun
tions is a 
ru
ial task

for many advan
ed information systems like de
ision support and on-line-

analyti
al pro
essing systems, data warehouses, and (statisti
al) databases

[34,18,28,14,26,36℄. The more the amount of data that are pro
essed by these

systems grows, the more important aggregation fun
tions be
ome for sum-

marising, 
onsolidating, and analysing these large amounts of data. Hen
e,

traditional te
hniques for query rewriting, query optimisation, view mainte-

nan
e, and intensional reasoning must be extended su
h that they are able to


ope with aggregation fun
tions. Sin
e Des
ription Logi
s have been proved

useful for these tasks, we have extended them with aggregation fun
tions and

investigated the e�e
t of this extension on the de
idability of the subsumption

and the satis�ability problem.

The two unde
idability results presented in this paper indi
ate that this task

will be diÆ
ult. The aggregation fun
tions min, max, and sum that suÆ
e to

obtain unde
idability are among the \well-behaved" ones: aggregation fun
-

tions like average are mu
h more diÆ
ult to handle. For example, min and max

are multiple-invariant (i.e., the multipli
ity of an element of the multiset does

not matter), and min, max, and sum are monotoni
|in 
ontrast to average.

Furthermore, min, max, and sum are distributive, i.e., for an aggregation fun
-

tion agg 2 fmin;max; sumg and two disjoint multisetsM;M

0

, agg(M[M

0

) 
an

be 
omputed using agg(M) and agg(M

0

) only|in 
ontrast to average. Hen
e,

our unde
idability result 
annot be said to be 
aused by using too powerful

aggregation fun
tions.

Arguing from another perspe
tive, extending ALC(D) with aggregation fun
-

tions yields a rather expressive family of Des
ription Logi
s, and thus it might

not be very surprising that a variety of these Des
ription Logi
s is unde
id-

able. In 
ontrast, FL

0

is, to our knowledge, the weakest Des
ription Logi
 ever


onsidered and thus the unde
idability result of FL

0

(�) with min;max, and

sum only is rather surprising.

In [28℄, the expressive power of Datalog with 
onstants, built-in predi
ates

for 
omparisons (with 
onstants), and aggregation fun
tions is investigated.

The unde
idability results des
ribed there are orthogonal to those presented

here sin
e (1) our pre-requisites are weaker and (2) in 
ontrast to Datalog, the
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Des
ription Logi
s des
ribed here do not provide any re
ursion me
hanisms.

For (1), for example, the results des
ribed in [28℄ 
on
ern �xed domains su
h

as the non-negative integers, whereas our results involve domains 
ontaining

the non-negative integers.

In [34℄, the authors investigate the 
omplexity of the satis�ability problem

of aggregation 
onstraints, i.e., sets of equations over aggregated multiset

variables and element variables. Besides some de
idability results (with ex-

a
t bounds), some unde
idability results are presented. These do not imply

those des
ribed here sin
e in [34℄, all unde
idability results either involve the

aggregation fun
tions sum and 
ount, and possibly average.

Investigating these unde
idability results more 
losely, we identify two sour
es

of this 
omplexity: the aggregation fun
tion sum and the intera
tion between

(lo
al) universal quanti�
ation in 
on
epts of the form 8R:C and aggregation

fun
tions. Indeed, the de
idability result for ALC(D

max

min

) shows that min and

max alone are far less expressive than in 
ombination with sum|whi
h is not

too surprising. To obtain a generi
 de
idability result, we further restri
ted the

underlying Des
ription Logi
 to EL, presented a tableau algorithm that de
ides

satis�ability of EL(�)-
on
epts, and �nally showed how this algorithm 
an be

extended to de
ide satis�ability of ALC(�)

�

-
on
epts. The logi
 ALC(�)

�

was

designed su
h that the 
omplex intera
tion between universal value restri
tions

and aggregation fun
tions mentioned above do not arise. By 
onstru
tion,

ALC(�)

�

is 
losed under negation, and thus the tableau algorithm 
an also be

used to de
ide subsumption of ALC(�)

�

-
on
epts.

This tableau algorithm is parameterised by a de
ision pro
edure for satis�abil-

ity of 
ertain 
onjun
tions of 
on
rete predi
ates involving aggregation fun
-

tions, i.e., �-
onsisten
y. Hen
e any 
on
rete domain for whi
h �-
onsisten
y

is de
idable 
an be used to form a logi
 ALC(�)

�

for whi
h intensional rea-

soning is de
idable|provided that the negation normal form for 
on
epts is

adapted a

ordingly. In this paper, we showed that the (non-negative) inte-

gers or rational numbers with 
omparisons (possibly with 
onstants) and ag-

gregation fun
tions min, max, and 
ount are among those de
idable 
on
rete

domains. However, we did not exhaustively 
lassify all \standard" 
on
rete

domains, but believe that it is interesting to �nd other expressive 
on
rete

domains with aggregation fun
tions for whi
h �-
onsisten
y is de
idable. For

example, it would be interesting to see the 
onsequen
e of repla
ing the aggre-

gation fun
tion 
ount in Lemma 22 by sum. It should be noted that adding sum

to the 
on
rete domain 
onsidered in the lemma makes �-
onsisten
y unde
id-

able. This is as an easy 
onsequen
e of one of Theorem 3.1 and Corollary 3.1

in [34℄.

These de
idability results are orthogonal to the de
idability results in [31℄ for


ontainment of 
onjun
tive queries with aggregation in the query head: we
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have less powerful aggregation fun
tions, but allow to use them in a more


omplex way. More pre
isely, we allow to build 
on
epts in whi
h aggregation

o

urs at various levels in nested 
on
epts. The exa
t 
onne
tion between our

de
idable DLs EL(�) and ALC(�)

�

and 
onjun
tive queries with aggregation

is a topi
 for future resear
h.

Finally, we would like to point out that, in the presen
e of aggregation fun
-

tions and for data warehouse, OLAP, and similar appli
ations, another infer-

en
e problem plays a 
ru
ial role, whi
h is unrelated to logi
al standard infer-

en
e problems su
h as satis�ability and subsumption, namely summarisability

[25℄. Assume you have already summarised some base data up to a 
ertain

level of granularity using 
ertain aggregation fun
tions. Next, the same base

data needs to be summarised again up to (possibly) a di�erent level of granu-

larity and (possibly) using di�erent aggregation fun
tions. In 
ase this se
ond

summary 
an be 
omputed from the �rst one, this fa
t 
an be exploited sin
e

(a) the summarised data is probably smaller and (b) the base data might no

longer be available. Thus de
iding this question of \what 
an be 
omputed

from what" 
an help in semanti
 query optimisation, and hen
e is subje
t to

a variety of investigations. Various formalisms have been introdu
ed that allow

to spe
ify how data 
an be summarised, i.e., formalisms to spe
ify dimensions

along whi
h data 
an be summarised, and investigated w.r.t. the 
omplex-

ity of summarisability, see e.g., [23,33,24℄. These formalisms vary w.r.t. their

expressive power, and allow, roughly speaking, to populate a given, partially

ordered, �nite set of 
ategories. For example, 
ity, provin
e, and state are 
ate-

gories that 
an be populated with Toronto, Alberta, and Canada, respe
tively.

The partial order on the 
ategories is then \transferred" in a appropriately

restri
ted form to the instan
es. In [23℄, it is shown that, for distributive ag-

gregation fun
tions su
h as min, max, 
ount, and sum and a given population

of 
ategories (i.e., a given model), it is 
o-NP-
omplete to de
ide whether the

summary up to a 
ertain 
ategory 
an be 
omputed from other summaries to

other 
ategories . Please note that this result is restri
ted to summarisation

along a single dimension and w.r.t. a single aggregation fun
tion.

Due to the tree model property of most des
ription logi
s and the DAG-like

stru
ture of dimensions, the above mentioned frameworks 
annot be dire
tly

mapped into des
ription logi
s. Moreover, the standard des
ription logi
 infer-

en
e problems take into a

ount all interpretations or all models of a knowl-

edge base. In 
ontrast, summarisability in the above mentioned frameworks

takes into a

ount a single one. To the best of our knowledge, there is no

useful notion of summarisability in des
ription logi
s. The introdu
tion of this

inferen
e problem and the investigation of its 
omplexity will be part of future

investigations.
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