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Abstract

Description Logics are a family of knowledge representation formalisms well-suited
for intensional reasoning about conceptual models of databases/data warehouses.
We extend Description Logics with concrete domains (such as integers and rational
numbers) that include aggregation functions over these domains (such as min, max,
count, and sum) which are usually available in database systems. We show that the
presence of aggregation functions may easily lead to undecidability of (intensional)
inference problems such as satisfiability and subsumption. However, there are also
extensions for which satisfiability and subsumption are decidable, and we present
decision procedures for the relevant inference problems.

1 Motivation

Description Logics (DLs) are a family of knowledge representation formalisms
designed for the representation of and reasoning about terminological knowl-
edge [35,29,4]. In the last years, DLs that have enough expressive power to
capture standard formalisms for the conceptual modeling of databases such
as entity-relationship diagrams or UML schemas [5,11,12,14,7,8,10,9] were de-
veloped. This means that a conceptual model described in one of these for-
malisms can be translated into a DL knowledge base. Additionally, one can
add rather powerful (integrity) constraints to such a knowledge base—a use-
ful feature when, for example, building an integrated schema for a heteroge-
neous database/data warehouse from the source schemas. In this case, these
additional constraints can be used to describe the relationship between the
entities/relations in the various source schemas and their relationship to the
entities/relations in the integrated schema. Most importantly, one can use
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the reasoning services of a DL system to check the quality of the concep-
tual model. For example, one can infer implicit is-a links between entities and
relations and detect inconsistent entities or relations. In the case that un-
intended is-a relations or inconsistencies are detected, one can go back and
modify the conceptual model accordingly. If only intended is-a relations and
no inconsistencies are detected, the designer of the conceptual model can be
sure that no unintended is-a relations are implied by her model and that all
entities/relations are consistent because the reasoning services in a DL system
such as FaCT [22,32] or Racer [19] are provably correct decision procedures
for the corresponding inference problems satisfiability and subsumption. In
this and other ways, the reasoning services of the DL system can be used to
enhance the quality of the model. Additionally, the inferred is-a relations can
be used for semantic query optimisation. For more information on DLs for
reasoning about conceptual models, see [10], and for a description of the tool
icom, which implements these ideas, see [16].

Aggregation is a useful mechanism available in many expressive representation
formalisms such as database schema and query languages. Most database sys-
tems provide a fixed set of aggregation functions like sum, min, max, average,
and count, which can be used over concrete built-in domains (like the inte-
gers or the rational numbers) together with concrete built-in predicates (like
comparisons <, >, or comparisons with constants). In the presence of huge
amounts of data, summarising this data using aggregation functions plays a
central role in databases and data warehouses. Hence it is only natural to
assume that aggregation should also be present in the conceptual model of an
information system in which aggregation is used. However, we are aware only
of one extension of entity-relationship diagrams to model “abstract” aggrega-
tion, i.e., the aggregation of complex objects from less complex ones [17], but
without explicit aggregation functions and built-in predicates.

Since Description Logics have proved to be useful for reasoning about concep-
tual models, we extend existing DLs with aggregation functions to evaluate
the potential of DLs to serve also as a logical basis for conceptual modeling
formalisms with aggregation functions and built-in predicates, and to pro-
vide the same reasoning services for such an extended modeling formalism as
today’s DL systems provide for standard ones.

As a basis for our investigation, we take the Description Logic AL [35,21,15].
Even though ALC is rather expressive, it is far less expressive than the DLs used
for the encoding of entity-relationship diagrams or UML schemas. However,
it turns out that ALC is nevertheless an interesting starting point for this
investigation. In ALC, concepts (classes) can be built using Boolean operators,
(i.e., and (M), or (1), and not (—)), and value restrictions on those individuals
associated to an individual via a certain role (binary relation). The value



restrictions can be ezistential or universal. For example, the concept
Human M Jhas_child.(Human M Happy)

describes those humans having (at least) a happy child, whereas
Human M Vhas_child.(Human M Happy)

describes those humans having only happy children—without requiring that
they have children at all.

Most Description Logics are restricted to talking about abstract objects (such
as objects representing humans, employees, or projects) with abstract relations
between them (such as “working for” or “being the boss of”). In [2], this
restriction was overcome by providing the DL ALC with an interface to concrete
domains (such as integers, rational numbers, or strings) and concrete relations
(such as is-divisible-by, <, or is-prefix-of). In this extended DL, which is called
ALC(D), abstract individuals can be related to values in a concrete domain
D via features, i.e., functional roles. This allows us to describe extravagant
managers by the concept

Manager M Vyear.Vmonth.<(income, expenses).

Each instance of the above concept is a manager who, whenever she is related
to a year which is related to a month, then this month is related via the
features income and expenses to the amount of the her income and expenses,
and the income is strictly smaller than the expenses.

In [2], it was shown that a rather weak condition (so-called admissibility) on
the concrete domain suffices to yield decidability of the usual inference prob-
lems of this combined logic. Moreover, it was shown in [27] that the complexity
of these inference problems scale nicely with the complexity of the concrete
domain.

However, looking more closely at the above concept describing extravagant
managers, we note that it is too strict. A more reasonable description would
take the annual income (i.e., the sum over the income of each month) and
compare it with the annual expenses. To achieve this expressivity, we view
aggregation functions as a means to define new, computed features, like the
annual income. In Figure 1, a person, Josie, is given who spends, in some
months, more money than she earns, and in others less. If we want to know
whether she has ever had an extravagant year, we can ask whether Josie is
an instance of

Human M (Jyear.<(sum(month o income),

sum(month o expenses))),
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Fig. 1. An example of aggregation.

where the complex feature sum(monthoincome) relates an individual to the sum
over all values reachable over month followed by income. This new, complex
feature is built using the aggregation function sum, the role name month, and
the feature income.

In this paper, we present a generic extension of ALC(D) that is based on this
idea of defining new, computed features using aggregation functions. Even
though the underlying DL, ALC, is not expressive enough to serve as a logical
framework for the above mentioned formalisms for conceptual modeling, it
turns out that, given a concrete domain together with aggregation functions
satisfying some very weak conditions, satisfiability and subsumption of this
extension is undecidable. Moreover, this result is not due to the underlying
Description Logic ALC: we show that even for the very weak Description Logic
FLy (which allows for conjunction and universal value restrictions only), sat-
isfiability and subsumption become undecidable when extended with a few
standard aggregation functions.

However, the undecidability proofs reveal that this high complexity is due to
the interaction between universal value restrictions and aggregation functions.
We describe three ways to regain decidability:

e Firstly, we restrict the underlying Description Logic by disallowing universal
value restrictions. We present a tableau-based algorithm that decides sat-
isfiability of this logic, provided that the concrete domain satisfies certain
restrictions (see below).

e Secondly, we show that this tableau algorithm can be further extended to
decide satisfiability of a restriction of ALC(D) with aggregation that allows



for (universal and existential) value restrictions and only disallows the in-
teraction between aggregation functions and value restrictions. Since this
logic is closed under negation, this tableau algorithm can also be used to
decide subsumption between concepts.

Like for ACC(D), both tableau algorithms depend on the concrete do-
main, i.e., they require that satisfiability of certain conjunctions of concrete
predicates is decidable. For example, the (non-negative) integers or rational
numbers with comparisons >, >, ... possibly involving constants, together
with the aggregation functions min, max, and count are concrete domains
for which the satisfiability of these conjunctions can be decided.

e Thirdly, we restrict the aggregation functions to contain only min and max.
We show that, for standard concrete domains such as integers or ratio-
nal numbers, together with comparisons and aggregation functions min and
max, satisfiability and subsumption of ALC(D) with aggregation functions
is decidable.

The paper is organised as follows: In Section 2, the basic Description Logic
ALC (D) as introduced in [2] is defined. This logic is then extended with aggre-
gation functions in Section 3. Next, to give the reader a better insight into the
expressive power added by aggregation functions, we present in Section 4 two
generic undecidability results. In Section 5, we present three generic decidabil-
ity results and, finally, compare these results with similar ones in Section 6.

2 Preliminaries: The Basic Description Logic A (D)

In this section, we recall syntax and semantics of ALC(D), the Description
Logic introduced in [2], which underlies the following investigation. ALLC(D)
is an extension of the well-known Description Logic AL (see [35,21,15]) by
so-called concrete domains. Firstly, we formally specify a concrete domain.

Definition 1 (Concrete Domains)
A concrete domain D = (dom(D), pred(D)) consists of

e a set dom(D) (the domain), and
e a set of predicate symbols pred(D).

Fach predicate symbol P € pred(D) is associated with an arity n and an n-ary
relation PP C dom(D)".

Secondly, for a given concrete domain D, the syntax of ALC(D)-concepts is
defined in [2] as follows:



Definition 2 (Syntax of A(C(D)) Let N¢, Ng, and N be disjoint sets of
concept, role, and feature names. A feature chain u = fy ... f,, is a non-empty
sequence of features f;. The set of ALC(D)-concepts is the smallest set such
that

(1) every concept name is a concept and

(2) if C, D are concepts, R is a role or a feature name, P € pred(D) is an
n-ary predicate name, and uy,...,u, are feature chains, then (C' 1 D),
(CUD), (=C), (VR.C), (3R.C), and P(uy,...,u,) are concepts.

In order to fix the exact meaning of these concepts, their semantics is defined
in the usual model-theoretic way.

Definition 3 (Semantics of ALC(D)) An interpretation Z = (A%, -T) con-
sists of a finite non-empty set AT disjoint from dom(D), called the domain of
Z, and a function T which maps

o cvery concept C to a subset CF of AT,
e cvery role R to a binary relation RT over AT, and
o cvery feature name f € Np to a partial function f%: AT — AT Udom(D).

Furthermore, T has to satisfy the following properties:

(CnD)r=CtnD,
(CuD)r =C*uD?,
-CT = AT\ 7,
(AR.C)E = {d € AT | There exists e with (d,e) € RT and e € CT},
(VR.C)E ={d € AT | For all e, if (d,e) € R, then e € CT}, and
Pluy,...,un)t ={d e AT | (uf(d),...,uk(d)) € PP},

where, for v = fi...fm a feature chain, vF(a) = fI(fZ_(...(fE(a)...).
A concept C' is called satisfiable iff there is some interpretation T such that
CT £ (). Such an interpretation is called a model of C'. A concept D subsumes
a concept C' (written C' € D) iff C* C D* holds for each interpretation Z. Two
concepts are said to be equivalent (written C' = D) if they mutually subsume
each other. For an interpretation I, an individual a € AT is called an instance
of a concept C iff a € CT. If fX(a) = b (or (a,b) € RE), then b is called an
f-successor (or R-successor) of a.

Please note that, in contrast to the semantics defined in [2], we restrict our
attention to finite interpretations, i.e., those with a finite domain. For AL (D),
this does not make a difference since, as a corollary of the results in [2],
ALC(D) has the finite model property. That is, each satisfiable concept has



a finite model. However, in the presence of aggregation functions, this will
make a difference since adding aggregation functions makes AL (D) lose the
finite model property. That is, there are satisfiable concepts that have infinite
models only. Since our investigation is motivated by the above mentioned
database applications and databases are, in general, finite structures, it is
indeed necessary to restrict our attention to finite models. For the same reason,
finite model reasoning in Description Logics has, e.g., been considered in [6].

In [2], subsumption and satisfiability are proved to be decidable for ALC(D)-
concepts, provided that the concrete domain is admissible. A tableau-based
decision procedure for these and other inference problems is presented. We
recall the definition of admissibility:

Definition 4 Admissibility A concrete domain D is called admissible iff

(1) pred(D) is closed under negation, i.e., pred(D) contains, for each n-ary
predicate symbol P in pred(D), an n-ary predicate symbol P with PP =
dom(D)" \ PP,

(2) pred(D) contains a unary predicate name Tp for dom(D), and

(3) satisfiability of finite conjunctions over pred(D) is decidable, i.e., satisfi-
ability of formulae of the form

Pl(xgl), o DYA LA Pl(xgk), )

» ¥y N
15 decidable, where P; are predicate names of arity n;.

Moreover, the authors show how two disjoint concrete domains D; and D,
(e.g., the integers and strings) can be combined into a single, new concrete
domain D; . If D; and D, are admissible, then D, is also admissible. Due
to this observation, we will restrict our attention to extensions of ALC with
single concrete domains.

As a consequence of Definition 3, an instance of a concept P(uq,...,u,) has
necessarily a u;-successor that is in dom(D) for each 1 < i < n. Thus, to ensure
that, for a concrete feature f, an individual has an f-successor in dom(X), we
can make use of a predicate restriction Tyx(f) if the predicate Ty, is available.
Otherwise, we can make use, for example, of the equality P—(f, f). To express
that an individual has no f-successor at all, we will use the abbreviation
noy =Vf.(AMN-A).

As ALC(D) allows for negation and conjunction of concepts, all Boolean op-
erators can be expressed, and we will use C' = D as a shorthand for -C' U D.
Another consequence of the presence of these two operators is that subsump-
tion and (un)satisfiability can be reduced to each other:

e (C'C D iff C =D is unsatisfiable, and



e (C is unsatisfiable iff C' T A M —A (for some concept name A).

3 Extension of AL (D) With Aggregation

In order to define aggregation appropriately, first, we will introduce the notion
of multisets: in contrast to simple sets, an individual can occur more than
once in a multiset—but only finitely often. For example, the multiset {{1}}
is different from the multiset {{1,1}}. Multisets are needed to make sure, for
example, that one’s annual income is calculated correctly from one’s monthly
income in the case that the same amount is earned in several months.

Definition 5 (Multisets) A multiset M over S is a mapping M : S — N,
where M (s) denotes the number of occurrences of s in M. A multiset M over
S is said to be finite iff {s | M(s) # 0} is a finite set. The set of all finite
multisets of S is denoted MS(S). We use the notation {{ai,...,a,}} when
enumerating the members a; of a finite multiset to distinguish multisets from
sets.

For multisets M, M' over S, we write M C M' if M(s) < M'(s) for each
s € S, and we write s € M if M(s) > 1. For M C M’, we use M"\ M to
denote the multiset with (M'\ M)(s) := M'(s) — M(s) for all s € S.

Since the aggregation functions strongly depend on the specific concrete do-
mains, the notion of a concrete domain is extended accordingly. Furthermore,
the notion of concrete features is introduced. Such a concrete feature is either
a feature name, a feature chain, or built using an aggregation function on a
role and a feature name.

Definition 6 (Syntax of AC(X)) The notion of a concrete domain D as in-
troduced in Definition 1 is extended with a set of aggregation functions agg(D),
where each T' € agg(D) is associated with a partial function TP from the set of
finite multisets of dom(D) into dom(D). To underline the fact that a concrete
domain provides aggregation functions, it is denoted X.

The set of concrete features is defined as follows:

e Fach feature name f € Ng is a concrete feature,

e a feature chain fi ... f, is a concrete feature, and

e an aggregated feature fy ... f, T(Rof) is a concrete feature, where f, f1,..., fn
are feature names, R is a role name, and T° € agg(X) is an aggregation func-
tion.

Finally, ACC(X)-concepts are obtained from ALC(D)-concepts by allowing, ad-
ditionally, the use of concrete features f; in predicate restrictions P(fi,..., fn)



(recall that in ACC(D) only feature chains were allowed).

It remains to extend the semantics of ALC(X) to the new feature-forming
operator:

Definition 7 (Semantics of AL(Y)) An AL (X)-interpretation T is an
ALC(D)-interpretation that, additionally, interprets aggregated features as fol-
lows. To define the semantics of aggregated features, we introduce the multiset
MZEF which maps each element z € dom(X) to the number of a’s R-successors
that have z as f-successor:

MEI(2) .= #{bec AT | (a,b) € RT and f*(b) = z}.

Finally, the semantics of aggregated features is defined as follows:

TS(MPHY if (fy .. fa) (a) = d' € AT

(i fuD(R o f))H(a) = |
undefined if (fi... fa)*(a) & AT

and T=(M5°T) is called the (fy ... fu T(Ro f))-successor of a, provided that it
18 defined.

We point out two consequences of this definition, which might not be obvious
at first sight:

(a) If @ has an R-successor b with an abstract f-successor, then b has no
influence on MTF°/: it is defined in such a way that it takes only into account
R o f-successors of a in the concrete domain dom(X).

(b) Since AT is finite, each M/ is necessarily a finite multiset. However,
there are two reasons why (f; ... f, ['(Ro f))*(a) might not be defined: firstly,
a might have no f; ... f,-successor a’ in AZ. Secondly, aggregation functions
can be partial. For example, the (standard) min or max over an empty set is
undefined. Hence if dom(X) is the set of rational numbers, integers, etc., and
if @ has no R-successor in Z with an f-successor in the concrete domain, then
MP°J is the empty multiset, and thus (max(R o f))%(a) is undefined.

In the following, we will make use of the aggregation functions count, sum, min,
and max, which are supposed to be defined as usual, i.e., for finite multisets



M over the rational numbers (or any subset of the rational numbers) we have

count(M) = > M(y)

yeM

sum(M) = ¥ M(y)-y

yeM
. m if there exists m € M such that n > m for all n € M
min(M) =
undefined if no such m exists
m if there exists m € M such that n < m forallne M
max(M) =

undefined if no such m exists

4 Undecidability Results

In this section, the expressive power added to ALC(D) by aggregation func-
tions is illustrated. Tt turns out that, for a concrete domain ¥ satisfying some
rather weak conditions, reasoning in ALC(Y) and its restriction FLy(X) be-
come undecidable in the presence of standard aggregation functions like min,
max, and sum.

4.1 A first undecidability result

The following theorem states that admissibility of a concrete domain does no
longer guarantee decidability of the interesting inference problems:

Theorem 8 For a concrete domain X where

e dom(X) includes the non-negative integers,

e pred(X) contains a (unary) predicate P—, that tests for equality with 1, and
a (binary) equality P-,

e agg(Y) contains min, max, and sum,

satisfiability and subsumption of ALC(X)-concepts are undecidable.

Remark 9 (a) At first sight, this undecidability result may appear to be very
restricted. Note, however, that it does not require that dom(X) is the set of
non-negative integers, but that it just requires that dom(X) contains the non-
negative integers. This makes the undecidability result not only more general,
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but also stronger. For example, computations over the real numbers are, in
general, easier than computations over the non-negative integers; e.g., the first
order theory of +, -, < is undecidable over the non-negative integers, whereas
it is decidable over the real numbers.

Furthermore, the aggregation functions min, max, and sum are among those
normally considered as built-in functions for databases (see, for example,
[18,28,26,36]). Finally, to test whether a certain value equals 1 or whether two
values are equal is possible in all database systems with built-in predicates.

(b) We do not suppose that ¥ is admissible—although this precondition would
not weaken the undecidability result. Nevertheless, in the sequel, we will make
use of the concept Ty(f) describing all those (abstract) individuals having an
f-successor in the concrete domain. This is in accordance with the precondi-
tions of Theorem 8 because Tx(f) (if not available in ) can be introduced
as abbreviation, e.g., for P_(f, f).

(¢) Undecidability is not due to the fact that we require AZ to be finite. The
proof works analogously for infinite interpretations (where M/ is defined
appropriately in the case that a has infinitely many R-successors); see [3].

Proof of Theorem 8: The proof is by reduction of Hilbert’s 10th problem
[13] to satisfiability of concepts, i.e., for polynomials P,Q € N[xy,..., 2],
we construct an ALC(X)-concept Cpg that is satisfiable iff the polynomial
equation

P(xy,...,2m) = Q(xy, ..., 2m) (1)
has a solution in N™*. In the sequel, we write x as shorthand for (21,..., )
and xY as shorthand for the monomial 27" -+ - 23" .
The idea of the reduction is to represent the (sub)term structure of the poly-
nomial P (Q)) as a tree related to an instance of Cpg via the feature P (Q).
Each polynomial is supposed to be of the form

ap + a1 x" + ...+ a;xV + .. oapx™,
where, for simplicity, all monomials x% are assumed to be different.

When building the reduction concept Cp g, one encounters three main prob-
lems:

(a) We only know that dom(X) contains N, but the solution of Equation 1
must be in N, and ¥ need not provide a predicate that tests for being a
non-negative integer.

(b) Tt has to be guaranteed that (the representation of) each variable z; is
associated with the same non-negative integer wherever it occurs in a model
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of CPQ.
(¢) The reduction asks for the representation of calculations such as addition,
multiplication, and exponentiation.

These problems can be overcome as follows:

(a) is solved by making use of the concept Ef,
EF i= (YR.P-1(f) 1 P—(sum(R o f). ),

whose instances have as g-successors the number of their R-successors. Hence
their g-successor is defined and in N.

(b) This problem is solved by introducing features x; for each variable x; and
by making strong use of the concepts Ef:% defined above (to make sure that
x;-successors are non-negative integers) and the following concept Inv:

Inv := 1<|1 (VR. Tx(x;) M P—(min(R o x;), max(R o x;)) M P_(x;, max(R 0 x;))).
<i<m

Let a be an instance of Inv. Then the first conjunct ensures that all R-

successors of a have an x;-successor in dom(X). The second conjunct ensures

that all R o x;-successors of a coincide and, finally, the third conjunct ensures

that a’s x;-successor coincides with the x;-successors of its R-successors.

Using Inv at all levels of nested concepts, we can guarantee that all “relevant”
individuals in a model of Cp g have the same x;-successor for each variable z;.

(c) Addition can be realised by the aggregation function sum, and multipli-
cation (and hence exponentiation) can be reduced to addition; for details see
the explanation of the reduction concepts below.

For the representation of constants (like the coefficients) we will use the fol-
lowing abbreviations:

ER := (VR.(P-(f))) M P—i(sum(Ro f)) (exactly 1 R-successor)

El .= VR. ( LI (P—y(fi) M I;I.nofj)> M (exactly n R-successors)
YE
M

1<i<n

F; 1(sum(Ro f;))

1<i<n

where noy, is the abbreviation for Vf;.(A M —A) mentioned in Section 2. It
is easy to see that each instance of ET has exactly 1 R-successor. Now, for
an instance a of EX  every R-successor has exactly one f;-successor for some
i,1 <i < n,and this f;-successor has value 1 (first line). The constraint on the
concrete feature sum(R o f;) (second line) makes sure that, for each i, there is

12



exactly one R-successor with an f;-successor, which implies that a has exactly
n R-successors. For those familiar with Description Logics, we point out that
E is indeed equivalent to the number restriction (= n R).

Summing up, for ¥ as described in Theorem 8, we have defined the following

abbreviations:
nos describes individuals with no f-successor
EER describes individuals with exactly 1 R-successor
Ef describes individuals with exactly n R-successors
Ef describes individuals a with exactly g”(a) R-successors

Inv describes individuals ¢ whose x;-successor coincides with the
x;-successor of each of its R-successors

The definition of the reduction concept Cpg and the auxiliary concepts used
in this definition can be found in Figures 3 and 4. Figure 2 sketches a model
of Cpg. Let us now explain the definition of Cpg:

(1)

First, we define Cp¢ such that, for each interpretation Z, each instance

a € C’I has exactly one P-successor p in C'5 and exactly one Q-successor

q in C’I The individual p represents the polynomial P, and ¢ represents

Q; see Concept 2. Concept 3 is similar to Inv and makes sure that, for each

7, the x;-successor of p is in dom(X) and the same as the x;-successor of ¢.

Using the feature s to store the value of the evaluation of the polynomials,

Concept 4 makes sure that the value of the polynomial P when evaluated

with the x;-successors (which are already ensured to be the same for p

and for ¢) is the same as of Q.

An instance p of Cp has

o for each summand A; = ajxii of P one R-successor, which is an instance
of C'y;; see the first two conjuncts of Concept 5. The use of the concepts
EJH ensures that all C'y; are disjoint, and thus to ensure that each
summand is represented by a different R-successor.

e an s-successor, which is the sum of the s-successors of its R-successors;
see the last conjunct of Concept 5.

Given that the s-successor of each R-successor of p is the value of the jth

summand, the s-successor of p is the corresponding value of P, namely

the sum over P’s summands. Again, the concept Inv makes sure that each

x;-successor of p coincides with the x;-successors of its R-successors, and

thus the summands are evaluated by the same tuple.

The concept Cg is defined analogously.

For each summand A; = a;x%, we use a concept Ca,- An instance a of

Ca; has a; R-successors, each of them representing the monomial x'i; see

13
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(5)

Fig. 2. The intuitive structure of a model of Cpq.

Concept 7. The last conjunct makes sure that the s-successor (represent-
ing the value of A;) is computed correctly: since a has a; R-successors,
each of them representing x%, the s-successor of a is the sum over the
s-successors of its R-successors, namely a; times x%.

C_i; is more complicated. An instance c of it has two different kinds of

role successors: _ _

e For each of the m factors a7* in xU, ¢ has one Rj-successor in X,’*,
whose sj-successor stands for its value z/*. The concept Exp,i; guar-
antees this fact. In Exp_i;, we use the second conjunct instead of Inv to
propagate the value of x; down to the according subtree. The last con-
junct of Exp_i; makes sure that the respective values s; are propagated
upwards to c. .

e Then, in order to multiply the m factors z/*, we make use of the concept
Mult]" explained below. Again, the s-successor of ¢ denotes the value of
this calculation, namely x%.
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Cpo:=EFME?NVYP.CprNVQ.CoM (2)
1§Ij_|§m<1f’_(sum(Poxj),sum(Qoxj))> M (3)
P_(sum(P o 5),sum(Q o s)) (4)

Cp:=EFf N Uglg_'lgn 3R.(Ca, N E[") Minv 1 P—(s,sum(R o s)) (5)
Cy, = E(g MVR.C i Minv M P-(s,sum(Ros)) (6)
Cs; = Exp_s; M Multy” (7)

Fig. 3. The reduction concept Cp g and some of its subconcepts.

(6) For X!, we have to distinguish two cases : If ¢ > 0, an instance b of
X} is the root of an xj-ary R-tree of depth i where the s-successor of
each node is the sum of the s-successors of its R-successors. Finally, the
s-successor of a node one level above the leaves (which represents x})
equals its xj-successor—which is the same for all nodes in the whole tree.
Since dom(X) is only required to contain the non-negative integers, we
have to ensure that all xg-successors are non-negative integers. This is
realised by making use of the concept Eﬁ.

Otherwise, i = 0, and the value associated to this factor is 1; see the
concept X}.

Thus, we use the possibilities to construct trees and to sum up in order
to compute exponentiation.

(7) Finally, the situation in which we start multiplication looks as follows:
An instance u of Mult]" is the root of the multiplication tree, u is also
an instance of Ci;, and we want to multiply the si-successors x;gk (k=
1,...,m) of u. To this purpose, we attach an additional R-tree of depth
m — 1 to u. This tree is, at level k, of outdegree x?j’“, which is the value of
sj of at the node u, and its s-successor of nodes on level & — 1 represents

gt At level m — 1, we make sure that the s,,-successors

coincide with the s-successor. Again, we sum up the values from the
bottom to the top by using the concept P_(s,sum(R o s)), and we make
sure that all nodes have the same s; successor by a concept similar to Inv;

see Concept 13.

Lk, .

It remains to be shown that Cpq is satisfiable iff P(x) = Q(x) admits a
solution in the non-negative integers.
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Exp; = [ (Ef’f M P—(xg, sum(Ry, 0 %)) M (8)

1<
VRkX;]k I‘IP:(sk,sum(Rkosk))> (9>
Mult™ := P_(s, 5,,) (10)
for 1 <k<m: (11)
Mult]" := EF 1 P_(s,sum(R o 5)) 1 YR.Mult]",, 1 (12)

M (P:(min(ROSZ),max(RosZ))I‘IP:(min(ROSE),SZ)> (13)

l=k+1

X = Py (s) (14)
X, :=Ef M P=(s,x) (15)
Xp=ElNVYRX. ™' NP_(s,sum(Ros)) (16)

P_(min(R o xi), max(R o x;)) M P—(xg, max(R o xg)), (> 2

Fig. 4. Subconcepts of Cp g used for the representation of calculations.

“<" The construction of a (finite) model M of Cpg from P, ), and a solu-

tion ny,...,n, € N” for x is not difficult. M can be constructed along the

explanations given for Cp¢ in the following way: We start at the bottom of

the tree M by introducing instances

e ;. of X} that have ny R-successors, each of them having 1 as f-successor
(to satisfy E)i)7 ny as X successor, and nj as s-Successor.

e ) of X} that have nj, R-successors, each of them having 1 as f-successor,
ng as xi successor, and 1 as s-successor.

Then, for each monomial x%, the corresponding subtrees representing n;j’“ are
built. Starting with (copies of) x; and x, we build trees of depth 7;; and degree
ny. Next, instances c of C;; are introduced, where each c has as Rj-successor

the subtree representing the factor ny* in ny'---ng". Now, we append an-
other subtree to each ¢, namely the one representing the multiplication of the
values ny*. This tree is of depth m — 1 and degree n/* at level & — 1. The re-
maining construction is straightforward. We first take a; disjoint copies of the
c’s standing for Cs; (including the corresponding subtree) as R-successors of
an instance a of C'y;, then we append these as as R-successors to an instance
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p of Cp. We suppose that the same construction has been carried out for @,
which lead to an instance g of Cg. Finally, p and ¢ are P (resp. ()) -successors
of an instance c of Cpg.

At each node of the tree constructed in this way (except for the root node),
the s-successor of an individual equals the sum over the s-successors of its R-
successors, and each node has the same x-successors. The fact that a solution
Nni,...,N,m € N™ for x has been used implies that p’s s-successor coincides
with ¢’s s-successor, as required by the definition of C'pg.

“=" Given a model M for Cpg with ¢ € Cf ), due to the presence of Inv
and similar concepts in Cp g, all x;-successors of all “relevant” role successors
of ¢ coincide—where “relevant” role successors are those whose existence is
explicitly required by Cpg. Again, following the description of Cpg, we have
that (xf(c),...,xZ(c)) is a solution for P(x) = Q(x). Due to the use of the
concepts EJf, this solution is in N™. O

4.2 Tightening the result

A closer investigation of the concept Cp g reveals that (a) negation occurs only
in the concept noy, (b) the only place where existential restriction occurs is in
the concepts Cp and Cg, and (c¢) the only place where disjunction U occurs is
in the concepts E describing individuals having exactly n R-successors.

We will show that the concepts noy, Eff and Cp can be rewritten into equiv-
alent concepts without negation, disjunction and existential restriction, by
extending only slightly the set of concrete predicates. Hence, the reduction
concept Cpg can be written using only conjunction M and universal value
restriction VR.C. As introduced in [1], let FL, denote the set of those con-
cepts that are built using conjunction and universal value restriction only, and
let FLy(X) denote the extension of this language by concrete domains with
aggregation. Then the following undecidability result is an immediate conse-
quence of the possibility to rewrite the reduction concept C'p o without using
negation, disjunction, and existential restriction.

Theorem 10 For a concrete domain X where

e dom(X) includes the non-negative integers N,

e pred(X) contains, for all non-negative integers n, (unary) predicates P—,
that test for equality with n, the (binary) equality predicate P—, and the
(binary) inequality predicate Py,

e agg(Y) contains min, max, sum,

satisfiability and subsumption of FLy(XZ)-concepts are undecidable.
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Remark 11 (a) Admissible concrete domains as defined in [2] are closed
under negation, e.g., the presence of a predicate P— in pred(X) implies the
presence of its negation P.. Hence for admissible concrete domains, the only
difference between the preconditions of Theorem 8 and Theorem 10 are the
unary predicates P—,.

(b) We recall that, according to the semantics of FLy(X), an individual a
can only be an instance of the concept Px(f,g) if a has an f- as well as a
g-successor in the concrete domain dom(X).

PROOF. As observed above, it suffices to define FLy(3)-concepts no', E;LR,
and C'p» which can play the role of no;, EF, and Cp in the reduction concept

Cp,g of the proof of Theorem 8.

nog : This concept is used to make sure that an individual has no f-successor.
It can clearly be replaced by

nos :=VYf.Px(g,9),

where Px(g, g) plays the role of the empty concept AM—A used in the definition
of noy.

E;R : Given a concrete domain ¥ that provides, for all non-negative integers
n, a unary predicate P_, that tests for equality with n, we can define a concept
E' ™ whose instances have exactly n R-successors:

E\" :=VR.P_(f) N P_,(sum(Ro f)).

Obviously, replacing E by E,’lR in Cp preserves its property of serving as a
reduction concept for Hilbert’s 10th problem. Avoiding existential restriction
in Cp is more complicated.

p 1 In Cp, existential restrictions are used to make sure that, for each mono-
mial A;, there is one R-successor representing this monomial. This can also

be expressed by introducing, for each j, exactly one R;-successor (using Efj),
and then using universal value restrictions to make sure that this [2;-successor
is an instance of C'4,. Additionally, the x;-successors are propagated to the
Rj-successors. All this is ensured by the first line of C'p.

[ R;j . .
Cpi= I (El VR;.Cay 1 T P (s sum(R; o %) 1
P_(s;,sum(R; o 5)))
MAdd,, s,

18



It remains to enforce that the sum over all s-successors of all R;-successors
of an instance p of C} coincides with p’s s-successor. For this purpose, the
second line of U, makes sure that p has an s;-successor which coincides with
the s-successor of its Rj-successor, and the concept Add,, . ,, is used to sum
up p’s sj-successors. It is defined as follows,

.....

s, = add:®. Maddi®* mM...Madd]

50,51 501,52 5012...n—1,5n"

where

add}', :== E3" NVR.P_(g,9) N P_(t,max(R o g)) N P_(#, min(R o g))
P_(u,sum(R, g))

The idea underlying this addition is the following. Firstly, the addition of n+1
numbers is reduced to the addition of two numbers: In Add,, ., the so- and
the si-successor of p are summed up and the result is stored as sgy;-successor
of p. Similarly, the sg;- and the ss-successor are summed up and the result is
stored as sgio-successor of p, and so forth, until only two arguments are left.
The sum of these last numbers is the result of the whole addition, and stored
as s-successor of p.

Secondly, the addition of two numbers given as t- and #'-successors and the
storage of the result as u-successor is realised by the concept add}’,. Let p be
an instance of addy,, let = be p’s t-successor, and let 2’ be p's t'-successor.
The first two conjuncts of add;, ensure that p has exactly two R-successors,
each of which has a g-successor in the concrete domain. Next, we ensure that
2 coincides with the maximum of p’'s R o g-successors, and that 2’ coincides
with the minimum of p’s R o g-successors. Hence M = {{z, 2'}}, and thus
the last conjunct ensures that p’s u-successor coincides with x + 2/

Again, replacing Cp by Cp and Cq by Cg in Cpgq preserves its property of
serving as a reduction concept for Hilbert’s 10th problem, which is—together
with the aforementioned replacements—an FLy(%)-concept.

Undecidability of subsumption follows from undecidability of satisfiability be-
cause a concept C' is satisfiable iff it is not subsumed by an unsatisfiable
concept, and because the FLy(X)-concept P(f, f) is such an unsatisfiable
concept. 0O

5 Decidability Results

The undecidability proofs in the previous section heavily use universal value
restriction in combination with aggregation functions, in particular sum. In
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this section, we will show that this interaction is indeed the cause for the
undecidability: we will give three generic decidability results, which are all
obtained by disallowing this kind of interaction.

The first result is obtained by restricting the abstract part of the Description
Logic. In Section 5.1, E£(X) is obtained from ALC(X) by disallowing universal
value restrictions. We present a tableau algorithm that decides satisfiability
for this restricted logic. This algorithm is generic in that we give a rather
weak property of concrete domains that implies decidability of satisfiability
for EL(X)-concepts. In Section 5.3, we present several concrete domains that
satisfy this property, all of them involving the aggregation functions min, max,
and count. However, since EL£(X) is not closed under negation, the tableau
algorithm cannot be used to decide subsumption.

For the second result, we have chosen a Description Logic that is closed un-
der negation, i.e., where subsumption can be reduced to satisfiability. In Sec-
tion 5.2, ACLC(X)~ is obtained by restricting ALC(X) in such a way that no
interaction between aggregation functions and universal value restrictions can
occur. Since this Description Logic is propositionally closed, also existential re-
strictions cannot interact with aggregation functions. This interaction is possi-
ble in EL(X), and therefore ALC(X)~ is not an extension of EL(X). The concrete
domains ¥ for which ALC(X)~ is decidable are the same as those for which
EL(Y) has been proved decidable; they are described in Section 5.3. However,
this second decidability result is not as generic as the first one because the way
in which the algorithm treats negated concrete predicates strongly depends on
the aggregation functions.

Finally, the third result is obtained by restricting the aggregation functions to
min and max. For concrete domains ¥ involving only min and max, decidability
of satisfiability and subsumption of ALC(X)-concepts is shown by a reduction
to a known decidable Description Logic. From Section 4, it is clear that this
result cannot be extended to a concrete domain also containing sum.

5.1 Decidability of EL(X)

In this section, a generic decidability result is presented for E£(X), a restriction
of ACC(X) that does not contain universal value restrictions. We start by
defining EL(X).

Definition 12 (Syntax of EL(X)) EL(X) denotes the Description Logic that

is obtained from ALC(X) by disallowing universal value restrictions (VR.C')
and by restricting the use of negation to concept names.
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Satisfiability of EL(X)-concepts is decided by a tableau algorithm that tries
to construct, for an input concept Cj, a model of Cy. To this purpose, it
breaks down Cj into subconcepts, hereby making explicit all constraints on
individuals in this model. It first works on the abstract part of the model while
collecting constraints on the concrete part. If the abstract part is successfully
processed, it ends with a set of concrete constraints for which satisfiability
must be decidable, and whose solution can be used to construct the missing
concrete part of the model. The attempt to construct a model either fails (in
the abstract or the concrete part) with obvious inconsistencies—in which case
() is unsatisfiable—or it succeeds and ends with a description of a model of
00-

In contrast to the algorithm in [2] for ALC(D), constraints now also involve
variables for multisets over the concrete domain—besides individual variables
for elements in the abstract and in the concrete domain. To capture the re-
lation between individual and multiset variables, new constraints will be in-
troduced to make explicit that an individual variable stands for an element
of a multiset. Then, besides concrete individual variables, aggregated multiset
variables can occur in predicate restrictions.

Definition 13 (Constraint Systems) Let 7 = 74 U = {a,b,c,...} U
{z,y,2,...} be an infinite set of abstract and concrete individual variables,
and let 0 = {X,Y, Z,...} be an infinite set of multiset variables. We assume
that T4, s, and o are disjoint. The set of aggregated variables, {T'(X) | T €
agg(Y) and X € g}, is denoted by agg(c). Constraints are of the form:

a:C for a € 74,C an EL(X)-concept,
(a,b):R for a,b € 74, R € Ng,
(a,0):f foraerTas,lEeT fE N,
(a,Y):(Ro f) fora€ 1y,R€E Ng,f € Np,Y € o,
P(ay,...,a,) for o; € 7w Uagg(o), and
Y forxéerm,Y €o.
Constraints of the form P(ou,...,ayn) or x:Y are called S-constraints. A

constraint system is a finite set of constraints. A variable ( is said to be an R-
successor (resp. an fy ... fp-successor) of an abstract variable a in a constraint
system S iff (a,l): R € S (resp. (a,vy1): f1, (y1,92) : fo, ooy (Yn-1,0): fn € S
for some y1,...,yn_1 € Ta). An aggregated variable T'(Y') is said to be an
fi-- faT(R o f)-successor of a in S iff there is an fi ... fy-successor b of a
in S and (b,Y):(Ro f) € S.

Next, the semantics of constraint systems is defined. Since we want to decide
satisfiability of EL(¥)-constraints where 3 involves the aggregation function
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count (which returns the number of elements in a multiset), it will turn out
to be crucial that no two abstract variables are interpreted by the same indi-
vidual. Hence we will restrict our attention to so-called m-models.

Definition 14 (Semantics of constraints) We consider interpretations T
that, additionally, map individual variables to individuals of the concrete or
the abstract domain, and multiset variables to finite multisets over the concrete
domain, i.e.,

af € AT for a € 74,
2T € dom(Y) for z € v,
X% € M5(dom(Y%)) for X € o.

An interpretation T satisfies a constraint of the form

a:C iff of € CF,
(a,b):R iff (a*,b") € RT,
(a,0):f iff  fHa") = 1",
(a,Y):(Ro f) iff M =Yv7
Play,...,an) iff PZ(af,...,ad), (17)
v:Y iff 2t ey’ (18)

where, for a; = T'(X), we define I'(X)* := (X7%).

A constraint system S is satisfiable iff there exists an interpretation satisfying
all constraints in S such that bF # & for all b,c € T4 with b # ¢ and {(a,b):
R, (a,c): R} C S for some a € 14 and R € Ng. Such an interpretation is
called an m-model of S.

For a constraint system S, the conjunction Sy, is defined as follows:

Sy = A Ploa,...,an) A N\ |2V € S} CY.

P(ai,...,an)€ES Y occurs in S

A solution of Sy, in ¥ is a mapping * that maps each individual variable x in
Sx to an element & € dom(X) and each multiset variable Y in Sy to a finite
multiset Y over dom(X) such that

o if T(Y) is an aggregated variable in Sy, then FE(}A/) is defined® and

e the result of applying * to (all variables in) Sx, is true in X, where C is
interpreted as multiset inclusion, each predicate name P as P, and each
aggregation function T' as I'>.

2 For example, we do not admit the empty set as a solution for Y in P(min(Y))
since min () is undefined.
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A constraint system S is Y-consistent iff Ss has a solution.
A constraint system S contains a clash iff

e {a:C,a:~C} C S for some concept C, or
o {(a,x): f,(a,b): f} C S for a concrete variable x € 7s and an abstract
variable b € T4.

A constraint system S contains a fork iff, for a € T4 and a feature name
f € Np, we have

o {(a,0):f,(a,0l"):f} €8S for two distinct variables (,0' € T4 or (,{' € s, or
e {(a,Y):(Rof),(a,Z):(Ro f)} €S8 for two distinct variables Y,Z € o.

If a constraint system S contains a fork {(x,0): f, (x,0"): f} (resp. {(a,Y):
(Ro f),(a,Z):(Ro f)}), then we say that S" is obtained by fork elimination
from S iff S" is obtained from S by replacing each occurrence of { by (' (resp.
Y by Z).

The tableau algorithm for deciding satisfiability of EL(X)-concepts works on a
tree where each node is labelled with a constraint system. It starts with the
tree consisting of a single leaf, the root, labelled with S = {aq: Cy}, where
Cy is the EL(X)-concept to be tested for satisfiability. The tableau algorithm
applies the completion rules introduced in Figure 5 to constraint systems.
For Rule 4, recall the definition of u-successors for aggregated features u in
Definition 13. A rule can only be applied to a leaf labelled with a clash-free
constraint system. Applying a rule S — S, for 1 < j < n, to such a leaf leads
to the creation of n new successors of this node, where the j-th successor is
labelled with S;. The algorithm terminates if none of the rules can be applied
to any of the leaves.

A constraint system S is complete if none of the completion rules can be
applied to S. The tableau algorithm answers “Cj is satisfiable” iff after its
termination one of the leaves is labelled with a complete, clash-free, and -
consistent constraint system.

Lemma 15 Let Cy be an EL(X)-concept, and let S be a constraint system
obtained by applying the completion rules to {ay:Cp}.

(1) If Cy is satisfiable, then {ag:Cy} has an m-model.

(2) Let R be a completion rule that can be applied to S. Then S is satisfiable
iff one of the systems S; obtained by applying R to S is satisfiable.

(3) If S is a complete, S-consistent, and clash-free constraint system, then S
has an m-model.

(4) If S contains a clash or is not X-consistent, then S does not have an
m-model.
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1. Conjunction: If a: (C1 M Cy) € S and a:Cy € S or a:Cy & S, then
S — Su{a:Cy,a:Cs}.
2. Disjunction: If a: (C; U Cs) € S and a:C; ¢ S and a:Cy ¢ S, then
S— Sy =SU{a:Ch},
S — Sy =SU{a:Cy}.
3.a. Existential restriction on roles: If a: (R.C) € S for a role name R,
{b1,...,b,} are all R-successors of a, and b; : C' ¢ S for all b;, then
S =S5 =Sui{y:C}
S —= S =SU{(a,b):R,b:C}
for a new variable b € 74.

3.b. Existential restriction on features: If a:(3f.C) € S for a feature
name f and if there is no f-successor b of a with b:C € S, then

S = SU{(a,b):f,b:C}.
for a new variable b € 74. If forks were created, then eliminate these forks.
4. Concrete predicates: If a: P(uy,...,u,) € S and a does not have

u;-successors «; with P(ay, ..., a,) € S, then, for each u; let

{(a, bn)ifn, (bil, bi2>¢fi2, Sy (bimifla ?/i) :fimi}
if ug = fafioo o fim
{(a,bir): fir, (bir, biz) : fioy - - oy (Dimg—1, bimy ) ¢ fimg, (Dimy, i) : (Ri o f3)}
if u; = firfio. .. fim; Ti(Ri 0 f3)
for new variables b;; € 74,9; € 75, Y; € 0. Let o; be the u;-successor of a
in S;. Then
S— SU{P(ar,...,00)} UUi<icn Si-
If forks were created, then eliminate these forks.
5. Element assertions: If {(a,b): R, (b,2):f, (a,Y):(Ro f)} C S
for z € 7w and z:Y & S then
S— Su{z:Y}.

Si =

Fig. 5. The completion rules for E£(X).

(5) The tableau algorithm terminates when applied to {ag:Cop}.

Before proving Lemma 15, let us comment on Rule 3.a, which is non-standard.
Consider, for example, the following C':

C = (AR. Ps5(f)) N (3R. P=y(f)) N P<1(count(R o f))

This concept contains the aggregation function count, which returns the num-
ber of (not necessarily distinct) elements of a multiset, and is satisfiable.
However, a tableau algorithm that generates, for each constraint of the form
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a:3dR.C, a new R-successor of a would either not detect that C' is satisfiable
(i.e., it would be incomplete), or it would need to switch back to abstract
reasoning (and identify both R-successors of a) after having tested the consis-
tency of the concrete constraints. The latter alternative can easily be seen to
necessitate alternation between Y-consistency checks and tableau rule appli-
cations, and thus makes termination of the whole algorithm problematic. To
design a complete tableau algorithm that switches only once from “abstract”
to “concrete” reasoning, existential restrictions are handled by trying all pos-
sibilities to generate as few R-successors as possible. This is realised by trying
to reuse, for a constraint a: (3R.C'), already existing R-successor of a. For the
case that this reuse is not possible, a new R-successor is also introduced. As
a consequence, we can restrict our attention to those models that interpret
different R-successors as different individuals, i.e., to m-models.

PROOF. (Lemma 15.1:) Each model of Cj is obviously an m-model of {ay:
Co}.

(Lemma 15.2:) (ii)=-(i) is obvious because each S; obtained by applying the
completion rules to S is a superset of S where variables were possibly renamed
due to fork elimination, and thus an m-model of S; is also an m-model of S
(modulo the mapping of renamed variables).

(i)=(ii): We only consider Rules 3.a, 4, and 5 because Rules 1, 2, and 3.b are
obvious and similar to those used in other tableau-based algorithms; see, for
example, [15,2].

Let 7 be an m-model of S as defined in the precondition of Rule 3.a. Hence
there is some ¢ € AT with (af,¢) € R* and ¢ € C%. If bf = ¢ for some
R-successor b; of a, then Z is an m-model of S;. Otherwise, Z extended with
bt = ¢ is an m-model of S, ;.

Let Z be an m-model of S as defined in the precondition of Rule 4 and let S’
be obtained by applying Rule 4 to S. Then a: P(uy,...,u,) € S and, for each
u; with 1 <1 <n, if

e u; is a feature chain f; fi2 ... fim;, then a® has f; ... fi-successors ¢;; € AT
for 1 < j < my, and an fi1 fio ... fim,-sSuccessor z;,, € dom(X). If we define
bizj = ¢;; and yﬁn = Zim,, then 7 satisfies S; as defined in Rule 4.

e u; is an aggregated feature fi1fin... fim, [i(R; o fi), then of has fi ... fi-
successors ¢;; € AT for 1 < j < m;. If we define bj; = ¢;; and Y7 = Mfmof,
then Y7 is by definition the appropriate multiset, and Z satisfies S; as
defined in Rule 4.

Given 7 as extended above to the newly introduced variables and «a; as defined
in Rule 4, we have that «; is indeed interpreted as the u;-successor of a, namely
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ul(a?) = of for all 1 < i < n. Since 7 satisfies a: P(uy, ..., u,), we thus have

that Z satisfies P(ay, ..., ap).

Let Z be an m-model of S, and let S” be obtained by applying Rule 5 to S.
Then {(a,b): R, (b,2): f,(a,Y):(Ro f)} C S and z € 7. Thus 27 is an
f-successor of an R-successor of aZ in dom (). By definition, 2% € Mfzof, and,
since Z is an m-model of S, YZ = Mfzof. Hence zZ € Y7, and thus Z satisfies
Su{z:Y}=29"

(Lemma 15.3:) Let S be a complete, Y-consistent, and clash-free constraint
system involving concrete and multiset variables {w1,..., 2, Xi,..., X, },
and let * be a solution for Sy. In particular, we have {{i; | z;:X; € S}} C X;
for all multiset variables X; occurring in S. To define an m-model for S, we
first define a “quasi-model” 7' as follows:

!

AT = 1y,
! .

al’ := a for abstract variables a € 74,
1 N .

2T := 2 for concrete variables z € 7,
U > . .

X7 := X for multiset variables X € o,

!

AT .= {be AT | b: A € S} for concept names A € N,
RT = {(a,b) € AT x AT | (a,b): R € S} for role names R € N,

b if (e,b):f € Sforbe 14,
o) =X % if (c,x):f € S for x € 5,
undefined else.

for feature names f € Np.

The interpretation of feature names f is well-defined because S is clash-free
and contains no forks. The only reason why Z' might not be an m-model of S
is the following. An abstract individual @ may have less R-successors having
an f-successor in dom(X) than required by the solution for the corresponding
multiset variable X;, that is, for constraints (a, X;): (Rof) € S, we might have
Mﬁ?f - X;. Due to the absence of universal value restrictions, an m-model
T of S can be obtained from Z' by simply adding R-successors d®/7 and the
lacking R o f-successors §7/7. More precisely, for a multiset variable X with
(a,X):(Ro f) €S, let

XN\ M = g 90,
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Then
AT =ATw U {dRI | e X\ MY,
(a,X):(Rof)€S
AT = AT
RT':=R"U U  {(a,dV)] 7 € X\ M/}
(a,X):(Rof)€S

for role names R € Ng,

(b it (c,b):f € S,
T if (c,x):f €8S,
f*(e) == ' ) f_ for feature names f € Np
Tk if c = ditli
undefined else.

\

Clearly, for two abstract variables a # b we have a® # b%. Thus, it remains to
show that 7 satisfies all constraints in S. This can be easily done by induction
on the structure of concepts. By construction of Z, X; = Mﬁc’f for all multiset
variables with (a, X;): (Ro f) € S. Furthermore, * being a solution for Sy
implies that Z satisfies all ¥-constraints in S. By definition, Z satisfies all
constraints of the form (a,b) : R, (a,b) : f, (a,x): f, and b: A for concept
names A. Since S is clash-free, 7 satisfies all constraints of the form b:—A.
By induction and because S is complete, 7 satisfies all constraints of the form
a:(C1MCy), a:(Cy U Cy), and a:(IR.C) for role or feature names R.

(Lemma 15.4:) Obviously, a constraint system containing a clash cannot have
an m-model. For Y-consistency, we show that an m-model 7 of S yields a
solution of the conjunction Sy, which is defined in Definition 14 as follows:

N\ Ploa,...,o0) A N\ {ai |2V € S CY

P(at,...,an)ES Y occurs in S

Due to Line 17 of Definition 14, Z satisfies all constraints of the form P(ay,
..., p) € S, and thus the first part of Sy,. Line 18 of Definition 14 implies that
7 satisfies the inclusions in Sy, when read with set semantics. Now, if Y occurs
in S, then, by definition of the semantics, Mfzof =Y7Z for (a,Y):(Ro f) € S.
Since Z is an m-model, all R-successors of a in S are interpreted as different
objects, and thus Y% = {{af | ;: Y € S}}. Thus, Z also satisfies the second
part of Ss.

(Lemma 15.5:) Termination is an immediate consequence of the fact that (i)
the relational structure of the constraint systems generated by the tableau
algorithm are trees, (ii) all concepts in constraints added by the completion
rules are subconcepts of the concept Cy, whose number is linear in the length
of C, (iii) these trees are of bounded width and breadth, and that (iv) these
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trees are generated in a monotonic way, i.e., no constraints are removed. Prop-
erties (i), (i), and (iv) are an immediate consequence of the definition of the
completion rules. Property (iii) is due to the fact that (iii)’ the (maximum)
length of concepts occurring in constraints on a successor node of a is less
than the (maximum) length of concepts in constraints on a and (iii)” the gen-
eration of new successors is triggered by constraints of the form a:C (Rule 3
and 4) or (a:Y):(Ro f) (Rule 5). Each such constraint triggers at most once
the generation of new variables. To see that Property (iv) holds, we eliminate
forks in such a way that “old” variables are kept in the constraint system and,
if replacement is necessary, new variables are replaced with “old” ones. O

Remark 16 In the proof of Lemma 15.3, the extension of Z' to an m-model
7 of a complete and clash-free constraint system was only possible because we
disallowed the use of universal value restriction: This enables us to add lacking
Ro f-successors for some a without the necessity to check again whether these
new R-successors satisfy all universal value restrictions a:VR.C'.

As an immediate consequence of Lemma 15, we have the following decidability
result.

Theorem 17 If ¥ is a concrete domain such that S-consistency is decidable,
then satisfiability of EL(X)-concepts is decidable.

In Section 5.3, we will show decidability of X-consistency for various concrete
domains involving min, max, count, and comparisons (possibly with constants).
Next, we will describe a decidable Description Logic with concrete domains
and aggregation functions that is propositionally closed.

5.2 Decidability of ACC(X)~

So far, we have only proved decidability of satisfiability of EL(X)-concepts.
However, £E£(X) is not closed under negation, and thus subsumption cannot be
reduced to satisfiability.® Closing ££(3) under negation, one obtains AL (Y),
and the key problem one encounters when trying to extend the tableau algo-
rithm to decide satisfiability of ALC(X)-concepts (and thus also subsumption
of ALC(X)) was already discussed in Remark 16, i.e., R-successors required by
a solution of a multiset variable Y cannot be simply added to a quasi-model
since they might be subject to universal value restrictions. More importantly,
generating a “prophylactic” R-successor from which the missing ones could be
copied does not even work for the aggregation functions min, max, and count.

3 So far, it is unclear for which ¥ subsumption of ££(X)-concepts is decidable—the
only exceptions are the domains mentioned in Theorem 26.
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For example, consider the following concept

P<,(count(Ro f))MIVR. Tx(f) N
P.7(max(R o h)) M P<z(min(R o h)) M3R.P_,(h)

Let a be an instance of this concept. The first conjunct ensures that a has at
most one R-successor with an f-successor in dom(X). The universal restric-
tion implies that each R-successor of a has an f-successor in dom(X). Finally,
the second line implies that a has at least three R-successors, and thus this
concept is unsatisfiable. This interaction between universal value restrictions
and concrete domain predicates seems to prohibit to do first reasoning on
the abstract domain, then on the concrete domain, and then stop. In con-
trast, it seems to require various steps back and forth between abstract and
concrete reasoning, for which one would need to guarantee termination while
not corrupting correctness. The undecidability results in Section 4 imply that
this is possible only for rather restricted concrete domains. Hence we consider
ALC(X) ™, a propositionally closed restriction of ALC(X) where this interaction
cannot occur.

Definition 18 Let C', D be ALC(X)-concepts where C' is a sub-expression of
D and let R = Ry --- R,, be a (possibly empty) chain of role or feature names.
Then C' is at level R in D iff*

e R is empty and C' = D,

e D=-D; and C 1is at level R in Dy, or

e D=DMDy or D= DDy and C is at level R in Dy or D, or
e D=HdR.D; or D=VYR.D{, R= RR/, and C is at level R" in D;.

An ALC(X)-concept D is an ALC(X)~-concept if, whenever a concept of the
form P(.... fi...fxT(Ro f),...) is at level R in D, then no concept of the
form AR.C' or VR.C' s at level Rfy ... fr, in D.

For example,

dR.(BTVS.Ps(h, fmax(T o g)))
is an ALC(X)~-concept, but
JR.(BNYS.Ps (h, fmax(T o ¢))) NYR.ISYF.IT.A
is not an ALC(X)~-concept because Ps (-, fmax(T'og)) occurs on level RS in it,

and an existential restriction on 7" occurs at level RS f in it. Please note also
that ALC(X)~ is not an extension of EL(X). For example, 3R. AN P(T(Ro f))

4 Please note that a concept can be at several levels in another one.
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is an EL(X)-concept, but not an ALC(X) -concept. Finally, it is easily verified
that the set of ALC(X) -concepts is closed under negation.

In the following, we will present an extended tableau algorithm that de-
cides satisfiability (and thus also subsumption) of ALC(X)~-concepts, provided
that Y-consistency is decidable. The extended algorithm works on ALC(X)™-
concepts in negation normal form (NNF), i.e., concepts where negation occurs
in front of concept names only.

This normal form is more complex than usual, and it depends on the aggrega-
tion functions available. In the following, we assume that the concrete domain
Y is as defined in Corollary 25, i.e., the only aggregation functions considered
are min, max, and count.

In the definition of the NNF, we use an abbreviation NC(u) that describes
those individuals having no u-successors in the concrete domain, which is ex-
plained in detail after the definition. For aggregated features u, NC(u) depends
on the aggregation function in u, and is defined differently for count and min
or max because the former is defined on all finite multisets, whereas the latter
are undefined on the empty multiset.

Definition 19 (NNF) For a feature chain uw = fi ... fy, define

AMu)=Ts(f)UTs(fifo)U...UTs(fr- fr)s

where Ty, denotes the unary concrete predicate for the concrete domain dom(X).
Again, we use T 4 as an abbreviation for A1l —A, and we use 1L, as an ab-
breviation for AT —=A. For a concrete feature u, NC(u) is defined as follows:

;

NC(a) if w=fi...frmin(Ro f)
() Afree i) UV VASYRYET, Y 0 fi,,,meax(ROf)

)\(fl .. flc) |_|Vf1. .. kaJ_A qu = f1 .. .kaOUI‘lt(RO f)

An ALC(X)~-concept is in negation normal form (NNF) iff negation occurs
only in front of concept names. If ¥ is admissible,® each ALC(Z)™ -concept
can be transformed into NNF' by pushing negation inwards, making use of the

5 See Definition 4.
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following equivalences:

ﬂ(CLID)E—!CI_I—!D —|(C|_|D>E—|CI_|—|D -—C' =C
~(3R.C) = (YR.~C) ~(YR.C) = (3R.~C)

=(P(uy, ... up)) = Puy,...,u,) U LI NC(uy) ,

1<i<n
where P is the concrete predicate for the negation of P.

All but the last equivalence of the above definition are obvious. The last one
is due to the fact that, for each interpretation Z and concrete feature u, a is
an instance of NC(u) iff @ has no u-successor in dom(X).

w= fi...fr: For a having no u-successor in dom(X), there are two possibili-

ties.

(i) The feature chain “goes too early” into the concrete domain, i.e, there is
an ¢ < k such that a has an f; ... fi-successor in the concrete domain.
This case is covered by A(fi ... fr_1).

(ii) The feature chain “remains” in the abstract domain (including the case
where it “breaks too early”). This case is covered by the second disjunct
of NC(u).

uw=fi...frT(Rof) for T € {min,max}: Again, there are two possibilities

for a having no u-successor in dom(Y).

(i) a has no f;... fy-successor in A%, This is the case if (i)’ a has, for some
(< k,an f;... frsuccessor in dom(X), or if (i) a has, for some 1 < ¢ < k,
an fi ... fe-successor in A” having no f,;;-successor. Case (i)’ is covered
by A(f1 ... fr), and case (i)"” by the second disjunct.

(ii) @ has an f; ... fr-successor o’ € AT and T=(M°/) is undefined. Since (on
finite multisets) min and max are undefined only on the empty set, the
second disjunct also covers this case.

w= fi...frcount(R o f): Analogously to the previous case, with the only dif-
ference that, since count is defined on all finite multisets, (ii) cannot occur
and thus the second disjunct correctly covers case (i)”.

To obtain a sound and complete tableau algorithm for concepts involving uni-
versal value restrictions, we extend the tableau algorithm defined in Section 5.1
by Rule 6 in Figure 6.

6. Universal value restriction: If a: (VR.C') € S for a feature or
role name R and if there is an R-successor b of a with b: C' € S, then
S —=Su{b:C}

Fig. 6. The completion rule for universal value restrictions.
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We use the same technical lemma as in Section 5.1 to show that the tableau
algorithm decides satisfiability (and thus subsumption) of ALC(X) -concepts.

Lemma 20 Let ¥ be an admissible concrete domain with aggregation func-
tions min, max, and count, let Cy be an ALC(X) ™ -concept in NNF, and let S
be a constraint system obtained by applying the modified completion rules to

{ag:Ch}.

(1) If Cy is satisfiable, then {ag:Cy} has an m-model.

(2) Let R be a completion rule that can be applied to S. Then S is satisfiable
iff one of the systems S; obtained by applying R to S is satisfiable.

(3) If S is a complete, S-consistent, and clash-free constraint system, then S
has an m-model.

(4) If S contains a clash or is not S-consistent, then S does not have an
m-model.

(5) The tableau algorithm terminates when applied to {ag:Cy}.

PROOF. We prove only those parts of Lemma 20 that are different from
those in Lemma 15.

(Lemma 20.2 (i)=-(ii):) Rule 6 is standard; see, e.g., [2].

(Lemma 20.3:) An m-model Z for a clash-free, complete, and Y-consistent
constraint system S can be defined in a way similar to the one in the proof
of Lemma 15.3. Let S be a clash-free, complete, and Y-consistent constraint
system, * a solution for Sy, and Z' the “quasi-model” of S as defined in the
proof of Lemma 15.3. Then Z' can be extended in the same way to an m-
model of S as in the proof of Lemma 15.3 since the additional elements d/J
are not subject to universal value restrictions due to the syntactic restriction

of ALC(X)~.

The proof of Lemma 20.4 is similar to the proof of Lemma 15.4. Again, an
m-model of S obviously yields a solution for Sty..

The proof of Lemma 20.5 is similar to the proof of Lemma 15.5 with the
additional observation that also Rule 6 adds only constraints that are shorter
than those that triggered the applicability of this rule. O

As a consequence, we have the following decidability result.
Theorem 21 If Y is an admissible concrete domain such that
e agg(Y) = {min, max, count} and

e Y.-consistency is decidable,
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then satisfiability and subsumption of ALC(X)™ -concepts is decidable.

This result is not as generic as the decidability result for EL(X)-concepts
in that it is concerned with a fixed set of aggregation functions. It could
have been formulated more generically by using an NNF with a predicate
undefined(I'(Y')) on aggregated multiset variables. However, this would have
been unnecessarily complicated and would not have given any new insights.
Thus, to adapt the tableau algorithm to concrete domains with other aggrega-
tion functions, the NNF has to be modified appropriately. The result applies
to all aggregation functions for which this is possible. For example, sum could
be treated in the same way as count.

In the proof of the soundness of the algorithm, “copies” of abstract variables
were used to generate abstract individuals that are required by the solution of
the concrete constraints. This was only possible due to the syntactic restriction
of ACC(X)~. In Section 5.4, we will see that this restriction can be removed
for certain concrete domains involving only the aggregation functions min and
max.

5.3  Concrete domains for which Y-consistency is decidable

In Theorem 17, we have seen that decidability of Y-consistency implies de-
cidability of satisfiability of EL(X)-concepts. The same condition implies that
satisfiability and subsumption of ALC ()~ -concepts is decidable (Theorem 21).
In this section, we will give examples for concrete domains for which -
consistency is indeed decidable. Basically, the behaviour of aggregation func-
tions is axiomatised so that aggregated multiset variables ['(Y") can be replaced
by individual variables yp, a technique also used in [34]. For dom(X) the set
of non-negative integers, integers, or rational numbers, the relations <, >,
=, <, and > are defined as usual. Furthermore, for n € dom(X), the unary
predicates =, <,, >, >, <, are comparisons with n.

Lemma 22 If ¥ is a concrete domain such that

e dom(X) is the set of non-negative integers, integers, or rational numbers,
b pred(2> = {P<7 PZ? P>7 PS? P:} U Unedom(E){P§n7 PZn? P>n7 P<n7 P:n}7 and
e agg(L) = {min, max]},

then Y-consistency is decidable.

Obviously, each ¥ in Lemma 22 satisfies the first two properties in the defini-
tion of admissibility (Definition 4), and the third one follows from the proof of
Lemma 22. Thus each ¥ in Lemma 22 satisfies all conditions of Theorem 17
and 21.
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PROQOF. Let S be a constraint system, let ¥ be defined as in the precondition
of Lemma 22, and let Sy, be the conjunction of ¥-constraints in S as defined
in Definition 14.

Y-consistency of S is equivalent to satisfiability of Sy and is decided by trans-
forming Sy into a set Dg of linear (in)equalities without aggregation functions
that is satisfiable iff Sy is satisfiable. Satisfiability of Dg can then easily be
decided using—depending on the concrete domain—Ilinear or integer program-
ming [30]. To this purpose, for each term max(Y’) (resp. min(Y)) occurring in
Sy, a new variable ymax (resp. ymin) is introduced in an intermediate set of con-
straints DY. More precisely, DY is the set of all concrete predicates P(aq, az) in
Sy, where each occurrence of max(Y) is replaced by ymax, and each occurrence
of min(Y") is replaced by ymin. Then Dg is obtained from DY by replacing
constraints by appropriate (in)equalities and adding axioms to capture the
interaction between min(Y), max(Y) and z:Y, i.e.,

DS = {ymin < Ymax | Ymin OT Ymax OCCUTS in D,IS'} U
{Ymin < 2 | Ymin occurs in D and (2:Y) € S} U

{Ymax = 2 | Ymax OCcurs in Dy and (2:Y) € S} U

{x >0y | Pu€{P,P>,P., P.,P_} and Pu(z,y) € D} U
{r x<in|Py €{P.,, P P P P_}and P (z) € Dy}

Claim 23 Dy is satisfiable iff S is Y-consistent.

The only constraints imposed on min(Y") (resp. max(Y")) is that min(Y’) is less
than or equal to (resp. max(Y) is greater than or equal to) each element in
Y. Moreover, the only elements that are required to be in Y are those x; with
x; Y € S, the minimum, and the maximum of Y. Each solution of Sy, is
clearly also a solution of Dg. Now suppose we have a solution of Dg where
& € dom(X) is the value for each variable x in Dg. Then we can define solutions
Y for multiset variables Y in Sy, by

Vo= i | 2:Y € SW U Limin max ),

which clearly yields finite multisets. Since we started from a solution of Dy,
this solution satisfies all predicate restrictions in S. Furthermore, the solution

satisfies max(Y) = fmax and min(Y’) = §min. By definition, this solution also
satisfies the multiset inclusion conjuncts in Sy. O

This axiomatisation of the behaviour of aggregation functions can also be
extended to count.

Lemma 24 If Y is a concrete domain such that
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e dom(X) is the set of non-negative integers, integers, or rational numbers,
b pred(2> = {P<7 PZ? P>7 PS? P:} U Unedom(E){P§n7 PZn? P>n7 P<n7 P:n}7 and
e agg(¥) = {min, max, count},

then Y-consistency is decidable.

PROOF. The decision procedure is similar to the one given in the proof
of Lemma 22, with the only difference that, in addition, aggregated multiset
variables involving count are also replaced by appropriate individual variables
Yeount, and that the behaviour of count is axiomatised. To this purpose, Boolean
combinations of linear inequalities D, . are added to Dg for each aggregated
multiset variable count(Y’) occurring in S.

More precisely, given a constraint system S and a concrete domain X as de-
scribed in Lemma 24, DY contains all conjuncts in Sy, where each occurrence
of max(Y') is replaced by ymax, €ach occurrence of min(Y’) by ymin, and each
occurrence of count(Y) by ycount- Then fo is defined as follows:

D¥ .= DsUU

Yeount OCCUTS in DY Dycounn

where Dg is defined as in the proof of Lemma 22 (now with the additional
variables yeount), and Dy, is defined as follows. For better readability, we
use xy as a shorthand for those concrete variables known to belong to Y, i.e.,
vy :={x € s |2:Y € S}, and we use #zy for the cardinality of xy.

Dy = ( (#xy = Yeount N Vaczy T = Ymin A Ve, T = ymax) %
(#IY = Yeount — L A Va;exy (x = Ymin VT = ymaX>) \%
(#2v < Yeount — 2)) A
Yeount € Z A Yeount > 0

The disjunction is necessary because we have to distinguish between the case
where some of the concrete variables known to belong to a multiset coincide
with its minimum and/or maximum (in which case the cardinality can be
equal to #xy, resp. #xy + 1), and the case where both the minimum and the
maximum are distinct from values for concrete variables in xy. This distinction
is necessary, for example, to capture that

Y A =4(x) A >g(max(Y)) A <y(min(Y"))

implies that the cardinality of a solution for Y is greater than or equal to
#CCY + 2= 3.
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Transforming D, into disjunctive normal form, satisfiability of D? can be
decided by testing separately each disjunct together with the (in)equalities
stemming from Dg. Thus we only need to decide satisfiability of a set of
(in)equalities which, again, can be decided using linear, integer, or mixed
programming techniques; see, for example, [30]. O

Taking the results of this section together with the results of Section 5.1 and
5.2, we obtain the following decidability result.

Corollary 25 If ¥ is a concrete domain such that

e dom(X) is the set of non-negative integers, integers, or rational numbers,
[ ) pred(Z) = {P<, Pz,P>,P§,P:} U Unedom(z){P§n7 Pzn, P>n, P<n, P:n}, and
e agg(Y) = {min, max, count},

then satisfiability of EL(X)-concepts as well as satisfiability and subsumption
of ALC(X) ™ -concepts is decidable.

5.4 Decidability of ACC(DT)

min

Finally, we present our last decidability result, namely the one for subsumption
and satisfiability of ALC(X) for certain concrete domains ¥ involving only the
aggregation functions min, and max.

Theorem 26 If X is a concrete domain such that

e X is admussible,

o pred(X) contains a binary relation symbol P— for equality in X2, and a binary
relation symbol P< for a linear ordering on dom(X), and

e agg(Y) = {min, max},

then satisfiability and subsumption of ALC(X)-concepts is decidable.

We suppose that min and max have the standard semantics as defined in
Remark 9 for <= P..

PROOF. In the following, a concrete domain as described in the precon-
ditions of Theorem 26 is called Dp2*. One possibility to prove Theorem 26
would be to further modify the tableau algorithm from Section 5.2. However,
there is a shorter proof, namely by a translation to ALCP (D), a natural ex-
tension of ALC(D) introduced in [20]. More precisely, each ALC(DRaX)-concept

D can be translated into an ALCP(D)-concept ¢(D) such that D is satisfiable
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iff ¢(D) is satisfiable. In [20], satisfiability of ALCP(D)-concepts was shown
to be decidable, provided that D is admissible. Thus admissibility of Dm2*

min

also implies decidability of the satisfiability of ALC (DmaX)-concepts. Moreover,

min

ALC (DY) is closed under negation, hence subsumption can be reduced to

(un)satisfiability. We start by introducing AP (D).

Definition 27 (Syntax and semantics of ACP (D)) If, for 1 <i <m, R;
is a role or a feature name, then w = Ry ... R, is called role/feature chain.
For a role/feature chain v and a € A*, b € AT Udom(Z), we have (a,b) € u*
ioff there are aq,. .., apm_1 with

(a,a1) € Ry, (am-1,b) € R}, and (a;,a;41) € Riy for all 1 <i<m —2,
where, for a feature name f, (w,z) € f*iff ff(w) = z.

ALCP (D) is obtained from ALC(D) by adding concepts of the form

Vi, ..., uy,.P (generalised value restriction) and
Juy, ..., un. P (generalised exists restriction).
where P is a concrete predicate of arity n and uy,...,u, are role/feature

chains.

An ALCP(D) interpretation must satisfy, additionally,

(Vuy,...,u,.P)r = {x € AT | For all yy,...,y, with (x,y;) € ul for all
1 <i<n, we have (y1,...,yn) € P},

(Fui, ... uy.PYE={x € AT | For all1 <i<n there isy; with (v,y;) € uf
and (yi,---,yn) € P7}.

For pure feature chains uq, ..., u,, the concept Juy, ..., u,.P is, by definition,
equivalent to P(uy,. .., uy,).

The idea of the translation from AL(DR) into ALP(D) is to introduce
new feature names fmin(rof) and fmax(ros) and to use the new generalised re-
strictions to make sure that fmin(ros)() coincides with the minimum of x’s
R o f-successors.

The translation ¢ from AL (Dfax) to ALCP(D) is defined inductively on the
structure of concepts and trivial for all concept forming operators (the exact
definition is given below); the only changes it makes are for aggregated fea-
tures: Whenever features of the form f; ... fymin(Ro f) (vesp. fi ... frmax(Ro
f)) occur, new feature names fmin(rof) (reSp. fmax(rof)) are introduced. Then
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these aggregated features are replaced by feature chains fi ... fi fmin(ros) (resp.
fi... fkfmaX(Rof)). Finally, we make sure that the fi ... f fmin(ros)-successor is
the minimum of all f;... fpRf-successors. For this, we add concepts of the
form 6

3(fr--- fuRf), (fi-- fefmin(rop))- P=) M
(= free S )y (fre- - feR fmin(rop))- Pe).

The first conjunct makes sure that the fi ... fi fmin(roy)-successor (exists and)
coincides with one of the f; ... fx Rf-successors. The second conjunct ensures
that none of the fi... fiRf-successors is smaller than the fi... fi fmin(ros)-
successor. For max, we add similar concepts. Please note that we cannot re-
place the negated existential quantifier by a universal one since, in AP (D),
the universal one quantifies over all role-successors, and not only over those
in the concrete domain. Thus using the universal quantifier would require all
fi ... frRf-successors to be in the concrete domain—in contrast to the seman-
tics of ALC(X). More precisely, ¢ is defined as follows:

¢(CN D) = ¢(C)Ne(D), ¢(C'UD) = ¢(C)Ue(D)
#(3R.C) = 3JR.¢(C), #(VR.C) =VR.¢(C)
O(P(ury ... up)) = 3o(ur)y ..., d(uy). P11 1§|:|§nw(ui),

where, for a concrete feature u and T" € {min, max}

U if v is a feature chain
u) =
fio fefrrepy fu=fi...fiT(Ro f)
Ta if u is a feature chain

3(fr- SeRf), (fi oo freSfmax(rog))-P=T1

V) =13 =3(fi... fiRS), (f1-- - fefmax(rof))-P> if u=fi...frmax(Ro f)

A(fr - SeRE), (fr - fafmin(rop))-P=T1 e .
B fiP) oo fiR by ).Pe S

By construction, each model of an AL (DmaX)-concept D can be transformed
into a model of ¢(D) by defining fF . () := [ (Ro f)*(x) for T € {min, max}.
Vice versa, the correctness proof in [20] implies that ACCP (D) has the finite
model property. Hence each satisfiable ALCP(D)-concept ¢(D) has a finite

model Z which is, by construction, also a model of D. O

6 We use Ju,v.P- as an abbreviation for Jv, u.PS, and Ju,v.P~ as an abbreviation
for Ju,v.P<.
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Intuitively, the reason for decidability of AL (DM2X) can be seen in the fact
that min, max only depend on the “boundaries” of a multiset and not on its
“inside” —in contrast to all other standard aggregation functions such as sum

or count.

6 Related Work and Conclusion

Reasoning with constraints involving aggregation functions is a crucial task
for many advanced information systems like decision support and on-line-
analytical processing systems, data warehouses, and (statistical) databases
[34,18,28,14,26,36]. The more the amount of data that are processed by these
systems grows, the more important aggregation functions become for sum-
marising, consolidating, and analysing these large amounts of data. Hence,
traditional techniques for query rewriting, query optimisation, view mainte-
nance, and intensional reasoning must be extended such that they are able to
cope with aggregation functions. Since Description Logics have been proved
useful for these tasks, we have extended them with aggregation functions and
investigated the effect of this extension on the decidability of the subsumption
and the satisfiability problem.

The two undecidability results presented in this paper indicate that this task
will be difficult. The aggregation functions min, max, and sum that suffice to
obtain undecidability are among the “well-behaved” ones: aggregation func-
tions like average are much more difficult to handle. For example, min and max
are multiple-invariant (i.e., the multiplicity of an element of the multiset does
not matter), and min, max, and sum are monotonic—in contrast to average.
Furthermore, min, max, and sum are distributive, i.e., for an aggregation func-
tion agg € {min, max, sum} and two disjoint multisets M, M’, agg(MUM') can
be computed using agg(M ) and agg(M') only—in contrast to average. Hence,
our undecidability result cannot be said to be caused by using too powerful
aggregation functions.

Arguing from another perspective, extending AL (D) with aggregation func-
tions yields a rather expressive family of Description Logics, and thus it might
not be very surprising that a variety of these Description Logics is undecid-
able. In contrast, FL is, to our knowledge, the weakest Description Logic ever
considered and thus the undecidability result of FLy(X) with min, max, and
sum only is rather surprising.

In [28], the expressive power of Datalog with constants, built-in predicates
for comparisons (with constants), and aggregation functions is investigated.
The undecidability results described there are orthogonal to those presented
here since (1) our pre-requisites are weaker and (2) in contrast to Datalog, the
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Description Logics described here do not provide any recursion mechanisms.
For (1), for example, the results described in [28] concern fixed domains such
as the non-negative integers, whereas our results involve domains containing
the non-negative integers.

In [34], the authors investigate the complexity of the satisfiability problem
of aggregation constraints, i.e., sets of equations over aggregated multiset
variables and element variables. Besides some decidability results (with ex-
act bounds), some undecidability results are presented. These do not imply
those described here since in [34], all undecidability results either involve the
aggregation functions sum and count, and possibly average.

Investigating these undecidability results more closely, we identify two sources
of this complexity: the aggregation function sum and the interaction between
(local) universal quantification in concepts of the form VR.C' and aggregation
functions. Indeed, the decidability result for AL (DR2) shows that min and
max alone are far less expressive than in combination with sum—which is not
too surprising. To obtain a generic decidability result, we further restricted the
underlying Description Logic to EL, presented a tableau algorithm that decides
satisfiability of £EL(3)-concepts, and finally showed how this algorithm can be
extended to decide satisfiability of ALC(X) -concepts. The logic ALC(X)~ was
designed such that the complex interaction between universal value restrictions
and aggregation functions mentioned above do not arise. By construction,
ALC(X)~ is closed under negation, and thus the tableau algorithm can also be

used to decide subsumption of ALC(X)~-concepts.

This tableau algorithm is parameterised by a decision procedure for satisfiabil-
ity of certain conjunctions of concrete predicates involving aggregation func-
tions, i.e., Y-consistency. Hence any concrete domain for which Y-consistency
is decidable can be used to form a logic ALC(X)~ for which intensional rea-
soning is decidable—provided that the negation normal form for concepts is
adapted accordingly. In this paper, we showed that the (non-negative) inte-
gers or rational numbers with comparisons (possibly with constants) and ag-
gregation functions min, max, and count are among those decidable concrete
domains. However, we did not exhaustively classify all “standard” concrete
domains, but believe that it is interesting to find other expressive concrete
domains with aggregation functions for which ¥-consistency is decidable. For
example, it would be interesting to see the consequence of replacing the aggre-
gation function count in Lemma 22 by sum. It should be noted that adding sum
to the concrete domain considered in the lemma makes Y¥-consistency undecid-
able. This is as an easy consequence of one of Theorem 3.1 and Corollary 3.1
in [34].

These decidability results are orthogonal to the decidability results in [31] for
containment of conjunctive queries with aggregation in the query head: we
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have less powerful aggregation functions, but allow to use them in a more
complex way. More precisely, we allow to build concepts in which aggregation
occurs at various levels in nested concepts. The exact connection between our
decidable DLs ££(X) and ALC(X)~ and conjunctive queries with aggregation
is a topic for future research.

Finally, we would like to point out that, in the presence of aggregation func-
tions and for data warehouse, OLAP, and similar applications, another infer-
ence problem plays a crucial role, which is unrelated to logical standard infer-
ence problems such as satisfiability and subsumption, namely summarisability
[25]. Assume you have already summarised some base data up to a certain
level of granularity using certain aggregation functions. Next, the same base
data needs to be summarised again up to (possibly) a different level of granu-
larity and (possibly) using different aggregation functions. In case this second
summary can be computed from the first one, this fact can be exploited since
(a) the summarised data is probably smaller and (b) the base data might no
longer be available. Thus deciding this question of “what can be computed
from what” can help in semantic query optimisation, and hence is subject to
a variety of investigations. Various formalisms have been introduced that allow
to specify how data can be summarised, i.e., formalisms to specify dimensions
along which data can be summarised, and investigated w.r.t. the complex-
ity of summarisability, see e.g., [23,33,24]. These formalisms vary w.r.t. their
expressive power, and allow, roughly speaking, to populate a given, partially
ordered, finite set of categories. For example, city, province, and state are cate-
gories that can be populated with Toronto, Alberta, and Canada, respectively.
The partial order on the categories is then “transferred” in a appropriately
restricted form to the instances. In [23], it is shown that, for distributive ag-
gregation functions such as min, max, count, and sum and a given population
of categories (i.e., a given model), it is co-NP-complete to decide whether the
summary up to a certain category can be computed from other summaries to
other categories . Please note that this result is restricted to summarisation
along a single dimension and w.r.t. a single aggregation function.

Due to the tree model property of most description logics and the DAG-like
structure of dimensions, the above mentioned frameworks cannot be directly
mapped into description logics. Moreover, the standard description logic infer-
ence problems take into account all interpretations or all models of a knowl-
edge base. In contrast, summarisability in the above mentioned frameworks
takes into account a single one. To the best of our knowledge, there is no
useful notion of summarisability in description logics. The introduction of this
inference problem and the investigation of its complexity will be part of future
investigations.
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