Extensions of Non-standard Inferences to
Description Logics with transitive Roles

Sebastian Brandt!, Anni-Yasmin Turhan!, and Ralf Kiisters? *

! Tnstitute for Theoretical Computer Science, TU Dresden, Germany
email: [astname@tcs.inf.tu-dresden.de
2 Theoretical Computer Science, CAU Kiel, Germany
email: kuesters@ti.informatik.uni-kiel.de

Abstract. Description Logics (DLs) are a family of knowledge represen-
tation formalisms used for terminological reasoning. They have a wide
range of applications such as medical knowledge-bases, or the semantic
web. Research on DLs has been focused on the development of sound
and complete inference algorithms to decide satisfiability and subsump-
tion for increasingly expressive DLs. Non-standard inferences are a group
of relatively new inference services which provide reasoning support for
the building, maintaining, and deployment of DL knowledge-bases. So
far, non-standard inferences are not available for very expressive DLs.
In this paper we present first results on non-standard inferences for DLs
with transitive roles. As a basis, we give a structural characterization
of subsumption for DLs where existential and value restrictions can be
imposed on transitive roles. We propose sound and complete algorithms
to compute the least common subsumer (Ics).

1 Introduction and Motivation

Description Logics (DLs) are a family of formalisms used to represent termino-
logical knowledge of a given application domain in a structured and well-defined
way. The basic notions of DLs are concept-descriptions and roles, representing
unary predicates and binary relations, respectively. Atomic concepts and con-
cept descriptions represent sets of individuals, whereas roles represent binary
relations between individuals [5]. The main characteristic of a DL is the set of
concept, constructors by which complex concept descriptions can be built from
atomic concepts and roles. In the present paper, we are concerned with the DL
FLET which provides the constructors conjunction (CT1D), existential restriction
(Fr.C), value restriction (Vr.C'), and the top concept (T).

In FLET, a role can be defined transitive. In this case it represents the tran-
sitive closure of a binary relation. Transitive roles appear naturally in many
application domains, such as medicine and process engineering [1]. Consider, for
instance, a machine that comprises several components each of which again con-
sists of several devices. A natural way to represent such a machine by means of

*

This work has been supported by the Deutsche Forschungsgemeinschaft, DFG
Project BA 1122/4-3.

DLs would be to use some has-part role to reflect its compositional structure. It
would be natural here to implicitly regard every part of a component also as a
part of the whole. To this end, a DL with transitive roles is necessary.

Inference problems for DLs are divided into so-called standard and non-
standard ones. Well known standard inference problems are satisfiability and
subsumption of concept descriptions. These are well investigated for a great
range of DLs. For many of them, sound and complete decision procedures could
be devised and lower and upper bounds for the computational complexity have
been found [12]. Many standard inference algorithms have been successfully ex-
tended to cope with transitive roles [14,13] and are put into practice in state of
the art DL Systems.

Prominent non-standard inferences are matching, the least common sub-
sumer (lcs), the most specific concept (msc), and, more recently, approxima-
tion. Non-standard inferences resulted from the experience with real-world DL-
knowledge bases (KBs), where standard inference algorithms sometimes did not
suffice for building and maintaining purposes. For example, the problem of how
to structure the application domain by means of concept definitions may not
be clear at the beginning of the modeling task. Moreover, the expressive power
of the DL under consideration sometimes makes it difficult to come up with a
faithful formal definition of the concept originally intended. To alleviate these
difficulties it is expedient to employ non-standard inferences [8].

The lcs was first mentioned as an inference problem for DLs in [11]. Given
two concept descriptions A and B in a description logic £, the lcs of A and B is
defined as the least (w.r.t. subsumption) concept description in £ subsuming A
and B. It has been argued in [8] that the lcs facilitates a “bottom-up”-approach
to the above mentioned modeling task: a domain expert can select a number of
intuitively related concept descriptions already existent in a KB and use the lcs
operation to automatically construct a new concept description representing the
closest, generalization of them.

Matching in DLs was first proposed in [7]. A matching problem (modulo
subsumption) consists of a concept description C' and a concept pattern D, i.e.,
a concept description with variables. Matching D against C' means finding a
substitution of variables in D by concept descriptions such that C' is subsumed
by the instantiated concept pattern D. Among other applications, matching can
be employed for queries in KBs: a domain expert unable to specify uniquely
the concept he is looking for in a KB can use a concept pattern to retrieve all
those concepts in the KB for which a matcher exists. The structural constraints
expressible by patterns exceed the capabilities of simple “wildcards” familiar
from ordinary search engines [8].

Approximation was first mentioned as a new inference problem in [4]. The
upper (lower) approximation of a concept description C'y from a DL £ is defined
as the least (greatest) concept description in another DL £, which subsumes (is
subsumed by) C;. Approximation can be used to make non-standard inferences
accessible to more expressive DLs by transferring a given inference problem to
a less expressive DL where at least an approximate solution can be computed.

Table 1. Syntax and semantics of FLE -concept descriptions.

||Construct name |Syntax| Semantics ||
top-concept T Az

conjunction cnb cTnpD*

existential restrictions| Ir.C' [{z € Az | Fy: (z,y) ErT Ay € CT}
value restrictions Vr.C [{z € Az | Vy:(z,y) ert =y e CT}
||transitive roles | r+ | U<, ()™ ||

Another application of approximation lies in user-friendly DL-systems offering
a simplified frame-based view on KBs defined in a more expressive background
DL [6]. Here approximation can be used to compute simple frame-based repre-
sentations of otherwise overwhelmingly complicated concept descriptions.

In contrast to standard inference problems, comparatively little research ex-
ists on non-standard inferences in DLs with transitive roles [2]. If existential
restrictions can be expressed in a DL then the inferences matching and approxi-
mation are defined by means of the lcs operation. This central role of the lcs for
non-standard inferences has lead us to make this inference problem the first to
be extended to FLET. Experience with other DLs has shown that to find an lcs
algorithm is the crucial step towards algorithms for other non-standard infer-
ences such as matching and approximation. For this reason the lcs in F££T may
be regarded as the foundation of several other non-standard inferences in FLEY.
After introducing some basic notions and notation, our first step towards the
les will be a characterization of subsumption for FLE-concept descriptions by
means of so-called description graphs. We shall see that for two FLE+-concept
descriptions A and B, subsumption (A C B) holds if and only if there exists
a simulation relation from the description graph of B into the one of A. The
lcs inference of A and B is then defined as the graph product of the respective
description graphs.

As a result, we shall see that the lcs of a finite set of FLE -concept descrip-
tions always exists and is uniquely determined up to equivalence. Moreover, an
effective algorithm for the computation of the lcs will be provided.

All technical details and relevant proofs can be found in our technical report
[9]. Moreover, the problem of the lcs computation in two sublanguages of FLET,
namely F£§ and EC£7F, is also addressed in detail.

2 Preliminaries

DLs are based on the following sets of names: N¢ is the set of concept names,
and Npgis the set of non-transitive roles, and Ng is the set of transitive roles,
where Ng NN% = (). Concept descriptions are inductively defined starting from
the set of concept names and use the concept constructors shown in Table 1. The
DL FLE offers the top-concept, conjunction, existential, and value restrictions,
as displayed in Table 1. In FLE™, transitive roles can be used in existential and
value restrictions.

As usual, the semantics of a concept description is defined in terms of an
interpretation T = (A,-T). The domain A of 7 is a non-empty set and the
interpretation function - maps each concept name A € N to a set A7 C A and
each role name r € Ng UNZ to a binary relation 1/ C AxA. The extension of -
to arbitrary concept descriptions is defined inductively, as shown in the second
column of Table 1. Note that all concept descriptions in the above mentioned
DLs are satisfiable.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C' is
subsumed by the description D (C' C D) iff C! C D! for all interpretations Z;
C and D are equivalent (C = D) iff CC D and D C C.

In this paper we focus on the non-standard inference of computing the least
common subsumer (lcs).

Definition 1 (lcs). Given L-concept descriptions Cy, ..., C,, for some descrip-
tion logic L, the L-concept description C is the least common subsumer (lcs)
of C1,...,Cp (C =les(Ch,...,Cp) for short) iff (1) C; T C for alll <i <mn,
and (i) C is the least concept description with this property, i.e., if C' satisfies
C;CC foralll <i<mn, then CCC'.

The idea behind the lcs inference is to extract the commonalities of the input
concepts. The lcs is uniquely determined up to equivalence. Therefore it is jus-
tified to speak about “the” lcs instead of “an” lcs.

3 Least common subsumer for FLET

The lcs has already been investigated for sub-logics of FLET. The work of Baader
et al. [4, 3] investigates the computation of the lcs in FLE and its sublanguages.

As long as a sublanguage of FLE does not allow for both existential and
value restrictions it is comparatively easy to adapt the existing lcs algorithms
to transitive roles. In [9] this is done both for FLy, admitting only conjunction
and value restrictions, as well as for ££, where only conjunction and existential
restrictions are admitted. For ££7, it is possible to translate a concept C' into an
equivalent one in L. Thus, all the additional restrictions imposed by transitive
roles in C' are made explicit. This simple approach, however, does not work for
FLET -concept descriptions, as the following example illustrates.

Ezample 1. Consider the FLET-concept description Cey := (Vr.3r.A) M 3r.A,
where r is transitive. To explicitly satisfy the (transitive) value restriction, we
need to propagate Vr.3r.A to the existential restriction. This yields (Vr.3r.A) M
Ar.(A N 3Ir.ANVr.3r.A) which equals (Vr.3r.A) M 3Ir.(A M Cex). Obviously, an
attempt of exhaustive propagation would not terminate.

Hence, our first aim is to find a finite representation of FLE T -concept descrip-
tions in which the transitivity of roles is made explicit. Such a representation is
introduced by the following section.

3.1 Description Graphs

In this section we will not only introduce description graphs as a syntactic con-
struct but also provide a model-theoretic semantics for them which makes it
easier to examine the equivalence between a concept description and a descrip-
tion graphs directly.

Definition 2 (description graph). Let G := (V,E, v, v, lg) be a rooted,
directed, and connected graph with labeling functions for vertices and edges. The
labeling function (v assigns a set of concept descriptions to every vertex in V
and Cg assigns a label of the form Qr to every edge in E, where Q € {V,3}
andr € Ng U N};. An edge labeled Vr is called forall-edge, an edge labeled Ir
exists-edge. If every vertex v in G has at most one outgoing forall-edge per role
then it is called a description graph.

For the sake of simplicity, we use the notation (v Qrw) € E to express that (i)
(v,w) € E and (ii) {g(v,w) = {Qr}. Note that description graphs can be cyclic.
Like concept descriptions, description graphs are interpreted w.r.t. a model-
theoretic semantics to be introduced next.

Definition 3 (semantics of description graphs). Let G := (V, E, vy, ly,E)
be a description graph and let T := (A,-1) be an interpretation. A mapping
V- 247 \ 0 is called a model mapping iff for all vyw € V it holds that:

m(v) C CT for all C € ((v);

— if (wIrw) € E forr € Ng and x € n(v) then there erists some y € AT with
(z,y) €t and y € 7(w);

if wIrw) € E forr € NE and x € n(v) then there exists somey € AT with
(z,y) € (rD)t and y € n(w);

if W¥rw) € E forr € Ng and x € ©(v) then (z,y) € r1 implies y € w(w).

For a given x € AL, define T,z |= G iff there is a model mapping © with v €
m(vo). The semantics of G w.r.t. T is defined as G* := {x € AT | T, |= Go}.

There is a similarity between the semantics of description graphs and that of
concept descriptions as defined in Section 2. A (transitive) Ir-edge (v Ir w) like
an existential restriction implies a corresponding r-edge (r-path) for all witnesses
x € m(v) in the model. Similarly, every Vr-edge (vVrw) imposes restrictions on
every witness in the model reachable via an r-edge from some x € 7 (v).

Regarded as a description graph the syntax tree of every FLE-concept descrip-
tion C' is equivalent to C'. This, however, is not generally true of FL££+-concept
descriptions. Moreover, there are description graphs for which no equivalent
FLET -concept description exists. Ultimately, however, we are interested in de-
scription graphs guaranteed to represent concept descriptions. To this end, we
introduce six conditions to restrict description graphs further, leading to the
notion of simple description graphs. As a prerequisite, we need to specify the
notion of a simulation relation for description graphs.

Definition 4 (simulation relation). Fori € {1,2}, let G; := (V;, E;, v0i, lv;, (B;)
be description graphs. Then, Go = G1 iff there exists a relation R C Vo x Vi with:

1. (1)02,1)01) €ER

2. ly(v) N Ne CLly(v')N Ne for all (v,v') € R.

3. If (vQrw) € Ey and (v,v") € R then there exists a vertex w' € Vi such that
(v Qrw') € Ey and (w,w") € R.

For vertices v1 € Vi and va € Va, denote by Ga(va) = Gi(v1) the fact that a
simulation relation R exists between the subgraph of Go reachable from ve and
the subgraph of Gy reachable from vy. In particular, this implies (v2,v1) € R.

Definition 5 (simple description graph). Let G := (V, E,vg,ly,lg) be a
description graph. G is a simple description graph iff the following properties
hold.

1. W.r.t. a breadth-first search tree, G has no forall-forward edges and no cross
edges. Every exists-forward edge only connects vertices connected by a path
of exists-tree edges w.r.t. one transitive role.

2. If (voQorovy .. .Up—1Qn_1Tn—1v0) is a cycle in E with pairwise distinct
vertices then there exists one transitive role r with r; = r for all i.

3. If (vo Qor vy - .- V1 Qu_17v0) is a cycle in E with pairwise distinct vertices
and r € N}{ then vg has a Vr-successor.

4. If {(u¥rv),(uIrw)} C E then G(v) = G(w). If r € NL then there exists a
vertex w' such that (w¥rw') € E and G(v) = G(w').

5. If (uVrv) € E withr € N} then there exists a vertez v’ such that (vVrv') €
E and G(v) = G(v").

6. If B € ly(v) then Gp = G(v) for every vertex v € V.

The idea behind the above definition to is imitate the propagation of exis-
tential and value restrictions in the graph structure. For instance, Condition 4
ensures that no subgraph representing an existential restriction may be more
general that a corresponding subgraph representing a value restriction. Hence, a
value restriction must be propagated over all existential restrictions. Condition 5
similarly ensures that value restrictions over transitive roles are propagated to
deeper role levels, as Vr.A implies Vr.(AM (Vr.A)) and so on. Conditions 2 and 3
ensure that cycles cannot occur arbitrarily. By means of Condition 6, complex
concept descriptions are already represented in the structure of the description
graph. The first condition excludes a number of irregularities which would make
the proofs over description graphs more intricate.

The following lemma can be shown for all description graphs.

Lemma 1. For description graphs G and H it holds that H = G implies G C H.

Having defined syntax and semantics of description graphs in general the next
step is to translate FLEt-concept descriptions into equivalent description graphs.

3.2 Translation of FLET-concept descriptions into FLE 1 -description
graphs

To show that every FLEt-concept description has a corresponding FLEV-de-
scription graph we devise a suitable translation function. As a technical pre-
requisite, we require a normal form for FLE-concept descriptions, as introduced
in [3]. The purpose of this normal form is merely to flatten conjunctions, to
make the top-concept explicit, and to propagate value restrictions over existen-
tial restrictions. The problem of implicit information induced by transitive roles
remains untouched here.

Definition 6 (FL£ normalization rules). Let E, F be two FLET -concept de-
scriptions and r € Ng U N}z; a primitive role. The FLE-normalization rules are
defined as follows

1) vr. T — T 3) Vr.ENVrF —Vr.(ENF)
2) ENT—E 4) VYrENarF —Vr.ENIr(ENF)
5 EN(FNG) — ENFNG.

A concept description is in FLE-normal form if the FLE -normalization rules have
been applied to it exhaustively.

Each of the above normalization rules preserve equivalence and should be read
modulo commutativity of conjunction. It has been shown in [3] that exhaustive
application of these rules may produce concept descriptions of size exponential
in the size of the original. During the translation of an FLET-concept description
into an FLET-description tree the FLE-normalization rules need to be applied
only to the out most role-level of the FL£E¥-concept at a time.

The following definition provides the framework of the translation of FLE+-
concept descriptions into description graphs. For a given concept description C'
we start with an empty description graph G consisting only of a root vertex vg
with C' in its label. Then we exhaustively apply graph generation rules (defined
in detail in Figure 1) producing new vertices and edges. In this process we
distinguish three kinds of edges. The set E contains the edges of the underlying
spanning tree, in ET are the forward-edges induced by transitivity, and in E©
are self-loops or edges that connect a vertex with an ancestor vertex in w.r.t.
the spanning tree. As soon as no production rules are applicable, all non-atomic
concept, descriptions are removed from the label sets of G and the graph is
returned.

For the actual definition, a shorthand notation needs to be introduced first.
For a set {C4,...,Cy} of FLET-concept descriptions, let {C1,...,C,}* denote
the corresponding set in which (i) the FLET normalization rules defined above
have been applied exhaustively on the top most role-level of every C; and (ii)
every C; is split into its conjuncts. Observe that there is at most one value
restriction per role r in {C4,...,Cy}*.

Definition 7 (FLE'-description graph). Let C' be a FLET -concept descrip-
tion. The FLET-description graph G¢ s obtained by the following procedure:

Ra: If (Ir.C') € ly(v), (Vr.C") & lyv(v) for some C',C", and
there isno " € V : (v,3r,0") € EPUEY A {C'} = ty(v"),
thenif there is v; € V : v; appears in p(v) A by(v;) = {C"}",
then E© := EY U {(v,3r,v:)},
else V=V U{v'}, EP := EP U{(v,3r,v")}, ty(v) := {C"}".
Rav: If r € Ng, and {(3r.C"), (Vr.C")} C ly(v) for some C',C", and
there isno v € V : (v,3r,0") € EPUEY A {C'} = ty(v"),
thenif there is v; € V : v; appears in p(v) A by(v;) = {C'}*
then E© := EY U {(v,3r,v:)},
else V:=V U{v'}, EP := EP U{(v,3r,v")}, tv(v') := {C"}*.
Roy+: If r € NE, and {(3r.C"), (Vr.C")} C ly(v) for some C',C”, and
there is no v € V : (v,3r,0") € EPUE® A{C",¥r.C"} = tv(v"),
thenif there is v; € V : v; appears in p(v) A by(v;) = {C',¥r.C"}*
then E© := EY U {(v,3r,v:)},
else V:=V U{v'}, EP .= EP U{(v,3r,v")}, tv(v) := {C'",Vr.C"}*.
Ry: If r € Ng, and (Vr.C") € ly(v) for some C’, and
there is no v" € V : (v,Vr,0") € EP U EY
thenif there is v; € V : v; appears in p(v) A by(v;) = {C'}*
then E© := E© U {(v,Vr,v:)},
else V=V U{v'}, EP := EP U{(v,¥r,v")}, tv(v') := {C"}*.
Ry+: If re N, and (Vr.C") € ¢y(v) for some C', and
there is no v" € V : (v,Vr,0") € EP U EY
thenif there is v; € V : v; appears in p(v) A by(v;) = {C",Vr.C"}*
then E© := E© U {(v,Vr,v:)},
else V=V U{v'}, EP := EP U{(v,¥r,v")}, tv(v') := {C",¥r.C"}".
Rps: If r € NE, and {(v,3r,0"), (v",3r,0")} € EP and (v,3r,0") & B+
then Et := ET U {(v, 3r,v")}

Fig. 1. FLE1-Description Graph Generation Rules.

1. Initialize the sets V :={vo}, by = ly(vo) = {C}*, and
E:=FEt:= EP .= E© := .

2. Apply the FLET -description graph generation rules from Figure 1 erhaus-
tively to obtain G, := (V, E,vo, v, (g), where E= EP UE® UE™.

3. Reduce the label sets of vertices: Vv € Vi £i,(v) := {y(v) N N¢ .

4. return Go == (V, E, v, 04, ().

All non-atomic concept descriptions in the label sets of the vertices of G
are discarded afterwards because their information (as we shall see) is then
represented by the structure of the graph. It remains to define the generation
rules used in Step 2 of the above definition.

Figure 1 shows the generation rules referred to in Definition 7. For every v,
p(v) denotes the (unique) path from vy to v w.r.t. tree edges. Intuitively, the
idea of the rules is to use the concept descriptions occurring in the label set of
a vertex v to extend the description graph “accordingly”, i.e., if an existential

Ge o v.: {3Ir(ANBM Gp., e vo: {FIr(Ir(BMIr.B) M

Ir. (AN B) N . vr.3r.B) }
\ Ir vr.3r.(AN B))} "
w Cone 14 A\ G (e,

Ir.(AN BN 3r.(AN B)),
vr||3r Vr3r (AN B)}

VrCo ve: {Ir(ANBMN3Ir.(ANB)), 3TCO va: { B,

vr3r(ANB)} 3:-(3]?';?“3)’

dr| | Vr

Fig. 2. FLEY-description graphs

restriction 3r.C occurs in fy(v) then a vertex w must be introduced (or probably
only found) such that (i) w is connected to v by an exists-edge and (ii) a concept
equivalent to C' occurs in {y(w). Moreover, a value restriction Vr.D probably also
occurring in ¢y(v)D must be propagated to {(w).

Starting at a given vertex v, the rules R3, Ry, and Rgy+ all produce new
exists-edges, possibly to a newly generated vertex. Rz applies if only an existen-
tial restriction is present in fi/(v), Ray applies if an additional value restriction
(w.r.t. the same non-transitive role) is present, and Rgy+ covers the analogous
transitive case. Similarly, Ry and Ry+ address the case where only a value re-
striction (non-transitive or transitive) is present. Rule Rg+ never introduces new
vertices but only adds forward-edges over exists-paths w.r.t. one transitive role.

To avoid generating infinitely many new vertices, every generation rule has
a blocking condition® testing for every vertex v whether or not a new vertex w
can be avoided by a back edge to an already existing ancestor vertex u. This
is the case if the ancestor u has the same label set as the new vertex w would
get, i.e., ly(u) = ly(w). The vertex u is regarded as ancestor of v iff u lies on a
(the) tree-path from the root vertex to v. Note that the condition y(u) = ¢y (w)
determines u uniquely and that v = w is not excepted. The following example
shows the corresponding FLE-description graph of two simple F£ET-concepts.

Ezample 2. Let Cop := Fr. (BN Ir.BNVr.3r.B) and De, := Ir.(Ir.B N Vr.3r.B)
for a transitive role r and an atomic concept B. The corresponding FLET-
description graphs are depicted in Figure 2. The figure also shows the normalized
label sets of every vertex. Note that the non-atomic concept descriptions in the
label sets are used only during the generation of the description graphs.

It remains to be shown that the resulting FLE¥-description graphs are in
fact equivalent to the original concept descriptions. It is shown in [9] that the
following theorem holds.

Lemma 2. Let C' be an FLET -concept descriptions, then (1) C = Go and (2)

Ge is a simple description graph.

% Blocking strategies originally have been introduced in the DL context in [10] for a
tableaux-based satisfiability tester for expressive DLs.

As aresult, we know how to encode the information represented by F£E+-concept
descriptions in FLET-description graphs. Our next step is to find a way to trans-
late description graphs back to concept descriptions.

3.3 Translation of simple description graphs into FL££1-concept
descriptions

It has already been mentioned in Section 3.1 that description graphs exist with-
out an equivalent FLET-concept description, see [9]. We shall see that it suffices
to restrict our backward translation procedure to the class of simple description
graphs introduced in the previous section.

For the backward translation procedure we may not rely on complex concept
descriptions in the label sets of the graphs in question. On the contrary, the idea
is to re-build complex concept descriptions in the label sets while preserving
equivalence to the original description graph. This process is continued until the
desired concept description occurs in the root label. Note that this strategy is
just the reverse of the generation procedure of F££*-description graphs, where
the label of the root vertex generates the entire description graph.

To formalize the notion of re-building complex labels we devise an oper-
ation which modifies a given description graph by altering its label function.
Intuitively, the function acc “accumulates” complex concept descriptions in the
label sets of the vertices.

Definition 8. Let G := (V, E,vg,lv,lg) be a description graph and |E| := n.
Then, acc(G) := (V, E,vo, {1, Lg) where {1, is defined as follows. For everyv € V,

ly(v) == (Ly(v) NNe)U U 3. Mev(w)

reNgUNE \(vIrw)eE

v U (vrﬂ(ev(w)\{vr.T})n(M 3r.|‘|ev(w')>

(vVrw)eE wirw)er

Define conc(G) := [101(v}), where v}y denotes the root vertex of acc™(G).

For every vertex v, the modified label function ¢}, contains the same atomic
labels as before but additionally has an existential restriction based on the label
of every Jr-successor of v. Forall-edges are treated similarly only that existential
edges starting from vertices reachable by forall-edges are also taken into account.
Observe that acc(G) is still a simple description graph.

To illustrate the effect of the function acc, consider the a simple descrip-
tion graph G with only one vertex vy with a label ¢y(vg) = {A} and edges
E := {(vo,3r,vp), (vo Vrvp)}. In the graph acc(G) the root vertex has the label
{A,3r.A,Vr.(AN3Ir.A)}. Applying acc again we obtain the root label of acc?(G)
which equals {A,3r.(AN3Ir ANVr.(ANIr.A)),Vr.(ANIrANVr.(ANIr.A)N
Ir.(ANIr.Anvr.(AN3Ir.A)))}.

It suffices to show that applying the function acc at most |E| times produces
a root label such that the conjunction of all contained concepts is equivalent to
G. Hence, we obtain the following theorem.

Theorem 1. For every simple description graph G = (V, E, vy, ly,lg) it holds
that conc(G) = G.

The idea of the proof is to show the equivalence conc(G) = G in three steps.
Firstly, we show for every G that a single application of acc preserves equivalence,
ie., G = acc(G). This immediately implies G = accl?1(G). Secondly, due to
the semantics of description graphs it is also easy to see that every concept
description in the root label of acc/?l(G) subsumes acc/F!(G). Hence, accl?!(G) C
conc(G). Thirdly, we can show that every model of conc(G) is also a model of
acclZl(G). See [9] for the full proof.

Now the necessary means are provided to translate FL£E¥-concept descrip-
tions (back and forth) into a representation where the transitivity of roles is
made explicit. To define the lcs operation w.r.t. description graphs we first need
a complete characterization of subsumption in this representation.

3.4 Characterization of subsumption in FLET

In this section, the description graphs introduced previously are used to charac-
terize subsumption of FLE -concept descriptions.

Theorem 2. Let C, D be FLET -concept descriptions, then C' T D iff Gp = Gc.

To show the ‘if’-direction, one can use a canonical model I of C' obtained from
Gc by renaming the labels of all edges (v @Qrw) in E¢ to (vrw). The fact that
(i) I¢ actually is a model of C and (ii) that by subsumption every model of C' is
also one of D can then be used to construct a simulation relation R. This is done
iteratively while traversing Gp in depth-first order starting from the root vertex.
See [9] for the full proof. However, the proof of the ‘only if’-direction is easily
obtained as a consequence of Lemma 2 and two results shown in the previous
sections, namely Lemma 1 and Theorem 1. To illustrate the above result, we
return to the example introduced in the previous section.

Ezample 3. Recall the concepts from Example 2. The only difference between
Cer and Dg, is the atomic concept B in the outermost existential restriction of
Cez. Hence, Cop T Deg,. It is easy to see that R := {(vo,va), (v1,0.), (v2,vp)}
is in fact a simulation relation from Gp_, into G¢, . For all pairs it holds that
the label set of the first vertex is a subset of that of the second one. Moreover,
every edge starting from the first vertex can also be traveled from the second
one, reaching again a pair in R. Note that this property does not hold without
the transitive edge (vg Irve) in Gp,, -

3.5 Computation of the lcs in FLET

With all the information captured in a FLE-concept description made explicit
by FLET -description graphs the next step is to extract the commonalities of the
description graphs. Similar to other approaches to computing the lcs [1,4] the
graph product is employed to this end. In a description graph G the depth of a
vertex v is defined as the distance to the root vertex w.r.t. tree edges.

Definition 9 (Product of FL£T-description graphs). The product Go xGp
of two FLEY -description graphs Ga = (Va, Ea,voa,lv,,lE,) for A € {C,D} is
defined by induction on the depth of the FLEY -description graphs. The vertex
(voc,vop) labeled with ly, (voc) N Ly, (vop) is the root vertex of Go x Gp. For
each pair (ve,vp),ve € Vo,vp € Vp s.t. ve is a Qr-successor of voc in Go and
for vp is a Qr-successor of vop in Gp, we obtain a Qr-successor (vc,vp) of
(voc,vop) in Go X Gp. The verter (ve,vp) is the root verter of the inductively
defined product of Go x Gp. The graph H = Go X Gp is called the product graph.

The resulting product graph Go x Gp is rooted, connected, and directed. Since
all vertices in G- and Gp have at most one outgoing all-edge, every vertex in
the product graph has at most one outgoing all-edge. Thus, product graphs are
description graphs. Note that by construction of the product graph there trivially
exists a simulation Z: Go x Gp = G¢ and between Z': Go x Gp = Gp.

Example 4. Let us return to the concept descriptions Ceyx and Dy from Exam-
ple 2. The product of their FLET-description graphs is displayed in Figure 3.
The edges between vy, and v.; are cross edges.

Once the product graph is obtained, s 0
we need to transform this representa- GCux X IDex 7 a0t
tion into a JFLET-concept description. I LHT
In order to apply the conc function in- ® v 0
troduced in Section 3, we have to check I \‘v\’r
whether.the obtained graph is a simpl.e vt (B} e Ir o vur: 0
description graph. Unfortunately, this O v QO
is not necessarily the case since the ar vr

product graph may contain cross edges
(w.r.t. a breadth-first spanning tree).
Cross edges violate Condition 1 from Definition 5. We therefore have to eliminate
them before applying the function conc to read out a concept description from
a product graph. The elimination of cross edges is performed by an unraveling
function introduced in Definition 10. The idea is to introduce a new vertex in G’
for each path over distinct vertices in the original graph starting from the root
vertex and then transform every cross edge (v, w) into a new tree edge (v,w’)
by redirecting it to a copy of the subgraph reachable from w. For the formal
definition, an auxiliary function eliminate-cross-edges is introduced first.

Fig. 3: Product Graph for Gc., and Gp,,

Definition 10 (unravel-function). Let G := (V, E, v, lv,lg) be an FLE -de-
scription graph. For every non-empty path p := (vg ...vy,) in'V, let Tail(p) := vy,.

Denote by p - q the concatenation of two such paths. Let

Final-Path(G) := U {(vovy ...v;) € VY| (v; Qrvjsy1) € E,v; # vy, for j # k}.
1<V

Define the function eliminate-cross-edges by
eliminate-cross-edges(G) := (Final-Path(G), E', 1, ';), where

p),(p-v)) € V'xV'| (Tail(p) Qrv) € E}U

p-v-q),(p-v)) € V'xV'|(Tail(q) Qrv) € E}
(y(p) == Cy(Tail(p))

Up(pQrq) = (g (Tail(p) Qr Tail(q))

The set Final-Path(G) contains vertices of the underlying spanning tree of G.
For a given input graph G, the result unravel(G) is constructed in three steps:
firstly, remove forward edges from G; secondly, apply the function eliminate-cross-
edges on the resulting graph, and; thirdly, augment the resulting graph by the
transitive-closure over all exists-edges. It can be shown that the graph obtained
by the function unravel is equivalent to the original one.

Lemma 3. Let C, D be FLET -concept descriptions, then, (1) unravel(GoXGp) =
Go x Gp and Go X Gp = unravel(Ge x Gp) and (2) unravel(Ge % Gp) = Ge.

The underlying idea of the proof of (1) in this Lemma is to construct a simulation
by extending the identity relation on Go X Gp to the desired simulations by
mapping the copied parts of the unraveled graph obtained from the unravel
function to (or from resp.) the same vertices as their originals. For the exact
proof refer to [9]. In this Lemma (2) is an immediate consequence of (1), since
there always exists a simulation Z’ : Go X Gp = G¢ and simulations are closed
under concatenation.

Lemma 4. Let C, D be FLET -concept descriptions, then unravel(Go X Gp) is a
FLEY - description graph.

Again, for the exact proof of this lemma refer to [9]. Since the graph obtained by
the function unravel is a simple description graph, Theorem 1 is applicable and
the concept description corresponding to the unraveled graph can be obtained
by the conc function. We are now ready to prove the main theorem of this paper.

Theorem 3. Let C, D be FLET -concept descriptions then conc(unravel(Go x
Gp)) = les(C, D).

Proof. Let L = conc(unravel(Go x Gp)). We have to show that (1) C C L and
D C L and (2) if there exist another FL£+-concept E with EC L, C C E, and
DC FE then LC E.

Proof of (1): Tt is sufficient to show C' C L. Lemma 3 implies that there exists
a simulation Z: unravel(Go x Gp) = Go. Applying Lemma 4 to the unraveled
graph and by the definition of Go we know that unravel(Ge xGp) and G¢ are both

simple description graphs. Thus by Lemma 1 it holds that Go C unravel(Go x
Gp). From Theorem 1 it follows that unravel(Ge x Gp) = conc(unravel(Ge XGp))
and since G¢ is a FLET-description graph Lemma 2 can be applied and we can
conclude that G = C C conc(unravel(Ge X Gp)) = unravel(Ge x Gp).

Proof of (2): By contradiction: assume EC L, CC E,DC Eand LIZ E.
Let Ga = (Va, Ea, v, 6, (4) where A € {C,D,E,L}. From C C E, D C E
and Theorem 2 follows that there exist simulations Z¢ : G = G¢ and Zp :
Gr = Gp. Thus it holds by definition of simulations: Yv € Vg:

— Yor € Vp: If vp € Zp(v) then (E(v) C (5 (vr), and
— Y(vQrw) € Eg there exist vp,wr € Vr s.t. {vr} € Zr(v),{wr} € Zp(w)
and (vp Qrwr) € Ep,

where F' € {C,D}. From the existence of both simulation relations and from
Definition 9 follows that for all v € Vg:

— If vg € Ze(v) and vp € Zp(v) for vo € Vi, (ve Qrwe) € E¢ and for vp €
Vb, (vp Qrwp) € Ep then there exist the vertices {(ve,vp), (we,wp)} €
Vgexgn and ((ve,vp) Qr (we,wp)) € Egexgnp -

— Since (E(v) C (5 (ve) ULR(vp) = 65797 ((ve,vp))

Thus there exists a simulation relation Z;, : G = G¢ X Gp, where Z1,(v) =
{(v'v") € Vgexgp | V' € Za(v),0" € Zp(v)}. By Lemma 3 there also must exist
a simulation Z; : Gg = unravel(Ge x Gp). Since Gg and unravel(Ge x Gp)
are simple description graphs, Lemma 1 implies Gg C unravel(Go x Gp). From
this we obtain with Lemma 2 and Lemma 4, that Gg = F C conc(unravel(Go x
Gp)) = unravel(Ge x Gp). This is a contradiction to our initial assumption. Thus
we can conclude that conc(unravel(Ge x Gp)) = les(C, D).

In case the n-ary lcs is to be computed from a set of concepts, the product of all
corresponding FLET-description graphs should be computed first and then the
unravel and the conc function should be applied only once.

4 Conclusion and Outlook

We have introduced a sound and complete algorithm for the computation of
the lcs in the DL FLET. In particular, the lcs of a finite set of FLET-concept
descriptions always exists and is uniquely determined up to equivalence. As a key
utility for the lecs computation we have proposed description graphs as a finite
representation of FLE+-concept descriptions in which all restrictions additionally
imposed by transitive roles are made explicit. The lcs could thus be defined by
means of the graph product of the description graphs of the input concepts.

It is easy to see that the lcs algorithm can be optimized in several ways
to produce smaller output concept descriptions. Firstly, the blocking conditions
used to generate description graphs out of concept descriptions so far only allow
for blocking w.r.t. ancestors. This might be replaced by a more general block-
ing strategy capable of blocking between arbitrary vertices. Secondly, it seems

expedient to reduce redundancies possibly produced by the function conc. In
particular, it is not always necessary to apply the acc-function once for every
edge in the description graph. A thorough investigation of the computational
complexity of the lcs computation in FLE' remains future work. Nevertheless,
already for then non-transitive language FLE it is known that the lcs may be
exponentially large in the input size.

References

1.

10.

11.

12.

13.

14.

F. Baader. Least common subsumers, most specific concepts, and role-value-maps
in a description logic with existential restrictions and terminological cycles. LTCS-
Report LTCS-02-07, Chair f. Automata Theory, Inst. f. Theor. Comp. Sci. TU
Dresden, Germany, 2002.

. F. Baader and R. Kiisters. Unification in a description logic with inconsistency

and transitive closure of roles. In I. Horrocks and S. Tessaris, eds., Proc. of the
2002 International Workshop on Description Logics, Toulouse, France, 2002.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. LTCS-Report LTCS-98-09, LuFG
Theoretical Comp. Sci. RWTH Aachen, Germany, 1998.

F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumer in
description logics with existential restrictions. In T. Dean, ed., Proc. of IJCAI-99,
p- 96101, Stockholm, Sweden, 1999. Morgan Kaufmann.

F. Baader and P. Narendran. Unification of concept terms in description logics. In
H. Prade, ed., Proc. of ECAI-98, p. 331-335. John Wiley & Sons Ltd, 1998.

S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology
Editor for the Semantic Web. In Proc of KI-01.

A. Borgida and D. L. McGuinness. Asking queries about frames. In Luigia C.
Aiello, John Doyle, and Stuart C. Shapiro, eds., Proc. of KR-96, p. 340-349, Cam-
bridge, MA, 1996. Morgan Kaufmann.

S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics
— what does it buy me? In Proc. of KIDLWS’01, nr 44 in CEUR-WS, Vienna,
Austria, 2001. RWTH Aachen.

S. Brandt, A.-Y. Turhan, and R. Kiisters. Foundations of non-standard inferences
for description logics with transitive roles. LTCS-Report 03-02, Chair f. Automata
Theory, Inst. f. Theor. Comp. Sci. TU Dresden, Germany, 2003.

Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in
terminological knowledge representation systems. Journal of Artificial Intelligence
Research, 1:109-138, 1993.

W. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in
description logics. In W. Swartout, ed., Proc. of AAAI-92, San Jose, CA, 1992.
AAAT Press.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description
logics. In G. Brewka, ed., Foundation of Knowledge Representation. CSLI Publi-
cation, Cambridge University Press, 1996.

V. Haarslev and R. Méller. Expressive abox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In Proc. of KR-00, 2000.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles.
J. of Logic and Computation, 9(3):385-410, 1999.

