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Abstra
t. Des
ription Logi
s (DLs) are a family of knowledge represen-

tation formalisms used for terminologi
al reasoning. They have a wide

range of appli
ations su
h as medi
al knowledge-bases, or the semanti


web. Resear
h on DLs has been fo
used on the development of sound

and 
omplete inferen
e algorithms to de
ide satis�ability and subsump-

tion for in
reasingly expressive DLs. Non-standard inferen
es are a group

of relatively new inferen
e servi
es whi
h provide reasoning support for

the building, maintaining, and deployment of DL knowledge-bases. So

far, non-standard inferen
es are not available for very expressive DLs.

In this paper we present �rst results on non-standard inferen
es for DLs

with transitive roles. As a basis, we give a stru
tural 
hara
terization

of subsumption for DLs where existential and value restri
tions 
an be

imposed on transitive roles. We propose sound and 
omplete algorithms

to 
ompute the least 
ommon subsumer (l
s).

1 Introdu
tion and Motivation

Des
ription Logi
s (DLs) are a family of formalisms used to represent termino-

logi
al knowledge of a given appli
ation domain in a stru
tured and well-de�ned

way. The basi
 notions of DLs are 
on
ept-des
riptions and roles, representing

unary predi
ates and binary relations, respe
tively. Atomi
 
on
epts and 
on-


ept des
riptions represent sets of individuals, whereas roles represent binary

relations between individuals [5℄. The main 
hara
teristi
 of a DL is the set of


on
ept 
onstru
tors by whi
h 
omplex 
on
ept des
riptions 
an be built from

atomi
 
on
epts and roles. In the present paper, we are 
on
erned with the DL

FLE

+

whi
h provides the 
onstru
tors 
onjun
tion (CuD), existential restri
tion

(9r:C), value restri
tion (8r:C), and the top 
on
ept (>).

In FLE

+

, a role 
an be de�ned transitive. In this 
ase it represents the tran-

sitive 
losure of a binary relation. Transitive roles appear naturally in many

appli
ation domains, su
h as medi
ine and pro
ess engineering [1℄. Consider, for

instan
e, a ma
hine that 
omprises several 
omponents ea
h of whi
h again 
on-

sists of several devi
es. A natural way to represent su
h a ma
hine by means of

?
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DLs would be to use some has-part role to re
e
t its 
ompositional stru
ture. It

would be natural here to impli
itly regard every part of a 
omponent also as a

part of the whole. To this end, a DL with transitive roles is ne
essary.

Inferen
e problems for DLs are divided into so-
alled standard and non-

standard ones. Well known standard inferen
e problems are satis�ability and

subsumption of 
on
ept des
riptions. These are well investigated for a great

range of DLs. For many of them, sound and 
omplete de
ision pro
edures 
ould

be devised and lower and upper bounds for the 
omputational 
omplexity have

been found [12℄. Many standard inferen
e algorithms have been su

essfully ex-

tended to 
ope with transitive roles [14, 13℄ and are put into pra
ti
e in state of

the art DL Systems.

Prominent non-standard inferen
es are mat
hing, the least 
ommon sub-

sumer (l
s), the most spe
i�
 
on
ept (ms
), and, more re
ently, approxima-

tion. Non-standard inferen
es resulted from the experien
e with real-world DL-

knowledge bases (KBs), where standard inferen
e algorithms sometimes did not

suÆ
e for building and maintaining purposes. For example, the problem of how

to stru
ture the appli
ation domain by means of 
on
ept de�nitions may not

be 
lear at the beginning of the modeling task. Moreover, the expressive power

of the DL under 
onsideration sometimes makes it diÆ
ult to 
ome up with a

faithful formal de�nition of the 
on
ept originally intended. To alleviate these

diÆ
ulties it is expedient to employ non-standard inferen
es [8℄.

The l
s was �rst mentioned as an inferen
e problem for DLs in [11℄. Given

two 
on
ept des
riptions A and B in a des
ription logi
 L, the l
s of A and B is

de�ned as the least (w.r.t. subsumption) 
on
ept des
ription in L subsuming A

and B. It has been argued in [8℄ that the l
s fa
ilitates a \bottom-up"-approa
h

to the above mentioned modeling task: a domain expert 
an sele
t a number of

intuitively related 
on
ept des
riptions already existent in a KB and use the l
s

operation to automati
ally 
onstru
t a new 
on
ept des
ription representing the


losest generalization of them.

Mat
hing in DLs was �rst proposed in [7℄. A mat
hing problem (modulo

subsumption) 
onsists of a 
on
ept des
ription C and a 
on
ept pattern D, i.e.,

a 
on
ept des
ription with variables. Mat
hing D against C means �nding a

substitution of variables in D by 
on
ept des
riptions su
h that C is subsumed

by the instantiated 
on
ept pattern D. Among other appli
ations, mat
hing 
an

be employed for queries in KBs: a domain expert unable to spe
ify uniquely

the 
on
ept he is looking for in a KB 
an use a 
on
ept pattern to retrieve all

those 
on
epts in the KB for whi
h a mat
her exists. The stru
tural 
onstraints

expressible by patterns ex
eed the 
apabilities of simple \wild
ards" familiar

from ordinary sear
h engines [8℄.

Approximation was �rst mentioned as a new inferen
e problem in [4℄. The

upper (lower) approximation of a 
on
ept des
ription C

1

from a DL L

1

is de�ned

as the least (greatest) 
on
ept des
ription in another DL L

2

whi
h subsumes (is

subsumed by) C

1

. Approximation 
an be used to make non-standard inferen
es

a

essible to more expressive DLs by transferring a given inferen
e problem to

a less expressive DL where at least an approximate solution 
an be 
omputed.



Table 1. Syntax and semanti
s of FLE

+

-
on
ept des
riptions.

Constru
t name Syntax Semanti
s

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restri
tions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

transitive roles r

+

S

1�n

(r

I

)

n

Another appli
ation of approximation lies in user-friendly DL-systems o�ering

a simpli�ed frame-based view on KBs de�ned in a more expressive ba
kground

DL [6℄. Here approximation 
an be used to 
ompute simple frame-based repre-

sentations of otherwise overwhelmingly 
ompli
ated 
on
ept des
riptions.

In 
ontrast to standard inferen
e problems, 
omparatively little resear
h ex-

ists on non-standard inferen
es in DLs with transitive roles [2℄. If existential

restri
tions 
an be expressed in a DL then the inferen
es mat
hing and approxi-

mation are de�ned by means of the l
s operation. This 
entral role of the l
s for

non-standard inferen
es has lead us to make this inferen
e problem the �rst to

be extended to FLE

+

. Experien
e with other DLs has shown that to �nd an l
s

algorithm is the 
ru
ial step towards algorithms for other non-standard infer-

en
es su
h as mat
hing and approximation. For this reason the l
s in FLE

+

may

be regarded as the foundation of several other non-standard inferen
es in FLE

+

.

After introdu
ing some basi
 notions and notation, our �rst step towards the

l
s will be a 
hara
terization of subsumption for FLE

+

-
on
ept des
riptions by

means of so-
alled des
ription graphs. We shall see that for two FLE

+

-
on
ept

des
riptions A and B, subsumption (A v B) holds if and only if there exists

a simulation relation from the des
ription graph of B into the one of A. The

l
s inferen
e of A and B is then de�ned as the graph produ
t of the respe
tive

des
ription graphs.

As a result, we shall see that the l
s of a �nite set of FLE

+

-
on
ept des
rip-

tions always exists and is uniquely determined up to equivalen
e. Moreover, an

e�e
tive algorithm for the 
omputation of the l
s will be provided.

All te
hni
al details and relevant proofs 
an be found in our te
hni
al report

[9℄. Moreover, the problem of the l
s 
omputation in two sublanguages of FLE

+

,

namely FL

+

0

and EL

+

, is also addressed in detail.

2 Preliminaries

DLs are based on the following sets of names: N

C

is the set of 
on
ept names,

and N

R

is the set of non-transitive roles, and N

T

R

is the set of transitive roles,

where N

R

\N

T

R

= ;. Con
ept des
riptions are indu
tively de�ned starting from

the set of 
on
ept names and use the 
on
ept 
onstru
tors shown in Table 1. The

DL FLE o�ers the top-
on
ept, 
onjun
tion, existential, and value restri
tions,

as displayed in Table 1. In FLE

+

, transitive roles 
an be used in existential and

value restri
tions.



As usual, the semanti
s of a 
on
ept des
ription is de�ned in terms of an

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a set A

I

� � and

ea
h role name r 2 N

R

[N

T

R

to a binary relation r

I

� ���. The extension of �

I

to arbitrary 
on
ept des
riptions is de�ned indu
tively, as shown in the se
ond


olumn of Table 1. Note that all 
on
ept des
riptions in the above mentioned

DLs are satis�able.

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C is

subsumed by the des
ription D (C v D) i� C

I

� D

I

for all interpretations I;

C and D are equivalent (C � D) i� C v D and D v C.

In this paper we fo
us on the non-standard inferen
e of 
omputing the least


ommon subsumer (l
s).

De�nition 1 (l
s). Given L-
on
ept des
riptions C

1

; : : : ; C

n

, for some des
rip-

tion logi
 L, the L-
on
ept des
ription C is the least 
ommon subsumer (l
s)

of C

1

; : : : ; C

n

(C = l
s(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 � i � n,

and (ii) C is the least 
on
ept des
ription with this property, i.e., if C

0

satis�es

C

i

v C

0

for all 1 � i � n, then C v C

0

.

The idea behind the l
s inferen
e is to extra
t the 
ommonalities of the input


on
epts. The l
s is uniquely determined up to equivalen
e. Therefore it is jus-

ti�ed to speak about \the" l
s instead of \an" l
s.

3 Least 
ommon subsumer for FLE

+

The l
s has already been investigated for sub-logi
s of FLE

+

. The work of Baader

et al. [4, 3℄ investigates the 
omputation of the l
s in FLE and its sublanguages.

As long as a sublanguage of FLE does not allow for both existential and

value restri
tions it is 
omparatively easy to adapt the existing l
s algorithms

to transitive roles. In [9℄ this is done both for FL

0

, admitting only 
onjun
tion

and value restri
tions, as well as for EL, where only 
onjun
tion and existential

restri
tions are admitted. For EL

+

, it is possible to translate a 
on
ept C into an

equivalent one in EL. Thus, all the additional restri
tions imposed by transitive

roles in C are made expli
it. This simple approa
h, however, does not work for

FLE

+

-
on
ept des
riptions, as the following example illustrates.

Example 1. Consider the FLE

+

-
on
ept des
ription C

ex

:= (8r:9r:A) u 9r:A,

where r is transitive. To expli
itly satisfy the (transitive) value restri
tion, we

need to propagate 8r:9r:A to the existential restri
tion. This yields (8r:9r:A) u

9r:(A u 9r:A u 8r:9r:A) whi
h equals (8r:9r:A) u 9r:(A u C

ex

). Obviously, an

attempt of exhaustive propagation would not terminate.

Hen
e, our �rst aim is to �nd a �nite representation of FLE

+

-
on
ept des
rip-

tions in whi
h the transitivity of roles is made expli
it. Su
h a representation is

introdu
ed by the following se
tion.



3.1 Des
ription Graphs

In this se
tion we will not only introdu
e des
ription graphs as a synta
ti
 
on-

stru
t but also provide a model-theoreti
 semanti
s for them whi
h makes it

easier to examine the equivalen
e between a 
on
ept des
ription and a des
rip-

tion graphs dire
tly.

De�nition 2 (des
ription graph). Let G := (V;E; v

0

; `

V

; `

E

) be a rooted,

dire
ted, and 
onne
ted graph with labeling fun
tions for verti
es and edges. The

labeling fun
tion `

V

assigns a set of 
on
ept des
riptions to every vertex in V

and `

E

assigns a label of the form Qr to every edge in E, where Q 2 f8; 9g

and r 2 N

R

[N

T

R

. An edge labeled 8r is 
alled forall-edge, an edge labeled 9r

exists-edge. If every vertex v in G has at most one outgoing forall-edge per role

then it is 
alled a des
ription graph.

For the sake of simpli
ity, we use the notation (v Qr w) 2 E to express that (i)

(v; w) 2 E and (ii) `

E

(v; w) = fQrg. Note that des
ription graphs 
an be 
y
li
.

Like 
on
ept des
riptions, des
ription graphs are interpreted w.r.t. a model-

theoreti
 semanti
s to be introdu
ed next.

De�nition 3 (semanti
s of des
ription graphs). Let G := (V;E; v

0

; `

V

; `

E

)

be a des
ription graph and let I := (�; �

I

) be an interpretation. A mapping

� : V ! 2

�

I

n ; is 
alled a model mapping i� for all v; w 2 V it holds that:

{ �(v) � C

I

for all C 2 `(v);

{ if (v 9r w) 2 E for r 2 N

R

and x 2 �(v) then there exists some y 2 �

I

with

(x; y) 2 r

I

and y 2 �(w);

{ if (v 9r w) 2 E for r 2 N

T

R

and x 2 �(v) then there exists some y 2 �

I

with

(x; y) 2 (r

I

)

+

and y 2 �(w);

{ if (v 8r w) 2 E for r 2 N

R

and x 2 �(v) then (x; y) 2 r

I

implies y 2 �(w).

For a given x 2 �

I

, de�ne I; x j= G i� there is a model mapping � with x 2

�(v

0

). The semanti
s of G w.r.t. I is de�ned as G

I

:= fx 2 �

I

j I; x j= G

C

g.

There is a similarity between the semanti
s of des
ription graphs and that of


on
ept des
riptions as de�ned in Se
tion 2. A (transitive) 9r-edge (v 9r w) like

an existential restri
tion implies a 
orresponding r-edge (r-path) for all witnesses

x 2 �(v) in the model. Similarly, every 8r-edge (v 8r w) imposes restri
tions on

every witness in the model rea
hable via an r-edge from some x 2 �(v).

Regarded as a des
ription graph the syntax tree of everyFLE-
on
ept des
rip-

tion C is equivalent to C. This, however, is not generally true of FLE

+

-
on
ept

des
riptions. Moreover, there are des
ription graphs for whi
h no equivalent

FLE

+

-
on
ept des
ription exists. Ultimately, however, we are interested in de-

s
ription graphs guaranteed to represent 
on
ept des
riptions. To this end, we

introdu
e six 
onditions to restri
t des
ription graphs further, leading to the

notion of simple des
ription graphs. As a prerequisite, we need to spe
ify the

notion of a simulation relation for des
ription graphs.



De�nition 4 (simulation relation). For i 2 f1; 2g, let G

i

:= (V

i

; E

i

; v

0i

; `

V

i

; `

E

i

)

be des
ription graphs. Then, G

2

*

�

G

1

i� there exists a relation R � V

2

�V

1

with:

1. (v

02

; v

01

) 2 R

2. `

V

(v) \N

C

� `

V

(v

0

) \N

C

for all (v; v

0

) 2 R.

3. If (v Qr w) 2 E

2

and (v; v

0

) 2 R then there exists a vertex w

0

2 V

1

su
h that

(v

0

Qrw

0

) 2 E

1

and (w;w

0

) 2 R.

For verti
es v

1

2 V

1

and v

2

2 V

2

, denote by G

2

(v

2

)

*

�

G

1

(v

1

) the fa
t that a

simulation relation R exists between the subgraph of G

2

rea
hable from v

2

and

the subgraph of G

1

rea
hable from v

1

. In parti
ular, this implies (v

2

; v

1

) 2 R.

De�nition 5 (simple des
ription graph). Let G := (V;E; v

0

; `

V

; `

E

) be a

des
ription graph. G is a simple des
ription graph i� the following properties

hold.

1. W.r.t. a breadth-�rst sear
h tree, G has no forall-forward edges and no 
ross

edges. Every exists-forward edge only 
onne
ts verti
es 
onne
ted by a path

of exists-tree edges w.r.t. one transitive role.

2. If (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

0

) is a 
y
le in E with pairwise distin
t

verti
es then there exists one transitive role r with r

i

= r for all i.

3. If (v

0

Q

0

r v

1

: : : v

n�1

Q

n�1

r v

0

) is a 
y
le in E with pairwise distin
t verti
es

and r 2 N

T

R

then v

0

has a 8r-su

essor.

4. If f(u8r v); (u 9r w)g � E then G(v)

*

�

G(w). If r 2 N

T

R

then there exists a

vertex w

0

su
h that (w 8r w

0

) 2 E and G(v)

*

�

G(w

0

).

5. If (u8r v) 2 E with r 2 N

T

R

then there exists a vertex v

0

su
h that (v 8r v

0

) 2

E and G(v)

*

�

G(v

0

).

6. If B 2 `

V

(v) then G

B

*

�

G(v) for every vertex v 2 V .

The idea behind the above de�nition to is imitate the propagation of exis-

tential and value restri
tions in the graph stru
ture. For instan
e, Condition 4

ensures that no subgraph representing an existential restri
tion may be more

general that a 
orresponding subgraph representing a value restri
tion. Hen
e, a

value restri
tion must be propagated over all existential restri
tions. Condition 5

similarly ensures that value restri
tions over transitive roles are propagated to

deeper role levels, as 8r:A implies 8r:(Au (8r:A)) and so on. Conditions 2 and 3

ensure that 
y
les 
annot o

ur arbitrarily. By means of Condition 6, 
omplex


on
ept des
riptions are already represented in the stru
ture of the des
ription

graph. The �rst 
ondition ex
ludes a number of irregularities whi
h would make

the proofs over des
ription graphs more intri
ate.

The following lemma 
an be shown for all des
ription graphs.

Lemma 1. For des
ription graphs G and H it holds that H

*

�

G implies G v H.

Having de�ned syntax and semanti
s of des
ription graphs in general the next

step is to translate FLE

+

-
on
ept des
riptions into equivalent des
ription graphs.



3.2 Translation of FLE

+

-
on
ept des
riptions into FLE

+

-des
ription

graphs

To show that every FLE

+

-
on
ept des
ription has a 
orresponding FLE

+

-de-

s
ription graph we devise a suitable translation fun
tion. As a te
hni
al pre-

requisite, we require a normal form for FLE-
on
ept des
riptions, as introdu
ed

in [3℄. The purpose of this normal form is merely to 
atten 
onjun
tions, to

make the top-
on
ept expli
it, and to propagate value restri
tions over existen-

tial restri
tions. The problem of impli
it information indu
ed by transitive roles

remains untou
hed here.

De�nition 6 (FLE normalization rules). Let E;F be two FLE

+

-
on
ept de-

s
riptions and r 2 N

R

[N

T

R

a primitive role. The FLE-normalization rules are

de�ned as follows

1) 8r:> �! > 3) 8r:E u 8r:F �! 8r:(E u F )

2) E u > �! E 4) 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5) E u (F uG) �! E u F uG:

A 
on
ept des
ription is in FLE-normal form if the FLE-normalization rules have

been applied to it exhaustively.

Ea
h of the above normalization rules preserve equivalen
e and should be read

modulo 
ommutativity of 
onjun
tion. It has been shown in [3℄ that exhaustive

appli
ation of these rules may produ
e 
on
ept des
riptions of size exponential

in the size of the original. During the translation of an FLE

+

-
on
ept des
ription

into an FLE

+

-des
ription tree the FLE-normalization rules need to be applied

only to the out most role-level of the FLE

+

-
on
ept at a time.

The following de�nition provides the framework of the translation of FLE

+

-


on
ept des
riptions into des
ription graphs. For a given 
on
ept des
ription C

we start with an empty des
ription graph G 
onsisting only of a root vertex v

0

with C in its label. Then we exhaustively apply graph generation rules (de�ned

in detail in Figure 1) produ
ing new verti
es and edges. In this pro
ess we

distinguish three kinds of edges. The set E

D


ontains the edges of the underlying

spanning tree, in E

+

are the forward-edges indu
ed by transitivity, and in E

"

are self-loops or edges that 
onne
t a vertex with an an
estor vertex in w.r.t.

the spanning tree. As soon as no produ
tion rules are appli
able, all non-atomi



on
ept des
riptions are removed from the label sets of G and the graph is

returned.

For the a
tual de�nition, a shorthand notation needs to be introdu
ed �rst.

For a set fC

1

; : : : ; C

n

g of FLE

+

-
on
ept des
riptions, let fC

1

; : : : ; C

n

g

�

denote

the 
orresponding set in whi
h (i) the FLE

+

normalization rules de�ned above

have been applied exhaustively on the top most role-level of every C

i

and (ii)

every C

i

is split into its 
onjun
ts. Observe that there is at most one value

restri
tion per role r in fC

1

; : : : ; C

n

g

�

.

De�nition 7 (FLE

+

-des
ription graph). Let C be a FLE

+

-
on
ept des
rip-

tion. The FLE

+

-des
ription graph G

C

is obtained by the following pro
edure:
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0

) 2 `

V

(v), (8r:C

00
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(v) for some C

0
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00

, and

there is no v

00
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00
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0
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00
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appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

,

then E

"

:= E

"

[ f(v; 9r; v

i

)g,
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) := fC

0

g

�

.

R

98

: If r 2 N

R
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00
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0
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i

)g,
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0
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0
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V
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) := fC

0
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: If r 2 N

T

R

, and f(9r:C

0

); (8r:C

00

)g � `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v; 9r; v

00

) 2 E

D

[ E

"

^ fC

0

; 8r:C

00

g = `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

; 8r:C

00

g

�

then E

"

:= E

"

[ f(v; 9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 9r; v

0

)g, `

V

(v

0

) := fC

0

; 8r:C

00

g

�

.

R
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: If r 2 N

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v; 8r; v

00

) 2 E

D

[ E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

then E

"

:= E

"

[ f(v; 8r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 8r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

8

+

: If r 2 N

T

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v; 8r; v

00

) 2 E

D

[ E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

; 8r:C

0

g

�

then E

"

:= E

"

[ f(v; 8r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 8r; v

0

)g, `

V

(v

0

) := fC

0

; 8r:C

0

g

�

.

R

E
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: If r 2 N

T

R

, and f(v; 9r; v

0

); (v

0

; 9r; v

00

)g 2 E

D

and (v; 9r; v

00

) 62 E

+

thenE

+

:= E

+

[ f(v; 9r; v

00

)g

Fig. 1. FLE

+

-Des
ription Graph Generation Rules.

1. Initialize the sets V := fv

0

g; `

V

= `

V

(v

0

) = fCg

�

, and

E := E

+

:= E

D

:= E

"

:= ;.

2. Apply the FLE

+

-des
ription graph generation rules from Figure 1 exhaus-

tively to obtain G

0

C

:= (V;E; v

0

; `

V

; `

E

), where E = E

D

[ E

"

[ E

+

.

3. Redu
e the label sets of verti
es: 8v 2 V : `

0

V

(v) := `

V

(v) \N

C

.

4. return G

C

:= (V;E; v

0

; `

0

V

; `

E

).

All non-atomi
 
on
ept des
riptions in the label sets of the verti
es of G

are dis
arded afterwards be
ause their information (as we shall see) is then

represented by the stru
ture of the graph. It remains to de�ne the generation

rules used in Step 2 of the above de�nition.

Figure 1 shows the generation rules referred to in De�nition 7. For every v,

�(v) denotes the (unique) path from v

0

to v w.r.t. tree edges. Intuitively, the

idea of the rules is to use the 
on
ept des
riptions o

urring in the label set of

a vertex v to extend the des
ription graph \a

ordingly", i.e., if an existential



9r

8r

9r8r

v




: f 9r:(A uB u 9r:(A u B));

8r:9r:(Au B) g

v

b

: f A;B;

9r:(A u B u 9r:(A u B));

8r:9r:(A u B) g

9r

G

C

ex

v

a

: f 9r:(A u B u

9r:(A uB) u

8r:9r:(Au B)) g

8r

9r

v

2

: f B;

9r:(B u 9r:B);

8r:9r:B g

v

0

: f 9r:(9r:(B u 9r:B) u

8r:9r:B) g

9r

9r

v

1

: f 9r:(B u 9r:B);

8r:9r:B g

8r

9r

G

D

ex

Fig. 2. FLE

+

-des
ription graphs

restri
tion 9r:C o

urs in `

V

(v) then a vertex w must be introdu
ed (or probably

only found) su
h that (i) w is 
onne
ted to v by an exists-edge and (ii) a 
on
ept

equivalent to C o

urs in `

V

(w). Moreover, a value restri
tion 8r:D probably also

o

urring in `

V

(v)D must be propagated to `(w).

Starting at a given vertex v, the rules R

9

, R

98

, and R

98

+
all produ
e new

exists-edges, possibly to a newly generated vertex. R

9

applies if only an existen-

tial restri
tion is present in `

V

(v), R

98

applies if an additional value restri
tion

(w.r.t. the same non-transitive role) is present, and R

98

+

overs the analogous

transitive 
ase. Similarly, R

8

and R

8

+
address the 
ase where only a value re-

stri
tion (non-transitive or transitive) is present. Rule R

9

+
never introdu
es new

verti
es but only adds forward-edges over exists-paths w.r.t. one transitive role.

To avoid generating in�nitely many new verti
es, every generation rule has

a blo
king 
ondition

3

testing for every vertex v whether or not a new vertex w


an be avoided by a ba
k edge to an already existing an
estor vertex u. This

is the 
ase if the an
estor u has the same label set as the new vertex w would

get, i.e., `

V

(u) = `

V

(w). The vertex u is regarded as an
estor of v i� u lies on a

(the) tree-path from the root vertex to v. Note that the 
ondition `

V

(u) = `

V

(w)

determines u uniquely and that v = w is not ex
epted. The following example

shows the 
orresponding FLE

+

-des
ription graph of two simple FLE

+

-
on
epts.

Example 2. Let C

ex

:= 9r:(B u 9r:B u 8r:9r:B) and D

ex

:= 9r:(9r:B u 8r:9r:B)

for a transitive role r and an atomi
 
on
ept B. The 
orresponding FLE

+

-

des
ription graphs are depi
ted in Figure 2. The �gure also shows the normalized

label sets of every vertex. Note that the non-atomi
 
on
ept des
riptions in the

label sets are used only during the generation of the des
ription graphs.

It remains to be shown that the resulting FLE

+

-des
ription graphs are in

fa
t equivalent to the original 
on
ept des
riptions. It is shown in [9℄ that the

following theorem holds.

Lemma 2. Let C be an FLE

+

-
on
ept des
riptions, then (1) C � G

C

and (2)

G

C

is a simple des
ription graph.

3

Blo
king strategies originally have been introdu
ed in the DL 
ontext in [10℄ for a

tableaux-based satis�ability tester for expressive DLs.



As a result, we know how to en
ode the information represented byFLE

+

-
on
ept

des
riptions in FLE

+

-des
ription graphs. Our next step is to �nd a way to trans-

late des
ription graphs ba
k to 
on
ept des
riptions.

3.3 Translation of simple des
ription graphs into FLE

+

-
on
ept

des
riptions

It has already been mentioned in Se
tion 3.1 that des
ription graphs exist with-

out an equivalent FLE

+

-
on
ept des
ription, see [9℄. We shall see that it suÆ
es

to restri
t our ba
kward translation pro
edure to the 
lass of simple des
ription

graphs introdu
ed in the previous se
tion.

For the ba
kward translation pro
edure we may not rely on 
omplex 
on
ept

des
riptions in the label sets of the graphs in question. On the 
ontrary, the idea

is to re-build 
omplex 
on
ept des
riptions in the label sets while preserving

equivalen
e to the original des
ription graph. This pro
ess is 
ontinued until the

desired 
on
ept des
ription o

urs in the root label. Note that this strategy is

just the reverse of the generation pro
edure of FLE

+

-des
ription graphs, where

the label of the root vertex generates the entire des
ription graph.

To formalize the notion of re-building 
omplex labels we devise an oper-

ation whi
h modi�es a given des
ription graph by altering its label fun
tion.

Intuitively, the fun
tion a

 \a

umulates" 
omplex 
on
ept des
riptions in the

label sets of the verti
es.

De�nition 8. Let G := (V;E; v

0

; `

V

; `

E

) be a des
ription graph and jEj := n.

Then, a

(G) := (V;E; v

0

; `

0

V

; `

E

) where `

0

V

is de�ned as follows. For every v 2 V ,

`

0

V

(v) := (`

V

(v) \N

C

) [

[

r2N

R

[N

T

R

0

�

[

(v 9r w)2E

9r:u `

V

(w)

[

[

(v 8r w)2E

�

8r:u(`

V

(w) n f8r:>g) u u

(w 9r w

0

)2E

9r:u `

V

(w

0

)

�

1

A

.

De�ne 
on
(G) :=u `

V

(v

0

0

), where v

0

0

denotes the root vertex of a



n

(G).

For every vertex v, the modi�ed label fun
tion `

0

V


ontains the same atomi


labels as before but additionally has an existential restri
tion based on the label

of every 9r-su

essor of v. Forall-edges are treated similarly only that existential

edges starting from verti
es rea
hable by forall-edges are also taken into a

ount.

Observe that a

(G) is still a simple des
ription graph.

To illustrate the e�e
t of the fun
tion a

, 
onsider the a simple des
rip-

tion graph G with only one vertex v

0

with a label `

V

(v

0

) = fAg and edges

E := f(v

0

; 9r; v

0

); (v

0

8r v

0

)g. In the graph a

(G) the root vertex has the label

fA; 9r:A;8r:(Au9r:A)g. Applying a

 again we obtain the root label of a



2

(G)

whi
h equals fA; 9r:(A u 9r:A u 8r:(A u 9r:A));8r:(A u 9r:A u 8r:(A u 9r:A) u

9r:(A u 9r:A u 8r:(A u 9r:A)))g.



It suÆ
es to show that applying the fun
tion a

 at most jEj times produ
es

a root label su
h that the 
onjun
tion of all 
ontained 
on
epts is equivalent to

G. Hen
e, we obtain the following theorem.

Theorem 1. For every simple des
ription graph G = (V;E; v

0

; `

V

; `

E

) it holds

that 
on
(G) � G.

The idea of the proof is to show the equivalen
e 
on
(G) � G in three steps.

Firstly, we show for every G that a single appli
ation of a

 preserves equivalen
e,

i.e., G � a

(G). This immediately implies G � a



jEj

(G). Se
ondly, due to

the semanti
s of des
ription graphs it is also easy to see that every 
on
ept

des
ription in the root label of a



jEj

(G) subsumes a



jEj

(G). Hen
e, a



jEj

(G) v


on
(G). Thirdly, we 
an show that every model of 
on
(G) is also a model of

a



jEj

(G). See [9℄ for the full proof.

Now the ne
essary means are provided to translate FLE

+

-
on
ept des
rip-

tions (ba
k and forth) into a representation where the transitivity of roles is

made expli
it. To de�ne the l
s operation w.r.t. des
ription graphs we �rst need

a 
omplete 
hara
terization of subsumption in this representation.

3.4 Chara
terization of subsumption in FLE

+

In this se
tion, the des
ription graphs introdu
ed previously are used to 
hara
-

terize subsumption of FLE

+

-
on
ept des
riptions.

Theorem 2. Let C;D be FLE

+

-
on
ept des
riptions, then C v D i� G

D

*

�

G

C

.

To show the `if'-dire
tion, one 
an use a 
anoni
al model I

C

of C obtained from

G

C

by renaming the labels of all edges (v Qr w) in E

C

to (v r w). The fa
t that

(i) I

C

a
tually is a model of C and (ii) that by subsumption every model of C is

also one of D 
an then be used to 
onstru
t a simulation relation R. This is done

iteratively while traversing G

D

in depth-�rst order starting from the root vertex.

See [9℄ for the full proof. However, the proof of the `only if'-dire
tion is easily

obtained as a 
onsequen
e of Lemma 2 and two results shown in the previous

se
tions, namely Lemma 1 and Theorem 1. To illustrate the above result, we

return to the example introdu
ed in the previous se
tion.

Example 3. Re
all the 
on
epts from Example 2. The only di�eren
e between

C

ex

and D

ex

is the atomi
 
on
ept B in the outermost existential restri
tion of

C

ex

. Hen
e, C

ex

v D

ex

. It is easy to see that R := f(v

0

; v

a

); (v

1

; v




); (v

2

; v

b

)g

is in fa
t a simulation relation from G

D

ex

into G

C

ex

. For all pairs it holds that

the label set of the �rst vertex is a subset of that of the se
ond one. Moreover,

every edge starting from the �rst vertex 
an also be traveled from the se
ond

one, rea
hing again a pair in R. Note that this property does not hold without

the transitive edge (v

0

9r v

2

) in G

D

ex

.



3.5 Computation of the l
s in FLE

+

With all the information 
aptured in a FLE-
on
ept des
ription made expli
it

by FLE

+

-des
ription graphs the next step is to extra
t the 
ommonalities of the

des
ription graphs. Similar to other approa
hes to 
omputing the l
s [1, 4℄ the

graph produ
t is employed to this end. In a des
ription graph G the depth of a

vertex v is de�ned as the distan
e to the root vertex w.r.t. tree edges.

De�nition 9 (Produ
t of FLE

+

-des
ription graphs). The produ
t G

C

�G

D

of two FLE

+

-des
ription graphs G

A

= (V

A

; E

A

; v

0A

; `

V

A

; `

E

A

) for A 2 fC;Dg is

de�ned by indu
tion on the depth of the FLE

+

-des
ription graphs. The vertex

(v

0C

; v

0D

) labeled with `

V

C

(v

0C

) \ `

V

D

(v

0D

) is the root vertex of G

C

� G

D

. For

ea
h pair (v

C

; v

D

); v

C

2 V

C

; v

D

2 V

D

s.t. v

C

is a Qr-su

essor of v

0C

in G

C

and

for v

D

is a Qr-su

essor of v

0D

in G

D

, we obtain a Qr-su

essor (v

C

; v

D

) of

(v

0C

; v

0D

) in G

C

� G

D

. The vertex (v

C

; v

D

) is the root vertex of the indu
tively

de�ned produ
t of G

C

�G

D

. The graph H = G

C

�G

D

is 
alled the produ
t graph.

The resulting produ
t graph G

C

� G

D

is rooted, 
onne
ted, and dire
ted. Sin
e

all verti
es in G

C

and G

D

have at most one outgoing all-edge, every vertex in

the produ
t graph has at most one outgoing all-edge. Thus, produ
t graphs are

des
ription graphs. Note that by 
onstru
tion of the produ
t graph there trivially

exists a simulation Z : G

C

� G

D

*

�

G

C

and between Z

0

: G

C

� G

D

*

�

G

D

.

Example 4. Let us return to the 
on
ept des
riptions C

ex

and D

ex

from Exam-

ple 2. The produ
t of their FLE

+

-des
ription graphs is displayed in Figure 3.

The edges between v

b2

and v


1

are 
ross edges.

On
e the produ
t graph is obtained,

we need to transform this representa-

tion into a FLE

+

-
on
ept des
ription.

In order to apply the 
on
 fun
tion in-

trodu
ed in Se
tion 3, we have to 
he
k

whether the obtained graph is a simple

des
ription graph. Unfortunately, this

is not ne
essarily the 
ase sin
e the

produ
t graph may 
ontain 
ross edges

(w.r.t. a breadth-�rst spanning tree).

8r

9r

9r

8r

9r 8r

v

a0

: ;

9r

9r

v

b1

: ;

v


1

: ;v

b2

: fBg

G

C

ex

� G

D

ex

Fig. 3: Produ
t Graph for G

C

ex

and G

D

ex

Cross edges violate Condition 1 from De�nition 5. We therefore have to eliminate

them before applying the fun
tion 
on
 to read out a 
on
ept des
ription from

a produ
t graph. The elimination of 
ross edges is performed by an unraveling

fun
tion introdu
ed in De�nition 10. The idea is to introdu
e a new vertex in G'

for ea
h path over distin
t verti
es in the original graph starting from the root

vertex and then transform every 
ross edge (v; w) into a new tree edge (v; w

0

)

by redire
ting it to a 
opy of the subgraph rea
hable from w. For the formal

de�nition, an auxiliary fun
tion eliminate-
ross-edges is introdu
ed �rst.

De�nition 10 (unravel-fun
tion). Let G := (V;E; v

0

; `

V

; `

E

) be an FLE-de-

s
ription graph. For every non-empty path p := (v

0

: : : v

n

) in V , let Tail(p) := v

n

.



Denote by p � q the 
on
atenation of two su
h paths. Let

Final-Path(G) :=

[

1�i�jV j

f(v

0

v

1

: : : v

i

) 2 V

i

j (v

j

Qr v

j+1

) 2 E; v

j

6= v

k

for j 6= kg.

De�ne the fun
tion eliminate-
ross-edges by

eliminate-
ross-edges(G) := (Final-Path(G); E

0

; `

0

V

; `

0

E

), where

E

0

:= f(hpi; hp � vi) 2 V

0

�V

0

j (Tail(p)Qr v) 2 Eg [

f(hp � v � qi; hp � vi) 2 V

0

�V

0

j (Tail(q)Qr v) 2 Eg

`

0

V

(p) := `

V

(Tail(p))

`

0

E

(pQr q) := `

E

(Tail(p)QrTail(q))

The set Final-Path(G) 
ontains verti
es of the underlying spanning tree of G.

For a given input graph G, the result unravel(G) is 
onstru
ted in three steps:

�rstly, remove forward edges from G; se
ondly, apply the fun
tion eliminate-
ross-

edges on the resulting graph, and; thirdly, augment the resulting graph by the

transitive-
losure over all exists-edges. It 
an be shown that the graph obtained

by the fun
tion unravel is equivalent to the original one.

Lemma 3. Let C;D be FLE

+

-
on
ept des
riptions, then, (1) unravel(G

C

�G

D

)

*

�

G

C

� G

D

and G

C

� G

D

*

�

unravel(G

C

� G

D

) and (2) unravel(G

C

� G

D

)

*

�

G

C

.

The underlying idea of the proof of (1) in this Lemma is to 
onstru
t a simulation

by extending the identity relation on G

C

� G

D

to the desired simulations by

mapping the 
opied parts of the unraveled graph obtained from the unravel

fun
tion to (or from resp.) the same verti
es as their originals. For the exa
t

proof refer to [9℄. In this Lemma (2) is an immediate 
onsequen
e of (1), sin
e

there always exists a simulation Z

0

: G

C

� G

D

*

�

G

C

and simulations are 
losed

under 
on
atenation.

Lemma 4. Let C;D be FLE

+

-
on
ept des
riptions, then unravel(G

C

�G

D

) is a

FLE

+

- des
ription graph.

Again, for the exa
t proof of this lemma refer to [9℄. Sin
e the graph obtained by

the fun
tion unravel is a simple des
ription graph, Theorem 1 is appli
able and

the 
on
ept des
ription 
orresponding to the unraveled graph 
an be obtained

by the 
on
 fun
tion. We are now ready to prove the main theorem of this paper.

Theorem 3. Let C;D be FLE

+

-
on
ept des
riptions then 
on
(unravel(G

C

�

G

D

)) � l
s(C;D).

Proof. Let L = 
on
(unravel(G

C

� G

D

)). We have to show that (1) C v L and

D v L and (2) if there exist another FLE

+

-
on
ept E with E v L, C v E, and

D v E then L v E.

Proof of (1): It is suÆ
ient to show C v L. Lemma 3 implies that there exists

a simulation Z : unravel(G

C

� G

D

)

*

�

G

C

. Applying Lemma 4 to the unraveled

graph and by the de�nition of G

C

we know that unravel(G

C

�G

D

) and G

C

are both



simple des
ription graphs. Thus by Lemma 1 it holds that G

C

v unravel(G

C

�

G

D

). From Theorem 1 it follows that unravel(G

C

�G

D

) � 
on
(unravel(G

C

�G

D

))

and sin
e G

C

is a FLE

+

-des
ription graph Lemma 2 
an be applied and we 
an


on
lude that G

C

� C v 
on
(unravel(G

C

� G

D

)) � unravel(G

C

� G

D

).

Proof of (2): By 
ontradi
tion: assume E v L, C v E, D v E and L 6v E.

Let G

A

:= (V

A

; E

A

; v

A

0

; `

A

V

; `

A

E

) where A 2 fC;D;E;Lg. From C v E, D v E

and Theorem 2 follows that there exist simulations Z

C

: G

E

*

�

G

C

and Z

D

:

G

E

*

�

G

D

. Thus it holds by de�nition of simulations: 8v 2 V

E

:

{ 8v

F

2 V

F

: If v

F

2 Z

F

(v) then `

E

V

(v) � `

F

V

(v

F

), and

{ 8(v Qr w) 2 E

E

there exist v

F

; w

F

2 V

F

s.t. fv

F

g 2 Z

F

(v); fw

F

g 2 Z

F

(w)

and (v

F

Qrw

F

) 2 E

F

,

where F 2 fC;Dg. From the existen
e of both simulation relations and from

De�nition 9 follows that for all v 2 V

E

:

{ If v

C

2 Z

C

(v) and v

D

2 Z

D

(v) for v

C

2 V

C

; (v

C

Qrw

C

) 2 E

C

and for v

D

2

V

D

; (v

D

Qr w

D

) 2 E

D

then there exist the verti
es f(v

C

; v

D

); (w

C

; w

D

)g 2

V

G

C

�G

D

and ((v

C

; v

D

)Qr (w

C

; w

D

)) 2 E

G

C

�G

D

.

{ Sin
e `

E

V

(v) � `

C

V

(v

C

) [ `

D

V

(v

D

) = `

G

C

�G

D

V

((v

C

; v

D

))

Thus there exists a simulation relation Z

L

: G

E

*

�

G

C

� G

D

, where Z

L

(v) =

f(v

0

v

00

) 2 V

G

C

�G

D

j v

0

2 Z

C

(v); v

00

2 Z

D

(v)g. By Lemma 3 there also must exist

a simulation Z

0

L

: G

E

*

�

unravel(G

C

� G

D

). Sin
e G

E

and unravel(G

C

� G

D

)

are simple des
ription graphs, Lemma 1 implies G

E

v unravel(G

C

� G

D

). From

this we obtain with Lemma 2 and Lemma 4, that G

E

� E v 
on
(unravel(G

C

�

G

D

)) � unravel(G

C

�G

D

). This is a 
ontradi
tion to our initial assumption. Thus

we 
an 
on
lude that 
on
(unravel(G

C

� G

D

)) � l
s(C;D).

In 
ase the n-ary l
s is to be 
omputed from a set of 
on
epts, the produ
t of all


orresponding FLE

+

-des
ription graphs should be 
omputed �rst and then the

unravel and the 
on
 fun
tion should be applied only on
e.

4 Con
lusion and Outlook

We have introdu
ed a sound and 
omplete algorithm for the 
omputation of

the l
s in the DL FLE

+

. In parti
ular, the l
s of a �nite set of FLE

+

-
on
ept

des
riptions always exists and is uniquely determined up to equivalen
e. As a key

utility for the l
s 
omputation we have proposed des
ription graphs as a �nite

representation of FLE

+

-
on
ept des
riptions in whi
h all restri
tions additionally

imposed by transitive roles are made expli
it. The l
s 
ould thus be de�ned by

means of the graph produ
t of the des
ription graphs of the input 
on
epts.

It is easy to see that the l
s algorithm 
an be optimized in several ways

to produ
e smaller output 
on
ept des
riptions. Firstly, the blo
king 
onditions

used to generate des
ription graphs out of 
on
ept des
riptions so far only allow

for blo
king w.r.t. an
estors. This might be repla
ed by a more general blo
k-

ing strategy 
apable of blo
king between arbitrary verti
es. Se
ondly, it seems



expedient to redu
e redundan
ies possibly produ
ed by the fun
tion 
on
. In

parti
ular, it is not always ne
essary to apply the a

-fun
tion on
e for every

edge in the des
ription graph. A thorough investigation of the 
omputational


omplexity of the l
s 
omputation in FLE

+

remains future work. Nevertheless,

already for then non-transitive language FLE it is known that the l
s may be

exponentially large in the input size.
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