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Abstrat. Desription Logis (DLs) are a family of knowledge represen-

tation formalisms used for terminologial reasoning. They have a wide

range of appliations suh as medial knowledge-bases, or the semanti

web. Researh on DLs has been foused on the development of sound

and omplete inferene algorithms to deide satis�ability and subsump-

tion for inreasingly expressive DLs. Non-standard inferenes are a group

of relatively new inferene servies whih provide reasoning support for

the building, maintaining, and deployment of DL knowledge-bases. So

far, non-standard inferenes are not available for very expressive DLs.

In this paper we present �rst results on non-standard inferenes for DLs

with transitive roles. As a basis, we give a strutural haraterization

of subsumption for DLs where existential and value restritions an be

imposed on transitive roles. We propose sound and omplete algorithms

to ompute the least ommon subsumer (ls).

1 Introdution and Motivation

Desription Logis (DLs) are a family of formalisms used to represent termino-

logial knowledge of a given appliation domain in a strutured and well-de�ned

way. The basi notions of DLs are onept-desriptions and roles, representing

unary prediates and binary relations, respetively. Atomi onepts and on-

ept desriptions represent sets of individuals, whereas roles represent binary

relations between individuals [5℄. The main harateristi of a DL is the set of

onept onstrutors by whih omplex onept desriptions an be built from

atomi onepts and roles. In the present paper, we are onerned with the DL

FLE

+

whih provides the onstrutors onjuntion (CuD), existential restrition

(9r:C), value restrition (8r:C), and the top onept (>).

In FLE

+

, a role an be de�ned transitive. In this ase it represents the tran-

sitive losure of a binary relation. Transitive roles appear naturally in many

appliation domains, suh as mediine and proess engineering [1℄. Consider, for

instane, a mahine that omprises several omponents eah of whih again on-

sists of several devies. A natural way to represent suh a mahine by means of

?
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DLs would be to use some has-part role to reet its ompositional struture. It

would be natural here to impliitly regard every part of a omponent also as a

part of the whole. To this end, a DL with transitive roles is neessary.

Inferene problems for DLs are divided into so-alled standard and non-

standard ones. Well known standard inferene problems are satis�ability and

subsumption of onept desriptions. These are well investigated for a great

range of DLs. For many of them, sound and omplete deision proedures ould

be devised and lower and upper bounds for the omputational omplexity have

been found [12℄. Many standard inferene algorithms have been suessfully ex-

tended to ope with transitive roles [14, 13℄ and are put into pratie in state of

the art DL Systems.

Prominent non-standard inferenes are mathing, the least ommon sub-

sumer (ls), the most spei� onept (ms), and, more reently, approxima-

tion. Non-standard inferenes resulted from the experiene with real-world DL-

knowledge bases (KBs), where standard inferene algorithms sometimes did not

suÆe for building and maintaining purposes. For example, the problem of how

to struture the appliation domain by means of onept de�nitions may not

be lear at the beginning of the modeling task. Moreover, the expressive power

of the DL under onsideration sometimes makes it diÆult to ome up with a

faithful formal de�nition of the onept originally intended. To alleviate these

diÆulties it is expedient to employ non-standard inferenes [8℄.

The ls was �rst mentioned as an inferene problem for DLs in [11℄. Given

two onept desriptions A and B in a desription logi L, the ls of A and B is

de�ned as the least (w.r.t. subsumption) onept desription in L subsuming A

and B. It has been argued in [8℄ that the ls failitates a \bottom-up"-approah

to the above mentioned modeling task: a domain expert an selet a number of

intuitively related onept desriptions already existent in a KB and use the ls

operation to automatially onstrut a new onept desription representing the

losest generalization of them.

Mathing in DLs was �rst proposed in [7℄. A mathing problem (modulo

subsumption) onsists of a onept desription C and a onept pattern D, i.e.,

a onept desription with variables. Mathing D against C means �nding a

substitution of variables in D by onept desriptions suh that C is subsumed

by the instantiated onept pattern D. Among other appliations, mathing an

be employed for queries in KBs: a domain expert unable to speify uniquely

the onept he is looking for in a KB an use a onept pattern to retrieve all

those onepts in the KB for whih a mather exists. The strutural onstraints

expressible by patterns exeed the apabilities of simple \wildards" familiar

from ordinary searh engines [8℄.

Approximation was �rst mentioned as a new inferene problem in [4℄. The

upper (lower) approximation of a onept desription C

1

from a DL L

1

is de�ned

as the least (greatest) onept desription in another DL L

2

whih subsumes (is

subsumed by) C

1

. Approximation an be used to make non-standard inferenes

aessible to more expressive DLs by transferring a given inferene problem to

a less expressive DL where at least an approximate solution an be omputed.



Table 1. Syntax and semantis of FLE

+

-onept desriptions.

Construt name Syntax Semantis

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restritions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restritions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

transitive roles r

+

S

1�n

(r

I

)

n

Another appliation of approximation lies in user-friendly DL-systems o�ering

a simpli�ed frame-based view on KBs de�ned in a more expressive bakground

DL [6℄. Here approximation an be used to ompute simple frame-based repre-

sentations of otherwise overwhelmingly ompliated onept desriptions.

In ontrast to standard inferene problems, omparatively little researh ex-

ists on non-standard inferenes in DLs with transitive roles [2℄. If existential

restritions an be expressed in a DL then the inferenes mathing and approxi-

mation are de�ned by means of the ls operation. This entral role of the ls for

non-standard inferenes has lead us to make this inferene problem the �rst to

be extended to FLE

+

. Experiene with other DLs has shown that to �nd an ls

algorithm is the ruial step towards algorithms for other non-standard infer-

enes suh as mathing and approximation. For this reason the ls in FLE

+

may

be regarded as the foundation of several other non-standard inferenes in FLE

+

.

After introduing some basi notions and notation, our �rst step towards the

ls will be a haraterization of subsumption for FLE

+

-onept desriptions by

means of so-alled desription graphs. We shall see that for two FLE

+

-onept

desriptions A and B, subsumption (A v B) holds if and only if there exists

a simulation relation from the desription graph of B into the one of A. The

ls inferene of A and B is then de�ned as the graph produt of the respetive

desription graphs.

As a result, we shall see that the ls of a �nite set of FLE

+

-onept desrip-

tions always exists and is uniquely determined up to equivalene. Moreover, an

e�etive algorithm for the omputation of the ls will be provided.

All tehnial details and relevant proofs an be found in our tehnial report

[9℄. Moreover, the problem of the ls omputation in two sublanguages of FLE

+

,

namely FL

+

0

and EL

+

, is also addressed in detail.

2 Preliminaries

DLs are based on the following sets of names: N

C

is the set of onept names,

and N

R

is the set of non-transitive roles, and N

T

R

is the set of transitive roles,

where N

R

\N

T

R

= ;. Conept desriptions are indutively de�ned starting from

the set of onept names and use the onept onstrutors shown in Table 1. The

DL FLE o�ers the top-onept, onjuntion, existential, and value restritions,

as displayed in Table 1. In FLE

+

, transitive roles an be used in existential and

value restritions.



As usual, the semantis of a onept desription is de�ned in terms of an

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation funtion �

I

maps eah onept name A 2 N

C

to a set A

I

� � and

eah role name r 2 N

R

[N

T

R

to a binary relation r

I

� ���. The extension of �

I

to arbitrary onept desriptions is de�ned indutively, as shown in the seond

olumn of Table 1. Note that all onept desriptions in the above mentioned

DLs are satis�able.

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C is

subsumed by the desription D (C v D) i� C

I

� D

I

for all interpretations I;

C and D are equivalent (C � D) i� C v D and D v C.

In this paper we fous on the non-standard inferene of omputing the least

ommon subsumer (ls).

De�nition 1 (ls). Given L-onept desriptions C

1

; : : : ; C

n

, for some desrip-

tion logi L, the L-onept desription C is the least ommon subsumer (ls)

of C

1

; : : : ; C

n

(C = ls(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 � i � n,

and (ii) C is the least onept desription with this property, i.e., if C

0

satis�es

C

i

v C

0

for all 1 � i � n, then C v C

0

.

The idea behind the ls inferene is to extrat the ommonalities of the input

onepts. The ls is uniquely determined up to equivalene. Therefore it is jus-

ti�ed to speak about \the" ls instead of \an" ls.

3 Least ommon subsumer for FLE

+

The ls has already been investigated for sub-logis of FLE

+

. The work of Baader

et al. [4, 3℄ investigates the omputation of the ls in FLE and its sublanguages.

As long as a sublanguage of FLE does not allow for both existential and

value restritions it is omparatively easy to adapt the existing ls algorithms

to transitive roles. In [9℄ this is done both for FL

0

, admitting only onjuntion

and value restritions, as well as for EL, where only onjuntion and existential

restritions are admitted. For EL

+

, it is possible to translate a onept C into an

equivalent one in EL. Thus, all the additional restritions imposed by transitive

roles in C are made expliit. This simple approah, however, does not work for

FLE

+

-onept desriptions, as the following example illustrates.

Example 1. Consider the FLE

+

-onept desription C

ex

:= (8r:9r:A) u 9r:A,

where r is transitive. To expliitly satisfy the (transitive) value restrition, we

need to propagate 8r:9r:A to the existential restrition. This yields (8r:9r:A) u

9r:(A u 9r:A u 8r:9r:A) whih equals (8r:9r:A) u 9r:(A u C

ex

). Obviously, an

attempt of exhaustive propagation would not terminate.

Hene, our �rst aim is to �nd a �nite representation of FLE

+

-onept desrip-

tions in whih the transitivity of roles is made expliit. Suh a representation is

introdued by the following setion.



3.1 Desription Graphs

In this setion we will not only introdue desription graphs as a syntati on-

strut but also provide a model-theoreti semantis for them whih makes it

easier to examine the equivalene between a onept desription and a desrip-

tion graphs diretly.

De�nition 2 (desription graph). Let G := (V;E; v

0

; `

V

; `

E

) be a rooted,

direted, and onneted graph with labeling funtions for verties and edges. The

labeling funtion `

V

assigns a set of onept desriptions to every vertex in V

and `

E

assigns a label of the form Qr to every edge in E, where Q 2 f8; 9g

and r 2 N

R

[N

T

R

. An edge labeled 8r is alled forall-edge, an edge labeled 9r

exists-edge. If every vertex v in G has at most one outgoing forall-edge per role

then it is alled a desription graph.

For the sake of simpliity, we use the notation (v Qr w) 2 E to express that (i)

(v; w) 2 E and (ii) `

E

(v; w) = fQrg. Note that desription graphs an be yli.

Like onept desriptions, desription graphs are interpreted w.r.t. a model-

theoreti semantis to be introdued next.

De�nition 3 (semantis of desription graphs). Let G := (V;E; v

0

; `

V

; `

E

)

be a desription graph and let I := (�; �

I

) be an interpretation. A mapping

� : V ! 2

�

I

n ; is alled a model mapping i� for all v; w 2 V it holds that:

{ �(v) � C

I

for all C 2 `(v);

{ if (v 9r w) 2 E for r 2 N

R

and x 2 �(v) then there exists some y 2 �

I

with

(x; y) 2 r

I

and y 2 �(w);

{ if (v 9r w) 2 E for r 2 N

T

R

and x 2 �(v) then there exists some y 2 �

I

with

(x; y) 2 (r

I

)

+

and y 2 �(w);

{ if (v 8r w) 2 E for r 2 N

R

and x 2 �(v) then (x; y) 2 r

I

implies y 2 �(w).

For a given x 2 �

I

, de�ne I; x j= G i� there is a model mapping � with x 2

�(v

0

). The semantis of G w.r.t. I is de�ned as G

I

:= fx 2 �

I

j I; x j= G

C

g.

There is a similarity between the semantis of desription graphs and that of

onept desriptions as de�ned in Setion 2. A (transitive) 9r-edge (v 9r w) like

an existential restrition implies a orresponding r-edge (r-path) for all witnesses

x 2 �(v) in the model. Similarly, every 8r-edge (v 8r w) imposes restritions on

every witness in the model reahable via an r-edge from some x 2 �(v).

Regarded as a desription graph the syntax tree of everyFLE-onept desrip-

tion C is equivalent to C. This, however, is not generally true of FLE

+

-onept

desriptions. Moreover, there are desription graphs for whih no equivalent

FLE

+

-onept desription exists. Ultimately, however, we are interested in de-

sription graphs guaranteed to represent onept desriptions. To this end, we

introdue six onditions to restrit desription graphs further, leading to the

notion of simple desription graphs. As a prerequisite, we need to speify the

notion of a simulation relation for desription graphs.



De�nition 4 (simulation relation). For i 2 f1; 2g, let G

i

:= (V

i

; E

i

; v

0i

; `

V

i

; `

E

i

)

be desription graphs. Then, G

2

*

�

G

1

i� there exists a relation R � V

2

�V

1

with:

1. (v

02

; v

01

) 2 R

2. `

V

(v) \N

C

� `

V

(v

0

) \N

C

for all (v; v

0

) 2 R.

3. If (v Qr w) 2 E

2

and (v; v

0

) 2 R then there exists a vertex w

0

2 V

1

suh that

(v

0

Qrw

0

) 2 E

1

and (w;w

0

) 2 R.

For verties v

1

2 V

1

and v

2

2 V

2

, denote by G

2

(v

2

)

*

�

G

1

(v

1

) the fat that a

simulation relation R exists between the subgraph of G

2

reahable from v

2

and

the subgraph of G

1

reahable from v

1

. In partiular, this implies (v

2

; v

1

) 2 R.

De�nition 5 (simple desription graph). Let G := (V;E; v

0

; `

V

; `

E

) be a

desription graph. G is a simple desription graph i� the following properties

hold.

1. W.r.t. a breadth-�rst searh tree, G has no forall-forward edges and no ross

edges. Every exists-forward edge only onnets verties onneted by a path

of exists-tree edges w.r.t. one transitive role.

2. If (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

0

) is a yle in E with pairwise distint

verties then there exists one transitive role r with r

i

= r for all i.

3. If (v

0

Q

0

r v

1

: : : v

n�1

Q

n�1

r v

0

) is a yle in E with pairwise distint verties

and r 2 N

T

R

then v

0

has a 8r-suessor.

4. If f(u8r v); (u 9r w)g � E then G(v)

*

�

G(w). If r 2 N

T

R

then there exists a

vertex w

0

suh that (w 8r w

0

) 2 E and G(v)

*

�

G(w

0

).

5. If (u8r v) 2 E with r 2 N

T

R

then there exists a vertex v

0

suh that (v 8r v

0

) 2

E and G(v)

*

�

G(v

0

).

6. If B 2 `

V

(v) then G

B

*

�

G(v) for every vertex v 2 V .

The idea behind the above de�nition to is imitate the propagation of exis-

tential and value restritions in the graph struture. For instane, Condition 4

ensures that no subgraph representing an existential restrition may be more

general that a orresponding subgraph representing a value restrition. Hene, a

value restrition must be propagated over all existential restritions. Condition 5

similarly ensures that value restritions over transitive roles are propagated to

deeper role levels, as 8r:A implies 8r:(Au (8r:A)) and so on. Conditions 2 and 3

ensure that yles annot our arbitrarily. By means of Condition 6, omplex

onept desriptions are already represented in the struture of the desription

graph. The �rst ondition exludes a number of irregularities whih would make

the proofs over desription graphs more intriate.

The following lemma an be shown for all desription graphs.

Lemma 1. For desription graphs G and H it holds that H

*

�

G implies G v H.

Having de�ned syntax and semantis of desription graphs in general the next

step is to translate FLE

+

-onept desriptions into equivalent desription graphs.



3.2 Translation of FLE

+

-onept desriptions into FLE

+

-desription

graphs

To show that every FLE

+

-onept desription has a orresponding FLE

+

-de-

sription graph we devise a suitable translation funtion. As a tehnial pre-

requisite, we require a normal form for FLE-onept desriptions, as introdued

in [3℄. The purpose of this normal form is merely to atten onjuntions, to

make the top-onept expliit, and to propagate value restritions over existen-

tial restritions. The problem of impliit information indued by transitive roles

remains untouhed here.

De�nition 6 (FLE normalization rules). Let E;F be two FLE

+

-onept de-

sriptions and r 2 N

R

[N

T

R

a primitive role. The FLE-normalization rules are

de�ned as follows

1) 8r:> �! > 3) 8r:E u 8r:F �! 8r:(E u F )

2) E u > �! E 4) 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5) E u (F uG) �! E u F uG:

A onept desription is in FLE-normal form if the FLE-normalization rules have

been applied to it exhaustively.

Eah of the above normalization rules preserve equivalene and should be read

modulo ommutativity of onjuntion. It has been shown in [3℄ that exhaustive

appliation of these rules may produe onept desriptions of size exponential

in the size of the original. During the translation of an FLE

+

-onept desription

into an FLE

+

-desription tree the FLE-normalization rules need to be applied

only to the out most role-level of the FLE

+

-onept at a time.

The following de�nition provides the framework of the translation of FLE

+

-

onept desriptions into desription graphs. For a given onept desription C

we start with an empty desription graph G onsisting only of a root vertex v

0

with C in its label. Then we exhaustively apply graph generation rules (de�ned

in detail in Figure 1) produing new verties and edges. In this proess we

distinguish three kinds of edges. The set E

D

ontains the edges of the underlying

spanning tree, in E

+

are the forward-edges indued by transitivity, and in E

"

are self-loops or edges that onnet a vertex with an anestor vertex in w.r.t.

the spanning tree. As soon as no prodution rules are appliable, all non-atomi

onept desriptions are removed from the label sets of G and the graph is

returned.

For the atual de�nition, a shorthand notation needs to be introdued �rst.

For a set fC

1

; : : : ; C

n

g of FLE

+

-onept desriptions, let fC

1

; : : : ; C

n

g

�

denote

the orresponding set in whih (i) the FLE

+

normalization rules de�ned above

have been applied exhaustively on the top most role-level of every C

i

and (ii)

every C

i

is split into its onjunts. Observe that there is at most one value

restrition per role r in fC

1

; : : : ; C

n

g

�

.

De�nition 7 (FLE

+

-desription graph). Let C be a FLE

+

-onept desrip-

tion. The FLE

+

-desription graph G

C

is obtained by the following proedure:



R

9

: If (9r:C

0

) 2 `

V

(v), (8r:C

00

) 62 `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v; 9r; v

00

) 2 E

D

[ E

"

^ fC

0

g

�

= `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

,

then E

"

:= E

"

[ f(v; 9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 9r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

98

: If r 2 N

R

, and f(9r:C

0

); (8r:C

00

)g � `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v; 9r; v

00

) 2 E

D

[ E

"

^ fC

0

g

�

= `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

then E

"

:= E

"

[ f(v; 9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 9r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

98

+

: If r 2 N

T

R

, and f(9r:C

0

); (8r:C

00

)g � `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v; 9r; v

00

) 2 E

D

[ E

"

^ fC

0

; 8r:C

00

g = `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

; 8r:C

00

g

�

then E

"

:= E

"

[ f(v; 9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 9r; v

0

)g, `

V

(v

0

) := fC

0

; 8r:C

00

g

�

.

R

8

: If r 2 N

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v; 8r; v

00

) 2 E

D

[ E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

then E

"

:= E

"

[ f(v; 8r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 8r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

8

+

: If r 2 N

T

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v; 8r; v

00

) 2 E

D

[ E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

; 8r:C

0

g

�

then E

"

:= E

"

[ f(v; 8r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v; 8r; v

0

)g, `

V

(v

0

) := fC

0

; 8r:C

0

g

�

.

R

E

+

: If r 2 N

T

R

, and f(v; 9r; v

0

); (v

0

; 9r; v

00

)g 2 E

D

and (v; 9r; v

00

) 62 E

+

thenE

+

:= E

+

[ f(v; 9r; v

00

)g

Fig. 1. FLE

+

-Desription Graph Generation Rules.

1. Initialize the sets V := fv

0

g; `

V

= `

V

(v

0

) = fCg

�

, and

E := E

+

:= E

D

:= E

"

:= ;.

2. Apply the FLE

+

-desription graph generation rules from Figure 1 exhaus-

tively to obtain G

0

C

:= (V;E; v

0

; `

V

; `

E

), where E = E

D

[ E

"

[ E

+

.

3. Redue the label sets of verties: 8v 2 V : `

0

V

(v) := `

V

(v) \N

C

.

4. return G

C

:= (V;E; v

0

; `

0

V

; `

E

).

All non-atomi onept desriptions in the label sets of the verties of G

are disarded afterwards beause their information (as we shall see) is then

represented by the struture of the graph. It remains to de�ne the generation

rules used in Step 2 of the above de�nition.

Figure 1 shows the generation rules referred to in De�nition 7. For every v,

�(v) denotes the (unique) path from v

0

to v w.r.t. tree edges. Intuitively, the

idea of the rules is to use the onept desriptions ourring in the label set of

a vertex v to extend the desription graph \aordingly", i.e., if an existential



9r

8r

9r8r

v



: f 9r:(A uB u 9r:(A u B));

8r:9r:(Au B) g

v

b

: f A;B;

9r:(A u B u 9r:(A u B));

8r:9r:(A u B) g

9r

G

C

ex

v

a

: f 9r:(A u B u

9r:(A uB) u

8r:9r:(Au B)) g

8r

9r

v

2

: f B;

9r:(B u 9r:B);

8r:9r:B g

v

0

: f 9r:(9r:(B u 9r:B) u

8r:9r:B) g

9r

9r

v

1

: f 9r:(B u 9r:B);

8r:9r:B g

8r

9r

G

D

ex

Fig. 2. FLE

+

-desription graphs

restrition 9r:C ours in `

V

(v) then a vertex w must be introdued (or probably

only found) suh that (i) w is onneted to v by an exists-edge and (ii) a onept

equivalent to C ours in `

V

(w). Moreover, a value restrition 8r:D probably also

ourring in `

V

(v)D must be propagated to `(w).

Starting at a given vertex v, the rules R

9

, R

98

, and R

98

+
all produe new

exists-edges, possibly to a newly generated vertex. R

9

applies if only an existen-

tial restrition is present in `

V

(v), R

98

applies if an additional value restrition

(w.r.t. the same non-transitive role) is present, and R

98

+
overs the analogous

transitive ase. Similarly, R

8

and R

8

+
address the ase where only a value re-

strition (non-transitive or transitive) is present. Rule R

9

+
never introdues new

verties but only adds forward-edges over exists-paths w.r.t. one transitive role.

To avoid generating in�nitely many new verties, every generation rule has

a bloking ondition

3

testing for every vertex v whether or not a new vertex w

an be avoided by a bak edge to an already existing anestor vertex u. This

is the ase if the anestor u has the same label set as the new vertex w would

get, i.e., `

V

(u) = `

V

(w). The vertex u is regarded as anestor of v i� u lies on a

(the) tree-path from the root vertex to v. Note that the ondition `

V

(u) = `

V

(w)

determines u uniquely and that v = w is not exepted. The following example

shows the orresponding FLE

+

-desription graph of two simple FLE

+

-onepts.

Example 2. Let C

ex

:= 9r:(B u 9r:B u 8r:9r:B) and D

ex

:= 9r:(9r:B u 8r:9r:B)

for a transitive role r and an atomi onept B. The orresponding FLE

+

-

desription graphs are depited in Figure 2. The �gure also shows the normalized

label sets of every vertex. Note that the non-atomi onept desriptions in the

label sets are used only during the generation of the desription graphs.

It remains to be shown that the resulting FLE

+

-desription graphs are in

fat equivalent to the original onept desriptions. It is shown in [9℄ that the

following theorem holds.

Lemma 2. Let C be an FLE

+

-onept desriptions, then (1) C � G

C

and (2)

G

C

is a simple desription graph.

3

Bloking strategies originally have been introdued in the DL ontext in [10℄ for a

tableaux-based satis�ability tester for expressive DLs.



As a result, we know how to enode the information represented byFLE

+

-onept

desriptions in FLE

+

-desription graphs. Our next step is to �nd a way to trans-

late desription graphs bak to onept desriptions.

3.3 Translation of simple desription graphs into FLE

+

-onept

desriptions

It has already been mentioned in Setion 3.1 that desription graphs exist with-

out an equivalent FLE

+

-onept desription, see [9℄. We shall see that it suÆes

to restrit our bakward translation proedure to the lass of simple desription

graphs introdued in the previous setion.

For the bakward translation proedure we may not rely on omplex onept

desriptions in the label sets of the graphs in question. On the ontrary, the idea

is to re-build omplex onept desriptions in the label sets while preserving

equivalene to the original desription graph. This proess is ontinued until the

desired onept desription ours in the root label. Note that this strategy is

just the reverse of the generation proedure of FLE

+

-desription graphs, where

the label of the root vertex generates the entire desription graph.

To formalize the notion of re-building omplex labels we devise an oper-

ation whih modi�es a given desription graph by altering its label funtion.

Intuitively, the funtion a \aumulates" omplex onept desriptions in the

label sets of the verties.

De�nition 8. Let G := (V;E; v

0

; `

V

; `

E

) be a desription graph and jEj := n.

Then, a(G) := (V;E; v

0

; `

0

V

; `

E

) where `

0

V

is de�ned as follows. For every v 2 V ,

`

0

V

(v) := (`

V

(v) \N

C

) [

[

r2N

R

[N

T

R

0

�

[

(v 9r w)2E

9r:u `

V

(w)

[

[

(v 8r w)2E

�

8r:u(`

V

(w) n f8r:>g) u u

(w 9r w

0

)2E

9r:u `

V

(w

0

)

�

1

A

.

De�ne on(G) :=u `

V

(v

0

0

), where v

0

0

denotes the root vertex of a

n

(G).

For every vertex v, the modi�ed label funtion `

0

V

ontains the same atomi

labels as before but additionally has an existential restrition based on the label

of every 9r-suessor of v. Forall-edges are treated similarly only that existential

edges starting from verties reahable by forall-edges are also taken into aount.

Observe that a(G) is still a simple desription graph.

To illustrate the e�et of the funtion a, onsider the a simple desrip-

tion graph G with only one vertex v

0

with a label `

V

(v

0

) = fAg and edges

E := f(v

0

; 9r; v

0

); (v

0

8r v

0

)g. In the graph a(G) the root vertex has the label

fA; 9r:A;8r:(Au9r:A)g. Applying a again we obtain the root label of a

2

(G)

whih equals fA; 9r:(A u 9r:A u 8r:(A u 9r:A));8r:(A u 9r:A u 8r:(A u 9r:A) u

9r:(A u 9r:A u 8r:(A u 9r:A)))g.



It suÆes to show that applying the funtion a at most jEj times produes

a root label suh that the onjuntion of all ontained onepts is equivalent to

G. Hene, we obtain the following theorem.

Theorem 1. For every simple desription graph G = (V;E; v

0

; `

V

; `

E

) it holds

that on(G) � G.

The idea of the proof is to show the equivalene on(G) � G in three steps.

Firstly, we show for every G that a single appliation of a preserves equivalene,

i.e., G � a(G). This immediately implies G � a

jEj

(G). Seondly, due to

the semantis of desription graphs it is also easy to see that every onept

desription in the root label of a

jEj

(G) subsumes a

jEj

(G). Hene, a

jEj

(G) v

on(G). Thirdly, we an show that every model of on(G) is also a model of

a

jEj

(G). See [9℄ for the full proof.

Now the neessary means are provided to translate FLE

+

-onept desrip-

tions (bak and forth) into a representation where the transitivity of roles is

made expliit. To de�ne the ls operation w.r.t. desription graphs we �rst need

a omplete haraterization of subsumption in this representation.

3.4 Charaterization of subsumption in FLE

+

In this setion, the desription graphs introdued previously are used to hara-

terize subsumption of FLE

+

-onept desriptions.

Theorem 2. Let C;D be FLE

+

-onept desriptions, then C v D i� G

D

*

�

G

C

.

To show the `if'-diretion, one an use a anonial model I

C

of C obtained from

G

C

by renaming the labels of all edges (v Qr w) in E

C

to (v r w). The fat that

(i) I

C

atually is a model of C and (ii) that by subsumption every model of C is

also one of D an then be used to onstrut a simulation relation R. This is done

iteratively while traversing G

D

in depth-�rst order starting from the root vertex.

See [9℄ for the full proof. However, the proof of the `only if'-diretion is easily

obtained as a onsequene of Lemma 2 and two results shown in the previous

setions, namely Lemma 1 and Theorem 1. To illustrate the above result, we

return to the example introdued in the previous setion.

Example 3. Reall the onepts from Example 2. The only di�erene between

C

ex

and D

ex

is the atomi onept B in the outermost existential restrition of

C

ex

. Hene, C

ex

v D

ex

. It is easy to see that R := f(v

0

; v

a

); (v

1

; v



); (v

2

; v

b

)g

is in fat a simulation relation from G

D

ex

into G

C

ex

. For all pairs it holds that

the label set of the �rst vertex is a subset of that of the seond one. Moreover,

every edge starting from the �rst vertex an also be traveled from the seond

one, reahing again a pair in R. Note that this property does not hold without

the transitive edge (v

0

9r v

2

) in G

D

ex

.



3.5 Computation of the ls in FLE

+

With all the information aptured in a FLE-onept desription made expliit

by FLE

+

-desription graphs the next step is to extrat the ommonalities of the

desription graphs. Similar to other approahes to omputing the ls [1, 4℄ the

graph produt is employed to this end. In a desription graph G the depth of a

vertex v is de�ned as the distane to the root vertex w.r.t. tree edges.

De�nition 9 (Produt of FLE

+

-desription graphs). The produt G

C

�G

D

of two FLE

+

-desription graphs G

A

= (V

A

; E

A

; v

0A

; `

V

A

; `

E

A

) for A 2 fC;Dg is

de�ned by indution on the depth of the FLE

+

-desription graphs. The vertex

(v

0C

; v

0D

) labeled with `

V

C

(v

0C

) \ `

V

D

(v

0D

) is the root vertex of G

C

� G

D

. For

eah pair (v

C

; v

D

); v

C

2 V

C

; v

D

2 V

D

s.t. v

C

is a Qr-suessor of v

0C

in G

C

and

for v

D

is a Qr-suessor of v

0D

in G

D

, we obtain a Qr-suessor (v

C

; v

D

) of

(v

0C

; v

0D

) in G

C

� G

D

. The vertex (v

C

; v

D

) is the root vertex of the indutively

de�ned produt of G

C

�G

D

. The graph H = G

C

�G

D

is alled the produt graph.

The resulting produt graph G

C

� G

D

is rooted, onneted, and direted. Sine

all verties in G

C

and G

D

have at most one outgoing all-edge, every vertex in

the produt graph has at most one outgoing all-edge. Thus, produt graphs are

desription graphs. Note that by onstrution of the produt graph there trivially

exists a simulation Z : G

C

� G

D

*

�

G

C

and between Z

0

: G

C

� G

D

*

�

G

D

.

Example 4. Let us return to the onept desriptions C

ex

and D

ex

from Exam-

ple 2. The produt of their FLE

+

-desription graphs is displayed in Figure 3.

The edges between v

b2

and v

1

are ross edges.

One the produt graph is obtained,

we need to transform this representa-

tion into a FLE

+

-onept desription.

In order to apply the on funtion in-

trodued in Setion 3, we have to hek

whether the obtained graph is a simple

desription graph. Unfortunately, this

is not neessarily the ase sine the

produt graph may ontain ross edges

(w.r.t. a breadth-�rst spanning tree).

8r

9r

9r

8r

9r 8r

v

a0

: ;

9r

9r

v

b1

: ;

v

1

: ;v

b2

: fBg

G

C

ex

� G

D

ex

Fig. 3: Produt Graph for G

C

ex

and G

D

ex

Cross edges violate Condition 1 from De�nition 5. We therefore have to eliminate

them before applying the funtion on to read out a onept desription from

a produt graph. The elimination of ross edges is performed by an unraveling

funtion introdued in De�nition 10. The idea is to introdue a new vertex in G'

for eah path over distint verties in the original graph starting from the root

vertex and then transform every ross edge (v; w) into a new tree edge (v; w

0

)

by redireting it to a opy of the subgraph reahable from w. For the formal

de�nition, an auxiliary funtion eliminate-ross-edges is introdued �rst.

De�nition 10 (unravel-funtion). Let G := (V;E; v

0

; `

V

; `

E

) be an FLE-de-

sription graph. For every non-empty path p := (v

0

: : : v

n

) in V , let Tail(p) := v

n

.



Denote by p � q the onatenation of two suh paths. Let

Final-Path(G) :=

[

1�i�jV j

f(v

0

v

1

: : : v

i

) 2 V

i

j (v

j

Qr v

j+1

) 2 E; v

j

6= v

k

for j 6= kg.

De�ne the funtion eliminate-ross-edges by

eliminate-ross-edges(G) := (Final-Path(G); E

0

; `

0

V

; `

0

E

), where

E

0

:= f(hpi; hp � vi) 2 V

0

�V

0

j (Tail(p)Qr v) 2 Eg [

f(hp � v � qi; hp � vi) 2 V

0

�V

0

j (Tail(q)Qr v) 2 Eg

`

0

V

(p) := `

V

(Tail(p))

`

0

E

(pQr q) := `

E

(Tail(p)QrTail(q))

The set Final-Path(G) ontains verties of the underlying spanning tree of G.

For a given input graph G, the result unravel(G) is onstruted in three steps:

�rstly, remove forward edges from G; seondly, apply the funtion eliminate-ross-

edges on the resulting graph, and; thirdly, augment the resulting graph by the

transitive-losure over all exists-edges. It an be shown that the graph obtained

by the funtion unravel is equivalent to the original one.

Lemma 3. Let C;D be FLE

+

-onept desriptions, then, (1) unravel(G

C

�G

D

)

*

�

G

C

� G

D

and G

C

� G

D

*

�

unravel(G

C

� G

D

) and (2) unravel(G

C

� G

D

)

*

�

G

C

.

The underlying idea of the proof of (1) in this Lemma is to onstrut a simulation

by extending the identity relation on G

C

� G

D

to the desired simulations by

mapping the opied parts of the unraveled graph obtained from the unravel

funtion to (or from resp.) the same verties as their originals. For the exat

proof refer to [9℄. In this Lemma (2) is an immediate onsequene of (1), sine

there always exists a simulation Z

0

: G

C

� G

D

*

�

G

C

and simulations are losed

under onatenation.

Lemma 4. Let C;D be FLE

+

-onept desriptions, then unravel(G

C

�G

D

) is a

FLE

+

- desription graph.

Again, for the exat proof of this lemma refer to [9℄. Sine the graph obtained by

the funtion unravel is a simple desription graph, Theorem 1 is appliable and

the onept desription orresponding to the unraveled graph an be obtained

by the on funtion. We are now ready to prove the main theorem of this paper.

Theorem 3. Let C;D be FLE

+

-onept desriptions then on(unravel(G

C

�

G

D

)) � ls(C;D).

Proof. Let L = on(unravel(G

C

� G

D

)). We have to show that (1) C v L and

D v L and (2) if there exist another FLE

+

-onept E with E v L, C v E, and

D v E then L v E.

Proof of (1): It is suÆient to show C v L. Lemma 3 implies that there exists

a simulation Z : unravel(G

C

� G

D

)

*

�

G

C

. Applying Lemma 4 to the unraveled

graph and by the de�nition of G

C

we know that unravel(G

C

�G

D

) and G

C

are both



simple desription graphs. Thus by Lemma 1 it holds that G

C

v unravel(G

C

�

G

D

). From Theorem 1 it follows that unravel(G

C

�G

D

) � on(unravel(G

C

�G

D

))

and sine G

C

is a FLE

+

-desription graph Lemma 2 an be applied and we an

onlude that G

C

� C v on(unravel(G

C

� G

D

)) � unravel(G

C

� G

D

).

Proof of (2): By ontradition: assume E v L, C v E, D v E and L 6v E.

Let G

A

:= (V

A

; E

A

; v

A

0

; `

A

V

; `

A

E

) where A 2 fC;D;E;Lg. From C v E, D v E

and Theorem 2 follows that there exist simulations Z

C

: G

E

*

�

G

C

and Z

D

:

G

E

*

�

G

D

. Thus it holds by de�nition of simulations: 8v 2 V

E

:

{ 8v

F

2 V

F

: If v

F

2 Z

F

(v) then `

E

V

(v) � `

F

V

(v

F

), and

{ 8(v Qr w) 2 E

E

there exist v

F

; w

F

2 V

F

s.t. fv

F

g 2 Z

F

(v); fw

F

g 2 Z

F

(w)

and (v

F

Qrw

F

) 2 E

F

,

where F 2 fC;Dg. From the existene of both simulation relations and from

De�nition 9 follows that for all v 2 V

E

:

{ If v

C

2 Z

C

(v) and v

D

2 Z

D

(v) for v

C

2 V

C

; (v

C

Qrw

C

) 2 E

C

and for v

D

2

V

D

; (v

D

Qr w

D

) 2 E

D

then there exist the verties f(v

C

; v

D

); (w

C

; w

D

)g 2

V

G

C

�G

D

and ((v

C

; v

D

)Qr (w

C

; w

D

)) 2 E

G

C

�G

D

.

{ Sine `

E

V

(v) � `

C

V

(v

C

) [ `

D

V

(v

D

) = `

G

C

�G

D

V

((v

C

; v

D

))

Thus there exists a simulation relation Z

L

: G

E

*

�

G

C

� G

D

, where Z

L

(v) =

f(v

0

v

00

) 2 V

G

C

�G

D

j v

0

2 Z

C

(v); v

00

2 Z

D

(v)g. By Lemma 3 there also must exist

a simulation Z

0

L

: G

E

*

�

unravel(G

C

� G

D

). Sine G

E

and unravel(G

C

� G

D

)

are simple desription graphs, Lemma 1 implies G

E

v unravel(G

C

� G

D

). From

this we obtain with Lemma 2 and Lemma 4, that G

E

� E v on(unravel(G

C

�

G

D

)) � unravel(G

C

�G

D

). This is a ontradition to our initial assumption. Thus

we an onlude that on(unravel(G

C

� G

D

)) � ls(C;D).

In ase the n-ary ls is to be omputed from a set of onepts, the produt of all

orresponding FLE

+

-desription graphs should be omputed �rst and then the

unravel and the on funtion should be applied only one.

4 Conlusion and Outlook

We have introdued a sound and omplete algorithm for the omputation of

the ls in the DL FLE

+

. In partiular, the ls of a �nite set of FLE

+

-onept

desriptions always exists and is uniquely determined up to equivalene. As a key

utility for the ls omputation we have proposed desription graphs as a �nite

representation of FLE

+

-onept desriptions in whih all restritions additionally

imposed by transitive roles are made expliit. The ls ould thus be de�ned by

means of the graph produt of the desription graphs of the input onepts.

It is easy to see that the ls algorithm an be optimized in several ways

to produe smaller output onept desriptions. Firstly, the bloking onditions

used to generate desription graphs out of onept desriptions so far only allow

for bloking w.r.t. anestors. This might be replaed by a more general blok-

ing strategy apable of bloking between arbitrary verties. Seondly, it seems



expedient to redue redundanies possibly produed by the funtion on. In

partiular, it is not always neessary to apply the a-funtion one for every

edge in the desription graph. A thorough investigation of the omputational

omplexity of the ls omputation in FLE

+

remains future work. Nevertheless,

already for then non-transitive language FLE it is known that the ls may be

exponentially large in the input size.

Referenes

1. F. Baader. Least ommon subsumers, most spei� onepts, and role-value-maps

in a desription logi with existential restritions and terminologial yles. LTCS-

Report LTCS-02-07, Chair f. Automata Theory, Inst. f. Theor. Comp. Si. TU

Dresden, Germany, 2002.

2. F. Baader and R. K�usters. Uni�ation in a desription logi with inonsisteny

and transitive losure of roles. In I. Horroks and S. Tessaris, eds., Pro. of the

2002 International Workshop on Desription Logis, Toulouse, Frane, 2002.

3. F. Baader, R. K�usters, and R. Molitor. Computing least ommon subsumers in

desription logis with existential restritions. LTCS-Report LTCS-98-09, LuFG

Theoretial Comp. Si. RWTH Aahen, Germany, 1998.

4. F. Baader, R. K�usters, and R. Molitor. Computing least ommon subsumer in

desription logis with existential restritions. In T. Dean, ed., Pro. of IJCAI-99,

p. 96{101, Stokholm, Sweden, 1999. Morgan Kaufmann.

5. F. Baader and P. Narendran. Uni�ation of onept terms in desription logis. In

H. Prade, ed., Pro. of ECAI-98, p. 331{335. John Wiley & Sons Ltd, 1998.

6. S. Behhofer, I. Horroks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology

Editor for the Semanti Web. In Pro of KI-01.

7. A. Borgida and D. L. MGuinness. Asking queries about frames. In Luigia C.

Aiello, John Doyle, and Stuart C. Shapiro, eds., Pro. of KR-96, p. 340{349, Cam-

bridge, MA, 1996. Morgan Kaufmann.

8. S. Brandt and A.-Y. Turhan. Using non-standard inferenes in desription logis

| what does it buy me? In Pro. of KIDLWS'01, nr 44 in CEUR-WS, Vienna,

Austria, 2001. RWTH Aahen.

9. S. Brandt, A.-Y. Turhan, and R. K�usters. Foundations of non-standard inferenes

for desription logis with transitive roles. LTCS-Report 03-02, Chair f. Automata

Theory, Inst. f. Theor. Comp. Si. TU Dresden, Germany, 2003.

10. Martin Buhheit, Franeso M. Donini, and Andrea Shaerf. Deidable reasoning in

terminologial knowledge representation systems. Journal of Arti�ial Intelligene

Researh, 1:109{138, 1993.

11. W. W. Cohen, A. Borgida, and H. Hirsh. Computing least ommon subsumers in

desription logis. In W. Swartout, ed., Pro. of AAAI-92, San Jose, CA, 1992.

AAAI Press.

12. F. M. Donini, M. Lenzerini, D. Nardi, and A. Shaerf. Reasoning in desription

logis. In G. Brewka, ed., Foundation of Knowledge Representation. CSLI Publi-

ation, Cambridge University Press, 1996.

13. V. Haarslev and R. M�oller. Expressive abox reasoning with number restritions,

role hierarhies, and transitively losed roles. In Pro. of KR-00, 2000.

14. I. Horroks and U. Sattler. A desription logi with transitive and inverse roles.

J. of Logi and Computation, 9(3):385{410, 1999.


