
Computing least common subsumers for FLE+

Sebastian Brandt and Anni-Yasmin Turhan ∗

Theoretical Computer Science, TU Dresden, Germany
Email: {brandt, turhan}@tcs.inf.tu-dresden.de

Abstract

Transitive roles are important for adequate representation of knowledge in a
range of applications. In this paper we present a first algorithm to compute least
common subsumers in a description logic with transitive roles.

1 Introduction

In FLE+ a role can be defined transitive so as to represent the transitive closure of
a binary relation. Transitive roles appear naturally in many application domains,
such as medicine and process engineering [1]. Consider, for instance, a machine that
comprises several components which again consist of several devices. A natural way
to represent such a machine by means of DLs would be to use some transitive has-
part role to reflect its compositional structure. It would be natural here to implicitly
regard every part of a component also as a part of the whole. To this end, a DL with
transitive roles is necessary.

Algorithms for many standard inference problems, e.g., satisfiability and subsump-
tion, have been extended successfully to cope with transitive roles [8, 7] and have been
put into practice in state of the art DL Systems. In contrast, comparatively little re-
search exists on non-standard inferences in DLs with transitive roles [2, 1].

In this paper we present an effective algorithm to compute the least common
subsumer (lcs) of FLE+-concept descriptions. The lcs was first mentioned as a non-
standard inference problem for DLs in [6]. Intuitively, its purpose is to extract the
commonalities of a set of concepts: given two FLE+-concept descriptions A and B the
lcs of A and B is defined as the least (w.r.t. subsumption) FLE+-concept description
subsuming A and B. It has been argued in [4] that the lcs facilitates a “bottom-
up”-approach to modeling tasks: a domain expert can select a number of intuitively
related concepts already existent in a KB and use the lcs operation to automatically
construct a new concept representing the closest generalization of them.

DLs are based on a set of concept names (NC), a set of role names (NR), and
a set of transitive role names NT

R , where NR ∩ NT
R = ∅. The DL FLE allows for

the top-concept, conjunction, existential, and value restriction with a model-theoretic
semantics defined in the usual way. In FLE+, transitive roles can be used in existential
and value restrictions. Note that all concept descriptions in FLE+ are satisfiable. The
lcs is formally defined as follows:

∗Supported by the Deutsche Forschungsgemeinschaft, DFG Project BA 1122/4-3.

Definition 1 (lcs) Let C1, . . . , Cn be FLE+-concept descriptions. The FLE+-concept
description C is the least common subsumer (lcs) of C1, . . . , Cn iff (i) Ci ⊑ C for all
1 ≤ i ≤ n, and (ii) C is the least concept description with this property, i.e., if C ′

satisfies Ci ⊑ C ′ for all 1 ≤ i ≤ n, then C ⊑ C ′.

The lcs is uniquely determined up to equivalence. In FLE and its sublanguages the
lcs has been investigated by Baader et al. [3]. In their approach, concept descriptions
are represented by description trees, i.e., syntax trees of a normal form in which all
implicit information is made explicit. Subsumption of concept descriptions is then
characterized by means of homomorphisms between the relevant description trees.
The lcs can be computed as the product tree of the syntax trees of the input concepts.

In order to devise an lcs algorithm for FLE+, we extend this approach in three
respects. Firstly, description trees are extended to description graphs in which the the
transitivity of roles is explicitly represented. Secondly, subsumption between FLE+-
concept descriptions is characterized by means of simulation relations instead of ho-
momorphisms. Thirdly, the graph product is used for the actual lcs computation. The
main challenge with this approach is to translate concept descriptions into description
graphs and back, a comparatively simple step in the non-transitive case. All details
and relevant proofs, which are largely omitted here, can be found in [5].

2 Representing FLE+-concept descriptions

In this section we introduce FLE+-description graphs to represent explicitly all aspects
of FLE+-concept descriptions. Trees do not suffice for this purpose because, e.g., a
value restrictions over a transitive role would imply an infinite path w.r.t. that role.

Definition 2 (description graph) Let G := (V, E, v0, ℓV , ℓE) be a rooted, directed,
and connected graph with labeling functions for vertices and edges. The labeling func-
tion ℓV assigns a set of concept descriptions to every vertex in V and ℓE assigns a
label of the form Qr to every edge in E, where Q ∈ {∀,∃} and r ∈ NR ∪NT

R . An edge
labeled ∀r is called forall-edge, an edge labeled ∃r exists-edge. If every vertex v in G
has at most one outgoing forall-edge per role then it is called a description graph.

There is no trivial correspondence between concept descriptions and description
graphs. Hence, in order to speak of the equivalence of concept descriptions and de-
scription graphs we need to define a semantics for description graphs. Intuitively, a
model I is a model of a description graph G iff there exists a mapping π : VG → 2∆I

\∅
such that (i) a vertex with a concept A in its label is only mapped onto witnesses of
A and (ii) edge transitions in the graph are reflected in the model.

However, given these semantics there exist description graphs for which no equiv-
alent FLE+-concept description exists. Ultimately, however, we are interested in de-
scription graphs guaranteed to represent concept descriptions. To this end, we intro-
duce simple description graphs which additionally satisfy certain structural conditions
(See [5] for details). In particular, simple description graphs are free of cross edges.

For the translation of an FLE+-concept description C into an equivalent (simple)
description graph GC we require C to be in FLE-normal form [3], i.e., with flattened
conjunctions and value restrictions propagated over existential restrictions. The trans-
lation starts with a root vertex v0 with C in its label. Then, certain graph generation

∃r

∀r

∃r∀r

vc : { ∃r.(A ⊓ B ⊓ ∃r.(A ⊓ B)),
∀r.∃r.(A ⊓ B) }

vb : { A, B,

∃r.(A ⊓ B ⊓ ∃r.(A ⊓ B)),
∀r.∃r.(A ⊓ B) }

∃r

GCex

va : { ∃r.(A ⊓ B ⊓
∃r.(A ⊓ B) ⊓
∀r.∃r.(A ⊓ B)) }

∀r

∃r

v2 : { B, ∃r.(B ⊓ ∃r.B),
∀r.∃r.B }

∃r

∃r

∀r

∃r

GDex

v1 : { ∃r.(B ⊓ ∃r.B),
∀r.∃r.B }

v0 : { ∃r.(∃r.B ⊓ ∀r.∃r.B) }

Figure 1: FLE+-description graphs (with complex labels)

rules (defined in detail in [5]) are applied exhaustively to produce new vertices and
edges. Intuitively, these rules resemble tableaux rules in that concept descriptions oc-
curring in the label of a vertex are used to extend the description graph “accordingly”,
i.e., if the label of a vertex v contains a concept of the form ∃r.C ′ then an exists-edge
(v ∃r w) is added and C ′ is added to the label of w and so on.

To avoid generating infinitely many new vertices, every rule has a blocking condi-
tion testing whether or not a new vertex can be avoided by a back edge to an already
existing one. If no more graph generation rules are applicable, all non-atomic concept
descriptions are removed from the label sets of G and the graph is returned.

The following example shows the corresponding description graph of two FLE+-
concept descriptions.

Example 3 Let Cex := ∃r.(B⊓A⊓∃r.(B⊓A)⊓∀r.(∃r.B⊓A)) and Dex := ∃r.(∃r.B⊓
∀r.∃r.B) for r ∈ NT

R and A, B ∈ NC . The corresponding FLE+-description graphs
are depicted in Figure 1. The figure also shows the label sets of every vertex. Note
that the non-atomic concept descriptions in the label sets are used only during the
generation of the description graphs.

For the backward translation from a (simple) description graph G to a concept
description, the label sets of the vertices of G are iteratively augmented until the
label of the root node contains an FLE+-concept description equivalent to G. For
every vertex v, its augmented label contains the same atomic labels as before but
additionally has an existential restriction based on the label of every ∃r-successor of
v. For example, if G contains an edge (v ∃r w) and a concept C ′ is the only concept
in the label set of w then ∃r.C ′ is added to the label set of v in the next iteration.
Forall-edges are treated similarly.

Note that this strategy is the reverse of the generation procedure for description
graphs, where the label of the root vertex generated the entire description graph.
Denoting by GC the description graph of C and by conc(G) the concept description
obtained by the above backward translation the following theorem holds [5]:

Theorem 4 For every FLE+-concept description C it holds that C ≡ GC . For every
simple description graph G it holds that conc(G) ≡ G.

The next step towards our lcs algorithm is to use the description graphs introduced
previously to characterize subsumption of FLE+-concept descriptions.

3 Characterization of subsumption in FLE+

Our aim is to characterize subsumption of FLE+-concept descriptions by simulation
relations between the relevant description graphs.

Definition 5 (simulation relation) For i ∈ {1, 2}, let Gi := (Vi, Ei, v0i, ℓVi, ℓEi)
be description graphs. Then, G2 ⇀∼ G1 iff there exists a relation R ⊆ V2 × V1 with
the following properties: (i) (v02, v01) ∈ R, (ii) ℓV(v) ∩ NC ⊆ ℓV(v′) ∩ NC for all
(v, v′) ∈ R, and (iii) if (v Qr w) ∈ E2 and (v, v′) ∈ R then there exists a vertex
w′ ∈ V1 such that (v′ Qr w′) ∈ E1 and (w, w′) ∈ R.

If a simulation relation from G2 to G1 exists then G2 can be embedded into G1 in
the sense that, (i) starting from the pair of root vertices, every edge in G2 can also
be travelled in G1 and (ii) all atomic concepts in the label set of a vertex in G2 are
also present in the corresponding vertices in G1. The following theorem provides the
actual characterization of subsumption (See [5] for details):

Theorem 6 Let C and D be FLE+-concept descriptions. Then, C ⊑ D iff GD ⇀∼ GC .

Hence, subsumption of FLE+-concept descriptions can be shown by finding a sim-
ulation relation between their description graphs. To illustrate this, we return to the
example introduced in the previous section.

Example 7 Recall the concepts from Example 3. Apparently, Cex ⊑ Dex. It is easy
to see in Figure 1 that R := {(v0, va), (v1, vc), (v2, vb)} is in fact a simulation relation
from GDex

into GCex
. For all pairs it holds that the label set of the first vertex is a

subset of that of the second one and every edge which can be traveled starting from the
first vertex can also be traveled from the second one, reaching again a pair in R. Note
that this property does not hold without the transitive edge (v0 ∃r v2) in GDex

.

4 Computation of the lcs in FLE+

With all the information captured in an FLE-concept description made explicit by
FLE+-description graphs the next step is to extract commonalities of description
graphs. Similar to other approaches to computing the lcs [1, 3] the graph product
is employed to this end. In our case, an edge ((u1, v1), (u2, v2)) is in the product
graph G ×H iff (u1, u2) is an edge in G and (v1, v2) one in H and both have the same
edge label. Moreover, a vertex (u1, v1) in the product graph is labeled by the inter-
section of the label sets of u1 and v1. Note that we may restrict the product graph to
the subgraph reachable from the root vertex.

The following example illustrates the notion of the product of description graphs.

Example 8 Consider the description graphs GCex
and GDex

from Example 7. The
product GCex

× GDex
is displayed in Figure 2. It is easy to see that (vb2, vc1) and

(vc1, vb2) are cross edges w.r.t. a breadth-first search tree.

The last step to computing the lcs is to translate product graphs back into concept
descriptons. The difficulty here is that the graph product of simple description graphs
may introduce cross edges which violate the conditions of simple description graphs.

∀r

∃r

∃r

∀r

∃r ∀r

va0 : ∅

∃r

∃r

vb1 : ∅

vc1 : ∅

GCex
× GDex

vb2 : {B}

∃r

∀r

va0 : ∅

∃r

∃r

vb1 : ∅

∃r∀r ∀r

v′

b2
: {B}

∀r ∃r

∃r

vc1 : ∅

∀r∃r

v′

c1
: ∅

vb2 : {B}

unravel(GCex
× GDex

)

Figure 2: Product Graph and unraveled Product Graph for GCex
and GDex

Since only these are admissible for our backward translation, we need to eliminate
cross edges by unraveling in the usual way. For our example GCex

×GDex
, the relevant

cross-edge free graph is shown as unravel(GCex
× GDex

) in Figure 2. In general, the
following theorem [5] closes the last step towards computing the lcs of FLE+-concepts:

Theorem 9 Let C, D be FLE+-concept descriptions and GC ,GD their corresponding
FLE+-description graphs, then conc(unravel(GC × GD)) ≡ lcs(C, D).

The actual computation of the lcs of two FLE+-concept descriptions C, D can
now be done in four steps: Firstly, compute the description graphs GC and GD

of the normalized input concepts. Secondly, compute the unraveled product graph
unravel(GC × GD). Thirdly, re-translate the result into a concept description. It can
be shown that this procedure leads to a sound and complete algorithm for the com-
putation of the lcs in FLE+. In particular, the lcs of a finite set of FLE+-concept
descriptions always exists and is uniquely determined up to equivalence.

References

[1] F. Baader. Least common subsumers, most specific concepts, and role-value-maps in a description
logic with existential restrictions and terminological cycles. LTCS-Report LTCS-02-07, Chair f.
Automata Theory, Inst. f. Theor.˙ Sci., TU Dresden, Germany, 2002.

[2] F. Baader and R. Küsters. Unification in a description logic with inconsistency and transitive
closure of roles. In I. Horrocks and S. Tessaris, eds., Proc. of DL2002, Toulouse 2002.

[3] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in description logics
with existential restrictions. LTCS-Report LTCS-98-09, LuFG Theor. Comp. Sci., RWTH Aachen,
Germany, 1998. Abriged version in: In T. Dean, ed., Proc. of IJCAI-99, Stockholm, Sweden, 1999.

[4] S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics — what does
it buy me? In Proc. of KI-2001 Workshop on Applications of DLs (KIDLWS’01), nr. 44 in
CEUR-WS, Vienna, Austria, 2001.

[5] S. Brandt, A.-Y. Turhan, and R. Küsters. Foundations of non-standard inferences for description
logics with transitive roles. LTCS-Report 03-02, Chair f. Automata Theory, Inst. f. Theor. Comp.
Sci., TU Dresden, Germany, 2003.

[6] W. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in description
logics. In W. Swartout, ed., Proc. of AAAI-92, 1992.

[7] V. Haarslev and R. Möller. Expressive abox reasoning with number restrictions, role hierarchies,
and transitively closed roles. In Proc. of KR-00, 2000.

[8] I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role hierarchies.
J. of Logic and Computation, 9(3):385–410, 1999.

