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Abstract

It is known experimentally that there is a threshold for satisfiability
in 3-CNF formulee around the value 4.25 for the ratio of variables to
clauses. It is also known that the threshold is sharp [Fri99], but that
proof does not give a value for the threshold.

We use purely combinatorial techniques to count the number of
satisfiable boolean formulae given in conjunctive normal form. The
intention is to provide information about the relative frequency of
boolean functions with respect to statements of a given size, and to
give a closed-form formula for any number of variables, literals and
clauses. We describe a correspondence between the syntax of propo-
sitions to the semantics of functions using a system of equations and
show how to solve such a system.

1 Introduction

The purpose of this paper is to apply combinatorial techniques to count the
number of satisfiable boolean formula for a given syntax and provide in-
formation about the relative frequency of boolean functions with respect to
statements of a given size. This in turn may help one understand the perfor-
mance of algorithms that decide problems such as satisfiability and validity,
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and may aid in finding bounds on the threshold between satisfiability and
unsatisfiability. The method we use is an explicit counting of those formulae
that are satisfiable. We restrict ourselves to k-CNF form, and describe a
correspondence between this syntax of propositions and the semantics of the
boolean functions they represent, using a system of equations. Then we
show how to solve such a system, giving a general closed-form solution. For
the traditional counting model for literals within a clause (unordered with-
out replacement, no contradictory literals), we simplify it to a more specific
solution.

Dershowitz and Lindenstrauss [DL89] use generating function techniques
for counting with boolean formulee; that method is extended here to solving
systems of equations counting boolean functions generated from a given syn-
tax. Chauvin, Flajolet et al. [CFGGO02] form a similar set of equations for
the case of unrestricted syntax. It is expected that further analysis of the
closed form enumeration found here will result in establishing an analytic
solution to the satisfiability threshold problem ([JSV00]).

2 Syntax and Semantics

The counting problem we address corresponds to the logical problem “k-
CNF-SAT”. We have a set V of v independent propositional variables, and
a set V of their v negations. Variables and their negations are called literals.
A clause is a disjunction of a sequence of k literals, and a boolean formula
is a conjunction of a sequence of ¢ clauses. Most of the literature on k-CNF
views a clause as a set of literals (unordered without replacement), but a
formula as a sequence of clauses. We use sequences instead of sets implying
that a literal or clause may repeat within a clause or formula, respectively,
and that the order of the literals or clauses matter. For example,

(pVagVp)AN®VeVg ANPVPVIA(@VpVDp)

is in 3-CNF form with 4 clauses and 2 variables.

Because of the restricted syntax, the set of k-CNF formule is straight-
forward to specify as a regular language: ((V + V)¥)¢. So the total number
of formulae over v variables, k literals, and c clauses is (2v)*¢. From this
one can quickly derive the number of satisfiable formulae for degenerate and
small values of k, ¢, and v. For arbitrary (positive integral) values of all three
parameters and for every one of the 22" boolean functions, we will count the



number of formulae (by number of literals and clauses) that evaluate to each
function. For v = 1, there are 4 functions, F, P, P, and T. For an arbitrary
number of variables, we index a function by the binary representation of the
integer corresponding to its truth table.

For any given boolean operator (here we restrict ourselves to V and A, but
the method can be applied to any operator), the function produced depends
only on the functions represented by the two operands. For example, V
has the behavior shown below. The binary function A has the obvious dual
behavior.
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3 The enumeration

From the table of a logical operator acting on boolean functions, one can
construct a system of equations whose solution is the number of formula for
each function.

3.1 A system of equations

For the moment, let us consider the functions that can be represented with
a single clause over one variable.

Let Fj be the number of formule for the boolean function f using &
literals, V, and a single variable. Given a clause of length k¥ — 1, we can
compute F; by constructing a recurrence from the operator table above:

F, = FiFp.r -
Py FiPi_1+Pi(Fro1 + Pi_1)
Py FiPi1+ P1(Fr-1 + Pr1)
Tk - FlTk—l + Pl(Pk—l + Tk_1)+ -
Pi(Pr—1+ Ti—1) + T1(Fr—1 + Pro1 + P—i + Tiy)



with base cases

Fl = 0
Fl 1
P1 =1
Tl == 0

the ones produced by the literals, zeroes elsewhere. Note that a solution for
this system is also a solution for a system based on A, but with functions
ordered in reverse (the complement of the bitwise representation).

The linear system can be represented as a matrix of coefficients for the
recurrence:
k

Fi Joo  fo J1o Jin Fy
Py | _| 0 foo+t for 0 Jio+ fu | P
Py 0 0 Joo + fi0 for + fu1 P,
Ty 0 0 0 foo + for + fio + fu1 T,

Letting f be the vector for the set of all boolean functions formed by a
clause of length k, and OR(1) be the above matrix, the equation

fr =OR(1)*- fi
can be solved by simply multiplying out the matrix for fixed k, or, sym-
bolically, by Gaussian elimination. But we would like to solve the system
symbolically for an arbitrary number of variables. That the system is linear
is a direct consequence of the grammar for k-CNF being regular.

The linear system for an arbitrary number of variables can be described
recursively.

3.2 Solving the system

Let B,, be the Boolean lattice with n generators, with partial order <, where
a 2 bif avVb = 1> The symbol V is conveniently overloaded for both
the lattice’s least upper bound and the bitwise-or operation on the binary

representation of integers from 0 to 22" — 1. For v variables, we are concerned
with BQU .

Theorem 1 The number of formule of length n equivalent to f; (generated
as a disjunction of atomic function symbols fo, f1,...) is given by:
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For example, OR(1); = (fo+ fi+ fo+ f3)" - (fo+ f1)"— (fo+ fo)"+ f5-
If the base cases are as above, then OR(1)} = 2" — 2. Note that to reduce
the symbolic complexity of Equation 1, the base case f! is implied.

4 Conclusion

Using elementary arguments, we were able to count the number of k-CNF
formulz for every boolean function, and specifically the number of satisfiable
formulee for a given number of variables, clauses, and literals per clause. The
method of creating a system of equations to count the functions can be
applied to any formula syntax using any set of operators. In this case, CNF
syntax and the dual boolean operators simplify the analysis considerably.
Once the result is refined to give the exact function for the number of

satisfiable k-CNF formulee, asymptotic analysis will give better bounds on
the SAT/UNSAT threshold phenomenon.
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