
A Translation of Looping Alternating Automata

into Des
ription Logi
s

Jan Hladik

?

and Ulrike Sattler

Te
hnis
he Universit�at Dresden, fhladik,sattlerg�inf.tu-dresden.de

Abstra
t. We present a translation of (one-way and two-way) alter-

nating automata into des
ription logi
s, thus redu
ing the emptiness

problem for alternating automata to satis�ability of the target des
rip-

tion logi
. The latter problem 
an then be de
ided using highly opti-

mised, tableau-based des
ription logi
 reasoners. The translation is a

step towards the understanding of the relationship between automata-

and tableau-based de
ision pro
edures for des
ription and modal logi
s.

Moreover, it yields some by-produ
ts: (i) a program de
iding the empti-

ness problem for alternating automata and thus the satis�ability problem

for logi
s with automata-based de
ision pro
edures; and (ii) tight 
om-

plexity bounds for the target des
ription logi
.

1 Introdu
tion

In the �eld of modal and des
ription logi
s, automata- and tableau-based satis-

�ability algorithms are two widely used approa
hes with 
omplementary advan-

tages and disadvantages. An automata-based algorithm 
onstru
ts, for a 
on
ept

C (or a modal logi
 formula '), an automaton A

C

a

epting all (abstra
tions

of) models of C, see, e.g., [VW86, SE89, Var98, CGL99℄. Thus satis�ability of C


an be de
ided by testing the emptiness of the language a

epted by A

C

. For a

variety of logi
s, this is an elegant approa
h: if the translation uses well-known

target automata for whi
h the 
omplexity of testing emptiness has already been

established, one only needs to des
ribe the translation and prove its 
orre
tness

(plus possibly also de�ne an appropriate abstra
tion of models). Moreover, espe-


ially when using alternating automata, the translation is rather straightforward.

For many logi
s, this approa
h thus yields elegant ExpTime upper 
omplexity

bounds sin
e either the translation is polynomial and the emptiness test is expo-

nential or vi
e versa. However, implementations of automata-based satis�ability

solvers for des
ription logi
s 
an be said to be in their infan
y, even if the �rst

results are promising [PSV02℄.

A tableau-based algorithm tries to 
onstru
t (an abstra
tion of) a model

of an input 
on
ept C by breaking down C synta
ti
ally and thereby indu
ing


onstraints on this model, see, e.g., [HM92, BS01℄. It either terminates with

(an abstra
tion of) a model of C or with obvious in
onsisten
ies. For a variety

of logi
s, this approa
h is amenable to optimisations and behaves surprisingly

?
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well in pra
tise, even for ExpTime-hard logi
s [Hor98, HM01℄. However, nat-

ural tableau-based algorithms are non-deterministi
 and thus not optimal for

ExpTime logi
s.

In short, the automata approa
h is well-suited to devise upper 
omplexity

bounds, whereas the tableau approa
h is well-suited for implementations. As a


onsequen
e, for many logi
s, in the absen
e of an approa
h enjoying the advan-

tages of both, tableau- and automata-based algorithms were hand-
rafted, whi
h


onstitutes a possibly unne
essary overhead. In the absen
e of su
h a unifying

approa
h, a translation of automata-based algorithms into tableau-based ones

is highly desirable, thus redu
ing the overhead by me
hanising the development

of an implementable algorithm. As a �rst step towards this me
hanisation, we

present translations from looping one- and two-way alternating automata to de-

s
ription logi
s that are 
ontained in SHIQ [HST99℄. Thus, given an automata-

based algorithm for a logi
 using alternating automata, we 
an transform it into

a tableau-based one as follows: �rst, translate a 
on
ept C into an alternating

automaton A

C

, then translate A

C

into a des
ription logi
 TBox T

C

, and de
ide

satis�ability of the 
on
ept 
orresponding to A

C

w.r.t. T

C

using a tableau-based

satis�ability solver available for SHIQ su
h as FaCT or RACER [Hor98, HM01℄.

This yields a satis�ability solver for a variety of logi
s for whi
h only automata-

based algorithms were known so far. We have implemented this translation for

looping two-way alternating automata and report �rst results in Se
tion 6.

In [KV98a℄, a translation of (one-way) weak alternating automata into the

alternation-free �-
al
ulus is presented, whi
h proves that both formalisms are

of the same expressiveness and has some similarity to our translation in Se
tion

4. However, as there is no system de
iding satis�ability of �-
al
ulus formulae,

this does not yield an implementation for weak alternating automata.

Summing up, besides a deeper understanding of the relationship between

automata and tableaux, the translation presented in this paper yields (i) an

implementation of the emptiness test for alternating automata and thus for the

satis�ability of various (des
ription) logi
s; (ii) an ExpTime-hardness result for

the logi
 used in the translation; and (iii) a new method of generating \hard"

problems for FaCT and RACER.

2 Des
ription Logi
s and Tableau Algorithms

Des
ription logi
s (DLs) are a family of knowledge representation formalisms

designed for the representation of terminologi
al knowledge and ontologies; for

an introdu
tion to DLs, see [BCM

+

03℄. They are 
losely related to modal log-

i
s [S
h91, GL94℄; for example, the well-known DL ALC [SS91℄ is a notational

variant of the multi modal logi
 K

n

.

Here, we use the rather inexpressive DL ELU

f

together with expressive

TBoxes, a DL-spe
i�
 means of expressivity 
losely related to the universal

modality in modal logi
s [S
h91℄. The 
entral entities of DLs are 
on
epts, whi
h


an be viewed as formulae in one free variable.



De�nition 1. Let N

C

be a set of 
on
ept names and N

F

a set of feature names.

The set of ELU

f


on
epts over N

C

and N

F

is indu
tively de�ned as follows:

{ >, ?, and ea
h 
on
ept name C 2 N

C

is an ELU

f

-
on
ept;

{ if C and D are 
on
epts, then C tD and C uD are 
on
epts;

{ if C is a 
on
ept and f 2 N

F

is a feature name, then 9f:C is a 
on
ept.

A general 
on
ept in
lusion axiom (GCI) is of the form C v D (read \C is

subsumed by D"), for 
on
epts C and D. A TBox is a �nite set of GCIs.

An interpretation I is a pair (�

I

; �

I

), where �

I

is a set of individuals and �

I

is a fun
tion assigning, to every 
on
ept name C, a subset C

I

of�

I

and, to every

feature f , a partial fun
tion f

I

: �

I

! �

I

. We use (d; e) 2 f

I

for f

I

(d) = e.

The fun
tion �

I

is indu
tively extended to 
omplex 
on
epts as follows:

>

I

= �

I

; ?

I

= ;, (C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

,

(9f:C)

I

= fd 2 �

I

j 9e : (d; e) 2 f

I

^ e 2 C

I

g.

An interpretation I satis�es a GCI C v D if C

I

� D

I

; I is a model of a

TBox T if it satis�es all GCIs in T ; I is a model of a 
on
ept C if C

I

6= ;; I

is a model of C with respe
t to T if I is a 
ommon model of C and T ; and a


on
ept C is satis�able [w.r.t. T ℄ if there is a model for C [and T ℄. A 
on
ept

C is subsumed by a 
on
ept D w.r.t. T (written C v

T

D) if C

I

� D

I

for every

model I of T .

ELU

f

is restri
ted in several aspe
ts: it does not provide negation, and it

only provides existential value restri
tions (9f:C), whereas standard DLs also

provide universal restri
tions (8f:C). Equally important, ELU

f

only provides

features (i.e., fun
tional binary relations) whereas most DLs provide roles (i.e.,

arbitrary binary relations). However, ELU

f


omes with GCIs, a very expressive

means, as we will see soon.

In DLs with 
onjun
tion and negation :, subsumption 
an be linearly redu
ed

to satis�ability: C v

T

D i� C u :D is not satis�able w.r.t. T . For ELU

f

, in

the absen
e of negation, this redu
tion is slightly more involved and requires a

new 
on
ept symbol

^

D to repla
e :D: C v

T

D i� C u

^

D is unsatis�able w.r.t.

T [fDu

^

D v ?g. Thus, we 
an use GCIs to express disjointness of D and

^

D (as

no individual 
an belong to both D and

^

D), and disjointness suÆ
es to redu
e

subsumption to satis�ability. In the following, we will therefore 
on
entrate on

satis�ability problems.

For several expressive DLs, there exist eÆ
ient tableau-based implementa-

tions that de
ide satis�ability (and thus subsumption) of 
on
epts w.r.t. a TBox

[HM01, Hor98, BS01℄. Intuitively, to de
ide the satis�ability of a 
on
ept C, a

tableau algorithm starts with an instan
e x of C (here written x :C), and then

re
ursively breaks down C synta
ti
ally, thus inferring new 
onstraints on the

model of C to be built. For example, if y :D u E has already been inferred, it

adds y : D and y : E. For y : 9f:F , it generates a new node, say z, and adds

(y; z) : f and z : F . Finally, it adds, for ea
h GCI C

i

v D

i

in the TBox, the


onstraint y : (:C

i

tD

i

) for ea
h individual y of the model to be built.

Now, for logi
s with disjun
tions, various tableau algorithms non-

deterministi
ally 
hoose whether to add y : D or y : E for y : D t E. Getting



rid of this non-determinism in a way that is more eÆ
ient than naive ba
k-

tra
king proves to be hard work for many logi
s [DM00℄. This is one reason

why for ExpTime logi
s, most tableau algorithms are not optimal. For example,

the SHIQ tableau algorithm implemented in FaCT is 2-NExpTime instead of

ExpTime [HST99℄. Despite this sub-optimality, tableau algorithms allow for a

set of well-known eÆ
ient optimisations, so that they perform mu
h better in

pra
tise than their worst-
ase 
omplexity suggests. FaCT [Hor98℄ and RACER

[HM01℄ are examples of su
h eÆ
ient implementations.

Sin
e we are talking about de
ision pro
edures, termination is an important

issue. Even though tableau algorithms for many inexpressive DLs terminate

\automati
ally", this is not the 
ase for more expressive ones. For example,


onsider the algorithm sket
hed above on the input 
on
ept A and TBox fA v

9f:Ag: it would 
reate an in�nite f -
hain of instan
es of A. Thus, the tableau

algorithm has to be stopped at a 
ertain point; intuitively, at the point when the


on
epts remaining to be pro
essed are just a repetition of 
on
epts whi
h were

already pro
essed. This me
hanism, 
alled blo
king, often makes the 
orre
tness

proof of the algorithm very 
ompli
ated. Moreover, it 
an be diÆ
ult to 
hoose

an eÆ
ient blo
king 
ondition [HS02, Hla02℄.

In summary, tableau algorithms

� are used in state-of-the-art implementations, and many well-understood op-

timisations are available,

� have proven to perform mu
h better for realisti
 
on
epts than their worst-


ase 
omplexity suggests;

	 require spe
ial te
hniques to ensure termination (e.g. blo
king) and get rid

of non-determinism,

	 are often not worst-
ase optimal for deterministi
 
omplexity 
lasses.

3 Alternating Automata

For many des
ription and modal logi
s, the satis�ability of a 
on
ept C w.r.t.

a TBox T 
an be de
ided by de�ning an automaton A whi
h a

epts exa
tly

the (abstra
tions of) models of C and T . Thus, the satis�ability problem is

redu
ed to the emptiness problem of automata. Examples utilising automata


an be found in [VW86, SE89, Var98, CGL99, LS01℄. In most 
ases, abstra
-

tions of models are �nite or in�nite trees|depending on the logi
. Thus the

target automata are automata on �nite or in�nite trees. Moreover, we 
an use

deterministi
, non-deterministi
, or, as a generalisation, alternating automata,

where the latter 
lass of automata allows for rather elegant translations of

many logi
s. In many 
ases, the emptiness test for non-alternating automata

is polynomial, whereas the translation yields an automaton of size exponential

in the input 
on
ept (and TBox). In 
ontrast, the translation into an alternating

automaton usually yields an automaton of polynomial size (see, for example,

[Var98, CGL99℄)|however, testing emptiness of alternating automata is Exp-

Time-
omplete [KV98b, Var98℄. Thus, this approa
h yields worst-
ase optimal



algorithms for ExpTime-
omplete logi
s. Before dis
ussing the automata-based

approa
h in more detail, we �rst de�ne alternating automata on in�nite trees.

De�nition 2. Let K be a natural number. We de�ne [K℄ := f1; : : : ;Kg and

[K℄

0

:= [K℄ [ f0g. A K-ary in�nite tree over an alphabet � is a total mapping

� : [K℄

�

! �.

Here, the empty word " denotes the root of the tree and, for ` 2 [K℄

�

and

k 2 [K℄, ` � k denotes the k-th su

essor of `; ` � 0 is de�ned as `.

Alternating automata generalise nondeterministi
 automata by allowing not

only several alternative su

essor states, i.e. a disjun
tion of alternatives, but also

a 
onjun
tion or a 
ombination of both. For example, the transition Æ(a; q

1

) =

(1; q

3

) ^ ((1; q

2

) _ (3; q

1

)) is to be read as follows: if the automaton pro
esses a

node `, is in state q

1

, and reads the letter a, then it has to send one 
opy of the

automaton in state q

3

to the �rst su

essor of ` and either another 
opy in state

q

2

to the �rst su

essor of ` or a 
opy in state q

1

to the third one.

De�nition 3. The set of positive Boolean formulae over a set V , B

+

(V ), 
on-

sists of formulae built from V [ ftrue; falseg using the binary operators ^ and

_. A set R � V satis�es a formula ' 2 B

+

(V ) i� assigning true to all elements

of R and false to all elements of V nR yields a formula that evaluates to true.

An alternating automaton A is a tuple (Q;�; q

0

; Æ), where Q = fq

0

; : : : ; q

q̂

g

is a set of states, � = f�

0

; : : : ; �

�̂

g is the input alphabet, q

0

is the initial state,

and Æ : Q�� ! B

+

([K℄

0

�Q) is the transition relation.

The width of an automaton w(A) is the number of literals that 
an appear

on the right-hand side of a transition, i.e., w(A) := (q̂ + 1) � (K + 1). A run �

of A on a tree � is a w(A)-ary in�nite tree over ([K℄

�

�Q)[ f"g whi
h satis�es

the following 
onditions:

1. �(") = ("; q

0

) and

2. for ea
h node r with �(r) = (t; q) 6= " and Æ(q; �(t)) = ', there is a set

S = f(t

1

; q

1

); : : : ; (t

n

; q

n

)g � [K℄

0

�Q su
h that

(a) S satis�es ' and,

(b) for all 1 � i � n, �(r � i) = (t � t

i

; q

i

).

An automaton A a

epts an input tree � if there exists a run of A on � . The

language a

epted by A, L(A), is the set of all trees a

epted by A.

Some remarks are in order: �rstly, we have de�ned looping automata, i.e.,

there is no a

eptan
e 
ondition and ea
h run is a

epting. Se
ondly, a run labels

ea
h node r either with a pair (t; q) or with ", where the latter indi
ates that

�(r) is not important for the a

eptan
e of the input tree.

Example 4. In Figure 1, we see part of a run � of an alternating automaton

A on a tree � . We only present those nodes relevant for the run, i.e., nodes r

with �(r) 6= ". If the transition relation is Æ(q

1

; a) = ((0; q

4

) ^ (2; q

2

)) _ (3; q

3

);

Æ(q

2

; b) = (0; q

1

)^(3; q

4

); and Æ(q

4

; a) = Æ(q

1

; b) = Æ(q

4

; 
) = true, all other nodes

of � 
an be labelled with " and all other nodes of � 
an be labelled arbitrarily

and � is a

epted.
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�
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4
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(1,q

1

)
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1
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4

)

(12,q

2

)

Fig. 1. Example of a tree and run.

Please observe that there is no one-to-one 
orresponden
e between the nodes

of � and �: both �(3) and �(31) refer to node 1, but none refers to node 13.

Moreover, the ordering of su

essors is important in � , but not in �: the de�nition

of a run only requires the existen
e of 
ertain su

essors.

A question we would like to answer next is why one would use su
h a seem-

ingly 
ompli
ated kind of automata. Firstly, standard abstra
tion te
hniques

su
h as unravelling [Tho92℄ yield in�nite tree abstra
tions of models. Using

automata on in�nite trees , we 
an freely work with these standard, in�nite ab-

stra
tions. This is a 
lear advantage for logi
s la
king the �nite model property,

or where it would be tedious to invent �nite abstra
tions. In tableau algorithms,

we had to work with �nite representations of in�nite abstra
tions to ensure ter-

mination, using blo
king. In 
ontrast, for the 
lass of automata de�ned above,

termination is not an issue sin
e input trees and runs are, by de�nition, in�nite

stru
tures.

Se
ondly, using non-deterministi
 automata, non-determinism due to dis-

jun
tions 
an be translated into non-deterministi
 transitions. For alternat-

ing automata, we 
an also translate \universal" quanti�
ation|e.g. due to


onjun
tion|into the transition fun
tion. For example, when designing an al-

ternating automaton for an ELU

f

-
on
ept C with features from f

1

; : : : ; f

k

, one

would use a state q

D

for ea
h sub-
on
ept D of C. Nodes of input trees are

labelled with sets of 
on
ept names and stand for individuals of a model. Exam-

ples of the transition fun
tion are Æ(q

DuE

; �) = (0; q

D

) ^ (0; q

E

), Æ(q

DtE

; �) =

(0; q

D

) _ (0; q

E

), Æ(q

9f

j

:E

; �) = (j; q

E

), and Æ(q

X

; �) = true if X 2 �. Thus the

des
ription logi
s translates in a natural way into an automaton.

The main drawba
k of automata lies in the fa
t that their 
omplexity is

exponential not only in the worst 
ase, but in every 
ase: either the automaton

A

'

is exponential in ' or, in the 
ase of alternating automata, is polynomial but

is translated into a non-deterministi
 automatonA

0

'

of exponential size to de
ide

its emptiness [KV98b, Var98℄. Therefore, a naive implementation is doomed to

failure and, to the best of our knowledge, only �rst yet promising steps towards

implementing an automata-based satis�ability solver have been made [PSV02℄.

In summary, automata-based approa
hes to satis�ability

� often allow for a very elegant and natural translation of a logi
,

� provide ExpTime upper 
omplexity bounds and are thus optimal for Exp-

Time-hard logi
s,

� handle in�nite stru
tures and non-determinism impli
itly,

	 have only re
ently been implemented.



4 Translating Alternating Automata into ELU

f

In this se
tion, we des
ribe how to translate an alternating automaton A into a

TBox tr (A) and a 
on
ept Q

0

su
h that L(A) is non-empty i� Q

0

is satis�able

w.r.t. tr(A). Intuitively, we translate the transition fun
tion Æ into GCIs tr(A)

whose models 
orrespond to runs of A. To this purpose, we use a feature f

k

for

the k-th su

essor of a node in the input tree, i.e., for ea
h k 2 [K℄.

De�nition 5. Let A = (Q;�; q

0

; Æ) be an alternating automaton with Q =

fq

0

; : : : ; q

q̂

g and � = f�

0

; : : : ; �

�̂

g. The translation of A into an ELU

f

TBox

tr(A) is de�ned as follows: for ea
h q

i

2 Q we use a 
on
ept name Q

i

, for ea
h

�

j

2 �, we use a 
on
ept name A

j

, and set

tr(A) := fG>;G?g [

S

q2Q;�2�

tr(Æ(q; �)); where

G> := > v A

1

t A

2

t : : : t A

�̂

;

G? :=

F

0�i<j��̂

(A

i

u A

j

) v ?;

tr(Æ(q; �)) := tr(q) u tr(�) v tr(') if Æ(q; �) = ';

and the translation of ', q, and � is de�ned as follows:

tr(q

i

) := Q

i

for q

i

2 Q; tr(�

i

) := A

i

for �

i

2 �;

tr(� ^ �) := tr(�) u tr (�); tr(� _ �) := tr(�) t tr (�);

tr(true) := >; tr(false) := ?;

tr(0; q) := tr(q); tr(k; q) := 9f

k

:tr (q) for k 6= 0:

We will see that tr ensures that ea
h model I of tr(A) 
orresponds to a run

� on some tree � . First, a node r in � is labelled with a node t in � whi
h, in

turn, is labelled with exa
tly one � 2 �. Thus ea
h r in � is asso
iated with one

� 2 �. To express this fa
t in tr (A), we use the extra GCIs G> and G?: they

guarantee that every individual of I is an instan
e of exa
tly one tr(�

i

).

1

Next, it will turn out to be useful to have the inverse tr

�1

of tr , whi
h is

possible sin
e tr is \almost" inje
tive: the only ambiguity 
on
erns q and (0; q)

sin
e they are both mapped to Q by tr . However, this ambiguity 
an easily be

resolved by agreeing to set tr

�1

(Q) to (0; q) if Q appears on the right hand side

of a GCI and to q otherwise.

Example 6. Figure 2 shows an example for the translation of a tree and run into

an interpretation for a single node. The automaton is in state q

1

and reads node

1 whi
h is labelled with a. For Æ(a; q

1

) = (1; q

1

)_ ((1; q

2

)^ (0; q

4

)), the transition

fun
tion yields the GCI AuQ

1

v 9f

1

:Q

1

t ((9f

1

:Q

2

)uQ

4

). In our example, the

transition fun
tion is satis�ed via the se
ond disjun
t, and thus the individual

1 in the model I is an instan
e of both Q

1

and Q

4

. We would like to point out

that a model I of tr (A) might have a stru
ture di�erent from

1

Sin
e ea
h node is labelled with exa
tly one alphabet symbol, it is also possible to

translate the alphabet symbols using a binary 
oding me
hanism whi
h requires only

log

2

n 
on
ept names for n alphabet symbols. However, this would not redu
e the

number of GCIs in the TBox, whi
h would still be exponential in n. Hen
e, we sti
k

with the linear translation, whi
h is also easier to read.
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Fig. 2. Translation of a tree and run into a model.

{ an input tree � sin
e nodes in I might have no f

i

-su

essor for some i and

I might not be a tree.

{ a run � sin
e di�erent nodes of � that refer to the same node in � are

represented by the same individual in I: intuitively, we label an individual

i 2 �

I

with the 
on
ept A

i

of �(i) and \
olle
t" all Q

i


on
epts from nodes

in � that refer to �(i). Thus, some individuals are instan
es of several Q

i


on
epts, like 1, while others are instan
es of none, like 13.

Lemma 7. The language a

epted by an alternating automaton A =

(Q;�; q

0

; Æ) is non-empty i� tr(q

0

) its satis�able w.r.t. tr(A).

Proof. We start with the \only-if"-dire
tion. For this, we �x some notation: we

use L to denote the set of 
on
epts appearing in the right hand side of GCIs in

tr(A), L := f9f

i

:Q

j

j i 2 [K℄; j 2 [q̂℄g [ fQ

j

j j 2 [q̂℄g; and we use B

+

(L) for

the set of positive Boolean 
on
epts analogous to Se
tion 3, with the symbols

^;_; true, and false repla
ed with u;t;>, and ?, respe
tively.

Let T := tr(A), Q

0

= tr (q

0

), and let � 2 L(A) with � a su

essful run of A

on � . We 
onstru
t a model I of Q

0

w.r.t. T as follows:

�

I

:= [K℄

�

,

f

I

k

:= f(`; ` � k) j ` 2 [K℄

�

g, for every k 2 [K℄ ,

A

I

i

:= ft j �(t) = �

i

g, for every �

i

2 �,

Q

I

i

:= ft j there is an r in � with �(r) = (t; q

i

)g, for every q

i

2 Q,.

To prove that I is a model of Q

0

w.r.t. T , we show that (i) Q

I

0

6= ; and (ii)

ea
h individual t of I satis�es ea
h GCI in T .

Now (i) holds by de�nition of I sin
e the �(") = ("; q

0

) and thus " 2 Q

I

0

. For

(ii), we distinguish three 
lasses of GCIs in T :

1. GCIs G> and G?,

2. GCIs of the form Q u A v ? resulting from the translation of transitions

Æ(q; �) = false, and

3. GCIs Q u A v C, for some 
on
ept C 2 B

+

(L) n f?g.

For the �rst 
lass, I satis�es G> and G? by de�nition sin
e every node t in

� is labelled with exa
tly one letter �.

For the remainder, 
onsider a GCIQ

i

uA

j

v C in T with preimage Æ(q

i

; �

j

) =

' and some t 2 Q

I

i

\ A

I

j

. By de�nition of I, there exists a node r with �(r) =

(t; q

i

) and �(t) = �

j

. For the se
ond 
lass, if ' = false , then C = ?, and the

existen
e of t is a 
ontradi
tion to � being a run.
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Fig. 3. Translation of a model into a tree and run.

For the third 
lass, the de�nition of a run implies the existen
e of a set

S = fi

1

; : : : ; i

m

g and fun
tions t, 
, and s su
h that

{ f(t(i); q


(i)

) j i 2 Sg satis�es ' and

{ there are su

essors r � s(i

1

); : : : ; r � s(i

s

) of r whi
h are labelled with the


orresponding pairs, i.e. �(r � s(j)) = (t � t(j); q


(j)

) for all j 2 S.

By 
onstru
tion of I, there exist f

t(j)

-su

essors u

j

of t with u

j

2 Q

I


(j)

uA

I

for A := tr(�(t � t(j))). This ensures that t 2 C

I

, whi
h 
on
ludes the proof of

the \only-if"-dire
tion.

For the \if"-dire
tion, we will show how to 
onstru
t a tree � and a run � of

A on � from a model (�

I

; �

I

) of Q

0

w.r.t. T . We de�ne the auxiliary fun
tions

{ ti and ri , whi
h map nodes in � and �, resp., to individuals of �

I

,

{ node and state, whi
h map a node of � to the node and state 
omponent of

its label, i.e. if �(r) = (t; q), then node(r) = t and state(r) = q, and

{ letter : �

I

! fA

i

j 1 � i � �̂g and states : �

I

! 2

fQ

i

j1�i�q̂g

, assigning, to

ea
h individual, the unique 
on
ept A

x

and the set of Q

i


on
epts it is an

instan
e of (letter is well-de�ned sin
e I is a model of G> and G?).

Example 8. In Figure 3, we show a model I together with a tree � , a run �, and

some of the auxiliary fun
tions. The tree node 1 is assumed to be related to a

dummy individual d

u

and its letter z = letter (d

u

), and only some nodes of � are

presented. In the run �, the nodes ", 2, and 3 are labelled with the same tree

node " sin
e ri (") is an instan
e of Q

0

and Q

4

, and we might need nodes 2 and

3 for a run involving transitions Æ(a; q

0

) = (0; q

4

) ^ (0; q

0

) ^ : : :

Intuitively, � is an an unravelling of I, and � is an unravelling with \dupli-


ate" su

essors. More pre
isely, � and � are de�ned as follows. We begin the


onstru
tion of � with an individual d

"

2 Q

I

0

. Su
h an individual exists sin
e I

is a model of Q

0

w.r.t. T . Moreover, we �x some \dummy" individual d

u

2 �

I

.

We de�ne �(") := tr

�1

(letter (d

"

)), and ti(") := d

"

. Then, for ea
h t su
h that

ti(t) is already de�ned and for ea
h k 2 [K℄, we do the following:

{ if ti(t) has an f

k

-su

essor d

k

, de�ne ti(t � k) := d

k

and �(t � k) :=

tr

�1

(letter (d

k

)) (this is well-de�ned sin
e f

k

is fun
tional);

{ otherwise, de�ne ti(t � k) := d

u

and �(t � k) := tr

�1

(letter (d

u

)) for the

\dummy" individual d

u

.



Having de�ned � , we now de�ne a run � of A on � as follows. Firstly, set

�(") := ("; q

0

) and ri(") := d

"

. Se
ondly, if ri(r) = d is already �xed, we de�ne

d

0

:= d and d

i

as the f

i

-su

essor of d, if there exists one, and d

i

:= d

u

otherwise.

Then we �x, for every d

i

and every q

i

j

2 states(d

i

), a di�erent su

essor r � i

j

of

r with �(r � i

j

) = (node(r) � i; q

i

j

) and ri(r � i

j

) = d

i

. Finally, if �(r �k) is not �xed

through the previous step, we set �(r

0

) = " for ea
h node r

0

in the sub-tree below

r � k in
luding r � k. Thus, for every 
on
ept Q

i

that d or a su

essor of d is an

instan
e of, there is a su

essor of d in � labelled with q

i

and the 
orresponding

node in � .

To prove that � is a run on � , we �rst prove that the ri and ti fun
tions are

de�ned properly in the following sense:

Claim: For all nodes r in �, if �(r) 6= ", then ri(r) = ti(node(r)).

Proof of the 
laim. The proof is by indu
tion on the depth of nodes in �. For

the root node " of �, the 
laim holds by de�nition. Now let r be a node of � with

�(r) 6= " for whi
h the 
laim holds. Let ri(r) = d and 
onsider a su

essor r �k of

r. If �(r � k) 6= ", then there are i, j su
h that d has an f

i

-su

essor d

i

2 Q

I

j

, or

ri(r � k) = d, whi
h means that d 2 Q

I

j

and i = 0. Then node(r � k) = node(r) � i

and ri(r � k) = d

i

by de�nition of �. By indu
tion, ti(node(r)) = d, and thus

ti(node(r) � i) = d

i

by de�nition of � , whi
h 
on
ludes the proof of the 
laim.

Now we 
an prove that � is a run on � , see De�nition 3. Property 1 of runs

holds by de�nition of �. For Property 2, 
onsider r with �(r) = (t; q). Hen
e there

is d 2 �

I

with d = ri (r) and d 2 tr(q)

I

. Set Q = tr(q). Moreover, by de�nition,

for letter (ti(t)) = A, we have �(t) = tr

�1

(A). The 
laim yields ti(t) = ri (r) = d,

whi
h implies A = letter (d) by 
onstru
tion. Summing up, we have d 2 A

I

\Q

I

.

Sin
e I is a model of tr(A), d 2 C

I

for A u Q v C the translation of

Æ(tr

�1

(A); q) = '. As d is an instan
e of C, there exists an N = fn

1

; : : : ; n

`

g � L

whi
h \satis�es" C. For every n

i

; 1 � i � `, we de�ne a p

i

2 [K℄

0

�Q as follows:

{ if n

i

= 9f

k

:Q for some f

k

; Q, then d has an f

k

-su

essor d

k

2 Q

I

. By


onstru
tion of � , t has a k-su

essor t � k, and r has a su

essor r � k

0

with

�(r

0

) = (t � k; tr

�1

(Q)). We set p

i

:= (k; tr

�1

(Q));

{ if n

i

= Q for some Q, then d 2 Q

I

. By 
onstru
tion, r has a su

essor r � j

with �(r � j) = (t; q). We set p

i

:= (0; q).

It 
an easily be seen that set S := fp

i

j 1 � i � `g satis�es ' := tr

�1

(C),

and therefore Property 2(a) holds. Finally, Property 2(b) holds by 
onstru
tion

of S, whi
h 
on
ludes the proof of the \if"-dire
tion. ut

Lemma 7 has two 
onsequen
es: �rstly, the emptiness of a language given by

an alternating automaton (and thus reasoning problems for various logi
s) 
an be

de
ided by translating it into an ELU

f

-
on
ept and TBox and then de
iding their

satis�ability using one of the existing DL systems, e.g. FaCT or RACER [Hor98,

HM01℄. Se
ondly, we have obtained tight 
omplexity bounds for ELU

f

: In [SV01℄,

satis�ability of hybrid �-
al
ulus formulae is redu
ed to emptiness of two-way

alternating parity automata. It is easy to see that, dis
arding �xpoints, nominals,

and inverse modalities, this yields a redu
tion from multi modalK extended with

the universal modality to the emptiness problem of one-way alternating looping

automata. This, together with the fa
t that K with the universal modality is



known to be ExpTime-hard [Spa93℄, yields ExpTime-hardness of the emptiness

problem for alternating looping automata. Now our translation being polynomial

implies that satis�ability of ELU

f

-
on
epts w.r.t. TBoxes is ExpTime-hard.

Finally, ELU

f

is a fragment of deterministi
 propositional dynami
 logi
 whi
h

is in ExpTime [BHP82℄ and allows for the internalisation of TBoxes (see, e.g.,

[CGL99℄). Thus we have tight 
omplexity bounds.

Corollary 9. Satis�ability of ELU

f

-
on
epts w.r.t. general TBoxes is

ExpTime-
omplete.

5 Two-Way Alternating Automata

In this se
tion, we extend the translation from one-way to two-way automata

and thus 
an also test the emptiness of two-way automata using a DL reasoner.

Sin
e this extended translation involves inverse roles, we need a DL reasoner

that 
an handle inverse roles su
h as FaCT or RACER.

Alternating automata from De�nition 3 
an be said to be one-way sin
e the

transition fun
tion tells the automaton to stay in the same node of the input

tree or go to one of its su

essors. In two-way alternating automata, it 
an also

tell to go to the prede
essor.

De�nition 10. For a natural number K, let [K℄

�

be the set f�1; 0; : : : ;Kg.

For a word w = v � k 2 [K℄

+

with k 2 [K℄, the 
on
atenation w � (�1) = v, and

" � (�1) is unde�ned.

A two-way alternating automaton A = (Q;�; q

0

; Æ) is de�ned like a (one-

way) alternating automaton, with the ex
eption that Æ is a fun
tion from Q��

to B

+

([K℄

�

�Q). A run and the language a

epted by an automaton are de�ned

a

ordingly, i.e., with S � [K℄

0

�Q in Property 2 repla
ed with S � [K℄

�

�Q.

For example, a transition Æ(q

3

; �) = (2; q

4

) _ (�1; q

1

) 
an be satis�ed either

by sending a 
opy of the automaton in state q

4

to the se
ond su

essor of the


urrent node or by sending one in state q

1

to its prede
essor. Sin
e " � (�1) is

unde�ned, it is impossible to go up from the root node.

To extend our translation to two-way automata, we use a logi
 whi
h is

more expressive than ELU

f

. To go up and down a tree, we use, additionally,

inverse features whi
h allow to go a relation \ba
kwards". Moreover, to 
apture

the notion of a run appropriately, we have to expli
itly ensure uniqueness of

prede
essors sin
e the inverse of a feature is not required to be fun
tional. For

example, the 
on
ept 9f

�

1

:Q

1

u 9f

�

1

:Q

2


an have an instan
e d with two f

1

prede
essors whi
h are labelled with di�erent alphabet symbols, i.e., d's f

1

-

prede
essor is not unique.

In the following, we des
ribe a way to 
apture uniqueness of prede
essors

using value restri
tions 8f

�

i

:C to express that all f

i

prede
essors belong to C.

2

2

It is also possible to use role hierar
hies instead of value restri
tions: then, a \prede-


essor feature" f

�1

is enfor
ed to be interpreted as the union of the inverses of the

features f

i

.



The resulting logi
 is still a fragment of SHIQ and therefore it 
an be de
ided

using the implementations mentioned above.

De�nition 11. For a feature f , f

�

is a 
alled an inverse feature.

The set of ALI

f


on
epts is de�ned like the set of ELU

f


on
epts with the

following addition: if f is a feature or an inverse feature and C is a 
on
ept,

8f:C and 9f:C are also 
on
epts.

The interpretation fun
tion is extended with

(f

�

)

I

:= f(d; e) j (e; d) 2 f

I

g

(8f:A)

I

:= fd 2 �

I

j 8e : f

I

(d; e)! e 2 C

I

g

The translation tr

0

of a two-way automaton into ALI

f

is de�ned like tr from

Se
tion 4 with the following addition:

tr

0

(�1; q) :=

l

i2[K℄

8f

�

i

:tr(q):

This enfor
es that the label of ea
h prede
essor 
ontains tr(q). Additionally, we

have to ensure that there is one node whi
h 
orresponds to the root node and

therefore has no prede
essors. Thus we redu
e emptiness of A to the satis�ability

of tr

0

(A) and the 
on
ept tr(q

0

) u

d

i2[K℄

8f

�

i

:?:

Lemma 12. The language a

epted by a two-way alternating automaton A =

(Q;�; q

0

; Æ) is non-empty i� tr(q

0

) u

d

i2[K℄

8f

�

i

:? is satis�able w.r.t. tr

0

(A).

Proof. This proof is similar to the one for Lemma 7. For the only-if dire
tion, we

additionally have to show that, for an interpretation I, an individual i satis�es

d

i2[K℄

8f

�

i

:Q if there is a node r in the run � whi
h has a son s with state(s) = q,

where s represents a transition to the father node t of node(r). This is true sin
e,

by 
onstru
tion, there is only one f

i

prede
essor j of i, and j belongs to Q

I

sin
e

it 
orresponds to t and therefore belongs to all Q

i

relations for whi
h there exists

an r

i

s.th. �(r

i

) = (t; q

i

).

For the if-dire
tion, 
onsider a transition (�1; q) whi
h translates into

d

i2[K℄

8f

�

i

:Q. In the 
onstru
tion of the run �, we introdu
e additional nodes:

for nodes r in � and t in � with node(r) = t 6= " and t

�1

:= t �(�1), we 
reate, for

every q

i

2 states(t

�1

), an additional su

essor r

i

labelled with (t

�1

; q

i

). Then,

the value restri
tion ensures that q 2 states(t

�1

). Thus one of the r

i

is labelled

with q and � is a run on � . ut

6 Implementation

To test the feasibility of our approa
h, we implemented the translation to ALI

f

in Lisp. The results we are going to report are preliminary as we only tested

it on few hand-
rafted 
on
epts and the translation routines themselves are not

optimised.

The automata serving as input for our program result from the translation of


on
epts in the language ALCIO, whi
h stands for ALC with inverse roles and
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Fig. 4. Performan
e of satis�ability tests

nominals. Nominals are atomi
 
on
epts that are to be interpreted as singleton

sets. Thus, while the 
on
ept N = 9R:(C u D) u 9R:(C u :D) is obviously

satis�able in ALC, it is unsatis�able in ALCIO if C is a nominal. Satis�ability

of ALCIO 
on
ept terms is ExpTime-
omplete [ABM99℄, and a translation

from ALCIO into automata 
an be found in [SV01℄. We use the system FaCT

to reason about the resulting ALI

f

TBox. Thus, the 
hain of translations is:

ALCIO

[SV01℄

�������������!

linear in #Q

exponential in #�

Automaton

Se
t. 5

����������!

polynomial in

#Q+#�

ALI

f

 FaCT

This enables us to reason about a language in
luding nominals using a DL system

whi
h does not provide nominals.

In step one, the number of states of the automaton is linear, but the alpha-

bet (and therefore also the transition fun
tion) is exponential. This makes our

translation in step two, whi
h is linear in the size of the transition fun
tion, ex-

ponential in the size of the input 
on
ept. Clearly, this sequen
e of translations is

sub-optimal sin
e it exponentially translates one ExpTime-
omplete logi
 into

another one.

Thus, the rather unimpressive empiri
al results are not surprising: for exam-

ple, the 
on
ept N mentioned above leads to an automaton with a transition

fun
tion of size 1320 and 
ould not be pro
essed due to insuÆ
ient memory.

3

However, we use these 
on
epts only as an example and our main fo
us is the

behaviour of our algorithm in relation to the size of the input automaton's tran-

sition fun
tion. Figure 4 shows, on a logarithmi
 s
ale, the se
onds it took to

de
ide the satis�ability of a TBox in relation to the size of the transition fun
-

tion of the automaton, whi
h is linear in the number of GCIs in the TBox (see

Se
tion 4). The 
al
ulation time in
reases almost exponential, whi
h 
ontrasts

with the behaviour of FaCT on a TBox derived from a real-world knowledge

base [Hor97℄. Similarly, in [BCG01℄, it was observed that FaCT had severe dif-

�
ulties 
lassifying TBoxes resulting from the translation of 
omparably small

3

The tests were performed on a Pentium 4 pro
essor with 1.7 GHz and 512 MB of

RAM running Allegro CL 6.2 on Linux.



UML diagrams. Together with our results, this indi
ates that TBoxes resulting

from an automati
 translation are signi�
antly harder for 
urrent DL systems

than \hand
rafted" TBoxes. One reason for this behaviour are GCIs whi
h 
an-

not be absorbed [Hor99℄. However, in our translation, all GCIs are absorbable

[Hor97℄, whi
h means that the reason for the bad performan
e is not yet fully

understood.

7 Con
lusion

We have presented a translation from one- and two-way alternating automata

into des
ription logi
s, whi
h enables us to use available DL reasoners to de
ide

the emptiness of the language a

epted by an automaton. This yields satis�abil-

ity de
ision pro
edures for various logi
s for whi
h automata-based algorithms

are known. Our empiri
al results show that the 
omputation time is indeed ex-

ponential in the size of the automaton's transition fun
tion. Thus, signi�
ant

optimisations would need to be developed.We have also seen that even the inex-

pressive logi
 ELU

f

, when augmented with general TBoxes, be
omes ExpTime-


omplete.

Con
erning our ultimate goal to understand the relationship between

automata- and tableau-based algorithms, we have a
hieved the following: let

L be a logi
 with a de
ision pro
edure based on looping alternating automata

and C an L-
on
ept with automaton A

C

. Then it 
an be easily seen that there is

a one-to-one 
orresponden
e between the 
ompletion trees t 
onstru
ted by the

SHIQ tableau algorithm when started with tr(A

C

) and L(A

C

) in the following

sense: if t 
orresponds to � , then there is a one-to-one mapping between the

\relevant" nodes of � and the nodes of t su
h that their labelling (restri
ted to


on
ept names) 
oin
ides (even though the logi
s L and the one used in tr(A

C

)

di�er). Thus tableau- and automata-based algorithms indeed work on the same

stru
tures. Exploring this 
lose relationship further is part of future work.
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