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Abstrat. We present a translation of (one-way and two-way) alter-

nating automata into desription logis, thus reduing the emptiness

problem for alternating automata to satis�ability of the target desrip-

tion logi. The latter problem an then be deided using highly opti-

mised, tableau-based desription logi reasoners. The translation is a

step towards the understanding of the relationship between automata-

and tableau-based deision proedures for desription and modal logis.

Moreover, it yields some by-produts: (i) a program deiding the empti-

ness problem for alternating automata and thus the satis�ability problem

for logis with automata-based deision proedures; and (ii) tight om-

plexity bounds for the target desription logi.

1 Introdution

In the �eld of modal and desription logis, automata- and tableau-based satis-

�ability algorithms are two widely used approahes with omplementary advan-

tages and disadvantages. An automata-based algorithm onstruts, for a onept

C (or a modal logi formula '), an automaton A

C

aepting all (abstrations

of) models of C, see, e.g., [VW86, SE89, Var98, CGL99℄. Thus satis�ability of C

an be deided by testing the emptiness of the language aepted by A

C

. For a

variety of logis, this is an elegant approah: if the translation uses well-known

target automata for whih the omplexity of testing emptiness has already been

established, one only needs to desribe the translation and prove its orretness

(plus possibly also de�ne an appropriate abstration of models). Moreover, espe-

ially when using alternating automata, the translation is rather straightforward.

For many logis, this approah thus yields elegant ExpTime upper omplexity

bounds sine either the translation is polynomial and the emptiness test is expo-

nential or vie versa. However, implementations of automata-based satis�ability

solvers for desription logis an be said to be in their infany, even if the �rst

results are promising [PSV02℄.

A tableau-based algorithm tries to onstrut (an abstration of) a model

of an input onept C by breaking down C syntatially and thereby induing

onstraints on this model, see, e.g., [HM92, BS01℄. It either terminates with

(an abstration of) a model of C or with obvious inonsistenies. For a variety

of logis, this approah is amenable to optimisations and behaves surprisingly

?

The author is supported by the DFG, Projet No. GR 1324/3-3.



well in pratise, even for ExpTime-hard logis [Hor98, HM01℄. However, nat-

ural tableau-based algorithms are non-deterministi and thus not optimal for

ExpTime logis.

In short, the automata approah is well-suited to devise upper omplexity

bounds, whereas the tableau approah is well-suited for implementations. As a

onsequene, for many logis, in the absene of an approah enjoying the advan-

tages of both, tableau- and automata-based algorithms were hand-rafted, whih

onstitutes a possibly unneessary overhead. In the absene of suh a unifying

approah, a translation of automata-based algorithms into tableau-based ones

is highly desirable, thus reduing the overhead by mehanising the development

of an implementable algorithm. As a �rst step towards this mehanisation, we

present translations from looping one- and two-way alternating automata to de-

sription logis that are ontained in SHIQ [HST99℄. Thus, given an automata-

based algorithm for a logi using alternating automata, we an transform it into

a tableau-based one as follows: �rst, translate a onept C into an alternating

automaton A

C

, then translate A

C

into a desription logi TBox T

C

, and deide

satis�ability of the onept orresponding to A

C

w.r.t. T

C

using a tableau-based

satis�ability solver available for SHIQ suh as FaCT or RACER [Hor98, HM01℄.

This yields a satis�ability solver for a variety of logis for whih only automata-

based algorithms were known so far. We have implemented this translation for

looping two-way alternating automata and report �rst results in Setion 6.

In [KV98a℄, a translation of (one-way) weak alternating automata into the

alternation-free �-alulus is presented, whih proves that both formalisms are

of the same expressiveness and has some similarity to our translation in Setion

4. However, as there is no system deiding satis�ability of �-alulus formulae,

this does not yield an implementation for weak alternating automata.

Summing up, besides a deeper understanding of the relationship between

automata and tableaux, the translation presented in this paper yields (i) an

implementation of the emptiness test for alternating automata and thus for the

satis�ability of various (desription) logis; (ii) an ExpTime-hardness result for

the logi used in the translation; and (iii) a new method of generating \hard"

problems for FaCT and RACER.

2 Desription Logis and Tableau Algorithms

Desription logis (DLs) are a family of knowledge representation formalisms

designed for the representation of terminologial knowledge and ontologies; for

an introdution to DLs, see [BCM

+

03℄. They are losely related to modal log-

is [Sh91, GL94℄; for example, the well-known DL ALC [SS91℄ is a notational

variant of the multi modal logi K

n

.

Here, we use the rather inexpressive DL ELU

f

together with expressive

TBoxes, a DL-spei� means of expressivity losely related to the universal

modality in modal logis [Sh91℄. The entral entities of DLs are onepts, whih

an be viewed as formulae in one free variable.



De�nition 1. Let N

C

be a set of onept names and N

F

a set of feature names.

The set of ELU

f

onepts over N

C

and N

F

is indutively de�ned as follows:

{ >, ?, and eah onept name C 2 N

C

is an ELU

f

-onept;

{ if C and D are onepts, then C tD and C uD are onepts;

{ if C is a onept and f 2 N

F

is a feature name, then 9f:C is a onept.

A general onept inlusion axiom (GCI) is of the form C v D (read \C is

subsumed by D"), for onepts C and D. A TBox is a �nite set of GCIs.

An interpretation I is a pair (�

I

; �

I

), where �

I

is a set of individuals and �

I

is a funtion assigning, to every onept name C, a subset C

I

of�

I

and, to every

feature f , a partial funtion f

I

: �

I

! �

I

. We use (d; e) 2 f

I

for f

I

(d) = e.

The funtion �

I

is indutively extended to omplex onepts as follows:

>

I

= �

I

; ?

I

= ;, (C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

,

(9f:C)

I

= fd 2 �

I

j 9e : (d; e) 2 f

I

^ e 2 C

I

g.

An interpretation I satis�es a GCI C v D if C

I

� D

I

; I is a model of a

TBox T if it satis�es all GCIs in T ; I is a model of a onept C if C

I

6= ;; I

is a model of C with respet to T if I is a ommon model of C and T ; and a

onept C is satis�able [w.r.t. T ℄ if there is a model for C [and T ℄. A onept

C is subsumed by a onept D w.r.t. T (written C v

T

D) if C

I

� D

I

for every

model I of T .

ELU

f

is restrited in several aspets: it does not provide negation, and it

only provides existential value restritions (9f:C), whereas standard DLs also

provide universal restritions (8f:C). Equally important, ELU

f

only provides

features (i.e., funtional binary relations) whereas most DLs provide roles (i.e.,

arbitrary binary relations). However, ELU

f

omes with GCIs, a very expressive

means, as we will see soon.

In DLs with onjuntion and negation :, subsumption an be linearly redued

to satis�ability: C v

T

D i� C u :D is not satis�able w.r.t. T . For ELU

f

, in

the absene of negation, this redution is slightly more involved and requires a

new onept symbol

^

D to replae :D: C v

T

D i� C u

^

D is unsatis�able w.r.t.

T [fDu

^

D v ?g. Thus, we an use GCIs to express disjointness of D and

^

D (as

no individual an belong to both D and

^

D), and disjointness suÆes to redue

subsumption to satis�ability. In the following, we will therefore onentrate on

satis�ability problems.

For several expressive DLs, there exist eÆient tableau-based implementa-

tions that deide satis�ability (and thus subsumption) of onepts w.r.t. a TBox

[HM01, Hor98, BS01℄. Intuitively, to deide the satis�ability of a onept C, a

tableau algorithm starts with an instane x of C (here written x :C), and then

reursively breaks down C syntatially, thus inferring new onstraints on the

model of C to be built. For example, if y :D u E has already been inferred, it

adds y : D and y : E. For y : 9f:F , it generates a new node, say z, and adds

(y; z) : f and z : F . Finally, it adds, for eah GCI C

i

v D

i

in the TBox, the

onstraint y : (:C

i

tD

i

) for eah individual y of the model to be built.

Now, for logis with disjuntions, various tableau algorithms non-

deterministially hoose whether to add y : D or y : E for y : D t E. Getting



rid of this non-determinism in a way that is more eÆient than naive bak-

traking proves to be hard work for many logis [DM00℄. This is one reason

why for ExpTime logis, most tableau algorithms are not optimal. For example,

the SHIQ tableau algorithm implemented in FaCT is 2-NExpTime instead of

ExpTime [HST99℄. Despite this sub-optimality, tableau algorithms allow for a

set of well-known eÆient optimisations, so that they perform muh better in

pratise than their worst-ase omplexity suggests. FaCT [Hor98℄ and RACER

[HM01℄ are examples of suh eÆient implementations.

Sine we are talking about deision proedures, termination is an important

issue. Even though tableau algorithms for many inexpressive DLs terminate

\automatially", this is not the ase for more expressive ones. For example,

onsider the algorithm skethed above on the input onept A and TBox fA v

9f:Ag: it would reate an in�nite f -hain of instanes of A. Thus, the tableau

algorithm has to be stopped at a ertain point; intuitively, at the point when the

onepts remaining to be proessed are just a repetition of onepts whih were

already proessed. This mehanism, alled bloking, often makes the orretness

proof of the algorithm very ompliated. Moreover, it an be diÆult to hoose

an eÆient bloking ondition [HS02, Hla02℄.

In summary, tableau algorithms

� are used in state-of-the-art implementations, and many well-understood op-

timisations are available,

� have proven to perform muh better for realisti onepts than their worst-

ase omplexity suggests;

	 require speial tehniques to ensure termination (e.g. bloking) and get rid

of non-determinism,

	 are often not worst-ase optimal for deterministi omplexity lasses.

3 Alternating Automata

For many desription and modal logis, the satis�ability of a onept C w.r.t.

a TBox T an be deided by de�ning an automaton A whih aepts exatly

the (abstrations of) models of C and T . Thus, the satis�ability problem is

redued to the emptiness problem of automata. Examples utilising automata

an be found in [VW86, SE89, Var98, CGL99, LS01℄. In most ases, abstra-

tions of models are �nite or in�nite trees|depending on the logi. Thus the

target automata are automata on �nite or in�nite trees. Moreover, we an use

deterministi, non-deterministi, or, as a generalisation, alternating automata,

where the latter lass of automata allows for rather elegant translations of

many logis. In many ases, the emptiness test for non-alternating automata

is polynomial, whereas the translation yields an automaton of size exponential

in the input onept (and TBox). In ontrast, the translation into an alternating

automaton usually yields an automaton of polynomial size (see, for example,

[Var98, CGL99℄)|however, testing emptiness of alternating automata is Exp-

Time-omplete [KV98b, Var98℄. Thus, this approah yields worst-ase optimal



algorithms for ExpTime-omplete logis. Before disussing the automata-based

approah in more detail, we �rst de�ne alternating automata on in�nite trees.

De�nition 2. Let K be a natural number. We de�ne [K℄ := f1; : : : ;Kg and

[K℄

0

:= [K℄ [ f0g. A K-ary in�nite tree over an alphabet � is a total mapping

� : [K℄

�

! �.

Here, the empty word " denotes the root of the tree and, for ` 2 [K℄

�

and

k 2 [K℄, ` � k denotes the k-th suessor of `; ` � 0 is de�ned as `.

Alternating automata generalise nondeterministi automata by allowing not

only several alternative suessor states, i.e. a disjuntion of alternatives, but also

a onjuntion or a ombination of both. For example, the transition Æ(a; q

1

) =

(1; q

3

) ^ ((1; q

2

) _ (3; q

1

)) is to be read as follows: if the automaton proesses a

node `, is in state q

1

, and reads the letter a, then it has to send one opy of the

automaton in state q

3

to the �rst suessor of ` and either another opy in state

q

2

to the �rst suessor of ` or a opy in state q

1

to the third one.

De�nition 3. The set of positive Boolean formulae over a set V , B

+

(V ), on-

sists of formulae built from V [ ftrue; falseg using the binary operators ^ and

_. A set R � V satis�es a formula ' 2 B

+

(V ) i� assigning true to all elements

of R and false to all elements of V nR yields a formula that evaluates to true.

An alternating automaton A is a tuple (Q;�; q

0

; Æ), where Q = fq

0

; : : : ; q

q̂

g

is a set of states, � = f�

0

; : : : ; �

�̂

g is the input alphabet, q

0

is the initial state,

and Æ : Q�� ! B

+

([K℄

0

�Q) is the transition relation.

The width of an automaton w(A) is the number of literals that an appear

on the right-hand side of a transition, i.e., w(A) := (q̂ + 1) � (K + 1). A run �

of A on a tree � is a w(A)-ary in�nite tree over ([K℄

�

�Q)[ f"g whih satis�es

the following onditions:

1. �(") = ("; q

0

) and

2. for eah node r with �(r) = (t; q) 6= " and Æ(q; �(t)) = ', there is a set

S = f(t

1

; q

1

); : : : ; (t

n

; q

n

)g � [K℄

0

�Q suh that

(a) S satis�es ' and,

(b) for all 1 � i � n, �(r � i) = (t � t

i

; q

i

).

An automaton A aepts an input tree � if there exists a run of A on � . The

language aepted by A, L(A), is the set of all trees aepted by A.

Some remarks are in order: �rstly, we have de�ned looping automata, i.e.,

there is no aeptane ondition and eah run is aepting. Seondly, a run labels

eah node r either with a pair (t; q) or with ", where the latter indiates that

�(r) is not important for the aeptane of the input tree.

Example 4. In Figure 1, we see part of a run � of an alternating automaton

A on a tree � . We only present those nodes relevant for the run, i.e., nodes r

with �(r) 6= ". If the transition relation is Æ(q

1

; a) = ((0; q

4

) ^ (2; q

2

)) _ (3; q

3

);

Æ(q

2

; b) = (0; q

1

)^(3; q

4

); and Æ(q

4

; a) = Æ(q

1

; b) = Æ(q

4

; ) = true, all other nodes

of � an be labelled with " and all other nodes of � an be labelled arbitrarily

and � is aepted.



1 a

a

�

11 12 13

122 123121  

b 

b

�

3

31 32(1,q

4

)

(1,q

1

)

322(12,q

1

)321 (123,q

4

)

(12,q

2

)

Fig. 1. Example of a tree and run.

Please observe that there is no one-to-one orrespondene between the nodes

of � and �: both �(3) and �(31) refer to node 1, but none refers to node 13.

Moreover, the ordering of suessors is important in � , but not in �: the de�nition

of a run only requires the existene of ertain suessors.

A question we would like to answer next is why one would use suh a seem-

ingly ompliated kind of automata. Firstly, standard abstration tehniques

suh as unravelling [Tho92℄ yield in�nite tree abstrations of models. Using

automata on in�nite trees , we an freely work with these standard, in�nite ab-

strations. This is a lear advantage for logis laking the �nite model property,

or where it would be tedious to invent �nite abstrations. In tableau algorithms,

we had to work with �nite representations of in�nite abstrations to ensure ter-

mination, using bloking. In ontrast, for the lass of automata de�ned above,

termination is not an issue sine input trees and runs are, by de�nition, in�nite

strutures.

Seondly, using non-deterministi automata, non-determinism due to dis-

juntions an be translated into non-deterministi transitions. For alternat-

ing automata, we an also translate \universal" quanti�ation|e.g. due to

onjuntion|into the transition funtion. For example, when designing an al-

ternating automaton for an ELU

f

-onept C with features from f

1

; : : : ; f

k

, one

would use a state q

D

for eah sub-onept D of C. Nodes of input trees are

labelled with sets of onept names and stand for individuals of a model. Exam-

ples of the transition funtion are Æ(q

DuE

; �) = (0; q

D

) ^ (0; q

E

), Æ(q

DtE

; �) =

(0; q

D

) _ (0; q

E

), Æ(q

9f

j

:E

; �) = (j; q

E

), and Æ(q

X

; �) = true if X 2 �. Thus the

desription logis translates in a natural way into an automaton.

The main drawbak of automata lies in the fat that their omplexity is

exponential not only in the worst ase, but in every ase: either the automaton

A

'

is exponential in ' or, in the ase of alternating automata, is polynomial but

is translated into a non-deterministi automatonA

0

'

of exponential size to deide

its emptiness [KV98b, Var98℄. Therefore, a naive implementation is doomed to

failure and, to the best of our knowledge, only �rst yet promising steps towards

implementing an automata-based satis�ability solver have been made [PSV02℄.

In summary, automata-based approahes to satis�ability

� often allow for a very elegant and natural translation of a logi,

� provide ExpTime upper omplexity bounds and are thus optimal for Exp-

Time-hard logis,

� handle in�nite strutures and non-determinism impliitly,

	 have only reently been implemented.



4 Translating Alternating Automata into ELU

f

In this setion, we desribe how to translate an alternating automaton A into a

TBox tr (A) and a onept Q

0

suh that L(A) is non-empty i� Q

0

is satis�able

w.r.t. tr(A). Intuitively, we translate the transition funtion Æ into GCIs tr(A)

whose models orrespond to runs of A. To this purpose, we use a feature f

k

for

the k-th suessor of a node in the input tree, i.e., for eah k 2 [K℄.

De�nition 5. Let A = (Q;�; q

0

; Æ) be an alternating automaton with Q =

fq

0

; : : : ; q

q̂

g and � = f�

0

; : : : ; �

�̂

g. The translation of A into an ELU

f

TBox

tr(A) is de�ned as follows: for eah q

i

2 Q we use a onept name Q

i

, for eah

�

j

2 �, we use a onept name A

j

, and set

tr(A) := fG>;G?g [

S

q2Q;�2�

tr(Æ(q; �)); where

G> := > v A

1

t A

2

t : : : t A

�̂

;

G? :=

F

0�i<j��̂

(A

i

u A

j

) v ?;

tr(Æ(q; �)) := tr(q) u tr(�) v tr(') if Æ(q; �) = ';

and the translation of ', q, and � is de�ned as follows:

tr(q

i

) := Q

i

for q

i

2 Q; tr(�

i

) := A

i

for �

i

2 �;

tr(� ^ �) := tr(�) u tr (�); tr(� _ �) := tr(�) t tr (�);

tr(true) := >; tr(false) := ?;

tr(0; q) := tr(q); tr(k; q) := 9f

k

:tr (q) for k 6= 0:

We will see that tr ensures that eah model I of tr(A) orresponds to a run

� on some tree � . First, a node r in � is labelled with a node t in � whih, in

turn, is labelled with exatly one � 2 �. Thus eah r in � is assoiated with one

� 2 �. To express this fat in tr (A), we use the extra GCIs G> and G?: they

guarantee that every individual of I is an instane of exatly one tr(�

i

).

1

Next, it will turn out to be useful to have the inverse tr

�1

of tr , whih is

possible sine tr is \almost" injetive: the only ambiguity onerns q and (0; q)

sine they are both mapped to Q by tr . However, this ambiguity an easily be

resolved by agreeing to set tr

�1

(Q) to (0; q) if Q appears on the right hand side

of a GCI and to q otherwise.

Example 6. Figure 2 shows an example for the translation of a tree and run into

an interpretation for a single node. The automaton is in state q

1

and reads node

1 whih is labelled with a. For Æ(a; q

1

) = (1; q

1

)_ ((1; q

2

)^ (0; q

4

)), the transition

funtion yields the GCI AuQ

1

v 9f

1

:Q

1

t ((9f

1

:Q

2

)uQ

4

). In our example, the

transition funtion is satis�ed via the seond disjunt, and thus the individual

1 in the model I is an instane of both Q

1

and Q

4

. We would like to point out

that a model I of tr (A) might have a struture di�erent from

1

Sine eah node is labelled with exatly one alphabet symbol, it is also possible to

translate the alphabet symbols using a binary oding mehanism whih requires only

log

2

n onept names for n alphabet symbols. However, this would not redue the

number of GCIs in the TBox, whih would still be exponential in n. Hene, we stik

with the linear translation, whih is also easier to read.
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1 a

a

(1,q

1

)

(11,q

2

)

11

13

1 A;Q

1

; Q

4

�

�

I

3

32

11 12 13

f

3

f

1

C

A;Q

2

31

(1,q

4

)

Fig. 2. Translation of a tree and run into a model.

{ an input tree � sine nodes in I might have no f

i

-suessor for some i and

I might not be a tree.

{ a run � sine di�erent nodes of � that refer to the same node in � are

represented by the same individual in I: intuitively, we label an individual

i 2 �

I

with the onept A

i

of �(i) and \ollet" all Q

i

onepts from nodes

in � that refer to �(i). Thus, some individuals are instanes of several Q

i

onepts, like 1, while others are instanes of none, like 13.

Lemma 7. The language aepted by an alternating automaton A =

(Q;�; q

0

; Æ) is non-empty i� tr(q

0

) its satis�able w.r.t. tr(A).

Proof. We start with the \only-if"-diretion. For this, we �x some notation: we

use L to denote the set of onepts appearing in the right hand side of GCIs in

tr(A), L := f9f

i

:Q

j

j i 2 [K℄; j 2 [q̂℄g [ fQ

j

j j 2 [q̂℄g; and we use B

+

(L) for

the set of positive Boolean onepts analogous to Setion 3, with the symbols

^;_; true, and false replaed with u;t;>, and ?, respetively.

Let T := tr(A), Q

0

= tr (q

0

), and let � 2 L(A) with � a suessful run of A

on � . We onstrut a model I of Q

0

w.r.t. T as follows:

�

I

:= [K℄

�

,

f

I

k

:= f(`; ` � k) j ` 2 [K℄

�

g, for every k 2 [K℄ ,

A

I

i

:= ft j �(t) = �

i

g, for every �

i

2 �,

Q

I

i

:= ft j there is an r in � with �(r) = (t; q

i

)g, for every q

i

2 Q,.

To prove that I is a model of Q

0

w.r.t. T , we show that (i) Q

I

0

6= ; and (ii)

eah individual t of I satis�es eah GCI in T .

Now (i) holds by de�nition of I sine the �(") = ("; q

0

) and thus " 2 Q

I

0

. For

(ii), we distinguish three lasses of GCIs in T :

1. GCIs G> and G?,

2. GCIs of the form Q u A v ? resulting from the translation of transitions

Æ(q; �) = false, and

3. GCIs Q u A v C, for some onept C 2 B

+

(L) n f?g.

For the �rst lass, I satis�es G> and G? by de�nition sine every node t in

� is labelled with exatly one letter �.

For the remainder, onsider a GCIQ

i

uA

j

v C in T with preimage Æ(q

i

; �

j

) =

' and some t 2 Q

I

i

\ A

I

j

. By de�nition of I, there exists a node r with �(r) =

(t; q

i

) and �(t) = �

j

. For the seond lass, if ' = false , then C = ?, and the

existene of t is a ontradition to � being a run.
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Fig. 3. Translation of a model into a tree and run.

For the third lass, the de�nition of a run implies the existene of a set

S = fi

1

; : : : ; i

m

g and funtions t, , and s suh that

{ f(t(i); q

(i)

) j i 2 Sg satis�es ' and

{ there are suessors r � s(i

1

); : : : ; r � s(i

s

) of r whih are labelled with the

orresponding pairs, i.e. �(r � s(j)) = (t � t(j); q

(j)

) for all j 2 S.

By onstrution of I, there exist f

t(j)

-suessors u

j

of t with u

j

2 Q

I

(j)

uA

I

for A := tr(�(t � t(j))). This ensures that t 2 C

I

, whih onludes the proof of

the \only-if"-diretion.

For the \if"-diretion, we will show how to onstrut a tree � and a run � of

A on � from a model (�

I

; �

I

) of Q

0

w.r.t. T . We de�ne the auxiliary funtions

{ ti and ri , whih map nodes in � and �, resp., to individuals of �

I

,

{ node and state, whih map a node of � to the node and state omponent of

its label, i.e. if �(r) = (t; q), then node(r) = t and state(r) = q, and

{ letter : �

I

! fA

i

j 1 � i � �̂g and states : �

I

! 2

fQ

i

j1�i�q̂g

, assigning, to

eah individual, the unique onept A

x

and the set of Q

i

onepts it is an

instane of (letter is well-de�ned sine I is a model of G> and G?).

Example 8. In Figure 3, we show a model I together with a tree � , a run �, and

some of the auxiliary funtions. The tree node 1 is assumed to be related to a

dummy individual d

u

and its letter z = letter (d

u

), and only some nodes of � are

presented. In the run �, the nodes ", 2, and 3 are labelled with the same tree

node " sine ri (") is an instane of Q

0

and Q

4

, and we might need nodes 2 and

3 for a run involving transitions Æ(a; q

0

) = (0; q

4

) ^ (0; q

0

) ^ : : :

Intuitively, � is an an unravelling of I, and � is an unravelling with \dupli-

ate" suessors. More preisely, � and � are de�ned as follows. We begin the

onstrution of � with an individual d

"

2 Q

I

0

. Suh an individual exists sine I

is a model of Q

0

w.r.t. T . Moreover, we �x some \dummy" individual d

u

2 �

I

.

We de�ne �(") := tr

�1

(letter (d

"

)), and ti(") := d

"

. Then, for eah t suh that

ti(t) is already de�ned and for eah k 2 [K℄, we do the following:

{ if ti(t) has an f

k

-suessor d

k

, de�ne ti(t � k) := d

k

and �(t � k) :=

tr

�1

(letter (d

k

)) (this is well-de�ned sine f

k

is funtional);

{ otherwise, de�ne ti(t � k) := d

u

and �(t � k) := tr

�1

(letter (d

u

)) for the

\dummy" individual d

u

.



Having de�ned � , we now de�ne a run � of A on � as follows. Firstly, set

�(") := ("; q

0

) and ri(") := d

"

. Seondly, if ri(r) = d is already �xed, we de�ne

d

0

:= d and d

i

as the f

i

-suessor of d, if there exists one, and d

i

:= d

u

otherwise.

Then we �x, for every d

i

and every q

i

j

2 states(d

i

), a di�erent suessor r � i

j

of

r with �(r � i

j

) = (node(r) � i; q

i

j

) and ri(r � i

j

) = d

i

. Finally, if �(r �k) is not �xed

through the previous step, we set �(r

0

) = " for eah node r

0

in the sub-tree below

r � k inluding r � k. Thus, for every onept Q

i

that d or a suessor of d is an

instane of, there is a suessor of d in � labelled with q

i

and the orresponding

node in � .

To prove that � is a run on � , we �rst prove that the ri and ti funtions are

de�ned properly in the following sense:

Claim: For all nodes r in �, if �(r) 6= ", then ri(r) = ti(node(r)).

Proof of the laim. The proof is by indution on the depth of nodes in �. For

the root node " of �, the laim holds by de�nition. Now let r be a node of � with

�(r) 6= " for whih the laim holds. Let ri(r) = d and onsider a suessor r �k of

r. If �(r � k) 6= ", then there are i, j suh that d has an f

i

-suessor d

i

2 Q

I

j

, or

ri(r � k) = d, whih means that d 2 Q

I

j

and i = 0. Then node(r � k) = node(r) � i

and ri(r � k) = d

i

by de�nition of �. By indution, ti(node(r)) = d, and thus

ti(node(r) � i) = d

i

by de�nition of � , whih onludes the proof of the laim.

Now we an prove that � is a run on � , see De�nition 3. Property 1 of runs

holds by de�nition of �. For Property 2, onsider r with �(r) = (t; q). Hene there

is d 2 �

I

with d = ri (r) and d 2 tr(q)

I

. Set Q = tr(q). Moreover, by de�nition,

for letter (ti(t)) = A, we have �(t) = tr

�1

(A). The laim yields ti(t) = ri (r) = d,

whih implies A = letter (d) by onstrution. Summing up, we have d 2 A

I

\Q

I

.

Sine I is a model of tr(A), d 2 C

I

for A u Q v C the translation of

Æ(tr

�1

(A); q) = '. As d is an instane of C, there exists an N = fn

1

; : : : ; n

`

g � L

whih \satis�es" C. For every n

i

; 1 � i � `, we de�ne a p

i

2 [K℄

0

�Q as follows:

{ if n

i

= 9f

k

:Q for some f

k

; Q, then d has an f

k

-suessor d

k

2 Q

I

. By

onstrution of � , t has a k-suessor t � k, and r has a suessor r � k

0

with

�(r

0

) = (t � k; tr

�1

(Q)). We set p

i

:= (k; tr

�1

(Q));

{ if n

i

= Q for some Q, then d 2 Q

I

. By onstrution, r has a suessor r � j

with �(r � j) = (t; q). We set p

i

:= (0; q).

It an easily be seen that set S := fp

i

j 1 � i � `g satis�es ' := tr

�1

(C),

and therefore Property 2(a) holds. Finally, Property 2(b) holds by onstrution

of S, whih onludes the proof of the \if"-diretion. ut

Lemma 7 has two onsequenes: �rstly, the emptiness of a language given by

an alternating automaton (and thus reasoning problems for various logis) an be

deided by translating it into an ELU

f

-onept and TBox and then deiding their

satis�ability using one of the existing DL systems, e.g. FaCT or RACER [Hor98,

HM01℄. Seondly, we have obtained tight omplexity bounds for ELU

f

: In [SV01℄,

satis�ability of hybrid �-alulus formulae is redued to emptiness of two-way

alternating parity automata. It is easy to see that, disarding �xpoints, nominals,

and inverse modalities, this yields a redution from multi modalK extended with

the universal modality to the emptiness problem of one-way alternating looping

automata. This, together with the fat that K with the universal modality is



known to be ExpTime-hard [Spa93℄, yields ExpTime-hardness of the emptiness

problem for alternating looping automata. Now our translation being polynomial

implies that satis�ability of ELU

f

-onepts w.r.t. TBoxes is ExpTime-hard.

Finally, ELU

f

is a fragment of deterministi propositional dynami logi whih

is in ExpTime [BHP82℄ and allows for the internalisation of TBoxes (see, e.g.,

[CGL99℄). Thus we have tight omplexity bounds.

Corollary 9. Satis�ability of ELU

f

-onepts w.r.t. general TBoxes is

ExpTime-omplete.

5 Two-Way Alternating Automata

In this setion, we extend the translation from one-way to two-way automata

and thus an also test the emptiness of two-way automata using a DL reasoner.

Sine this extended translation involves inverse roles, we need a DL reasoner

that an handle inverse roles suh as FaCT or RACER.

Alternating automata from De�nition 3 an be said to be one-way sine the

transition funtion tells the automaton to stay in the same node of the input

tree or go to one of its suessors. In two-way alternating automata, it an also

tell to go to the predeessor.

De�nition 10. For a natural number K, let [K℄

�

be the set f�1; 0; : : : ;Kg.

For a word w = v � k 2 [K℄

+

with k 2 [K℄, the onatenation w � (�1) = v, and

" � (�1) is unde�ned.

A two-way alternating automaton A = (Q;�; q

0

; Æ) is de�ned like a (one-

way) alternating automaton, with the exeption that Æ is a funtion from Q��

to B

+

([K℄

�

�Q). A run and the language aepted by an automaton are de�ned

aordingly, i.e., with S � [K℄

0

�Q in Property 2 replaed with S � [K℄

�

�Q.

For example, a transition Æ(q

3

; �) = (2; q

4

) _ (�1; q

1

) an be satis�ed either

by sending a opy of the automaton in state q

4

to the seond suessor of the

urrent node or by sending one in state q

1

to its predeessor. Sine " � (�1) is

unde�ned, it is impossible to go up from the root node.

To extend our translation to two-way automata, we use a logi whih is

more expressive than ELU

f

. To go up and down a tree, we use, additionally,

inverse features whih allow to go a relation \bakwards". Moreover, to apture

the notion of a run appropriately, we have to expliitly ensure uniqueness of

predeessors sine the inverse of a feature is not required to be funtional. For

example, the onept 9f

�

1

:Q

1

u 9f

�

1

:Q

2

an have an instane d with two f

1

predeessors whih are labelled with di�erent alphabet symbols, i.e., d's f

1

-

predeessor is not unique.

In the following, we desribe a way to apture uniqueness of predeessors

using value restritions 8f

�

i

:C to express that all f

i

predeessors belong to C.

2

2

It is also possible to use role hierarhies instead of value restritions: then, a \prede-

essor feature" f

�1

is enfored to be interpreted as the union of the inverses of the

features f

i

.



The resulting logi is still a fragment of SHIQ and therefore it an be deided

using the implementations mentioned above.

De�nition 11. For a feature f , f

�

is a alled an inverse feature.

The set of ALI

f

onepts is de�ned like the set of ELU

f

onepts with the

following addition: if f is a feature or an inverse feature and C is a onept,

8f:C and 9f:C are also onepts.

The interpretation funtion is extended with

(f

�

)

I

:= f(d; e) j (e; d) 2 f

I

g

(8f:A)

I

:= fd 2 �

I

j 8e : f

I

(d; e)! e 2 C

I

g

The translation tr

0

of a two-way automaton into ALI

f

is de�ned like tr from

Setion 4 with the following addition:

tr

0

(�1; q) :=

l

i2[K℄

8f

�

i

:tr(q):

This enfores that the label of eah predeessor ontains tr(q). Additionally, we

have to ensure that there is one node whih orresponds to the root node and

therefore has no predeessors. Thus we redue emptiness of A to the satis�ability

of tr

0

(A) and the onept tr(q

0

) u

d

i2[K℄

8f

�

i

:?:

Lemma 12. The language aepted by a two-way alternating automaton A =

(Q;�; q

0

; Æ) is non-empty i� tr(q

0

) u

d

i2[K℄

8f

�

i

:? is satis�able w.r.t. tr

0

(A).

Proof. This proof is similar to the one for Lemma 7. For the only-if diretion, we

additionally have to show that, for an interpretation I, an individual i satis�es

d

i2[K℄

8f

�

i

:Q if there is a node r in the run � whih has a son s with state(s) = q,

where s represents a transition to the father node t of node(r). This is true sine,

by onstrution, there is only one f

i

predeessor j of i, and j belongs to Q

I

sine

it orresponds to t and therefore belongs to all Q

i

relations for whih there exists

an r

i

s.th. �(r

i

) = (t; q

i

).

For the if-diretion, onsider a transition (�1; q) whih translates into

d

i2[K℄

8f

�

i

:Q. In the onstrution of the run �, we introdue additional nodes:

for nodes r in � and t in � with node(r) = t 6= " and t

�1

:= t �(�1), we reate, for

every q

i

2 states(t

�1

), an additional suessor r

i

labelled with (t

�1

; q

i

). Then,

the value restrition ensures that q 2 states(t

�1

). Thus one of the r

i

is labelled

with q and � is a run on � . ut

6 Implementation

To test the feasibility of our approah, we implemented the translation to ALI

f

in Lisp. The results we are going to report are preliminary as we only tested

it on few hand-rafted onepts and the translation routines themselves are not

optimised.

The automata serving as input for our program result from the translation of

onepts in the language ALCIO, whih stands for ALC with inverse roles and
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nominals. Nominals are atomi onepts that are to be interpreted as singleton

sets. Thus, while the onept N = 9R:(C u D) u 9R:(C u :D) is obviously

satis�able in ALC, it is unsatis�able in ALCIO if C is a nominal. Satis�ability

of ALCIO onept terms is ExpTime-omplete [ABM99℄, and a translation

from ALCIO into automata an be found in [SV01℄. We use the system FaCT

to reason about the resulting ALI

f

TBox. Thus, the hain of translations is:

ALCIO

[SV01℄

�������������!

linear in #Q

exponential in #�

Automaton

Set. 5

����������!

polynomial in

#Q+#�

ALI

f

 FaCT

This enables us to reason about a language inluding nominals using a DL system

whih does not provide nominals.

In step one, the number of states of the automaton is linear, but the alpha-

bet (and therefore also the transition funtion) is exponential. This makes our

translation in step two, whih is linear in the size of the transition funtion, ex-

ponential in the size of the input onept. Clearly, this sequene of translations is

sub-optimal sine it exponentially translates one ExpTime-omplete logi into

another one.

Thus, the rather unimpressive empirial results are not surprising: for exam-

ple, the onept N mentioned above leads to an automaton with a transition

funtion of size 1320 and ould not be proessed due to insuÆient memory.

3

However, we use these onepts only as an example and our main fous is the

behaviour of our algorithm in relation to the size of the input automaton's tran-

sition funtion. Figure 4 shows, on a logarithmi sale, the seonds it took to

deide the satis�ability of a TBox in relation to the size of the transition fun-

tion of the automaton, whih is linear in the number of GCIs in the TBox (see

Setion 4). The alulation time inreases almost exponential, whih ontrasts

with the behaviour of FaCT on a TBox derived from a real-world knowledge

base [Hor97℄. Similarly, in [BCG01℄, it was observed that FaCT had severe dif-

�ulties lassifying TBoxes resulting from the translation of omparably small

3

The tests were performed on a Pentium 4 proessor with 1.7 GHz and 512 MB of

RAM running Allegro CL 6.2 on Linux.



UML diagrams. Together with our results, this indiates that TBoxes resulting

from an automati translation are signi�antly harder for urrent DL systems

than \handrafted" TBoxes. One reason for this behaviour are GCIs whih an-

not be absorbed [Hor99℄. However, in our translation, all GCIs are absorbable

[Hor97℄, whih means that the reason for the bad performane is not yet fully

understood.

7 Conlusion

We have presented a translation from one- and two-way alternating automata

into desription logis, whih enables us to use available DL reasoners to deide

the emptiness of the language aepted by an automaton. This yields satis�abil-

ity deision proedures for various logis for whih automata-based algorithms

are known. Our empirial results show that the omputation time is indeed ex-

ponential in the size of the automaton's transition funtion. Thus, signi�ant

optimisations would need to be developed.We have also seen that even the inex-

pressive logi ELU

f

, when augmented with general TBoxes, beomes ExpTime-

omplete.

Conerning our ultimate goal to understand the relationship between

automata- and tableau-based algorithms, we have ahieved the following: let

L be a logi with a deision proedure based on looping alternating automata

and C an L-onept with automaton A

C

. Then it an be easily seen that there is

a one-to-one orrespondene between the ompletion trees t onstruted by the

SHIQ tableau algorithm when started with tr(A

C

) and L(A

C

) in the following

sense: if t orresponds to � , then there is a one-to-one mapping between the

\relevant" nodes of � and the nodes of t suh that their labelling (restrited to

onept names) oinides (even though the logis L and the one used in tr(A

C

)

di�er). Thus tableau- and automata-based algorithms indeed work on the same

strutures. Exploring this lose relationship further is part of future work.
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