A Translation of Looping Alternating Automata
into Description Logics

Jan Hladik* and Ulrike Sattler

Technische Universitit Dresden, {hladik,sattler}@inf.tu-dresden.de

Abstract. We present a translation of (one-way and two-way) alter-
nating automata into description logics, thus reducing the emptiness
problem for alternating automata to satisfiability of the target descrip-
tion logic. The latter problem can then be decided using highly opti-
mised, tableau-based description logic reasoners. The translation is a
step towards the understanding of the relationship between automata-
and tableau-based decision procedures for description and modal logics.
Moreover, it yields some by-products: (i) a program deciding the empti-
ness problem for alternating automata and thus the satisfiability problem
for logics with automata-based decision procedures; and (ii) tight com-
plexity bounds for the target description logic.

1 Introduction

In the field of modal and description logics, automata- and tableau-based satis-
fiability algorithms are two widely used approaches with complementary advan-
tages and disadvantages. An automata-based algorithm constructs, for a concept
C (or a modal logic formula ¢), an automaton A¢x accepting all (abstractions
of) models of C, see, e.g., [VW86, SE89, Var98, CGL99]. Thus satisfiability of C
can be decided by testing the emptiness of the language accepted by Ac. For a
variety of logics, this is an elegant approach: if the translation uses well-known
target automata for which the complexity of testing emptiness has already been
established, one only needs to describe the translation and prove its correctness
(plus possibly also define an appropriate abstraction of models). Moreover, espe-
cially when using alternating automata, the translation is rather straightforward.
For many logics, this approach thus yields elegant EXPTIME upper complexity
bounds since either the translation is polynomial and the emptiness test is expo-
nential or vice versa. However, implementations of automata-based satisfiability
solvers for description logics can be said to be in their infancy, even if the first
results are promising [PSV02].

A tableau-based algorithm tries to construct (an abstraction of) a model
of an input concept C' by breaking down C' syntactically and thereby inducing
constraints on this model, see, e.g., [HM92, BS01]. It either terminates with
(an abstraction of) a model of C' or with obvious inconsistencies. For a variety
of logics, this approach is amenable to optimisations and behaves surprisingly

* The author is supported by the DFG, Project No. GR 1324/3-3.

well in practise, even for EXPTIME-hard logics [Hor98, HMO01]. However, nat-
ural tableau-based algorithms are non-deterministic and thus not optimal for
ExpPTIME logics.

In short, the automata approach is well-suited to devise upper complexity
bounds, whereas the tableau approach is well-suited for implementations. As a
consequence, for many logics, in the absence of an approach enjoying the advan-
tages of both, tableau- and automata-based algorithms were hand-crafted, which
constitutes a possibly unnecessary overhead. In the absence of such a unifying
approach, a translation of automata-based algorithms into tableau-based ones
is highly desirable, thus reducing the overhead by mechanising the development
of an implementable algorithm. As a first step towards this mechanisation, we
present translations from looping one- and two-way alternating automata to de-
scription logics that are contained in SHZQ [HST99]. Thus, given an automata-
based algorithm for a logic using alternating automata, we can transform it into
a tableau-based one as follows: first, translate a concept C' into an alternating
automaton A¢, then translate A¢ into a description logic TBox T¢, and decide
satisfiability of the concept corresponding to A¢ w.r.t. 7o using a tableau-based
satisfiability solver available for SHZQ such as FaCT or RACER [Hor98, HMO1].
This yields a satisfiability solver for a variety of logics for which only automata-
based algorithms were known so far. We have implemented this translation for
looping two-way alternating automata and report first results in Section 6.

In [KV98a], a translation of (one-way) weak alternating automata into the
alternation-free u-calculus is presented, which proves that both formalisms are
of the same expressiveness and has some similarity to our translation in Section
4. However, as there is no system deciding satisfiability of u-calculus formulae,
this does not yield an implementation for weak alternating automata.

Summing up, besides a deeper understanding of the relationship between
automata and tableaux, the translation presented in this paper yields (i) an
implementation of the emptiness test for alternating automata and thus for the
satisfiability of various (description) logics; (ii) an EXPTIME-hardness result for
the logic used in the translation; and (iii) a new method of generating “hard”
problems for FaCT and RACER.

2 Description Logics and Tableau Algorithms

Description logics (DLs) are a family of knowledge representation formalisms
designed for the representation of terminological knowledge and ontologies; for
an introduction to DLs, see [BCM™'03]. They are closely related to modal log-
ics [Sch91, GL94]; for example, the well-known DL ALC [SS91] is a notational
variant of the multi modal logic K,,.

Here, we use the rather inexpressive DL £LU ¢ together with expressive
TBozes, a DL-specific means of expressivity closely related to the universal
modality in modal logics [Sch91]. The central entities of DLs are concepts, which
can be viewed as formulae in one free variable.

Definition 1. Let N¢ be a set of concept names and N a set of feature names.
The set of ELU ¢ concepts over Nc and N is inductively defined as follows:

— T, 1, and each concept name C € Nc is an LU s-concept;
— if C" and D are concepts, then C' LI D and C M D are concepts;
— if C'is a concept and f € Ng is a feature name, then 3f.C' is a concept.

A general concept inclusion aziom (GCI) is of the form C' T D (read “C is
subsumed by D"), for concepts C' and D. A TBoz is a finite set of GCIs.

An interpretation T is a pair (AT,-T), where A7 is a set of individuals and -~
is a function assigning, to every concept name C, a subset CT of AT and, to every
feature f, a partial function f% : AT — AZ. We use (d,e) € f* for fX(d) = e.
The function -Z is inductively extended to complex concepts as follows:

TI=A%, 1T=0¢, (cnbD)Y=ctnbD* (CuD)*=c*tuD?,

(3f.C)r ={de AT | 3e: (d,e) € fF Nee CT}.

An interpretation T satisfies a GCI C C D if C* C D*; T is a model of a
TBox T if it satisfies all GCIs in 7; Z is a model of a concept C if C* # 0; T
is a model of C' with respect to T if T is a common model of C' and T; and a
concept C'is satisfiable [w.r.t. T] if there is a model for C [and T]. A concept
C is subsumed by a concept D w.r.t. T (written C T+ D) if C* C D7 for every
model Z of T.

ELU is restricted in several aspects: it does not provide negation, and it
only provides existential value restrictions (3f.C'), whereas standard DLs also
provide universal restrictions (Vf.C'). Equally important, £LU; only provides
features (i.e., functional binary relations) whereas most DLs provide roles (i.e.,
arbitrary binary relations). However, LU ¢ comes with GClIs, a very expressive
means, as we will see soon.

In DLs with conjunction and negation —, subsumption can be linearly reduced
to satisfiability: C' T4 D iff C M =D is not satisfiable w.r.t. 7. For ELU, in
the absence of negation, this reduction is slightly more involved and requires a
new concept symbol D to replace =D: C C+ D iff C' N D is unsatisfiable w.r.t.
TUu{Dn DC L}. Thus, we can use GCIs to express disjointness of D and D (as
no individual can belong to both D and ﬁ), and disjointness suffices to reduce
subsumption to satisfiability. In the following, we will therefore concentrate on
satisfiability problems.

For several expressive DLs, there exist efficient tableau-based implementa-
tions that decide satisfiability (and thus subsumption) of concepts w.r.t. a TBox
[HMO1, Hor98, BS01]. Intuitively, to decide the satisfiability of a concept C, a
tableau algorithm starts with an instance z of C' (here written x:C'), and then
recursively breaks down C' syntactically, thus inferring new constraints on the
model of C' to be built. For example, if y: D M E has already been inferred, it
adds y: D and y: E. For y : 3f.F, it generates a new node, say z, and adds
(y,2) : f and z: F. Finally, it adds, for each GCI C; C D; in the TBox, the
constraint y: (—C; U D;) for each individual y of the model to be built.

Now, for logics with disjunctions, various tableau algorithms non-
deterministically choose whether to add y: D or y: E for y: D U E. Getting

rid of this non-determinism in a way that is more efficient than naive back-
tracking proves to be hard work for many logics [DMO00]. This is one reason
why for ExPTIME logics, most tableau algorithms are not optimal. For example,
the SHZQ tableau algorithm implemented in FaCT is 2-NEXPTIME instead of
ExpTIME [HST99]. Despite this sub-optimality, tableau algorithms allow for a
set of well-known efficient optimisations, so that they perform much better in
practise than their worst-case complexity suggests. FaCT [Hor98] and RACER
[HMO1] are examples of such efficient implementations.

Since we are talking about decision procedures, termination is an important
issue. Even though tableau algorithms for many inexpressive DLs terminate
“automatically”, this is not the case for more expressive ones. For example,
consider the algorithm sketched above on the input concept A and TBox {4 C
3f.A}: it would create an infinite f-chain of instances of A. Thus, the tableau
algorithm has to be stopped at a certain point; intuitively, at the point when the
concepts remaining to be processed are just a repetition of concepts which were
already processed. This mechanism, called blocking, often makes the correctness
proof of the algorithm very complicated. Moreover, it can be difficult to choose
an efficient blocking condition [HS02, Hla02].

In summary, tableau algorithms

& are used in state-of-the-art implementations, and many well-understood op-
timisations are available,

@ have proven to perform much better for realistic concepts than their worst-
case complexity suggests;

© require special techniques to ensure termination (e.g. blocking) and get rid
of non-determinism,

& are often not worst-case optimal for deterministic complexity classes.

3 Alternating Automata

For many description and modal logics, the satisfiability of a concept C' w.r.t.
a TBox 7 can be decided by defining an automaton 4 which accepts exactly
the (abstractions of) models of C' and 7. Thus, the satisfiability problem is
reduced to the emptiness problem of automata. Examples utilising automata
can be found in [VW86, SE89, Var98, CGL99, LS01]. In most cases, abstrac-
tions of models are finite or infinite trees—depending on the logic. Thus the
target automata are automata on finite or infinite trees. Moreover, we can use
deterministic, non-deterministic, or, as a generalisation, alternating automata,
where the latter class of automata allows for rather elegant translations of
many logics. In many cases, the emptiness test for non-alternating automata
is polynomial, whereas the translation yields an automaton of size exponential
in the input concept (and TBox). In contrast, the translation into an alternating
automaton usually yields an automaton of polynomial size (see, for example,
[Var98, CGL99])—however, testing emptiness of alternating automata is EXP-
T1ME-complete [KV98b, Var98]. Thus, this approach yields worst-case optimal

algorithms for ExpTiME-complete logics. Before discussing the automata-based
approach in more detail, we first define alternating automata on infinite trees.

Definition 2. Let K be a natural number. We define [K] := {1,..., K} and
[K]o := [K]U{0}. A K-ary infinite tree over an alphabet ¥ is a total mapping
T [K]F — X

Here, the empty word e denotes the root of the tree and, for ¢ € [K]* and
k € [K], (- k denotes the k-th successor of ¢; ¢ - 0 is defined as (.

Alternating automata generalise nondeterministic automata by allowing not
only several alternative successor states, i.e. a disjunction of alternatives, but also
a conjunction or a combination of both. For example, the transition §(a,q;) =
(L,g3) A ((1,42) V (3,¢1)) is to be read as follows: if the automaton processes a
node ¢, is in state ¢;, and reads the letter a, then it has to send one copy of the
automaton in state g3 to the first successor of ¢ and either another copy in state
@2 to the first successor of £ or a copy in state ¢; to the third one.

Definition 3. The set of positive Boolean formulae over a set V., B¥(V), con-
sists of formulae built from V U {true, false} using the binary operators A and
V. A set R CV satisfies a formula ¢ € BT (V) iff assigning true to all elements
of R and false to all elements of V' \ R yields a formula that evaluates to true.

An alternating automaton A is a tuple (Q, X, qo,0), where Q = {qo,...,¢;}
is a set of states, ¥ = {00, ...,05} is the input alphabet, ¢o is the initial state,
and ¢ : Q x ¥ — BT([K]p x Q) is the transition relation.

The width of an automaton w(A) is the number of literals that can appear
on the right-hand side of a transition, i.e., w(A) := (¢+ 1) - (K +1). A run p
of A on a tree 7 is a w(A)-ary infinite tree over ([K]* x @)U {1} which satisfies
the following conditions:

1. ple) = (¢, 40) and

2. for each node r with p(r) = (¢t,q) # 1 and d(q,7(t)) = ¢, there is a set
S = {(tlaql)a) (tnaqn)} - [A’]O X Q such that
(a) S satisfies p and,
(b) forall 1 <i<n, p(r-i)=(t-t;q)-

An automaton A accepts an input tree 7 if there exists a run of A on 7. The
language accepted by A, L(A), is the set of all trees accepted by A.

Some remarks are in order: firstly, we have defined looping automata, i.e.,
there is no acceptance condition and each run is accepting. Secondly, a run labels
each node r either with a pair (¢,¢) or with 1, where the latter indicates that
p(r) is not important for the acceptance of the input tree.

Ezample 4. In Figure 1, we see part of a run p of an alternating automaton
A on a tree 7. We only present those nodes relevant for the run, i.e., nodes r
with p(r) # 1. If the transition relation is 6(q1,a) = ((0,q4) A (2,¢2)) V (3, ¢3),
0(q2,b) = (0,q1) A (3, q4), and 6(qs,a) = 6(q1,b) = §(qa,c) = true, all other nodes
of p can be labelled with 1 and all other nodes of 7 can be labelled arbitrarily
and 7 is accepted.

1@ a 3@ (1,
- ‘ P (L.gq1)
11.a/12. b 13@c 31@ (Las) 32 @ (12.92)
1210b 122@ ¢ 123@c 321@7(12.q1) 322 @ (123,q4)

Fig. 1. Example of a tree and run.

Please observe that there is no one-to-one correspondence between the nodes
of 7 and p: both p(3) and p(31) refer to node 1, but none refers to node 13.
Moreover, the ordering of successors is important in 7, but not in p: the definition
of a run only requires the existence of certain successors.

A question we would like to answer next is why one would use such a seem-
ingly complicated kind of automata. Firstly, standard abstraction techniques
such as wunravelling [Tho92] yield infinite tree abstractions of models. Using
automata on infinite trees , we can freely work with these standard, infinite ab-
stractions. This is a clear advantage for logics lacking the finite model property,
or where it would be tedious to invent finite abstractions. In tableau algorithms,
we had to work with finite representations of infinite abstractions to ensure ter-
mination, using blocking. In contrast, for the class of automata defined above,
termination is not an issue since input trees and runs are, by definition, infinite
structures.

Secondly, using non-deterministic automata, non-determinism due to dis-
junctions can be translated into non-deterministic transitions. For alternat-
ing automata, we can also translate “universal” quantification—e.g. due to
conjunction—into the transition function. For example, when designing an al-
ternating automaton for an £LU s-concept C' with features from fi,..., fi, one
would use a state gp for each sub-concept D of C. Nodes of input trees are
labelled with sets of concept names and stand for individuals of a model. Exam-
ples of the transition function are 6(¢prng,o) = (0,qp) A (0,qr), é(¢puE,0) =
(0,gp) V (0,98), 0(qay,.£,0) = (J,qE), and d(qx,0) = true if X € o. Thus the
description logics translates in a natural way into an automaton.

The main drawback of automata lies in the fact that their complexity is
exponential not only in the worst case, but in every case: either the automaton
A, is exponential in ¢ or, in the case of alternating automata, is polynomial but
is translated into a non-deterministic automaton A:o of exponential size to decide
its emptiness [KV98b, Var98]. Therefore, a naive implementation is doomed to
failure and, to the best of our knowledge, only first yet promising steps towards
implementing an automata-based satisfiability solver have been made [PSV02].

In summary, automata-based approaches to satisfiability

@ often allow for a very elegant and natural translation of a logic,

@ provide EXPTIME upper complexity bounds and are thus optimal for Exp-
TiMmE-hard logics,

& handle infinite structures and non-determinism implicitly,

& have only recently been implemented.

4 Translating Alternating Automata into ELU

In this section, we describe how to translate an alternating automaton A into a
TBox tr(A) and a concept Qg such that L(A) is non-empty iff Qg is satisfiable
w.r.t. tr(A). Intuitively, we translate the transition function ¢ into GCIs tr(A)
whose models correspond to runs of A. To this purpose, we use a feature f, for
the k-th successor of a node in the input tree, i.e., for each k € [K].

Definition 5. Let A = (Q, Y, qo,d) be an alternating automaton with @ =
{g0,--.,q4} and ¥ = {00,...,04}. The translation of A into an ELU; TBox
tr(A) is defined as follows: for each ¢; €) we use a concept name @;, for each
o;j € Y, we use a concept name A;, and set

tr(A) ={GT,GL}u U tr(6(q,0)), where
geEQ,0eX

GT = TEAll_IAQI_I...I_IA&,
GL = |_| (Az M A]) E J_,

0<i<j<&
tr(6(q,0)) = tr(q) Ntr(o) Etr(p) if 6(q,0) =,
and the translation of ¢, ¢, and o is defined as follows:
tr(q;) =Q;, forq €@, tr(o;) =A; foro; €X,
tr(a A B) = tr(a) Ntr(f), tr(aV B) := tr(a) U tr(B),
tr(true) =T, tr(false) := L,
tr(0,q) = tr(q), tr(k,q) :=3fy.tr(q) for k #0.

We will see that tr ensures that each model Z of tr(A) corresponds to a run
p on some tree 7. First, a node r in p is labelled with a node ¢ in 7 which, in
turn, is labelled with exactly one o € Y. Thus each r in p is associated with one
o € ¥. To express this fact in tr(A), we use the extra GCIs GT and G.L: they
guarantee that every individual of Z is an instance of exactly one tr(o;).!

Next, it will turn out to be useful to have the inverse tr—! of tr, which is
possible since tr is “almost” injective: the only ambiguity concerns ¢ and (0, q)
since they are both mapped to @ by tr. However, this ambiguity can easily be
resolved by agreeing to set tr1(Q) to (0, q) if Q appears on the right hand side
of a GCI and to ¢ otherwise.

Ezxample 6. Figure 2 shows an example for the translation of a tree and run into
an interpretation for a single node. The automaton is in state ¢; and reads node
1 which is labelled with a. For §(a,q1) = (1,q1) V ((1,g2) A (0, q4)), the transition
function yields the GCT ANQ; C 3f1.Q1 U ((3f1.Q2) MQ4). In our example, the
transition function is satisfied via the second disjunct, and thus the individual
1 in the model 7 is an instance of both @; and Q4. We would like to point out
that a model Z of tr(A) might have a structure different from

! Since each node is labelled with exactly one alphabet symbol, it is also possible to
translate the alphabet symbols using a binary coding mechanism which requires only
log, n concept names for n alphabet symbols. However, this would not reduce the
number of GCIs in the TBox, which would still be exponential in n. Hence, we stick
with the linear translation, which is also easier to read.

1@ a

T T
‘ 51D A,Q1,Q4
11@a 12@b 13@c a /"
A, Q2
P 3@ (1,91) @

‘ c
3l® 32@
(1.q4) (11.q2)

Fig. 2. Translation of a tree and run into a model.

— an input tree 7 since nodes in 7 might have no f;-successor for some i and
7 might not be a tree.

— a run p since different nodes of p that refer to the same node in 7 are
represented by the same individual in 7: intuitively, we label an individual
i € AT with the concept A; of 7(i) and “collect” all Q; concepts from nodes
in p that refer to 7(i). Thus, some individuals are instances of several Q;
concepts, like 1, while others are instances of none, like 13.

Lemma 7. The language accepted by an alternating automaton A =
(Q, X, qo,9) is non-empty iff tr(qo) its satisfiable w.r.t. tr(A).

Proof. We start with the “only-if”-direction. For this, we fix some notation: we
use L to denote the set of concepts appearing in the right hand side of GCIs in
tr(A), L == {3f,.Q; | i € [K],7 € [q]} U{Q, | j € [4]}, and we use BT (L) for
the set of positive Boolean concepts analogous to Section 3, with the symbols
A, V, true, and false replaced with M, U, T, and L, respectively.

Let T :=tr(A), Qo = tr(qo), and let 7 € L(A) with p a successful run of A
on 7. We construct a model Z of Qo w.r.t. 7 as follows:

AT = [K]",

fL:=1{ 1 k)| le[K]}, foreveryke€][K],

AL = {t| 7(t) = 0;}, for every o; € ¥,

Qf :={t| thereis an r in p with p(r) = (¢,¢;)}, for every ¢; € Q,.

To prove that Z is a model of Qg w.r.t. T, we show that (i) Q% # 0 and (ii)
each individual ¢ of 7 satisfies each GCI in T .

Now (i) holds by definition of Z since the p(¢) = (g, ¢o) and thus ¢ € QZ. For
(ii), we distinguish three classes of GCIs in T:

1. GCIs GT and G,

2. GCIs of the form @ M A C L resulting from the translation of transitions
0(q,0) = false, and

3. GCIs QM A C C, for some concept C'€ BT (L) \ {L}.

For the first class, 7 satisfies GT and GL by definition since every node ¢ in
7 is labelled with exactly one letter o.

For the remainder, consider a GCI Q;MA; C C'in T with preimage 6(¢;,0;) =
¢ and some t € QT N AJI-. By definition of Z, there exists a node r with p(r) =
(t,q;) and 7(t) = o;. For the second class, if ¢ = false, then C' = L, and the
existence of ¢ is a contradiction to p being a run.

) . c@a ~ T
ti T

T w
P 10z 2 @c |
A,Q0,Q:+0_ = P Y
4 fa - node/, \
Pt c®(c,a0)
C, Q20 ‘ S
i 10" 207 3 @ p

(2,q2) (e,q4) (e,q0)

Fig. 3. Translation of a model into a tree and run.

For the third class, the definition of a run implies the existence of a set
S ={i1,...,im} and functions ¢, ¢, and s such that

— {(t(7), qc(s)) | 7 € S} satisfies ¢ and
— there are successors r - s(i1),...,r - s(is) of r which are labelled with the
corresponding pairs, i.e. p(r - s(5)) = (- £(j),qe(;)) for all j € S.

By construction of Z, there exist f;(;)-successors u; of t with u; € Qf(j) nAT

for A := tr(7(t - t(5))). This ensures that ¢t € C7, which concludes the proof of
the “only-if”-direction.

For the “if”-direction, we will show how to construct a tree 7 and a run p of
A on 7 from a model (A%, 7) of Qp w.r.t. T. We define the auxiliary functions

— ti and ri, which map nodes in 7 and p, resp., to individuals of A”,

— node and state, which map a node of p to the node and state component of
its label, i.e. if p(r) = (t,q), then node(r) = t and state(r) = ¢, and

— letter : AT — {A; |1 <i <6} and states : AT — 21Qill<i<d} assigning, to
each individual, the unique concept A, and the set of (; concepts it is an
instance of (letter is well-defined since 7 is a model of GT and G1).

Ezample 8. In Figure 3, we show a model 7 together with a tree 7, a run p, and
some of the auxiliary functions. The tree node 1 is assumed to be related to a
dummy individual d,, and its letter 2 = letter(d,), and only some nodes of p are
presented. In the run p, the nodes ¢, 2, and 3 are labelled with the same tree
node ¢ since ri(g) is an instance of Qo and @4, and we might need nodes 2 and
3 for a run involving transitions d(a,qo) = (0,¢4) A (0,q0) A ...

Intuitively, 7 is an an unravelling of Z, and p is an unravelling with “dupli-
cate” successors. More precisely, 7 and p are defined as follows. We begin the
construction of 7 with an individual d. € Q%. Such an individual exists since T
is a model of Qo w.r.t. 7. Moreover, we fix some “dummy” individual d,, € A”.
We define 7(g) := tr—!(letter(d-)), and ti(¢) := d.. Then, for each ¢ such that
ti(t) is already defined and for each k € [K], we do the following:

— if ti(t) has an fyp-successor dj, define ti(t - k) := dp and 7(t - k) :=
tr—L(letter(dy)) (this is well-defined since f} is functional);

— otherwise, define ti(t - k) := d, and 7(t - k) := tr ‘(letter(d,)) for the
“dummy” individual d,,.

Having defined 7, we now define a run p of A on 7 as follows. Firstly, set
p(e) := (g,q0) and ri(e) := d.. Secondly, if ri(r) = d is already fixed, we define
do := d and d; as the f;-successor of d, if there exists one, and d; := d,, otherwise.
Then we fix, for every d; and every ¢;; € states(d;), a different successor r -i; of
r with p(r-i;) = (node(r)-i,q;;) and ri(r-i;) = d;. Finally, if p(r - k) is not fixed
through the previous step, we set p(r') = 1 for each node 7’ in the sub-tree below
r - k including r - k. Thus, for every concept @; that d or a successor of d is an
instance of, there is a successor of d in p labelled with ¢; and the corresponding
node in 7.

To prove that p is a run on 7, we first prove that the ri and ¢/ functions are
defined properly in the following sense:

Claim: For all nodes r in p, if p(r) # 1, then ri(r) = ti(node(r)).

Proof of the claim. The proof is by induction on the depth of nodes in p. For
the root node ¢ of p, the claim holds by definition. Now let r be a node of p with
p(r) # 1 for which the claim holds. Let ri(r) = d and consider a successor r - k of
r. If p(r - k) # 1, then there are i, j such that d has an f;-successor d; € Q]I, or
ri(r - k) = d, which means that d € Q7 and i = 0. Then node(r - k) = node(r) - i
and ri(r - k) = d; by definition of p. By induction, ti(node(r)) = d, and thus
ti(node(r) - i) = d; by definition of 7, which concludes the proof of the claim.

Now we can prove that p is a run on 7, see Definition 3. Property 1 of runs
holds by definition of p. For Property 2, consider r with p(r) = (t, ¢). Hence there
is d € AT with d = ri(r) and d € tr(q)T. Set Q = tr(q). Moreover, by definition,
for letter(ti(t)) = A, we have 7(t) = tr 1(A). The claim yields ti(t) = ri(r) = d,
which implies A = letter(d) by construction. Summing up, we have d € A7NQ7.

Since Z is a model of tr(A), d € CT for AN Q C C the translation of
5(tr='(A),q) = . As d is an instance of C, there exists an N = {nq,...,ns} C L
which “satisfies” C'. For every n;,1 < i < ¢, we define a p; € [K]o x @ as follows:

— if n; = 3f;,.Q for some fi,Q, then d has an fi-successor d, € Q. By
construction of 7, t has a k-successor t - k, and r has a successor r - k' with
p(r') = (t k,tr='(Q)). We set p; := (k,tr='(Q));

— if n; = Q for some @, then d € Q. By construction, r has a successor r - j
with p(r - 7) = (t,q). We set p; := (0, ¢q).

It can easily be seen that set S := {p; | 1 < i < ¢} satisfies p := tr—1(C),
and therefore Property 2(a) holds. Finally, Property 2(b) holds by construction
of S, which concludes the proof of the “if”-direction. O

Lemma 7 has two consequences: firstly, the emptiness of a language given by
an alternating automaton (and thus reasoning problems for various logics) can be
decided by translating it into an £LU s-concept and TBox and then deciding their
satisfiability using one of the existing DL systems, e.g. FaCT or RACER [Hor98,
HMO1]. Secondly, we have obtained tight complexity bounds for LU ;: In [SVO1],
satisfiability of hybrid u-calculus formulae is reduced to emptiness of two-way
alternating parity automata. It is easy to see that, discarding fixpoints, nominals,
and inverse modalities, this yields a reduction from multi modal K extended with
the universal modality to the emptiness problem of one-way alternating looping
automata. This, together with the fact that K with the universal modality is

known to be ExpTIME-hard [Spa93], yields ExpTIME-hardness of the emptiness
problem for alternating looping automata. Now our translation being polynomial
implies that satisfiability of £LU ;-concepts w.r.t. TBoxes is ExPTIME-hard.
Finally, £L£U s is a fragment of deterministic propositional dynamic logic which
is in EXxpTIME [BHP82] and allows for the internalisation of TBoxes (see, e.g.,
[CGLY9]). Thus we have tight complexity bounds.

Corollary 9. Satisfiability of ELU¢-concepts w.r.t. general TDBozes s
ExXpPTIME-complete.

5 Two-Way Alternating Automata

In this section, we extend the translation from one-way to two-way automata
and thus can also test the emptiness of two-way automata using a DL reasoner.
Since this extended translation involves inverse roles, we need a DL reasoner
that can handle inverse roles such as FaCT or RACER.

Alternating automata from Definition 3 can be said to be one-way since the
transition function tells the automaton to stay in the same node of the input
tree or go to one of its successors. In two-way alternating automata, it can also
tell to go to the predecessor.

Definition 10. For a natural number K, let [K]_ be the set {—1,0,..., K}.
For a word w = v - k € [K]* with k € [K], the concatenation w - (—1) = v, and
¢ - (—1) is undefined.

A two-way alternating automaton A = (Q, X, qo,0) is defined like a (one-
way) alternating automaton, with the exception that ¢ is a function from @ x ¥
to BT ([K]- x Q). A run and the language accepted by an automaton are defined
accordingly, i.e., with S C [K]o x @ in Property 2 replaced with S C [K]- x Q.

For example, a transition 6(¢3,0) = (2,q4) V (=1, ¢1) can be satisfied either
by sending a copy of the automaton in state g4 to the second successor of the
current node or by sending one in state ¢; to its predecessor. Since ¢ - (—1) is
undefined, it is impossible to go up from the root node.

To extend our translation to two-way automata, we use a logic which is
more expressive than £LU . To go up and down a tree, we use, additionally,
inverse features which allow to go a relation “backwards”. Moreover, to capture
the notion of a run appropriately, we have to explicitly ensure uniqueness of
predecessors since the inverse of a feature is not required to be functional. For
example, the concept 3f,.Q; M If; .Q2 can have an instance d with two f;
predecessors which are labelled with different alphabet symbols, i.e., d’s fi-
predecessor is not unique.

In the following, we describe a way to capture uniqueness of predecessors
using value restrictions Vf;".C' to express that all f; predecessors belong to C.

2 Tt is also possible to use role hierarchies instead of value restrictions: then, a “prede-
cessor feature” f_; is enforced to be interpreted as the union of the inverses of the
features f;.

The resulting logic is still a fragment of SHZQ and therefore it can be decided
using the implementations mentioned above.

Definition 11. For a feature f, f~ is a called an inverse feature.

The set of ALZ; concepts is defined like the set of EL£U ; concepts with the
following addition: if f is a feature or an inverse feature and C' is a concept,
Vf.C' and Af.C" are also concepts.

The interpretation function is extended with

(f7)E:={(de) | (e,d) € f'}
(Vf.A)T :={de AT |Ve: fI(d,e) = e € CT}

The translation tr’ of a two-way automaton into ALZ s is defined like tr from
Section 4 with the following addition:

tr'(=1,q) := |_| Vi, .tr(q).

1€[K]

This enforces that the label of each predecessor contains tr(g). Additionally, we
have to ensure that there is one node which corresponds to the root node and
therefore has no predecessors. Thus we reduce emptiness of A to the satisfiability
of tr'(A) and the concept tr(qo) M[1;cip Vi -L-

Lemma 12. The language accepted by a two-way alternating automaton A =
(Q, X, q0,9) is non-empty iff tr(qgo) N Hie[K] Vf7.L is satisfiable w.r.t. tr'(A).

Proof. This proof is similar to the one for Lemma 7. For the only-if direction, we
additionally have to show that, for an interpretation 7, an individual 7 satisfies
Hie[K] Vf7.Q if there is a node r in the run p which has a son s with state(s) = g,
where s represents a transition to the father node ¢ of node(r). This is true since,
by construction, there is only one f; predecessor j of i, and j belongs to Q7 since
it corresponds to ¢ and therefore belongs to all @); relations for which there exists
an r; s.th. p(r;) = (¢, q;)-

For the if-direction, consider a transition (—1,q) which translates into
[Micrx Vfi-Q- In the construction of the run p, we introduce additional nodes:
for nodes r in p and t in 7 with node(r) =t # ¢ and t_; :=¢-(—1), we create, for
every ¢; € states(t_;), an additional successor r; labelled with (¢_1,¢;). Then,
the value restriction ensures that ¢ € states(t_;). Thus one of the r; is labelled
with ¢ and p is a run on 7. O

6 Implementation

To test the feasibility of our approach, we implemented the translation to ALZ ¢
in Lisp. The results we are going to report are preliminary as we only tested
it on few hand-crafted concepts and the translation routines themselves are not
optimised.

The automata serving as input for our program result from the translation of
concepts in the language ALCTO, which stands for ALC with inverse roles and

1000

100

10

seconds

01

0.01

X

satisfiable ~ +
unsatisfiable X

0

L
200

L
400

L
600

L
800

1000

1200

1400

1600

size of transition function

Fig. 4. Performance of satisfiability tests

nominals. Nominals are atomic concepts that are to be interpreted as singleton
sets. Thus, while the concept N = IR.(C' 11 D) N 3R.(C M —D) is obviously
satisfiable in ALC, it is unsatisfiable in ALCZO if C is a nominal. Satisfiability
of ACCZO concept terms is EXPTIME-complete [ABM99], and a translation
from ALCZO into automata can be found in [SVO01]. We use the system FaCT
to reason about the resulting ALZ; TBox. Thus, the chain of translations is:

[SVO1]

linear in #Q
exponential in #X

Sect. 5

ALCTO Automaton ALT; ~» FaCT

polynomial in

#Q+ #X

This enables us to reason about a language including nominals using a DL system
which does not provide nominals.

In step one, the number of states of the automaton is linear, but the alpha-
bet (and therefore also the transition function) is exponential. This makes our
translation in step two, which is linear in the size of the transition function, ex-
ponential in the size of the input concept. Clearly, this sequence of translations is
sub-optimal since it exponentially translates one ExPTIME-complete logic into
another one.

Thus, the rather unimpressive empirical results are not surprising: for exam-
ple, the concept N mentioned above leads to an automaton with a transition
function of size 1320 and could not be processed due to insufficient memory.?
However, we use these concepts only as an example and our main focus is the
behaviour of our algorithm in relation to the size of the input automaton’s tran-
sition function. Figure 4 shows, on a logarithmic scale, the seconds it took to
decide the satisfiability of a TBox in relation to the size of the transition func-
tion of the automaton, which is linear in the number of GCIs in the TBox (see
Section 4). The calculation time increases almost exponential, which contrasts
with the behaviour of FaCT on a TBox derived from a real-world knowledge
base [Hor97]. Similarly, in [BCGO1], it was observed that FaCT had severe dif-
ficulties classifying TBoxes resulting from the translation of comparably small

% The tests were performed on a Pentium 4 processor with 1.7 GHz and 512 MB of
RAM running Allegro CL 6.2 on Linux.

UML diagrams. Together with our results, this indicates that TBoxes resulting
from an automatic translation are significantly harder for current DL systems
than “handcrafted” TBoxes. One reason for this behaviour are GCIs which can-
not be absorbed [Hor99]. However, in our translation, all GCIs are absorbable
[Hor97], which means that the reason for the bad performance is not yet fully
understood.

7 Conclusion

We have presented a translation from one- and two-way alternating automata
into description logics, which enables us to use available DL reasoners to decide
the emptiness of the language accepted by an automaton. This yields satisfiabil-
ity decision procedures for various logics for which automata-based algorithms
are known. Our empirical results show that the computation time is indeed ex-
ponential in the size of the automaton’s transition function. Thus, significant
optimisations would need to be developed.We have also seen that even the inex-
pressive logic £LU ¢, when augmented with general TBoxes, becomes EXPTIME-
complete.

Concerning our ultimate goal to understand the relationship between
automata- and tableau-based algorithms, we have achieved the following: let
L be a logic with a decision procedure based on looping alternating automata
and C' an L-concept with automaton Ac. Then it can be easily seen that there is
a one-to-one correspondence between the completion trees ¢ constructed by the
SHIQ tableau algorithm when started with tr(A¢) and L(A¢) in the following
sense: if ¢ corresponds to 7, then there is a one-to-one mapping between the
“relevant” nodes of 7 and the nodes of ¢ such that their labelling (restricted to
concept names) coincides (even though the logics £ and the one used in tr(Ac¢)
differ). Thus tableau- and automata-based algorithms indeed work on the same
structures. Exploring this close relationship further is part of future work.

References

[ABM99] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In Proc. of CSL’99, vol. 1683 of LNCS, pages 307-321.
Springer-Verlag, 1999.

[BCGO1] D. Berardi, D. Calvanese, and G. de Giacomo. Reasoning on UML
Class Diagrams using Description Logic Based Systems. In Proc. of
the KI’2001 Workshop on Applications of Description Logics. CEUR
(http://ceur-ws.org/), 2001.

[BCM'03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[BHP82] M. Ben-Ari, J.Y. Halpern, and A. Pnueli. Deterministic propositional
dynamic logic: finite models, complexity and completeness. J. of Computer
and System Science, 25:402—417, 1982.

[BSO01] F. Baader and U. Sattler. An overview of tableau algorithms for descrip-
tion logics. Studia Logica, 69, 2001.

[CGLYY]

[DM00]

[GLY4]

[H1a02]

[HM92]

[HMO1]
[Hor97]
[Forog]
[Hor99)]
[HS02]

[HST99]

[KV98a]

[KV98b]
[LSO01]
[PSV02]
[Sch91]

[SES9]

[Spag3]
[SS91]
[SVO1]
[Tho92]
[Var0s]

[VW86]

D. Calvanese, G. de Giacomo, and M. Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In
Proc. of IJCAI-99. Morgan Kaufmann, 1999.

F. M. Donini and F. Massacci. Exptime tableaux for ALC. Artificial
Intelligence, 124(1):87-138, 2000.

G. de Giacomo and M. Lenzerini. Boosting the correspondence between
description logics and propositional dynamic logics (extended abstract).
In Proc. of AAAI-94. AAAT Press, 1994.

J. Hladik. Implementation and optimisation of a tableau algorithm for the
guarded fragment. Proc. of Tableauz 2002, vol. 2381 of LNAI Springer-
Verlag, 2002.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logic of knowledge and belief. Artificial Intelligence, 54:319-379,
1992.

V. Haarslev and R. Moller. RACER system description. In Proc. of
IJCAR-01, vol. 2083 of LNAI Springer-Verlag, 2001.

1. Horrocks. Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, Univ. of Manchester, 1997.

I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
Proc. of KR-98. Morgan Kaufmann, 1998.

I. Horrocks. FaCT and iFaCT. In Proc. of DL’99, 1999. CEUR (http:
//ceur-ws.org/).

Tan Horrocks and Ulrike Sattler. Optimised reasoning for SHZQ. In Proc.
of ECAT 2002. TOS Press, 2002.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Proc. of LPAR’99, vol. 1705 of LNAIL Springer-
Verlag, 1999.

O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism:
From linear-time to branching-time. In Proc. of LIC'S’98. IEEE Computer
Society Press, 1998.

O. Kupferman and M. Y. Vardi. Weak alternating automata and tree
automata emptiness. In Proc. of STOC 98. ACM, 1998.

C. Lutz and U. Sattler. The complexity of reasoning with boolean modal
logics. In Advances in Modal Logics 3. CSLI Publications, 2001.

G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision procedures for
K. In Proc. of CADE-18, vol. 2392 of LNAI Springer-Verlag, 2002.

K. Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of IJCAI-91. Morgan Kaufmann, 1991.

Robert S. Streett and E. Allen Emerson. An automata theoretic decision
procedure for the propositional p-calculus. Information and Computation,
81:249-264, 1989.

E. Spaan. Complezity of Modal Logics. PhD thesis, University of Amster-
dam, 1993.

M. Schmidt-Schaul and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

U. Sattler and M. Y. Vardi. The hybrid p-calculus. In IJCAR-01, vol.
2083 of LNAL Springer-Verlag, 2001.

W. Thomas. Automata on infinite objects. In Handbook of theoretical
computer science, volume B. Elsevier Science Publishers, 1992.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc.
of ICALP’98, vol. 1443 of LNCS, 1998. Springer-Verlag.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Science, 32:183-221, 1986.

