
Reasoning about Nominals

with FaCT and Ra
er

Jan Hladik

�

Te
hnis
he Universit�at Dresden

Abstra
t

We present a translation of looping alternating two-way automata into a
om-

parably inexpressive des
ription logi
, whi
h is
ontained in SHIQ. This enables

us to perform the emptiness test for a language a

epted by su
h an automaton

using the systems FaCT and Ra
er. We implemented our translation and per-

formed a test using automata whi
h a

ept models for ALCIO
on
epts, so that

we
an use SHIQ systems to reason about nominals. Our empiri
al results show,

however, that the resulting knowledge bases are hard to pro
ess for both systems.

1 Introdu
tion

Tableau- and automata-based algorithms are two me
hanisms for testing satis�ability

of a DL
on
ept or TBox. The most signi�
ant advantage of automata algorithms

(for examples, see e.g. [9, 7℄) is elegan
e: the translation is often very intuitive, an

ExpTime upper
omplexity bound is obtained automati
ally, non-determinism and

in�nite stru
tures are handled impli
itly. Their main drawba
k is their
omplexity,

whi
h is exponential not only in the worst
ase, but in every
ase. Tableau algo-

rithms [1℄ on the other hand are well suited for implementation [5, 3℄ sin
e several

well-known optimizations have led to a good performan
e for many realisti
 appli-

ations. However, ensuring termination or obtaining an ExpTime upper
omplexity

bound is a diÆ
ult task [2℄. In the absen
e of an approa
h enjoying the advantages

of both, for many logi
s tableau- and automata-based algorithms were hand-
rafted,

whi
h
onstitutes a possibly unne
essary overhead. In [4℄, we present a way of translat-

ing looping two-way alternating automata into the relatively inexpressive des
ription

logi
 ALI

f

, whi
h is
ontained in SHIQ [6℄. This enables us to take a
on
ept C

in a language that is de
idable by alternating automata,
onstru
t the
orresponding

automaton A

C

, then translate A

C

into a des
ription logi
 TBox T

C

, and use a SHIQ

system on T

C

to test satis�ability of the initial
on
ept C. First results regarding

the performan
e of FaCT [5℄ on a few hand-
rafted
on
epts were presented in [4℄.

Here, we generated a larger set of test
on
epts and tested their satis�ability with

both FaCT and Ra
er [3℄.

2 Preliminaries

In this se
tion, we des
ribe the looping alternating two-way automata, whi
h we trans-

late, and the DL ALI

f

, whi
h we translate into. This
lass of automata is very useful

�

The author is supported by the DFG, Proje
t No. GR 1324/3-3.

for des
ription logi
s: to de
ide the satis�ability problem for a DL
on
ept C, one

de�nes an automaton A

C

whi
h a

epts all (abstra
tions of) models of C. Then,

one
an de
ide satis�ability of C by performing the emptiness test for the language

a

epted by A

C

. First, we de�ne the data stru
ture these automata operate on.

De�nition 1 (K-ary tree) Let K be a natural number. We de�ne [K℄ :=

f1; : : : ;Kg and [K℄

�

:= [K℄ [f0;�1g. A K-ary in�nite tree over an alphabet �

is a total mapping � : [K℄

�

! �.

Intuitively, the empty word " denotes the root of the tree and, for ` 2 [K℄

�

and

k 2 [K℄, ` � k denotes the k-th su

essor of `. The terms ` � 0 and ` � (�1) are used

within the transition fun
tion of two-way automata: ` � 0 is de�ned as ` and, for an

` = w � v with w 2 [K℄

�

and v 2 [K℄, ` � (�1) is de�ned as w (i.e. the father node of

`); " � (�1) is unde�ned. The use of 0 and �1 allows the automaton, after pro
essing

a tree node n, not only to
ontinue with n's sons, but also to stay in n or return to

n's father. Moreover, the Boolean
onne
tives ^ and _
an be used in the transition

fun
tion. Thus, for example, the transition Æ(a; q

1

) = (1; q

3

) ^ ((�1; q

2

) _ (3; q

1

)) is

to be interpreted as follows: if the automaton pro
esses a node `, is in state q

1

, and

reads the letter a, then it sends one
opy of the automaton in state q

3

to the �rst

su

essor of ` and either another
opy in state q

2

to `'s prede
essor or a
opy in state

q

1

to the third su

essor. Formally, the transition fun
tion is de�ned using positive

Boolean formulae whi
h are des
ribed in the following.

De�nition 2 (PBF, Alternating Automaton, Run) The set of positive Boolean

formulae over a set V , B

+

(V),
onsists of all formulae built from V [ftrue; falseg

using the binary operators ^ and _. A set R � V satis�es a formula ' 2 B

+

(V) i�

assigning true to all elements of R and false to all elements of V n R yields a formula

that evaluates to true.

An alternating automaton A is a tuple (Q;�; q

0

; Æ), where Q = fq

0

; : : : ; q

q̂

g is

a set of states, � = f�

0

; : : : ; �

�̂

g is the input alphabet, q

0

is the initial state, and

Æ : Q� �! B

+

([K℄

0

�Q) is the transition relation.

The width of an automaton w(A) is the number of literals that
an appear on the

right-hand side of a transition, i.e., w(A) := (q̂ + 1) � (K + 2). A run � of A on a

tree � is a w(A)-ary in�nite tree over ([K℄

�

� Q) [f"g whi
h satis�es the following

onditions:

1. �(") = ("; q

0

) and

2. for ea
h node r with �(r) = (t; q) 6= " and Æ(q; �(t)) = ', there is a set S =

f(t

1

; q

1

); : : : ; (t

n

; q

n

)g � [K℄

0

�Q su
h that S satis�es ' and, for all 1 � i � n,

�(r � i) = (t � t

i

; q

i

).

An automaton A a

epts an input tree � if there exists a run of A on � . The

language a

epted by A, L(A), is the set of all trees a

epted by A.

The target language for our translation, ALI

f

, is
omparably inexpressive: it
on-

tains features (and their inverses), but neither non-fun
tional roles nor the advan
ed

onstru
tors present in state-of-the-art DLs, e.g. quali�ed number restri
tions.

De�nition 3 (Attributive language with inverses and features, ALI

f

) Let

N

C

be a set of
on
ept names and N

F

a set of feature names. The set of ALI

f

on
epts and features over N

C

and N

F

are indu
tively de�ned as follows:

� if f is a feature name, then f

�

is an inverse feature;

f is a feature if it is a feature name or an inverse feature;

� >, ?, and ea
h
on
ept name C 2 N

C

is an ALI

f

-
on
ept;

if C and D are
on
epts, then C tD and C uD are
on
epts;

if C is a
on
ept and f is a feature, then 9f:C and 8f:C are
on
epts.

GCIs, TBoxes, interpretations and models are de�ned as usual.

3 The Translation

In this se
tion, we des
ribe how to translate an alternating automaton A into a TBox

tr(A) and a
on
ept C su
h that L(A) is non-empty i� C is satis�able w.r.t. tr(A).

Intuitively, we translate the transition fun
tion Æ into a set of GCIs tr(A) whose

models
orrespond to runs of A. To this purpose, we use
on
ept names to represent

the automaton's states and alphabet symbols and, for ea
h k 2 [K℄, a feature name

f

k

to represent the \k-th su

essor" relation for a node in the input tree.

De�nition 4 Let A = (Q;�; q

0

; Æ) be an alternating automaton with Q =

fq

0

; : : : ; q

q̂

g and � = f�

0

; : : : ; �

�̂

g. The translation of A into an ALI

f

TBox tr(A) is

de�ned as follows: for ea
h q

i

2 Q we use a
on
ept name Q

i

, for ea
h �

j

2 �, we use

a
on
ept name A

j

, and set

tr(A) := fG>;G?g [

S

q2Q;�2�

tr(Æ(q; �)); where

G> := > v A

1

tA

2

t : : : tA

�̂

;

G? :=

F

0�i<j��̂

(A

i

uA

j

) v ?;

tr(Æ(q; �)) := tr(q) u tr(�) v tr(') if Æ(q; �) = ';

and the translation of ', q, and � is de�ned as follows:

tr(q

i

) := Q

i

for q

i

2 Q; tr(�

i

) := A

i

for �

i

2 �;

tr(� ^ �) := tr(�) u tr(�); tr(� _ �) := tr(�) t tr(�);

tr(true) := >; tr(false) := ?;

tr(0; q) := tr(q); tr(k; q) := 9f

k

:tr(q) for k > 0;

tr(�1; q) :=

d

i2[K℄

8f

�

i

:tr(q):

Lemma 5 The language a

epted by an alternating automaton A = (Q;�; q

0

; Æ) is

non-empty i� the
on
ept C = tr(q

0

) u

d

i2[K℄

8f

�

i

:? its satis�able w.r.t. tr(A).

We have shown in [4℄ that tr ensures that ea
h model I of tr(A)
orresponds to

a run � on some tree � . Intuitively, a node r in the domain of �, dom(�), is labelled

with a node t in dom(�) whi
h, in turn, is labelled with exa
tly one � 2 �. Thus ea
h

r in dom(�) is asso
iated with one � 2 �. To express this fa
t in tr(A), we use the

extra GCIs G> and G?: they guarantee that every individual of I is an instan
e of

exa
tly one A

i

. The translation of transitions tr(�1; q) going to the prede
essor node

ensures that the label of ea
h prede
essor
ontains tr(q). Additionally, we have to

enfor
e that there is one node whi
h
orresponds to the root node and therefore has

no prede
essors. Thus we redu
e emptiness of A to unsatis�ability of the
on
ept C =

tr(q

0

) u

d

i2[K℄

8f

�

i

:? w.r.t. the TBox A, i.e. there exists an instan
e of the
on
ept

orresponding to the initial state whi
h is not a su

essor of any other individual.

4 The Test Con
epts

The automata we used for testing result from a de
ision pro
edure for the DL ALCIO,

i.e. ALC with inverse roles and nominals. In [8℄, an algorithm is des
ribed whi
h uses

two-way looping automata to de
ide satis�ability of formulae in the hybrid �-
al
ulus,

a modal logi
 whi
h
orresponds to ALCIO extended with �xpoints. The size of the

automaton's transition fun
tion is exponential in the size of the input
on
ept C.

Sin
e our translation in Se
tion 3 is linear, the size of the TBox T

C

is also exponential

in C. Table 1 shows the
on
ept patterns we used for our test. Here, the expression

(8R)

i

means 8R : : : 8R

| {z }

i times

. For every pattern, we used the
on
epts for i 2 f0; : : : ; 5g.

The idea behind the stru
ture of these patterns is the following: we test the

in
uen
e of the mere existen
e of a nominal using
on
ept patterns whi
h share the

same stru
ture, but one of whi
h uses a nominal symbol and the other one uses a

on
ept symbol (. . . -
 and . . . -n/n
); we use the spe
ial features of nominals (root-n
);

and we exploit the intera
tion between universal and existential restri
tion (all-. . .)

as well as the intera
tion between a role and its inverse (all-inv-. . .).

Name Satis�able Con
ept Unsatis�able Con
ept

ex-
 (9R)

i

:A (9R)

i

:(A u :A)

ex-n (9R)

i

:N (9R)

i

:(N u :N)

ex-n
 (9R)

i

:(A uN) (9R)

i

:(A u :A uN)

all-
 (9R)

i

:A u (8R)

i

:B (9R)

i

:A u (8R)

i

::A

all-n
 (9R)

i

:A u (8R)

i

:N (9R)

i

:A u (8R)

i

:(N u :A)

all-inv-
 B u (9R)

i

:(8R

�

)

i

:A :A u (9R)

i

:(8R

�

)

i

:A

all-inv-n
 N u (9R)

i

:(8R

�

)

i

:A (N uA) u (9R)

i

:(8R

�

)

i

:(:A)

root-n
 N uA u (9R)

i

:(N uB) N uA u (9R)

i

:(N u :A)

Table 1: Test
on
epts

5 Results

We tested our
on
epts with FaCT version 2.31.7 and Ra
er version 1.6.7 on the

following system: hardware: Pentium-IV 1.7GHz, 512MB RAM, 1.5GB swap-spa
e;

software: Linux, Allegro Common Lisp 6.2 (FaCT) or 6.1 (Ra
er). Table 2 shows

for every
on
ept pattern the maximum i for whi
h the
on
ept
ould be tested within

the time limit of 1000 se
onds. The adja
ent
olumn shows the reason why the test of

the next harder
on
ept failed: \T" stands for timeout, \M" for insuÆ
ient memory.

The total in the bottom rows also in
ludes the
on
epts for i = 0 and is therefore

(by 8) higher than the sum of the above rows.

Comparing the \ex-
" and \ex-n"
on
epts, it is obvious that the overhead in-

trodu
ed by nominals is signi�
ant. The same holds for every : : :-

on
ept in
om-

parison with the
orresponding : : :-n

on
ept. Moreover, unsatis�able
on
epts are

signi�
antly harder to pro
ess than their satis�able
ounterparts. From the \root-n
"

on
epts, only the trivial one for i = 0
ould be de
ided. Comparing the performan
e

of the two systems, one
an see that FaCT solves some more
on
epts than Ra
er.

Next, we examine if the
al
ulation time does indeed in
rease exponentially in the

size of the input automaton or if this behaviour
an be prevented by the optimisations

of the tableau algorithms. To this end, Figure 3 displays, for some sele
ted formula

patterns, the
al
ulation times in relation to the size of the input automaton's tran-

sition fun
tion on a logarithmi
 s
ale. Although there are only few measuring points

per pattern, the nearly linear graphs suggest that the
al
ulation time in
reases nearly

exponentially in the size of the transition fun
tion/TBox.

FaCT Ra
er

Con
ept sat unsat sat unsat

ex-
 5 2 T 4 T 1 T

ex-n 3 M 1 T 1 T 0 T

ex-n
 2 M 0 T 0 M 0 T

all-
 3 M 2 T 3 T 1 T

all-n
 0 M 0 T 0 M 0 M

all-inv-
 3 T 2 T 1 M 1 M

all-inv-n
 0 M 1 T 0 M 0 M

root-n
 0 M 0 T 0 M 0 M

Total 24 16 17 11

40 28

Table 2: Number of su

essful tests

0.1

1

10

100

1000

100 150 200 250 300 350 400 450 500 550 600

se
co

nd
s

size of transition function

FaCT ex-c
FaCT ex-n

FaCT all-inv-c
Racer ex-c
Racer all-c

Figure 3: Cal
ulation times

6 Con
lusion

We presented a translation of looping alternating automata into a des
ription logi
,

whi
h enables us to use existing DL systems to perform the emptiness test of the

language a

epted by an automaton. In order to test its eÆ
ien
y, we implemented the

translation pro
edure,
reated a set of test automata and evaluated the performan
e

of FaCT and Ra
er on their translation. Our results indi
ate that the time needed

for the satis�ability test of the
orresponding TBox is exponential in the size of the

input automaton's transition fun
tion.

Referen
es

[1℄ F. Baader and U. Sattler. An overview of tableau algorithms for des
ription logi
s. Studia Logi
a,

69, 2001.

[2℄ F. M. Donini and F. Massa

i. EXPTIME tableaux for ALC. Arti�
ial Intelligen
e, 124(1):87{138,

2000.

[3℄ V. Haarslev and R. M�oller. RACER system des
ription. In IJCAR-01, volume 2083 of LNAI.

Springer-Verlag, 2001.

[4℄ J. Hladik and U. Sattler. A translation of looping alternating automata to des
ription logi
s. In

Pro
. of the 19th Conferen
e on Automated Dedu
tion (CADE-19), Le
ture Notes in Arti�
ial

Intelligen
e. Springer Verlag, 2003.

[5℄ I. Horro
ks. Using an Expressive Des
ription Logi
: FaCT or Fi
tion? In Pro
. of KR-98. Morgan

Kaufmann, 1998.

[6℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for expressive des
ription logi
s. In

H. Ganzinger, D. M
Allester, and A. Voronkov, editors, Pro
. of LPAR'99, volume 1705 of LNAI,

pages 161{180. Springer-Verlag, 1999.

[7℄ C. Lutz and U. Sattler. The
omplexity of reasoning with boolean modal logi
s. In F. Wolter,

H. Wansing, M. de Rijke, and M. Zakharyas
hev, editors, Advan
es in Modal Logi
s 3. CSLI

Publi
ations, Stanford, 2001.

[8℄ U. Sattler and M. Y. Vardi. The hybrid �-
al
ulus. In IJCAR-01, volume 2083 of LNAI, pages

76{91. Springer-Verlag, 2001.

[9℄ M. Y. Vardi and P. Wolper. Automata-theoreti
 te
hniques for modal logi
s of programs. J. of

Computer and System S
ien
e, 32:183{221, 1986.

