
Reasoning about Nominals

with FaCT and Raer

Jan Hladik

�

Tehnishe Universit�at Dresden

Abstrat

We present a translation of looping alternating two-way automata into a om-

parably inexpressive desription logi, whih is ontained in SHIQ. This enables

us to perform the emptiness test for a language aepted by suh an automaton

using the systems FaCT and Raer. We implemented our translation and per-

formed a test using automata whih aept models for ALCIO onepts, so that

we an use SHIQ systems to reason about nominals. Our empirial results show,

however, that the resulting knowledge bases are hard to proess for both systems.

1 Introdution

Tableau- and automata-based algorithms are two mehanisms for testing satis�ability

of a DL onept or TBox. The most signi�ant advantage of automata algorithms

(for examples, see e.g. [9, 7℄) is elegane: the translation is often very intuitive, an

ExpTime upper omplexity bound is obtained automatially, non-determinism and

in�nite strutures are handled impliitly. Their main drawbak is their omplexity,

whih is exponential not only in the worst ase, but in every ase. Tableau algo-

rithms [1℄ on the other hand are well suited for implementation [5, 3℄ sine several

well-known optimizations have led to a good performane for many realisti appli-

ations. However, ensuring termination or obtaining an ExpTime upper omplexity

bound is a diÆult task [2℄. In the absene of an approah enjoying the advantages

of both, for many logis tableau- and automata-based algorithms were hand-rafted,

whih onstitutes a possibly unneessary overhead. In [4℄, we present a way of translat-

ing looping two-way alternating automata into the relatively inexpressive desription

logi ALI

f

, whih is ontained in SHIQ [6℄. This enables us to take a onept C

in a language that is deidable by alternating automata, onstrut the orresponding

automaton A

C

, then translate A

C

into a desription logi TBox T

C

, and use a SHIQ

system on T

C

to test satis�ability of the initial onept C. First results regarding

the performane of FaCT [5℄ on a few hand-rafted onepts were presented in [4℄.

Here, we generated a larger set of test onepts and tested their satis�ability with

both FaCT and Raer [3℄.

2 Preliminaries

In this setion, we desribe the looping alternating two-way automata, whih we trans-

late, and the DL ALI

f

, whih we translate into. This lass of automata is very useful

�

The author is supported by the DFG, Projet No. GR 1324/3-3.

for desription logis: to deide the satis�ability problem for a DL onept C, one

de�nes an automaton A

C

whih aepts all (abstrations of) models of C. Then,

one an deide satis�ability of C by performing the emptiness test for the language

aepted by A

C

. First, we de�ne the data struture these automata operate on.

De�nition 1 (K-ary tree) Let K be a natural number. We de�ne [K℄ :=

f1; : : : ;Kg and [K℄

�

:= [K℄ [f0;�1g. A K-ary in�nite tree over an alphabet �

is a total mapping � : [K℄

�

! �.

Intuitively, the empty word " denotes the root of the tree and, for ` 2 [K℄

�

and

k 2 [K℄, ` � k denotes the k-th suessor of `. The terms ` � 0 and ` � (�1) are used

within the transition funtion of two-way automata: ` � 0 is de�ned as ` and, for an

` = w � v with w 2 [K℄

�

and v 2 [K℄, ` � (�1) is de�ned as w (i.e. the father node of

`); " � (�1) is unde�ned. The use of 0 and �1 allows the automaton, after proessing

a tree node n, not only to ontinue with n's sons, but also to stay in n or return to

n's father. Moreover, the Boolean onnetives ^ and _ an be used in the transition

funtion. Thus, for example, the transition Æ(a; q

1

) = (1; q

3

) ^ ((�1; q

2

) _ (3; q

1

)) is

to be interpreted as follows: if the automaton proesses a node `, is in state q

1

, and

reads the letter a, then it sends one opy of the automaton in state q

3

to the �rst

suessor of ` and either another opy in state q

2

to `'s predeessor or a opy in state

q

1

to the third suessor. Formally, the transition funtion is de�ned using positive

Boolean formulae whih are desribed in the following.

De�nition 2 (PBF, Alternating Automaton, Run) The set of positive Boolean

formulae over a set V , B

+

(V), onsists of all formulae built from V [ftrue; falseg

using the binary operators ^ and _. A set R � V satis�es a formula ' 2 B

+

(V) i�

assigning true to all elements of R and false to all elements of V n R yields a formula

that evaluates to true.

An alternating automaton A is a tuple (Q;�; q

0

; Æ), where Q = fq

0

; : : : ; q

q̂

g is

a set of states, � = f�

0

; : : : ; �

�̂

g is the input alphabet, q

0

is the initial state, and

Æ : Q� �! B

+

([K℄

0

�Q) is the transition relation.

The width of an automaton w(A) is the number of literals that an appear on the

right-hand side of a transition, i.e., w(A) := (q̂ + 1) � (K + 2). A run � of A on a

tree � is a w(A)-ary in�nite tree over ([K℄

�

� Q) [f"g whih satis�es the following

onditions:

1. �(") = ("; q

0

) and

2. for eah node r with �(r) = (t; q) 6= " and Æ(q; �(t)) = ', there is a set S =

f(t

1

; q

1

); : : : ; (t

n

; q

n

)g � [K℄

0

�Q suh that S satis�es ' and, for all 1 � i � n,

�(r � i) = (t � t

i

; q

i

).

An automaton A aepts an input tree � if there exists a run of A on � . The

language aepted by A, L(A), is the set of all trees aepted by A.

The target language for our translation, ALI

f

, is omparably inexpressive: it on-

tains features (and their inverses), but neither non-funtional roles nor the advaned

onstrutors present in state-of-the-art DLs, e.g. quali�ed number restritions.

De�nition 3 (Attributive language with inverses and features, ALI

f

) Let

N

C

be a set of onept names and N

F

a set of feature names. The set of ALI

f

onepts and features over N

C

and N

F

are indutively de�ned as follows:

� if f is a feature name, then f

�

is an inverse feature;

f is a feature if it is a feature name or an inverse feature;

� >, ?, and eah onept name C 2 N

C

is an ALI

f

-onept;

if C and D are onepts, then C tD and C uD are onepts;

if C is a onept and f is a feature, then 9f:C and 8f:C are onepts.

GCIs, TBoxes, interpretations and models are de�ned as usual.

3 The Translation

In this setion, we desribe how to translate an alternating automaton A into a TBox

tr(A) and a onept C suh that L(A) is non-empty i� C is satis�able w.r.t. tr(A).

Intuitively, we translate the transition funtion Æ into a set of GCIs tr(A) whose

models orrespond to runs of A. To this purpose, we use onept names to represent

the automaton's states and alphabet symbols and, for eah k 2 [K℄, a feature name

f

k

to represent the \k-th suessor" relation for a node in the input tree.

De�nition 4 Let A = (Q;�; q

0

; Æ) be an alternating automaton with Q =

fq

0

; : : : ; q

q̂

g and � = f�

0

; : : : ; �

�̂

g. The translation of A into an ALI

f

TBox tr(A) is

de�ned as follows: for eah q

i

2 Q we use a onept name Q

i

, for eah �

j

2 �, we use

a onept name A

j

, and set

tr(A) := fG>;G?g [

S

q2Q;�2�

tr(Æ(q; �)); where

G> := > v A

1

tA

2

t : : : tA

�̂

;

G? :=

F

0�i<j��̂

(A

i

uA

j

) v ?;

tr(Æ(q; �)) := tr(q) u tr(�) v tr(') if Æ(q; �) = ';

and the translation of ', q, and � is de�ned as follows:

tr(q

i

) := Q

i

for q

i

2 Q; tr(�

i

) := A

i

for �

i

2 �;

tr(� ^ �) := tr(�) u tr(�); tr(� _ �) := tr(�) t tr(�);

tr(true) := >; tr(false) := ?;

tr(0; q) := tr(q); tr(k; q) := 9f

k

:tr(q) for k > 0;

tr(�1; q) :=

d

i2[K℄

8f

�

i

:tr(q):

Lemma 5 The language aepted by an alternating automaton A = (Q;�; q

0

; Æ) is

non-empty i� the onept C = tr(q

0

) u

d

i2[K℄

8f

�

i

:? its satis�able w.r.t. tr(A).

We have shown in [4℄ that tr ensures that eah model I of tr(A) orresponds to

a run � on some tree � . Intuitively, a node r in the domain of �, dom(�), is labelled

with a node t in dom(�) whih, in turn, is labelled with exatly one � 2 �. Thus eah

r in dom(�) is assoiated with one � 2 �. To express this fat in tr(A), we use the

extra GCIs G> and G?: they guarantee that every individual of I is an instane of

exatly one A

i

. The translation of transitions tr(�1; q) going to the predeessor node

ensures that the label of eah predeessor ontains tr(q). Additionally, we have to

enfore that there is one node whih orresponds to the root node and therefore has

no predeessors. Thus we redue emptiness of A to unsatis�ability of the onept C =

tr(q

0

) u

d

i2[K℄

8f

�

i

:? w.r.t. the TBox A, i.e. there exists an instane of the onept

orresponding to the initial state whih is not a suessor of any other individual.

4 The Test Conepts

The automata we used for testing result from a deision proedure for the DL ALCIO,

i.e. ALC with inverse roles and nominals. In [8℄, an algorithm is desribed whih uses

two-way looping automata to deide satis�ability of formulae in the hybrid �-alulus,

a modal logi whih orresponds to ALCIO extended with �xpoints. The size of the

automaton's transition funtion is exponential in the size of the input onept C.

Sine our translation in Setion 3 is linear, the size of the TBox T

C

is also exponential

in C. Table 1 shows the onept patterns we used for our test. Here, the expression

(8R)

i

means 8R : : : 8R

| {z }

i times

. For every pattern, we used the onepts for i 2 f0; : : : ; 5g.

The idea behind the struture of these patterns is the following: we test the

inuene of the mere existene of a nominal using onept patterns whih share the

same struture, but one of whih uses a nominal symbol and the other one uses a

onept symbol (. . . - and . . . -n/n); we use the speial features of nominals (root-n);

and we exploit the interation between universal and existential restrition (all-. . .)

as well as the interation between a role and its inverse (all-inv-. . .).

Name Satis�able Conept Unsatis�able Conept

ex- (9R)

i

:A (9R)

i

:(A u :A)

ex-n (9R)

i

:N (9R)

i

:(N u :N)

ex-n (9R)

i

:(A uN) (9R)

i

:(A u :A uN)

all- (9R)

i

:A u (8R)

i

:B (9R)

i

:A u (8R)

i

::A

all-n (9R)

i

:A u (8R)

i

:N (9R)

i

:A u (8R)

i

:(N u :A)

all-inv- B u (9R)

i

:(8R

�

)

i

:A :A u (9R)

i

:(8R

�

)

i

:A

all-inv-n N u (9R)

i

:(8R

�

)

i

:A (N uA) u (9R)

i

:(8R

�

)

i

:(:A)

root-n N uA u (9R)

i

:(N uB) N uA u (9R)

i

:(N u :A)

Table 1: Test onepts

5 Results

We tested our onepts with FaCT version 2.31.7 and Raer version 1.6.7 on the

following system: hardware: Pentium-IV 1.7GHz, 512MB RAM, 1.5GB swap-spae;

software: Linux, Allegro Common Lisp 6.2 (FaCT) or 6.1 (Raer). Table 2 shows

for every onept pattern the maximum i for whih the onept ould be tested within

the time limit of 1000 seonds. The adjaent olumn shows the reason why the test of

the next harder onept failed: \T" stands for timeout, \M" for insuÆient memory.

The total in the bottom rows also inludes the onepts for i = 0 and is therefore

(by 8) higher than the sum of the above rows.

Comparing the \ex-" and \ex-n" onepts, it is obvious that the overhead in-

trodued by nominals is signi�ant. The same holds for every : : :- onept in om-

parison with the orresponding : : :-n onept. Moreover, unsatis�able onepts are

signi�antly harder to proess than their satis�able ounterparts. From the \root-n"

onepts, only the trivial one for i = 0 ould be deided. Comparing the performane

of the two systems, one an see that FaCT solves some more onepts than Raer.

Next, we examine if the alulation time does indeed inrease exponentially in the

size of the input automaton or if this behaviour an be prevented by the optimisations

of the tableau algorithms. To this end, Figure 3 displays, for some seleted formula

patterns, the alulation times in relation to the size of the input automaton's tran-

sition funtion on a logarithmi sale. Although there are only few measuring points

per pattern, the nearly linear graphs suggest that the alulation time inreases nearly

exponentially in the size of the transition funtion/TBox.

FaCT Raer

Conept sat unsat sat unsat

ex- 5 2 T 4 T 1 T

ex-n 3 M 1 T 1 T 0 T

ex-n 2 M 0 T 0 M 0 T

all- 3 M 2 T 3 T 1 T

all-n 0 M 0 T 0 M 0 M

all-inv- 3 T 2 T 1 M 1 M

all-inv-n 0 M 1 T 0 M 0 M

root-n 0 M 0 T 0 M 0 M

Total 24 16 17 11

40 28

Table 2: Number of suessful tests

0.1

1

10

100

1000

100 150 200 250 300 350 400 450 500 550 600

se
co

nd
s

size of transition function

FaCT ex-c
FaCT ex-n

FaCT all-inv-c
Racer ex-c
Racer all-c

Figure 3: Calulation times

6 Conlusion

We presented a translation of looping alternating automata into a desription logi,

whih enables us to use existing DL systems to perform the emptiness test of the

language aepted by an automaton. In order to test its eÆieny, we implemented the

translation proedure, reated a set of test automata and evaluated the performane

of FaCT and Raer on their translation. Our results indiate that the time needed

for the satis�ability test of the orresponding TBox is exponential in the size of the

input automaton's transition funtion.

Referenes

[1℄ F. Baader and U. Sattler. An overview of tableau algorithms for desription logis. Studia Logia,

69, 2001.

[2℄ F. M. Donini and F. Massai. EXPTIME tableaux for ALC. Arti�ial Intelligene, 124(1):87{138,

2000.

[3℄ V. Haarslev and R. M�oller. RACER system desription. In IJCAR-01, volume 2083 of LNAI.

Springer-Verlag, 2001.

[4℄ J. Hladik and U. Sattler. A translation of looping alternating automata to desription logis. In

Pro. of the 19th Conferene on Automated Dedution (CADE-19), Leture Notes in Arti�ial

Intelligene. Springer Verlag, 2003.

[5℄ I. Horroks. Using an Expressive Desription Logi: FaCT or Fition? In Pro. of KR-98. Morgan

Kaufmann, 1998.

[6℄ I. Horroks, U. Sattler, and S. Tobies. Pratial reasoning for expressive desription logis. In

H. Ganzinger, D. MAllester, and A. Voronkov, editors, Pro. of LPAR'99, volume 1705 of LNAI,

pages 161{180. Springer-Verlag, 1999.

[7℄ C. Lutz and U. Sattler. The omplexity of reasoning with boolean modal logis. In F. Wolter,

H. Wansing, M. de Rijke, and M. Zakharyashev, editors, Advanes in Modal Logis 3. CSLI

Publiations, Stanford, 2001.

[8℄ U. Sattler and M. Y. Vardi. The hybrid �-alulus. In IJCAR-01, volume 2083 of LNAI, pages

76{91. Springer-Verlag, 2001.

[9℄ M. Y. Vardi and P. Wolper. Automata-theoreti tehniques for modal logis of programs. J. of

Computer and System Siene, 32:183{221, 1986.

