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1 Motivation

Combining des
ription logi
s (DLs) with other logi
al formalisms, in
luding other

DLs, is an important and 
hallenging task. Re
ent examples in
lude:

1. the 
ombination of DLs with temporal logi
s to formmulti-dimensional temporal

DLs, 
f. e.g. [1, 6, 10℄;

2. the fusion of multiple DLs into a single formalism that inherits de
idability

from its 
omponents, 
f. [2℄;

3. the 
ombination of di�erent DLs in the 
ontext of loosely federated information

systems resulted in distributed des
ription logi
s (DDLs), 
f. [4℄.

A relatively new te
hnique of 
ombining des
ription logi
s, �rst proposed in [9℄, is

the formation of so-
alled E-
onne
tions. The general idea behind this 
ombination

method is that the interpretation domains of the 
onne
ted logi
s are disjoint and

inter
onne
ted by means of link relations. The language of the E-
onne
tion is then

the union of the original languages enri
hed with operators 
apable of talking about

the link relations. To illustrate this idea, let us 
onsider the E-
onne
tion of the two

des
ription logi
s ALCQI and ALCIO.

Assume that we have two knowledge bases: one deals with people and usesALCQI;

the other deals with 
ountries and employs ALCIO. Note that su
h a s
enario is quite

natural: it may be the 
ase that the two knowledge bases have been developed inde-

pendently and are now required to interoperate|this situation is standard for loosely
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Figure 1: The 
onne
tion of two knowledge bases.

federated information systems [4℄ and also for ontology integration in the semanti


web [5℄. Another reason for separating the two KBs 
ould be that ALCQI is an ap-

propriate language for representing people's a�airs, ALCIO is appropriate for talking

about 
ountries|but their union ALCQIO is very hard to handle algorithmi
ally.

The KBs 
an be integrated by using binary link relations su
h as 
itizen-of, lives-in,

and likes, whi
h relate domain obje
ts from models of one KB with domain obje
ts

from models of the other KB. In the E-
onne
tion of ALCQI and ALCIO, we 
an,

for example, say that fran
ophile people like Fran
e:

Fran
ophile

:

= hlikesi

1

Fran
e

where Fran
ophile is a 
on
ept name from the ALCQI 
omponent, the hri

1

C operator

is one of the 
onne
tion operators for talking about link relations, and Fran
e is a

nominal of ALCIO. Intuitively, the hri

1

C operator 
an be understood as an existential

value restri
tion. The �

1

indi
ates that this operator is applied to a 
on
ept of Logi
 2

(ALCIO) and returns a 
on
ept of Logi
 1 (ALCQI). In �rst-order logi
, the above

formula would read as

8x 2W

1

(Fran
ophile(x)$ 9y 2W

2

(likes(x; y) ^ Fran
e(y)));

where W

1

is the domain of an ALCQI model and W

2

is the domain of an ALCIO

model. Of 
ourse, we 
an also use link relations in the other dire
tion:

Fran
e v hlives-ini

2

(Human u :h
itizen-ofi

1

Fran
e)

expresses that not all people living in Fran
e are Fren
h 
itizens; see Figure 1. Again,

the reading of this formula in �rst-order logi
 would be

8y 2W

2

(Fran
e(y)!

! 9x 2W

1

(lives-in(x; y) ^ Human(x) ^ :(9z 2W

2

(
itizen-of(x; z) ^ Fran
e(z))))):

The most important feature of E-
onne
tions is that, just as DLs themselves, they

o�er an appealing 
ompromise between expressive power and 
omputational 
omplex-

ity: although powerful enough to express many interesting 
on
epts, the 
oupling

between the 
ombined logi
s is suÆ
iently loose for proving general results about the

transfer of de
idability. Su
h transfer results state that if the 
onne
ted logi
s are

de
idable, then their 
onne
tion will also be de
idable. Thus, E-
onne
tions are 
loser



in spirit to fusions than to multi-dimensional 
ombinations: while there exist general

transfer results for the former [2℄, the latter allow su
h a 
lose intera
tion between the


ombined formalisms that general transfer results 
annot be expe
ted; see, e.g., [6℄.

The purpose of this paper is to summarize the general transfer results for E-


onne
tions that have re
ently been obtained in [7℄. The generality of the results is

due to the fa
t that E-
onne
tions are de�ned and investigated using the framework of

so-
alled abstra
t des
ription systems (ADSs), a 
ommon generalization of des
ription

logi
s, modal logi
s, logi
s of time and spa
e, and many other logi
al formalisms [2℄.

Thus, we 
an 
onne
t not only DLs with DLs, but also, say, des
ription logi
s with

spatial logi
s [8℄. A natural interpretation of link relations in this 
ontext would then

be, for instan
e, to des
ribe the spatial extension of abstra
t (DL) obje
ts.

2 Basi
 E-
onne
tions

In this se
tion, we introdu
e the basi
 variant of E-
onne
tions and formulate the

fundamental transfer theorem �rst proved in [9℄. We begin by introdu
ing ADSs. For

brevity, we give here a slightly trimmed-down version of ADSs that does not 
apture

ABoxes. However, all results presented in this paper do also apply to ADSs with

ABoxes as de�ned in [2, 7℄.

De�nition 1 An abstra
t des
ription language (ADL) L is determined by a 
ountably

in�nite set V of set variables and a 
ountable set F of fun
tion symbols f of arity m

f

su
h that :;^ =2 F . The terms t

j

of L are built in the following way:

t

j

::= x j :t

1

j t

1

^ t

2

j f(t

1

; : : : ; t

m

f

);

where x 2 V and f 2 F . The term assertions of L are of the form t

1

v t

2

. As usual,

we use t

1

:

= t

2

as an abbreviation for t

1

v t

2

; t

2

v t

1

.

An abstra
t des
ription model (ADM) for an ADL L = hV;Fi is a stru
ture of the

form

W =

D

W;V

W

= (x

W

)

x2V

;F

W

= (f

W

)

f2F

E

;

where W is a non-empty set, x

W

�W and ea
h f

W

is a fun
tion mapping m

f

-tuples




X

1

; : : : ;X

n

f

�

of subsets of W to a subset of W . The value t

W

� W of an L-term t

in W is de�ned indu
tively by taking

(:t)

W

=W n t

W

; (t

1

^ t

2

)

W

= t

W

1

\ t

W

2

; (f(t

1

; : : : ; t

m

f

))

W

= f

W

(t

W

1

; : : : ; t

W

m

f

):

Intuitively, set variables 
orrespond to 
on
ept names, fun
tion symbols to 
on
ept


onstru
tors, and term assertions to general 
on
ept in
lusion axioms (GCIs). ADSs

be
ome a powerful tool in providing a 
hoi
e of an appropriate 
lass of ADMs in whi
h

the ADL is to be interpreted. In this way, we 
an ensure that fun
tion symbols have

the desired semanti
s.

De�nition 2 An abstra
t des
ription system (ADS) is a pair (L;M), where L is an

ADL and M is a 
lass of ADMs for L that is 
losed under the following operation: if

W =




W;V

W

;F

W

�

and V

W

0

= (x

W

0

)

x2V

is a new assignment of set variables in W ,

then W

0

=

D

W;V

W

0

;F

W

E

2M:



The 
losure 
ondition on the 
lass of models M demands that set variables (i.e.,


on
ept names) 
an be interpreted as arbitrary subsets of the interpretation domain|

a property that all DLs 
omply with. It should be noted that ADSs 
an 
apture all

standard expressive means su
h as number restri
tions, transitive 
losure of roles, and


on
rete domains. A very detailed des
ription of how standard DLs 
an be 
on
eived

as ADSs 
an be found in [2℄. Here we will only brie
y des
ribe the translations of the

basi
 des
ription logi
 ALC into an ADS, as well as its extension by nominals, ALCO.

Again, we omit the dis
ussion of ABox assertions for brevity.

The language of ALC is based on 
on
ept namesA

1

; A

2

; : : : , role namesR

1

; R

2

; : : : ,

the Boolean 
onstru
tors : and u, and the existential restri
tion 9. ALC-
on
epts

are built a

ording to the following rule:

C ::= A

i

j :C j C uD j 9R:C

An ALC-model is a stru
ture

I =




�; A

I

1

; : : : ; R

I

1

; : : :

�

;

where � is a non-empty set, the A

I

i

are subsets of � and the R

I

i

are binary relations

on �. The interpretation of 
omplex 
on
epts is de�ned by setting:

(:C)

I

= � n C

I

(C uD)

I

= C

I

uD

I

(9R:C)

I

= fw 2 � j 9v ((w; v) 2 R

I

^ v 2 C

I

)g

The 
on
epts of ALC 
an be regarded as terms C

℄

of an ADS ALC

℄

: asso
iate with

ea
h 
on
ept name A

i

a set variable A

℄

i

, and with ea
h role name R

i

a unary fun
tion

symbols f

9R

i

. Then set indu
tively:

(:C)

℄

= :C

℄

(C uD)

℄

= C

℄

^D

℄

(9R

i

:C)

℄

= f

9R

i

(C

℄

)

Thus, ALC

℄

-term assertions 
orrespond to 
on
ept in
lusion statements. The 
lassM

of ADMs forALC

℄

is de�ned as follows. For everyALC-model I =




�; A

I

1

; : : : ; R

I

1

; : : :

�

;

the 
lass M 
ontains the model

M =

D

�;V

M

;F

M

E

;

where, for every 
on
ept name A and role name R, we have

(A

℄

)

M

= A

I

f

M

9R

(X) = fw 2 � j 9v ((w; v) 2 R

I

^ v 2 X)g

Observe that the semanti
s of the fun
tion symbol f

9R

is obtained in a straightforward

way from the semanti
s of the DL 
onstru
tor 9R:C.

Next, we dis
uss the addition of nominals. The des
ription logi
 ALCO extends

ALC with nominals n

i

[12℄ that are always interpreted by singleton subsets of the

interpretation domain, but synta
ti
ally treated as 
on
epts. Due to this spe
ial

property of nominals and the 
losure property on set variables in ADS (De�nition

2), nominals 
annot be translated as set variables. Rather, the 
orresponding ADS



ACLO

℄

is obtained from the above translation of ALC by additionally introdu
ing,

for every nominal n

i

of ALCO, the nullary fun
tion symbol f

n

i

with f

M

n

i

= n

I

i

and by

setting n

℄

i

= f

n

i

.

In the following, we will not distinguish between a des
ription logi
 and the 
or-

responding ADS. We are interested in the following satis�ability problem.

De�nition 3 Let S = (L;M) be an ADS, t an S-term, and � a �nite set of term

assertions. Then t is 
alled satis�able relative to � if there exists an ADM W 2 M

su
h that t

W

6= ; and t

W

1

� t

W

2

for all t

1

v t

2

2 �.

It is not hard to see that this 
orresponds to the satis�ability of 
on
epts with

respe
t to general TBoxes. Indeed, the presented transfer results do only apply to

DLs for whi
h reasoning with respe
t to general TBoxes is de
idable.

Let S

1

and S

2

be two ADSs that are to be 
onne
ted.

1

We assume that the set

variables and non-Boolean fun
tions symbols of S

1

and S

2

are pairwise disjoint. To

form a 
onne
tion, �x a non-empty set E = fE

j

j j 2 Jg of binary relation symbols.

The set of terms of the resulting E-
onne
tion C

E

(S

1

;S

2

) is partitioned into a set of

1-terms and a set of 2-terms. Intuitively, i-terms are the terms of L

i

enri
hed with

new fun
tion symbols for talking about link relations. For the following de�nition, we

set 1 = 2 and 2 = 1.

De�nition 4 The sets of 1-terms and 2-terms of C

E

(S

1

;S

2

) are de�ned by simulta-

neous indu
tion: for i 2 f1; 2g,

� every set variable of L

i

is an i-term;

� the set of i-terms is 
losed under :, ^, and the fun
tion symbols of L

i

;

� if t is an i-term, then the expression hE

j

i

i

t is an i-term, for every j 2 J .

The set of terms of C

E

(S

1

;S

2

) is the union of the set of 1-terms and the set of 2-terms.

The term assertions of C

E

(S

1

;S

2

) are of the form t

1

v t

2

, where both t

1

and t

2

are

i-terms, for i 2 f1; 2g.

As expe
ted, a model for the E-
onne
tion C

E

(S

1

;S

2

) 
onsists of a model for S

1

, a

model for S

2

, and an interpretation of the link relations.

De�nition 5 A stru
ture M =

D

W

1

;W

2

; E

M

= (E

M

j

)

j2J

)

E

; where W

i

2 M

i

for

i 2 f1; 2g and E

M

j

� W

1

�W

2

for ea
h j 2 J , is 
alled a model for C

E

(S

1

;S

2

). The

value t

M

�W

i

of an i-term t is de�ned by simultaneous indu
tion. For set variables X

of L

i

, we put X

M

= X

W

i

; the indu
tive steps for the Booleans and fun
tion symbols

of L

i

are the same as in De�nition 1; �nally,

(hE

j

i

1

t)

M

= fx 2W

1

j 9y 2 t

M

(x; y) 2 E

M

j

g;

(hE

j

i

2

t)

M

= fx 2W

2

j 9y 2 t

M

(y; x) 2 E

M

j

g:

We are now ready to formulate the fundamental transfer result mentioned above:

1

In general, E-
onne
tions 
an 
onne
t n < ! ADSs [7℄, and all the formulated results apply to

the n-dimensional 
ase as well.



Theorem 6 Let S

1

and S

2

be ADSs with de
idable satis�ability problems. Then the

satis�ability problem for every E-
onne
tion C

E

(S

1

;S

2

) is de
idable as well.

It is of interest to note that this transfer theorem is more general than the 
or-

responding theorem for fusions obtained in [3℄. The transfer result for fusions only

applies to ADSs whose 
lass of models is 
losed under disjoint unions|thus ruling out

des
ription logi
s with nominals. This is not the 
ase for the above result: it means, in

parti
ular, that the 
onne
tion of ALCQI and ALCIO mentioned in the introdu
tion

is de
idable.

Theorem 6 is proved by a redu
tion to the satis�ability problems for the 
om-

ponent ADSs. Sin
e this redu
tion is non-deterministi
 and involves an exponential

blow-up, we obtain an upper 
omplexity bound for the E-
onne
tion that is one non-

deterministi
 exponential higher than the 
omplexity of the 
omponent logi
s. It is


urrently unknown whether this 
omplexity is optimal in the general 
ase. However,

it seems that in many natural 
ases the in
rease in 
omplexity will be less dramati
.

3 Extensions

The basi
 idea of 
onne
ting logi
s by means of link relations 
an be extended in vari-

ous dire
tions. For example, in the distributed KB example given in the introdu
tion

we may want to des
ribe people living in a 
ountry of whi
h they are not 
itizens, or

people who like all 
ountries. To do this, basi
 E-
onne
tions are not enough, sin
e

Boolean operations on link relations are required:

Expat

:

= hlives-in \ :
itizen-ofi

1

Country

Internationalist

:

= :h:likesi

1

Country

The E-
onne
tion of two ADSs S

1

and S

2

that admits the Boolean operators on link

relations is denoted by C

E

B

(S

1

;S

2

). Sin
e we deal with Boolean 
onne
tions in some

more detail, let us give the pre
ise de�nition:

De�nition 7 Suppose that S

i

= (L

i

;M

i

), i 2 f1; 2g, are abstra
t des
ription systems

and E = fE

j

j j 2 Jg is a set of binary relation symbols. Denote by C

E

B

(S

1

;S

2

) the

E-
onne
tion with the smallest set E of links su
h that

� E � E ;

� if F 2 E , then :F 2 E ;

� if F;G 2 E , then F ^G 2 E .

Given an ADM M =




(W

i

)

i2f1;2g

; E

M

�

we interpret the links F 2 E as relations

F

M

�W

1

�W

2

(with W

i

being the domain of W

i

) indu
tively in the obvious way:

(F ^G)

M

= F

M

\G

M

; (:F )

M

= (W

1

�W

2

) n F

M

:

Observe that role hierar
hies on link relations 
an be expressed by writing, e.g., >

i

v

:hF \ :Gi

1

>

2

for F v G, where >

i

= x

i

_ :x

i

for some set variable x

i

of L

i

.

Fortunately, our general transfer result 
arries over to the Boolean 
ase:



Theorem 8 Let S

1

and S

2

be ADSs with de
idable satis�ability problems. Then the

satis�ability problem for every E-
onne
tion C

E

B

(S

1

;S

2

) is de
idable as well.

The proof is similar to the basi
 
ase, although mu
h more involved. The 
om-

plexity of the obtained algorithm is also as in the basi
 
ase. Interestingly, in the

Boolean 
ase we are able to prove that the obtained 
omplexity bound is optimal.

Let B be the ADS that has no fun
tion symbols apart from the Booleans and whose


lass of ADMs is not restri
ted in any way. It is not hard to see that, for this simple

ADS, satis�ability is NP-
omplete. The Boolean 
onne
tion C

B

(B;B) of B with itself,

however, is mu
h more 
omplex: it is possible to redu
e the NEXPTIME-
omplete

satis�ability problem for the modal logi
 S5�S5 [11℄ to the satis�ability problem for

C

B

(B;B), whi
h yields the following result:

Theorem 9 The satis�ability problem for C

E

B

(B;B) is NEXPTIME-hard, for any in-

�nite E.

To illustrate the expressive power of Boolean 
onne
tions, we sket
h the proof of

this theorem.

First, re
all that S5 � S5{formulas are 
omposed from propositional variables

p

1

; p

2

: : : by means of the Booleans and the modal operators �

1

and �

2

. S5 � S5-

models N = hW

1

�W

2

;Vi 
onsist of the Cartesian produ
t of two non-empty sets

W

1

and W

2

and a valuation V whi
h maps any propositional variable to a subset of

W

1

�W

2

. The extension '

N

of an S5 � S5-formula ' in N is 
omputed indu
tively

by setting

p

N

i

= V(p

i

)

( 

1

^  

2

)

N

=  

N

1

\  

N

2

(: )

N

= (W

1

�W

2

)�  

N

(�

1

 )

N

= f(w

1

; w

2

) j 8v 2W

1

(v; w

2

) 2  

N

g

(�

2

 )

N

= f(w

1

; w

2

) j 8v 2W

2

(w

1

; v) 2  

N

g:

A formula ' is S5� S5-satis�able if there exists an S5� S5-model in whi
h ' has a

non-empty extension.

Suppose now that ' is an S5 � S5-formula. Denote by sub(') the set of all

subformulas of '. For any  2 sub(') take a link E

 

2 E and let the C

E

B

(B;B)-

knowledge base � 
onsist of:

(1) E

 

1

^ 

2

= E

 

1

^E

 

2

, for  

1

^  

2

2 sub('),

(2) E

: 

= :E

 

, for : 2 sub(');

(3) h:E

 

i

2

>

1

= [E

�

1

 

℄

2

?

1

and [E

�

1

 

℄

2

?

1

=




:E

�

1

 

�

2

>

1

, for �

1

 2 sub(');

(4) h:E

 

i

1

>

2

= [E

�

2

 

℄

1

?

2

and [E

�

2

 

℄

1

?

2

=




:E

�

2

 

�

1

>

2

, for �

2

 2 sub(').

As was mentioned above, su
h equations 
an be added to the vo
abulary when working

in 
onne
tions with Boolean 
losures of links. More pre
isely, an equation of the form

F = G is a shorthand for the 
onjun
tion of the two link in
lusions F v G and G v F .

We now 
laim that

(|) ' is S5� S5-satis�able i� hE

'

i

1

>

2

is satis�able relative to � in C

E

B

(B;B):



To prove (|), assume �rst that ' is satis�ed in a model N = hW

1

�W

2

;Vi. We


onstru
t a model M =

D

M

1

;M

2

; fE

M

 

g

 2sub(')

E

that satis�es hE

'

i

1

>

2

relative to

�. Let M

2

be any model for B with domain W

2

. By assumption, '

N

6= ;, so we


an pi
k some (u; v) 2 '

N

and 
hoose M

1

to be any model for B with domain W

1

.

Finally, we 
an de�ne E

M

 

:=  

N

�W

1

�W

2

, for every  2 sub('). By 
onstru
tion,

(hE

'

i

1

>

2

)

M

6= ;, so it suÆ
es to show that the equations (1){(4) hold in M, whi
h


an easily be shown by stru
tural indu
tion; details 
an be found in [7℄.

Conversely, assume that hE

'

i

1

>

2

is satis�ed relative to � in a model M, where

M =

D

M

1

;M

2

; fE

M

 

g

 2sub(')

E

is based on the domains W

1

and W

2

. We de�ne a

model N for S5 � S5 based on the domain W

1

� W

2

by letting p

N

i

:= E

M

p

i

, for

p

i

2 sub('), and arbitrary otherwise. It 
an now be shown by indu
tion that

(~) E

M

 

=  

N

; for all  2 sub('):

Again, the details of this indu
tion 
an be found in [7℄.

Sin
e hE

'

i

1

>

2

is satis�able in M, there exists a v 2 W

1

and a w 2 W

2

su
h that

(v; w) 2 E

M

'

= '

N

6= ;. It follows that ' is satis�ed in N and hen
e proves (|).

The redu
tion shows that the satis�ability problem of C

E

B

(S

1

;S

2

) is at least NEXP-

TIME-hard for most interesting ADSs S

1

and S

2

.

Another interesting way of extending basi
 E-
onne
tions is to add quali�ed num-

ber restri
tions on link relations. Suppose, for example, that we want to des
ribe

persons who are 
itizens of exa
tly one 
ountry. Then it would obviously be 
onve-

nient to write

Uni-National

:

= h
itizen-ofi

1

Country ^ h� 1 
itizen-ofi

1

>

2

where the semanti
s of h� r Ei

i

C and its 
ounterpart h� r Ei

i

C are de�ned as for

standard quali�ed number restri
tions in DL. The E-
onne
tion of two ADSs S

1

and

S

2

that allows quali�ed number restri
tions (but not the Boolean operators on link

relations) is denoted by C

E

Q

(S

1

;S

2

). Unfortunately, it turns out that, in general,

de
idability does not transfer from two ADSs S

1

;S

2

to their E-
onne
tion C

E

Q

(S

1

;S

2

).

Theorem 10 There exist ADSs S

1

and S

2

with de
idable satis�ability problems su
h

that the satis�ability problem for C

E

Q

(S

1

;S

2

) is unde
idable even if E is a singleton.

Although to prove this theorem we use rather arti�
ial ADSs, there is an intuitive

reason for this `negative' result: number restri
tions on links allow the transfer of

`
ounting 
apabilities' from one 
omponent to another. For example, in the 
onne
-

tion C

E

Q

(ALCQI;ALCIO), we 
an `export' the nominals of ALCIO to ALCQI: the

assertions

>

2

= h� 1Ei

2

>

1

; >

2

= h� 1Ei

2

>

1

; >

1

= h� 1Ei

1

>

2

; >

1

= h� 1Ei

1

>

2

state that E is a bije
tive fun
tion, and so we 
an use hEi

1

N , N a nominal of ALCIO,

as a nominal in ALCQI. To obtain a general transfer result, we thus have to restri
t

the 
lass of ADSs we are working with. For a set of term assertions �, we use term(�)

to denote the set of (sub)terms o

urring in �.



De�nition 11 An ADS S = (L;M) is 
alled number tolerant if there is a 
ardinal �

su
h that, for every �

0

� � and every satis�able �nite set � of term assertions, there

exists a modelW 2M satisfying � and su
h that, for ea
h d 2W , there are pre
isely

�

0

elements d

0

2W for whi
h

ft 2 term(�) j d 2 t

W

g = ft 2 term(�) j d

0

2 t

W

g:

Intuitively, DLs that provide means for `global 
ounting' su
h as nominals are not

number tolerant, whereas those that 
an only `lo
ally 
ount' are: for example, ALCQI

is number tolerant, while ALCIO is not. More details 
an be found in [7℄.

Theorem 12 Let S

1

;S

2

be number-tolerant ADSs with de
idable satis�ability prob-

lems. Then the satis�ability problem for any E-
onne
tion C

E

Q

(S

1

;S

2

) is de
idable as

well.

Again, the proof is a variation on the initial idea of the proof of Theorem 6, though

mu
h more 
omplex. It is now a natural question whether we 
an 
ombine the Boolean

operators with quali�ed number restri
tions on link relations and, at least for number

tolerant ADSs, obtain a general transfer result. Unfortunately, the answer to this

question is negative:

Theorem 13 There exist number tolerant ADSs S

1

;S

2

with de
idable satis�ability

problems su
h that the satis�ability problem for C

E

QB

(S

1

;S

2

) is unde
idable even if E

is a singleton.

4 Further results

In this paper, we have presented a brief overview of our re
ent results on E-
onne
tions.

More details and full proofs 
an be found in [7℄, where also several additional results

are proved. Here we mention only two of them:

(1) As already noted, the results in [7℄ are more general than those presented here in

that they take into a

ount ADSs with ABoxes. Moreover, another extension of basi


E-
onne
tions is 
onsidered, in whi
h ABox individuals may o

ur as arguments of a


onne
tion operator even if nominals are not provided by the 
onne
ted logi
s. Quite

surprisingly, we 
an still prove a general transfer result in the spirit of Theorem 6.

The 
ombination of this extension with Boolean operators on link relations poses

no problems, whereas the 
ombination with quali�ed number restri
tions leads to

unde
idability.

(2) There exists a 
lose 
onne
tion between E-
onne
tions and distributed des
rip-

tion logi
s (DDLs) 
onsidered by Borgida and Sera�ni in [4℄. Indeed, the extension of

E-
onne
tions mentioned in (1) 
an almost be viewed as a generalization of DDLs. We

say `almost' be
ause DDLs are able to express that an ABox individual of one logi
 is


onne
ted via a 
ertain link relation to exa
tly the obje
ts b

1

; : : : ; b

k

of another logi
.

In [7℄, we extend E-
onne
tions with this expressive means, prove a general transfer

result for the 
ase when all 
onne
ted DLs are equipped with nominals, and show

that, in the general 
ase, de
idability does not transfer.
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