
E -onnetions of Desription Logis

Oliver Kutz

Department of Computer Siene

University of Liverpool, U.K.

oliver�s.liv.a.uk

Carsten Lutz

Institute for Theoretial Computer Siene

TU Dresden, Germany

lutz�ts.inf.tu-dresden.de

Frank Wolter

Department of Computer Siene

University of Liverpool, U.K.

frank�s.liv.a.uk

Mihael Zakharyashev

Department of Computer Siene

King's College London, U.K.

mz�ds.kl.a.uk

1 Motivation

Combining desription logis (DLs) with other logial formalisms, inluding other

DLs, is an important and hallenging task. Reent examples inlude:

1. the ombination of DLs with temporal logis to formmulti-dimensional temporal

DLs, f. e.g. [1, 6, 10℄;

2. the fusion of multiple DLs into a single formalism that inherits deidability

from its omponents, f. [2℄;

3. the ombination of di�erent DLs in the ontext of loosely federated information

systems resulted in distributed desription logis (DDLs), f. [4℄.

A relatively new tehnique of ombining desription logis, �rst proposed in [9℄, is

the formation of so-alled E-onnetions. The general idea behind this ombination

method is that the interpretation domains of the onneted logis are disjoint and

interonneted by means of link relations. The language of the E-onnetion is then

the union of the original languages enrihed with operators apable of talking about

the link relations. To illustrate this idea, let us onsider the E-onnetion of the two

desription logis ALCQI and ALCIO.

Assume that we have two knowledge bases: one deals with people and usesALCQI;

the other deals with ountries and employs ALCIO. Note that suh a senario is quite

natural: it may be the ase that the two knowledge bases have been developed inde-

pendently and are now required to interoperate|this situation is standard for loosely
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Figure 1: The onnetion of two knowledge bases.

federated information systems [4℄ and also for ontology integration in the semanti

web [5℄. Another reason for separating the two KBs ould be that ALCQI is an ap-

propriate language for representing people's a�airs, ALCIO is appropriate for talking

about ountries|but their union ALCQIO is very hard to handle algorithmially.

The KBs an be integrated by using binary link relations suh as itizen-of, lives-in,

and likes, whih relate domain objets from models of one KB with domain objets

from models of the other KB. In the E-onnetion of ALCQI and ALCIO, we an,

for example, say that franophile people like Frane:

Franophile

:

= hlikesi

1

Frane

where Franophile is a onept name from the ALCQI omponent, the hri

1

C operator

is one of the onnetion operators for talking about link relations, and Frane is a

nominal of ALCIO. Intuitively, the hri

1

C operator an be understood as an existential

value restrition. The �

1

indiates that this operator is applied to a onept of Logi 2

(ALCIO) and returns a onept of Logi 1 (ALCQI). In �rst-order logi, the above

formula would read as

8x 2W

1

(Franophile(x)$ 9y 2W

2

(likes(x; y) ^ Frane(y)));

where W

1

is the domain of an ALCQI model and W

2

is the domain of an ALCIO

model. Of ourse, we an also use link relations in the other diretion:

Frane v hlives-ini

2

(Human u :hitizen-ofi

1

Frane)

expresses that not all people living in Frane are Frenh itizens; see Figure 1. Again,

the reading of this formula in �rst-order logi would be

8y 2W

2

(Frane(y)!

! 9x 2W

1

(lives-in(x; y) ^ Human(x) ^ :(9z 2W

2

(itizen-of(x; z) ^ Frane(z))))):

The most important feature of E-onnetions is that, just as DLs themselves, they

o�er an appealing ompromise between expressive power and omputational omplex-

ity: although powerful enough to express many interesting onepts, the oupling

between the ombined logis is suÆiently loose for proving general results about the

transfer of deidability. Suh transfer results state that if the onneted logis are

deidable, then their onnetion will also be deidable. Thus, E-onnetions are loser



in spirit to fusions than to multi-dimensional ombinations: while there exist general

transfer results for the former [2℄, the latter allow suh a lose interation between the

ombined formalisms that general transfer results annot be expeted; see, e.g., [6℄.

The purpose of this paper is to summarize the general transfer results for E-

onnetions that have reently been obtained in [7℄. The generality of the results is

due to the fat that E-onnetions are de�ned and investigated using the framework of

so-alled abstrat desription systems (ADSs), a ommon generalization of desription

logis, modal logis, logis of time and spae, and many other logial formalisms [2℄.

Thus, we an onnet not only DLs with DLs, but also, say, desription logis with

spatial logis [8℄. A natural interpretation of link relations in this ontext would then

be, for instane, to desribe the spatial extension of abstrat (DL) objets.

2 Basi E-onnetions

In this setion, we introdue the basi variant of E-onnetions and formulate the

fundamental transfer theorem �rst proved in [9℄. We begin by introduing ADSs. For

brevity, we give here a slightly trimmed-down version of ADSs that does not apture

ABoxes. However, all results presented in this paper do also apply to ADSs with

ABoxes as de�ned in [2, 7℄.

De�nition 1 An abstrat desription language (ADL) L is determined by a ountably

in�nite set V of set variables and a ountable set F of funtion symbols f of arity m

f

suh that :;^ =2 F . The terms t

j

of L are built in the following way:

t

j

::= x j :t

1

j t

1

^ t

2

j f(t

1

; : : : ; t

m

f

);

where x 2 V and f 2 F . The term assertions of L are of the form t

1

v t

2

. As usual,

we use t

1

:

= t

2

as an abbreviation for t

1

v t

2

; t

2

v t

1

.

An abstrat desription model (ADM) for an ADL L = hV;Fi is a struture of the

form

W =

D

W;V

W

= (x

W

)

x2V

;F

W

= (f

W

)

f2F

E

;

where W is a non-empty set, x

W

�W and eah f

W

is a funtion mapping m

f

-tuples




X

1

; : : : ;X

n

f

�

of subsets of W to a subset of W . The value t

W

� W of an L-term t

in W is de�ned indutively by taking

(:t)

W

=W n t

W

; (t

1

^ t

2

)

W

= t

W

1

\ t

W

2

; (f(t

1

; : : : ; t

m

f

))

W

= f

W

(t

W

1

; : : : ; t

W

m

f

):

Intuitively, set variables orrespond to onept names, funtion symbols to onept

onstrutors, and term assertions to general onept inlusion axioms (GCIs). ADSs

beome a powerful tool in providing a hoie of an appropriate lass of ADMs in whih

the ADL is to be interpreted. In this way, we an ensure that funtion symbols have

the desired semantis.

De�nition 2 An abstrat desription system (ADS) is a pair (L;M), where L is an

ADL and M is a lass of ADMs for L that is losed under the following operation: if

W =




W;V

W

;F

W

�

and V

W

0

= (x

W

0

)

x2V

is a new assignment of set variables in W ,

then W

0

=

D

W;V

W

0

;F

W

E

2M:



The losure ondition on the lass of models M demands that set variables (i.e.,

onept names) an be interpreted as arbitrary subsets of the interpretation domain|

a property that all DLs omply with. It should be noted that ADSs an apture all

standard expressive means suh as number restritions, transitive losure of roles, and

onrete domains. A very detailed desription of how standard DLs an be oneived

as ADSs an be found in [2℄. Here we will only briey desribe the translations of the

basi desription logi ALC into an ADS, as well as its extension by nominals, ALCO.

Again, we omit the disussion of ABox assertions for brevity.

The language of ALC is based on onept namesA

1

; A

2

; : : : , role namesR

1

; R

2

; : : : ,

the Boolean onstrutors : and u, and the existential restrition 9. ALC-onepts

are built aording to the following rule:

C ::= A

i

j :C j C uD j 9R:C

An ALC-model is a struture

I =




�; A

I

1

; : : : ; R

I

1

; : : :

�

;

where � is a non-empty set, the A

I

i

are subsets of � and the R

I

i

are binary relations

on �. The interpretation of omplex onepts is de�ned by setting:

(:C)

I

= � n C

I

(C uD)

I

= C

I

uD

I

(9R:C)

I

= fw 2 � j 9v ((w; v) 2 R

I

^ v 2 C

I

)g

The onepts of ALC an be regarded as terms C

℄

of an ADS ALC

℄

: assoiate with

eah onept name A

i

a set variable A

℄

i

, and with eah role name R

i

a unary funtion

symbols f

9R

i

. Then set indutively:

(:C)

℄

= :C

℄

(C uD)

℄

= C

℄

^D

℄

(9R

i

:C)

℄

= f

9R

i

(C

℄

)

Thus, ALC

℄

-term assertions orrespond to onept inlusion statements. The lassM

of ADMs forALC

℄

is de�ned as follows. For everyALC-model I =




�; A

I

1

; : : : ; R

I

1

; : : :

�

;

the lass M ontains the model

M =

D

�;V

M

;F

M

E

;

where, for every onept name A and role name R, we have

(A

℄

)

M

= A

I

f

M

9R

(X) = fw 2 � j 9v ((w; v) 2 R

I

^ v 2 X)g

Observe that the semantis of the funtion symbol f

9R

is obtained in a straightforward

way from the semantis of the DL onstrutor 9R:C.

Next, we disuss the addition of nominals. The desription logi ALCO extends

ALC with nominals n

i

[12℄ that are always interpreted by singleton subsets of the

interpretation domain, but syntatially treated as onepts. Due to this speial

property of nominals and the losure property on set variables in ADS (De�nition

2), nominals annot be translated as set variables. Rather, the orresponding ADS



ACLO

℄

is obtained from the above translation of ALC by additionally introduing,

for every nominal n

i

of ALCO, the nullary funtion symbol f

n

i

with f

M

n

i

= n

I

i

and by

setting n

℄

i

= f

n

i

.

In the following, we will not distinguish between a desription logi and the or-

responding ADS. We are interested in the following satis�ability problem.

De�nition 3 Let S = (L;M) be an ADS, t an S-term, and � a �nite set of term

assertions. Then t is alled satis�able relative to � if there exists an ADM W 2 M

suh that t

W

6= ; and t

W

1

� t

W

2

for all t

1

v t

2

2 �.

It is not hard to see that this orresponds to the satis�ability of onepts with

respet to general TBoxes. Indeed, the presented transfer results do only apply to

DLs for whih reasoning with respet to general TBoxes is deidable.

Let S

1

and S

2

be two ADSs that are to be onneted.

1

We assume that the set

variables and non-Boolean funtions symbols of S

1

and S

2

are pairwise disjoint. To

form a onnetion, �x a non-empty set E = fE

j

j j 2 Jg of binary relation symbols.

The set of terms of the resulting E-onnetion C

E

(S

1

;S

2

) is partitioned into a set of

1-terms and a set of 2-terms. Intuitively, i-terms are the terms of L

i

enrihed with

new funtion symbols for talking about link relations. For the following de�nition, we

set 1 = 2 and 2 = 1.

De�nition 4 The sets of 1-terms and 2-terms of C

E

(S

1

;S

2

) are de�ned by simulta-

neous indution: for i 2 f1; 2g,

� every set variable of L

i

is an i-term;

� the set of i-terms is losed under :, ^, and the funtion symbols of L

i

;

� if t is an i-term, then the expression hE

j

i

i

t is an i-term, for every j 2 J .

The set of terms of C

E

(S

1

;S

2

) is the union of the set of 1-terms and the set of 2-terms.

The term assertions of C

E

(S

1

;S

2

) are of the form t

1

v t

2

, where both t

1

and t

2

are

i-terms, for i 2 f1; 2g.

As expeted, a model for the E-onnetion C

E

(S

1

;S

2

) onsists of a model for S

1

, a

model for S

2

, and an interpretation of the link relations.

De�nition 5 A struture M =

D

W

1

;W

2

; E

M

= (E

M

j

)

j2J

)

E

; where W

i

2 M

i

for

i 2 f1; 2g and E

M

j

� W

1

�W

2

for eah j 2 J , is alled a model for C

E

(S

1

;S

2

). The

value t

M

�W

i

of an i-term t is de�ned by simultaneous indution. For set variables X

of L

i

, we put X

M

= X

W

i

; the indutive steps for the Booleans and funtion symbols

of L

i

are the same as in De�nition 1; �nally,

(hE

j

i

1

t)

M

= fx 2W

1

j 9y 2 t

M

(x; y) 2 E

M

j

g;

(hE

j

i

2

t)

M

= fx 2W

2

j 9y 2 t

M

(y; x) 2 E

M

j

g:

We are now ready to formulate the fundamental transfer result mentioned above:

1

In general, E-onnetions an onnet n < ! ADSs [7℄, and all the formulated results apply to

the n-dimensional ase as well.



Theorem 6 Let S

1

and S

2

be ADSs with deidable satis�ability problems. Then the

satis�ability problem for every E-onnetion C

E

(S

1

;S

2

) is deidable as well.

It is of interest to note that this transfer theorem is more general than the or-

responding theorem for fusions obtained in [3℄. The transfer result for fusions only

applies to ADSs whose lass of models is losed under disjoint unions|thus ruling out

desription logis with nominals. This is not the ase for the above result: it means, in

partiular, that the onnetion of ALCQI and ALCIO mentioned in the introdution

is deidable.

Theorem 6 is proved by a redution to the satis�ability problems for the om-

ponent ADSs. Sine this redution is non-deterministi and involves an exponential

blow-up, we obtain an upper omplexity bound for the E-onnetion that is one non-

deterministi exponential higher than the omplexity of the omponent logis. It is

urrently unknown whether this omplexity is optimal in the general ase. However,

it seems that in many natural ases the inrease in omplexity will be less dramati.

3 Extensions

The basi idea of onneting logis by means of link relations an be extended in vari-

ous diretions. For example, in the distributed KB example given in the introdution

we may want to desribe people living in a ountry of whih they are not itizens, or

people who like all ountries. To do this, basi E-onnetions are not enough, sine

Boolean operations on link relations are required:

Expat

:

= hlives-in \ :itizen-ofi

1

Country

Internationalist

:

= :h:likesi

1

Country

The E-onnetion of two ADSs S

1

and S

2

that admits the Boolean operators on link

relations is denoted by C

E

B

(S

1

;S

2

). Sine we deal with Boolean onnetions in some

more detail, let us give the preise de�nition:

De�nition 7 Suppose that S

i

= (L

i

;M

i

), i 2 f1; 2g, are abstrat desription systems

and E = fE

j

j j 2 Jg is a set of binary relation symbols. Denote by C

E

B

(S

1

;S

2

) the

E-onnetion with the smallest set E of links suh that

� E � E ;

� if F 2 E , then :F 2 E ;

� if F;G 2 E , then F ^G 2 E .

Given an ADM M =




(W

i

)

i2f1;2g

; E

M

�

we interpret the links F 2 E as relations

F

M

�W

1

�W

2

(with W

i

being the domain of W

i

) indutively in the obvious way:

(F ^G)

M

= F

M

\G

M

; (:F )

M

= (W

1

�W

2

) n F

M

:

Observe that role hierarhies on link relations an be expressed by writing, e.g., >

i

v

:hF \ :Gi

1

>

2

for F v G, where >

i

= x

i

_ :x

i

for some set variable x

i

of L

i

.

Fortunately, our general transfer result arries over to the Boolean ase:



Theorem 8 Let S

1

and S

2

be ADSs with deidable satis�ability problems. Then the

satis�ability problem for every E-onnetion C

E

B

(S

1

;S

2

) is deidable as well.

The proof is similar to the basi ase, although muh more involved. The om-

plexity of the obtained algorithm is also as in the basi ase. Interestingly, in the

Boolean ase we are able to prove that the obtained omplexity bound is optimal.

Let B be the ADS that has no funtion symbols apart from the Booleans and whose

lass of ADMs is not restrited in any way. It is not hard to see that, for this simple

ADS, satis�ability is NP-omplete. The Boolean onnetion C

B

(B;B) of B with itself,

however, is muh more omplex: it is possible to redue the NEXPTIME-omplete

satis�ability problem for the modal logi S5�S5 [11℄ to the satis�ability problem for

C

B

(B;B), whih yields the following result:

Theorem 9 The satis�ability problem for C

E

B

(B;B) is NEXPTIME-hard, for any in-

�nite E.

To illustrate the expressive power of Boolean onnetions, we sketh the proof of

this theorem.

First, reall that S5 � S5{formulas are omposed from propositional variables

p

1

; p

2

: : : by means of the Booleans and the modal operators �

1

and �

2

. S5 � S5-

models N = hW

1

�W

2

;Vi onsist of the Cartesian produt of two non-empty sets

W

1

and W

2

and a valuation V whih maps any propositional variable to a subset of

W

1

�W

2

. The extension '

N

of an S5 � S5-formula ' in N is omputed indutively

by setting

p

N

i

= V(p

i

)

( 

1

^  

2

)

N

=  

N

1

\  

N

2

(: )

N

= (W

1

�W

2

)�  

N

(�

1

 )

N

= f(w

1

; w

2

) j 8v 2W

1

(v; w

2

) 2  

N

g

(�

2

 )

N

= f(w

1

; w

2

) j 8v 2W

2

(w

1

; v) 2  

N

g:

A formula ' is S5� S5-satis�able if there exists an S5� S5-model in whih ' has a

non-empty extension.

Suppose now that ' is an S5 � S5-formula. Denote by sub(') the set of all

subformulas of '. For any  2 sub(') take a link E

 

2 E and let the C

E

B

(B;B)-

knowledge base � onsist of:

(1) E

 

1

^ 

2

= E

 

1

^E

 

2

, for  

1

^  

2

2 sub('),

(2) E

: 

= :E

 

, for : 2 sub(');

(3) h:E

 

i

2

>

1

= [E

�

1

 

℄

2

?

1

and [E

�

1

 

℄

2

?

1

=




:E

�

1

 

�

2

>

1

, for �

1

 2 sub(');

(4) h:E

 

i

1

>

2

= [E

�

2

 

℄

1

?

2

and [E

�

2

 

℄

1

?

2

=




:E

�

2

 

�

1

>

2

, for �

2

 2 sub(').

As was mentioned above, suh equations an be added to the voabulary when working

in onnetions with Boolean losures of links. More preisely, an equation of the form

F = G is a shorthand for the onjuntion of the two link inlusions F v G and G v F .

We now laim that

(|) ' is S5� S5-satis�able i� hE

'

i

1

>

2

is satis�able relative to � in C

E

B

(B;B):



To prove (|), assume �rst that ' is satis�ed in a model N = hW

1

�W

2

;Vi. We

onstrut a model M =

D

M

1

;M

2

; fE

M

 

g

 2sub(')

E

that satis�es hE

'

i

1

>

2

relative to

�. Let M

2

be any model for B with domain W

2

. By assumption, '

N

6= ;, so we

an pik some (u; v) 2 '

N

and hoose M

1

to be any model for B with domain W

1

.

Finally, we an de�ne E

M

 

:=  

N

�W

1

�W

2

, for every  2 sub('). By onstrution,

(hE

'

i

1

>

2

)

M

6= ;, so it suÆes to show that the equations (1){(4) hold in M, whih

an easily be shown by strutural indution; details an be found in [7℄.

Conversely, assume that hE

'

i

1

>

2

is satis�ed relative to � in a model M, where

M =

D

M

1

;M

2

; fE

M

 

g

 2sub(')

E

is based on the domains W

1

and W

2

. We de�ne a

model N for S5 � S5 based on the domain W

1

� W

2

by letting p

N

i

:= E

M

p

i

, for

p

i

2 sub('), and arbitrary otherwise. It an now be shown by indution that

(~) E

M

 

=  

N

; for all  2 sub('):

Again, the details of this indution an be found in [7℄.

Sine hE

'

i

1

>

2

is satis�able in M, there exists a v 2 W

1

and a w 2 W

2

suh that

(v; w) 2 E

M

'

= '

N

6= ;. It follows that ' is satis�ed in N and hene proves (|).

The redution shows that the satis�ability problem of C

E

B

(S

1

;S

2

) is at least NEXP-

TIME-hard for most interesting ADSs S

1

and S

2

.

Another interesting way of extending basi E-onnetions is to add quali�ed num-

ber restritions on link relations. Suppose, for example, that we want to desribe

persons who are itizens of exatly one ountry. Then it would obviously be onve-

nient to write

Uni-National

:

= hitizen-ofi

1

Country ^ h� 1 itizen-ofi

1

>

2

where the semantis of h� r Ei

i

C and its ounterpart h� r Ei

i

C are de�ned as for

standard quali�ed number restritions in DL. The E-onnetion of two ADSs S

1

and

S

2

that allows quali�ed number restritions (but not the Boolean operators on link

relations) is denoted by C

E

Q

(S

1

;S

2

). Unfortunately, it turns out that, in general,

deidability does not transfer from two ADSs S

1

;S

2

to their E-onnetion C

E

Q

(S

1

;S

2

).

Theorem 10 There exist ADSs S

1

and S

2

with deidable satis�ability problems suh

that the satis�ability problem for C

E

Q

(S

1

;S

2

) is undeidable even if E is a singleton.

Although to prove this theorem we use rather arti�ial ADSs, there is an intuitive

reason for this `negative' result: number restritions on links allow the transfer of

`ounting apabilities' from one omponent to another. For example, in the onne-

tion C

E

Q

(ALCQI;ALCIO), we an `export' the nominals of ALCIO to ALCQI: the

assertions

>

2

= h� 1Ei

2

>

1

; >

2

= h� 1Ei

2

>

1

; >

1

= h� 1Ei

1

>

2

; >

1

= h� 1Ei

1

>

2

state that E is a bijetive funtion, and so we an use hEi

1

N , N a nominal of ALCIO,

as a nominal in ALCQI. To obtain a general transfer result, we thus have to restrit

the lass of ADSs we are working with. For a set of term assertions �, we use term(�)

to denote the set of (sub)terms ourring in �.



De�nition 11 An ADS S = (L;M) is alled number tolerant if there is a ardinal �

suh that, for every �

0

� � and every satis�able �nite set � of term assertions, there

exists a modelW 2M satisfying � and suh that, for eah d 2W , there are preisely

�

0

elements d

0

2W for whih

ft 2 term(�) j d 2 t

W

g = ft 2 term(�) j d

0

2 t

W

g:

Intuitively, DLs that provide means for `global ounting' suh as nominals are not

number tolerant, whereas those that an only `loally ount' are: for example, ALCQI

is number tolerant, while ALCIO is not. More details an be found in [7℄.

Theorem 12 Let S

1

;S

2

be number-tolerant ADSs with deidable satis�ability prob-

lems. Then the satis�ability problem for any E-onnetion C

E

Q

(S

1

;S

2

) is deidable as

well.

Again, the proof is a variation on the initial idea of the proof of Theorem 6, though

muh more omplex. It is now a natural question whether we an ombine the Boolean

operators with quali�ed number restritions on link relations and, at least for number

tolerant ADSs, obtain a general transfer result. Unfortunately, the answer to this

question is negative:

Theorem 13 There exist number tolerant ADSs S

1

;S

2

with deidable satis�ability

problems suh that the satis�ability problem for C

E

QB

(S

1

;S

2

) is undeidable even if E

is a singleton.

4 Further results

In this paper, we have presented a brief overview of our reent results on E-onnetions.

More details and full proofs an be found in [7℄, where also several additional results

are proved. Here we mention only two of them:

(1) As already noted, the results in [7℄ are more general than those presented here in

that they take into aount ADSs with ABoxes. Moreover, another extension of basi

E-onnetions is onsidered, in whih ABox individuals may our as arguments of a

onnetion operator even if nominals are not provided by the onneted logis. Quite

surprisingly, we an still prove a general transfer result in the spirit of Theorem 6.

The ombination of this extension with Boolean operators on link relations poses

no problems, whereas the ombination with quali�ed number restritions leads to

undeidability.

(2) There exists a lose onnetion between E-onnetions and distributed desrip-

tion logis (DDLs) onsidered by Borgida and Sera�ni in [4℄. Indeed, the extension of

E-onnetions mentioned in (1) an almost be viewed as a generalization of DDLs. We

say `almost' beause DDLs are able to express that an ABox individual of one logi is

onneted via a ertain link relation to exatly the objets b

1

; : : : ; b

k

of another logi.

In [7℄, we extend E-onnetions with this expressive means, prove a general transfer

result for the ase when all onneted DLs are equipped with nominals, and show

that, in the general ase, deidability does not transfer.
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