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Abstract

Many description logics (DLs) combine knowledge
representation on an abstract, logical level with an
interface to “concrete” domains such as numbers
and strings. We propose to extend such DLs with
key constraints that allow the expression of state-
ments like “US citizens are uniquely identified by
their social security number”. Based on this idea,
we introduce a number of natural description logics
and present (un)decidability results and tight NEX-
PTIME complexity bounds.

1 Introduction
Description Logics (DLs) are a family of popular knowledge
representation formalisms. Many expressive DLs combine
powerful logical languages with an interface to concrete do-
mains (e.g., integers, reals, strings) and built-in predicates
(e.g.,<, sub-string-of)[Lutz, 2002b]. These can be used to
form descriptions such as “employee working for the govern-
ment and earning more than her boss” that combine “abstract”
logical components (e.g., working for the government) with
components using concrete domains and predicates (e.g., a
numerical comparison of earnings).

DLs with concrete domains have turned out to be useful for
reasoning about conceptual (database) models[Lutz, 2002e],
and as the basis for expressive ontology languages[Horrocks
et al., 2002]. So far, however, they have not been able to ex-
presskey constraints, i.e., constraints expressing the fact that
certain “concrete features” uniquely determine the identity of
the instances of a certain class. E.g., the concrete feature“so-
cial security number (SSN)” might serve as a key for citizens
of the US, and the combination of identification number and
manufacturer might serve as a key for vehicles. Such con-
straints are important both in databases and in realistic on-
tology applications. In a DL context, key constraints have
so far only been considered on logical, “non-concrete” do-
mains[Borgida and Weddell, 1997; Calvaneseet al., 2000;
Khizderet al., 2001; Toman and Weddell, 2002].

It is easy to see that concrete keys can expressnominals,
i.e., concepts to be interpreted as singleton sets (closelyre-
lated to the “one-of” operator): e.g., if SSN is a key for Hu-
man (SSN keyforHuman), then the concept “Human with SSN
1234” (Humanu 9SSN:=

1234

) has at most one instance.

In this paper, we extend the well-known DLs with concrete
domainsALC(D) andSHOQ(D) [Baader and Hanschke,
1991; Horrocks and Sattler, 2001] with key constraints and
analyse the complexity of reasoning with the resulting log-
icsALCOK(D) andSHOQK(D). We show that allowing
complex concepts to occur in key constraints dramatically
increases the complexity ofALC(D) (which is PSPACE-
complete): it becomes undecidable. Restricting key con-
straints to atomic concepts (such as “Human” in the above
example) still yields a NEXPTIME-hard formalism, even for
rather simple (PTIME) concrete domains. We show several
variants of this result that depend on other characteristics of
key constraints, such as the number of concrete features and
the “path length”. This effect is consistent with the observa-
tion that the PSPACE upper bound forALC(D) is not robust
[Lutz, 2003].

Additionally, we prove the NEXPTIME bounds to be
tight by presenting tableau algorithms forALCOK(D) and
SHOQK(D) with key admissibleconcrete domains that are
in NP, where key admissibility is a simple and natural prop-
erty. We have chosen to devise tableau algorithms since they
have the potential to be implemented in efficient reasoners
and have been shown to behave well in practise[Horrocks
et al., 2000]. Due to space restrictions, we can only sketch
proofs and refer to[Lutz et al., 2002] for more details.

2 Preliminaries
First, we formally introduce the description logic
ALCOK(D).

Definition 1. A concrete domainD is a pair (�
D

;�

D

),
where�

D

is a set and�
D

a set of predicate names. Each
predicate nameP 2 �

D

is associated with an arityn and an
n-ary predicatePD � �

n

D

.
LetN

C

,N
O

,N
R

,N

F

be pairwise disjoint and countably in-
finite sets ofconcept names, nominals, role names, andcon-
crete features. We assume thatN

R

has a countably infinite
subsetN

aF

of abstract features. A pathu is a composition
f

1

� � � f

n

g of n abstract featuresf
1

; : : : ; f

n

(n � 0) and a
concrete featureg. LetD be a concrete domain. The set of
ALCOK(D)-concepts is the smallest set such that (i) every
concept name and every nominal is a concept, and (ii) ifC

andD are concepts,R is a role name,g is a concrete feature,
u

1

; : : : ; u

n

are paths, andP 2 �

D

is a predicate of arityn,



then the following expressions are also concepts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; andg":

A key definitonis an expression(u
1

; : : : ; u

k

keyforC) for
u

1

; : : : ; u

k

(k � 1) paths andC a concept. A finite set of key
definitions is called akey box. �

As usual, we use> to denote an arbitrary propositional tau-
tology. Throughout this paper, we will consider several frag-
ments of the logicALCOK(D): ALCO(D) is obtained from
ALCOK(D) by admitting only empty key boxes; by disal-
lowing the use of nominals, we obtain the fragmentALC(D)

of ALCO(D) andALCK(D) of ALCOK(D).
The description logicALCOK(D) is equipped with a

Tarski-style set-theoretic semantics. Along with the seman-
tics, we introduce the standard inference problems: concept
satisfiability and concept subsumption.

Definition 2. An interpretationI is a pair(�
I

; �

I

), where
�

I

is a non-empty set, called thedomain, and�I is the in-
terpretation function. The interpretation function maps each
concept nameC to a subsetCI of �

I

, each nominalN to
a singleton subsetNI of �

I

, each role nameR to a subset
R

I of �
I

��

I

, each abstract featuref to a partial function
f

I from �

I

to �

I

, and each concrete featureg to a partial
functiongI from�

I

to�
D

.
If u = f

1

� � � f

n

g is a path andd 2 �

I

, thenuI(d) is de-
fined asgI(fI

n

� � � (f

I

1

(d)) � � � ). The interpretation function
is extended to arbitrary concepts as follows:

(:C)

I

:= �

I

nC

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j 9e 2 �

I

: (d; e) 2 R

I

^ e 2 C

I

g

(8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

! e 2 C

I

g

(g")

I

:= fd 2 �

I

j g
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(d) undefinedg
(9u

1

; : : : ; u

n

:P )

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

u

I

i

(d) = x

i

and(x
1

; : : : ; x

n

) 2 P

D

g

An interpretationI is a modelof a conceptC iff C

I

6= ;.
Moreover,I satisfiesa key definition(u

1

; : : : ; u

n

keyforC)
if, for any a; b 2 C

I , uI
i

(a) = u

I

i

(b) for 1 � i � n implies
a = b. I is a modelof a key boxK iff I satisfies all key
definitions inK. A conceptC is satisfiable w.r.t. a key box
K iff C andK have a common model.C is subsumed bya
conceptD w.r.t. K (writtenC v

K

D) iff CI � D

I for all
modelsI of K. �

It is well-known that, in DLs providing for negation, sub-
sumption can be reduced to (un)satisfiability and vice versa:
C v

K

D iff C u :D is unsatisfiable w.r.t.K andC is sat-
isfiable w.r.t.K iff C 6v

K

:>. Thus we can concentrate
on concept satisfiability when investigating the complexity
of reasoning: the above reduction implies the corresponding
bounds for subsumption and the complementary complexity
class (usually co-NEXPTIME in this paper).

When devising decision procedures for DLs which are not
tied to aparticular concrete domain,admissibilityof the con-
crete domain usually serves as a well-defined interface be-
tween the decision procedure and concrete domain reasoners
[Baader and Hanschke, 1991; Lutz, 2002b]:

Definition 3. LetD be a concrete domain. AD-conjunction
is a (finite) predicate conjunction of the form


 =

^

i<k

P

i

(x

(i)

0

; : : : ; x

(i)

n

i

);

whereP
i

is ann
i

-ary predicate fori < k and thex(i)
j

are
variables. AD-conjunction
 is satisfiableiff there exists a
functionÆ mapping the variables in
 to elements of�

D

such
that (Æ(x(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for eachi < k. We say
that the concrete domainD is admissibleiff (i) �

D

contains a
name>

D

for �
D

; (ii) �
D

is closed under negation, and (iii)
satisfiability ofD-conjunctions is decidable. We refer to the
satisfiability ofD-conjunctions asD-satisfiability. �

As we shall see, it sometimes makes a considerable differ-
ence w.r.t. complexity and decidability to restrict key boxes
in various ways. Because of this, it is convenient to introduce
the following notions:

Definition 4. A key boxK is calledBooleanif all concepts
appearing in (key definitions in)K are Boolean combinations
of concept names;path-freeif all key definitions inK are of
the form(g

1

; : : : ; g

n

keyforC) with g

1

; : : : ; g

n

2 N


F

; sim-
ple if it is both path-free and Boolean; and aunary key boxif
all key definitions inK are of the form(u keyforC): A con-
ceptC is calledpath-freeif, in all its subconcepts of the form
9u

1

; : : : ; u

n

:P , u
1

; : : : ; u

n

are concrete features. �

To emphasize that a key box mustnotnecessarily be Boolean
or path-free, we sometimes call such a key boxgeneral. Sim-
ilarly, to emphasize that a key box is not necessarily a unary
key box, we sometimes call such a key boxn-ary key box.

3 Lower Complexity Bounds
In this section, we present lower complexity bounds for DLs
with concrete domains, key boxes and nominals. We start by
showing that satisfiability ofALCK(D)-concepts w.r.t. gen-
eral key boxes is undecidable for many interesting concrete
domains. This discouraging result is relativized by the fact
that, as shown in Section 4, the restriction to Boolean key
boxes recovers decidability. Next, we prove that satisfiabil-
ity of path-freeALCK(D)-concepts w.r.t. simple key boxes
is NEXPTIME-hard for many concrete domains and that this
holds even if we restrict ourselves to unary key boxes. Fi-
nally, we identify a concrete domain such thatALCO(D)-
concept satisfiability (without key boxes) is already NEXP-
TIME-hard.

Undecidability ofALCK(D)-concept satisfiability w.r.t.
general key boxes is proved by reduction of the undecidable
Post Correspondence Problem (PCP)[Post, 1946].

Definition 5. An instanceP of the PCP is given by a finite,
non-empty list(`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of words over
some alphabet�. A sequence of integersi

1

; : : : ; i

m

, with
m � 1, is called asolutionfor P iff `

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

.
The problem is to decide whether a given instanceP has a
solution. �

The reduction uses the admissible concrete domainW intro-
duced in[Lutz, 2003], whose domain is the set of words over
� and whose predicates express concatenation of words. For
each PCP instanceP = (`

1

; r

1

); : : : ; (`

k

; r

k

), we define a



conceptC
P

and unary key boxK
P

such thatP hasno solu-
tion iff C

P

is satisfiable w.r.t.K
P

. Intuitively, C
P

andK
P

enforce an infinite,k-ary tree, where each node represents a
sequences of integers, i.e. a potential solution. The role of
the key box is to guarantee that the tree is of infinite depth;
concrete features are used to store the left and right concate-
nations corresponding to the potential solutions; and concate-
nation predicates from the concrete domainW are used to
compute them. Finally, an inequality predicate also provided
byW is used to guarantee that none of the potential solutions
is indeed a solution. Since it is known thatW-satisfiability is
in PTIME [Lutz, 2003], we obtain the following theorem.
Theorem 6. There exists a concrete domainD such that
D-satisfiability is inPTIME and satisfiability ofALCK(D)-
concepts w.r.t. (general) unary key boxes is undecidable.
As shown in[Lutz, 2003; Lutzet al., 2002], the reduction can
easily be adapted to more natural concrete domains such as
numerical ones based on the integers and providing predicates
for equality to zero and one, binary equality, addition, and
multiplication.

We now establish lower bounds forALCK(D) with
Boolean key boxes and forALCO(D). These results are
obtained using a NEXPTIME-complete variant of the well-
known, undecidable domino problem[Knuth, 1968].
Definition 7. A domino systemD is a triple(T;H; V ), where
T � N is a finite set oftile typesandH;V � T � T repre-
sent the horizontal and vertical matching conditions. ForD a
domino system anda = a

0

; : : : ; a

n�1

2 T

n an initial condi-
tion, a mapping� : f0; : : : ; 2

n+1

g � f0; : : : ; 2

n+1

g ! T is
a solutionfor D anda iff, for all x; y < 2

n+1, the following
holds: (i) if �(x; y) = t and�(x+1 mod 2

n+1

; y) = t

0, then
(t; t

0

) 2 H ; (ii) if �(x; y) = t and�(x; y + 1 mod 2

n+1

) =

t

0, then(t; t0) 2 V ; and (iii) �(i; 0) = a

i

for i < n. �

This variant of the domino problem is NEXPTIME-
complete[Lutz, 2003]. The three NEXPTIME lower bounds
are obtained by using suitable and admissible concrete do-
mainsD

1

, D
2

, andD
3

to reduce the above domino prob-
lem. More precisely, the simplest concrete domainD

1

is used
in the reduction toALCK(D

1

)-concept satisfiability w.r.t.
Boolean (n-ary) key boxes, the slightly more complexD

2

is used in the reduction toALCK(D
2

)-concept satisfiabil-
ity w.r.t. Booleanunary key boxes, and the most powerful
concrete domainD

3

is used in the reduction toALCO(D
3

)-
concept satisfiability without key boxes.

The idea underlying all three reductions is to use concept
namesX

0

; : : : X

n

; Y

0

; : : : ; Y

n

to represent positions in the
2

n+1

� 2

n+1-torus: if a is a domain element representing
the position(i; j), thena 2 X

I

`

expresses that thè-th bit in
the binary coding ofi is 1, anda 2 Y

I

`

expresses that thè-th
bit of j is 1. We use standard methods to enforce that there
exists a domain element for every position in the torus. The
main difference between the three reductions is how it is en-
sured that no position is represented by twodifferentdomain
elements—we call thisuniqueness of positions.

The first reduction uses the very simple concrete do-
main D

1

, which is based on the setf0; 1g and only pro-
vides unary predicates=

0

, =
1

, and their negations. Unique-
ness of positions is ensured by translating the position(i; j)

of a domain elementa into concrete domain values: for
xpos

`

2 N


F

, we enforce thatxposI
`

(a) = 1 if a 2 X

I

`

and0
otherwise (analogously forypos

`

andY
`

). Then the key def-
inition (xpos

0

; : : : ; xpos

n

; ypos

0

; : : : ; ypos

n

keyfor>) obvi-
ously ensures uniqueness of positions. Since the reduction
concept is path-free andD

1

-satisfiability is easily seen to be
in PTIME, we obtain the following:

Theorem 8. D
1

-satisfiability is inPTIME and satisfiability
of path-freeALCK(D

1

)-concepts w.r.t. simple key boxes is
NEXPTIME-hard.

The (somewhat artificial) concrete domainD
1

can be replaced
by many natural concrete domainsD proposed in the litera-
ture[Baader and Hanschke, 1992; Haarslev and Möller, 2002;
Lutz, 2002b; 2002d]: it suffices thatD provides two unary
predicates denoting disjoint singleton sets.

The second reduction uses the more complex concrete do-
mainD

2

, which “stores” whole bit vectors rather than only
single bits. InD

2

, we can translate the position(i; j) of an
elementa from conceptsX

`

; Y

k

into a single bit vector of
length2(n + 1) that is then stored as abv-successor ofa,
wherebv is a concrete feature. Since we replaced the2(n+1)

concrete features used in the first reduction (one for each bit)
by the single featurebv, it now suffices to use the simple
unary key box(bv keyfor>) to ensure uniqueness of posi-
tions. As inD

1

, the reduction concept is path-free. In[Lutz
et al., 2002], it is shown thatD

2

-satisfiability is in PTIME.

Theorem 9. D
2

-satisfiability is inPTIME and satisfiability of
path-freeALCK(D

2

)-concepts w.r.t. simple unary key boxes
is NEXPTIME-hard.

Again, the artificial concrete domainD
2

can be replaced by
more natural ones: we can simulate bit vectors using inte-
gers and the necessary operations on bit vectors by unary
predicates=

n

for every intergern and a ternary addition
predicate—for more details see[Lutz et al., 2002].

The last lower bound is concerned with the DLALCO(D).
In the absence of key boxes, we need a different reduction
strategy and the more complex concrete domainD

3

, which
extendsD

2

with so-called domino arrays that allow us to store
the tiling of thewholetorus in a single concrete domain value.
We can then ensure uniqueness of positions using asingle
nominal. Computationally, the concrete domainD

3

is still
very simple, namely in PTIME. However, it no longer suffices
to use only path-free concepts.

Theorem 10. D
3

-satisfiability is inPTIME and satisfiability
ofALCO(D

3

)-concepts isNEXPTIME-hard.

4 Reasoning Procedures
We describe two tableau-based decision procedures for con-
cept satisfiability in DLs with concrete domains, nomi-
nals, and keys. The first is forALCOK(D)-concepts w.r.t.
Boolean key boxes. This algorithm yields a NEXPTIME up-
per complexity bound matching the lower bounds established
in Section 3. The second procedure is forSHOQK(D) w.r.t.
path-free key boxes and also yields a tight NEXPTIME up-
per complexity bound.SHOQK(D) is an extension of the
DL SHOQ(D) introduced in[Horrocks and Sattler, 2001;



Pan and Horrocks, 2002], which provides a wealth of ex-
pressive possibilities such as transitive roles, role hierar-
chies, nominals, qualifying number restrictions, and general
TBoxes with a path-free concrete domain constructor and
path-free key boxes. Path-freeness ofSHOQK(D)’s con-
crete domain constructor is crucial for decidability. More-
over, it allows us to admit general rather than only Boolean
key boxes.

Tableau algorithms decide the satisfiability of the input
concept (in our case w.r.t. the input key box) by attempting to
construct a model for it: starting with an initial data structure
induced by the input concept, the algorithm repeatedly ap-
plies completion rules. Eventually, the algorithm either finds
an obvious contradiction or it encounters a contradiction-free
situation in which no more completion rules are applicable.
In the former case the input concept is unsatisfiable, while in
the latter case it is satisfiable.

Existing tableau algorithms for DLs with concrete do-
mains use admissibility as an “interface” between the tab-
leau algorithm and a concrete domain reasoner[Lutz, 2002b;
Baader and Hanschke, 1991]. In the presence of keys,
this is not enough: besides knowing whether a givenD-
conjunction is satisfiable, the concrete domain reasoner has
to provide information on variables that must take the same
value in solutions. As an example, consider the concrete
domainN = (N; f<

n

j n 2 Ng) and theN-conjunction

 = <

2

(v

1

) ^ <

2

(v

2

) ^ <

2

(v

3

): Obviously, every solution
Æ for 
 identifies two of the variablesv

1

; v

2

; v

3

. This informa-
tion has to be passed from the concrete domain reasoner to the
tableau algorithm since, in the presence of key boxes, it may
have an impact on the satisfiability of the input concept. E.g.,
this information transfer reveals the unsatisfiability of9R:Au

9R:(:AuB)u9R:(:Au:B)u8R:9g:<

2

w.r.t.g keyfor>.
To formalize this requirement, we strengthen the notion of ad-
missibility intokey-admissibility.

Definition 11. A concrete domainD is key-admissibleiff (i)
�

D

contains a name>
D

for �
D

; (ii) �

D

is closed under
negation, and (iii) there exists an algorithm that takes as input
aD-conjunction
, returns
lash if 
 is unsatisfiable, and oth-
erwise non-deterministically outputs an equivalence relation
� on the set of variablesV used in
 such that there exists a
solutionÆ for 
 with the following property: for allv; v0 2 V

Æ(v) = Æ(v

0

) iff v � v

0

: Such an equivalence relation is
henceforth called aconcrete equivalence. We say thatex-
tendedD-satisfiability is in NPif there exists an algorithm as
above running in polynomial time. �

It can easily be seen that any concrete domain that is ad-
missible and provides for an equality predicate is also key-
admissible[Lutz et al., 2002].

In the following, we assume that all concepts (the input
concept and those occuring in key boxes) are innegation nor-
mal form (NNF), i.e., negation occurs only in front of concept
names and nominals; if the concrete domainD is admissi-
ble, then everyALCOK(D)-concept can be converted into
an equivalent one in NNF[Lutz et al., 2002]. We use _:C
to denote the result of converting the concept:C into NNF,
sub(C) to denote the set of subconcepts ofC, andsub(K) to
denote the set of subconcepts of all concepts occurring in key

boxK. Moreover, we use
l(C;K) as abbreviation for the set

sub(C) [ sub(K) [ f _:D j D 2 sub(K)g:

Complexity of ALCOK(D)

We start the presentation of theALCOK(D) tableau algo-
rithm by introducing the underlying data structure.

Definition 12. Let O
a

andO



be disjoint and countably in-
finite sets ofabstractandconcrete nodes. A completion tree
for anALCOK(D)-conceptC and a key boxK is a finite,
labeled tree(V

a

; V




; E;L) with a set of nodesV
a

[ V




such
thatV

a

� O

a

, V



� O




, and all nodes fromV



are leaves.
Each nodea 2 V

a

of the tree is labeled with a subsetL(a)
of 
l(C;K); each edge(a; b) 2 E with a; b 2 V

a

is labeled
with a role nameL(a; b) occurring inC orK; and each edge
(a; x) 2 E with a 2 V

a

andx 2 V




is labeled with a concrete
featureL(a; x) occurring inC orK.

For T = (V

a

; V




; E;L) anda 2 V

a

, we uselev
T

(a) to
denote the depth at whicha occurs inT (starting with the root
node at depth 0). Acompletion systemfor anALCOK(D)-
conceptC and a key boxK is a tuple(T;P ;�;�), where
T = (V

a

; V




; E;L) is a completion tree forC andK, P is
a function mapping eachP 2 �

D

with arity n appearing in
C to a subset ofV n




, � is a linear ordering ofV
a

such that
lev

T

(a) � lev

T

(b) impliesa � b, and� is an equivalence
relation onV




.
LetT = (V

a

; V




; E;L) be a completion tree. A nodeb 2
V

a

is anR-successorof a nodea 2 V

a

if (a; b) 2 E and
L(a; b) = R. Similarly, a nodex 2 V




is a g-successorof
a if (a; x) 2 E andL(a; x) = g. For pathsu, the notion
u-successoris defined in the obvious way. �

Intuitively, the relation� records equalities between concrete
nodes that have been found during the model construction
process. The relation� induces an equivalence relation�

a

on abstract nodes which, in turn, yields the equivalence rela-
tion�




� � on concrete nodes.

Definition 13. LetS = (T;P ;�;�) be a completion system
for a conceptC and a key boxK with T = (V

a

; V




; E;L),
and let� be an equivalence relation onV

a

. For eachR 2

N

R

, a nodeb 2 V

a

is anR=�-neighborof a nodea 2 V

a

if there exists a node
 2 V

a

such thata � 
 and b is an
R-successor of
. For pathsu, the notionu=�-neighboris
defined analogously.

We define a sequence of equivalence relations
�

0

a

� �

1

a

� � � � onV
a

as follows:

�

0

a

= f(a; a) j a 2 V

a

g

[f(a; b) 2 V

2

a

j 9N 2 N

O

: N 2 L(a) \ L(b)g
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i+1

a

=�

i

a

[

f(a; b) 2 V

2

a

j 9
 2 V

a

; f 2 N

aF

:

a andb aref=�i

a

-neighbors of
g [
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Intuitively, if we havea �
a

b, thena andb describe the same
domain element of the constructed model (and similarly for
the�




relation on concrete nodes).
Let D be a key-admissible concrete domain. To de-

cide the satisfiability of anALCOK(D)-conceptC
0

w.r.t.
a Boolean key boxK (both in NNF), the tableau algo-
rithm is started with theinitial completion systemS
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D

occurring inC
0

to ;. We now
introduce an operation that is used by the completion rules to
add new nodes to completion trees.

Definition 14. LetS = (T;P ;�;�) be a completion system
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R andL(b) = ;. Moreover,b is inserted into� such that
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(
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.
We writeS + agx to denote the completion systemS0 that
can be obtained fromS by adding(a; x) to E and setting
L(a; x) = g.
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The completion rules are given in Figure 1, where we assume
that newly introduced nodes are always fresh. TheRt and
R
h rules are non-deterministic and the upper five rules are
well-known from existing tableau algorithms forALC(D)-
concept satisfiability (c.f. for example[Lutz, 2002d]). Only
R8 deserves a comment: it considersR=�

a

-neighbors rather
thanR-successors since�

a

relates nodes denoting the same
domain element.

The last two rules are necessary for dealing with key boxes.
The “choose rule”R
h (c.f. [Hollunder and Baader, 1991;
Horrockset al., 2000]) guesses whether an abstract nodea

satisfiesC in case ofC occurring in a key definition and
a having neighbors for all pathsu

i

in this key definition.
TheRp rule deals with equalities between abstract nodes as
recorded by the�

a

relation: ifa �
a

b, thena andb describe
the same element, and thus their node labels should be identi-
cal. We choose one representative for each equivalence class
of �

a

(the node that is minimal w.r.t.�) and make sure that
the representative’s node label contains the labels of all the
nodes it represents.

Definition 15. LetS = (T;P ;�;�) be a completion system
for a conceptC and a key boxKwithT = (V
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Figure 1: Completion rules forALCOK(D).

say that the completion systemS is concrete domain satisfi-
able iff the conjunction
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^

P used inC
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;:::;x
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)2P(P )
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is satisfiable.S contains aclashiff (i) there is ana 2 V

a

and
anA 2 N

C

such thatfA;:Ag � L(a); (ii) there area 2 V

a

andx 2 V




such thatg" 2 L(a) andx is g=�
a

-neighbor of
a; or (iii) S is not concrete domain satisfiable. IfS does not
contain a clash, thenS is calledclash-free. S is completeif
no completion rule is applicable toS. �

We now give the tableau algorithm in pseudocode nota-
tion, where
he
k denotes the algorithm computing concrete
equivalences as described in Definition 11:

define proceduresat(S)
do

if S contains a clashthen return unsatis�able

� := 
he
k(�

S

)

compute�
a

and then�



while� 6= �




if S contains a clashthen return unsatis�able

if S is completethen return satis�able

apply a completion rule toS yieldingS0

return sat(S

0

)

The algorithm realizes a tight coupling between the con-
crete domain reasoner and the tableau algorithm: if the con-
crete domain reasoner finds that two concrete nodes are equal,
the tableau algorithm may use this to deduce (via the com-
putation of�

a

and�



) even more equalities between con-
crete nodes. The concrete domain reasoner may then return
in 
he
k(�

S

) further “equalities”� and so forth.
A similar interplay takes place in the course of several re-

cursion steps: equalities of concrete nodes provided by the



concrete domain reasoner may make new rules applicable (for
exampleRp and thenR9
) which changesP and thus also�

S

.
This may subsequently lead to the detection of more equali-
ties between concrete nodes by the concrete domain reasoner,
and so forth. Note that, in the absence of keys boxes, there is
much less interaction: it suffices to apply the concrete domain
satisfiability check only once after the completion rules have
been exhaustively applied[Baader and Hanschke, 1991].

In [Lutz et al., 2002], we prove that the algorithm runs
in non-deterministic exponential time: there are exponential
bounds on the number of abstract and concrete nodes in the
completion system, on the number of while loop iterations in
each recursion step, and on the size of�

S

. This yields the
following upper bound, which is tight by Theorem 9.
Theorem 16. For D a key-admissible concrete domain such
that extendedD-satisfiability is inNP,ALCOK(D)-concept
satisfiability w.r.t. Boolean key boxes is inNEXPTIME.

Complexity of SHOQK(D)

We have designed a tableau algorithm forSHOQK(D) as a
combination of the one forSHOQ(D) in [Horrocks and Sat-
tler, 2001] and the one forALCOK(D) presented above. It is
restricted to path-free concepts and path-free key boxes, but
can handle complex concepts in key boxes. The most impor-
tant difference from theALCOK(D) algorithm is as follows:
in the presence of non-Boolean key boxes, theR
h rule may
add concepts of positive “role depth” to arbitrary nodes in the
completion tree. Thus the role depth does not automatically
decrease with the depth of nodes in the tree (as in the case
of ALCOK(D)) and a naive tableau algorithm would con-
struct infinite trees. However, even forSHOQ(D) without
key boxes, one has to enforce termination artificially by us-
ing a cycle detection mechanism calledblocking—whereas
theALCOK(D) algorithm terminates “naturally”. It can be
shown that blocking can be used in the presence of key boxes
without corrupting soundness or completeness. A detailed
description of this algorithm and a correctness proof is given
in [Lutz et al., 2002]. As a by-product of theSHOQK(D)
tableau algorithm, we obtain asmall model property: every
satisfiableSHOQK(D)-concept has a model of size expo-
nential in the concept length. Thus we obtain the following
upper bound, which is tight by Theorem 9.
Theorem 17. For D a key-admissible concrete domain such
thatD-satisfiability is inNP, SHOQK(D)-concept satisfia-
bility w.r.t. path-free key boxes is inNEXPTIME.

5 Summary
We have identified key boxes as an interesting extension of
description logics with concrete domains, introduced a num-
ber of natural description logics, and provided a comprehen-
sive analysis of the decidability and complexity of reasoning.
Moreover, we have proposed tableau algorithms for two such
(NEXPTIME-complete) logics.

The main result of our investigations is that key constraints
are rather powerful, since they dramatically increase the com-
plexity of reasoning: PSPACEALC(D) becomes undecidable
with unrestricted key boxes, and NEXPTIME-complete with
Boolean key boxes—provided that the concrete domainD is
not too complex, i.e., extendedD-satisfiability is in NP.
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