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Abstract In this paper, we extend the well-known DLs with concrete

. . . domainsALC(D) and SHOQ(D) [Baader and Hanschke,
Many descr!ptlon logics (DLs) compme knowledge 1991; Horrocks and Sattler, 200pWwith key constraints and
representation on an abstract, logical level with an 50 \vse the complexity of reasoning with the resulting log-
interface to “concrete” domains such as numbers ;o ALCOK (D) andSHOQK(D). We show that allowing
and strings. We propose to extend su_ch DLs with complex concepts to occur in key constraints dramatically
key constraints that allow the expression of state-  j,ea5e5 the complexity oflCC(D) (which is PSACE
ments I|k_e US citizens are ’L,quuely |dent|f_|e<_j by complete): it becomes undecidable. Restricting key con-
the|_r social security number’. Based on .th's 'dea’ straints to atomic concepts (such amihan” in the above
we introduce a number of natural description logics o, ample) still yields a NEPTIME-hard formalism, even for
and present (un_)deC|dab|I|ty results and tightNE rather simple (PTME) concrete domains. We show several
PTIME complexity bounds. variants of this result that depend on other charactesistic

key constraints, such as the number of concrete features and

1 Introduction the “path length”. This effect is consistent with the observ

tion that the PSACE upper bound ford£C (D) is not robust

éLutz, 2003.

Additionally, we prove the NEPTIME bounds to be

Description Logics (DLs) are a family of popular knowledge
representation formalisms. Many expressive DLs combin

powerful logical languages with an interface to concrete dotight by presenting tableau algorithms f&izCOK(D) and

mains (e.g., integers, reals, strings) and built-in prais . L -
(e.g.,<$ sgb—strin%—of)[Lutz, 2002[;:| ')I'hese can be Fijsed to SHOQK(D) with key admissibleoncrete domains that are

form descriptions such as “employee working for the governi" NP, where key admissibility is a simple and natural prop-
mentand earning more than her boss” that combine “abstrac rty. We have chosen to Qewse tableau_ a'gof't.hms since they
logical components (e.g., working for the government) with ave the potential to be implemented in efficient reasoners
components using concrete domains and predicates (e.g..21d have been shown to behave well in praciiserrocks
numerical comparison of earnings). et al, 200d. Due to space restrictions, we can .only sketch

DLs with concrete domains have turned out to be useful foP"0fs and refer téLutz et al, 2003 for more details.
reasoning about conceptual (database) mddets, 20024,
and as the basis for expressive ontology langufigesocks 2 Preliminaries
etal, 2003. So far, however, they have not t_)een able to ex'First, we formally introduce the description logic
presskey constraintsi.e., constraints expressing the fact thatAECOIC(D)
certain “concrete features” uniquely determine the idgmf '
the instances of a certain class. E.g., the concrete feésone Definition 1. A concrete domairD is a pair (Ap, ®p),
cial security number (SSN)” might serve as a key for citizensvhere Ap is a set andbp a set of predicate names. Each
of the US, and the combination of identification number andpredicate namé € & is associated with an arity and an
manufacturer might serve as a key for vehicles. Such conr-ary predicate®” C AR,
straints are important both in databases and in realistic on LetNc, No, Ngr, N be pairwise disjoint and countably in-
tology applications. In a DL context, key constraints havefinite sets ofconcept namesiominals role namesandcon-
so far only been considered on logical, “non-concrete” do-crete features We assume thalr has a countably infinite
mains[Borgida and Weddell, 1997; Calvaneseal, 2000;  subsetN,r of abstract features A pathwu is a composition
Khizderet al, 2001; Toman and Weddell, 2002 fi--- fng Of n abstract featureg,,..., f, (n > 0) and a

It is easy to see that concrete keys can expnessinals  concrete featurg. Let D be a concrete domain. The set of
i.e., concepts to be interpreted as singleton sets (clasely ALCOK(D)-concepts is the smallest set such that (i) every
lated to the “one-of” operator): e.g., if SSN is a key for Hu- concept name and every nominal is a concept, and (@) if
man §SN keyforHuman), then the concept “Human with SSN andD are conceptsR is a role namey is a concrete feature,
1234” (Human M 3ISSN. =;534) has at most one instance. ui,- .., u, are paths, an® € ®p is a predicate of arity,



then the following expressions are also concepts: Defini_tic_)n 3. LetD be a concrete domain. R-conjunction
~C. CND, CuD, 3R.C. VR.C, Juy.. ... u,.P, andg?. is a (finite) predicate conjunction of the form

_ (1) i
A key definitoris an expressiofuy, . .., u keyforC') for €= /\ Pi(xy,... ),
uy,...,u (k> 1) paths and” a concept. A finite set of key ) i<k ' )
definitions is called &ey box ¢ WhereP; is ann;-ary predicate foi < k and thexz,” are

variables. AD-conjunctionc is satisfiableiff there exists a

As usual, we us€ to denote an arbitrary propositional tau- functions mapping the variables into elements ofAp such

tology. Throughout this paper, we will consider severafjfra () () .
ments of the logicdLCOK(D): ALCO(D) is obtained from  tat (0(zg "), ..., d(wn/)) € PP for eachi < k. We say
ALCOK(D) by admitting only empty key boxes; by disal- that the concrete domain is admissibleff (i) ®p contains a

lowina th f inals, btain the f D nameTp for Ap; (i) @p i_s closed under negation, and (iii)
;vzrjgcoe(zg)s gr?d,rz&rgllg?l)s) \(/)vfe j ECag K(;).ragmﬂmIC( ) satisfiability of D-conjunctions is decidable. We refer to the

- . . . : satisfiability of D-conjunctions a®-satisfiability.
The description logicALCOK(D) is equipped with a ISHabiity onjunclic isfiability. <>_
Tarski-style set-theoretic semantics. Along with the sema AS We shall see, it sometimes makes a considerable differ-

tics, we introduce the standard inference problems: cdnce@nce W.r.t. complexity and decidability to restrict key bex
satisfiability and concept subsumption, in various ways. Because of this, it is convenient to intaelu

- . . . . 7 the following notions:
Definition 2. An interpretationZ is a pair(Az, ), where L , ,
Az is a non-empty set, called treomain and-” is thein- Definition 4. A key box K is calledBooleanif all concepts

terpretation function The interpretation function maps each @PPearing in (key definitions ikl are Boolean combinations
concept namé’ to a subseC'” of Az, each nominalV to of concept namegath-freeif all key definitions inkC are of

a singleton subseV” of Az, each role name to a subset the form(gy, ..., gn keyforC) with g, ..., g, € Ner; sim-
RT of A; x Ay, each abstract featugeto a partial function pleif it is both path-free and Boolean; anduaary key boxf

#Z from Az to Ay, and each concrete featujeo a partial all key definitions inkC are of the formw keyforC'). A con-

functiong” from Az to Ap. ceptC is calledpath-freeif, in all its subconcepts of the form
Ifu=f - f.gisapath andl € Az, thenu?(d) is de- Juy, ..., up.P,ug, ..., u, are concrete features. %

fined asg” (fX--- (f£(d))---). The interpretation function To emphasize that a key box munit necessarily be Boolean

is extended to arbitrary concepts as follows: or path-free, we sometimes call such a key bereral Sim-

ilarly, to emphasize that a key box is not necessarily a unary

(=0) = Az \ C* key box, we sometimes call such a key boeary key box

=CtnD?

)
(CuD)yt:=ctup* i
@AR.C)T :={de Az |Te € Ar: (de) € R nee CT} 3 Lower Complexity Bounds
)
)

N

T._ : T 1 In this section, we present lower complexity bounds for DLs

(VR('CT T }Z E ﬁz I Vg(i)%ﬁae%gé €R*+ecCh} with concrete domains, key boxes and nominals. We start by
gr- = - showing that satisfiability 0fA£C/C(D)-concepts w.r.t. gen-

eral key boxes is undecidable for many interesting concrete
domains. This (_jiscouraging result is r_elativized by the fac
An interpretatiorZ is amodelof a concepC' iff C # 0. that, as shown in Section 4, the restriction to Boolgar_w kgy
Moreover,Z satisfiesa key definition(u,, . . . , u,, keyforC) boxes recovers decidability. Next, we prove that satidfiabi
if, forany a,b € C%, u¥(a) = uZ(b) for 1 < i < n implies ity of path-free ALCK(D)-concepts w.r.t. S|rr_1ple key boxes_
a = b. Tis amodelof a key boxK iff Z satisfies all key IS NExPTIME-hard for many concrete domains and that this
definitions ink. A conceptC is satisfiable w.rt. a key box Nolds even if we restrict ourselves to unary key boxes. Fi-

K iff ¢ andK have a common modell' is subsumed by~ nally, we identify a concrete domain such thaCCO(D)-
conceptD w.rt. K (written C' Cx D) iff T C DT forall ~ concept satisfiability (without key boxes) is already NE

modelsZ of K. O T'ME'har.d' . -
Undecidability of ALCK(D)-concept satisfiability w.r.t.

It is well-known that, in DLs providing for negation, sub- genera| key boxes is proved by reduction of the undecidable

sumption can be redqced to (ur))satlsflab|llty and vice Versgpst Correspondence Problem (PCR)st, 194

C Cx D iff C 11 —D is unsatisfiable w.r.t'C andC' is sat- L ) L -

isfiable w.r.t. X iff ¢ Zx —T. Thus we can concentrate Definition 5. An instancer of the PCP is given by a finite,

on concept satisfiability when investigating the complexit Non-empty list(¢y,r1), ..., (¢, ry) of pairs of words over

of reasoning: the above reduction implies the correspandinSOMe alphabel. A sequence of integers, . . ., ,,, with

bounds for subsumption and the complementary complexiti{] > 1, is called asolutionfor P iff ¢;, ---{;, =1y -1y,

class (usually co-NEPTIME in this paper). he problem is to decide whether a given instaitéas a
When devising decision procedures for DLs which are nof0!ution. %

tied to aparticular concrete domairgdmissibilityof the con- ~ The reduction uses the admissible concrete doMaintro-

crete domain usually serves as a well-defined interface beduced in[Lutz, 2003, whose domain is the set of words over

tween the decision procedure and concrete domain reasonetsand whose predicates express concatenation of words. For

[Baader and Hanschke, 1991; Lutz, 20p2b each PCP instanc® = (¢1,r1),...,(ly,r;), we define a

(Buy, ..., up.P)r :={d€ Az | Jzy,..., 2, € Ap:
ut(d) = x; and(zy,...,2,) € PP}
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conceptC'p and unary key boXCp such thatP hasnosolu-  of a domain element into concrete domain values: for
tion iff C'p is satisfiable w.r.tCp. Intuitively, Cp andKp  xpos, € N, we enforce thatpos? (a) = 1 if « € X} and0
enforce an infinitek-ary tree, where each node represents atherwise (analogously fopos, andY;). Then the key def-
sequences of integers, i.e. a potential solution. The rble anition (xpos, ..., xpos,,, yposy, . . . , ypos,, keyfor T) obvi-

the key box is to guarantee that the tree is of infinite depthpusly ensures uniqueness of positions. Since the reduction
concrete features are used to store the left and right cencatconcept is path-free and, -satisfiability is easily seen to be
nations corresponding to the potential solutions; andatmc in PTIME, we obtain the following:

nation predicates from the concrete dom#are used 10  theqrem g, D, -satisfiability is inPTiME and satisfiability

compute them. Finally, an inequality predicate also preatid path-free ACC/KC(Dq)-concepts w.r.t. simple key boxes is
by W is used to guarantee that none of the potential solutiong gy pT\ve-hard.

is indeed a solution. Since it is known th&tsatisfiability is o ]

in PTIME [Lutz, 2003, we obtain the following theorem. The (somewhat artificial) concrete dom&incan be replaced
Theorem 6. There exists a concrete domain such that by many natural concrete domaisproposed in th? litera-
D-satisfiability is inPTIME and satisfiability ofALCK(D)- ture[Baader and Hanschke, 1992; Haarslev and Moller, 2002;

concepts w.r.t. (general) unary key boxes is undecidable. Lutz, 2002b; 2002 it suffices thatD provides two unary

} ) predicates denoting disjoint singleton sets.
As shown rlLutz, 2003; Lutzet al. 2004, the reduction can The second reduction uses the more complex concrete do-
easily be adapted to more natural concrete domains such zrinsain D. which “stores” whole bit vectors raF'zher than onl
numerical ones based on the integers and providing pred;icatsin le ;its InDs, we can translate the positii, j) of an y
for equality to zero and one, binary equality, addition, and 9 : 2 . P an, j
multiplication. elementa from conceptsX,, Y} into asingle bit vector of

: : length2(n + 1) that is then stored as lav-successor ofi,
We now establish lower bounds fadLCK(D) with . .
Boolean key boxes and fodCCO(D). These (res)ults are wherebv is a concrete feature. Since we replacedhet 1)

obtained using a NEPTIME-complete variant of the well- concrete features used in the first reduction (one for edgh bi

known, undecidable domino problditinuth, 1968. by the single featurév, it now suffices to use the simple
. . X , unary key box(bv keyfor T) to ensure uniqueness of posi-
Definition 7. A domino syster® is a triple(T’, ,V'), where  ions As inD,, the reduction concept is path-free. [lrutz

I' C Nis afinite set ofile typesand H,V C 7' x T'repre- gt |, 2004, it is shown thaD,-satisfiability is in PTME.

sent the horizontal and vertical matching conditions. Ba e -
domino system and = ao, ..., a, ; € T" aninitial condi- Theorem 9. D,-satisfiability is inP TIME and satisfiability of

tion, a mappingr : {0, ...,2"1} x {0,..., 21} — T'is path-free ACCK (D2 )-concepts w.r.t. simple unary key boxes

asolutionfor © anda iff, for all z,y < 21, the following 1S NEXPTIME-hard.

holds: (i) if 7(z,y) = tandr(x+1 mod 2" y) = ¢, then  Again, the artificial concrete domab, can be replaced by
(t,t") € H; (ii) if 7(z,y) = tandr(z,y +1 mod 2"*t!) =  more natural ones: we can simulate bit vectors using inte-
t', then(t,t') € V; and (i) 7(,0) = a; fori < n. ¢ gers and the necessary operations on bit vectors by unary

This variant of the domino problem is N®TIME- predicates=,, for every intergem and a ternary addition
complete[Lutz, 2003. The three NEPTIME lower bounds ~ Predicate—for more details séieutz et al, 2003.
are obtained by using suitable and admissible concrete do- The last lower bound is concerned with the BILCO(D).
mains Dy, Dy, and D3 to reduce the above domino prob- In the absence of key boxes, we need a different reduction
lem. More precisely, the simplest concrete doniajris used  strategy and the more complex concrete doniajnwhich
in the reduction toALCK (D4 )-concept satisfiability w.r.t. extend<, with so-called domino arrays that allow us to store
Boolean {-ary) key boxes, the slightly more complé&x the tiling of thewholetorus in a single concrete domain value.
is used in the reduction telLCK(D)-concept satisfiabil- We can then ensure uniqueness of positions usismgle
ity w.r.t. Booleanunary key boxes, and the most powerful nominal. Computationally, the concrete dom&p is still
concrete domails is used in the reduction td LCO(D3)-  very simple, namely in PIME. However, it no longer suffices
concept satisfiability without key boxes. to use only path-free concepts.

The idea underlying all three reductions is to use conce
namesXy,...X,,Yy,...,Y, to represent positions in the
2ntl % 2ntltorus: if a is @ domain element representing
the position(i, j), thena € X7 expresses that thieth bit in )
the binary coding of is 1, anda € Y expresses thattiieth 4 Reasoning Procedures

bit of j is 1. We use standard methods to enforce that thergye describe two tableau-based decision procedures for con-
exists a domain element for every position in the torus. ThQ;ept satisfiability in DLs with concrete domains, nomi-
main difference between the three reductions is how it is ennals, and keys. The first is fod LCOK(D)-concepts w.r.t.
sured that no position is represented by tiifferentdomain  Boolean key boxes. This algorithm yields a KT IME up-
elements—we call thigniqueness of positions per complexity bound matching the lower bounds established
The first reduction uses the very simple concrete doin Section 3. The second procedure is§S{O QK (D) w.r.t.
main Dy, which is based on the sd0),1} and only pro- path-free key boxes and also yields a tight NEIME up-
vides unary predicates,, =;, and their negations. Unique- per complexity bound SHOQK (D) is an extension of the
ness of positions is ensured by translating the positiof) DL SHOQ(D) introduced in[Horrocks and Sattler, 2001;

Pfheorem 10. Ds-satisfiability is inPTIME and satisfiability
of ALCO(D3)-concepts iNEXPTIME-hard.



Pan and Horrocks, 2002which provides a wealth of ex- box k. Moreover, we usel(C, K) as abbreviation for the set
pressive possibilities such as transitive roles, role dnier

chies, nominals, qualifying number restrictions, and ganhe sub(C') Usub(K) U{=D [ D € sub(K)}.

TBoxes with a path-free concrete domain constructor and )

path-free key boxes. Path-freenessS6{OQK(D)’s con-  Complexity of ALCOK(D)

crete domain constructor is crucial for decidability. More \we start the presentation of théCOK (D) tableau algo-
over, it allows us to admit general rather than only Booleanihm by introducing the underlying data structure.
key boxes.

Tableau algorithms decide the satisfiability of the inputDefinition 12. Let O, andO. be disjoint and countably in-
concept (in our case w.r.t. the input key box) by attempting t finite sets ofabstractandconcrete nodesA completion tree
construct a model for it: starting with an initial data sture ~ for an ALCOK/(D)-conceptC’ and a key box is a finite,
induced by the input concept, the algorithm repeatedly aplabeled tregV;, Vc, E, £) with a set of noded/, U V< such
plies completion rules. Eventually, the algorithm eithedé  thatV, € O,, Vo € Oc, and all nodes froni. are leaves.
an obvious contradiction or it encounters a contradicfiee- Each node: € V; of the tree is labeled with a subséta)
situation in which no more completion rules are applicableof c/(C,K); each edgéa,b) € E with a,b € V; is labeled
In the former case the input concept is unsatisfiable, while i With a role nameC(a, b) occurring inC' or K'; and each edge
the latter case it is satisfiable. (a,z) € Ewith a € V, andz € V; is labeled with a concrete

Existing tableau algorithms for DLs with concrete do- féature£(a,z) occurring inC or K.
mains use admissibility as an “interface” between the tab- For'T = (V;, V¢, E,£) anda € V;, we uselevy(a) to
leau algorithm and a concrete domain reasghetz, 2002b; ~ denote the depth at whiehoccurs inT (starting with the root
Baader and Hanschke, 1991 In the presence of keys, node at depth 0). Aompletion systerfor an ALCOK(D)-
this is not enough: besides knowing whether a gigen conceptC’ and a key boxC is a tuple(T, P, <, ~), where
conjunction is satisfiable, the concrete domain reasoner hal' = (Va, Ve, E, £) is a completion tree fo€" and K, P is
to provide information on variables that must take the samé function mapping eack € ®p with arity » appearing in
value in solutions. As an example, consider the concreté’ t0 a subset of’", < is a linear ordering o¥/, such that
domainN = (N,{<,| n € N}) and theN-conjunction levr(a) < levy(b) impliesa < b, and~ is an equivalence
¢ = <3(v1) A <2(v2) A <2(v3). Obviously, every solution relation onVc.

o for cidentifies two of the variables , v, v3. This informa- LetT = (V,, Vi, E, £) be a completion tree. A nodeec
tion has to be passed from the concrete domain reasoner to the is an R-successoof a nodea € V; if (a,b) € £ and
tableau algorithm since, in the presence of key boxes, it mayg(a,b) = R. Similarly, a noder € V¢ is a g-successoof
have an impact on the satisfiability of the input concept.,E.g a if (a,7) € E andL(a,r) = g. For pathsu, the notion
this information transfer reveals the unsatisfiabilitddf. Ar1~ u-successois defined in the obvious way. O

3R.(ANB)NIAR.(-AN=B)NYR.3g.<; Wrt.gkeyforT. o4 iively the relation records equalities between concrete
To fo_rmgl|;eth|s requirement, we strengthen the notiordefa 4 ges that have been found during the model construction
missibility into key-admissibility process. The relation induces an equivalence relaties,
Definition 11. A concrete domairD is key-admissibléf (i) on abstract nodes which, in turn, yields the equivalence rel
®p contains a namd& p for Ap; (i) ®p is closed under tion~ O ~ on concrete nodes.

negation, and (iii) there exists an algorithm that takes psti Definition 13. LetS = (T, P, <, ~) be a completion system

aD-conjunctione, returnsclash if ¢ is unsatisfiable, and oth- for a conceptC and a key boxC with T = (V;, V., E, £)
erwise non-deterministically outputs an equivalenceti®@a 4 |et~ be an equivalence relation dr Foar7 egch}% E
~ on the set of variable®” used inc such that there exists a Nk, a nodeb € V is an R/N—neighborof anodea € V.

’ a ~ a

solutions for c with the following property: foralb,v" € V' 4o 1e avists a node € V, such thata ~ ¢ andb is an

0(v) = o(v")iff v ~ v'. Such an equivalence relation is p g ccessor of. For pathsu, the notionu/~-neighboris
henceforth called @oncrete equivalenceWe say thaex-  jafined analogously

;ebnodvzdz-r?r?itrl]sfﬁbngly E(;r?wgn]icr;heere exists an algorlthn2>as We define a sequence of equivalence relations
ginpoly ' ~) C=! C ... onV; as follows:

It can easily be seen that any concrete domain that is ad-

missible and provides for an equality predicate is also key- ~g=1{(a,a) | a € Va}

admissibleLutz et al,, 2003. U{(a,b) € V| N € No: N € L(a) N L(D)}
In the following, we assume that all concepts (the input_i+1 _ U

concept and those occuring in key boxes) anedgation nor- ?

mal form (NNF)i.e., negation occurs only in front of concept {(ad) e V| FceV,, fe Nar :
names and nominals; if the concrete dom&ins admissi- a andb are f /=%-neighbors ot:} U
ble, then everyALCOK(D)-concept can be converted into {(a,b) € V2| I(us,..., uy, keyforD) € K,

an equivalent one in NNR_utz et al, 2004. We use-C : P
to denote the result of converting the concept into NNF, Fwr,. o wn ¢ @y is uy/~;-neighbor of,
sub(C) to denote the set of subconceptggfandsub(K) to Y1, yn 1 yj iSu;/~;-neighbor ofb,
denote the set of subconcepts of all concepts occurringyin ke DeL(@NLOANL<j<n:x;~yj)}



Finally, set~, = (U, ~%, and definer ~¢ y if 2 ~ y or
there aren € V, andg € Nr such thatr andy areg/~,-
neighbors ofu.

Intuitively, if we havea =, b, thena andb describe the same
domain element of the constructed model (and similarly for
the . relation on concrete nodes).

Let D be a key-admissible concrete domain. To de-
cide the satisfiability of andLCOK(D)-conceptCy w.r.t.
a Boolean key boxC (both in NNF), the tableau algo-
rithm is started with thenitial completion systent., =
(TCU » Po, m7 0)7 WhereTCU = ({a0}7 07 m7 {aO = {CO}})
andPy maps each? € ®p occurring inCy to (). We now
introduce an operation that is used by the completion roles t
add new nodes to completion trees.

Definition 14. LetS = (T, P, <, ~) be a completion system
with T = (V,, V., E, £). An element ofO, or O is called
freshin T if it does not appear ifT". We use the following
notions:

S + aRb: Leta € V4, b € O, freshinT, andR € Ng. We
write S + aRb to denote the completion syste$hthat can be

RO fC,NCy, €L

thenL(a) := L

fCiuC, el a) and{01,02} n E(a) =0
thenL(a) := L(a) U {C} for someC € {C1, C>}

if 3R.C' € L(a) and there is nd?/ ~,-neighborb of a
such thatC € L£(b),
thenS := S+ aRbandL(b) := {C}

if VR.C' € L(a), bis anR/=,-neighbor ofa, and
C ¢ L(b)
thenL(b) := L(b) U{C'}

R3cif Juq,...,un.P € L(a) and there are no
u;-successors; of a (for1 < i < n)
with (z1,...,z,) € P(P)
thenS := (S + auizy + - - - + aunxy,)
andP(P) :=P(P)U{(z1,...,zn)}

Rch if (u1,...,u, keyforC') € K, {C,~C} N L(a) =0,
and there are; /~,-neighborse; of a (for 1 < i < n)
thenL(a) := L(a) U{D} for someD € {C,~C}

Rp if £(b) € L(a) anda € V; is minimal w.r.t.<
such that =, b

a)and{C1,C>} € L(a)
a) U{C1,C2}

Ru

R4

RV

obtained fromS by adding(a, b) to £ and settingC(a,b) =

thenL(a) := L(a) U L(b)

R and L£(b) = 0. Moreover,b is inserted into< such that
b < cimplieslevr(b) < levr(c).

S+agx: Leta € V,, x € Oc freshinT andg € N.

We write S + agx to denote the completion systeffi that
can be obtained frony by adding(a,z) to £ and setting
Lla,x) =g.

When nestingt, we omit brackets writing, e.gS + aR1b +

bRyc for (S + aR1b) + bRoc. Letu = f -+ - f,,9 be a path.
With S + aux, wherea € V, andxz € O is fresh inT, we

denote the completion systest that can be obtained fro

by taking fresh nodels , . . ., b,, € O, and setting

S, = S+af1b1++bnflfnbn+bngx <>

The completion rules are given in Figure 1, where we assum
that newly introduced nodes are always fresh. Rheand

Figure 1: Completion rules fad LCOK (D).

say that the completion systefhis concrete domain satisfi-
ableiff the conjunction

(s A

P used inC'
(1,050 )EP(P)

is satisfiable.S contains eclashiff (i) there is ana € 1, and
anA € N¢ such tha{4,—A} C L(a); (ii) there area € V,
andz € V¢ such thatyt € £L(a) andz is g/~,-neighbor of
a; or (i) .S is not concrete domain satisfiable.dfdoes not
contain a clash, thefl is calledclash-free S is completef
go completion rule is applicable 1. O

We now give the tableau algorithm in pseudocode nota-

P(l‘17...7l‘n)/\ /\ :(x7y)

TRy

Rch rules are non-deterministic and the upper five rules argion, wherecheck denotes the algorithm computing concrete

well-known from existing tableau algorithms fot£C(D)-
concept satisfiability (c.f. for exampl&utz, 2002d). Only

RV deserves a comment: it considétgas,-neighbors rather
than R-successors since, relates nodes denoting the same
domain element.

The last two rules are necessary for dealing with key boxes.

The “choose rule’Rch (c.f. [Hollunder and Baader, 1991;
Horrockset al, 2000) guesses whether an abstract nade
satisfiesC' in case ofC occurring in a key definition and
a having neighbors for all paths; in this key definition.

The Rp rule deals with equalities between abstract nodes as

recorded by thev, relation: ifa ~, b, thena andb describe
the same element, and thus their node labels should be-iden

i . I
cal. We choose one representative for each equivalence cIa%1

of ~, (the node that is minimal w.r.&¥) and make sure that
the representative’s node label contains the labels ohall t
nodes it represents.

Definition 15. LetS = (T, P, <, ~) be a completion system
for a concepC and a key boXC with T = (15, V., <, ~). We

equivalences as described in Definition 11:
define proceduresat(S)
do
if S contains a clasthen return unsatisfiable
~ :=check((s)
computexs, and therrs.
while ~ # =~
if S contains a clasthen return unsatisfiable
if S'is completethen return satisfiable
apply a completion rule t&' yielding S’
return sat(S")
The algorithm realizes a tight coupling between the con-
(r‘lrete domain reasoner and the tableau algorithm: if the con-
ete domain reasoner finds that two concrete nodes are equal
e tableau algorithm may use this to deduce (via the com-
putation of~, and~.) even more equalities between con-
crete nodes. The concrete domain reasoner may then return
in check((s) further “equalities”~ and so forth.
A similar interplay takes place in the course of several re-
cursion steps: equalities of concrete nodes provided by the
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