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Abstrat. We analyze the omplexity of �nite model reasoning in the

desription logi ALCQI, i.e. ALC augmented with qualifying number

restritions, inverse roles, and general TBoxes. It turns out that all rele-

vant reasoning tasks suh as onept satis�ability and ABox onsisteny

are ExpTime-omplete, regardless of whether the numbers in number

restritions are oded unarily or binarily. Thus, �nite model reasoning

with ALCQI is not harder than standard reasoning with ALCQI.

1 Motivation

Desription logis (DLs) are a family of logial formalisms that originated in

the �eld of knowledge representation and are nowadays used in a wide range

of appliations [1℄. Similar to many modal logis (to whih DLs are losely re-

lated), most desription logis enjoy the �nite model property (FMP). This is,

for example, the ase for the basi propositionally losed DL ALC [12℄ that is

well-known to be a notational variant of the multi-modal logi K [11℄: satis�-

ability of ALC-onepts (the DL equivalent of a formula) w.r.t. �nite models

oinides with the satis�ability of ALC-onepts w.r.t. arbitrary models [11℄.

However, there also exist desription logis that do not enjoy FMP. One exam-

ple is the full �-alulus, i.e., the extension of ALC with �xpoints and inverse

roles (alled inverse modalitities in modal logi). For the ��-fragment of this

logi, �nite satis�ability was shown to be in 2-ExpTime [2℄ (to the best of our

knowledge, a mathing lower bound is not yet known), whereas satis�ability in

arbitrary models is known to be ExpTime-omplete [15℄. Another important

example is the DL ALCQI whih is obtained from ALC by adding qualifying

number restritions (orresponding to graded modalities in modal logi), inverse

roles, and general TBoxes (roughly orresponding to the universal modality).

The fat that ALCQI laks FMP beomes partiularly important if we on-

sider this logi's most prominent appliation, whih is reasoning about onep-

tual database models [4℄: if suh a model is desribed by one of the standard

formalisms|namely ER diagrams for relational databases and UML diagrams

for objet-oriented databases|then it an be translated into a DL TBox, i.e. a

set of onept equations; afterwards, a desription logi reasoner suh as FaCT



and RACER an be used to detet inonsistenies and to infer impliit IS-A

relationships between entities/lasses. This useful and original appliation has

already led to the implementation of tools that provide a GUI for speifying

oneptual models, automatize the translation into desription logis, and dis-

play the information returned by the DL reasoner [8℄. However, it is well-known

that there exist ER and UML diagrams whih are satis�able only in in�nite

models, but not in �nite ones [13℄. Sine all available DL reasoning systems are

performing reasoning w.r.t. arbitrary (as opposed to �nite) models, this means

that some inonsistenies and IS-A relationships will not be deteted if these

reasoners are used for reasoning about oneptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.

arbitrary models is that �nite model reasoning in desription logis suh as

ALCQI is not yet well-understood. The only known algorithm is presented by

Calvanese in [5℄, where he proves that reasoning in ALCQI is deidable in 2-

ExpTime. The purpose of this paper is to improve the understanding of �nite

model reasoning in desription logis by establishing tight ExpTime omplexity

bounds for �nite model reasoning in the DL ALCQI.

In Setion 3, we develop an algorithm that is apable of deiding �nite satis-

�ability of ALCQI-onepts w.r.t. TBoxes. Similar to Calvanese's approah, the

ore idea behind our algorithm is to translate a given satis�ability problem into

a set of linear equations that an then be solved by linear programming methods.

The main di�erene to Calvanese's approah is that our equation systems talk

about di�erent omponents of models, mosais, whih allows us to keep the size

of equation systems exponential in the size of the input. In this way, we improve

the best-known 2-ExpTime upper bound to a tight ExpTime one.

Sine the approah presented in Setion 3 presupposes unary oding of the

numbers ourring in qualifying number restritions, in Setion 4 we onsider

�nite model reasoning in ALCQI and numbers oded in binary. We give a poly-

nomial redution of ALCQI-onept satis�ability w.r.t. TBoxes to the satis�a-

bility of ALCFI-onept satis�ability w.r.t. TBoxes, where ALCFI is obtained

from ALCQI by allowing only the number 1 to be used in number restritions.

Sine �nite model reasoning in ALCFI is in ExpTime by the results from Se-

tion 3 (the oding of numbers is not an issue here), we obtain a tight ExpTime

bound for �nite model reasoning in ALCQI and numbers oded in binary.

Finally, in Setion 5 we onsider the �nite satis�abiliy of ABoxes w.r.t.

TBoxes. Intuitively, ABoxes desribe a partiular state of a�airs, a \snapshot"

of the world. By a redution to (�nite) onept satis�ability, we are able to show

that this reasoning task is also ExpTime-omplete, independently of the way in

whih numbers are oded.

This paper is aompanied by a tehnial report that ontains full proofs [10℄.

2 Preliminaries

We introdue syntax and semantis of ALCQI.



De�nition 1 (ALCQI Syntax). LetR and C be disjoint and ountably in�nite

sets of role and onept names. A role is either a role name R 2 R or the inverse

R

�

of a role name R 2 R. The set of ALCQI-onepts is the smallest set

satisfying the following properties: (i) eah onept name A 2 C is an ALCQI-

onept; and (ii) if C and D are ALCQI-onepts, R is a role, and n a natural

number, then :C, C uD, C tD, (6 n R C), and (> n R C) are also ALCQI-

onepts.

A onept equation is of the form C

:

= D for C;D two ALCQI-onepts. A

TBox is a �nite set of onept equations.

As usual, we use the standard abbreviations ! and $ as well as 9R:C for

(> 1 R C), 8R:C for (6 0 R :C), > to denote an arbitrary propositional

tautology, and ? as abbreviation for :>. To avoid roles like (R

�

)

�

, we de�ne a

funtion Inv on roles suh that Inv(R) = R

�

if R is a role name, and Inv(R) = S

if R = S

�

. The fragment ALCFI of ALCQI is obtained by admitting only

at-most restritions (6 n R C) with n 2 f0; 1g and only at-least restritions

(> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI semantis). An interpretation I is a pair (�

I

; �

I

)

where �

I

is a non-empty set and �

I

is a mapping whih assoiates, with eah

onept name A, a set A

I

� �

I

and, with eah role name R, a binary relation

R

I

� �

I

��

I

. The interpretation of inverse roles and omplex onepts is then

de�ned as follows:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g;

(:C)

I

= �

I

n C

I

, (C uD)

I

= C

I

\D

I

, (C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng,

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng.

An interpretation I satis�es a onept equation C

:

= D if C

I

= D

I

, and I is

alled a model of a TBox T if I satis�es all onept equations in T .

A onept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A onept C is �nitely satis�able w.r.t. a TBox T if there is a model I

of T with C

I

6= ; and �

I

�nite.

Let us onsider a witness for the fat that ALCQI laks FMP: the onept

:Au9R:A is satis�able w.r.t. the TBox fA

:

= 9R:Au (6 1 R

�

>)g, but eah of

its models ontains an in�nite R-hain.

There exists another important reasoning problem on onepts and TBoxes:

subsumption. However, sine subsumption an be redued to (un)satis�ability

and vie versa, we just note that all omplexity bounds obtained in this paper

also apply to subsumption.

In what follows, we will only onsider TBoxes of the rather simple form

f>

:

= Cg. This an be done w.l.o.g. sine an interpretation I is a model of a

TBox T = fC

i

:

= D

i

j 1 � i � ng i� it is a model of f>

:

=u

1�i�n

(C

i

$ D

i

)g.



3 Unary Coding of Numbers

In this setion, we present a deision proedure for �nite satis�ability of ALCQI-

onepts w.r.t. TBoxes that runs in deterministi exponential time, provided that

numbers in number restritions are oded unarily. In Setion 4, we will generalize

this upper bound to binary oding of numbers.

As observed by Calvanese in [5℄, ombinatoris is an important issue when

deiding �nite satis�ability of ALCQI-onepts. To illustrate this, onsider the

TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be lear that, in any model of T , there are at least twie as many

objets satisfying B u (6 1 R

�

A) as there are objets satisfying Au (> 2 R B).

This simple example suggests that (i) types (i.e., sets of onepts satis�ed by a

partiular objet in a partiular model) suh as fA; (> 2 R B)g are a natural

notion for dealing with �nite satis�ability, and (ii) the ombinatoris introdued

by �nite domains an be addressed with inequalities like 2 �x

T

� x

T

0

, where the

variable x

T

desribes the number of instane of a type T (e.g. fA; (> 2 R B)g),

while x

T

0

desribes the number of instanes of another type T

0

(e.g. fB; (6

1 R

�

A)g). These ombinatorial onstraints are not an issue if in�nite domains

are admitted: in this ase, we an always �nd a model where all types that have

instanes at all have the same number of instanes, namely ountably in�nitely

many.

Considering the above two points, a �rst idea to devise a deision proedure

for �nite satis�ability of ALCQI-onepts w.r.t. TBoxes is to translate an input

onept and TBox into a system of inequalities with one variable for eah type,

and then to use existing algorithms to hek whether the equation system has

a non-negative integer solution. For example, the satis�ability problem of the

onept A w.r.t. the TBox T above an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indued by the input onept A and TBox T .

It is not hard to see that any non-negative integer solution to this equation

system an be used to onstrut a �nite model for A and T and vie versa.

Unfortunately, there is a problem with this approah: assume that the in-

put onept and TBox indue types T

1

to T

5

as follows: (> 1 R C) 2 T

1

,

(> 1 R D) 2 T

2

, (6 1 Inv(R) >) 2 T

3

\ T

4

\ T

5

, C 2 T

3

\ T

4

, and D 2 T

4

\ T

5

.

The translation desribed above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whih have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution.

Trying to onstrut a model with a

1

, a

2

, and a

4

instanes of T

1

, T

2

, and T

4

,

respetively, we have to use a

4

as a witness of a

1

being an instane of (> 1 R C)

and a

2

being an instane of (> 1 R D). However, this violates the (6 1 Inv(R) >)

onept in T

4

.



This example illustrates that \ounting types" does not suÆe: onits may

arise if a type ontaining an at-most restrition (T

4

) an be used as a witness for

at-least restritions in more than one type (T

1

and T

2

). In suh a situation, it is

thus neessary to (additionally) �x the types that are atually used as witnesses

for at-least restritions. We ahieve this by de�ning systems of inequalities based

on small hunks of models alled mosais, rather than based diretly on types.

Intuitively, a mosai desribes the type of an objet and �xes the type of ertain

\important" witnesses.

Before de�ning mosais, we introdue some preliminaries. In the remainder

of this paper, we assume onepts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e., negation is only allowed in front of onept

names. Every ALCQI-onept an be transformed into an equivalent one in

NNF by exhaustively applying de Morgan's rules and the equivalene between

:(6 n R C) and (> n + 1 R C), between :(> (n + 1) R C) and (6 n R C),

and between :(> 0 R C) and ?. We use _:C to denote the NNF of :C. For a

onept C

0

and a TBox T = f>

:

= C

T

g, l(C

0

; T ) is the smallest set ontaining

all sub-onepts of C

0

and C

T

that is losed under _:. It an easily be shown that

the ardinality of l(C

0

; T ) is linear in the size of C

0

and T . We use rol(C

0

; T )

to denote the set of role names R and their inverses R

�

ourring in C

0

or T .

De�nition 3 (Types and Mosais). A type T for C

0

; T = f>

:

= C

T

g is a

set T � l(C

0

; T ) suh that, for eah D;E 2 l(C

0

; T ), we have

(T1) D 2 T i� _:D 62 T ,

(T2) if D u E 2 l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,

(T3) if D t E 2 l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

(T4) C

T

2 T .

We use type(C

0

; T ) to denote the set of all types over C

0

; T . Let T be a type and

./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg and sum

./

(T ) :=

X

(./ n R C)2T

n:

For types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

) (T

2

is a limited ressoure

for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 l(C

0

; T ) and

n 2 N. Finally, for a mapping f , we use ran(f) for the range of f .

A mosai for C

0

; T is a triple M = (T

M

; L

M

; E

M

) where

{ T

M

2 type(C

0

; T ),

{ L

M

is a funtion from rol(C

0

; T )� type(C

0

; T ) to N, and

{ E

M

is a funtion from rol(C

0

; T )� type(C

0

; T ) to N

suh that the following onditions are satis�ed:

(M1) if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

P

fT jC2Tg

E

M

(R; T );

(M4) #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

).



Consider a mosai M and one of its \instanes" d in some interpretation. While

T

M

is simply the type of d, L

M

and E

M

are used to desribe ertain \neighbors"

of d, i.e. objets e reahable from d via a role. For a role R, there are three

possibilities for the relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary

number of R-neighbors of type T and every instane of T may have an ar-

bitrary number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors of

type T are \unritial" and not reorded in the mosai.

2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary num-

ber of R-neighbors of type T , but every instane of T may only have a limited

number of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of type T are a

limited ressoure and we reord in L

M

the minimal number of R-neighbors

of type T that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors of

type T . To prevent the violation of at-most restritions in T

M

, we reord the

exat number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

reord information for the \orret"

types as desribed above; (M3) ensures that at-most restritions are not violated|

by de�nition, this onerns only neighbors with E

M

-types; �nally, (M4) puts up-

per bounds on L

M

to ensure that there exist only exponentially many mosais

(see below). At-least restritions are not mentioned in the de�nition of mosais

and will be treated by the systems of inequalities to be de�ned later.

Now for the number of mosais. The ardinality of type(C

0

; T ) is exponential

in the size of C

0

and T . Next, (M2) and (M3) imply #f(R; T ) j E

M

(R; T ) >

0g � sum

6

(T

M

) and max(ran(E

M

)) � max

6

(T

M

). Analogous bounds for L

M

are enfored by (M4). Now max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for ./ 2 f6;>g sine numbers are oded in unary, and thus the number

of mosais is bounded exponentially in the size of C

0

and T .

We now de�ne an system of inequalities for a onept C

0

and a TBox T .

De�nition 4 (Equation System). For C

0

an ALCQI-onept and T a TBox,

we introdue a variable x

M

for eah mosai M over C

0

; T and de�ne the equation

system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)



A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and

satis�es the following onditions: (i) for eah pair of types T; T

0

2 type(C

0

; T )

and role R suh that lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0; (A1)

(ii) for eah mosai M and eah role R, if (> n R C) 2 T

M

,

x

M

> 0, and

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then

X

fM

0

jC2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0 (A2)

While inequality (E1) guarantees the existene of an instane of C

0

, inequalities

(E2) and (E3) enfore the lower and exat bounds on the number of neighbors

as desribed by L

M

and E

M

. A speial ase is treated by ondition (A1): in

inequality (E2), it may happen that the left-hand side is zero while the right-

hand side is non-zero. In this ase, there is an instane of a mosai M

0

with

T

M

0

= T

0

and E

M

(Inv(R); T ) > 0 (ounted on the right-hand side), but there is

no instane of a mosai M with T

M

= T (ounted on the left-hand side)|thus

we annot �nd any neighbors as required by E

M

(Inv(R); T ). To ure this defet,

ondition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there

is at least one instane of a mosaiM with T

M

= T .

1

Finally, (A2) takes are of

at-least restritions in types T

M

: if the number of R-neighbors enfored by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then we make sure that there

is at least one instane of a mosai M

0

suh that C 2 T

M

0

and, for instanes

of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are instanes of

M

0

(M) is not limited:

1

Lemma 1. C

0

is �nitely satis�able w.r.t. T i� the equation system E

C

0

;T

has

an admissible solution.

Proof sketh: Conerning the only-if diretion, it is possible to onstrut an

admissible solution for E

C

0

;T

from a model I of C

0

and T . Intuitively, we asso-

iate, with eah objet d 2 �

I

, a mosaiM(d): T

M(d)

ontains all onepts from

l(C

0

; T ) that d is an instane of, and L

M(d)

and E

M(d)

are �xed using a hoie

funtion on the neighbors of d in I. If neessary, the value of L

M(d)

is trunated

in order to satisfy (M4).

For the if diretion, we use an admissible solution Æ of E

C

0

;T

to onstrut

a model of C

0

and T in two steps (in [10℄, these steps are atually merged):

initially, eah mosaiM has Æ(M) instanes and we use the inequalities and side

1

To see why a single instane suÆes, onsult the proof sketh of Lemma 1.



onditions to de�ne a relational struture suh that (i) all at-most restritions

are satis�ed and (ii) eah instane of an at-least restrition (> n R C) has at

least 1 R-neighbor in C. Then, we take P disjoint opies of the initial model

(for P the maximum number in C

0

and T ) and \bend" edges bak and forth

between the opies suh that no at-most restritions are violated and all at-least

restritions are satis�ed. ut

Sine the number of mosais is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility ondition is also exponential in the size of C

0

and

T . To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-

onepts, it thus remains to show that the existene of an admissible solution

for the equation systems E

C

0

;T

an be deided in deterministi polynomial time.

Before we atually do this, we �rst �x some notation.

We assume linear inequalities to be of the form �

i



i

x

i

� b. A system of linear

inequalities is desribed by a tuple (V; E), where V is a set of variables and E

a set of inequalities using variables from V . Suh a system is alled simple if

only non-negative integers our on the right-hand side of inequalities and all

oeÆients are (possibly negative) integers. A side ondition for an inequality

system (V; E) is a onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

It is not hard to hek that the inequalities (Ei) an be polynomially trans-

formed into simple ones, and that the onditions (Ai) an be transformed into

side onditions: (E1) is already simple; eah inequality from (E2) an be brought

into the form

P

: : :�

P

: : : � 0; eah equality from (E3) an be transformed into

two inequalities of the same form; eah impliation from (A1) is transformed into

polynomially many side onditions by using a separate side ondition for eah

addend appearing in the premise (this is possible sine we are interested in non-

negative solutions only), replaing oeÆients E

M

(� � � ) > 0 with 1, and dropping

onditions where E

M

(� � � ) = 0; (A2) is already in the form of a side ondition.

The proof of the following lemma is by redution to linear programming and an

be found in [10℄.

Lemma 2. Let (V; E) be a simple equation system and I a set of side onditions

for (V; E). Then the existene of a non-negative integer solution for (V; E) sat-

isfying all onstraints from I an be deided in (deterministi) time polynomial

in #V +#E +#I.

Sine satis�ability of ALC w.r.t. TBoxes in arbitrary models is ExpTime-hard

[7, 11℄ and this DL has the �nite model property, ombining Lemmas 1 and 2

yields the following theorem:

Theorem 1. Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-

omplete if numbers are oded in unary.

4 Binary Coding of Numbers

If numbers in number restritions are oded binarily, the ExpTime upper bound

from Theorem 1 does no longer apply: in this ase, the number of mosais is
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double exponential in the size of the input, and thus the algorithm used in

Setion 3 yields only a 2-ExpTime upper bound. Indeed, it is a non-trivial

problem whether this algorithm an be adapted to binary oding. We have to

leave this problem open and hoose an alternative tehnique: a redution of �nite

ALCQI-onept satis�ability to the �nite satis�ability ofALCFI-onepts. This

redution is polynomial even for binary oding of numbers and its target logi

is insensitive to the oding of numbers sine it involves only the onstants 0,1,

and 2. Thus we have an ExpTime upper bound for the �nite satis�ability of

ALCQI-onepts w.r.t. TBoxes even if numbers are oded in binary sine we

an �rst use the translation and then the ExpTime deision proedure from

the previous setion. Note that, in ontrast to existing redutions of ALCQI to

ALCFI whih only work in the ase of potentially in�nite models [6℄, we have

to take speial are to deal with �nite models.

The entral idea behind our redution is to replae ounting via quali�ed

number restritions with ounting via onept names: to ount up to a number n,

we reserve onept names B

0

; : : : ; B

dlog(n)e

representing the bits of the binary

oding of numbers between 0 and n. For the atual ounting, we an then use

well-known (propositional logi) formulas that enode inrementation. We use a

TBox involving auxiliary onept names and roles L

R

to re-arrange R-neighbors

as shown in Figure 1: exept for the root, eah node on the auxiliary L

R

-path

attahed to x has preisely one R-neighbor. Ignoring the root for a seond,

this means that we an ount via onept names along the auxiliary objets

on L

R

-paths. However, we annot gather all original R-neighbors of x on the

L

R

-path sine we only ount up to the sum of numbers ourring in the input

onept and TBox. Sine an objet may have more R-neighbors than this, these

\unrestrited" R-neighbors are not re-arranged, but attahed to the root as

shown in the upper right part of Figure 1.

Fix an ALCQI-onept C

0

and an ALCQI-TBox T whose �nite satis�ability

is to be deided. In the following, we use nam(C

0

; T ) to denote the set of onept

names appearing in C

0

and T , rnam(C

0

; T ) to denote the set of role names

appearing in C

0

and T , and rol(C

0

; T ) with the same meaning as in Setion 3.

W.l.o.g., we assume C

0

and T to be in NNF. In order to translate C

0

and T to

ALCFI, we need to introdue some additional onept and role names:

1. a fresh (i.e., not appearing in C

0

or T ) onept name Real;

2. for eahR 2 rnam(C

0

; T ), a fresh onept nameH

R

and a fresh role name L

R

;



3. for eah onept D 2 l(C

0

; T ) of the form (./ n R C) (with ./ 2 f6;>g), a

fresh onept name X

D

and fresh onept names B

./n

C;R;0

; : : : ; B

./n

C;R;k

, where

k = dlog(n+ 1)e;

4. for eah role R 2 rol(C

0

; T ), fresh onept names B

R;0

; : : : ; B

R;k

, where

k = dlog(depth

R

)e and

depth

R

:=

X

(./ n R C)2l(C

0

;T )

n:

The onept name Real is used to distinguish \real" objets from auxiliary ob-

jets, and, for eah role R, H

R

identi�es those auxiliary objets that are on an

L

R

-path. The onept names X

D

are used as substitutes for ALCQI 's at-least

and at-most restritions that are not available in ALCFI . Counting with suh

a restrition (./ n R C) is replaed by ounting via the onept names B

./n

C;R;i

:

they ount the \ourrenes" of R-neighbors in C along L

R

-paths. The onept

names B

R;i

are also used for ounting, namely to ount the length of auxiliary

L

R

paths.

Note that the number of newly introdued onept and role names is polyno-

mial in the size of C

0

and T . We will use N

./n

C;R

to refer to the number enoded

by the onept names B

./n

C;R;0

; : : : ; B

./n

C;R;dlog(n+1)e

and N

R

to refer to the number

enoded by the onept names B

R;0

; : : : ; B

R;dlog(depth

R

)e

: Moreover, we will use

the following abbreviations:

{ (N

R

= i) to denote the ALCFI-onept (a Boolean formula) expressing that

N

R

equals i, and similar for N

./n

C;R

= i and the omparisons \<" and \>";

{ inr(N

R

; S) to denote theALCFI-onept expressing that, for all S-neighbors,

the number N

R

is inremented by 1 modulo depth

R

, and similar for

inr(N

./n

C;R

; S). More preisely, these onepts are de�ned as follows:

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

We an now indutively de�ne a translation (C

0

) of the onept C

0

into an

ALCFI-onept (indeed even into a Boolean formula):

(A) := A (:C) := :(C)

(C uD) := (C) u (D) (C tD) := (C) t (D)

(> n R C) := X

(>n R C)

(6 n R C) := X

(6n R C)

Now set �(C

0

) := (C

0

) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real! (C

T

)g [ Aux(C; T )

where the TBox Aux(C

0

; T ) is de�ned in Figure 2, in whih we use C v D as

abbreviation for >

:

= C ! D, and in whih all t and u range over all onepts



>

:

= u

R2rol(C

0

;T )

8R:(Real tH

Inv(R)

) u 8L

R

:H

R

u (6 1 L

R

>) u

u

(./ n R D)

�

X

(./ n R D)

$ 8L

R

:X

(./ n R D)

�

u

u

R2rol(C

0

;T )

u

A2nam(C

0

;T )

(A$ 8L

R

:A) u

u

D

:(D)! ( _:(D))

Real v u

R2rol(C

0

;T )

:H

R

u 8L

R

:(N

R

= 0) u (6 0 L

�

R

>)u

u

(./ n R D)

�

X

(./ n R D)

! 8L

R

:(N

./n

D;R

= 0)

�

u

u

(6 n R D)

�

X

(6n R D)

! 8R::(D)

�

u

u

(> n R D)

with n>0

�

X

(>n R D)

! 9L

R

:>

�

H

R

v (= 1 R >) u (= 1 L

�

R

>) u inr(N

R

; L

R

) u

(N

R

= 0)! 9L

�

R

:Real u

(N

R

= (depth

R

� 1))! (6 0 L

R

>)

H

R

v u

(./ n R D)

(9R:(D)! inr(N

./n

D;R

; L

R

))

H

R

v u

(>n R D)

(X

(> n R D)

uN

>n

D;R

< n u 8R::(D) u 8L

R

:?)! ?)

H

R

v u

(6 n R D)

�

(X

(6 n R D)

uN

6n

D;R

= n u 9R:(D))! ?

�

Fig. 2. The TBox Aux(C

0

; T ).

in l(C

0

; T ) of the form spei�ed. In what follows, we will use CE i to refer to

the i'th onept equation in Figure 2.

CE1, CE2, and CE3 enfore the proper behaviour of the onept names Real

and H

R

, and of the ounting onepts B

./n

C;R;i

and B

R;i

. CE4 ensures that the

ounting onepts B

./n

C;R

are updated orretly along L

R

-paths. To guarantee that

a \real" element d satis�es a number restrition X

(./ n R C)

, CE5 ensures that

we see enough R-neighbors satisfying C along an L

R

-path for ./ = >, whereas

CE6 guarantees that we do not see too many suh suessors for ./ = 6.

Lemma 3. C

0

is �nitely satis�able w.r.t. T i� �(C

0

) is �nitely satis�able w.r.t.

�(T ).

Proof sketh: For the if diretion, we take a singular �nite model I of �(C

0

)

and �(T ) and transform it into a �nite model of C

0

and T where, intuitively,

singular means the following: if d and d

0

are on an L

R

-path starting at some

d

0

2 Real

I

, then there is no e with (d; e); (d

0

; e) 2 R

I

. From a �nite model I

0

of



C

0

and T , we an onstrut a singular one by making disjoint opies of I

0

and

mutually \bending" edges that violate singularity from one opy into another

one. The model J of C

0

and T is then obtained from I by keeping only instanes

of Real

I

and adding (d; e) to R

J

if e is reahable via an L

R

-path and one R-edge

from d.

For the only-if diretion, we take some �nite model I of C

0

and T and build

a �nite model J of �(C

0

) and �(T ). For eah d 2 �

I

and R 2 rol(C

0

; T ),

we �x a subset W

d;R

� fe j (d; e) 2 R

I

g of ardinality at most depth

R

suh

that (i) W

d;R

ontains at least n witnesses for eah d 2 (> n R D)

I

, and (ii)

if d 2 (6 n R D)

I

, then every R-neighbor of d in D

I

is in W

d;R

(suh sets

obviously exist). Then we onstrut J by introduing auxiliary objets and, for

eah set W

d;R

, arranging all the elements of W

d;R

as R-neigbors of the auxiliary

objets on an L

R

-path with root d. ut

Taking together Theorem 1 and Lemma 3, we obtain the following result:

Theorem 2. Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-

omplete if numbers are oded in binary.

5 ABox Consisteny

In this setion, we extend the omplexity bounds obtained in Setions 3 and 4 to

a more general reasoning task: �nite ALCQI-ABox onsisteny. As noted in the

introdution, ABoxes an be understood as desribing a\snapshot" of the world.

We should like to note that (�nite) ALCQI-ABox onsisteny has important

appliations: whereas �nite ALCQI-onept satis�ability algorithms an be used

to deide the onsisteny of oneptual database models and infer impliit IS-A

relationships as desribed in the introdution, ALCQI-ABox onsisteny an be

used as the ore omponent of algorithms deiding ontainment of onjuntive

queries w.r.t. oneptual database models|a task that DLs have suesfully

been used for and that alls for �nite model reasoning [3, 9℄.

De�nition 5. Let O be a ountably in�nite set of objet names. An ABox

assertion is an expression of the form a : C or (a; b) : R, where a and b are

objet names, C is a onept name, and R a role. An ABox is a �nite set of

ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the inter-

pretation funtion �

I

maps eah objet name to an element of �

I

suh that a 6= b

implies a

I

6= b

I

for all a; b 2 O (the so-alled unique name assumption). An in-

terpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion (a; b) : R

if (a

I

; b

I

) 2 R

I

. It is a model of an ABox A if it satis�es all assertions in A.

An ABox is alled �nitely onsistent if it has a �nite model.

In the following, we will polynomially redue �nite ALCQI-ABox onsisteny

to �nite ALCQI-onept satis�ability. Thus, we prove that ALCQI-ABox on-

sisteny is ExpTime-omplete independently of the way in whih numbers are

oded. We start with �xing some notation.



Let A be an ABox and T a TBox. For eah objet name a used in A, re

A

(a)

denotes the set of role names R suh that f(a; a) : R; (a; a) : R

�

g \ A 6= ;: For

eah objet a and role R 2 rol(A; T ), N

A

(a;R) denotes the set of objet names

b suh that b 6= a and f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

We use l(A; T ) to denote the smallest set ontaining all sub-onepts of

onepts appearing in A and T that is losed under _:. It an be easily shown

that the ardinality of l(A; T ) is linear in the size of A and T . Moreover,

rol(A; T ) denotes the set of all roles (i.e., role names or inverses of role names)

used in A or T .

A type T for an ABox A and a TBox T is de�ned as in De�nition 3 with

the only exeption that l(C

0

; T ) is replaed with l(A; T ). In what follows, we

will sometimes identify types T with the onjuntion u

C2T

C and write, e.g.,

d 2 T

I

for d 2 (u

C2T

C)

I

. It is easily seen that the number of types for an

ABox A and a TBox T is exponential in the size of A and T .

A entral notion for the redution of �nite ALCQI-ABox onsisteny to

�nite ALCQI-onept satis�ability is that of a redution andidate: a mapping

t that assoiates a type t(a) with eah objet name a ourring in A suh that

a : C 2 A implies C 2 t(a). For eah redution andidate t, objet name a, role

R 2 rol(A; T ), and type T 2 ran(t), we use #

A

t

(a;R; T ) to denote the number

of objets b suh that b 2 N

A

(a;R) and t(b) = T . Then, for eah objet name a

used in A, we de�ne its t-redution onept C

A

t

(a) as follows:

C

A

t

(a) := t(a) uX u u

R2re

A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (T u :X));

where X is a fresh onept name not used in A and T . Finally, the redution

andidate t is alled realizable i�, for every objet a used in A, the redution

onept C

A

t

(a) is �nitely satis�able w.r.t. T . The following lemma desribes the

relationship between ABoxes and redution andidates:

Lemma 4. Let A be an ABox and T a TBox. A is �nitely onsistent w.r.t. T

i� there exists a realizable redution andidate for A and T .

Proof sketh: For the only-if diretion, we take a model I of A and T . This

model gives rise to a redution andidate t in a straightforward way. By appro-

priately hoosing an extension X

I

for the fresh onept name X , we \almost"

obtain a model for the redution onepts C

A

t

(a): there may exist objet names

a suh that a

I

is an R-neighbor of itself, but R 62 re

A

(a). Sine this interferes

with the use of the onept name X , we need to take two disjoint opies of the

original model and bend bak and forth some edges.

For the if diretion, we take a realizable redution andidate t for A and T

and �nite models I

a

of C

A

t

(a) and T , and use these to onstrut a �nite model

for A and T . The general idea is to take the union of (disjoint) �nite models for

all redution andidates and then bend some edges to satisfy ABox assertions

(a; b) : R. Some speial are needs to be taken to deal with reexivity assertions

(a; a) : R. ut



Sine the number of types for A and T is exponential in the size of A and T ,

and the number of objet names used in A is linear in the size of A, the number

of redution andidates for A and T is exponential in the size of A and T .

Thus, to deide �nite onsisteny of A w.r.t. T , we may simply enumerate all

redution andidates for A and T and hek them for realizability: by Lemma 4,

A is �nitely onsistent w.r.t. T i� we �nd a realizable redution type. Sine

the size of the redution onepts is learly polynomial in the size of A and

T , by Theorem 2 the resulting algorithm an be exeuted in deterministi time

exponential in A and T .

Theorem 3. Finite ALCQI-ABox onsisteny w.r.t. TBoxes is ExpTime-om-

plete if numbers are oded in binary.

Note that our hoie of the unique name assumption is not ruial for this result:

if we want to deide �nite onsisteny of an ABox A without the unique name

assumption, we may use the following approah: enumerate all possible partition-

ings of the objet names used in A. For eah partitioning, hoose a representative

for eah partition and then replae eah objet name with the representative of

its partition. Obviously, the ABox A is �nitely onsistent without the unique

name assumption if and only if any of the resulting ABoxes is �nitely onsistent

with the unique name assumption. Clearly, this yields an ExpTime upper bound

for �nite ABox onsisteny without the unique name assumption.

6 Outlook

In this paper, we have determined �nite model reasoning in the desription

logi ALCQI to be ExpTime-omplete. This shows that reasoning w.r.t. �nite

models is not harder than reasoning w.r.t. arbitrary models, whih is known

to be also ExpTime-omplete [6℄. We hope that, ultimately, this researh will

lead to the development of �nite model reasoning systems that behave equally

well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,

however, that the urrent algorithm is best-ase ExpTime sine it onstruts

an exponentially large equation system. It an thus not be expeted to have an

aeptable runtime behaviour if implemented in a naive way. Nevertheless, we

believe that the use of equation systems and linear programming is indispensable

for �nite model reasoning in ALCQI . Thus, e�orts to obtain eÆient reasoners

should perhaps onentrate on methods to avoid best-ase exponentiality suh as

on-the-y onstrution of equation systems. Moreover, the redutions presented

in Setion 4 and 5 an also not be expeted to exhibit an aeptable run-time

behaviour and it would thus be interesting to try to replae them by more

\diret" methods.

Theoretially, there exist at least two interesting diretions in whih the

presented researh an be ontinued: �rst, while �nite ALCQI-onept satis�a-

biltiy w.r.t. TBoxes is suÆient for reasoning about oneptual database models

as desribed in the introdution, �nite ALCQI-ABox onsisteny it is not yet

suÆient for deiding the ontainment of onjuntive queries w.r.t. a given on-

eptual model|an intermediate redution step is required. It would thus be



interesting to analyze the omplexity of query ontainment in �nite models. We

believe that it is possible to obtain an ExpTime upper bound by building on

the results presented in Setion 5. Seondly, it would be interesting to extend

ALCQI with nominals, i.e. with onept names interpreted as singleton sets.

Finite and standard reasoning in the resulting DL ALCQOI is known to be

NExpTime-hard [14℄. An extension in this diretion is rather hallenging sine

the results established in this paper ruially rely on the fat that adding dis-

joint opies of a model preserves the model's properties. Unfortunately, in the

presene of nominals, this is no longer true.
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