The Complexity of Finite Model Reasoning in
Description Logics

Carsten Lutz', Ulrike Sattler', and Lidia Tendera?

! Tnstitute for Theoretical Computer Science, TU Dresden, Germany
email: lastname@tcs.inf.tu-dresden.de
2 Institute of Mathematics and Informatics, Opole University, Poland
email: tendera@math.uni.opole.pl

Abstract. We analyze the complexity of finite model reasoning in the
description logic ALCQZ, i.e. ALC augmented with qualifying number
restrictions, inverse roles, and general TBoxes. It turns out that all rele-
vant reasoning tasks such as concept satisfiability and ABox consistency
are ExpTIME-complete, regardless of whether the numbers in number
restrictions are coded unarily or binarily. Thus, finite model reasoning
with ALCQT is not harder than standard reasoning with ALCQT.

1 Motivation

Description logics (DLs) are a family of logical formalisms that originated in
the field of knowledge representation and are nowadays used in a wide range
of applications [1]. Similar to many modal logics (to which DLs are closely re-
lated), most description logics enjoy the finite model property (FMP). This is,
for example, the case for the basic propositionally closed DL ALC [12] that is
well-known to be a notational variant of the multi-modal logic K [11]: satisfi-
ability of ALC-concepts (the DL equivalent of a formula) w.r.t. finite models
coincides with the satisfiability of ALC-concepts w.r.t. arbitrary models [11].
However, there also exist description logics that do not enjoy FMP. One exam-
ple is the full p-calculus, i.e., the extension of ALC with fixpoints and inverse
roles (called inverse modalitities in modal logic). For the vu-fragment of this
logic, finite satisfiability was shown to be in 2-EXPTIME [2] (to the best of our
knowledge, a matching lower bound is not yet known), whereas satisfiability in
arbitrary models is known to be EXPTIME-complete [15]. Another important
example is the DL ALCQZ which is obtained from ALC by adding qualifying
number restrictions (corresponding to graded modalities in modal logic), inverse
roles, and general TBoxes (roughly corresponding to the universal modality).
The fact that ALCQT lacks FMP becomes particularly important if we con-
sider this logic’s most prominent application, which is reasoning about concep-
tual database models [4]: if such a model is described by one of the standard
formalisms—namely ER diagrams for relational databases and UML diagrams
for object-oriented databases—then it can be translated into a DL TBox, i.e. a
set of concept equations; afterwards, a description logic reasoner such as FaCT

and RACER can be used to detect inconsistencies and to infer implicit IS-A
relationships between entities/classes. This useful and original application has
already led to the implementation of tools that provide a GUI for specifying
conceptual models, automatize the translation into description logics, and dis-
play the information returned by the DL reasoner [8]. However, it is well-known
that there exist ER and UML diagrams which are satisfiable only in infinite
models, but not in finite ones [13]. Since all available DL reasoning systems are
performing reasoning w.r.t. arbitrary (as opposed to finite) models, this means
that some inconsistencies and IS-A relationships will not be detected if these
reasoners are used for reasoning about conceptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.
arbitrary models is that finite model reasoning in description logics such as
ALCQT is not yet well-understood. The only known algorithm is presented by
Calvanese in [5], where he proves that reasoning in ALCQT is decidable in 2-
EXPTIME. The purpose of this paper is to improve the understanding of finite
model reasoning in description logics by establishing tight EXPTIME complezity
bounds for finite model reasoning in the DL ALCQT.

In Section 3, we develop an algorithm that is capable of deciding finite satis-
fiability of ALC Q7Z-concepts w.r.t. TBoxes. Similar to Calvanese’s approach, the
core idea behind our algorithm is to translate a given satisfiability problem into
a set of linear equations that can then be solved by linear programming methods.
The main difference to Calvanese’s approach is that our equation systems talk
about different components of models, mosaics, which allows us to keep the size
of equation systems exponential in the size of the input. In this way, we improve
the best-known 2-EXPTIME upper bound to a tight ExXPTIME one.

Since the approach presented in Section 3 presupposes unary coding of the
numbers occurring in qualifying number restrictions, in Section 4 we consider
finite model reasoning in ALC Q7 and numbers coded in binary. We give a poly-
nomial reduction of ALCQZ-concept satisfiability w.r.t. TBoxes to the satisfia-
bility of ALCFI-concept satisfiability w.r.t. TBoxes, where ALCFT is obtained
from ALCQT by allowing only the number 1 to be used in number restrictions.
Since finite model reasoning in ALCFZ is in EXPTIME by the results from Sec-
tion 3 (the coding of numbers is not an issue here), we obtain a tight EXPTIME
bound for finite model reasoning in ALC Q7 and numbers coded in binary.

Finally, in Section 5 we consider the finite satisfiabiliy of ABoxes w.r.t.
TBoxes. Intuitively, ABoxes describe a particular state of affairs, a “snapshot”
of the world. By a reduction to (finite) concept satisfiability, we are able to show
that this reasoning task is also EXPTiME-complete, independently of the way in
which numbers are coded.

This paper is accompanied by a technical report that contains full proofs [10].

2 Preliminaries

We introduce syntax and semantics of ALCQT.

Definition 1 (ALCQZ Syntax). Let R and C be disjoint and countably infinite
sets of role and concept names. A role is either a role name R € R or the inverse
R~ of a role name R € R. The set of ALCQT-concepts is the smallest set
satisfying the following properties: (i) each concept name A € C is an ALCQT-
concept; and (ii) if C and D are ALCQT-concepts, R is a role, and n a natural
number, then =C, CN D, CUD, (<nRC), and (=n RC) are also ALCOL-
concepts.

A concept equation is of the form C = D for C, D two ALCQT-concepts. A
TBox is a finite set of concept equations.

As usual, we use the standard abbreviations — and < as well as IR.C for
(> 1R (), VR.C for (< 0 R =C), T to denote an arbitrary propositional
tautology, and L as abbreviation for = T. To avoid roles like (R~) ™, we define a
function Inv on roles such that Inv(R) = R~ if R is a role name, and Inv(R) = S
if R = S~. The fragment ALCFT of ALCQOT is obtained by admitting only
at-most restrictions (< n R C') with n € {0,1} and only at-least restrictions
(= n R C) withn € {1,2}.

Definition 2 (ALCQZ semantics). An interpretation T is a pair (AT -T)
where AT is a non-empty set and T is a mapping which associates, with each
concept name A, a set AT C AT and, with each role name R, a binary relation
RT C AT x AT. The interpretation of inverse roles and complex concepts is then

defined as follows:

(™) = {{e,d) | (d,e) € RT},

(=C)E = AT\ 7, (cn D)t =c*tnD?t, (CuD)t =ctubD?
(Kn RO ={d|#{eeC?|(de) € Rt} <n},
(>n RO = {d| #{c € CT | (d,¢} € BT} > n}.
An interpretation T satisfies a concept equation C = D if C* = D*, and T is
called a model of a TBox T if T satisfies all concept equations in T .

A concept C' is satisfiable w.r.t. a TBox T if there is a model T of T with
CT # 0. A concept C is finitely satisfiable w.r.t. a TBox T if there is a model T
of T with CT # 0 and AT finite.

Let us consider a witness for the fact that ALCQZ lacks FMP: the concept
-~ AMN3R.A is satisfiable w.r.t. the TBox {4 =3R.AM (L1 R~ T)}, but each of
its models contains an infinite R-chain.

There exists another important reasoning problem on concepts and TBoxes:
subsumption. However, since subsumption can be reduced to (un)satisfiability
and vice versa, we just note that all complexity bounds obtained in this paper
also apply to subsumption.

In what follows, we will only consider TBoxes of the rather simple form

{T = C}. This can be done w.l.o.g. since an interpretation Z is a model of a
TBox 7 ={C; = D; |1 <i <n}iff it is a model of {T =[1li<;<,(C; < D;)}.

3 Unary Coding of Numbers

In this section, we present a decision procedure for finite satisfiability of ALC Q7-
concepts w.r.t. TBoxes that runs in deterministic exponential time, provided that
numbers in number restrictions are coded unarily. In Section 4, we will generalize
this upper bound to binary coding of numbers.

As observed by Calvanese in [5], combinatorics is an important issue when
deciding finite satisfiability of ALC QZ-concepts. To illustrate this, consider the
TBox

T:={A=(>2RB), B=(<1R A)}.

It should be clear that, in any model of 7, there are at least twice as many
objects satisfying BM (< 1 R~ A) as there are objects satisfying AN (> 2 R B).
This simple example suggests that (i) types (i.e., sets of concepts satisfied by a
particular object in a particular model) such as {A,(> 2 R B)} are a natural
notion for dealing with finite satisfiability, and (ii) the combinatorics introduced
by finite domains can be addressed with inequalities like 2 - 7 < x7r, where the
variable xp describes the number of instance of a type T' (e.g. {4, (> 2 R B)}),
while xps describes the number of instances of another type 7' (e.g. {B, (<
1 R~ A)}). These combinatorial constraints are not an issue if infinite domains
are admitted: in this case, we can always find a model where all types that have
instances at all have the same number of instances, namely countably infinitely
many.

Considering the above two points, a first idea to devise a decision procedure
for finite satisfiability of ALC QZ-concepts w.r.t. TBoxes is to translate an input
concept and TBox into a system of inequalities with one variable for each type,
and then to use existing algorithms to check whether the equation system has
a non-negative integer solution. For example, the satisfiability problem of the
concept, A w.r.t. the TBox 7 above can be translated into the two inequalities

2-xp < Z rr and Z zr >0

{T|(>2 R B)eT} {T|(<1 Inv(R) A)ET} {T|AeT}

where the sums range over all types induced by the input concept A and TBox T .
It is not hard to see that any non-negative integer solution to this equation
system can be used to construct a finite model for 4 and 7 and vice versa.

Unfortunately, there is a problem with this approach: assume that the in-
put concept and TBox induce types T to Ty as follows: (> 1 R C) € Ty,
(2 1 RD) S TQ, (< 1 Inv(R) T) € T30T40T5, C e T30T4, and D € T4ﬂT5.
The translation described above yields the inequalities

rp < zp +or, and 2o, < 2o, + 21,

which have z7, = 21, = 1, = 1 and 2, = o7, = 0 as an integer solution.
Trying to construct a model with a;, as, and a4 instances of Ty, Ts, and Ty,
respectively, we have to use a4 as a witness of a; being an instance of (> 1 R C)
and az being an instance of (> 1 R D). However, this violates the (< 1 Inv(R) T)
concept in Ty.

This example illustrates that “counting types” does not suffice: conflicts may
arise if a type containing an at-most restriction (73) can be used as a witness for
at-least restrictions in more than one type (77 and T5). In such a situation, it is
thus necessary to (additionally) fix the types that are actually used as witnesses
for at-least restrictions. We achieve this by defining systems of inequalities based
on small chunks of models called mosaics, rather than based directly on types.
Intuitively, a mosaic describes the type of an object and fixes the type of certain
“important” witnesses.

Before defining mosaics, we introduce some preliminaries. In the remainder
of this paper, we assume concepts (also those appearing inside TBoxes) to be in
negation normal form (NNF), i.e., negation is only allowed in front of concept
names. Every ALCQ7-concept can be transformed into an equivalent one in
NNF by exhaustively applying de Morgan’s rules and the equivalence between
“(<n RC)and (Zn+1RC), between =(> (n+1) R C) and (< n R (),
and between =(> 0 R C) and L. We use =C to denote the NNF of —=C'. For a
concept Cp and a TBox T = {T = Cr}, cl(Co, T) is the smallest set containing
all sub-concepts of Cy and C'7 that is closed under =. It can easily be shown that
the cardinality of cl(Co,T) is linear in the size of Cy and 7. We use rol(Cy, T)
to denote the set of role names R and their inverses R~ occurring in Cy or 7.

Definition 3 (Types and Mosaics). A type T for Co, T = {T = Cr} is a
set T C cl(Co, T) such that, for each D, E € cl(Co,T), we have

(Tl) DeT iff =D &T,

(T2) f DNE €cd(Cy,T), then DNE €T iff DET and E€T,
(T3) f DUE € c(Cy,T), then DUE €T iff DeT or E€T, and
(T4) CreT.

We use type(Co, T) to denote the set of all types over Cy, T. Let T be a type and
> € {<, =}. Then we use the following abbreviations:

max’(T) :=max{n | (xn RC) €T} and sum™(T):= Z n.
(xn RC)ET

For types Ty, T> and a role R, we write limg (T, T>) (T> is a limited ressource
for Ty w.rt. R)if C € Th and (< n Inv(R) C) € Ty for some C € cl(Co, T) and
n € N. Finally, for a mapping f, we use ran(f) for the range of f.

A mosaic for Cy, T is a triple M = (Tar, Lag, Enr) where

- TM € type(007T)7
— Ly is a function from rol(Cy, T) x type(Co, T) to N, and
— Ey is a function from rol(Co, T) x type(Co,T) to N

such that the following conditions are satisfied:

(Ml) if LM(R,T) > 0, then limR(TM,T) and not limlnv(R) (T, TM),

(MZ) if EM(R, T) > 0, then limlnv(R)(T7 TM),

(M3) if (Sn RC) €T, thenn >3 iricery Ev(R,T),

(M4) #{(R,T)| Lym(R,T) > 0} < sum?(Ths) and max(ran(Lys)) < maxZ(Thy).

Consider a mosaic M and one of its “instances” d in some interpretation. While
Ty is simply the type of d, Ly and Ejs are used to describe certain “neighbors”
of d, i.e. objects e reachable from d via a role. For a role R, there are three
possibilities for the relationship between T; and T, the type of e:

1. Not limg(Tas,T) and not limyn(g) (T, Thr). Then d may have an arbitrary
number of R-neighbors of type T" and every instance of 7" may have an ar-
bitrary number of Inv(R)-neighbors of type Th. Intuitively, R-neighbors of
type T are “uncritical” and not recorded in the mosaic.

2. limg(Tw, T) and not limya,(g) (T, Tar). Then d may have an arbitrary num-
ber of R-neighbors of type T, but every instance of 7' may only have a limited
number of Inv(R)-neighbors of type Th;. Thus, R-neighbors of type T" are a
limited ressource and we record in Ljs the minimal number of R-neighbors
of type T that d needs (“L” for “lower bound”).

3. limyny(g) (T, Tar). Then d may only have a limited number of R-neighbors of
type T'. To prevent the violation of at-most restrictions in T;, we record the
exact number of d’s R-neighbors of type T in Ejy;.

(M1) and (M2) ensure that Lj; and E); record information for the “correct”
types as described above; (M3) ensures that at-most restrictions are not violated—
by definition, this concerns only neighbors with Ej/-types; finally, (M4) puts up-
per bounds on Ljs to ensure that there exist only exponentially many mosaics
(see below). At-least restrictions are not mentioned in the definition of mosaics
and will be treated by the systems of inequalities to be defined later.

Now for the number of mosaics. The cardinality of type(Cp, T) is exponential
in the size of Cp and 7. Next, (M2) and (M3) imply #{(R,T) | Em(R,T) >
0} < sumS(Ty) and max(ran(Eys)) < maxS(Ths). Analogous bounds for Lys
are enforced by (M4). Now max™(T") and sum™(T") are linear in the size of Cy
and T for > € {<, >} since numbers are coded in unary, and thus the number
of mosaics is bounded exponentially in the size of Cy and 7.

We now define an system of inequalities for a concept Cy and a TBox T .

Definition 4 (Equation System). For Cy an ALCQT-concept and T o TBox,
we introduce a variable xp; for each mosaic M over Co, T and define the equation
system Ec, 7 by taking (i) the equation

{M|Co€TMm}

(ii) for each pair of types T, T" € type(Co, T) and role R such that limg(T,T")
and not limyn,(g) (T', T), the equation

> LuRT)-am< Y Eu(inv(R),T)-zuy, (E2)
{M|Tn =T} {M|Tn=T"}
and (iii) for each pair of types T, T' € type(Co,T) and role R such that
limgp (T, T") and limyn(g)(T",T), the equation

Ey(RT) -z = > Eu(nv(R),T) zu. (E3)
{M|Ta=T} {M|Tar=T"}

A solution of Ec,, 7 s admissible if it is a non-negative integer solution and
satisfies the following conditions: (i) for each pair of types T, T" € type(Co, T)
and role R such that img(T,T") and not limyn,g)(T",T),

if Z Eyn(Inv(R),T) - xp > 0, then Z x> 0; (A1)
{M|Ty=T"} (M|Tar =T}

(i1) for each mosaic M and each role R, if (= n R C) € Ty,

wy >0, and > Ly(RT)+ Y En(R,T)<n,
{T|CeT} {T|CeT}

then Z x>0 (A2)
{M"|CETyyr, not imp(Tar,Tyyr),

and not limy gy Ty Tar)}

While inequality (E1) guarantees the existence of an instance of Cp, inequalities
(E2) and (E3) enforce the lower and exact bounds on the number of neighbors
as described by Ly, and Ej;. A special case is treated by condition (Al): in
inequality (E2), it may happen that the left-hand side is zero while the right-
hand side is non-zero. In this case, there is an instance of a mosaic M’ with
Ty =T" and Ep(Inv(R),T) > 0 (counted on the right-hand side), but there is
no instance of a mosaic M with T); = T (counted on the left-hand side)—thus
we cannot find any neighbors as required by Ey;(Inv(R),T). To cure this defect,
condition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there
is at least one instance of a mosaic M with T)y = T.! Finally, (A2) takes care of
at-least restrictions in types T/: if the number of R-neighbors enforced by L,
and E)/ is not enough for some (= n R C') € Ty, then we make sure that there
is at least one instance of a mosaic M’ such that C' € Ty, and, for instances
of M (M'"), the number of R-neighbors (Inv(R)-neighbors) that are instances of
M' (M) is not limited.!

Lemma 1. Cy is finitely satisfiable w.r.t. T iff the equation system Ec, 1 has
an admissible solution.

Proof sketch: Concerning the only-if direction, it is possible to construct an
admissible solution for £, 7 from a model Z of Cp and 7. Intuitively, we asso-
ciate, with each object d € A?, a mosaic M (d): T'r(ay contains all concepts from
cl(Co, T) that d is an instance of, and L4y and Ejz(q) are fixed using a choice
function on the neighbors of d in 7. If necessary, the value of Ly (4 is truncated
in order to satisfy (M4).

For the if direction, we use an admissible solution § of ¢, 7 to construct
a model of Cp and T in two steps (in [10], these steps are actually merged):
initially, each mosaic M has (M) instances and we use the inequalities and side

! To see why a single instance suffices, consult the proof sketch of Lemma 1.

conditions to define a relational structure such that (i) all at-most restrictions
are satisfied and (ii) each instance of an at-least restriction (> n R C) has at
least 1 R-neighbor in C. Then, we take P disjoint copies of the initial model
(for P the maximum number in Cp and 7) and “bend” edges back and forth
between the copies such that no at-most restrictions are violated and all at-least
restrictions are satisfied. O

Since the number of mosaics is exponential in the size of Cy and T, the size of
Ec,,7 and of the admissibility condition is also exponential in the size of Cj and
T. To prove an EXPTIME upper bound for the finite satisfiability of ALC Q-
concepts, it thus remains to show that the existence of an admissible solution
for the equation systems ¢, 7 can be decided in deterministic polynomial time.
Before we actually do this, we first fix some notation.

We assume linear inequalities to be of the form X;c;x; > b. A system of linear
inequalities is described by a tuple (V, &), where V' is a set of variables and &
a set of inequalities using variables from V. Such a system is called simple if
only non-negative integers occur on the right-hand side of inequalities and all
coefficients are (possibly negative) integers. A side condition for an inequality
system (V. &) is a constraint of the form

r>0= a2 +---+2x, >0, where z,21,...2y € V.

It is not hard to check that the inequalities (Ei) can be polynomially trans-
formed into simple ones, and that the conditions (A7) can be transformed into
side conditions: (E1) is already simple; each inequality from (E2) can be brought
into the form > ...=>" ... > 0; each equality from (E3) can be transformed into
two inequalities of the same form; each implication from (A1) is transformed into
polynomially many side conditions by using a separate side condition for each
addend appearing in the premise (this is possible since we are interested in non-
negative solutions only), replacing coefficients Ej(---) > 0 with 1, and dropping
conditions where Ej/(--+) = 0; (A2) is already in the form of a side condition.
The proof of the following lemma is by reduction to linear programming and can
be found in [10].

Lemma 2. Let (V, &) be a simple equation system and I a set of side conditions
for (V,E). Then the existence of a non-negative integer solution for (V,E€) sat-
isfying all constraints from I can be decided in (deterministic) time polynomial
in #V + #E + #1.

Since satisfiability of ALC w.r.t. TBoxes in arbitrary models is EXpPT1ME-hard
[7,11] and this DL has the finite model property, combining Lemmas 1 and 2
yields the following theorem:

Theorem 1. Finite satisfiability of ALC QT-concepts w.r.t. TBoxes is EXPTIME-
complete if numbers are coded in unary.

4 Binary Coding of Numbers

If numbers in number restrictions are coded binarily, the EXPTIME upper bound
from Theorem 1 does no longer apply: in this case, the number of mosaics is

Fig. 1. Representing role successor relationships.

double exponential in the size of the input, and thus the algorithm used in
Section 3 yields only a 2-EXPTIME upper bound. Indeed, it is a non-trivial
problem whether this algorithm can be adapted to binary coding. We have to
leave this problem open and choose an alternative technique: a reduction of finite
ALC QT-concept satisfiability to the finite satisfiability of ALCFZ-concepts. This
reduction is polynomial even for binary coding of numbers and its target logic
is insensitive to the coding of numbers since it involves only the constants 0,1,
and 2. Thus we have an EXPTIME upper bound for the finite satisfiability of
ALCQT-concepts w.r.t. TBoxes even if numbers are coded in binary since we
can first use the translation and then the EXPTIME decision procedure from
the previous section. Note that, in contrast to existing reductions of ALCQT to
ALCFT which only work in the case of potentially infinite models [6], we have
to take special care to deal with finite models.

The central idea behind our reduction is to replace counting via qualified
number restrictions with counting via concept names: to count up to a number n,
we reserve concept names By, ..., Bfiog(n)] Tepresenting the bits of the binary
coding of numbers between 0 and n. For the actual counting, we can then use
well-known (propositional logic) formulas that encode incrementation. We use a
TBox involving auxiliary concept names and roles Ly to re-arrange R-neighbors
as shown in Figure 1: except for the root, each node on the auxiliary Lg-path
attached to z has precisely one R-neighbor. Ignoring the root for a second,
this means that we can count via concept names along the auxiliary objects
on Lg-paths. However, we cannot gather all original R-neighbors of z on the
Lr-path since we only count up to the sum of numbers occurring in the input
concept and TBox. Since an object may have more R-neighbors than this, these
“unrestricted” R-neighbors are not re-arranged, but attached to the root as
shown in the upper right part of Figure 1.

Fix an ALC QT-concept Cy and an ALC QZ-TBox T whose finite satisfiability
is to be decided. In the following, we use cnam(Cp, T) to denote the set of concept
names appearing in Cy and T, rnam(Cp, T) to denote the set of role names
appearing in Cy and T, and rol(Cy, T) with the same meaning as in Section 3.
W.lo.g., we assume Cp and T to be in NNF. In order to translate Cy and T to
ALCFT, we need to introduce some additional concept and role names:

1. afresh (i.e., not appearing in Cy or T') concept name Real;
2. foreach R € rnam(Cy, T), a fresh concept name Hpr and a fresh role name Lg;

3. for each concept D € cl(Cy, T) of the form (xn R C) (with < € {<,>}), a

fresh concept name X p and fresh concept names Bgﬁ%,m e ,Bz‘i”}%’ s> Where
k= [log(n + 1)];
4. for each role R € rol(Cy,T), fresh concept names Bryo,...,Bry, where

k = [log(depthg)] and

depthy := Z n.

(<an R C)ec(Co,T)

The concept name Real is used to distinguish “real” objects from auxiliary ob-
jects, and, for each role R, Hg identifies those auxiliary objects that are on an
Lg-path. The concept names X p are used as substitutes for ALCQT’s at-least
and at-most restrictions that are not available in ALCFZ. Counting with such
a restriction (1 n R C) is replaced by counting via the concept names BZ'g ;:
they count the “occurrences” of R-neighbors in C' along Lg-paths. The concept
names Bpr; are also used for counting, namely to count the length of auxiliary
Lpr paths.

Note that the number of newly introduced concept and role names is polyno-
mial in the size of Cy and 7. We will use NE?:T}% to refer to the number encoded
by the concept names B, ;- - . ngﬁz,ﬂog(nH)] and Npg to refer to the number
encoded by the concept names Br.o, ..., BR [log(depth,,)]- Moreover, we will use
the following abbreviations:

— (Ngr =1) to denote the ALC FI-concept (a Boolean formula) expressing that

Ng equals i, and similar for Nz, =i and the comparisons “<” and “>";

— incr(Ng, S) to denote the ALCFT-concept expressing that, for all S-neighbors,
the number Np is incremented by 1 modulo depthp, and similar for
incr(Ng'g, S). More precisely, these concepts are defined as follows:

(BR70 — VS.—|BR70) [l (—|BR70 — VS.BR70) [l

. (j:0|_|k71 BR,j) — ((BRJ; — VS.ﬁBR’k) [l (_‘BR,k — VS.BR,k)) [l

k:C!.n (jzolflk—l —|BR7J-) — ((BRJc — VS.BRJC) [l (—|BR7;; — VS.ﬁBRJC)).

We can now inductively define a translation v(Cp) of the concept Cp into an
ALCFTI-concept (indeed even into a Boolean formula):

v(A) = A v(=C) == =v(C)
Y(CND):=~(C)n~(D) y(C'UD):=~(C)U~(D)
Y(ZnRC):=Xnro) YVEnRC):=X<nre

Now set o(Cy) := v(Cp) MReal and, for T = {T = Cr},
o(T):={T = Real - v(C7)} UAux(C,T)

where the TBox Aux(Cp,T) is defined in Figure 2, in which we use C C D as
abbreviation for T = C' — D, and in which all Ll and ['1 range over all concepts

T =
Rerol(Cy,T)

(XeanrD) © VLR X(san r D)) T

VR.(ReaI L HInv(R)) MVYLr.Hg N (S 1Lgr T) M

(n R D)

[l (Ao VLpA)N
Rerol(Cy,T) A€cnam(Cy,T)

=7(D) = 4(=(D))

RealC [l —HRAVLR.(Nr=0)M(<0L; T)M
ea ~ RE€rol(Cy,T) R R(R) (\ R)

(oan B D) (X(M n R D) VLR(NEQ,% = 0)) M

- H . (X(<n & Dy = YR=y(D)) N

[T (X(snrp)— 3ILa.T)

(> n R D)
with n>0

HrC(=1RT)N(=1Lg T)Nincr(Ng, Lg) M
(Nr =0) — 3L%.Realn
(Nr = (depthp — 1)) = (S0 Lr T)

HrC 1 (3RA(D) = incr(NG%, Lr))
(xn R D)

Hr E I_}I2 D)(X(> wr)M N <nMYR~y(D)NVLa.L) — 1)

Hp C - B o) (X(<nrpyMN5% =nMN3RA(D)) - 1)

Fig. 2. The TBox Aux(Co, T).

in cl(Co, T) of the form specified. In what follows, we will use CEi to refer to
the 2’th concept equation in Figure 2.

CE1, CE2, and CE3 enforce the proper behaviour of the concept names Real
and Hpg, and of the counting concepts Bi'; ; and Bpg;. CE4 ensures that the
counting concepts B, are updated correctly along L g-paths. To guarantee that
a “real” element d satisfies a number restriction X, r), CES ensures that
we see enough R-neighbors satisfying C' along an Lg-path for b = >, whereas
CE6 guarantees that we do not see too many such successors for < = <.

Lemma 3. Cy is finitely satisfiable w.r.t. T iff 0(Co) is finitely satisfiable w.r.t.
a(T).

Proof sketch: For the if direction, we take a singular finite model Z of o(Cp)
and o(7) and transform it into a finite model of Cy and 7 where, intuitively,
singular means the following: if d and d' are on an Lg-path starting at some
do € Real”, then there is no e with (d, e), (d',e) € R”. From a finite model 7' of

Co and T, we can construct a singular one by making disjoint copies of 7' and
mutually “bending” edges that violate singularity from one copy into another
one. The model J of Cy and T is then obtained from 7 by keeping only instances
of Real” and adding (d,e) to R7 if e is reachable via an Lg-path and one R-edge
from d.

For the only-if direction, we take some finite model Z of Cy and 7 and build
a finite model J of o(Cy) and o(T). For each d € AT and R € rol(Cy, T),
we fix a subset Wy p C {e | (d,e) € RT} of cardinality at most depthp such
that (i) Wy g contains at least n witnesses for each d € (> n R D)T, and (ii)
if d € (< n R D)%, then every R-neighbor of d in DT is in Wy g (such sets
obviously exist). Then we construct [J by introducing auxiliary objects and, for
each set Wy g, arranging all the elements of W, r as R-neigbors of the auxiliary
objects on an Lgz-path with root d. ad

Taking together Theorem 1 and Lemma 3, we obtain the following result:

Theorem 2. Finite satisfiability of ALC QT-concepts w.r.t. TBoxes is EXPTIME-
complete if numbers are coded in binary.

5 ABox Consistency

In this section, we extend the complexity bounds obtained in Sections 3 and 4 to
a more general reasoning task: finite ALCQZ-ABox consistency. As noted in the
introduction, ABoxes can be understood as describing a“snapshot” of the world.
We should like to note that (finite) ALCQZ-ABox consistency has important
applications: whereas finite ALC QZ-concept satisfiability algorithms can be used
to decide the consistency of conceptual database models and infer implicit IS-A
relationships as described in the introduction, ALC Q7-ABox consistency can be
used as the core component of algorithms deciding containment of conjunctive
queries w.r.t. conceptual database models—a task that DLs have succesfully
been used for and that calls for finite model reasoning [3, 9].

Definition 5. Let O be a countably infinite set of object names. An ABox
assertion is an expression of the form a : C or (a,b) : R, where a and b are
object names, C is a concept name, and R a role. An ABox is a finite set of
ABoz assertions.

Interpretations T are extended to ABoxes as follows: additionally, the inter-
pretation function T maps each object name to an element of AT such that a # b
implies a® # b” for all a,b € O (the so-called unique name assumption). An in-
terpretation T satisfies an assertion a : C if a* € CT and an assertion (a,b) : R
if (a%,b") € R. It is a model of an ABox A if it satisfies all assertions in A.
An ABozx is called finitely consistent if it has a finite model.

In the following, we will polynomially reduce finite ALCQZ-ABox consistency
to finite ALC QT-concept satisfiability. Thus, we prove that ALCQT-ABox con-
sistency is EXPTIME-complete independently of the way in which numbers are
coded. We start with fixing some notation.

Let A be an ABox and T a TBox. For each object name a used in A, refl 4(a)
denotes the set of role names R such that {(a,a) : R, (a,a) : R~} N A #). For
each object a and role R € rol(A,T), Na(a, R) denotes the set of object names
b such that b # a and {(a,b) : R, (b,a) : Inv(R)} N A # 0.

We use cl(A,7) to denote the smallest set containing all sub-concepts of
concepts appearing in A and 7 that is closed under . It can be easily shown
that the cardinality of cl(A,7) is linear in the size of A and T. Moreover,
rol(A, T) denotes the set of all roles (i.e., role names or inverses of role names)
used in A or 7.

A type T for an ABox A and a TBox 7 is defined as in Definition 3 with
the only exception that cl(Cop, T) is replaced with cl(A, 7). In what follows, we
will sometimes identify types T" with the conjunction [lcer C' and write, e.g.,
d e T” for d € (I'cer C)T. Tt is easily seen that the number of types for an
ABox A and a TBox T is exponential in the size of A and T.

A central notion for the reduction of finite ALCQT-ABox consistency to
finite ALC QT-concept satisfiability is that of a reduction candidate: a mapping
t that associates a type t(a) with each object name a occurring in A such that
a:C € Aimplies C € t(a). For each reduction candidate ¢, object name a, role
R € rol(A,T), and type T € ran(t), we use #7(a, R,T) to denote the number
of objects b such that b € N4(a, R) and #(b) = T'. Then, for each object name a
used in A, we define its t-reduction concept Ci*(a) as follows:

CA(a):= tlanXn Tl 3R.(tla)nX)N
Rerefl 4 (a)

M > #24(a,R,T) R (TN=X)),
Rerol(A,T) TEran(t)(#7(a) E()
where X is a fresh concept name not used in A and 7. Finally, the reduction
candidate t is called realizable iff, for every object a used in A, the reduction
concept C7'(a) is finitely satisfiable w.r.t. 7. The following lemma describes the
relationship between ABoxes and reduction candidates:

Lemma 4. Let A be an ABox and T a TBox. A is finitely consistent w.r.t. T
iff there exists a realizable reduction candidate for A and T.

Proof sketch: For the only-if direction, we take a model Z of A and 7. This
model gives rise to a reduction candidate ¢ in a straightforward way. By appro-
priately choosing an extension X7 for the fresh concept name X, we “almost”
obtain a model for the reduction concepts C'(a): there may exist object names
a such that a’ is an R-neighbor of itself, but R ¢ refl 4(a). Since this interferes
with the use of the concept name X, we need to take two disjoint copies of the
original model and bend back and forth some edges.

For the if direction, we take a realizable reduction candidate t for A and T
and finite models 7, of C7A(a) and 7, and use these to construct a finite model
for A and 7. The general idea is to take the union of (disjoint) finite models for
all reduction candidates and then bend some edges to satisfy ABox assertions
(a,b) : R. Some special care needs to be taken to deal with reflexivity assertions
(a,a) : R. |

Since the number of types for 4 and 7 is exponential in the size of A and T,
and the number of object names used in A is linear in the size of A, the number
of reduction candidates for A and 7T is exponential in the size of A4 and T.
Thus, to decide finite consistency of A w.r.t. 7, we may simply enumerate all
reduction candidates for A and T and check them for realizability: by Lemma 4,
A is finitely consistent w.r.t. 7 iff we find a realizable reduction type. Since
the size of the reduction concepts is clearly polynomial in the size of A and
T, by Theorem 2 the resulting algorithm can be executed in deterministic time
exponential in 4 and 7.

Theorem 3. Finite ALCQTI-ABozx consistency w.r.t. TBoxes is EXPTIME-com-
plete if numbers are coded in binary.

Note that our choice of the unique name assumption is not crucial for this result:
if we want to decide finite consistency of an ABox A without the unique name
assumption, we may use the following approach: enumerate all possible partition-
ings of the object names used in A. For each partitioning, choose a representative
for each partition and then replace each object name with the representative of
its partition. Obviously, the ABox A is finitely consistent without the unique
name assumption if and only if any of the resulting ABoxes is finitely consistent,
with the unique name assumption. Clearly, this yields an EXPTIME upper bound
for finite ABox consistency without the unique name assumption.

6 Outlook

In this paper, we have determined finite model reasoning in the description
logic ALCQT to be ExPTME-complete. This shows that reasoning w.r.t. finite
models is not harder than reasoning w.r.t. arbitrary models, which is known
to be also EXPTIME-complete [6]. We hope that, ultimately, this research will
lead to the development of finite model reasoning systems that behave equally
well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,
however, that the current algorithm is best-case EXPTIME since it constructs
an exponentially large equation system. It can thus not be expected to have an
acceptable runtime behaviour if implemented in a naive way. Nevertheless, we
believe that the use of equation systems and linear programming is indispensable
for finite model reasoning in ALCQZ. Thus, efforts to obtain efficient reasoners
should perhaps concentrate on methods to avoid best-case exponentiality such as
on-the-fly construction of equation systems. Moreover, the reductions presented
in Section 4 and 5 can also not be expected to exhibit an acceptable run-time
behaviour and it would thus be interesting to try to replace them by more
“direct” methods.

Theoretically, there exist at least two interesting directions in which the
presented research can be continued: first, while finite ALC QT-concept satisfia-
biltiy w.r.t. TBoxes is sufficient for reasoning about conceptual database models
as described in the introduction, finite ALC QZ-ABox consistency it is not yet
sufficient for deciding the containment of conjunctive queries w.r.t. a given con-
ceptual model—an intermediate reduction step is required. It would thus be

interesting to analyze the complexity of query containment in finite models. We
believe that it is possible to obtain an EXPTIME upper bound by building on
the results presented in Section 5. Secondly, it would be interesting to extend
ALCQT with nominals, i.e. with concept names interpreted as singleton sets.
Finite and standard reasoning in the resulting DL ALCQOT is known to be
NExpTMME-hard [14]. An extension in this direction is rather challenging since
the results established in this paper crucially rely on the fact that adding dis-
joint copies of a model preserves the model’s properties. Unfortunately, in the
presence of nominals, this is no longer true.

References

1.

10.

11.

12.

13.

14.

15.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2002.

M. Bojanczyk. Two-way alternating automata and finite models. In Proc. of
ICALP2002, vol. 2380 of LNCS. Springer-Verlag, 2002.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS-98. ACM Press, 1998.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In Logics for Databases and Information Systems. Kluwer Academic
Publisher, 1998.

D. Calvanese. Finite model reasoning in description logics. In Proc. of KR-96.
Morgan Kaufmann, 1996.

G. De Giacomo and M. Lenzerini. Thox and Abox reasoning in expressive descrip-
tion logics. In Proc. of KR-96. Morgan Kaufmann, 1996.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
J. of Computer and System Science, 18:194-211, 1979.

E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling. In
Working Notes of the ECAI2000 Workshop KRDB2000. CEUR, 2000.

I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to decide query containment
under constraints using a description logic. In Proc. of LPAR 2000, vol. 1955 in
LNAT. Springer-Verlag, 2000.

C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. LTCS-Report 02-05, TU Dresden, 2002. Available from
http://lat.inf.tu-dresden.de/research /reports.html.

K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91. Morgan Kaufmann, 1991.

M. Schmidt-Schaufl and G. Smolka. Attributive Concept Descriptions with Com-
plements. Artificial Intelligence, 48(1), 1991.

B. Thalheim. Fundamentals of cardinality constraints. In Proc. of ER’92, vol. 645
in LNCS. Springer Verlag, 1992.

S. Tobies. The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. of Art. Intelligence Research, 12:199-217, 2000.
M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of
ICALP’98, vol. 1443 of LNCS. Springer-Verlag, 1998.

