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Abstra
t. We analyze the 
omplexity of �nite model reasoning in the

des
ription logi
 ALCQI, i.e. ALC augmented with qualifying number

restri
tions, inverse roles, and general TBoxes. It turns out that all rele-

vant reasoning tasks su
h as 
on
ept satis�ability and ABox 
onsisten
y

are ExpTime-
omplete, regardless of whether the numbers in number

restri
tions are 
oded unarily or binarily. Thus, �nite model reasoning

with ALCQI is not harder than standard reasoning with ALCQI.

1 Motivation

Des
ription logi
s (DLs) are a family of logi
al formalisms that originated in

the �eld of knowledge representation and are nowadays used in a wide range

of appli
ations [1℄. Similar to many modal logi
s (to whi
h DLs are 
losely re-

lated), most des
ription logi
s enjoy the �nite model property (FMP). This is,

for example, the 
ase for the basi
 propositionally 
losed DL ALC [12℄ that is

well-known to be a notational variant of the multi-modal logi
 K [11℄: satis�-

ability of ALC-
on
epts (the DL equivalent of a formula) w.r.t. �nite models


oin
ides with the satis�ability of ALC-
on
epts w.r.t. arbitrary models [11℄.

However, there also exist des
ription logi
s that do not enjoy FMP. One exam-

ple is the full �-
al
ulus, i.e., the extension of ALC with �xpoints and inverse

roles (
alled inverse modalitities in modal logi
). For the ��-fragment of this

logi
, �nite satis�ability was shown to be in 2-ExpTime [2℄ (to the best of our

knowledge, a mat
hing lower bound is not yet known), whereas satis�ability in

arbitrary models is known to be ExpTime-
omplete [15℄. Another important

example is the DL ALCQI whi
h is obtained from ALC by adding qualifying

number restri
tions (
orresponding to graded modalities in modal logi
), inverse

roles, and general TBoxes (roughly 
orresponding to the universal modality).

The fa
t that ALCQI la
ks FMP be
omes parti
ularly important if we 
on-

sider this logi
's most prominent appli
ation, whi
h is reasoning about 
on
ep-

tual database models [4℄: if su
h a model is des
ribed by one of the standard

formalisms|namely ER diagrams for relational databases and UML diagrams

for obje
t-oriented databases|then it 
an be translated into a DL TBox, i.e. a

set of 
on
ept equations; afterwards, a des
ription logi
 reasoner su
h as FaCT



and RACER 
an be used to dete
t in
onsisten
ies and to infer impli
it IS-A

relationships between entities/
lasses. This useful and original appli
ation has

already led to the implementation of tools that provide a GUI for spe
ifying


on
eptual models, automatize the translation into des
ription logi
s, and dis-

play the information returned by the DL reasoner [8℄. However, it is well-known

that there exist ER and UML diagrams whi
h are satis�able only in in�nite

models, but not in �nite ones [13℄. Sin
e all available DL reasoning systems are

performing reasoning w.r.t. arbitrary (as opposed to �nite) models, this means

that some in
onsisten
ies and IS-A relationships will not be dete
ted if these

reasoners are used for reasoning about 
on
eptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.

arbitrary models is that �nite model reasoning in des
ription logi
s su
h as

ALCQI is not yet well-understood. The only known algorithm is presented by

Calvanese in [5℄, where he proves that reasoning in ALCQI is de
idable in 2-

ExpTime. The purpose of this paper is to improve the understanding of �nite

model reasoning in des
ription logi
s by establishing tight ExpTime 
omplexity

bounds for �nite model reasoning in the DL ALCQI.

In Se
tion 3, we develop an algorithm that is 
apable of de
iding �nite satis-

�ability of ALCQI-
on
epts w.r.t. TBoxes. Similar to Calvanese's approa
h, the


ore idea behind our algorithm is to translate a given satis�ability problem into

a set of linear equations that 
an then be solved by linear programming methods.

The main di�eren
e to Calvanese's approa
h is that our equation systems talk

about di�erent 
omponents of models, mosai
s, whi
h allows us to keep the size

of equation systems exponential in the size of the input. In this way, we improve

the best-known 2-ExpTime upper bound to a tight ExpTime one.

Sin
e the approa
h presented in Se
tion 3 presupposes unary 
oding of the

numbers o

urring in qualifying number restri
tions, in Se
tion 4 we 
onsider

�nite model reasoning in ALCQI and numbers 
oded in binary. We give a poly-

nomial redu
tion of ALCQI-
on
ept satis�ability w.r.t. TBoxes to the satis�a-

bility of ALCFI-
on
ept satis�ability w.r.t. TBoxes, where ALCFI is obtained

from ALCQI by allowing only the number 1 to be used in number restri
tions.

Sin
e �nite model reasoning in ALCFI is in ExpTime by the results from Se
-

tion 3 (the 
oding of numbers is not an issue here), we obtain a tight ExpTime

bound for �nite model reasoning in ALCQI and numbers 
oded in binary.

Finally, in Se
tion 5 we 
onsider the �nite satis�abiliy of ABoxes w.r.t.

TBoxes. Intuitively, ABoxes des
ribe a parti
ular state of a�airs, a \snapshot"

of the world. By a redu
tion to (�nite) 
on
ept satis�ability, we are able to show

that this reasoning task is also ExpTime-
omplete, independently of the way in

whi
h numbers are 
oded.

This paper is a

ompanied by a te
hni
al report that 
ontains full proofs [10℄.

2 Preliminaries

We introdu
e syntax and semanti
s of ALCQI.



De�nition 1 (ALCQI Syntax). LetR and C be disjoint and 
ountably in�nite

sets of role and 
on
ept names. A role is either a role name R 2 R or the inverse

R

�

of a role name R 2 R. The set of ALCQI-
on
epts is the smallest set

satisfying the following properties: (i) ea
h 
on
ept name A 2 C is an ALCQI-


on
ept; and (ii) if C and D are ALCQI-
on
epts, R is a role, and n a natural

number, then :C, C uD, C tD, (6 n R C), and (> n R C) are also ALCQI-


on
epts.

A 
on
ept equation is of the form C

:

= D for C;D two ALCQI-
on
epts. A

TBox is a �nite set of 
on
ept equations.

As usual, we use the standard abbreviations ! and $ as well as 9R:C for

(> 1 R C), 8R:C for (6 0 R :C), > to denote an arbitrary propositional

tautology, and ? as abbreviation for :>. To avoid roles like (R

�

)

�

, we de�ne a

fun
tion Inv on roles su
h that Inv(R) = R

�

if R is a role name, and Inv(R) = S

if R = S

�

. The fragment ALCFI of ALCQI is obtained by admitting only

at-most restri
tions (6 n R C) with n 2 f0; 1g and only at-least restri
tions

(> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI semanti
s). An interpretation I is a pair (�

I

; �

I

)

where �

I

is a non-empty set and �

I

is a mapping whi
h asso
iates, with ea
h


on
ept name A, a set A

I

� �

I

and, with ea
h role name R, a binary relation

R

I

� �

I

��

I

. The interpretation of inverse roles and 
omplex 
on
epts is then

de�ned as follows:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g;

(:C)

I

= �

I

n C

I

, (C uD)

I

= C

I

\D

I

, (C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng,

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng.

An interpretation I satis�es a 
on
ept equation C

:

= D if C

I

= D

I

, and I is


alled a model of a TBox T if I satis�es all 
on
ept equations in T .

A 
on
ept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A 
on
ept C is �nitely satis�able w.r.t. a TBox T if there is a model I

of T with C

I

6= ; and �

I

�nite.

Let us 
onsider a witness for the fa
t that ALCQI la
ks FMP: the 
on
ept

:Au9R:A is satis�able w.r.t. the TBox fA

:

= 9R:Au (6 1 R

�

>)g, but ea
h of

its models 
ontains an in�nite R-
hain.

There exists another important reasoning problem on 
on
epts and TBoxes:

subsumption. However, sin
e subsumption 
an be redu
ed to (un)satis�ability

and vi
e versa, we just note that all 
omplexity bounds obtained in this paper

also apply to subsumption.

In what follows, we will only 
onsider TBoxes of the rather simple form

f>

:

= Cg. This 
an be done w.l.o.g. sin
e an interpretation I is a model of a

TBox T = fC

i

:

= D

i

j 1 � i � ng i� it is a model of f>

:

=u

1�i�n

(C

i

$ D

i

)g.



3 Unary Coding of Numbers

In this se
tion, we present a de
ision pro
edure for �nite satis�ability of ALCQI-


on
epts w.r.t. TBoxes that runs in deterministi
 exponential time, provided that

numbers in number restri
tions are 
oded unarily. In Se
tion 4, we will generalize

this upper bound to binary 
oding of numbers.

As observed by Calvanese in [5℄, 
ombinatori
s is an important issue when

de
iding �nite satis�ability of ALCQI-
on
epts. To illustrate this, 
onsider the

TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be 
lear that, in any model of T , there are at least twi
e as many

obje
ts satisfying B u (6 1 R

�

A) as there are obje
ts satisfying Au (> 2 R B).

This simple example suggests that (i) types (i.e., sets of 
on
epts satis�ed by a

parti
ular obje
t in a parti
ular model) su
h as fA; (> 2 R B)g are a natural

notion for dealing with �nite satis�ability, and (ii) the 
ombinatori
s introdu
ed

by �nite domains 
an be addressed with inequalities like 2 �x

T

� x

T

0

, where the

variable x

T

des
ribes the number of instan
e of a type T (e.g. fA; (> 2 R B)g),

while x

T

0

des
ribes the number of instan
es of another type T

0

(e.g. fB; (6

1 R

�

A)g). These 
ombinatorial 
onstraints are not an issue if in�nite domains

are admitted: in this 
ase, we 
an always �nd a model where all types that have

instan
es at all have the same number of instan
es, namely 
ountably in�nitely

many.

Considering the above two points, a �rst idea to devise a de
ision pro
edure

for �nite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is to translate an input


on
ept and TBox into a system of inequalities with one variable for ea
h type,

and then to use existing algorithms to 
he
k whether the equation system has

a non-negative integer solution. For example, the satis�ability problem of the


on
ept A w.r.t. the TBox T above 
an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indu
ed by the input 
on
ept A and TBox T .

It is not hard to see that any non-negative integer solution to this equation

system 
an be used to 
onstru
t a �nite model for A and T and vi
e versa.

Unfortunately, there is a problem with this approa
h: assume that the in-

put 
on
ept and TBox indu
e types T

1

to T

5

as follows: (> 1 R C) 2 T

1

,

(> 1 R D) 2 T

2

, (6 1 Inv(R) >) 2 T

3

\ T

4

\ T

5

, C 2 T

3

\ T

4

, and D 2 T

4

\ T

5

.

The translation des
ribed above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whi
h have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solution.

Trying to 
onstru
t a model with a

1

, a

2

, and a

4

instan
es of T

1

, T

2

, and T

4

,

respe
tively, we have to use a

4

as a witness of a

1

being an instan
e of (> 1 R C)

and a

2

being an instan
e of (> 1 R D). However, this violates the (6 1 Inv(R) >)


on
ept in T

4

.



This example illustrates that \
ounting types" does not suÆ
e: 
on
i
ts may

arise if a type 
ontaining an at-most restri
tion (T

4

) 
an be used as a witness for

at-least restri
tions in more than one type (T

1

and T

2

). In su
h a situation, it is

thus ne
essary to (additionally) �x the types that are a
tually used as witnesses

for at-least restri
tions. We a
hieve this by de�ning systems of inequalities based

on small 
hunks of models 
alled mosai
s, rather than based dire
tly on types.

Intuitively, a mosai
 des
ribes the type of an obje
t and �xes the type of 
ertain

\important" witnesses.

Before de�ning mosai
s, we introdu
e some preliminaries. In the remainder

of this paper, we assume 
on
epts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e., negation is only allowed in front of 
on
ept

names. Every ALCQI-
on
ept 
an be transformed into an equivalent one in

NNF by exhaustively applying de Morgan's rules and the equivalen
e between

:(6 n R C) and (> n + 1 R C), between :(> (n + 1) R C) and (6 n R C),

and between :(> 0 R C) and ?. We use _:C to denote the NNF of :C. For a


on
ept C

0

and a TBox T = f>

:

= C

T

g, 
l(C

0

; T ) is the smallest set 
ontaining

all sub-
on
epts of C

0

and C

T

that is 
losed under _:. It 
an easily be shown that

the 
ardinality of 
l(C

0

; T ) is linear in the size of C

0

and T . We use rol(C

0

; T )

to denote the set of role names R and their inverses R

�

o

urring in C

0

or T .

De�nition 3 (Types and Mosai
s). A type T for C

0

; T = f>

:

= C

T

g is a

set T � 
l(C

0

; T ) su
h that, for ea
h D;E 2 
l(C

0

; T ), we have

(T1) D 2 T i� _:D 62 T ,

(T2) if D u E 2 
l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,

(T3) if D t E 2 
l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

(T4) C

T

2 T .

We use type(C

0

; T ) to denote the set of all types over C

0

; T . Let T be a type and

./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg and sum

./

(T ) :=

X

(./ n R C)2T

n:

For types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

) (T

2

is a limited ressour
e

for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 
l(C

0

; T ) and

n 2 N. Finally, for a mapping f , we use ran(f) for the range of f .

A mosai
 for C

0

; T is a triple M = (T

M

; L

M

; E

M

) where

{ T

M

2 type(C

0

; T ),

{ L

M

is a fun
tion from rol(C

0

; T )� type(C

0

; T ) to N, and

{ E

M

is a fun
tion from rol(C

0

; T )� type(C

0

; T ) to N

su
h that the following 
onditions are satis�ed:

(M1) if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

(M2) if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

(M3) if (6 n R C) 2 T

M

, then n �

P

fT jC2Tg

E

M

(R; T );

(M4) #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

).



Consider a mosai
 M and one of its \instan
es" d in some interpretation. While

T

M

is simply the type of d, L

M

and E

M

are used to des
ribe 
ertain \neighbors"

of d, i.e. obje
ts e rea
hable from d via a role. For a role R, there are three

possibilities for the relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary

number of R-neighbors of type T and every instan
e of T may have an ar-

bitrary number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors of

type T are \un
riti
al" and not re
orded in the mosai
.

2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary num-

ber of R-neighbors of type T , but every instan
e of T may only have a limited

number of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of type T are a

limited ressour
e and we re
ord in L

M

the minimal number of R-neighbors

of type T that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors of

type T . To prevent the violation of at-most restri
tions in T

M

, we re
ord the

exa
t number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

re
ord information for the \
orre
t"

types as des
ribed above; (M3) ensures that at-most restri
tions are not violated|

by de�nition, this 
on
erns only neighbors with E

M

-types; �nally, (M4) puts up-

per bounds on L

M

to ensure that there exist only exponentially many mosai
s

(see below). At-least restri
tions are not mentioned in the de�nition of mosai
s

and will be treated by the systems of inequalities to be de�ned later.

Now for the number of mosai
s. The 
ardinality of type(C

0

; T ) is exponential

in the size of C

0

and T . Next, (M2) and (M3) imply #f(R; T ) j E

M

(R; T ) >

0g � sum

6

(T

M

) and max(ran(E

M

)) � max

6

(T

M

). Analogous bounds for L

M

are enfor
ed by (M4). Now max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for ./ 2 f6;>g sin
e numbers are 
oded in unary, and thus the number

of mosai
s is bounded exponentially in the size of C

0

and T .

We now de�ne an system of inequalities for a 
on
ept C

0

and a TBox T .

De�nition 4 (Equation System). For C

0

an ALCQI-
on
ept and T a TBox,

we introdu
e a variable x

M

for ea
h mosai
 M over C

0

; T and de�ne the equation

system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), the equation

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)



A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and

satis�es the following 
onditions: (i) for ea
h pair of types T; T

0

2 type(C

0

; T )

and role R su
h that lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0; (A1)

(ii) for ea
h mosai
 M and ea
h role R, if (> n R C) 2 T

M

,

x

M

> 0, and

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then

X

fM

0

jC2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0 (A2)

While inequality (E1) guarantees the existen
e of an instan
e of C

0

, inequalities

(E2) and (E3) enfor
e the lower and exa
t bounds on the number of neighbors

as des
ribed by L

M

and E

M

. A spe
ial 
ase is treated by 
ondition (A1): in

inequality (E2), it may happen that the left-hand side is zero while the right-

hand side is non-zero. In this 
ase, there is an instan
e of a mosai
 M

0

with

T

M

0

= T

0

and E

M

(Inv(R); T ) > 0 (
ounted on the right-hand side), but there is

no instan
e of a mosai
 M with T

M

= T (
ounted on the left-hand side)|thus

we 
annot �nd any neighbors as required by E

M

(Inv(R); T ). To 
ure this defe
t,


ondition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there

is at least one instan
e of a mosai
M with T

M

= T .

1

Finally, (A2) takes 
are of

at-least restri
tions in types T

M

: if the number of R-neighbors enfor
ed by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then we make sure that there

is at least one instan
e of a mosai
 M

0

su
h that C 2 T

M

0

and, for instan
es

of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are instan
es of

M

0

(M) is not limited:

1

Lemma 1. C

0

is �nitely satis�able w.r.t. T i� the equation system E

C

0

;T

has

an admissible solution.

Proof sket
h: Con
erning the only-if dire
tion, it is possible to 
onstru
t an

admissible solution for E

C

0

;T

from a model I of C

0

and T . Intuitively, we asso-


iate, with ea
h obje
t d 2 �

I

, a mosai
M(d): T

M(d)


ontains all 
on
epts from


l(C

0

; T ) that d is an instan
e of, and L

M(d)

and E

M(d)

are �xed using a 
hoi
e

fun
tion on the neighbors of d in I. If ne
essary, the value of L

M(d)

is trun
ated

in order to satisfy (M4).

For the if dire
tion, we use an admissible solution Æ of E

C

0

;T

to 
onstru
t

a model of C

0

and T in two steps (in [10℄, these steps are a
tually merged):

initially, ea
h mosai
M has Æ(M) instan
es and we use the inequalities and side

1

To see why a single instan
e suÆ
es, 
onsult the proof sket
h of Lemma 1.




onditions to de�ne a relational stru
ture su
h that (i) all at-most restri
tions

are satis�ed and (ii) ea
h instan
e of an at-least restri
tion (> n R C) has at

least 1 R-neighbor in C. Then, we take P disjoint 
opies of the initial model

(for P the maximum number in C

0

and T ) and \bend" edges ba
k and forth

between the 
opies su
h that no at-most restri
tions are violated and all at-least

restri
tions are satis�ed. ut

Sin
e the number of mosai
s is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility 
ondition is also exponential in the size of C

0

and

T . To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-


on
epts, it thus remains to show that the existen
e of an admissible solution

for the equation systems E

C

0

;T


an be de
ided in deterministi
 polynomial time.

Before we a
tually do this, we �rst �x some notation.

We assume linear inequalities to be of the form �

i




i

x

i

� b. A system of linear

inequalities is des
ribed by a tuple (V; E), where V is a set of variables and E

a set of inequalities using variables from V . Su
h a system is 
alled simple if

only non-negative integers o

ur on the right-hand side of inequalities and all


oeÆ
ients are (possibly negative) integers. A side 
ondition for an inequality

system (V; E) is a 
onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

It is not hard to 
he
k that the inequalities (Ei) 
an be polynomially trans-

formed into simple ones, and that the 
onditions (Ai) 
an be transformed into

side 
onditions: (E1) is already simple; ea
h inequality from (E2) 
an be brought

into the form

P

: : :�

P

: : : � 0; ea
h equality from (E3) 
an be transformed into

two inequalities of the same form; ea
h impli
ation from (A1) is transformed into

polynomially many side 
onditions by using a separate side 
ondition for ea
h

addend appearing in the premise (this is possible sin
e we are interested in non-

negative solutions only), repla
ing 
oeÆ
ients E

M

(� � � ) > 0 with 1, and dropping


onditions where E

M

(� � � ) = 0; (A2) is already in the form of a side 
ondition.

The proof of the following lemma is by redu
tion to linear programming and 
an

be found in [10℄.

Lemma 2. Let (V; E) be a simple equation system and I a set of side 
onditions

for (V; E). Then the existen
e of a non-negative integer solution for (V; E) sat-

isfying all 
onstraints from I 
an be de
ided in (deterministi
) time polynomial

in #V +#E +#I.

Sin
e satis�ability of ALC w.r.t. TBoxes in arbitrary models is ExpTime-hard

[7, 11℄ and this DL has the �nite model property, 
ombining Lemmas 1 and 2

yields the following theorem:

Theorem 1. Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-


omplete if numbers are 
oded in unary.

4 Binary Coding of Numbers

If numbers in number restri
tions are 
oded binarily, the ExpTime upper bound

from Theorem 1 does no longer apply: in this 
ase, the number of mosai
s is



.

.

.
.
.
.

x

R

R

R

R

R

R

R

x

R

R

R

R

L

R

L

R

L

R

Fig. 1. Representing role su

essor relationships.

double exponential in the size of the input, and thus the algorithm used in

Se
tion 3 yields only a 2-ExpTime upper bound. Indeed, it is a non-trivial

problem whether this algorithm 
an be adapted to binary 
oding. We have to

leave this problem open and 
hoose an alternative te
hnique: a redu
tion of �nite

ALCQI-
on
ept satis�ability to the �nite satis�ability ofALCFI-
on
epts. This

redu
tion is polynomial even for binary 
oding of numbers and its target logi


is insensitive to the 
oding of numbers sin
e it involves only the 
onstants 0,1,

and 2. Thus we have an ExpTime upper bound for the �nite satis�ability of

ALCQI-
on
epts w.r.t. TBoxes even if numbers are 
oded in binary sin
e we


an �rst use the translation and then the ExpTime de
ision pro
edure from

the previous se
tion. Note that, in 
ontrast to existing redu
tions of ALCQI to

ALCFI whi
h only work in the 
ase of potentially in�nite models [6℄, we have

to take spe
ial 
are to deal with �nite models.

The 
entral idea behind our redu
tion is to repla
e 
ounting via quali�ed

number restri
tions with 
ounting via 
on
ept names: to 
ount up to a number n,

we reserve 
on
ept names B

0

; : : : ; B

dlog(n)e

representing the bits of the binary


oding of numbers between 0 and n. For the a
tual 
ounting, we 
an then use

well-known (propositional logi
) formulas that en
ode in
rementation. We use a

TBox involving auxiliary 
on
ept names and roles L

R

to re-arrange R-neighbors

as shown in Figure 1: ex
ept for the root, ea
h node on the auxiliary L

R

-path

atta
hed to x has pre
isely one R-neighbor. Ignoring the root for a se
ond,

this means that we 
an 
ount via 
on
ept names along the auxiliary obje
ts

on L

R

-paths. However, we 
annot gather all original R-neighbors of x on the

L

R

-path sin
e we only 
ount up to the sum of numbers o

urring in the input


on
ept and TBox. Sin
e an obje
t may have more R-neighbors than this, these

\unrestri
ted" R-neighbors are not re-arranged, but atta
hed to the root as

shown in the upper right part of Figure 1.

Fix an ALCQI-
on
ept C

0

and an ALCQI-TBox T whose �nite satis�ability

is to be de
ided. In the following, we use 
nam(C

0

; T ) to denote the set of 
on
ept

names appearing in C

0

and T , rnam(C

0

; T ) to denote the set of role names

appearing in C

0

and T , and rol(C

0

; T ) with the same meaning as in Se
tion 3.

W.l.o.g., we assume C

0

and T to be in NNF. In order to translate C

0

and T to

ALCFI, we need to introdu
e some additional 
on
ept and role names:

1. a fresh (i.e., not appearing in C

0

or T ) 
on
ept name Real;

2. for ea
hR 2 rnam(C

0

; T ), a fresh 
on
ept nameH

R

and a fresh role name L

R

;



3. for ea
h 
on
ept D 2 
l(C

0

; T ) of the form (./ n R C) (with ./ 2 f6;>g), a

fresh 
on
ept name X

D

and fresh 
on
ept names B

./n

C;R;0

; : : : ; B

./n

C;R;k

, where

k = dlog(n+ 1)e;

4. for ea
h role R 2 rol(C

0

; T ), fresh 
on
ept names B

R;0

; : : : ; B

R;k

, where

k = dlog(depth

R

)e and

depth

R

:=

X

(./ n R C)2
l(C

0

;T )

n:

The 
on
ept name Real is used to distinguish \real" obje
ts from auxiliary ob-

je
ts, and, for ea
h role R, H

R

identi�es those auxiliary obje
ts that are on an

L

R

-path. The 
on
ept names X

D

are used as substitutes for ALCQI 's at-least

and at-most restri
tions that are not available in ALCFI . Counting with su
h

a restri
tion (./ n R C) is repla
ed by 
ounting via the 
on
ept names B

./n

C;R;i

:

they 
ount the \o

urren
es" of R-neighbors in C along L

R

-paths. The 
on
ept

names B

R;i

are also used for 
ounting, namely to 
ount the length of auxiliary

L

R

paths.

Note that the number of newly introdu
ed 
on
ept and role names is polyno-

mial in the size of C

0

and T . We will use N

./n

C;R

to refer to the number en
oded

by the 
on
ept names B

./n

C;R;0

; : : : ; B

./n

C;R;dlog(n+1)e

and N

R

to refer to the number

en
oded by the 
on
ept names B

R;0

; : : : ; B

R;dlog(depth

R

)e

: Moreover, we will use

the following abbreviations:

{ (N

R

= i) to denote the ALCFI-
on
ept (a Boolean formula) expressing that

N

R

equals i, and similar for N

./n

C;R

= i and the 
omparisons \<" and \>";

{ in
r(N

R

; S) to denote theALCFI-
on
ept expressing that, for all S-neighbors,

the number N

R

is in
remented by 1 modulo depth

R

, and similar for

in
r(N

./n

C;R

; S). More pre
isely, these 
on
epts are de�ned as follows:

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

We 
an now indu
tively de�ne a translation 
(C

0

) of the 
on
ept C

0

into an

ALCFI-
on
ept (indeed even into a Boolean formula):


(A) := A 
(:C) := :
(C)


(C uD) := 
(C) u 
(D) 
(C tD) := 
(C) t 
(D)


(> n R C) := X

(>n R C)


(6 n R C) := X

(6n R C)

Now set �(C

0

) := 
(C

0

) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real! 
(C

T

)g [ Aux(C; T )

where the TBox Aux(C

0

; T ) is de�ned in Figure 2, in whi
h we use C v D as

abbreviation for >

:

= C ! D, and in whi
h all t and u range over all 
on
epts



>

:

= u

R2rol(C

0

;T )

8R:(Real tH

Inv(R)

) u 8L

R

:H

R

u (6 1 L

R

>) u

u

(./ n R D)

�

X

(./ n R D)

$ 8L

R

:X

(./ n R D)

�

u

u

R2rol(C

0

;T )

u

A2
nam(C

0

;T )

(A$ 8L

R

:A) u

u

D

:
(D)! 
( _:(D))

Real v u

R2rol(C

0

;T )

:H

R

u 8L

R

:(N

R

= 0) u (6 0 L

�

R

>)u

u

(./ n R D)

�

X

(./ n R D)

! 8L

R

:(N

./n

D;R

= 0)

�

u

u

(6 n R D)

�

X

(6n R D)

! 8R::
(D)

�

u

u

(> n R D)

with n>0

�

X

(>n R D)

! 9L

R

:>

�

H

R

v (= 1 R >) u (= 1 L

�

R

>) u in
r(N

R

; L

R

) u

(N

R

= 0)! 9L

�

R

:Real u

(N

R

= (depth

R

� 1))! (6 0 L

R

>)

H

R

v u

(./ n R D)

(9R:
(D)! in
r(N

./n

D;R

; L

R

))

H

R

v u

(>n R D)

(X

(> n R D)

uN

>n

D;R

< n u 8R::
(D) u 8L

R

:?)! ?)

H

R

v u

(6 n R D)

�

(X

(6 n R D)

uN

6n

D;R

= n u 9R:
(D))! ?

�

Fig. 2. The TBox Aux(C

0

; T ).

in 
l(C

0

; T ) of the form spe
i�ed. In what follows, we will use CE i to refer to

the i'th 
on
ept equation in Figure 2.

CE1, CE2, and CE3 enfor
e the proper behaviour of the 
on
ept names Real

and H

R

, and of the 
ounting 
on
epts B

./n

C;R;i

and B

R;i

. CE4 ensures that the


ounting 
on
epts B

./n

C;R

are updated 
orre
tly along L

R

-paths. To guarantee that

a \real" element d satis�es a number restri
tion X

(./ n R C)

, CE5 ensures that

we see enough R-neighbors satisfying C along an L

R

-path for ./ = >, whereas

CE6 guarantees that we do not see too many su
h su

essors for ./ = 6.

Lemma 3. C

0

is �nitely satis�able w.r.t. T i� �(C

0

) is �nitely satis�able w.r.t.

�(T ).

Proof sket
h: For the if dire
tion, we take a singular �nite model I of �(C

0

)

and �(T ) and transform it into a �nite model of C

0

and T where, intuitively,

singular means the following: if d and d

0

are on an L

R

-path starting at some

d

0

2 Real

I

, then there is no e with (d; e); (d

0

; e) 2 R

I

. From a �nite model I

0

of



C

0

and T , we 
an 
onstru
t a singular one by making disjoint 
opies of I

0

and

mutually \bending" edges that violate singularity from one 
opy into another

one. The model J of C

0

and T is then obtained from I by keeping only instan
es

of Real

I

and adding (d; e) to R

J

if e is rea
hable via an L

R

-path and one R-edge

from d.

For the only-if dire
tion, we take some �nite model I of C

0

and T and build

a �nite model J of �(C

0

) and �(T ). For ea
h d 2 �

I

and R 2 rol(C

0

; T ),

we �x a subset W

d;R

� fe j (d; e) 2 R

I

g of 
ardinality at most depth

R

su
h

that (i) W

d;R


ontains at least n witnesses for ea
h d 2 (> n R D)

I

, and (ii)

if d 2 (6 n R D)

I

, then every R-neighbor of d in D

I

is in W

d;R

(su
h sets

obviously exist). Then we 
onstru
t J by introdu
ing auxiliary obje
ts and, for

ea
h set W

d;R

, arranging all the elements of W

d;R

as R-neigbors of the auxiliary

obje
ts on an L

R

-path with root d. ut

Taking together Theorem 1 and Lemma 3, we obtain the following result:

Theorem 2. Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-


omplete if numbers are 
oded in binary.

5 ABox Consisten
y

In this se
tion, we extend the 
omplexity bounds obtained in Se
tions 3 and 4 to

a more general reasoning task: �nite ALCQI-ABox 
onsisten
y. As noted in the

introdu
tion, ABoxes 
an be understood as des
ribing a\snapshot" of the world.

We should like to note that (�nite) ALCQI-ABox 
onsisten
y has important

appli
ations: whereas �nite ALCQI-
on
ept satis�ability algorithms 
an be used

to de
ide the 
onsisten
y of 
on
eptual database models and infer impli
it IS-A

relationships as des
ribed in the introdu
tion, ALCQI-ABox 
onsisten
y 
an be

used as the 
ore 
omponent of algorithms de
iding 
ontainment of 
onjun
tive

queries w.r.t. 
on
eptual database models|a task that DLs have su

esfully

been used for and that 
alls for �nite model reasoning [3, 9℄.

De�nition 5. Let O be a 
ountably in�nite set of obje
t names. An ABox

assertion is an expression of the form a : C or (a; b) : R, where a and b are

obje
t names, C is a 
on
ept name, and R a role. An ABox is a �nite set of

ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the inter-

pretation fun
tion �

I

maps ea
h obje
t name to an element of �

I

su
h that a 6= b

implies a

I

6= b

I

for all a; b 2 O (the so-
alled unique name assumption). An in-

terpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion (a; b) : R

if (a

I

; b

I

) 2 R

I

. It is a model of an ABox A if it satis�es all assertions in A.

An ABox is 
alled �nitely 
onsistent if it has a �nite model.

In the following, we will polynomially redu
e �nite ALCQI-ABox 
onsisten
y

to �nite ALCQI-
on
ept satis�ability. Thus, we prove that ALCQI-ABox 
on-

sisten
y is ExpTime-
omplete independently of the way in whi
h numbers are


oded. We start with �xing some notation.



Let A be an ABox and T a TBox. For ea
h obje
t name a used in A, re


A

(a)

denotes the set of role names R su
h that f(a; a) : R; (a; a) : R

�

g \ A 6= ;: For

ea
h obje
t a and role R 2 rol(A; T ), N

A

(a;R) denotes the set of obje
t names

b su
h that b 6= a and f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

We use 
l(A; T ) to denote the smallest set 
ontaining all sub-
on
epts of


on
epts appearing in A and T that is 
losed under _:. It 
an be easily shown

that the 
ardinality of 
l(A; T ) is linear in the size of A and T . Moreover,

rol(A; T ) denotes the set of all roles (i.e., role names or inverses of role names)

used in A or T .

A type T for an ABox A and a TBox T is de�ned as in De�nition 3 with

the only ex
eption that 
l(C

0

; T ) is repla
ed with 
l(A; T ). In what follows, we

will sometimes identify types T with the 
onjun
tion u

C2T

C and write, e.g.,

d 2 T

I

for d 2 (u

C2T

C)

I

. It is easily seen that the number of types for an

ABox A and a TBox T is exponential in the size of A and T .

A 
entral notion for the redu
tion of �nite ALCQI-ABox 
onsisten
y to

�nite ALCQI-
on
ept satis�ability is that of a redu
tion 
andidate: a mapping

t that asso
iates a type t(a) with ea
h obje
t name a o

urring in A su
h that

a : C 2 A implies C 2 t(a). For ea
h redu
tion 
andidate t, obje
t name a, role

R 2 rol(A; T ), and type T 2 ran(t), we use #

A

t

(a;R; T ) to denote the number

of obje
ts b su
h that b 2 N

A

(a;R) and t(b) = T . Then, for ea
h obje
t name a

used in A, we de�ne its t-redu
tion 
on
ept C

A

t

(a) as follows:

C

A

t

(a) := t(a) uX u u

R2re


A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (T u :X));

where X is a fresh 
on
ept name not used in A and T . Finally, the redu
tion


andidate t is 
alled realizable i�, for every obje
t a used in A, the redu
tion


on
ept C

A

t

(a) is �nitely satis�able w.r.t. T . The following lemma des
ribes the

relationship between ABoxes and redu
tion 
andidates:

Lemma 4. Let A be an ABox and T a TBox. A is �nitely 
onsistent w.r.t. T

i� there exists a realizable redu
tion 
andidate for A and T .

Proof sket
h: For the only-if dire
tion, we take a model I of A and T . This

model gives rise to a redu
tion 
andidate t in a straightforward way. By appro-

priately 
hoosing an extension X

I

for the fresh 
on
ept name X , we \almost"

obtain a model for the redu
tion 
on
epts C

A

t

(a): there may exist obje
t names

a su
h that a

I

is an R-neighbor of itself, but R 62 re


A

(a). Sin
e this interferes

with the use of the 
on
ept name X , we need to take two disjoint 
opies of the

original model and bend ba
k and forth some edges.

For the if dire
tion, we take a realizable redu
tion 
andidate t for A and T

and �nite models I

a

of C

A

t

(a) and T , and use these to 
onstru
t a �nite model

for A and T . The general idea is to take the union of (disjoint) �nite models for

all redu
tion 
andidates and then bend some edges to satisfy ABox assertions

(a; b) : R. Some spe
ial 
are needs to be taken to deal with re
exivity assertions

(a; a) : R. ut



Sin
e the number of types for A and T is exponential in the size of A and T ,

and the number of obje
t names used in A is linear in the size of A, the number

of redu
tion 
andidates for A and T is exponential in the size of A and T .

Thus, to de
ide �nite 
onsisten
y of A w.r.t. T , we may simply enumerate all

redu
tion 
andidates for A and T and 
he
k them for realizability: by Lemma 4,

A is �nitely 
onsistent w.r.t. T i� we �nd a realizable redu
tion type. Sin
e

the size of the redu
tion 
on
epts is 
learly polynomial in the size of A and

T , by Theorem 2 the resulting algorithm 
an be exe
uted in deterministi
 time

exponential in A and T .

Theorem 3. Finite ALCQI-ABox 
onsisten
y w.r.t. TBoxes is ExpTime-
om-

plete if numbers are 
oded in binary.

Note that our 
hoi
e of the unique name assumption is not 
ru
ial for this result:

if we want to de
ide �nite 
onsisten
y of an ABox A without the unique name

assumption, we may use the following approa
h: enumerate all possible partition-

ings of the obje
t names used in A. For ea
h partitioning, 
hoose a representative

for ea
h partition and then repla
e ea
h obje
t name with the representative of

its partition. Obviously, the ABox A is �nitely 
onsistent without the unique

name assumption if and only if any of the resulting ABoxes is �nitely 
onsistent

with the unique name assumption. Clearly, this yields an ExpTime upper bound

for �nite ABox 
onsisten
y without the unique name assumption.

6 Outlook

In this paper, we have determined �nite model reasoning in the des
ription

logi
 ALCQI to be ExpTime-
omplete. This shows that reasoning w.r.t. �nite

models is not harder than reasoning w.r.t. arbitrary models, whi
h is known

to be also ExpTime-
omplete [6℄. We hope that, ultimately, this resear
h will

lead to the development of �nite model reasoning systems that behave equally

well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,

however, that the 
urrent algorithm is best-
ase ExpTime sin
e it 
onstru
ts

an exponentially large equation system. It 
an thus not be expe
ted to have an

a

eptable runtime behaviour if implemented in a naive way. Nevertheless, we

believe that the use of equation systems and linear programming is indispensable

for �nite model reasoning in ALCQI . Thus, e�orts to obtain eÆ
ient reasoners

should perhaps 
on
entrate on methods to avoid best-
ase exponentiality su
h as

on-the-
y 
onstru
tion of equation systems. Moreover, the redu
tions presented

in Se
tion 4 and 5 
an also not be expe
ted to exhibit an a

eptable run-time

behaviour and it would thus be interesting to try to repla
e them by more

\dire
t" methods.

Theoreti
ally, there exist at least two interesting dire
tions in whi
h the

presented resear
h 
an be 
ontinued: �rst, while �nite ALCQI-
on
ept satis�a-

biltiy w.r.t. TBoxes is suÆ
ient for reasoning about 
on
eptual database models

as des
ribed in the introdu
tion, �nite ALCQI-ABox 
onsisten
y it is not yet

suÆ
ient for de
iding the 
ontainment of 
onjun
tive queries w.r.t. a given 
on-


eptual model|an intermediate redu
tion step is required. It would thus be



interesting to analyze the 
omplexity of query 
ontainment in �nite models. We

believe that it is possible to obtain an ExpTime upper bound by building on

the results presented in Se
tion 5. Se
ondly, it would be interesting to extend

ALCQI with nominals, i.e. with 
on
ept names interpreted as singleton sets.

Finite and standard reasoning in the resulting DL ALCQOI is known to be

NExpTime-hard [14℄. An extension in this dire
tion is rather 
hallenging sin
e

the results established in this paper 
ru
ially rely on the fa
t that adding dis-

joint 
opies of a model preserves the model's properties. Unfortunately, in the

presen
e of nominals, this is no longer true.
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